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The h–principle for broken Lefschetz fibrations

JONATHAN WILLIAMS

It is known that an arbitrary smooth, oriented 4–manifold admits the structure of
what is called a broken Lefschetz fibration [1; 7; 16]. Given a broken Lefschetz
fibration, there are certain modifications, realized as homotopies of the fibration
map, that enable one to construct infinitely many distinct fibrations of the same
manifold. The aim of this paper is to prove that these modifications are sufficient to
obtain every broken Lefschetz fibration in a given homotopy class of smooth maps.
One notable application is that adding an additional “projection" move generates
all broken Lefschetz fibrations, regardless of homotopy class. The paper ends with
further applications and open problems.

57M50, 57N13; 57R70, 57R17

1 Introduction

Over the past fifteen years, the interplay between symplectic topology and gauge theory
has resulted in significant progress in the understanding of smooth 4–manifolds. One
starting point is a famous result of Taubes, stating that the Seiberg–Witten invariant
is equivalent to a certain Gromov invariant for symplectic manifolds [21]. More
recent developments have resulted in an extension of this understanding toward the
nonsymplectic setting via new formulations of smooth invariants, for example, the
Heegaard Floer theory of Ozsváth and Szabó [18] and the Lagrangian matching invariant
of Perutz [19]. The Lagrangian matching invariant is a generalization of the standard
surface count of Donaldson and Smith [10] from symplectic Lefschetz fibrations to
near-symplectic broken Lefschetz fibrations (a near-symplectic form differs from a
symplectic form in that it is allowed to vanish in a controlled manner along an embedded
1–submanifold). While Usher [22] was able to show that the standard surface count was
equal to the Gromov invariant of Taubes (and thus the Seiberg–Witten invariant by [21])
under mild hypotheses, the Lagrangian matching and Heegaard Floer invariants are
still only conjecturally equivalent to it. Besides the previously mentioned relationship
between the work of [19] and [10], comparisons and relationships between the three
invariants abound, for example, in Lekili [15]. Relevant to the focus of this paper,
they all involve a choice of fibration or handlebody structure (which are sometimes
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interchangeable) on which the corresponding invariant is presumed not to depend. The
Heegaard Floer invariant for 4–manifolds begins with a handlebody decomposition of
a twice-punctured 4–manifold, which induces maps between the three-dimensional
invariants of its boundary components. The Lagrangian matching invariant requires
a broken Lefschetz fibration, which in some ways resembles a circle-valued Morse
function on a 3–manifold without extrema, except with an extra dimension in both the
source manifold and target sphere. More precisely, a broken Lefschetz fibration is a
smooth map from a 4–manifold to a surface whose critical locus consists of isolated
Lefschetz critical points (locally modeled by complex quadratic critical points), and a
1–submanifold of indefinite fold points (pictured in Figure 1(a), below). This paper
begins by presenting a list of modifications (which first appeared in Lekili [16]) that may
be performed on any broken Lefschetz fibration to produce a new one, and it is shown
that they can be used to modify any broken Lefschetz fibration into one that induces a
handlebody decomposition of the 4–manifold in a straightforward way. Connected to
the currently open question of whether the Lagrangian matching invariant is indeed
independent of the chosen fibration structure, these modifications present a topological
question which is interesting in its own right: are they complete in the sense that they
generate the entire collection of broken Lefschetz fibrations in a fixed homotopy class
of maps? The main result of this paper is that they are indeed complete; that is, for
a given homotopy class of maps, broken Lefschetz fibrations are unique up to these
modifications. This explains the title of the paper: possibly abusing the language of
Eliashberg and Mishachev [12], a pair f0; f1 of homotopic broken Lefschetz fibrations
serve as formal and genuine solutions to the partial differential relation that defines
broken Lefschetz fibrations, and the h–principle for such maps is the assertion that
there is, in a suitable sense, a deformation of broken Lefschetz fibrations connecting
them.

Acknowledgments The author would like to thank the following people, for without
their kind support and thoughtful comments this work would not have appeared: Denis
Auroux, R İnanç Baykur, John Etnyre, David Gay, my thesis advisor Bob Gompf,
Maxim Kazarian, Yankı Lekili and Rustam Sadykov. The author also acknowledges the
reviewer whose comments enabled substantial improvements. This work was partially
supported by NSF grant DMS-0603958.

2 A calculus of stable maps

Modifying the critical loci of broken Lefschetz fibrations (and thus possibly the dif-
feomorphism type of the total space) goes as far back as the first existence result
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in Auroux, Donaldson and Katzarkov [6], and this is the approach here, though
here all modifications preserve the diffeomorphism type of the total space. In the
present paper there is a smooth, compact 4–manifold, denoted M throughout, whose
spatial coordinates are given singly by xi , i D 1; : : : ; 4 and collectively by x . For
any homotopy, the homotopy parameter is always denoted t , and often it will be
necessary to view a homotopy both as a 1–parameter family of maps and as a map
I �M ! I � F that respects the product structure of both spaces; thus, in order
to streamline notation, subscripts will denote products when there is no ambiguity;
for example, the notation Mt will denote the slice ftg �M � Œ0; 1��M , and when
appropriate, the symbol MI will denote I �M , I D Œ0; 1�. Using an appropriate
notion of stability, the critical locus of a k –parameter family of stable maps between
low-dimensional manifolds was characterized as part of a framework of local models
in a paper [23] of Wassermann appearing in 1975. In the special case of a 1–parameter
family of maps M 4! S2 without definite folds, a concise and accessible description
of the fibration structure imposed by these critical points appeared in Lekili [16].
Wassermann’s stability criterion allows for finitely many points .t;m/ 2MI at which
the map Mt ! S2

t fails to be a stable map, with three explicit local models for those
points. These local models have descriptions as local modifications of an existing
stable map D4!D2 by homotopy. Extending this list to encompass definite folds,
this section is a description of the tools used in the proof of the main theorem and
the objects to which they apply. Beginning with [6], broken Lefschetz fibrations have
been depicted and studied by drawing pictures of the base of the fibration along with
the critical values of the map, adding decorations that describe the behavior of the
critical locus with respect to the fibration structure adjacent to it (in this paper they
are called base diagrams). While this approach has its limitations as noted in Section
4.2, it presents a useful medium to introduce and study broken Lefschetz fibrations
and stable maps in a general sense. It is useful to understand the critical locus of a
family of such maps in more than one light: the first description is from the familiar
perspective that it is a map from a 5–manifold to a 3–manifold such that the points at
which its derivative vanishes obey certain specific local models; the other viewpoint is
that the critical locus is a submanifold of MI equipped with a stratification that has
certain large-scale properties.

2.1 Stability

The main object of study in this paper is a 1–parameter family of maps ft W M
4! S2 ,

t 2 Œ0; 1�, endowed with a notion of stability such that, for all but finitely many
values of t , ft is itself a stable map, and that moreover the function f given by
f .t;x/ D ft .x/, a map from a 5–manifold to a 3–manifold, is stable within the
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class of 1–parameter families. Given an appropriate equivalence relation for maps,
.r; s/–stability is the condition that any sufficiently small r –parameter perturbation of
a map which is itself an s–parameter family of maps preserves the equivalence class of
that map within the collection of s–parameter families. In this paper, r D sD 1; hence
the term .1; 1/–stability. For the bare notion of stability of maps between manifolds,
the equivalence relation is right-left equivalence, recognizable to topologists as simply
change of coordinates, where two maps g1;g2W X ! Y are equivalent when there
are diffeomorphisms f; h such that g1f D hg2 . Then f is stable when for each
perturbation ft such that f0 D f , there exists some � > 0 such that ft is equivalent
to f when jt j< � . More appropriate for this discussion is an equivalence that respects
the product structure associated to a 1–parameter family of maps.

Definition 1 Let f;gW R5! R be map germs with f .0/ D g.0/ D 0. Associated
to f and g are germs F W R5!R3 , GW R5!R3 , defined by F.t;x1;x2;x3;x4/D

.t;x1; f .t;x1;x2;x3;x4// and G.t;x1;x2;x3;x4/D .t;x1;g.t;x1;x2;x3;x4//, re-
spectively. Define f and g to be .1; 1/–equivalent if there are germs ˆ;ƒ; ; � of
diffeomorphisms fixing the origin such that the following diagram commutes:

(1)
R5

ˆ
��

F // R3

ƒ
��

p // R2

 

��

q // R

�

��
R5

G // R3
p // R2

q // R

where pW R2 �R!R2 and qW R�R!R are projections onto the first factor.

Definition 2 Let E.Rn;Rp/ be the set of germs at 0 of smooth mappings Rn!Rp .
Let E.t;x/ D E.R5;R/, E.t;x1/ D E.R2;R/, and E.t/ D E.R;R/, such that the
labels reflect the parameters we are using. Let f W R5 ! R with f .0/ D 0 and let
F W R5!R3 be given by F.t;x/D .t;x1; f .t;x//. We say that f is infinitesimally
.1; 1/–stable if

E.t;x/D
�
@f

@x2

;
@f

@x3

;
@f

@x4

�
E.t;x/C

�
@f

@x1

�
E.t;x1/C

�
@f

@t

�
E.t/CF�E.R3;R/:

Locally, a stable map from a 4–manifold to a 2–manifold can be thought of as a
1–parameter family of real-valued maps, and this is the reason for the special role of the
x1 variable in the above definition: .1; 1/–stability is a special case of .r; s/–stability
which is a notion of stability for an r –parameter family of maps which are themselves
s–parameter families.
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Definition 3 For a smooth, compact 4–manifold M and a smooth, compact 2–
manifold N , an infinitesimally .1; 1/–stable homotopy MI ! NI is given locally
by .t;x/ 7! .t;x1; f .t;x//, where f W R5!R is infinitesimally .1; 1/–stable, with
I D Œ0; 1� parametrized by the variable t . In this paper, we refer to such a map as a
deformation for short and N D S2 unless otherwise specified.

2.2 The Thom–Boardman stratification

For a smooth map f from an n–dimensional manifold N to a p–dimensional man-
ifold P , n � p , a critical point is simply any point x 2 N such that the derivative
df W TN ! TP satisfies rk.dfx/ < p , and the critical locus S.f / is defined to be
fx 2N W rk.dfx/ < pg. Keeping track of kernel dimension, a common notation S .k/f

denotes the locus of points where rk.dfx/�n�k ; in other words, S .k/f is the closure
of the locus of points where f drops rank by at least k dimensions. In order to denote
the locus of points where rk.df / is precisely n� k , one writes S .k;0/f .

For the arbitrary smooth map f W N !P , S .k/f is generally not a submanifold of N ;
for example, S .3/ for the midpoint t D 0 of the merging homotopy of Figure 4 is a pair
of arcs which meet at a higher-order critical point in the interior of each. Supposing f
is stable, it is known that S .k/f is a smooth submanifold of X which necessarily has
positive codimension for k ¤ 0. Consequently, the restriction f 0 D f jS.k/f is itself a
smooth map between smooth manifolds, and there is a smooth submanifold of S .k/f

defined by S .`/.f 0/, which is denoted S .k;`/f . Inductively, a Boardman symbol is a
nonincreasing sequence of positive integers I D .k1; k2; : : : ; kn/, where the entries of
the sequence denote the kernel ranks of successive restrictions of f . Following the
pattern, the corresponding stratum in the critical locus is denoted SIf .

