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Asymptotic geometry in products of Hadamard spaces
with rank one isometries

GABRIELE LINK

In this article we study asymptotic properties of certain discrete groups � acting by
isometries on a product X DX1 �X2 of locally compact Hadamard spaces which
admit a geodesic without flat half-plane. The motivation comes from the fact that Kac–
Moody groups over finite fields, which can be seen as generalizations of arithmetic
groups over function fields, belong to the considered class of groups. Hence one may
ask whether classical properties of discrete subgroups of higher rank Lie groups as in
Benoist [5] and Quint [16] hold in this context.

In the first part of the paper we describe the structure of the geometric limit set of
� and prove statements analogous to the results of Benoist in [5]. The second part
is concerned with the exponential growth rate ı� .�/ of orbit points in X with a
prescribed “slope” � 2 .0; �=2/ , which appropriately generalizes the critical exponent
in higher rank. In analogy to Quint’s result in [16] we show that the homogeneous
extension ‰� to R2

�0 of ı� .�/ as a function of � is upper semicontinuous and
concave.

20F69, 51F99; 53C23, 20G15, 22D40, 51E24

1 Introduction

Let .X1; d1/, .X2; d2/ be Hadamard spaces, ie complete simply connected metric
spaces of nonpositive Alexandrov curvature, and .X; d/ the product X1�X2 endowed
with the metric d D

p
d2

1
C d2

2
. Assume moreover that X1 , X2 are locally compact.

Each metric space X;X1;X2 can be compactified by adding its geometric boundary
@X , @X1 , @X2 endowed with the cone topology (see Ballmann [2, Chapter II]). It is
well-known that the regular geometric boundary @X reg of X – which consists of the
set of equivalence classes of geodesic rays which do not project to a point in one of
the factors – is a dense open subset of @X homeomorphic to @X1 � @X2 � .0; �=2/.
The last factor in this product is called the slope of a point in @X reg . The singular
geometric boundary @X singD @X n@X reg consists of two strata homeomorphic to @X1 ,
@X2 respectively. We assign slope 0 to the first and slope �=2 to the second one.
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For a group � � Is.X1/� Is.X2/ acting properly discontinuously by isometries on X

we study the limit set L� WD� �x\@X , where x 2X is arbitrary. Unlike in the case of
CAT.�1/–spaces, this geometric limit set is not necessarily a minimal set for the action
of � because an element of Is.X1/� Is.X2/ cannot change the slope � of a point in
@X . This is similar to the situation in symmetric spaces or Bruhat–Tits buildings of
higher rank. So by abuse of notation we are going to call the set @F X WD @X1�@X2 the
Furstenberg boundary, and the projection of L�\@X

reg to @X1�@X2 the Furstenberg
limit set F� of � .

In this note we restrict our attention to discrete groups � � Is.X1/� Is.X2/ which
contain an element projecting to a rank one element in each factor, ie � contains an
element hD .h1; h2/ such that the invariant geodesics of h1; h2 do not bound a flat
half-plane in X1;X2 . Such an isometry of X will be called regular axial in the sequel.
Moreover, for Theorems A and B below we require as in Dal’Bo and Kim [13] that
for i D 1; 2 the projection �i of � to Is.Xi/ is strongly nonelementary: This means
that �i , i D 1; 2, possesses infinitely many limit points and does not globally fix a
point at infinity. By Proposition 3.4 in Caprace and Fujiwara [10], this condition is
equivalent to the fact that both �1 and �2 contain a pair of independent rank one
elements. For Theorems C, D and E below we need a slightly stronger assumption: We
require that �� Is.X1/�Is.X2/ contains two regular axial isometries gD .g1;g2/ and
hD .h1; h2/ such that g1; h1 and g2; h2 are pairs of independent rank one elements
in Is.X1/, resp. Is.X2/.

One important class of examples satisfying our stronger assumption are Kac–Moody
groups � over a finite field which act by isometries on a product X DX1 �X2 , the
CAT.0/–realization of the associated twin building BC �B� . Indeed, there exists an
element hD .h1; h2/ projecting to a rank one element in each factor by Remark 5.4
and the proof of Corollary 1.3 in [10]. Moreover, the action of the Weyl group produces
many regular axial isometries g D .g1;g2/ with gi independent from hi for i D 1; 2.
Notice that if the order of the ground field is sufficiently large, then � � Is.X1/�Is.X2/

is an irreducible lattice (see eg Rémy [18] and Caprace and Rémy [11]).

A second type of examples are groups acting properly discontinuously on a product of
locally compact Hadamard spaces of strictly negative Alexandrov curvature (compare
Dal’Bo and Kim [13] in the manifold setting). In this special case every nonelliptic and
nonparabolic isometry in one of the factors is already a rank one element. Prominent
examples here which are already covered by the results of Benoist and Quint are Hilbert
modular groups acting as irreducible lattices on a product of hyperbolic planes and
graphs of convex cocompact groups of rank one symmetric spaces (see also Burger [8]).
But our context is much more general and possible factors include locally finite, not
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necessarily regular trees and Riemannian universal covers of geometric rank one
manifolds.

Our first result is:

Theorem A The Furstenberg limit set is minimal, ie F� is the smallest nonempty,
� –invariant closed subset of @F X .

Moreover we have – as in the case of symmetric spaces or Bruhat–Tits buildings of
higher rank – the following structure theorem.

Theorem B The regular geometric limit set splits as a product F� � P� , where
P� � .0; �=2/ denotes the set of slopes of regular limit points.

From here on we will assume that � contains two regular axial isometries projecting
to independent rank one elements in each factor. Let g1 2 Is.X1/, g2 2 Is.X2/ be rank
one elements. For i D 1; 2 we denote gCi the attractive, g�i the repulsive fixed point,
and li.gi/ the translation length, ie the minimum of the set fdi.xi ;gixi/ W xi 2 Xig.
If gD .g1;g2/, we put gC WD .gC

1
;gC

2
/, g� WD .g�

1
;g�

2
/ 2 @F X . Then we have the

following two statements:

Theorem C The regular geometric limit set P� is an interval and we have

P� D farctan
�
l2.g2/= l1.g1/

�
W .g1;g2/ 2 � ; g1;g2 rank oneg\ .0; �=2/ :

Theorem D The set of pairs of fixed points .gC;g�/� @F X � @F X of regular axial
isometries in � is dense in .F� �F�/ n�, where � denotes the set of points .�; �/
such that �1 D �1 or �2 D �2 .

Notice that Theorem D can be viewed as a strong topological version of the dou-
ble ergodicity property of Poisson boundaries due to Burger and Monod [9] and
Kaimanovich [14].

We next fix a base point o 2X , � 2 Œ0; �=2� and consider the cardinality of the sets

N "
� .n/ WD

�

 2 � W n� 1< d.o; 
o/� n ;

ˇ̌̌d2.p2.
o/;p2.o//

d1.p1.
o/;p1.o//
� tan �

ˇ̌̌
< "

�
;

where " > 0 and n 2N is large. This number counts orbit points with a correlation of
distances to the origin in each factor given by approximately tan � . We further define

ı"� WD lim sup
n!1

log N "
�
.n/

n
and ı� .�/ WD lim inf

"!0
ı"� :
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The quantity ı� .�/ can be thought of as a function of � 2 Œ0; �=2� which describes
the exponential growth rate of orbit points converging to limit points of slope � . It is
an invariant of � which carries more information than the critical exponent ı.�/: the
critical exponent is simply the maximum of ı� .�/ in Œ0; �=2�. As in Quint [16] it will
be convenient to study the homogeneous function

‰� W R
2
�0!R ; H D .H1;H2/ 7! kHk � ıarctan.H1=H2/.�/ :

Similar to the case of symmetric spaces or Euclidean buildings of higher rank, we have
the following:

Theorem E ‰� is upper semicontinuous and concave.

One of the main applications of Theorem E is that it allows to construct generalized
conformal densities on each � –invariant subset of the limit set as in Link [15] and
Quint [17] for higher rank symmetric spaces and Euclidean buildings. In a future work
we will carry out this construction and relate ı� .�/ to the Hausdorff dimension of the
limit set.

The paper is organized as follows: Section 2 recalls basic facts about Hadamard spaces
and rank one isometries. In Section 3 we collect properties of products of Hadamard
spaces. In Section 4 we study the structure of the limit set and prove Theorems A
and B. Section 5 deals with properties of the set of regular axial isometries and contains
the proofs of Theorems C and D. In Section 6 we introduce and study the exponent
of growth of slope � for � . Finally, in Section 7 we construct a so-called generic
product for � in order to show that the function ‰� is concave, and give the proof of
Theorem E.

Acknowledgements This paper was written during the author’s stay at ETH Zurich
which was partially supported by the FNS grant PP002-102765. She warmly thanks
Marc Burger and Alessandra Iozzi for inviting her, and the FIM for its hospitality and
the inspiring atmosphere. She is grateful to Pierre-Emmanuel Caprace for many helpful
remarks and discussions and to Françoise Dal’Bo for her valuable comments on a first
draft of the paper. She also thanks both referees for their useful suggestions and in
particular a considerable simplification of the proof of Lemma 3.1.

2 Preliminaries

The purpose of this section is to introduce some terminology and notation and to
summarize basic results about Hadamard spaces and rank one isometries. The main
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references here are Bridson and Haefliger [7] and Ballmann [2] (see also Ballmann
and Brin [3] and Ballmann, Gromov and Schroeder [4] and Ballmann [1] in the case of
Hadamard manifolds).

Let .X; d/ be a metric space. A geodesic path joining x2X to y2X is a map � from a
closed interval Œ0; l ��R to X such that �.0/Dx , �.l/Dy and d.�.t/; �.t 0//Djt�t 0j

for all t; t 0 2 Œ0; l �. We will denote such a geodesic path �x;y . X is called geodesic,
if any two points in X can be connected by a geodesic path, if this path is unique,
we say that X is uniquely geodesic. In this text X will be a Hadamard space, ie a
complete geodesic metric space in which all triangles satisfy the CAT.0/–inequality.
This implies in particular that X is simply connected and uniquely geodesic. A geodesic
or geodesic line in X is a map � W R! X such that d.�.t/; �.t 0//D jt � t 0j for all
t; t 0 2 R, a geodesic ray is a map � W Œ0;1/! X such that d.�.t/; �.t 0// D jt � t 0j

for all t; t 0 2 Œ0;1/. Notice that in the non-Riemannian setting completeness of X

does not imply that every geodesic path or ray can be extended to a geodesic, ie X

need not be geodesically complete.

