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A local curvature bound in Ricci flow

PENG LU

In this note we give a proof of a result which is closely related to Perelman’s theorem
in Section 10.3 of the paper The entropy formula for the Ricci flow and its geometric
applications [4].

53C44

1 Introduction

In [4, Section 10.3], G Perelman gives the following theorem.

Theorem 1.1 (Perelman) There exist � , ı > 0 with the following property. Suppose
gij .t/ is a smooth solution to the Ricci flow on Œ0; .�r0/

2�, and assume that at t D 0 we
have jRmj.x/� r�2

0
in B.x0; r0/, and Vol B.x0; r0/� .1� ı/!nrn

0
, where !n is the

volume of the unit ball in Rn . Then the estimate jRmj.x; t/� .�r0/
�2 holds whenever

0� t � .�r0/
2; distt .x;x0/ < �r0 .

He continues: “The proof is a slight modification of the proof of theorem 10.1, and is
left to the reader. A natural question is whether the assumption on the volume of the
ball is superfluous.”

In this note by using the idea in the proof of Perelman’s pseudolocality theorem [4,
Theorem 10.1] (see Theorem 2.1 below for the statement), we will show:

Theorem 1.2 Given n � 2 and v0 > 0, there exists �0 > 0, depending only on n

and v0 , which has the following property. For any r0 > 0 and � 2 .0; �0� suppose
that .M n;g.t//, t 2 Œ0; .�r0/

2�, is a complete smooth solution to the Ricci flow with
bounded sectional curvature, and suppose that at t D 0 for some x0 2M we have
curvature bound jRmj.x; 0/ � r�2

0
for x 2 Bg.0/.x0; r0/ and volume lower bound

Volg.0/.Bg.0/.x0; r0// � v0rn
0

. Then jRmj.x; t/ � .�0r0/
�2 for t 2 Œ0; .�r0/

2� and
x 2 Bg.t/.x0; �0r0/.
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In Section 2 we will give a proof of Theorem 1.2 using two technical lemmas which will
be proved in Section 3. In Section 4 we will give two examples and a remark. The first
example shows that the curvature bound in Theorem 1.2 is false without the assumption
Volg.0/.Bg.0/.x0; r0//� v0rn

0
. The second example shows that the curvature bound

in Theorem 1.2 is false without the assumption that the Ricci flow is complete. The
remark says that Theorem 1.2 follows from Theorem 1.1 and the proof of Lemma 3.1.

2 Proof of Theorem 1.2

First we give a proof of Theorem 1.2 assuming Proposition 2.1 below. Then we will
prove the proposition.

Proposition 2.1 Given n � 2 and v0 > 0, there exists �0 > 0, depending only on n

and v0 , which has the following property. For any r0 > 0 and � 2 .0; �0� suppose
that .M n;g.t//, t 2 Œ0; .�r0/

2�, is a complete smooth solution to the Ricci flow with
bounded sectional curvature, and suppose that at t D 0 for some x0 2M we have
curvature bound jRmj.x; 0/ � r�2

0
for x 2 Bg.0/.x0; r0/ and volume lower bound

Volg.0/.Bg.0/.x0; r0// � v0rn
0

. Then jRmj.x; t/ � .�0r0/
�2 for t 2 Œ0; .�r0/

2� and
x 2 Bg.0/.x0; e

n�1�0r0/.

Proof of Theorem 1.2 It suffices to prove the following statement. For the solution
g.t/ in Proposition 2.1 we have

(1) Bg.t/.x0; �0r0/� Bg.0/.x0; e
n�1�0r0/ for any t 2 Œ0; .�r0/

2�:

We will prove (1) by contradiction.

If (1) is not true, there is a point x 2Bg.t/.x0; �0r0/ nBg.0/.x0; e
n�1�0r0/. Let  .s/,

0 � s � s0 , be a unit-speed minimal geodesic with respect to metric g.t/ such that
 .0/ D x0 and  .s0/ D x . Then s0 < �0r0 , and there is a s1 2 .0; s0� such that
 .s1/ 2 @.Bg.0/.x0; e

n�1�0r0// and  .Œ0; s1//� Bg.0/.x0; e
n�1�0r0/. In particular,

the length satisfies

(2) Lg.0/. jŒ0;s1�/� en�1�0r0:

From the curvature bound jRmj.x; t/� .�0r0/
�2 in Proposition 2.1 and the Ricci flow

equation, we have

j 0.s/jg.0/ � e.n�1/
j 0.s/jg.t/ for t 2 Œ0; .�r0/

2� and s 2 Œ0; s1�:

Lg.0/. jŒ0;s1�/�

Z s1

0

en�1
j 0.s/jg.t/ ds � en�1

� s0 < en�1�0r0:Hence

This contradicts (2). Hence (1) is proved, and Theorem 1.2 is proved assuming Propo-
sition 2.1.