Proposition 1 A deformation ıW MI ! S2
I

is stable as a map from a 5–manifold to a
3–manifold. Consequently, there is a submanifold SIı for each symbol I .

Proof The commutative square appearing in Equation (1) specializes to right-left
equivalence by considering the maps between the four outermost corners as follows:

(2)
R5

ˆ
��

p ıq ıF // R

�

��
R5

p ıq ıG // R

If f;g are .1; 1/–equivalent then the above square generalizes to right-left equivalence
of the corresponding deformations by appending the identity maps for the variables t;x1 .
From there, the right-left equivalence after sufficiently small perturbation follows
through the rest of the definitions with little difficulty.

Geometry & Topology, Volume 14 (2010)



1020 Jonathan Williams

2.3 Critical loci of deformations

The goal of this work is to describe a certain way to modify the critical locus of a
deformation. Toward that end, this section gives a description of the critical locus of a
deformation, viewed as a map from a 5–manifold to a 3–manifold. In understanding
deformations, this is both a convenient first pass and will be important to the arguments
in Section 3.

Viewing R4 with complex coordinates .z; w/, readers may recognize the following
map as the local model for a Lefschetz critical point:

(3) .z; w/ 7! zw:

A smooth map whose critical locus consists of isolated Lefschetz critical points is
called a Lefschetz fibration. The local and global properties are discussed in detail in
Gompf and Stipsicz [14]. There are several other classical, locally defined critical point
models, which are of interest in this paper because they characterize what it means
to be a deformation. These critical points also impose certain fibration-like structures
on M , which are naturally described in the order given by their stratification in the
next few paragraphs. Though the following discussion involves deformations as the
relevant objects of interest, much of what follows is also true for stable maps from
4–manifolds to surfaces and from 5–manifolds to 3–manifolds.

2.3.1 Folds The highest stratum, indeed the entire critical locus of a deformation, is
S .3/ , the closure of the fold locus. For a map from a 4–manifold M to a surface, it is
defined by the following local model R4!R2 up to change of local coordinates:

(4) .x1;x2;x3;x4/ 7! .x1;x
2
2 Cx2

3 ˙x2
4/:

When the sign above is positive, the critical point is known as a definite fold; when it
is negative, it is known as an indefinite fold or broken singularity. When there is no
ambiguity, we refer to the definite fold locus of a map hW X ! Y as SC.h/ (or simply
SC ) and the indefinite fold locus as S�.h/ (or simply S� ).

Definition 4 Any smooth map M !N whose critical locus is a union of Lefschetz
singularities and indefinite folds is called a broken Lefschetz fibration.

Remark 1 Though the results of this paper apply to the case of positive genus, usually
N D S2 in the literature concerning broken Lefschetz fibrations.

From the local models, it is evident that the fold locus is a smoothly embedded 1–
submanifold of M whose image is an immersed 1–submanifold of S2 ; see also
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Baykur [9] concerning the topology of indefinite folds. It will be convenient to view a
deformation ft W M

4! S2 as a map F W MI ! S2
I

such that the image of each slice
F jMt is contained in S2

t . For such maps (indeed for general maps from 5–manifolds
to 3–manifolds), it turns out that folds are obtained by taking the direct product of
the previous model with R. That is, up to change of local coordinates, fold points of
deformations are given by the following equation:

(5) .t;x1;x2;x3;x4/ 7! .t;x1;x
2
2 Cx2

3 ˙x2
4/

with the same dichotomy between definite and indefinite folds [5]. For a fixed value

(a) Indefinite (b) Definite

Figure 1

of t , the fibers near an indefinite fold are those of an indefinite Morse singularity,
or in other words a Morse singularity whose index is neither maximal nor minimal.
The map naturally parametrizes the target disk via the coordinates .x1;x

2
2
Cx2

3
�x2

4
/,

and for decreasing values of the coordinate function x2
2
Cx2

3
�x2

4
, such a singularity

corresponds to a 3–dimensional 2–handle (for increasing values, a 3–dimensional
1–handle). This is illustrated by examining the point preimages of a horizontal arc
parametrized to go from left to right in Figure 1(a). As one travels from left to right, a
circle depicted on the fiber at the left shrinks to a point, resulting in a nodal fiber lying
over each point in the vertical arc. Then the fiber separates into two disks as shown on
the right. This is a convenient notation for base diagrams first employed by Auroux in
which the arrow gives the orientation of the indefinite arc as well as specifying which
circle contracts as one approaches the fold. As in Example 2 of [6], we refer to this
circle as the vanishing cycle associated to the indefinite fold. One might use the more
precise round vanishing cycle when it is important to distinguish between those of
indefinite folds and Lefschetz critical points. Figure 1(b) depicts the image of a definite
fold. Again, the arrow points in the direction of decreasing values of .x2

2
Cx2

3
Cx2

4
/;

indeed the fiber is empty where this coordinate would be negative. The preimage of
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each point in the vertical arc is a point, which expands into a sphere moving toward
the left. For those who are familiar with the interplay of near-symplectic structures and
broken Lefschetz fibrations, it is immediately clear that definite folds are not compatible
with near-symplectic structures, as this sphere is nullhomologous. In some sense, the
spherical fibers in the picture are themselves vanishing cycles. With this in mind, it is
natural to draw an arrow from the sphere to the image of the definite fold at which that
sphere contracts. This specificity can be rather useful when dealing with base diagrams
involving multiple fold arcs and fiber components.

2.3.2 Cusps The second-highest stratum of the critical manifold of a deformation is
the (1–dimensional) closure of the cusp locus, denoted S .3;1/ , which can be singled
out as the critical manifold of the map obtained by restricting a deformation to its own
critical locus. A cusp point of a map M 4! S2 has the local model

.x1;x2;x3;x4/ 7! .x1;x
3
2 � 3x1x2Cx2

3 ˙x2
4/:

When the sign above is negative, the cusp is adjacent to two indefinite fold arcs as
in Figure 2(a); when positive, one arc is definite and the other indefinite as in Figure
2(b). In each of Figure 2(a) and Figure 2(b) the critical locus is a smoothly embedded
curve in D4 consisting of two arcs of fold points which meet at an isolated cusp point.
Similar to folds, the cusp locus of a deformation has the local model obtained by
crossing with R:

.t;x1;x2;x3;x4/ 7! .t;x1;x
3
2 � 3x1x2Cx2

3 ˙x2
4/:

Another way to understand the local model for a cusp is by considering the family of
restrictions of the maps in Figure 2(a) and Figure 2(b) to the preimages of vertical arcs,
which describes a homotopy D3

Œ��;��
! Œ��; ��Œ��;�� that traces the formation of a pair

of canceling Morse critical points when the family is seen moving from left to right. For
this reason, the indices of the critical points must differ by 1, which implies any cusp
involving a definite fold (index 0 or 3) as one of its constituent arcs must also involve a
fold whose corresponding Morse index is 1 or 2 (an indefinite fold). Thus there is only
one kind of cusp involving definite folds up to local parametrization, the one shown in
Figure 2(b). As there is no ambiguity, we call this a definite cusp. The fibers above
key parts of the target disk are shown in the figures: in both figures the fiber above the
actual cusp point is homeomorphic to a disk. In Figure 2(a), the vanishing cycles are a
pair of simple closed curves in a punctured torus that transversely intersect at a unique
point. See also Lekili [16] and Levine [17] concerning cusp points.

Remark 2 In view of the various types of maps according to critical loci, the author
proposes to use the term broken Lefschetz fibration precisely as in Definition 4, to use
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(a) Indefinite (b) Definite

Figure 2: Base diagrams of cusps

the term wrinkled fibration for maps whose critical loci consist of indefinite cusps
and indefinite folds, and to use the term broken fibration to encompass maps whose
critical loci consist of indefinite folds, indefinite cusps, and Lefschetz critical points.
In all these cases, the maps are not required to be injective on their fold loci. For a
compact 4–manifold, it is possible to slightly perturb any map to a surface such that
the Lefschetz critical points have isolated images.

2.3.3 Swallowtails The lowest stratum appears in deformations but does not appear
in a stable map M 4! N 2 for dimensional reasons. The locus of swallowtails has
Boardman symbol .3; 1; 1/ and consists of a finite collection of points, each of which
has the local model

(6) .t;x1;x2;x3;x4/ 7! .t;x1;x
4
2 Cx2

2 t Cx1x2˙x2
3 ˙x2

4/:

Up to right-left equivalence, there are three types of swallowtails, distinguished for the
purposes of this paper by the fact that each produces a pair of cusps and thus three arcs
of fold points in a base picture. Local behavior for the three swallowtails is discussed
below.

Notably, Lefschetz critical points are not included in the preceding list. This is because
they are unstable (see, for example, Figure 6 of [16]). As remarked above, the classi-
fication of stable critical loci (both for general stable maps [5] and for k –parameter
families of maps for small k [23]) has been completed in low dimensions. For this
reason, one may define the stability of a map by restricting the form its critical locus
may take. By the results of [23], for deformations the classification consists of the list
above: folds, cusps, and swallowtails (see also Appendix A of [16]). Thus a smooth
homotopy MI ! S2

I
is a deformation if and only if each point in its critical locus
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has a local model chosen from one of these. A deformation f is itself a stable map,
but this does not imply that each slice f jMt

is stable. For a deformation, at a finite
collection of points in MI there are critical points which are unstable when considered
in the context of maps from smooth 4–manifolds to surfaces, but which become stable
when exhibited in 1–parameter families (for example, swallowtails). What follows is
a list of these possibilities (which is complete by Theorem 4.4 of [16]), exhibited as
moves one can perform on a base diagram. Each move is given locally as a homotopy
of a stable map D4!D2 , supported away from the boundary spheres of the source
and target spaces.

2.4 Catalog of moves involving indefinite folds

The following modifications appear in [16]; they appear below for convenience and a
complete exposition.

2.4.1 Isotopy The first member of the list is perhaps the most obvious: called iso-
topies in Theorem 4.1 of [16], one may perform a .1; 1/–stable homotopy of a map
M ! S2 in which the stratified isotopy class of its critical locus is unchanged. In a
base diagram, one sees the critical set moving around after the fashion of an isotopy
of knot diagrams. In practice, showing that a given modification of base diagrams
is of this type can be subtle; however isotopies offer a surprising variety of possible
modifications of a given map. Stated precisely, there is a notion of local left-right
equivalence where maps f;gW X ! Y are equivalent if there is an open cover fUig

of X such that each restriction f jUi
is right-left equivalent to gjUi

. Then an isotopy
of f is a one-parameter family of locally right-left equivalent maps.

2.4.2 Birth The local model for births appears in [11] as follows:

(7) .t;x1;x2;x3;x4/! .t;x1;x
3
2 C 3.x2

1 � t/x2Cx2
3 �x2

4/:

For t < 0 the map has empty critical locus. For t � 0, the critical locus is fx2
1
Cx2

2
D t ;

x3 D x4 D 0g. For t D 0 the local model is similar to that of a cusp, and it will be
important to know that it actually is a cusp, so the fact appears in the following
proposition. In this paper (especially in the proof of Lemma 4), this cusp is called an
indefinite (or, as discussed below, a definite) birth point.