From here on we will assume that X is a locally compact Hadamard space. The
geometric boundary @X of X is the set of equivalence classes of asymptotic geodesic
rays endowed with the cone topology (see eg Ballmann [2, Chapter II]). The action of
the isometry group Is.X / on X naturally extends to an action by homeomorphisms on
the geometric boundary. Moreover, since X is locally compact, this boundary @X is
compact and the space X is a dense and open subset of the compact space xX WDX[@X .
For x 2X and � 2 @X arbitrary, there exists a geodesic ray emanating from x which
belongs to the class of � . We will denote such a ray �x;� .

We say that two points � , � 2 @X can be joined by a geodesic if there exists a geodesic
� W R ! X such that �.�1/ D � and �.1/ D �. It is well-known that if X is
CAT.�1/, ie of negative Alexandrov curvature bounded above by �1, then every pair
of distinct points in the geometric boundary can be joined by a geodesic. This is not
true in general. For convenience we therefore define the visibility set at infinity Vis1.�/
of a point � 2 @X as the set of points in the geometric boundary which can be joined
to � by a geodesic, ie

(1) Vis1.�/ WD f� 2 @X j 9 geodesic � such that �.�1/D � ; �.1/D �g :

Let x;y 2X , � 2 @X and � a geodesic ray in the class of � . We put

(2) B�.x;y/ WD lim
s!1

�
d.x; �.s//� d.y; �.s//

�
:
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1068 Gabriele Link

This number is independent of the chosen ray � , and the function

B�. � ;y/W X !R

x 7! B�.x;y/

is called the Busemann function centered at � based at y (see also [2, Chapter II]). For
any x;y; z 2X , � 2 @X and g 2 Is.X / the Busemann function satisfies

jB�.x;y/j � d.x;y/(3)

B�.x; z/D B�.x;y/CB�.y; z/(4)

Bg��.g�x;g�y/D B�.x;y/ :

A geodesic � W R!X is said to bound a flat half-plane if there exists a closed convex
subset i.Œ0;1/ �R/ in X isometric to Œ0;1/ �R such that �.t/ D i.0; t/ for all
t 2R. Similarly, a geodesic � W R!X bounds a flat strip of width c > 0 if there exists
a closed convex subset i.Œ0; c��R/ in X isometric to Œ0; c��R such that �.t/D i.0; t/

for all t 2R. We call a geodesic � W R!X a rank one geodesic if � does not bound
a flat half-plane.

The following important lemma states that even though we cannot join any two distinct
points in the geometric boundary of X , given a rank one geodesic we can at least join
points in a neighborhood of its extremities. More precisely, we have the following
well-known lemma:

Lemma 2.1 [2, Lemma III.3.1] Let � W R!X be a rank one geodesic which does
not bound a flat strip of width c . Then there are neighborhoods U of �.�1/ and V

of �.1/ in xX such that for any � 2 U and � 2 V there exists a rank one geodesic
joining � and �. For any such geodesic � 0 we have d.� 0; �.0//� c .

Moreover, we will need the following technical lemma which immediately follows
from Lemmas 4.3 and 4.4 in [3].

Lemma 2.2 Let � W R! X be a rank one geodesic and put y WD �.0/, � WD �.1/.
Then for any T � 1, " > 0 there exists a neighborhood U of �.�1/ in xX and a
number R> 0 such that for any x 2X with d.x; �/ >R or x 2 U we have

d.�x;y.t/; �x;�.t//� " for all t 2 Œ0;T � :
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The following kind of isometries will play a central role in the sequel.

Definition 2.3 An isometry h of X is called axial, if there exists a constant lD l.h/>0

and a geodesic � such that h.�.t//D�.tCl/ for all t 2R. We call l.h/ the translation
length of h, and � an axis of h. The boundary point hC WD �.1/ is called the
attractive fixed point, and h� WD �.�1/ the repulsive fixed point of h. We further put
Ax.h/ WD fx 2X j d.x; hx/D l.h/g.

We remark that Ax.h/ consists of the union of parallel geodesics translated by h, and
Ax.h/\ @X is exactly the set of fixed points of h. Moreover, we have the following
easy formula for the translation length of an axial isometry in terms of Busemann
functions.

Lemma 2.4 If h is an axial isometry with attractive and repulsive fixed points hC ,
h� then its translation length is given by

l.h/D BhC.x; hx/D Bh�.hx;x/ ; where x 2X is arbitrary :

Proof Let x , y 2 X arbitrary. Then by the cocycle identity (4) and the fact that h

fixes hC and h� ,

BhC.x; hx/D BhC.x;y/CBhC.y; hy/CBhC.hy; hx/

D BhC.x;y/CBhC.y; hy/C BhC.y;x/„ ƒ‚ …
D�B

hC
.x;y/

D BhC.y; hy/ ;

and similarly Bh�.hx;x/ D Bh�.hy;y/. So the terms on the right-hand side are
independent of x 2X , and choosing x 2 Ax.h/ yields the claim.

Following the definition in [6; 10] we will call two axial isometries g , h 2 Is.X /
independent if for any given x 2X the map

Z�Z! Œ0;1/ ; .m; n/ 7! d.gmx; hmx/

is proper.

Definition 2.5 An axial isometry is called rank one if it possesses a rank one axis.

Notice that if h is rank one, then hC and h� are the only fixed points of h. Moreover,
it is easy to verify that two rank one elements g , h 2 Is.X / are independent if and only
if fgC;g�g\ fhC; h�g D∅. Let us recall some properties of rank one isometries.

Geometry & Topology, Volume 14 (2010)
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Lemma 2.6 [2, Lemma III.3.3] Let h be a rank one isometry. Then

(a) Vis1.hC/D @X n fhCg,

(b) any geodesic joining a point � 2 @X n fhCg to hC is rank one,

(c) given neighborhoods U of h� and V of hC in xX there exists N0 2N such that

h�n. xX nV /� U and hn. xX nU /� V for all n�N0:

In particular, by (c) we have limn!1 h�n�Dh� for any � 2Vis1.hC/. The following
lemma will be central for the proof of Theorem 5.2.

Lemma 2.7 [2, Lemma III.3.2] Let � W R!X be a rank one geodesic, and .
n/�

Is.X / a sequence of isometries such that 
nx! �.1/ and 
�1
n x! �.�1/ for one

(and hence any) x 2 X . Then for n sufficiently large, 
n is axial and possesses an
axis �n such that �n.1/! �.1/ and �n.�1/! �.�1/.

The following proposition is a generalization of Lemma 4.1 in [12]. It gives a relation
between the geometric length and the combinatorial length of words in a free group
on two generators which will be a clue to the proof of Theorem 5.2. Our proof here
involves a new idea since F Dal’Bo’s proof is based on the fact that X is CAT.�1/

and hence triangles in X are thinner than the corresponding triangles in hyperbolic
space. If g; h generate a free group we say that a word 
 D sk1

1
sk2
2
� � � skn

n with
si 2 fg;g

�1; h; h�1g and ki 2 N n f0g, i 2 f1; 2; : : : ; ng is cyclically reduced if
siC1 … fsi ; s

�1
i g, i 2 f1; 2; : : : ; n� 1g, and sn ¤ s�1

1
.

Proposition 2.8 Suppose g and h are rank one elements in Is.X / with pairwise
distinct fixed points. Then there exists N 2N and C > 0 such that for all n 2N and
any cyclically reduced word 
 D sk1

1
sk2
2
� � � skn

n with si 2 S WD fgN ;g�N ; hN ; h�N g

and ki 2N n f0g, i 2 f1; 2; : : : ; ng, we haveˇ̌̌̌
l.
 /�

nX
iD1

kil.si/

ˇ̌̌̌
� C � n :

Proof We fix some base point o 2X . For � 2 fg�;gC; h�; hCg let U.�/� xX be a
small neighborhood of � with o … U.�/ such that all U.�/ are pairwise disjoint, and
c > 0 a constant such that any pair of points in distinct neighborhoods can be joined by
a rank one geodesic � 0 with d.o; � 0/� c . This is possible by Lemma 2.1. According
to Lemma 2.7 there exist neighborhoods W .�/� U.�/, � 2 fg�;gC; h�; hCg, such
that every 
 2 � with 
o 2W .�/, 
�1o 2W .�/, � ¤ �, is rank one with 
C 2 U.�/
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and 
� 2 U.�/. Moreover, by Lemma 2.6 (c) there exists N 2 N such that for all

 2 fg;g�1; h; h�1g,

(5) 
N
�
xX nW .
�/

�
�W .
C/ :

We put S WD fgN ;g�N ; hN ; h�N g and consider a cyclically reduced word 
 D

sk1
1

sk2
2
� � � skn

n with si 2S and ki 2N nf0g, i 2 f1; 2; : : : ; ng. By the choice of N and
(5) we have 
o 2W .sC

1
/ and 
�1o 2W .s�n /¤W .sC

1
/ since s1 ¤ s�1

n . Therefore 

is rank one with 
C 2 U.sC

1
/ and 
� 2 U.s�n /. Choosing a point x 2 Ax.
 / with

d.o;x/� c we get

(6) l.
 /� d.o; 
o/� d.o;x/C d.x; 
x/C d.
x; 
o/� l.
 /C 2c :

Similarly l.ski
i /� d.o; ski

i o/� l.ski
i /C 2c for i 2 f1; 2; : : : ; ng.