Geometry & Topology, Volume 14 (2010)
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Proof of Proposition 2.1 Let zg.t/+ .r0/
�2g..r0/

2t/ be the parabolically scaling of
g.t/. The proposition holds for g.t/ and r0 if and only if the proposition holds for
zg.t/ and r0D 1. Hence it suffices to prove the proposition for r0D 1 which we assume
from now on. We will prove the proposition for r0 D 1 by contradiction argument.

Suppose the proposition is not true. Then there are n � 2, v0 > 0, a sequence of
�0i! 0C , a sequence of �i 2 .0; �0i �, a sequence of complete smooth solutions to the
Ricci flow

�
M n

i ;gi.t/
�
; t 2 Œ0; �2

i �, with bounded sectional curvature, and a sequence
of points x0i 2Mi , such that the following is true for each i :

(i) jRmgi
j.x; 0/� 1 for x 2 Bgi .0/.x0i ; 1/.

(ii) Volgi .0/.Bgi .0/.x0i ; 1//� v0 .

(iii) There are ti 2 .0; �
2
i � and xi 2 Bgi .0/.x0i ; e

n�1�0i/ such that jRmgi
j.xi ; ti/ >

��2
0i

.

(iv) �0i � 1=.8en�1/.

To get a contradiction from the existence of sequence f.Mi ;gi.t//g, we need the
following point-picking statement whose proof is simpler than the proof of the point-
picking claim used by Perelman in [4, Section 10.1]. Let Ai + 1=.100n�0i/.

Claim A Fix any i , there is a point .xxi ;xti/ 2 Bgi .0/.x0i ; .2Ai C en�1/�0i/� .0; �
2
i �

with xQi + jRmgi
j.xxi ;xti/ > �

�2
0i

such that

jRmgi
j.x; t/� 4 xQi for .x; t/ 2 Bgi .0/

�
xxi ;Ai

xQ
�1=2
i

�
� .0;xti �:

Proof of Claim A Let Q0
i + jRmgi

j.xi ; ti/. If .xi ; ti/ from (iii) satisfies the curvature
bound of the claim, ie,

jRmgi
j.x; t/� 4Q0

i for .x; t/ 2 Bgi .0/

�
xi ;Ai.Q

0
i /
�1=2

�
� .0; ti �;

we choose .xxi ;xti/D .xi ; ti/ and the claim is proved.

If .xi ; ti/ does not satisfy the curvature bound of the claim, then there is a point

.x1
i ; t

1
i / 2 Bgi .0/

�
xi ;Ai.Q

0
i /
�1=2

�
� .0; ti �

such that jRmgi
j.x1

i ; t
1
i / > 4Q0

i . We compute using Q0
i > �

�2
0i

dgi .0/.x
1
i ;x0i/� dgi .0/.xi ;x0i/CAi.Q

0
i /
�1=2

� en�1�0i CAi�0i

< .2Ai C en�1/�0i :

Geometry & Topology, Volume 14 (2010)
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If .x1
i ; t

1
i / satisfies the curvature bound of the claim, we choose .xxi ;xti/D .x

1
i ; t

1
i / and

the claim is proved.

If .x1
i ; t

1
i / does not satisfy the claim, let Q1

i + jRmgi
j.x1

i ; t
1
i /, then there is a point

.x2
i ; t

2
i / 2 Bgi .0/

�
x1

i ;Ai.Q
1
i /
�1=2

�
� .0; t1

i �

such that jRmgi
j.x2

i ; t
2
i / > 4Q1

i . We compute using Q1
i > 4Q0

i

dgi .0/.x
2
i ;x0i/� dgi .0/.x

1
i ;x0i/CAi.Q

1
i /
�1=2

� .en�1
CAi/�0i CAi �

1
2
�0i

< .2Ai C en�1/�0i :

If .x2
i ; t

2
i / satisfies the curvature bound of the claim, we choose .xxi ;xti/D .x

2
i ; t

2
i / and

the claim is proved.

If .x2
i ; t

2
i / does not satisfy the claim, then there will be a point .x3

i ; t
3
i / and we can

continue the above process of arguments. Hence for each i either we get a finite
sequence of points f.xk

i ; t
k
i /g

ki

kD0
where .x0

i ; t
0
i /+ .xi ; ti/ such that the claim holds

by taking .xxi ;xti/D .x
ki
i ; t

ki
i /, or there is an infinite sequence of points f.xk

i ; t
k
i /g
1
kD0

which satisfies the following. Let Qk
i + jRmgi

j.xk
i ; t

k
i /. Then for each integer k � 0

.xkC1
i ; tkC1

i / 2 Bgi .0/

�
xk

i ;Ai.Q
k
i /
�1=2

�
� .0; tk

i �

such that jRmgi
j.xkC1

i ; tkC1
i / > 4Qk

i .