Proposition 2 For the birth deformation, the origin R�R4 is a cusp point.

Proof Temporarily denote the map of Equation (7) by F and its critical locus given
above by S . Because F is a deformation, Proposition 1 implies it is a stable map
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R5!R3 and it is known that the condition to verify is that the point in question lies
in S .3;1;0/.F / (see, eg, Section 3 of [3]). The restriction F jS can be written as a map
F jS W R

2!R2 given by .x1;x2/ 7! .x1;�2x3
2
/. At the origin the derivative of this

map has rank 1, putting that point in S .3;1/ . Further restricting F jS to its own critical
locus fx2 D 0g yields the identity map on x1 which has empty critical locus. Thus the
origin is in S .3;1;0/.F / as desired.

It is known [11; 16] that for the slice ft D � > 0g the critical locus is a circle composed
of two open arcs of indefinite fold points connected to each other by two cusp points
as in Figure 3. Thus the critical locus of this move in D4

Œ��;��
can be described as a

hemisphere with a cusp equator. More precisely, taking the projection T W S ! Œ��; ��

to the t –axis as a Morse function, the local models imply that any index 0 (or index 2
replacing t with �t ) critical point of this function must correspond to a birth, which
either must be of this type, or a “definite birth” described below. The fibration structure

Figure 3: A birth model that creates a circle of critical points

for the birth outside of the slice ft D 0g is as follows: for t < 0 it is a trivial disk
bundle. For t > 0, the fibers outside the circle are disks, while the fibers inside the
circle are punctured tori with vanishing cycles as shown in Figure 3 when traveling to
the left and right from a reference point in the center of the circle.

2.4.3 Merge In the same way that a birth corresponds to an index 0 or 2 critical
point of the projection of S to the t –axis, the merging move corresponds to an index 1
critical point. The local model in the indefinite case is as follows:

(8) .t;x1;x2;x3;x4/ 7! .t;x1;x
3
2 C 3.t �x2

1/x2Cx2
3 �x2

4/:
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The critical locus is given by fx2
2
�x2

1
D t; x3D x4D 0g which parametrizes a saddle.

Similar to the birth move, there are two obvious cusp arcs which meet at the origin at a
point which turns out to also be a cusp, and in this paper (especially in the proof of
Lemma 4), this point is called an indefinite (or, as discussed below, a definite) merge
point.

Proposition 3 For the merge deformation, the origin in R�R4 is also a cusp point.

Proof Temporarily denote the map of Equation (8) by F and its critical locus given
above by S . Because F is a deformation, Proposition 1 implies it is a stable map
R5!R3 and like Proposition 2 it is sufficient to show that the point in question lies
in S .3;1;0/.F /. The restriction F jS can be written as a map F jS W R

2!R2 given by
.t;x/ 7! .t;�2x3/. At the origin the derivative of this map has rank 1, putting that
point in S .3;1/ . Further restricting F jS to its own critical locus fx D 0g yields the
identity map on t which has empty critical locus. Thus the origin is in S .3;1;0/.F / as
desired.

The proposition shows that the critical locus of a merge is a disk composed of fold
points which is bisected by an arc of cusp points. Thus, as stratified surfaces the critical
loci of the merge and birth deformations are diffeomorphic. In this paper, a merging
move is always depicted in a base diagram along with a curve along which the move
occurs. When the curve is between two fold points, this signals that a merge is possible
between those points and occurs in the interval before the next picture; when it goes
between a pair of cusps, it signals an inverse merge in the same way. The fibration
structure for the merge outside of the slice ft D 0g is as follows: for t < 0 the base
diagram appears as in the left side of Figure 4, where the fibers above the central region
are punctured tori, and the fibers above the top and bottom regions are disks. Similar
to the birth deformation, the fibration structure above an arc that connects the top and
bottom regions traces a Morse function on the 3–disk with canceling Morse critical
points of index 1 and 2. In other words, for a merge to occur, the vanishing cycles as
obtained by following the vertical arc drawn on the left of the figure in either direction
must intersect at a unique point. The fibration structure for t > 0 includes two cusp
points, with the vanishing cycles as shown. Arguably finding more application in the
literature is the reverse of this move, which requires a joining curve connecting the
two cusps (whose image appears as the horizontal arc in the right side of the figure)
that intersects the critical locus precisely at the two cusps it joins (see, eg, 4.4 of [17]).
Generalizations of the reverse of this deformation to larger and smaller dimensions in
the source and target spaces have been used at various times in the past, appearing for
example in [17], where Figure 3 has a rather illuminating picture of what is actually
happening with the merging move, and others, eg [20].
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Figure 4: A merging move between two indefinite folds

2.4.4 Flip Here appears a type of critical point involving more than cusp and fold
points. Figure 5 depicts the formation of two cusps in the critical locus, which now has
a loop in its image. Unlike the previous two deformations, these cusp arcs meet not
at a cusp point but a higher-order critical point, an indefinite swallowtail. It is given
locally by Equation (6) with the first sign chosen positive, the other negative (choosing
the opposite results in an equivalent model). The deformation begins with an arc of

a b

Figure 5: The indefinite flipping move, also known as the result of passing
through an indefinite swallowtail

indefinite fold points. After passing the swallowtail point, the fiber above a point within
the loop is a twice-punctured torus, with vanishing cycles as shown. The preimage of
the point where the two fold arcs intersect is also a twice-punctured torus, except with
two nodal singularities obtained by shrinking the two disjoint vanishing cycles labeled
a and b .

2.4.5 Wrinkle This modification is not prominent in the singularity literature because
it involves critical points which are not stable under small perturbation (as shown by
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the existence of the wrinkling move itself). Thus without loss of generality it is not
present in a deformation, though it is an explicit way to modify any broken Lefschetz
fibration into a stable map whose critical locus consists of cusps and indefinite folds. It
appears in this paper because it is used in Section 4. Beginning with the local model for
a Lefschetz critical point given by .z1; z2/ 7! z1z2 , the wrinkling homotopy is given by
.z1; z2/ 7! z1z2C t Re.z1/, t � 0. The picture is largely self-explanatory: beginning

Figure 6: Lekili’s wrinkling move, given by a deformation of a Lefschetz
critical point

with a Lefschetz critical point (which appears at the left as X), a 3–cusped circle of
indefinite folds opens up, bounding a region whose fiber has genus higher by 1. It is
interesting to note that, traveling in a loop in the annulus-fibered region parallel to the
circle of critical points, the Lefschetz monodromy associated to the isolated critical
point remains after the perturbation.

2.4.6 Sink Putting these moves together, it is possible to convert any wrinkled fibra-
tion into a broken Lefschetz fibration by a C 0 –small homotopy; a modification which
appears in Figure 8 of [16] gives the prescription. For want of a better term, this paper
refers to this homotopy as sinking a Lefschetz critical point into the fold locus, and to
the reverse of this homotopy as unsinking a cusp; Figure 7 shows the beginning and
end of this homotopy. The vanishing cycles associated with unsinking a cusp have
a simple description: labeling the vanishing cycles near the cusp in Figure 7 a and
b and equipping them with orientations such that a � b D C1, the Lefschetz critical
point that comes from unsinking is precisely the one whose monodromy sends a to
�b : its vanishing cycle is homotopic to the concatenation bC a. The sinking move
is the reason why it is possible to study broken Lefschetz fibrations by working with
stable maps.
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Figure 7: The beginning and end of the sinking deformation, moving from
left to right. In the left side, the vanishing cycles are exhibited using a
reference point just to the right of the Lefschetz critical point.

Those familiar with the subject will notice that most of these moves are slightly different
from those appearing in [16] in that they do not involve the formation or disappearance
of Lefschetz critical points. As sinking and unsinking are arbitrarily small perturbations,
the difference is small enough for the abuse of terminology to be tolerated, assuming
one specifies when sinking and unsinking take place in a given homotopy. Thus a flip,
merge or birth, when appearing in a deformation, is implicitly one of the above moves.
According to the local models in Section 2.3, deformations do not involve Lefschetz
critical points (and thus do not involve sinking or wrinkling moves). However, to get
from one broken Lefschetz fibration f0 to another, f1 , one first sinks or wrinkles
all Lefschetz critical points of f0 , passes through an appropriate deformation, then
performs reverse sinking or wrinkling moves to obtain f1 . With this understood, the
main theorem has a precise statement:

Theorem 1 If two broken Lefschetz fibrations are homotopic, then there exists a
homotopy between them which is realized as a sequence of modifications (and their
inverses) chosen from the following list: birth, merge, flip, sink, wrinkle and isotopy.

2.5 Catalog of moves involving definite folds

With some understanding of the moves and local models above, it is straightforward to
deduce their definite counterparts.

2.5.1 Definite birth Given locally by the model

(9) .t;x1;x2;x3;x4/! .t;x1;x
3
2 C 3.x2

1 � t/x2Cx2
3 Cx2

4/;

the modification in Figure 8 adds a nullhomologous sphere component to the fiber for
points on the interior of the circle. Outside the circle, the fibers are disks. Traveling
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Figure 8: The definite birth move

from left to right along the middle of the figure, one encounters a nullhomotopic
vanishing cycle which pinches off a sphere component. Continuing to the right, that
same sphere shrinks to a point and disappears. By an argument which is almost verbatim
that of Proposition 2, the critical locus in D4

Œ��;��
is a disk bisected by cusps; the only

difference is that one side of this disk is swept out by definite folds, the other by
indefinite folds.

2.5.2 Definite merge The deformation corresponding to the merging of an arc of
definite folds into an arc of indefinite folds (Figure 9) has the following local model:

Figure 9: A merging move involving a definite fold

(10) .t;x1;x2;x3;x4/ 7! .t;x1;x
3
2 C 3.t �x2

1/x2Cx2
3 Cx2

4/:
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Like its indefinite counterpart, it corresponds to an index 1 Morse critical point, taking t

as a Morse function S! Œ0; 1�. It appears as a saddle S Dfx2
1
�x2

2
D t;x3 D x4 D 0g

in D4
Œ��;��

, and by an argument analogous to that of Proposition 3, a definite cusp arc
along the slice fx2 D 0g � S . Finally, an arc between a definite fold point and an
indefinite fold point, or between two definite cusps, signals a definite merge in the same
way as in the indefinite case. Note that the vanishing cycles for the two indefinite arcs
on the right side are the same: this reflects the fact that they must be nullhomotopic
curves in the same fiber component. Lastly, a joining curve for inverse merge must also
satisfy the obvious compatibility requirement where the indefinite arcs patch together
and the definite arcs patch together in the resulting base diagram.