For i 2 f1; 2; : : : ; ng we abbreviate 
i WD ski
i skiC1

iC1
� � � skn

n . Then 
2o 2 W .sC
2
/,

s�k1
1

o 2W .s�
1
/¤W .sC

2
/, so there exists a geodesic �2 joining 
2o to s�k1

1
o with

d.o; �2/� c . If y denotes a point on �2 with d.o;y/� c we obtain

d.sk1
1 sk2

2 � � � s
kn
n o; o/D d.
2o; s�k1

1 o/� d.
2o;y/C d.y; s�k1
1 o/

which proves jd.
o; o/�d.o; sk1
1

o/�d.o; 
2o/j� 2c . Applying the same arguments to

i for i�2 and using siC1¤s�1

i we deduce jd.
io; o/�d.o; ski
i o/�d.o; 
iC1o/j�2c .

Therefore ˇ̌̌̌
d.o; 
o/�

nX
iD1

d.o; ski
i o/

ˇ̌̌̌
� 2.n� 1/c

and, by (6),
ˇ̌
l.
 /�

Pn
iD1 kil.si/

ˇ̌
� 4c � n. It remains to set C WD 4c .

Moreover, the following generalization of Lemma 1.4 (2) in [13] will also be needed
in the proof of Theorem 5.2:

Lemma 2.9 Suppose g and h are rank one elements in Is.X / with gC D hC . Then
there exists N 2N such that for all n;m 2N n f0g the isometry gN nhN m is rank one
and

l.hN ngN m/DN n l.h/CN m l.g/ :

Proof As in the proof of the previous proposition we fix some base point o 2X and
let U.�/� xX be a small neighborhood of �2 fg�;gC; h�g with o…U.�/ such that all
U.�/ are pairwise disjoint. Notice that by our assumption we may set U.hC/ WDU.gC/.
Fix neighborhoods W .�/� U.�/, � 2 fg�;gC; h�; hCg, such that every 
 2 � with

Geometry & Topology, Volume 14 (2010)
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o 2W .�/, 
�1o 2W .�/, � ¤ �, is rank one with 
C 2 U.�/ and 
� 2 U.�/, and
N 2N such that for all 
 2 fg;g�1; h; h�1g,


N
�
xX nW .
�/

�
�W .
C/ :

Then for n;m2Nnf0g hN ngN mo2W .hC/ and .hN ngN m/�1o2W .g�/¤W .hC/,
hence 
 WD hN ngN m is rank one with 
C 2 U.hC/ and 
� 2 U.g�/. Furthermore,

hC D hN ngN mhC D hC implies that hC is one of the two fixed points of 
 , hence

C D hC D gC . We conclude using Lemma 2.4 and the cocycle identity (4) that

l.
 /D B
C.o; 
o/D BhC.o; h
N no/CBhC.h

N no; hN ngN mo/

D l.hN n/CBgC.o;g
N mo/DN n l.h/CN m l.g/ :

If � is a group acting by isometries on a locally compact Hadamard space X we define
its geometric limit set by L� WD � �x\ @X , where x 2X is arbitrary.

From here on we let � � Is.X / be a (not necessarily discrete) group which possesses
a rank one element h. Denote � an axis of h and put o WD �.0/. The idea of proof
of the following three facts is due to W Ballmann (see eg the proof of Theorem 2.8
in [1]). We include complete proofs for the convenience of the reader.

Lemma 2.10 If � does not globally fix a point in @X , then for any neighborhood V

of � 2L� in xX there exists 
 2 � such that 
hC 2 V .

Proof Choose .
n/� � such that 
no! � as n!1. Passing to a subsequence if
necessary we may assume that 
�1

n o converges to a point � 2 L� as n!1. Let
T � 1 and " > 0 be arbitrary. By Lemma 2.2 there exist a constant R > 0 and a
neighborhood U of h� D �.�1/ in xX such that for any x 2 X with d.x; �/ >R

or x 2 U we have d.�x;o.t/; �x;hC.t//� "=2 for all t 2 Œ0;T � .

We first treat the case � …fhC; h�g. Then for n sufficiently large we have d.
�1
n o; �/>

R and d.�o;
no.t/; �o;�.t//� "=2 for 0� t � T . We conclude that for t 2 Œ0;T �,

d.�o;�.t/; �o;
nhC.t// � d.�o;�.t/; �o;
no.t//C d.�o;
no.t/; �o;
nhC.t//

�
"

2
C d.
n�
�1

n o;o.t/; 
n�
�1
n o;hC.t//

D
"

2
C d.�
�1

n o;o.t/; �
�1
n o;hC.t//„ ƒ‚ …

�"=2

� " ;

which proves the assertion in this case.

If � D h� then 
�1
n o 2 U for n sufficiently large, hence by Lemma 2.2 and the above

inequalities the claim also holds.
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Now assume that � D hC . Since � does not globally fix a point in @X there exists
' 2 � such that '� ¤ hC . Then, replacing 
n by 
n'

�1 and using the fact that

n'
�1o! � and '
�1

n o! '� ¤ hC , we are in one of the cases above. Hence the
assertion follows.

The following result will be one of the key lemmas for the product case in Section 4.

Lemma 2.11 If � does not globally fix a point in @X and #L� D1, then for all � ,
�, � 2L� there exists 
 2 � such that 
 � ¤ � and 
 � ¤ �.

Proof If � 2L� n f�; �g we can take 
 D e (the identity in � ).

Suppose now � D � ¤ � and � … fhC; h�g. Then hn�! hC as n!1. If �¤ hC ,
let V be a neighborhood of hC disjoint from � , �. Then there exists N 2 N such
that hn� 2 V for all n�N , in particular hN � ¤ � D � and hN � ¤ �. If �D hC we
choose a neighborhood V of hC disjoint from � and let N 2N such that hn� 2 V

for all n � N . If hn� D � D hC for all n � N , then � is a fixed point of h which
is a contradiction to � … fhC; h�g. Hence there exists n�N such that hn� ¤ � and
hn� ¤ � D � .

If � D � D hC , � ¤ hC we choose a point in L� n fh
C; �g and a neighborhood V

of this point disjoint from fhC; �g. By Lemma 2.10 there exists 
 2 � such that

hC 2 V , in particular 
hC … fhC; �g.

Replacing h by h�1 in the previous argument yields the assertion for the case � D � D
h� , �¤ h� .

By symmetry, the claim also holds for � D �¤ � .

The remaining case is � D � D �. Since � does not globally fix a point in @X , there
exists 
 2 � such that 
 � ¤ � .

In the case of discrete groups, the following result is part of Theorem 2.8 in [1]. Since
we are dealing here with possibly nondiscrete groups we have to add the condition that
� does not globally fix a point in @X . This excludes for example the case of a group
consisting of infinitely many rank one elements with a common fixed point at infinity.

Proposition 2.12 If � does not globally fix a point in @X and #L� D1, then the
limit set L� is minimal, ie the smallest nonempty � –invariant closed subset of @X .
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Proof We first notice that every nonempty � –invariant closed subset A of @X contains
a limit point: Indeed, if � 2 A, then either � D hC or � 2 Vis1.hC/. So either A

contains the limit point hC or the point h� D limn!1 h�n� .

Next we fix � 2L� and let � 2L� be arbitrary. Our goal is to show that � 2 � � � .

Let U � @X be an arbitrary neighborhood of �. By Lemma 2.10 there exists 
 2 �
such that 
hC 2U . Hence if �¤ 
h� , by the dynamics of rank one isometries Lemma
2.6 (c), .
h
�1/n� 2 U for n sufficiently large. If � D 
h� , there exists ' 2 � such
that '� ¤ 
h� by Lemma 2.11. Then .
h
�1/n'� 2 U for n sufficiently large.

3 Products of Hadamard spaces

Now let .X1; d1/, .X2; d2/ be locally compact Hadamard spaces, and X DX1 �X2

the product space endowed with the product distance d D
p

d2
1
C d2

2
. Notice that

such a product is again a locally compact Hadamard space. To any pair of points
x D .x1;x2/, z D .z1; z2/ 2X we associate the vector

H.x; z/ WD

�
d1.x1; z1/

d2.x2; z2/

�
2R2 ;

which we call the distance vector of the pair .x; z/. If z ¤ x we further define the
direction of z with respect to x by

�.x; z/ WD arctan
d2.x2; z2/

d1.x1; z1/
:

Notice that we have

H.x; z/D d.x; z/

�
cos �.x; z/
sin �.x; z/

�
;

in particular kH.x; z/k D d.x; z/, where k � k denotes the Euclidean norm in R2 .

Denote pi W X !Xi , i D 1; 2, the natural projections. Every geodesic path � W Œ0; l �!
X can be written as a product �.t/D .�1.t cos �/; �2.t sin �//, where � 2 Œ0; �=2� and
�1W Œ0; l cos ��! X1 , �2W Œ0; l sin ��! X2 are geodesic paths in X1 , X2 . � equals
the direction of �.l/ with respect to �.0/ and is called the slope of � . We say that a
geodesic path � is regular if its slope is contained in the open interval .0; �=2/. In
other words, � is regular if neither p1.�.Œ0; l �// nor p2.�.Œ0; l �// is a point.

If x 2X and � W Œ0;1/!X is an arbitrary geodesic ray, then by elementary geometric
estimates one has the relation

(7) � D lim
t!1

�.x; �.t//
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between the slope � of � and the directions of �.t/, t > 0, with respect to x . Similarly,
one can easily show that any two geodesic rays representing the same (possibly singular)
point in the geometric boundary necessarily have the same slope. So we may define the
slope �.z�/ of a point z� 2 @X as the slope of an arbitrary geodesic ray representing z� .

Moreover, two regular geodesic rays � , � 0 with the same slope represent the same
point in the geometric boundary if and only if �1.1/D �

0
1
.1/ and �2.1/D �

0
2
.1/.

The regular geometric boundary @X reg of X is defined as the set of equivalence classes
of regular geodesic rays and hence is homeomorphic to @X1 � @X2 � .0; �=2/.

If 
 2 Is.X1/� Is.X2/, then the slope of 
 � z� equals the slope of z� . In other words, if
@X� denotes the set of points in the geometric boundary of slope � 2 Œ0; �=2�, then
@X� is invariant by the action of Is.X1/ � Is.X2/. Notice that points in @X sing WD

.@X /0 [ .@X /�=2 are equivalence classes of geodesic rays which project to a point
in one of the factors of X . Hence .@X /0 is homeomorphic to @X1 and .@X /�=2 is
homeomorphic to @X2 . If � 2 .0; �=2/, then the set @X� � @X reg is homeomorphic
to the product @X1 � @X2 .

In the case of symmetric spaces and Bruhat–Tits buildings of higher rank there is a
well-known notion of Furstenberg boundary, which – for a product of rank one spaces –
coincides with the product of the geometric boundaries. In our more general setting we
therefore choose to call the product @X1�@X2 endowed with the product topology the
Furstenberg boundary @F X of X . Using the above parametrization of @X reg we have
a natural projection

�F
W @X reg

! @F X

.�1; �2; �/ 7! .�1; �2/

and a natural action of the group Is.X1/� Is.X2/ by homeomorphisms on the Fursten-
berg boundary of X DX1 �X2 .

We have the following important lemma concerning the topology of xX . Although
elementary, we include the proof for the convenience of the reader.

Lemma 3.1 Suppose .yn/�X is a sequence converging to a point z� 2 @X� for some
� 2 Œ0; �=2�. Then for any x 2X we have �.x;yn/! � as n!1.

Proof First notice that if � is a geodesic emanating from x , then �.x; �.t// does
not depend on t . We define � as a geodesic ray joining x to z�, so in particular
� has slope � and �.x; �.t// D � for all t > 0. Without loss of generality we
may assume that d.x;yn/ � 1 for all n 2 N . It therefore remains to prove that
�.x; �x;yn

.1//D �.x;yn/ converges to �.x; �.1//D � as n tends to infinity. This is
clear since �x;yn

.1/ converges to �.1/ and since the map z 7! �.x; z/ is continuous
on every sphere around x .

Geometry & Topology, Volume 14 (2010)



1076 Gabriele Link

Recall the definition of visibility set at infinity Vis1.z�/ of a point z� 2 @X from (1). It
is easy to see that a point z�2 @X cannot belong to Vis1.z�/ if the slope of z� is different
from the slope of z� . This motivates the following less restrictive definition for pairs of
points in the Furstenberg boundary: We say that � D .�1; �2/ and �D .�1; �2/ 2 @

F X

are opposite if �1 and �1 can be joined by a geodesic in X1 , and �2 , �2 can be joined
by a geodesic in X2 . Moreover, the Furstenberg visibility set VisF .�/ of a point
� D .�1; �2/ 2 @

F X is defined as the set of points in @F X which are opposite to � , ie

(8) VisF .�/D f.�1; �2/ 2 @
F X W �1 2 Vis1.�1/ and �2 2 Vis1.�2/g :

In particular, for any z� 2 @X reg with �F .z�/D � one has VisF .�/D �F .Vis1.z�//. So
we may alternatively define the Furstenberg visibility set of a point � 2 @F X via

(9) VisF .�/ WD �F .Vis1.z�// ; where z� 2 .�F /�1.�/ is arbitrary :

Moreover, in the particular case that both X1 , X2 are CAT.�1/, for z� D .�1; �2; �/ 2
@X reg we have

Vis1.z�/D f.�1; �2; �/ 2 @X
reg
W �1 ¤ �1 and �2 ¤ �2g ;

and .�1; �2/, .�1; �2/ 2 @
F X are opposite if and only if �1 ¤ �1 and �2 ¤ �2 .

4 The structure of the limit set

Recall that the geometric limit set of a group � acting by isometries on a locally
compact Hadamard space is defined by L� WD � �x \ @X , where x 2 X is arbitrary.
In this section we will investigate the structure of the geometric limit set of certain
groups � � Is.X1/�Is.X2/� Is.X / acting properly discontinuously on the product X

of two locally compact Hadamard spaces X1 , X2 . By abuse of notation we denote
pi W �! Is.Xi/, i D 1; 2, the natural projections and put �i WDpi.�/, i D 1; 2. Notice
that �i need not act properly discontinuously on Xi . As in [13] for i 2 f1; 2g we
call �i strongly nonelementary if it does not globally fix a point in @Xi and #L�i

is
infinite.

From here on we assume that � � Is.X1/� Is.X2/ acts properly discontinuously, the
projections �1 , �2 are strongly nonelementary, and � contains an isometry h such
that h1 WD p1.h/, h2 WD p2.h/ are rank one elements in �1 , �2 respectively. Such an
isometry h will be called regular axial and we will denote �hC its attractive fixed point
in @X reg and hC WD �F . �hC/D .hC

1
; hC

2
/. Notice that (8) and Lemma 2.6 (a) imply

(10) VisF .hC/D f.�1; �2/ 2 @
F X W �1 ¤ hC

1
; �2 ¤ hC

2
g :

Moreover, by Lemma 2.6 (c) we have limn!1 h�n� D h� for all � 2 VisF .hC/.
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We remark that the existence of a regular axial element in � imposes severe restrictions
on the spaces X1 and X2 . For example, neither X1 nor X2 can be a higher rank
symmetric space or Euclidean building. However, as mentioned in the introduction the
buildings associated to Kac–Moody groups over finite fields, Riemannian universal
covers of geometric rank one manifolds and CAT.�1/–spaces such as locally finite
trees or manifolds of pinched negative curvature are natural examples of possible
factors.

For convenience we define the Furstenberg limit set of � by F� WD �
F .L� \ @X

reg/.
It is clearly a subset of the product L�1

�L�2
� @F X . Using our Lemma 2.11 the

proof of the following important lemma is as for Lemma 2.2 in [13].

Lemma 4.1 For any �D .�1; �2/, �D .�1; �2/2L�1
�L�2

there exists 
 D .
1; 
2/2

� such that 
1�1 ¤ �1 and 
2�2 ¤ �2 .

Proof We first treat the case �1 D �1 and �2 ¤ �2 . Choose 
 D .
1; 
2/, ' D
.'1; '2/ 2 � such that 
1�1 ¤ �1 and '2�2 … f�2; �2g. This is possible by Lemma
2.11. If 
2�2 ¤ �2 , 
 is the desired element, if '1�1 ¤ �1 , then ' is.

Suppose now 
2�2 D �2 and '1�1 D �1 . Then


1'1�1 D 
1�1
�1D�1
D 
1�1 ¤ �1

by choice of 
 . Moreover, we have 
2'2�2¤�2 , because 
2'2�2D�2D 
2�2 implies
that '2 D 


�1
2

2'2 is contained in the stabilizer of �2 which is a contradiction to the

choice of ' . Hence 
' is the desired element.

If � D � we choose 
 D .
1; 
2/ 2 � such that 
2�2 ¤ �2 and apply the first case.

Using (10) we immediately obtain the following:

Corollary 4.2 For any regular axial h 2 � and � 2 L�1
�L�2

� @F X there exists

 2 � such that 
 � 2 VisF .hC/.

We now fix a regular axial isometry hD .h1; h2/2� and a base point oD .o1; o2/2X .
The following important theorem implies that F� can be covered by finitely many
� –translates of an appropriate open set in @F X .

Theorem 4.3 The Furstenberg limit set is minimal, ie F� is the smallest nonempty,
� –invariant closed subset of @F X .
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Proof We first show that every nonempty, � –invariant closed subset of @F X contains
either hC or h� . Replacing h by its inverse if necessary, it then suffices to prove that
F� D � � hC .

Let A � @F X be a nonempty, � –invariant closed set, and � D .�1; �2/ 2 A. If � 2
fhC; h�g, there is nothing to prove, so assume that there exist indices i; j 2 f1; 2g such
that �i¤hCi and �j ¤h�j . If �1…fhC1 ; h

�
1
g, then – since �2 is different from at least one

of the points hC
2

, h�
2

– we have �2VisF .hC/ or �2VisF .h�/. So limn!1 h�n�Dh�

or limn!1 hn� D hC and we conclude that hC or h� belongs to A. The case �2 …
fhC

2
; h�

2
g is analogous. It therefore remains to consider the possibilities � D .h�

1
; hC

2
/

or � D .hC
1
; h�

2
/. In both cases � is contained in L�1

�L�2
, so by Corollary 4.2 there

exists 
 2 � such that 
 � 2VisF .hC/. Then limn!1 h�n
 � D h� which proves that
h� 2A.

For the second part of the proof we are going to show the stronger statement that
F� D � � � for any � D .�1; �2/ 2 F� .

Let � D .�1; �2/ 2 F� arbitrary. If � D � , there is nothing to prove, if �1 D �1
or �2 D �2 , then by Lemma 4.1 there exists 
 D .
1; 
2/ 2 � such that 
1�1 ¤

�1 and 
2�2 ¤ �2 . Hence replacing � by 
 � if necessary, we may assume that
�1 ¤ �1 and �2 ¤ �2 . Let U1 � @X1 , U2 � @X2 be neighborhoods of �1 , �2 such
that �1 … U1 and �2 … U2 , and choose z� 2 .�F /�1.�/ \ L� . Then there exists
a sequence .
n/ D

�
.
n;1; 
n;2/

�
� � such that 
no ! z� D .�1; �2; �/ and 
�1

n o

converges as n!1. Since for i D 1; 2, di.oi ; 

�1
n;i oi/D di.
n;ioi ; oi/!1 we have


�1
n;i oi ! �i 2 @Xi , i D 1; 2, and �.o; 
�1

n o/ D �.o; 
no/! � as n!1. Hence
limn!1 


�1
n o! z� WD .�1; �2; �/ 2 @X

reg , and we put � WD �F .z�/D .�1; �2/.

Moreover, we can assume � 2VisF .hC/, because otherwise, by Corollary 4.2, we find

 2 � such that 
 � 2 VisF .hC/ and we can replace our sequence .
n/ by .
n


�1/.