2.5.3 Definite swallowtails There are two swallowtails that involve definite folds
in their local models. The first is given by Equation (6) with both signs chosen to be
positive, and occurs as in Figure 10(a) beginning with an arc of indefinite fold points.
The loop that forms is on the opposite side of the arc than the loop that forms by a flip,
and the parallel vanishing cycles introduce a nullhomologous sphere component in the
fiber. Traveling along the loop of critical points that results from passing through a
swallowtail of this type, one can read off the type of fold as indefinite, definite, then
indefinite. For this reason these swallowtails are called IDI definite swallowtails. The

(a) IDI swallowtails occur on indefinite
folds

(b) DID swallowtails occur on definite
folds

Figure 10

other definite swallowtail is given by Equation (6) with both signs chosen to be negative,
and appears in Figure 10(b), where the fiber is empty at the bottom of both sides of the
diagram. It begins with an arc of definite fold points and opens upward into the region
fibered by spheres, introducing another sphere component in the fiber. Each sphere
component is necessarily nullhomologous as it dies at some definite fold arc. Following
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the pattern above, these swallowtail points will be called DID definite swallowtails. In
this paper, these two critical points are consistently referred to as definite swallowtails,
while the term “flip” is reserved for the indefinite version appearing in Section 2.4.

2.6 The critical manifold of a deformation

Collecting these ideas, the critical locus of a deformation ft W MI!S2
I

is a smooth sur-
face S properly embedded into MI with a stratification into 0, 1, and 2–dimensional
submanifolds, each contained in the boundary of the next, and the critical locus of
the restriction of a deformation to the closure of any stratum is the union of the
lower-dimensional strata.

Definition 5 A stable map from a smooth 4–manifold to a surface whose critical locus
consists of indefinite folds and cusps is called a wrinkled fibration. When a deformation
has empty definite fold locus, it is called a deformation of wrinkled fibrations.

The stability of a deformation implies that one may take the projection T W crit.f /! I

as a Morse function whose index 0 and 2 critical points correspond to definite and
indefinite births, while the index 1 critical points correspond to definite and indefinite
merging moves. Other than these, the only points at which a deformation passes through
an unstable map are the swallowtail points. Any deformation has a corresponding
family of base diagrams, and by the classification Theorem 4.4 of [16], the converse
statement that a map whose critical manifold obeys these constraints is necessarily a
deformation also holds; that is, since its critical locus is of the appropriate form, any
1–parameter family of base diagrams given by a sequence of isotopies and the above
moves must correspond to some deformation.

A convenient depiction of the critical locus S of a deformation f is as a surface
colored according to critical point type. The restriction gD f jS is locally a continuous
embedding (in fact an immersion away from crit.g/, which in our case consists of the
cusp and swallowtail points), so a further piece of data is the set of points in D � S

on which g fails to be injective. Like any immersion of a curve into a surface, the
critical images ft jS � S2 evolve continuously with t in the manner prescribed by the
Reidemeister moves, where f �1.D/ appears as a union of copies of the diagrams in
Figure 11 and their reflections in t (in the figure, two arcs with the same number have
a common image under the deformation and may appear in different components of S ).
More precisely, looking at Figure 11 as a collection of rigid tangles, D appears as a
concatenation in which the components of two tangles may be joined by arcs which
project diffeomorphically to the t –axis, and such that the numbering is consistent. The
following lemma will be important in Section 3.2:
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1 1 1 1 1 2 2 3 3 1

Figure 11: The preimages of intersection points for Reidemeister moves 1,
2 and 3 in the critical locus of a deformation, where the parameter t points
either upward or downward

Lemma 1 For a deformation, the double-point locus given by the two half-open arcs
appearing in Figure 11 corresponding to the Reidemeister-1 move necessarily have a
common limit point p 2 crit.f / which is a (definite or indefinite) swallowtail point.

Proof Restricting the deformation to the critical locus in a neighborhood of p , it
becomes a map from a surface into R3 . The point p is precisely the point at which
the move occurs, and is a branch point of the map, a generic singularity of such maps.
In other words, p is a critical point of f jcrit.f / and therefore it occupies a lower
stratum than the fold locus, so it must be a cusp or swallowtail point of the deformation,
according to the classification of .1; 1/–stable critical loci. Since the local model for
cusps does not involve an immersion of the critical locus, it must be a swallowtail.

3 Proof of the main theorem

As discussed above, if a deformation has empty definite fold locus, then it is possible to
connect its endpoints by a sequence of the moves of Section 2.4. Thus one approach is
to begin with an arbitrary homotopy between broken Lefschetz fibrations, perturb it to
be .1; 1/–stable, and remove the definite fold locus while preserving the deformation
condition. Note that it is not necessary that the modification itself be realized by a
homotopy: all that is required for Theorem 1 is an existence result for a deformation
of wrinkled fibrations, regardless of the homotopy class of the deformation map f .
If these modifications were realizable as a sequence of homotopies of f , one could
easily obtain an “elimination of definite fold” result analogous to [20] for maps from
5–manifolds to 3–manifolds, as discussed in Section 4. The modification begins by
removing the definite swallowtails. Inspired by a paper of Ando [2] which indicates
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that swallowtails of all kinds cancel in pairs, the first step is to in some sense replace
all definite swallowtails by flips so that the closure of the definite fold locus becomes
a surface with nonempty boundary consisting of a union of cusp circles. In Section
3.2, a kind of surgery on this surface renders a deformation such that SC becomes a
union of disks, on each of which the deformation is an embedding which is as simple
as possible. The last step is a trick to cause these disks to appear in definite births
which are trivial in a way that allows them to be omitted. The following examples will
be used in the argument, and are typical of the kind of manipulations that form the
heart of this paper.

Example 1 The result of passing through a pair of swallowtails can also occur by
choosing a particular birth, then merging one of its fold arcs with a preexisting fold arc
as in Figure 12. It is helpful to follow the course of the deformation both from left to

0

1

2

0

1

0

1

Figure 12: Two swallowtails have the same effect as a birth followed by a
merge. There are two definite versions and an indefinite version.

right and in reverse. Viewing the reverse is probably more natural, as it begins with the
result of two swallowtails followed by an inverse merge and an isotopy. From left to
right, it begins with the result of a birth which is modified by an isotopy followed by a
merge. Assuming the total space is connected, any pair of births of the same type are
related by isotopy because they are homotopies supported on 4–balls in M ; but when
the fiber is more complicated, with higher genus or more components, the placement
of the initial births becomes important. In the definite case, one chooses a definite
fold arc to serve as the horizontal one in the figure, and singles out a D2 family of
disks within the family of spheres that vanish at that fold arc. Then the definite birth
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takes place within that 4–ball. In the indefinite case, after choosing a fold arc (and
thus its vanishing cycle c ), the birth must occur such that one of its vanishing cycles
intersects c at a unique point. Such births always exist because they only require the
local models of fold arcs. One can check the validity of the rest of the deformations
in Figure 12 by drawing in the omitted fibers and vanishing cycles according to the
definitions of births and swallowtails. For the middle of the top picture, the thing to
check is that the preimage of the vertical arc contains a sphere that pops into existence
at the definite arc, then connect sums with the rest of the fiber at the indefinite fold.
For the lower middle picture, the thing to check is that the vanishing cycles at either
end of the vertical arc intersect transversely at a unique point in the fiber. This kind
of verification will prove to be routine for arguments involving base diagrams. For

Figure 13: The analogue of Figure 12 for IDI swallowtails

completeness, the analogue for IDI-type swallowtails appears in Figure 13; it is not
used in the proof of the main result. The placement of the initial birth occurs within a
fiberwise subdisk of the upper disk fiber at the left.

Example 2 This example is due to David Gay, who employed a clever use of the
modification that appears in Figure 5 of [7] and Figure 11 of [16]. Employing Example 1,
the author has slightly changed its presentation to avoid swallowtails, and it appears in
the proof of the main theorem more than once. The effect is to switch between definite
and indefinite circles by a deformation .D3�S1/I !D2

I
as shown in Figure 14. The

intermediate steps appear in Figure 15, in which a definite birth as in the previous
example has taken place outside the definite circle, followed by an isotopy in which the
newly introduced region of sphere fibers expands to result in the left side of the figure.
Performing the merge (which is also the one from Example 1) and then an inverse
merge as indicated gives the right side of the figure. Here, the indefinite circle may be
pushed past the other indefinite arc in an isotopy such that each spherical fiber above
the region it bounds experiences surgery on a pair of points as the other indefinite arc
passes by, resulting in torus fibers. Removing the cusped circle by an inverse definite
birth finally results in the right side of Figure 14.
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Figure 14: Interchanging definite and indefinite circles

Figure 15: The intermediate steps for Figure 14

Remark 3 There is something subtle going on with these modifications. Closing
off the boundary fibration in the left of Figure 14 with a copy of S2 �D2 (using
the trivial loop of diffeomorphisms of S2 ) and carrying that through until the end
of the deformation results in a family of fibrations of the 4–sphere. In order for the
(closed-off) right side of Figure 14 to be a fibration of the 4–sphere, the gluing data
associated with the fibration must use the nontrivial loop of diffeomorphisms of the
torus (in the language of [6], in which such a fibration initially appeared, the round
handle corresponding to the indefinite circle is odd), and it would be interesting to
clarify how and when this manifests itself in the above deformation. It was pointed
out by the referee that there must be monodromy around the outside of the indefinite
circle on the right side of Figure 15 that switches the two sphere components, which is
typical of odd indefinite fold circles; see Example 1 of [6].

Remark 4 As the modification of Example 2 is entirely local around a definite fold,
it seems likely that it could lead to an alternate proof of Theorem 2.6 of [20] in the
special case of 4–manifolds, and yet another slightly novel existence result for broken
Lefschetz fibrations (this would result in a map with immersed critical locus, but
Corollary 1 takes care of this). However, this is beyond the scope of the present work.
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3.1 Removing definite swallowtails

The definite swallowtails are precisely those isolated points in the lowest-dimensional
stratum which are adjacent to definite folds. It is clearly necessary to remove them, as
their local models involve definite folds. The recurring theme in this paper is a kind
of surgery on the map itself; that is, the map and the fibration structure it induces are
equivalent data, and performing a fibered surgery in which some fibered subset of a
manifold is replaced by a diffeomorphic subset with a different fibration structure on
its interior, yet an isomorphic fibration structure on its boundary can be viewed as a
modification of the map that preserves the manifolds involved. The first instance of
this is as follows.

Lemma 2 Suppose f W MI ! FI is a deformation. Then there exists a deformation
f 0W MI !FI such that fi D f

0
i , i D 0; 1, and such that S .3;1;1/.f 0/ consists entirely

of indefinite swallowtails.

Proof The IDI definite swallowtail occurs as a single critical point whose local model
appears in Figure 10(a). As described above, the tactic is to give a deformation gidi with
the same boundary fibration, but such that S .3;1;1/.gidi/ is free of definite swallowtails.
Removing a neighborhood of a definite swallowtail and gluing in this map causes the
deformation to go through these steps instead of a definite swallowtail.

3.1.1 IDI-type swallowtails For the purposes of exposition, it seems more natural
to present the deformation in reverse: the description begins (and gidi ends) with the
right side of Figure 10(a), which is the result of a definite swallowtail occurring on an
indefinite fold. In the right side of Figure 10(a), there is a region that whose regular
fiber is D2 tD2 . These disks meet at a point along the two “feet” below the triangle,
and their connect sum forms the cylindrical fiber at the bottom. For the IDI-type
swallowtail, the points at which these disks meet are depicted in Figure 16, with the
vanishing cycles also drawn: they (initially) bound subdisks in the fiber containing the
two points. The first step is an isotopy, supported near the definite cusps, in which
these points migrate outside of the subdisks. To understand this isotopy, note that the
fibrations above the finely dotted arcs in Figure 16 (oriented to that the beginning points
are at the definite fold) can be interpreted as Morse functions D3! Œ0; 1�, in which a
3–dimensional 0–handle is attached to a pair of 3–balls, then 1–handles connect the
zero handle to each of the 3–balls in turn. With this understood, the isotopy in Figure
16 is seen as an isotopy of that handle decomposition in which an attaching disk of one
of the 1–handles slides from the 0–handle over the other 1–handle (switching between
the dotted arcs switches the roles of the 1–handles). Continuing with Figure 17, an
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Figure 16: Part of the deformation gidi

Figure 17: Part of the deformation gidi

arrow indicates an isotopy in which the definite fold (and the part of the indefinite locus
that took part in the isotopy of Figure 16) moves past an indefinite arc. The only “new”
vanishing cycles in the middle of Figure 17 are in the 4–gon, and they are obtained
by performing the connect sum according to the points that were drawn at the right
of Figure 16. A further isotopy is indicated in the middle picture by a large arrow to
obtain the right side of the figure, where the vanishing cycles on the twice-punctured
torus fiber come from connect summing the sphere and the cylinder fiber two times. A
further isotopy is indicated on the right side of Figure 17 by large arrows, which can be
interpreted as an R3 move followed by an R2 move, both valid because the vanishing
cycles involved are disjoint. Having performed the isotopy, most of the vanishing
cycles appearing on the left side of Figure 18 are easy to deduce from those of the
previous picture. The new vanishing cycle appearing on the twice-punctured torus fiber
can be explained by the fact that it is obtained from the adjacent cylindrical fiber by
self-connect sum, and the vanishing cycle going around the cylinder survives into the
higher-genus fiber by continuity. The middle of Figure 18 is just a slightly simpler
version of the previous one, obtained by straightening out some of the fold arcs by an
ambient isotopy of the base diagram, and a flip results in the right side, where a large
arrow indicates an isotopy, an R2 move that removes two intersection points, resulting
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Figure 18: Part of the deformation gidi

in the left side of Figure 19. This isotopy is valid because of the orientation of the two

Figure 19: Part of the deformation gidi

indefinite arcs that take part: each arc is sliding toward its lower-genus side, so that
the fibers above each point of the bigon over which the arcs pass simply undergo two
self connect sums. The three smaller vanishing cycles remain here from the previous
diagram by continuity, while the new larger vanishing cycle that intersects the others
appears by an appropriate embedding of the flipping deformation of Figure 5. In the
left side of Figure 19, the vanishing cycles at the left and right of the twice-punctured
torus region intersect transversely at a unique point, and merging along an arc that
connects these indefinite folds results in the middle of the figure, where the cusped
loops may be removed by inverse flips. The reader will notice that the vanishing cycles
within the two loops are different, so there is a question of whether both loops can
be removed by inverse flips. Given an indefinite fold arc (call it the “parent arc” for
now), performing a flip changes the fiber on the side with lower Euler characteristic by
replacing a fiberwise cylinder neighborhood of the vanishing cycle with the decorated
genus-1 surface pictured in Figure 5. With this in mind, the two parent arcs in the
middle of Figure 19 have different vanishing cycles: one is a meridian of the cylinder
while the other bounds a disk, leading to their differing appearance. Reversing these
flips gives the right side of Figure 19, where the fold circle is easily removed by inverse
definite birth. This deformation, in reverse, is called gidi , and may be glued in or
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substituted for a definite IDI-type swallowtail. Thus the IDI-type definite swallowtails
may be removed from any deformation.

3.1.2 DID-type swallowtails For this type of critical point, the map gdid does not
need to be presented in reverse, and is most naturally presented beginning with the
left side of Figure 10(b), where a definite birth results in the left side of Figure 20.
This deformation is easier to describe because the fibers are all spheres and IDI-type
swallowtails are freely available for use. Performing an inverse merge as indicated

Figure 20: The beginning of the deformation gdid

followed by an isotopy gives the second diagram of Figure 20, and note the merge
indicated there, which results in the right side of the figure. Another way to get this
same picture is to use Example 1 followed by inverse merging the two outside cusps
in the right of Figure 12. The left side of Figure 21 results from an application of
the previous argument, performing the deformation of gidi in a neighborhood of an
indefinite fold point, with the same effect as passing though an IDI-type swallowtail.
The remaining images in the figure come from isotopies. In the first, a definite cusp

Figure 21: Part of the deformation gdid

passes across a definite fold. In these images, the combinatorial data of which sphere
vanishes or appears at each fold arc (that is, the definite vanishing cycle data) is precisely
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the information that explains the validity of each modification. For each base diagram,
in the region fibered by three spheres, the “middle” sphere dies at the definite fold
arc, so that the “top” and “bottom” spheres in that region persist as the “top” and
“bottom” spheres in the region above. With this understood, the isotopy resulting in
the middle of Figure 21 can be interpreted as a retraction of the region fibered by
bottom spheres. Another isotopy results in the right side of the figure. In this move, the
S2 tS2 fibers above the central region in the middle of Figure 21 are modified as the
top arc passes downward over it by pinching a loop in the top sphere. The vanishing
cycle data for the .S2tS2tS2/–fibered region of right side is obtainable from that of
the previous diagram, where an arc connecting two definite cusps indicates an inverse
merge that results in the left side of Figure 22. Here, an arc indicates a definite merging

Figure 22: Part of the deformation gdid

move (that in some sense reverses the very first inverse merge that was indicated in
the left side of Figure 20), which results in the middle diagram. An isotopy results in
the right side of Figure 22, in which the 4–ball region of the fibration fibered by the
“top” spheres is retracted. An inverse definite birth finally results in the right side of
Figure 10(b), completing the description of gdid . As with gidi , this deformation is
may be employed in place of a DID-type swallowtail. Then f 0 is obtained from f by
appropriately substituting gidi and gdid in place of all definite swallowtails.

3.2 Simplification of the definite locus

Having eliminated the swallowtails adjacent to definite folds, SC is now a smooth
surface embedded in M.0;1/ . The boundary of its closure consists of a union of circles,
which is precisely the definite cusp locus. Each component of this surface arises in the
course of a deformation whose ends are free of definite folds, and the only way for a
definite fold to arise in such a deformation is through a definite birth as in Figure 8.
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For this reason, the closure of each component of this surface has nonempty boundary
consisting of a collection of cusp circles in M.0;1/ . Now is a good time to introduce
some terminology.

Definition 6 Fix a deformation, denoted f .

� A path component �� SC.f / is admissible if it satisfies the following:
(1) The 1–manifold @x� consists entirely of definite cusp points.
(2) The surface x� is diffeomorphic to the unit disk D�C , sending x�\Mt 7!

fz 2D W Re.z/D tg.
(3) The restriction f jx� is an embedding.

� A deformation is admissible when each path component of its definite locus is
admissible.

� For real numbers 0< a< b < 1, a properly embedded arc �W Œa; b�! SC.f /

which is monotonic in the sense that �.s/ 2Ms for all s 2 Œa; b� is called a
forward arc. Using a small perturbation of � if necessary, the endpoints of any
forward arc are assumed to lie at cusp points at which crit.f / is not tangent to
the slices Ma and Mb .

Remark 5 According to Proposition 2 and Proposition 3, their definite analogues, and
the classification, the points at which crit.f / are tangent to the slices Mt are precisely
the points at which births and merges occur.

3.2.1 Standard neighborhoods In this paragraph, fix a deformation, denoted f ,
and suppose ˛ is forward arc for f , and choose some small � > 0. Because of the local
models for the cusp and fold points that constitute ˛ , there is a neighborhood �˛�MI

with corners in which the critical locus looks like Figure 23(a). More precisely, a
standard neighborhood is such that �˛ \S.f / is a disk whose stratification can be
given by coloring the unit disk D �C such that the following correspondences hold:

˛ $ fz 2R W jRe zj � �g

SC.f /\ �˛ $ fz 2D W jRe zj< �g

S�.f /\ �˛ $ fz 2D W jRe zj> �g

S .3;1;0/.f /\ �˛ $ fz 2D W jRe zj D �g:

A standard neighborhood immediately inherits a fibration structure � W D4
Œ��;��

!D2
Œ��;��

from the local models, which is a perturbed version of a trivial deformation of the map
depicted in Figure 23(b) (here and in Figure 23(a), the parameter t runs from left to
right). As �˛ always comes equipped with the map � , the notation � will denote a
standard neighborhood both as a topological space and as a map. The map of Figure
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S� S�

SC

SC

˛

(a) The critical locus of a
standard neighborhood �

(b) Base diagram of a cross-section of a standard neighbor-
hood

Figure 23

23(b) is the union of the standard local model for a definite fold arc and two copies of the
model for definite cusps, and is divided into three pieces, each corresponding to a local
model. The diffeomorphism type of the fiber is labeled, showing the total space as two
0–handles connected to each other by a 1–handle, each piece containing one properly
embedded arc of critical points which smoothly meets with that of any adjacent pieces.
Denoting the map of Figure 23(b) by fsliceW D

4!D2 , with appropriate coordinates
the standard neighborhood map � has the expression �.s;x/D .s; fslice.x//. Using
appropriate coordinates, a forward arc is parametrized as �.s/ D .s;m/ 2 Ms for
s 2 Œa; b� and some fixed m 2M . Since the endpoints of � lie at points where the
cusp locus is transverse to each slice Ms , without loss of generality crit.f /\ �� is
transverse to the slices Ms . For this reason, there is a straightforward description of �
using base diagrams. The initial picture is precisely Figure 2(b). As t increases, an
abrupt change occurs in which the cusp, the indefinite arc, and all disk fibers are omitted
from the picture and all that is left is Figure 1(b). The remainder of the deformation is
the reverse of the previous sentence. In this description, the image of � is a point that
first appears on the definite cusp and immediately moves into the interior of the definite
locus as the deformation progresses, returning to and immediately disappearing at the
cusp point after it reappears toward the end of the deformation. For a forward arc, the
parameter t appears in Figure 23(b) parametrizing the left-to-right direction. It may
help to visualize � as a restriction of the deformation in which a definite birth happens
to a trivial fibration D2�D2!D2 , immediately followed by the inverse of a definite
birth.