Let T � 1, " > 0 be arbitrary. Then Lemma 2.2 implies the existence of N 2N such
that for all n�N and t 2 Œ0;T �,

d.�oi ;
n;i oi
.t/; �

oi ;
n;i h
C

i

.t//D d.�
�1
n;i

oi ;oi
.t/; �


�1
n;i

oi ;h
C

i

.t//�
"

2

and d.�oi ;
n;i oi
.t/; �oi ;�i

.t//� "=2. Hence we conclude that as n!1 
n;ih
C
i ! �i

for i D 1; 2, in particular, there exists ' D .'1; '2/ 2 � such that 'ih
C
i 2 Ui and

'ihi'
�1
i is rank one for i D 1; 2.

Assume first that � 2 VisF .'h�/. Then there exists N 2 N such that for n � N

..'1h1'
�1
1
/n�1; .'2h2'

�1
2
/n�2/D .'h'�1/n� 2 U1 �U2 .

If � … VisF .'h�/, Corollary 4.2 implies the existence of 
 2 � such that 
 � 2
VisF .'h�/ and we conclude .'h'�1/n
 � 2 U for n sufficiently large.
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Theorem 4.4 The regular geometric limit set L� \ @X
reg is isomorphic to a product

F� �P� , where P� � .0; �=2/ denotes the set of slopes of regular limit points.

Proof If z� 2L� \ @X
reg , then �F .z�/ 2 F� , and by definition of P� the slope of z�

belongs to P� .

Conversely, let �D .�1; �2/2F� and � 2P� . We have to show that z� WD .�1; �2; �/2

L� . By definition of P� and Lemma 3.1 there exists a sequence .
n/� � such that
�n WD �.o; 
no/ converges to � as n!1. Moreover, by compactness of @X1�@X2 a
subsequence of .
no/ converges to a point z� 2L�\@X

reg of slope � . Put � WD�F .z�/,
and notice that z� 2 @X reg is the unique point in .�F /�1.�/ of slope � .

By Theorem 4.3 F� D � � � is a minimal closed set under the action of � , hence

� 2 � � � D �F .� � z�/ :

Since the action of � on the geometric boundary does not change the slope of a point,
we conclude that the closure of � � z� contains z�. In particular z� 2 � � z� �L� :

5 Density of regular axial isometries

In this section we will make the stronger assumption that � � Is.X1/� Is.X2/ acts
properly discontinuously on the product X of two locally compact Hadamard spaces
X1 , X2 and contains two isometries g D .g1;g2/ and hD .h1; h2/ such that g1 and
h1 are independent rank one elements of �1 and g2 , h2 are independent rank one
elements in �2 . Recall that an isometry h D .h1; h2/ 2 Is.X1/ � Is.X2/ is called
regular axial if h1 and h2 are rank one elements. Its attractive fixed point is denoted�hC 2 @X reg and we put hC WD �F . �hC/D .hC

1
; hC

2
/. Moreover, for h D .h1; h2/

regular axial and i 2 f1; 2g we denote li.hi/ the translation length of hi in Xi : The
limit cone of � is defined by

`� WD farctan
�
l2.g2/= l1.g1/

�
W g D .g1;g2/ 2 � regular axialg :

We fix a base point oD .o1; o2/ 2X . The following proposition is a key ingredient in
the proofs.

Proposition 5.1 Suppose g D .g1;g2/ and hD .h1; h2/ 2 � are regular axial isome-
tries such that gi and hi are independent in �i for iD1; 2. Let .
n/�� be a sequence
such that 
no and 
�1

n o converge to points in @X reg as n!1. Then given arbitrarily
small distinct neighborhoods Wi.h

C/;Wi.h
�/� xXi of hCi , h�i , i D 1; 2, there exist

N 2 N , ˛ 2 fhN ; hN gN ; hN g�N g and ˇ 2 fh�N ; h�N gN ; h�N g�N g such that
'n WD ˛
nˇ

�1 satisfies 'no 2W1.h
C/�W2.h

C/ and '�1
n o 2W1.h

�/�W2.h
�/ for

n sufficiently large.
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Proof For i D 1; 2 and � 2 fg�;gC; h�; hCg let Wi.�/ � xXi be an arbitrary, suf-
ficiently small neighborhood of �Ci 2 @Xi with oi … Wi.�/ such that all Wi.�/ are
pairwise disjoint in xXi . According to Lemma 2.6 (c) there exists a constant N 2N
such that for all 
 2 fg;g�1; h; h�1g and i 2 f1; 2g,

(11) 
N
i

�
xXi nWi.


�/
�
�Wi.


C/ :

Denote F � X the finite set of points fo; h˙N o; h˙N g˙N og in X . Since 
n;ioi

converges to a point �i 2 @Xi , i D 1; 2, given arbitrary neighborhoods U1 �
xX1 ,

U2�
xX2 of �1 , �2 , there exists NC 2N such that for all n>NC and every x 2F we

have 
nx 2 U1 �U2 . Using the fact that xXi D
�
xXi nWi.g

�/
�
[
�
xXi nWi.g

C/
�
, and

choosing the neighborhoods Ui of �i , i 2f1; 2g, sufficiently small, we may assume that
one of the following six possibilities occurs for all n>NC and every xD .x1;x2/2F :

Case 1 
n;1x1 2
xX1 nW1.h

�/ and 
n;2x2 2
xX2 nW2.h

�/.

Then by (11), hN 
nx 2W1.h
C/�W2.h

C/.

Case 2 
n;1x1 2W1.h
�/ and 
n;2x2 2W2.h

�/.

Since Wi.h
�/� xXi nWi.g

�/, i D 1; 2, again by (11), we have gN 
nx 2W1.g
C/�

W2.g
C/. Hence we are in Case 1 for gN 
nx , so hN gN 
nx 2W1.h

C/�W2.h
C/.

Case 3 
n;1x1 2W1.h
�/ and 
n;2x2 2

xX2 n
�
W2.h

�/[W2.g
�/
�
.

Then gN 
nx 2W1.g
C/�W2.g

C/, which yields hN gN 
nx 2W1.h
C/�W2.h

C/.

Case 4 
n;1x1 2W1.h
�/ and 
n;2x2 2

xX2 n
�
W2.h

�/[W2.g
C/
�
.

Then g�N 
nx 2W1.g
�/�W2.g

�/, which gives hN g�N 
nx 2W1.h
C/�W2.h

C/.

Case 5 
n;1x1 2
xX1 n

�
W1.h

�/[W1.g
�/
�

and 
n;2x2 2W2.h
�/.

Similarly to Case 3 we obtain hN gN 
nx 2W1.h
C/�W2.h

C/.

Case 6 
n;1x1 2
xX1 n

�
W1.h

�/[W1.g
C/
�

and 
n;2x2 2W2.h
�/.

As in Case 4 we get hN g�N 
nx 2W1.h
C/�W2.h

C/.

So we have shown the existence of ˛ 2 fhN ; hN gN ; hN g�N g such that for all n>NC
and every x 2 F ˛
nx 2W1.h

C/�W2.h
C/.

A similar case-by-case treatment gives N� 2N and ˇ 2 fh�N ; h�N gN ; h�N g�N g

such that ˇ
�1
n x 2W1.h

�/�W2.h
�/ for all n > N� and all x 2 F . Then, putting

'n WD ˛
nˇ
�1 , the claim holds for all n>maxfNC;N�g.
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The following theorem relates the limit cone to P� .

Theorem 5.2 If � contains two regular axial isometries which project to independent
rank one elements in each factor then P� D `� \ .0; �=2/. Moreover, `� is either a
point or an interval.

Proof We first prove `�\.0; �=2/�P� : If gnD .gn;1;gn;2/ is a sequence of regular
axial isometries such that arctan

�
l2.gn;2/= l1.gn;1/

�
converges to � 2 .0; �=2/, we

choose

kn � 2n maxfdi.oi ;Ax.gn;i//= li.gn;i/ W i D 1; 2g

and put 
n WD gkn
n . From

knli.gn;i/� di.oi ; 
n;ioi/� 2di.oi ;Ax.gn;i//C knli.gn;i/� knli.gn;i/.1C 1=n/

we get

tan � D lim
n!1

�
l2.gn;2/

l1.gn;1/
�

�
1C

1

n

��
� lim

n!1

d2.o2; 
n;2o2/

d1.o1; 
n;1o1/
;

tan � D lim
n!1

�
l2.gn;2/

l1.gn;1/
�

n

nC 1

�
� lim

n!1

d2.o2; 
n;2o2/

d1.o1; 
n;1o1/
;

hence the claim.

Let’s prove the inclusion P� � `� \ .0; �=2/. Denote gD .g1;g2/, hD .h1; h2/ 2 �

two regular axial isometries as in Proposition 5.1. For � 2 fg�;gC; h�; hCg and
i 2 f1; 2g let Ui.�/� xXi be a small neighborhood of �i with oi … Ui.�/ such that all
Ui.�/ are pairwise disjoint. Upon taking smaller neighborhoods, Lemma 2.1 provides a
constant c > 0 such that for i 2 f1; 2g any pair of points in distinct neighborhoods can
be joined by a rank one geodesic �i �Xi with d.oi ; �i/� c . Moreover, according to
Lemma 2.7 for i 2 f1; 2g and � 2 fh�; hCg there exist neighborhoods Wi.�/� Ui.�/

of �i such that every 
 D .
1; 
2/ 2 � with 
ioi 2 Wi.h
C/ and 
�1

i o 2 Wi.h
�/,

i D 1; 2, is regular axial with 
Ci 2 Ui.h
C/ and 
�i 2 Ui.h

�/, i D 1; 2.

Now let � 2P� . By definition there exists a sequence .
n/D
�
.
n;1; 
n2

/
�
�� such that

d2.o2; 
n;2o2/=d1.o1; 
n;1o1/! tan � , 
n;1o1! �1 , 
n;2o2! �2 as n!1 . Passing
to a subsequence if necessary, we can assume that 
�1

n o! z� D .�1; �2; �/ 2 @X
reg as

n!1. By Proposition 5.1 there exist N0 2N , a finite set ƒ� � and ˛ , ˇ 2ƒ such
that for all n>N0 ,

˛
nˇ
�1o 2W1.h

C/�W2.h
C/ and ˇ
�1

n ˛�1o 2W1.h
�/�W2.h

�/ :

Geometry & Topology, Volume 14 (2010)



1082 Gabriele Link

Put 'n WD ˛
nˇ
�1 , n 2N , and L WDmaxfdi.oi ; �ioi/ W i 2 f1; 2g; �D .�1; �2/ 2ƒg.

Using the triangle inequality we estimate for i D 1; 2

(12) jdi.oi ; 'n;ioi/� di.oi ; 
n;ioi/j � 2L :

Moreover, by choice of the sets Wi.h
˙/ � Ui.h

˙/ we know that for n > N0 'n is
regular axial with 'Cn 2U1.h

C/�U2.h
C/ and '�n 2U1.h

�/�U2.h
�/. So Lemma 2.1

shows that for n>N0 there exists xn;i 2Ax.'n;i/ such that di.oi ;xn;i/� c , i D 1; 2.
We conclude

li.'n;i/� di.oi ; 'n;ioi/� li.'n;i/C 2c ; i D 1; 2 ;

which – together with (12) – implies that tan � D limn!1 l2.'n;2/= l1.'n;1/.

Let’s prove the last assertion following the lines of the proof of Proposition 2.4 in [13]:
If `� is a point, there is nothing to prove. Otherwise we will show that for �; � 0 2
farctan

�
l2.g2/= l1.g1/

�
WgD .g1;g2/2� regular axialg, � <� 0 , we have Œ�; � 0�� `� .

Fix 
 D .
1; 
2/, ' D .'1; '2/ regular axial such that tan � D l2.
2/= l1.
1/ and
tan � 0 D l2.'2/= l1.'1/.

Recall that g , h 2 � are two regular axial isometries projecting to independent rank
one elements. If 
1 , '1 are not independent, then by Lemma 2.6 (c) there exist
N 2N , ˛; ˇ 2 fhN ; h�N ;gN ;g�N g with ˛ ¤ ˇ such that ˛1
1˛

�1
1

and ˇ1'1ˇ
�1
1

are independent. Using the fact that the translation length is invariant by conjugation
and upon replacing 
 by ˛
˛�1 and ' by ˇ'ˇ�1 if necessary, we may assume that

1 and '1 are independent rank one elements of �1 .

Now either 
2 and '2 are independent, or, after replacing 
 , ' by its inverse if
necessary, we have 
C

2
D 'C

2
. By Proposition 2.8 and Lemma 2.9 there exist N 2N

and C > 0 such that for i 2 f1; 2g and all n;m 2N n f0g,ˇ̌
li.


N n
i 'N m

i /�N n li.
1/�N m li.'1/
ˇ̌
� C :

lim
k!1

l2.

N nk
2

'N mk
2

/

l1.

N nk
1

'N mk
1

/
D

n l2.
2/Cm l2.'2/

n l1.
1/Cm l1.'1/
;Hence

arctan
�

l2.
2/C q l2.'2/

l1.
1/C q l1.'1/

�
2 `�so we have

for every positive rational number q 2Q and we conclude Œ�; � 0� 2 `� .

In order to prove Theorem D from the introduction, we will need an important definition
as a substitute for the more familiar notion of � –duality used eg in [3; 10] when dealing
with only one factor.
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Definition 5.3 Two points � D .�1; �2/, �D .�1; �2/ 2 @
F X are called � –related if

for any neighborhoods U1 , V1 �
xX1 of �1 , �1 and all neighborhoods U2 , V2 �

xX2

of �2 , �2 there exists 
 D .
1; 
2/ 2 � such that for i 2 f1; 2g,


i. xXi nUi/� Vi ; 
�1
i . xXi nVi/� Ui :

We will denote Rel�.�/ the set of points in @F X which are � –related to � .

Notice that for any � 2 @F X the set Rel�.�/ is closed with respect to the topology of
@F X . Moreover, if � 2 Rel�.�/, then �1 is �1 –dual to �1 and �2 is �2 –dual to �2 .

The importance of the notion lies in the following. If zhC , zh� denote the attractive and
repulsive fixed point of a regular axial isometry hD .h1; h2/ 2 � , then hCD �F .zhC/

and h� D �F .zh�/ are � –related by Lemma 2.6 (c). Conversely, if � D .�1; �2/,
�D .�1; �2/ 2 @

F X are � –related, then by definition there exists a sequence .
n/D�
.
n;1; 
n;2/

�
� � such that for i 2 f1; 2g we have 
n;ioi ! �i and 
�1

n;i oi ! �i as
n!1. Hence if �i can be joined to �i by a rank one geodesic for i D 1; 2, then in
view of Lemma 2.7 
n is regular axial for n sufficiently large and satisfies


Cn;i! �i and 
�n;i! �i as n!1

for i 2 f1; 2g . Denote by �� @F X � @F X the set

� WD f.�; �/ 2 @F X � @F X W �1 D �1 or �2 D �2g :

Using the above definition, we are now able to prove the following statement which is
Theorem D from the introduction and can be viewed as a strong topological version of
the double ergodicity property of Poisson boundaries due to Burger and Monod [9]
and Kaimanovich [14].

Theorem 5.4 If � contains two regular axial isometries projecting to independent rank
one elements in each factor then the set of pairs of fixed points .
C; 
�/� @F X�@F X

of regular axial isometries 
 2 � is dense in .F� �F�/ n�.

Proof Denote g D .g1;g2/ and hD .h1; h2/ 2 � two regular axial isometries such
that for i 2 f1; 2g gi and hi are independent. In view of the paragraph preceding the
theorem we first prove that any two distinct points in fg�;gC; h�; hCg are � –related.

For � 2 fg�;gC; h�; hCg and i 2 f1; 2g let Ui.�/ � xXi be an arbitrary, sufficiently
small neighborhood of �i with oi … Ui.�/ such that all Ui.�/ are pairwise disjoint.
According to Lemma 2.6 (c) there exists a constant N 2 N such that for all 
 2
fg;g�1; h; h�1g and i 2 f1; 2g,

(13) 
N
i

�
xXi nUi.


�/
�
� Ui.


C/ :
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Let 
; ' 2 fg;g�1; h; h�1g, ' ¤ 
 . Using the fact that either ' D 
�1 or 
i , 'i are
independent for i D 1; 2 (13) implies


N
i '�N

i

�
xXi nUi.'

C/
�„ ƒ‚ …

�Ui .'�/� xXinUi .
�/

� Ui.

C/

.
N
i '
�N
i /�1

�
xXi nUi.


C/
�
� 'N

i

�
Ui.


�/
�
� Ui.'

C/and

for i 2 f1; 2g. Hence 'C 2 Rel�.
C/.

Next we will show that any � D .�1; �2/ 2F� with �i … fg�i ;g
C
i ; h

�
i ; h
C
i g, i D 1; 2, is

� –related to any point in fg�;gC; h�; hCg. For � 2f�;g�;gC; h�; hCg and i 2f1; 2g

let Ui.�/� xXi be an arbitrary, sufficiently small neighborhood of �i with oi … Ui.�/

such that all Ui.�/ are pairwise disjoint. By Lemma 2.7 there exist neighborhoods
Wi.�/ � Ui.�/, � 2 f�;g�;gC; h�; hCg, such that every 
i 2 �i with 
ioi 2Wi.�/,

�1

i oi 2 Wi.�/, � 2 f�;g�;gC; h�; hCg n f�g, is rank one with 
Ci 2 Ui.�/ and

�i 2 Ui.�/.

Since � 2 F� , there exists a sequence .
n/D
�
.
n;1; 
n;2/

�
� � such that 
n;1o1!

�1 , 
n;2o2! �2 . Upon passing to a subsequence if necessary we may assume that

�1

n;1
o1! �1 2 @X1 and 
�1

n;2
o2! �2 2 @X2 . By Proposition 5.1 there exist N;N0 2N

and ˇ 2 fh�N ; h�N gN ; h�N g�N g such that for all n>N0 
nˇ
�1o2W1.�/�W2.�/

and ˇ
�1
n o 2W1.h

�/�W2.h
�/. By Lemma 2.7 we conclude that for n > N0 the

isometry 
nˇ
�1 is regular axial with .
nˇ

�1/C 2 U1.�/ �U2.�/ and .
nˇ
�1/� 2

U1.h
�/�U2.h

�/. This implies that � 2 Rel�.h�/ and by symmetry

(14) � 2 Rel�.g�/\Rel�.gC/\Rel�.h�/\Rel�.hC/ :

Next we let � D .�1; �2/; �D .�1; �2/ 2 F� such that for i 2 f1; 2g we have �i ; �i …

fg�i ;g
C
i ; h

�
i ; h
C
i g and �i ¤ �i . As above, for � 2 f�; �; h�g and i 2 f1; 2g let Ui.�/�

xXi be an arbitrary, sufficiently small neighborhood of �i with oi … Ui.�/ such that all
Ui.�/ are pairwise disjoint. By the arguments in the previous paragraph there exists a
regular axial isometry ' 2� with 'C 2U1.�/�U2.�/ and '� 2U1.h

�/�U2.h
�/. In

particular, 'i and gi are independent for i D 1; 2. Replacing h by ' in (14) we know
that � 2 Rel�.g�/\Rel�.gC/\Rel�.'�/\Rel�.'C/, in particular � 2 Rel�.'C/.
So using the fact that �i can be joined to 'Ci by a rank one geodesic in Xi for i D 1; 2,
given small neighborhoods Ui.'

C/� Ui.�/ for i 2 f1; 2g, there exists 
 2 � regular
axial with 
C 2 U1.'