3.2.2 A cutting deformation The goal of this paragraph is to introduce a map
c0W D5!D3 which is useful because it affords a way to “cut” the definite locus of a
deformation along a forward arc. Much like a standard neighborhood, this deformation
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has the property that it can be interpreted in two ways, both as a deformation as pictured
and as a deformation when taking the parameter t to point in the left-to-right direction.
We begin with an initial deformation c , then modify it to obtain c0 . The description of
c uses base diagrams, beginning with Figure 23(b), on which there occurs a definite
birth to obtain the left side of Figure 24. Here, the initial placement of the birth requires

Figure 24: The map c

that the vanishing cycle of the indefinite fold of the new circle lies on the sphere fiber
component, and the definite fold arcs are dotted differently to distinguish the two
components of SC.c/. An isotopy expands this new circle to obtain Figure 24 right,
where the two cusps have migrated over the two indefinite arcs, resulting in a new region
whose regular fiber is obtained by connect summing one of the two sphere components
in the center with the disk component on each side. Another isotopy pushes the inner
definite arc outwards, expanding what was originally the inner S2 –fibered region to
obtain Figure 25 left. Here a vertical arc signals a definite merge to obtain the right side

Figure 25: The map c

of the figure (this move is easily seen to be valid by taking a hemisphere of the sphere
marked with an asterisk as the disk fiber in Figure 9). Here, as always, the vanishing
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cycles are determined by their appearance in the previous base diagram. Comparing
the two loops to Figure 10(a), it is clear that they may be removed by reverse IDI-type
swallowtails, resulting in a return to Figure 23(b).

So far, c is a map that does “cut” along a forward arc, but the two swallowtails are
rotated in a way that makes it unclear whether substituting c for a forward arc preserves
the deformation condition. To clarify, an illustration of the critical image near one of
these swallowtails appears in Figure 26(a). Here, the actual swallowtail point maps to
a dot marking an endpoint of the self-intersection arc. Normally, the t would increase
in a direction parallel to the arc of double points; however, when c is substituted for
a forward arc, the two swallowtails appear as in the image, with t increasing in a
perpendicular direction as shown.

t

(a) Critical image of the “sideways” IDI
swallowtail

t

(b) Twisting the previous picture, viewed
from above (here SC is shaded)

Figure 26

A small perturbation near each swallowtail point turns them so they appear in the way
one would expect from a deformation. This is illustrated in Figure 26(a) by taking
the swallowtail point (marked by a dot, where two cusp arcs meet) and perturbing
it so that the arc of double points becomes parallel to the t direction momentarily
before resuming its original course. It is important to perform this homotopy so that
the collection of points at which the cusp locus is tangent to Mt coincides with the
collection of points at which the closure of the fold locus is tangent to Mt . This
condition ensures that these tangencies are definite birth or merge points according to
the discussion of Section 2.6 so that gluing in this map results in a deformation. The
next step is to apply Lemma 2 to remove the definite swallowtails, replacing each with
a copy of gidi . Looking back at Figures 16 through 19, it is evident that SC.gidi/ is
a disk that initially appears at a definite birth point. Thus, when applying Lemma 2,
the swallowtail point in right side of Figure 26(b) is replaced with a definite birth
point. This results in a deformation without definite swallowtails, but for each of the
swallowtails just removed we have introduced a definite birth point and, at the tangency
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introduced by the twisting perturbation, a definite merge point. Like any deformation,
this defines a critical surface in I � .base/, and a part of this is depicted in the upper
part of Figure 27, in which a bold arc of definite cusps sits where a strip of definite fold
points meets a strip of indefinite fold points. Each vertical line corresponds to a certain

t

t0 t1 t2 t3

Figure 27: A definite birth point (dot at upper left) and a definite merge point
(dot at upper right) cancel by an isotopy of the deformation

value of t , and it has a corresponding base diagram to its left included for clarity. Note
that the cusp arc is in general position with respect to t , and so its projection to the t

axis is Morse, with two canceling critical points (the birth and merge dots). This is
problematic because the goal is to make the critical locus admissible and such behavior
will violate (2) for admissibility. To this end, note that the modifications between t0
and t3 may be removed by a homotopy of the deformation map that cancels the two
Morse critical points: momentarily choosing a metric on MI , the length of the cusp arc
connecting the merge and birth points decreases to zero, creating a single removable
critical point, so that it appears that the birth/merge pair never occurred. Applying this
to each pair of points coming from the turned and eliminated swallowtails concludes
the description of the cutting deformation c0 . From the base diagrams of gidi (Figures
16–19) and c (Figures 24–25), it is not hard to verify that c0 does not introduce new
tangencies between the closure of the definite fold locus and the slices Mt .

Lemma 3 (Cutting lemma) Let � W �˛!D3 be a standard neighborhood of a forward
arc ˛ for a deformation f . Then there is a deformation f 0 such that f 0 D f outside
of �˛ , and such that f 0j�˛ D c .

Proof By definition, � may be depicted by the unchanging base diagram of Fig-
ure 23(b), with the parameter t understood to parametrize the left-to-right direction.
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Viewing c0 and � as base diagrams for a pair of deformations, it is clear that the
boundary fibrations induced by each are isomorphic, since the modifications taking
place in each occur away from their boundaries and they start and end with identical
base diagrams. For this reason f 0 may be correctly interpreted as the result of a
fibered gluing where the fibration induced by c0 replaces the one induced by � . For
the assertion that f 0 is a deformation, it is sufficient to check that crit.c0/ is of the
form that characterizes deformations as discussed in Section 2.6. This is holds for
every stage of c , except for the “sideways swallowtails” which are addressed above to
obtain c0 . For the behavior that occurs between the base diagrams in Figures 24 and 25,
Proposition 2 and Proposition 3, along with their definite counterparts, show that the
modifications that take place (definite and indefinite births and merges) merely appear
as isotopies when f 0 is viewed as a sequence of base diagrams with increasing t .

t

˛

Figure 28: A depiction of how the deformation c0 modifies the definite locus
of a standard neighborhood. The right side depicts the definite locus of c0 .

Figure 28 is a depiction of how the cutting lemma modifies the definite locus. A
strip of definite folds bounded on two sides by cusp arcs may be interpreted as a
1–handle in some handle decomposition of the definite locus in which ˛ is a cocore.
The cutting lemma surgers out this 1–handle, producing two cusp arcs. Care has been
taken to remove canceling Morse critical points in the cusp locus, so that the cutting
lemma produces at most one pair of definite birth or merge points as indicated by two
tangencies of the cusp locus with ft D constg at the right side of the figure. Notably,
the indefinite fold image is largely omitted from this picture. It is a rather complicated
immersed surface, and a single complete depiction is beyond the artistic abilities of
this author.

Lemma 4 (Simplification lemma) Suppose f W MI ! FI is a deformation. Then
there is an admissible deformation f ad such that fi D f

ad
i , i D 0; 1.

Proof The argument is a repeated application of Lemma 3, modifying each path
component of SC.f / to satisfy the conditions of admissibility given in the definition,
as follows.

Geometry & Topology, Volume 14 (2010)



1048 Jonathan Williams

3.2.3 Condition (1) By Lemma 2 and the discussion of Section 2.6, without loss of
generality SC.f / is an oriented embedded surface in M.0;1/ , equal to its interior, such
that each path component C satisfies ∅¤ @ xC � 
 , where 
 denotes the collection of
definite cusp points of f ; thus SC.f / satisfies (1).

3.2.4 Condition (2) Fixing such C , there is a handle decomposition as the interior
of a 2–dimensional f0; 1g–handlebody. The next step is to show that there is a handle
decomposition of C such that each 1–handle h contains a cocore which is also a
forward arc; for in that case an application of the cutting lemma to each arc would
transform C into a union of disks. Recall that the projection T W crit.f / ! I is
Morse, and note that crit.T jC /D∅ because of the local model for definite folds. The
restriction T j
 is also Morse, and as discussed above crit.T j
 /D crit.T jSC

/, and
these points correspond to definite births, definite merges, and their inverses. Choose a
definite birth point p and consider the definite fold arc that it produces. Suppose that
after some interval in t the arc eventually takes part in a definite merge at a point q .
Choose an arc that connects p to q in the region of definite folds under consideration,
properly embedded, such that @=@t > 0. Perturb so that its endpoints lie within the
cusp locus away from p and q to make sure it is a forward arc and apply the cutting
lemma. The original merge point persists, but now it is adjacent to a canceling element
of crit.T j
 / and may be removed as in the end of the description of c , straightening
the newly produced cusp arcs. Now, in order for a definite merge point to exist, there
has to be a preexisting arc of definite fold points, which can only arise via definite
birth in the absence of definite swallowtails. For this reason, it is possible to apply
this process repeatedly until all merge points are removed, possibly increasing the
number of definite birth points and components of SC . In a similar way, reversing the
parameter t , all the inverse definite merge points can be eliminated, possibly increasing
the number of inverse definite birth points and components of SC . Calling this new
deformation f 0 , and its definite cusp locus 
 0 , crit.T j
 0/ now consists of definite birth
and inverse definite birth points. In particular, each component C 0 � SC.f

0/ appears
in a definite birth, and the diffeomorphism type of its cross section C 0t is unchanged
until it encounters the next element of crit.T j@C 0/, which is necessarily an inverse
birth, at which time the cross section (and C 0 ) vanishes. This gives the parametrization
condition x�\Mt 7! fz 2D W Re.z/D tg and thus (2).

3.2.5 Condition (3) The final step is to cut the disks �1; : : : ; �k that constitute
SC.f

0/ (each of which is in general immersed by f 0 ) into smaller disks, each of which
is embedded under the deformation, which will then be admissible. Fix one component
�i and call its immersion locus D . By Lemma 1, the tangle corresponding to the
Reidemeister-1 move is absent from the tangle depiction of D , implying that D is a
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union of the tangles corresponding to the other two Reidemeister moves. Observing
Figure 11, any pair of like-numbered components in these two Reidemeister pictures
can easily be separated by a vertical arc, and joining these arcs in � results in a forward
arc, which causes the two like-numbered components to lie in different components
of SC after applying the cutting lemma. Importantly, the cutting lemma itself does
not introduce new self-intersections in the definite locus, and this is easily verified by
inspecting the base diagrams used in its definition to see that c0 embeds its definite
locus. This gives (3).

3.3 Removal of the definite locus

In this section fix an admissible deformation f and a path component � � SC.f /.
The circle @x� consists of cusp points, and so by the local model of the definite
cusp there is a tubular neighborhood � D �.x�/ � S.f / on which the deformation
map is a homeomorphism. For this reason � �MI is diffeomorphic (and f .�/ is
homeomorphic) to a complex disk in which � itself is identified with fjzj< 1g �C ,
the boundary of � consists of a circle of cusps identified with fjzj D 1g, and x� has a
collar consisting of indefinite fold points which is identified with f1< jzj< 2g �C ,
all of which are embedded under the deformation map. As remarked in Section 3.2, as
t increases � must arise via a definite birth as in Figure 8, and by the same reasoning,
it is straightforward to see that � must also vanish by the inverse of the definite birth
model, and between these values of t the restriction f j� has a base diagram given by
Figure 23(b).

Beginning with a region swept out by an arc of indefinite fold points, one may per-
form a flip and then remove the loop that results by an inverse flip, resulting in a
new deformation that has the addition of two arcs of cusp points which meet at two
swallowtail points. Certainly one may extend the second swallowtail (and thus the cusp
arcs) forward in t as far as the surface of indefinite fold points extends, and backwards
similarly. Following the suggestive Figure 36(1) of [4], it makes sense to refer to such
a pair of swallowtails as a canceling pair.

With this understood, the first step for removing � is to introduce two pairs of canceling
flips alongside �, and at this point it is instructive to refer to Figure 29, in which the
progression is from left to right and back again, beginning and ending with the empty
diagram, which describes a trivial fibration by disks. The first step is a definite birth.
For the two pairs of canceling swallowtails, the initial two flips occur on the indefinite
arc that appeared with the definite birth, and the canceling pairs extend forward with
respect to t such that the resulting cusped loops in the base diagram persist into the
intermediate stage pictured at the right, continuing until �� again appears as in the
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middle diagram. Then the inverse swallowtails appear just before the inverse definite
birth, closing off the two loops before the rest of crit.��/ disappears. In this way, for
some closed interval J � I , Figure 29 describes a map MI �D4

J
!D2

J
with two

canceling pairs of flips.

p q p q

x z

y

Figure 29: Base diagrams for a neighborhood of an admissible disk � en-
dowed with two pairs of canceling flips and an arc which signals an inverse
merging move

Consider the two closed arcs P;Q of cusp points, parametrized in MI by Pt D

.t;P .t// and Qt D .t;Q.t//, whose images under f appear in the base diagrams of
Figure 29 as the points p and q . Without loss of generality, the initial points of P and
Q both lie in Ma and both terminal points lie in Mb for some Œa; b� in the interior
of J . In the middle of Figure 29, near to three indefinite arcs labeled x , y and z ,
there appears an arc ˇa �Ma suitable for an inverse merging move between the cusps
Pa and Qa (and in a symmetric fashion there is an arc ˇb �Mb ). The goal here is to
show that there is a one-parameter family of such arcs ˇt , t 2 Œa; b�.

The arc ˇa is a slight perturbation of an arc ža whose image lies entirely within the
critical image, and which indeed lies entirely in the indefinite locus except for two
short paths in fibers above two points. In the base diagram, this arc runs from p

downward along x toward the intersection with y , and at that point in Ma it leaves the
critical locus, following a path in the fiber above x\y to the node corresponding to y .
The path then proceeds along y into its interior. Coming from q the path proceeds
analogously so the two pieces meet in the middle of y . Perturbing this arc into the
regular locus in the direction away from the sphere fibers gives the smooth arc ˇa (and
analogously ˇb ).

In the same diagram, the spherical fibers are vanishing cycles for the definite fold arc.
Flowing these spherical fiber components as far upward as possible shows that they
map to a region which is bounded by a circle consisting of the definite image and
three subarcs of x , y , and z (to be precise, this is the region of regular values in the
base diagram containing the letter y ). Appropriately replacing the subarcs which are
adjacent to the definite cusps gives ža . This behavior persists for each t 2 Œa; b� in the
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sense that, within each slice Mt , flowing the spherical vanishing cycles of �t outward
as far as possible always terminates at some indefinite arc. The reason for this is as
follows. Such a flow must terminate at some critical arc if the total space is connected.
If it were to terminate at a definite arc not contained in �, then there must have been
a definite merge because, considering a one-parameter family of base diagrams, the
sphere fibers originally come into being by definite birth, the flow initially terminates
at the indefinite arc of that definite birth, and the only way to arrange for the sphere
fibers to collapse at a “new” definite arc is to merge it with one of the indefinite arcs
at which the flow terminates. But a definite merge is ruled out by admissibility of
the deformation, so the sphere-fibered region given by the flow is bounded by � and
part of the indefinite locus. This singles out a family of arcs žt which sweep out a
continuously embedded disk ž, which when perturbed in the direction of flow gives
a disk ˇ such that for dimensional reasons may be assumed to intersect the critical
locus at precisely P and Q. For this reason, the slices ˇt , t 2 Œa; b� form a family of
arcs which are then suitable for inverse merge between their cusp endpoints. Thus a
1–parameter family of inverse merging moves may be performed between P and Q,
along the arcs ˇt , by a homotopy of f .

As in Example 1, the fibration depicted in the center of Figure 29 can also be obtained
from the trivial fibration by disks by performing the definite birth as before, but then
performing an indefinite birth followed by an isotopy and a merging move instead
of the two flips. This is substituted into the deformation in the same way as in the
proofs of Lemma 2 and Lemma 3 at both ends of the modified neighborhood � . The
result is that the component of the critical locus containing � is a sphere, on which the
deformation is injective, composed of an indefinite disk glued along its cusp boundary
circle to a definite disk, which by the structure of deformations must occur as a definite
birth followed by isotopy, ending with an inverse definite birth. Such a sphere S

may be removed by a homotopy in which each circle given by S \Mt shrinks to a
point and disappears via inverse definite birth, the definite birth points at either end
approaching each other and disappearing with S . In this way, each component of SC
may be removed, and by Theorem 4.4 of [16], the resulting deformation of wrinkled
fibrations is given by a sequence of the moves of Section 2.4. This completes the proof
of Theorem 1.

4 Applications and questions

4.1 Applications

4.1.1 Simplified purely wrinkled fibrations The first existence result for broken
Lefschetz fibrations up to blowup appeared in [6] in the case where M is equipped
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with a near-symplectic structure, which is a closed 2–form that vanishes transversely
on a smoothly embedded 1–submanifold. More general results followed, beginning
with [13] and culminating with [7; 16] (written from the perspective of singularity
theory) and [1] (written using a handlebody argument). After some more terminology,
there follows another somewhat more specialized existence result.

Definition 7 Suppose two smooth maps f;g from a fixed 4–manifold M into a
surface F are related to each other by a sequence of the moves of Section 2.4. Then f
is equivalent to g .

In particular, any pair of homotopic broken Lefschetz fibrations of M are equivalent.
There are homotopic maps which are not equivalent: a simple example is a broken
Lefschetz fibration and the new map obtained by performing a definite birth.

Definition 8 Suppose f W M ! S2 is a stable map such that critf is a single cusped
circle of indefinite folds on which f is injective. Combining terminology from [9; 16],
such a map is called a simplified purely wrinkled fibration, or SPWF for short.

Corollary 1 Every broken Lefschetz fibration is equivalent to some simplified purely
wrinkled fibration.

Proof In [13], the authors show that each smooth oriented 4–manifold admits an
achiral broken Lefschetz fibration, where the term achiral signifies that in complex
coordinates their local model is allowed to read .z; w/ 7! z xw instead of the (complex
orientation preserving) zw for any of the isolated critical points. By their Addendum to
Theorem 1.1, the map is such that the isolated critical points run along the equator and
there are two collections of indefinite circles. The circles in one collection each map
diffeomorphically to a single circle parallel to and disjoint from the equator, oriented
such that the disk of regular values it bounds (say, the disk containing the North Pole) is
on the lower-genus side of each. The other collection is similar, with their lower-genus
side containing the South Pole. Thus the highest-genus region is a neighborhood of the
equator and the lowest-genus region contains one or both of the poles. The remainder
of the critical locus is a finite number of Lefschetz and achiral Lefschetz critical points,
all of which appear along the equator.

The construction of [13] begins with an arbitrary embedded, smooth, oriented surface
F �M with trivial normal bundle, together with a map from a neighborhood �F
of that surface projecting D2 �F ! D2 as a fiber of the fibration. The (arbitrary)
parametrization of �F implicitly specifies a framing for that surface, and hence a framed
cobordism class of surfaces. The Thom–Pontrjagin construction shows that homotopy
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classes of maps M ! S2 are in one-to-one correspondence with framed cobordism
classes of surfaces. Thus there is a map as described above in every homotopy class of
maps M ! S2 . Finally, Theorem 1 implies any broken Lefschetz fibration homotopic
to one of these maps is actually equivalent to it. For this reason, it suffices to give an
algorithm to show that such a map is equivalent to some SPWF. In [16] the author
shows that there is a wrinkling type of modification of a neighborhood of an achiral
Lefschetz critical point, with the result that the vanishing cycles appear in the reverse
order from that found in Figure 6 (see also Baykur [8] for a handlebody argument for
fixing achiral points). Performing this modification on all the achiral (and wrinkling
the other) Lefschetz critical points, followed by combining the resulting 3–cusped
circles via inverse merging moves, results in a wrinkled fibration which agrees with the
Gay–Kirby map except the isolated critical points have been replaced with a cusped
circle bounding a disk of regular values in the high-genus region containing the equator.
Choosing a reference fiber over the north pole and traveling toward the equator, the
round vanishing cycles of the indefinite circles for the northern collection are disjoint in
the fiber. This follows from the fact that the collection of critical circles each project to
the same northern circle, so their local model forces the vanishing cycles to be disjoint.
The same is true if one instead chooses a reference fiber in the southern hemisphere and
travels north toward the equator. For this reason, it is possible to isotope an element of
the northern or southern collection to bound a disk of regular values in the equatorial
region. At this point, a version of Figure 5 of [7] and Figure 11 of [16] shown in Figure
30 describes a way to reverse the orientation of the circle and add four cusps. One

Figure 30: Modifying an indefinite circle by two flips followed by an isotopy.
Depending on how this picture is embedded in the total fibration, the vanishing
cycles may appear differently.

may then inverse merge one of these cusps with a cusp from the circle that came from
the isolated critical points. If there were no isolated critical points, the inverse merge
may be skipped, leaving the 4–cusped circle to serve in its place for the rest of the
algorithm. If one of the collections consists of a single indefinite circle, the isotopy
may be skipped. Repeating this process of isotopy, inversion and inverse merge until
there is only one cusped circle yields the required fibration structure.
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Considering the unsinking move in Section 2.4, this corollary implies there is some
control over how the round vanishing cycles relate to the Lefschetz vanishing cycles in
a broken Lefschetz fibration, since a Lefschetz critical point that results from unsinking
a cusp always has a vanishing cycle that intersects that of the nearby indefinite fold
transversely at a unique point. Corollary 1 also implies the following concerning a new
way to express a 4–manifold.

Corollary 2 Any smooth closed 4–manifold may be specified by a chain f
igi2Z=kZ

of simple closed curves in an orientable closed surface F such that 
i transversely
intersects 
iC1 at a unique point.

Proof Here, k is the number of cusps, F is the higher-genus fiber, and the curves 
i

are the round vanishing cycles obtained by traveling around the critical image of an
SPWF of the 4–manifold. The modification appearing in Figure 30 and [16; 7] can
be used to globally inflate the fiber genus to an arbitrarily high integer, in this way
avoiding any ambiguity in gluing data coming from the noncontractible loops in the
diffeomorphism groups of S2 or T 2 .