C/�U2.'
C/� U1.�/�U2.�/ and 
� 2 U1.�/�U2.�/.
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6 The exponent of growth for a given slope

For the remainder of the article X is a product of locally compact Hadamard spaces
X1 , X2 , o D .o1; o2/ a fixed base point, and � � Is.X1/� Is.X2/ a discrete group
which contains two isometries gD .g1;g2/ and hD .h1; h2/ such that gi and hi are
independent rank one elements of �i for i D 1; 2. In this section we want to describe
the map which assigns to each slope � 2 Œ0; �=2� the exponential growth rate of orbit
points of � in X with a prescribed slope � . Recall the notation introduced in Section 3
and put for x;y 2X , � 2 Œ0; �=2�, " > 0,

�.x;yI �; "/ WD f
 2 � W 
y ¤ x and j�.x; 
y/� � j< "g :

For the definition of the exponential growth rate we introduce the following partial
sum of the Poincaré series for � : For s > 0 we put

Q
s;"
�
.x;y/D

X

2�.x;yI�;"/

e�sd.x;
y/

and denote ı"
�
.x;y/ its critical exponent, ie the unique real number such that Q

s;"
�
.x;y/

converges if s > ı"
�
.x;y/ and diverges if s < ı"

�
.x;y/. It is clear that for any " > 0

we have ı"
�
.x;y/� ı.�/, the critical exponent of the Poincaré series. Unfortunately,

unlike in the case of ı.�/, where the summation is over all elements in � , this number
may depend on x and y . If " > �=2 then the summation above is over all 
 2 � with

y ¤ x . By discreteness of � we have 
y D x for only finitely many 
 2 � , hence
for " > �=2 we have ı"

�
.x;y/D ı.�/.

For n 2N we define

N "
� .x;yI n/ WD #f
 2 � W n� 1< d.x; 
y/� n ; j�.x; 
y/� � j< "g ;

which can be interpreted as an orbit counting function for orbit points of slope "–close
to � . Although the proof of the following lemma is standard, we include it here for the
convenience of the reader.

Lemma 6.1 We have

ı"� .x;y/D lim sup
n!1

.log N "
� .x;yI n//=n :

Proof We clearly have

Q
s;"
�
.x;y/D

1X
nD1

X

2�.x;yI�;"/

n�1<d.x;
y/�n

e�sd.x;
y/ ;
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hence
1X

nD1

e�snN "
� .x;yI n/�Q

s;"
�
.x;y/

�

1X
nD1

e�s.n�1/N "
� .x;yI n/D es

1X
nD1

e�snN "
� .x;yI n/ :

Moreover, we can write

e�snN "
� .x;yI n/D

�
e�sC.log N "

�
.x;yIn//=n

�n
;

so finding an estimate for the term in the bracket independent of n will allow us to
compare Q

s;"
�
.x;y/ to a geometric series.

Suppose first that s> lim supn!1.log N "
�
.x;yI n//=n. Then there exists N 2N such

that for any n�N

.log N "
� .x;yI n//=n< s

and we estimate

Q
s;"
�
.x;y/� es

 
N�1X
nD1

e�snN "
� .x;yI n/C

1X
nDN

�
e�sC.log N "

�
.x;yIn//=n

�n!
:

The first sum is finite, and the second term converges because the number inside the
brackets is strictly smaller than 1 for all n�N .

If s < lim supn!1.log N "
�
.x;yI n//=n, there exists a strictly increasing sequence

.nk/ � N such that limk!1.log N "
�
.x;yI nk//=nk > s . In particular there exists

N 2 N such that .1=nk/ log N "
�
.x;yI nk/ > s for any k � N . Moreover, since

nk � k for all k , we have

Q
s;"
�
.x;y/�

1X
kDN

�
e�sC.log N "

�
.x;yInk//=nk

�nk
�

1X
kDN

�
e�sC.log N "

�
.x;yInk//=nk

�k
;

which shows that Q
s;"
�
.x;y/ diverges.

Definition 6.2 The number ı� .�/ WD lim inf"!0 ı
"
�
.o; o/ is called the exponent of

growth of � of slope � .

The following lemma shows that this number ı� .�/ does not depend on the choice of
arguments of ı"

�
.

Lemma 6.3 For x;y 2X arbitrary we have lim inf"!0 ı
"
�
.x;y/D ı� .�/.
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Proof Fix � 2 Œ0; �=2� and set

H� WD

�
cos �
sin �

�
:

We first note that for any x D .x1;x2/ ,y D .y1;y2/ 2 X and 
 D .
1; 
2/ 2 � the
equality

(15) hH.x; 
y/;H� i D d.x; 
y/ � cos
�
�.x; 
y/� �

�
holds. Using

H.x; 
y/�H.o; 
o/D

�
d1.x1; 
1y1/� d1.o1; 
1o1/

d2.x2; 
2y2/� d2.o2; 
2o2/

�
;

setting c WD d.x; o/C d.y; o/ and recalling that both sin � and cos � belong to the
interval Œ0; 1� we further have

jhH.x; 
y/�H.o; 
o/;H� ij � 4c :

In particular, we conclude

hH.x; 
y/;H� i � hH.o; 
o/;H� i � 4c D d.o; 
o/ � cos
�
�.o; 
o/� �

�
� 4c

� d.x; 
y/ � cos
�
�.o; 
o/� �

�
� 6c ;

hence cos
�
�.x; 
y/� �

�
� cos

�
�.o; 
o/� �

�
�

6c

d.x; 
y/
:

This shows that given ">0, there is R�1 such that d.x; 
y/>R and j�.o; 
o/�� j<

"=2 implies j�.x; 
y/� � j < ". A symmetric argument – with the roles of .x; 
y/

and .o; 
o/ exchanged – ensures the existence of R0 � 1 such that d.x; 
y/ > R0

and j�.x; 
y/� � j< " implies j�.o; 
o/� � j< 2". Summarizing, we know that for
any " > 0 there exists R� 1 such that for any 
 2 � with d.x; 
y/ > R we have
the implications


 2 �.o; oI �; "=2/ H) 
 2 �.x;yI �; "/ H) 
 2 �.x;yI �; 2"/:

Since by discreteness of � there are only finitely many 
 2 � with d.x; 
y/�R, we
conclude that for any " > 0

ı
"=2

�
.o; o/� ı"� .x;y/� ı

2"
� .o; o/:

Taking the limit inferior as " tends to zero finishes the proof.
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Notice that in the definition of ı� .�/ for � 2 .0; �=2/ one may substitute

#
�

 2 � W 
y ¤ x ; d.x; 
y/� n ;

ˇ̌̌d2.p2.
y/;p2.x//

d1.p1.
y/;p1.x//
� tan �

ˇ̌̌
< "

�
in Lemma 6.1 instead of N "

�
.x;yI n/. Furthermore, the following property holds:

Lemma 6.4 If L� \ @X� ¤∅, then ı� .�/� 0.

Proof Suppose L�\@X� ¤∅. Then by Lemma 3.1 for any "> 0 there exist infinitely
many 
 2 � such that j�.o; 
o/� � j< ". In particularX


2�.o;oI�;"/

1DQ
0;"
�
.o; o/

diverges, hence ı"
�
.o; o/� 0. We conclude ı� .�/D lim inf"!0 ı

"
�
.o; o/� 0.

The following proposition states that the map � 7! ı� .�/ is upper semicontinuous.

Proposition 6.5 Let .�j /� Œ0; �=2� be a sequence converging to � 2 Œ0; �=2�. Then

lim sup
j!1

ı�j .�/� ı� .�/ :

Proof Let "0 2 .0; �=2/. Then �j ! � implies j�j � � j < "0=2 for j sufficiently
large. Let " 2 .0; "0=2/ and 
 2 �.o; oI �j ; "/. Then

j�.o; 
o/� � j< "C "0=2< "0 ;

hence for j sufficiently large �.o; oI �j ; "/ � �.o; oI �; "0/. This shows ı"
�j
.o; o/ �

ı
"0

�
.o; o/, and therefore ı�j .�/D lim inf"!0 ı

"
�j
.o; o/� ı

"0

�
.o; o/ :

lim sup
j!1

ı�j .�/� ı
"0

�
.o; o/ ;We conclude

lim sup
j!1

ı�j .�/D lim inf
"0!0

�
lim sup
j!1

ı�j .�/
�
� lim inf

"0!0
ı
"0

�
.o; o/D ı� .�/ :hence

This completes the proof.

Example Suppose X is a product X DX1�X2 of Hadamard manifolds with pinched
negative curvature, and �1 � Is.X1/, �2 � Is.X2/ are convex cocompact groups with
critical exponents ı1; ı2 . Then by Theorem 6.2.5 in [19] there exists a constant C > 1

such that for all n 2N we have

(16)
1

C
eıi n
� #f
i 2 �i W n� 1< d.oi ; 
ioi/� ng � Ceıi n ; i D 1; 2 :
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We are going to examine the action of the product group � D �1 ��2 � Is.X / on the
product manifold X . Given � 2 .0; �=2/, we estimate for " > 0 sufficiently small the
number of orbit points

�N "
� .o; oI n/D #

˚

 D .
1; 
2/ 2 � W n� 1<

p
d1.o1; 
1o1/

2
C d2.o2; 
2o2/

2
� n ;

j�.o; 
o/� � j< "
	

� #
�

 D .
1; 
2/ 2 � W n� 1<

d1.o1; 
1o1/

cos �.o; 
o/
� n ;

n� 1<
d2.o2; 
2o2/

sin �.o; 
o/
� n ; j�.o; 
o/� � j< "

�
� C 2

� n eı1n cos.��"/
� eı2n sin.�C"/ :

As a lower bound, we obtain

�N "
� .o; oI n/� #

�
.
1; 
2/ 2 � W n�1<

d1.o1; 
1o1/

cos �
� n ; n�1<

d2.o2; 
2o2/

sin �
� n

�
�

1

C 2
� eı1n cos �

�eı2n sin �

and therefore conclude ı� .�/ D ı1 cos � C ı2 sin � . Treating the cases � D 0 and
� D �=2 separately one can easily verify that this equation holds for all � 2 Œ0; �=2�.

7 A generic product for �

Denote R�0 WD ft 2R W t � 0g. For convenience, we extend the exponent of growth to a
map ‰� W R2

�0
!R as follows: If xD .x1;x2/ 2R2

�0
we put �.x/ WD arctan.x2=x1/

and set
‰�.x/ WD jjxjj � ı�.x/ :

In the remainder of this section we will show that ‰� is a concave function, ie for any
x , y 2R2

�0
and t 2 Œ0; 1� we have ‰�.txC .1� t/y/� t‰�.x/C .1� t/‰�.y/.