4.1.2 Fibrations in distinct homotopy classes It is known that the homotopy classes
of smooth maps from a 4–manifold to the 2–sphere are in bijective correspondence
with framed cobordism classes of smoothly embedded oriented surfaces. For this
reason, there are generally infinitely many broken Lefschetz fibrations M !S2 which
are not related by the moves of Section 2.4. Thus a true uniqueness result for broken
Lefschetz fibrations requires a move that relates maps in distinct homotopy classes.
The idea is to compose any map M ! S2 with the projection S2!D2 in a way that
is stable, reversible and explicit. Then a short argument shows that all such maps are
related by Lekili moves. The first step is to describe a map ˇg which is used in the
construction. Consider the standard handle decomposition of the orientable genus g

surface †g as the union of a 0–handle with 2g 1–handles and a 2–handle. Crossing
with an interval, one obtains the analogous handle decomposition, which is induced by
a Morse function

(11) �̌
gW †g � Œ0; 1�! Œ1=2; 1�

which is chosen such that the fiber over 1 is a point that expands into a three-dimensional
0–handle as the values of � decrease. Continuing in this direction there are 2g 1–
handles h1; : : : ; h2g , and finally there is a 2–handle attached along a curve that travels
over the 1–handles in the order h1; h2; h

�1
1
; h�1

2
; : : : ; h�1

2g
, causing the fiber over 1=2

to be †g t†g . With this understood, the map ˇg is obtained by crossing �̌
g with the
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circle:

(12) ˇg DW
�̌
g � idW †g � Œ0; 1��S1

! Œ1=2; 1��S1:

Referring to the local models for definite and indefinite folds, it is clear that ˇg is a
stable map; see Figure 31 for a base diagram.

g

g

g

g

2g� 1

Figure 31: Part of the map ˇg , whose critical image consists of 2g C 1

concentric indefinite circles within a definite circle

Suppose a smooth map f W M ! S2 has a disk � of regular values, with fiber †g .
Taking @�� S2 as the equator and pW S2!D2 as the obvious projection map that
sends @� 7! fjzj D 1g, the projection move may be taken as a stable unfolding of the
map p ıf ; however there is a straightforward description by a cut-and-paste operation
as follows. The complement of f �1.�@�/ in M is a pair of maps to the disk, one
of which is a submersion (that coming from �), while the other may have nonempty
critical locus. Each of these maps has boundary †g �S1 with the obvious fibration
structure. These fibrations are superimposed such that the preimage orientation of the
fiber coming from � is reversed and that coming from the other disk is preserved to
form a new map

(13) M n .†g � Œ0; 1��S1/! fz 2C W jzj � 1=2g

with disconnected fibers; in particular, the preimage of each boundary point is †gt†g ,
and gluing ˇg to this fibration along the boundary in the trivial way completes the map
M !D2 . The projection move is simply to pass from f to this new map, and result of
applying this move to a broken Lefschetz fibration (or SPWF, purely wrinkled fibration,
stable map, etc.) will be called a projected broken Lefschetz fibration (respectively,
projected SPWF, etc.).

Lemma 5 Suppose f;gW M !D2 are projected purely wrinkled fibrations for some
closed, smooth 4–manifold M . Then there is a deformation between them that is
realized as a sequence of the moves in Section 2.4.
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Proof Certainly f is homotopic to g because D2 is contractible, so begin with an
arbitrary deformation between f and g . Any stable map M ! D2 has a compact
image whose boundary is composed of definite fold points [20], and in order to prove the
lemma, it is sufficient to arrange that the definite circles SC.f /�M0 and SC.g/�M1

bound a cylinder C �MŒ0;1� consisting entirely of definite fold points, on which the
deformation is injective, and further that Ct �Mt maps to the boundary of the image
for all t . Then for a sufficiently small neighborhood �C , the restriction to MŒ0;1� n�C

is a deformation between purely wrinkled fibrations over the disk relative to @M .
Then Theorem 1 implies the remaining definite locus may be removed, resulting in the
required deformation h. It remains to construct C .

Beginning with an arbitrary deformation h0 such that h0
0
D f and h0

1
D g , for di-

mensional reasons it is possible to choose an arc 
 W Œ0; 1�!MŒ0;1� such that 
 .t/
is a regular point of h0t for all t 2 Œ0; 1�. Further, there is a neighborhood �
 which
is also disjoint from crit.h0/. Finally, one may choose 
 so that its endpoints are
sufficiently close to SC.h

0
0
/ and SC.h

0
1
/ to lie on the spherical fibers coming from the

definite local models. By a homotopy of h0 which is supported on �
 , the first step
is to perform a definite birth centered at each point of 
 ; in MŒ0;1� the new critical
locus appears as a cylinder parallel to 
 , with a decomposition into a rectangle of
definite fold points meeting a rectangle of indefinite fold points along two arcs of
definite cusp points. In each slice Mt , a small circle appears as in Figure 8; the result
of this homotopy in the slice M0 appears in the left side of Figure 32, where the region
marked A is some purely wrinkled fibration coming from the projection move. The
next step is to perform, at every value of t , inverse merging moves between the definite
cusp points as indicated by the left side of the figure, so that the definite circle is on the
outside and the indefinite circle is on the inside for all t (the middle of the figure shows
what this looks like at the slice M0 ). At this point, the deformation h0 has been altered
such that the endpoints are not identical to f and g , and two new circles of critical
points sweep out a pair of cylinders parallel to 
 , one definite (which we denote zC ,
and which appears as the more heavily dotted circle in the middle of Figure 32) and
the other indefinite.

The sphere fibers that contract at zC map to an annulus in D2 at each value of t ,
depicted as the region labeled with a 2 in the middle of Figure 32 at t D 0. At each
value of t , the definite circle forming the outer edge of this annulus may be expanded by
a homotopy of h0 such that it becomes the boundary of the image at each t . The result
of this expansion at t D 0 appears in the figure at the right, and this new deformation
will be called h00 . By construction, h00 now has an outermost definite cylinder which
up until now has been called zC , and which now satisfies the requirements to be C ,
except it remains to arrange for the endpoints of h00 to be f and g .
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A A A2

1

2

1

Figure 32: Modifications of a deformation h as they appear at t D 0 . Integers
indicate the number of sphere components in the fiber, which is a disjoint
union of spheres in all regions except possibly A . The initial point of h00 is
on the right.

Figure 33 describes a deformation that begins with h00
0

and ends with a map that is

A A A A

Figure 33: A deformation that serves as a prefix to h00

related to f by an isotopy. Reversing the parameter t and appending this map to the
beginning of h00 (and the analogous counterpart to the end of h00 ) gives the required
deformation h. The list of moves is straightforward: from left to right is a definite
merge, then an isotopy in which the definite arc passes across the region A, and finally
an inverse definite birth. Unlike the other two steps, the isotopy is not obvious and
requires further argument in which we consider A as the complex unit disk. Just before
the isotopy in question, the fibration over A has the following characterization. The
cusped circle around A contributes to each point preimage a sphere fiber component.
Aside from these extra spheres, referring to Figure 31, a neighborhood of jzj D 1 has its
own sphere fibers which with decreasing radius increase in genus to some even integer
2g . Traveling further, the fiber separates into a pair of genus g surfaces at an oppositely
oriented indefinite circle. At this radius, the point preimage is †g t†g tS2 . Because
of the way the projection move is defined, one of these genus g fiber components
(coming from the disk �) traces a trivial fibration over the remainder of A, while the
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other may be part of a more complicated, yet disjoint, fibration structure. The isotopy
now explicitly makes sense as one that takes place in the complement of the more
complicated piece, resulting in a fiberwise connect sum between the sphere component
and the appropriate fiber component as the indefinite arc sweeps from right to left.

Theorem 2 Suppose M is a smooth 4–manifold, and that f W M ! S2 is a stable
map or a broken Lefschetz fibration. Then for any stable map or broken Lefschetz
fibration gW M ! S2 , there is a sequence of moves of Section 2.4, along with the
projection move, relating f to g .

Proof Theorem 1 covers the case where f and g are homotopic. When f and g

are not homotopic, the first step is to apply the projection move to f and g . Then
Lemma 5 implies the moves of Section 2.4 are sufficient to prove the theorem in the
case that M is closed. If @M ¤ ∅, then more complicated phenomena may arise;
however one may simply double M (as well as f and g in the obvious way), apply
Lemma 5, and restrict the result to M � DM to obtain the required sequence of
moves.

4.2 Questions

This section lists some related questions of interest to this author and a few of the issues
surrounding this work that still require a satisfactory treatment.

4.2.1 Minimal genus The result of Section 4.1.1 raises various minimal genus ques-
tions, connected with the obvious uniqueness question for SPWF:

Definition 9 Let F �M be a smoothly embedded surface with trivial normal bundle.
� The broken genus gb.M; ˛/ of a 4–manifold is the minimal genus fiber of all

simplified broken Lefschetz fibrations M ! S2 whose fiber is in the homology
class ˛ 2H2.M /.

� The wrinkled genus gw.M; ˛/ is the analogous invariant for SPWF.

Thus, along with the classical minimal genus, there are a few distinct notions of minimal
genus for fibration structures. The invariants gb and gw are not a priori the same, if
only because of the more complicated relation between Lefschetz and round vanishing
cycles in broken Lefschetz fibrations. Given a fibration realizing gb , it is not difficult
to obtain some SPWF of genus gbC 1, and the wrinkling move gives a way to turn
any SPWF into a broken Lefschetz fibration of the same genus, so it is possible that
these invariants are interchangeable. Certainly symplectic Lefschetz fibrations realize
the smallest fiber genus among all these notions, so it may be that gb and gw offer
some kind of measure of “how far” a manifold is from being symplectic.
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4.2.2 Uniqueness of SPWF The following questions seem likely to have affirmative
answers:

Conjecture 1 Any two homotopic simplified broken Lefschetz fibrations are related
by a sequence of modifications shown in Figure 30, called “flip and slip” in [7].

Conjecture 2 Let f1; f2W M!S2 be simplified broken Lefschetz fibrations obtained
from the SPWF f W M ! S2 by performing flip-and-slip modifications where the
initial flips are chosen to occur at different points of critf , then unsinking all cusps.
Then f1 and f2 are related by performing Hurwitz moves on their Lefschetz critical
points.

The difficulty in proving either of these conjectures is in keeping track of the round
vanishing cycles when the initial flips are performed on distinct components of the fold
locus of f . When the flips occur on the same component, the result is easy to deduce.

4.2.3 Isotopies This paper uses exclusively ad hoc arguments to show that various
isotopies are valid, at various points relying on diagrams which are as explicit as
possible to convince the reader of the validity of a move, and this can be tedious.
A systematic way to show that a given modification is a valid isotopy would make
verification of base diagram arguments easier and thus more reliable.

4.2.4 Nullhomologous fiber components The main theorem of this paper states that
there exists a deformation between any pair of stable maps which is free of definite
folds, assuming the endpoints are free of definite folds. More than simply the existence
of some such deformation, the proof that Perutz’s Lagrangian matching invariant is
a diffeomorphism invariant requires the existence of a near-symplectic cobordism, in
the language of [19]. This work does not imply such an existence result: it is easy to
kill the near-symplectic condition by an isotopy in which a bit of an indefinite fold
wanders back over itself, creating a nullhomologous (thus not near-symplectic) sphere
component in the fiber. In order to prove diffeomorphism invariance, one might show,
for example, that one can arrange for a deformation to have essential fiber components
at each stage. Then the modified Donaldson–Gompf construction of a near-symplectic
structure may be performed at almost every value of t to obtain a near-symplectic
deformation.

4.2.5 Removal in more general contexts It may be interesting to singularity theo-
rists to find the conditions under which one may eliminate definite folds from arbitrary
stable maps X 5! Y 3 by homotopy. It seems feasible to show that the modifications
in this paper (specifically, those of the definite swallowtail substitution Lemma 2, and,
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maybe less easily, the Cutting Lemma, Lemma 3) are realizable as homotopies. Then a
short argument that one may open a disk of indefinite fold points within any closed
surface of definite folds (using a higher-dimensional version of Example 1) would
virtually complete the argument.
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