Recall that X is a product of locally compact Hadamard spaces X1 , X2 , oD .o1; o2/

a fixed base point, and � � Is.X1/� Is.X2/ acts properly discontinuously and contains
a pair of isometries g D .g1;g2/, hD .h1; h2/ such that gi and hi are independent
rank one elements in �i for i D 1; 2. Notice that the distance vector H W X �X !R2

defined at the beginning of Section 3 induces a map � ! R2 via the assignment

 7!H.o; 
o/. By abuse of notation we will call this map also H .

Let D denote the Dirac measure and �� WD
P

2� DH .
 / the counting measure on R2 .

In a metric space we denote B.x; r/ the ball of radius r � 0 centered at x . We will
use the following special case of a theorem due to Quint.
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Theorem 7.1 [16, Theorem 3.2.1] If there exist r; s; c>0 such that for any x;y 2R2

the inequality

(17) ��.B.xCy; s//� c � ��.B.x; r// � ��.B.y; r//

holds, then ‰� is concave.

In order to prove inequality (17) we will construct a generic product for � as in
[16, Proposition 2.3.1]. The idea behind is to find a finite set in � �� which maps
pairs of orbit points .
o; '�1o/ close to a set Ax.g/ or Ax.h/ as in Definition 2.3.
Unfortunately, unlike in the case of symmetric spaces, we do not dispose of an equivalent
of the result of Abels, Margulis and Soifer [16, Proposition 2.3.4] which plays a crucial
role there. Instead, we will exploit the dynamics of a free subgroup of hg; hi � � .

Proposition 7.2 If � � Is.X1/� Is.X2/ is as above, then there exists a map prW � �
�! � with the following properties:

(a) There exists � � 0 such that for all 
; ' 2 � we have

kH
�
pr.
; '/

�
�H.
 /�H.'/k � � :

(b) For any r > 0 there exists a finite set ƒ� � such that for all 
; '; y
 ; y' 2 � with
kH.
 /�H.y
 /k � r , kH.'/�H.y'/k � r we have

pr.
; '/D pr.y
 ; y'/ H) y
 2 
ƒ and y' 2ƒ' :

Proof For �2fg�;gC; h�; hCg and i 2f1; 2g let Ui.�/� xXi be a small neighborhood
of �i with oi … Ui.�/ such that all Ui.�/ are pairwise disjoint. Upon taking smaller
neighborhoods, Lemma 2.1 provides a constant c > 0 such that for i 2 f1; 2g any pair
of points in distinct neighborhoods can be joined by a rank one geodesic �i �Xi with
d.oi ; �i/� c .

In order to construct a map satisfying property (a) we let 
 D .
1; 
2/, 'D .'1; '2/2�

arbitrary. Arguing as in the proof of Proposition 5.1 there exist a finite set ƒ� � and
˛ D ˛.'/, ˇ D ˇ.
 / 2ƒ such that

ˇ
�1o 2 U1.h
�/�U2.h

�/ and ˛'o 2 U1.h
C/�U2.h

C/ :

As in the proof of Theorem 5.2 we set L WD maxfdi.oi ; �ioi/ W i 2 f1; 2g; � 2 ƒg.
For i D 1; 2 we choose a point xi on the geodesic joining ˇi


�1
i oi to ˛i'ioi with

di.oi ;xi/� c . Then

di.
iˇ
�1
i ˛i'ioi ; oi/D di.˛i'ioi ; ˇi


�1
i oi/D di.˛i'ioi ;xi/C di.xi ; ˇi


�1
i oi/
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and we can estimate

di.
iˇ
�1
i ˛i'ioi ; oi/� di.˛i'ioi ; ˛ioi/C

�L‚ …„ ƒ
di.˛ioi ; oi/C

�c‚ …„ ƒ
di.oi ;xi/

C di.xi ; oi/C di.oi ; ˇioi/C di.ˇioi ; ˇi

�1
i oi/

� di.'ioi ; oi/C di.
ioi ; oi/C 2cC 2L

di.
iˇ
�1
i ˛i'ioi ; oi/� di.'ioi ; oi/C di.
ioi ; oi/� 2c � 2L :and

This gives
kH.
ˇ�1˛'/�H.'/�H.
 /k � 2

p
2.cCL/DW � ;

hence the assignment pr.
; '/ WD 
ˇ.
 /�1˛.'/' satisfies property (a).

It remains to prove that the map pr from above also satisfies property (b). Suppose
there exists r > 0 such that for any finite set ƒn � f
 2 � W d.o; 
o/� ng with n 2N
there exist 
n; 'n; y
n; y'n with kH.
n/ �H.y
n/k � r , kH.'n/ �H.y'n/k � r and
gn WD pr.
n; 'n/D pr.y
n; y'n/, but 
�1

n y
n …ƒn or y'n'
�1
n …ƒn .

Passing to a subsequence if necessary we may assume that all the sequences .
�1
n o/,

.y
�1
n o/, .'no/, .y'no/�X converge. Notice that even though one of the projections

of the sequences to X1 or X2 may not converge to a boundary point, the arguments
from the proof of Proposition 5.1 show that there exist a finite set ƒ� � and ˛ , y̨ , ˇ ,
y̌ 2ƒ such that for all n 2N

(18) ˇ
�1
n o; y̌y
�1

n o 2U1.h
�/�U2.h

�/ and ˛'no; y̨ y'no 2U1.h
C/�U2.h

C/ :

For n 2N and i D 1; 2 we denote xn;i a point on the geodesic path from ˇi

�1
n;i oi to

˛i'n;ioi , and yxn;i a point on the geodesic path from y̌i y
�1
n;i oi to y̨i y'n;ioi such that

di.oi ;xn;i/� c and di.oi ; yxn;i/� c . Furthermore, using gnD
nˇ
�1˛'nD y
n

y̌�1 y̨ y'n

and denoting for i D 1; 2 �n;i the geodesic path �oi ;gn;i oi
there exist ti ; yti > 0 such

that

di.
n;iˇ
�1
i oi ; �n;i.ti//D di.
n;iˇ

�1
i oi ; �n;i/D di.oi ; ˇi


�1
n;i �n;i/D di.oi ;xn;i/� c ;

di.y
n;i
y̌�1

i oi ; �n;i.yti//D di.y
n;i
y̌�1

i oi ; �n;i/D di.oi ; y̌i y

�1
n;i �n;i/D di.oi ; yxn;i/� c :

by (18) and Lemma 2.1. Hence using L WDmaxfdi.oi ; �ioi/ W i 2 f1; 2g; � 2ƒg

di.
n;ioi ; �n;i/� di.
n;ioi ; 
n;iˇ
�1
i oi/C di.
n;iˇ

�1
i oi ; �n;i.ti//�LC c ;

di.y
n;ioi ; �n;i/� di.y
n;ioi ; y
n;i
y̌�1

i oi/C di.y
n;i
y̌�1

i oi ; �n;i.yti//�LC c :

For n 2 N and i D 1; 2 let yn;i ; yyn;i 2 Xi be the points on the geodesic path
�n;i such that di.oi ;yn;i/ D di.oi ; 
n;ioi/ and di.oi ; yyn;i/ D di.oi ; y
n;ioi/. Since
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kH.
n/�H.y
n/k � r we have di.yn;i ; yyn;i/ � r , and, by elementary geometric
estimates,

di.
n;ioi ;yn;i/� 2.LC c/ and di.y
n;ioi ; yyn;i/� 2.LC c/ :

We summarize

di.oi ; 

�1
n;i y
n;ioi/D di.
n;ioi ; y
n;ioi/

� di.
n;ioi ;yn;i/C d.yn;i ; yyn;i/C di.yyn;i ; y
n;ioi/

� 2.LC c/C r C 2.LC c/ ;

d.o; 
�1
n y
no/�

p
2.4LC 4cC r/DWR :ie

In particular, for n > R we have 
�1
n y
n 2 ƒn , and, in order to obtain the desired

contradiction, it remains to prove that y'n'
�1
n 2ƒn for n sufficiently large.

Notice that y'n D y̨
�1 y̌y
�1

n gn D y̨
�1 y̌y
�1

n 
nˇ
�1˛'n , hence

d.o; y'n'
�1
n o/D d.o; y̨�1 y̌y
�1

n 
nˇ
�1˛o/

�

�
p

2L‚ …„ ƒ
d.o; y̨�1o/C

�
p

2L‚ …„ ƒ
d.y̨�1o; y̨�1 y̌o/Cd.y̨�1 y̌o; y̨�1 y̌y
�1

n 
no/

C d.y
�1
n 
no; y
�1

n 
nˇ
�1o/C d.ˇ�1o; ˇ�1˛o/

� d.o; 
�1
n y
no/C 4

p
2L�RC 4

p
2L :

This finishes the proof.

The following lemma now shows that Equation (17) holds.

Lemma 7.3 There exist r; s; c > 0 such that for any x;y 2R2 we have

��.B.xCy; s//� c � ��.B.x; r// � ��.B.y; r// :

Proof Notice that ��.B.x; r//D#f
 2� W kH.
 /�xk< rg. Fix r >0, put sD�C2r

with � � 0 from Proposition 7.2 (a) and denote C > 0 the inverse of the cardinality of
the set ƒ�ƒ from Proposition 7.2 (b). Put

P .�/ WD f.
; '/ 2 � �� W kH.
 /�xk< r ; kH.'/�yk< rg :

We will show that for all x;y 2R2

#f
 2 � W kH.
 /�x�yk< sg � C � #P .�/ :
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Let .
; '/ 2 P .�/. Then ˛ WD pr.
; '/ 2 � satisfies

kH.˛/�x�yk � kH.˛/�H.
 /�H.'/kCkH.
 /�xkCkH.'/�yk

� �C r C r D s :

Moreover, Proposition 7.2 (b) implies that the number of different elements in P .�/

which can yield the same element in f
 2 � W kH.
 /� x � yk < sg is bounded by
#.ƒ�ƒ/.

As a corollary of Theorem 7.1 and Proposition 7.2 we obtain:

Theorem 7.4 The function ‰� is concave.

Together with Proposition 6.5 this gives Theorem E of the introduction.
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