Now we show that for any i there can not be an infinite sequence f.xk
i ; t

k
i /g
1
kD0

from
which the claim follows. We compute

dgi .0/.x
kC1
i ;x0i/

� dgi .0/.x0i ;x
0
i /C dgi .0/.x

0
i ;x

1
i /C dgi .0/.x

1
i ;x

2
i /C � � �C dgi .0/.x

k
i ;x

kC1
i /

� en�1�0i CAi.Q
0
i /
�1=2
CAi.Q

1
i /
�1=2
C � � �CAi.Q

k
i /
�1=2

� en�1�0i CAi�0i CAi
1
2
�0i C � � �CAi

1
2k �0i

< .2Ai C en�1/�0i ;

where we have used QkC1
i > 4Qk

i > 4kC1Q0
i > 4kC1��2

0i
. For any fixed i , from

Ai D 1=.100n�0i/ and �0i � 1=.8en�1/, we conclude that .xk
i ; t

k
i / is in the compact

set Bgi .0/.x0i ; 1/� Œ0; �
2
i � for all k . On the other hand we have

lim
k!1

jRmgi
j.xk

i ; t
k
i /� lim

k!1
4k��2

0i D1;

which is impossible. Now Claim A is proved.
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Let .xxi ;xti/ be the point given by Claim A. We divide the rest of the proof of Proposition
2.1 into three cases according to the value of

(3) limi!1xti � jRmgi
j.xxi ;xti/+ z̨

equals to infinite, positive finite number, or zero. We will derive contradictions in each
of the three cases.

Case 1 z̨ D C1. From Claim A and the choice of Ai D 1=.100n�0i/, by passing to
a subsequence (still indexed by i ) we have

(1i) xti � �2
i ,

(1ii) limi!1xti � jRmgi
j.xxi ;xti/D1,

(1iii) dgi .0/.xxi ;x0i/ < 1=4. In particular, Bgi .0/.xxi ; 3=4/� Bgi .0/.x0i ; 1/.

From the assumptions (i) and (ii) given at the beginning of the proof of Proposition
2.1 and the Bishop–Gromov volume comparison theorem there is a constant v1 > 0,
depending only on n and v0 , such that

Volgi .0/

�
Bgi .0/ .x0i ; 1=4/

�
� v1:

Since the ball Bgi .0/.xxi ; 1=2/ contains the ball Bgi .0/.x0i ; 1=4/ we have

(4) Volgi .0/

�
Bgi .0/ .xxi ; 1=2/

�
� v1:

We define a regular domain in a smooth manifold to be a bounded domain with a
C 1 –boundary. Recall Perelman’s pseudolocality theorem [4, Theorem 10.1] says the
following (for an expository account, see, for example, Chow et al [3, Chapter 21]).

Theorem 2.1 (Perelman) For every ˛ > 0 and n � 2 there exist ı > 0 and �0 > 0

depending only on ˛ and n with the following property. Let .M n;g.t//, t 2 Œ0; .�r0/
2�,

where �2 .0; �0� and r02 .0;1/, be a complete solution of the Ricci flow with bounded
curvature and let x0 2M be a point such that

R.x; 0/� �r�2
0 for x 2 Bg.0/.x0; r0/�

Areag.0/.@�/
�n
� .1� ı/cn

�
Volg.0/.�/

�n�1and

for any regular domain �� Bg.0/.x0; r0/, where cn D nn!n is the Euclidean isoperi-
metric constant. Then we have the curvature estimate

jRm.x; t/j �
˛

t
C

1

.�0r0/2

for x 2 Bg.t/.x0; �0r0/ and t 2 .0; .�r0/
2�.

Geometry & Topology, Volume 14 (2010)
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Let ı + ı0 > 0 be the constant in Theorem 2.1 corresponding to ˛ D 1. Applying
Lemma 3.1 below to metric 4gi.0/ and ball B4gi .0/.xxi ; 1/ D Bgi .0/.xxi ; 1=2/ we
conclude that there is a r1 < 1=2, depending only on n, ı0 and v1 but not depending
on i , such that

(5)
�

Areagi .0/.@�/
�n
� .1� ı0/cn

�
Volgi .0/.�/

�n�1

for any regular domain �� Bgi .0/ .xxi ; r1/.

Let r2 + minfr1; 1=
p

n.n� 1/g, and let ygi.t/D .r2/
�2gi..r2/

2t/, 0� t � .r2/
�2�2

i . It
follows from assumption (i) that the scalar curvature Rygi

. � ; 0/��1 on Bygi .0/.xxi ; 1/.
From (5) we have�

Areaygi .0/.@�/
�n
� .1� ı0/cn

�
Volygi .0/.�/

�n�1

for any regular domain �� Bygi .0/.xxi ; 1/.

For i large enough we can apply Theorem 2.1 (using ˛ D 1) to .Bygi .0/.xxi ; 1/; ygi.t//,
0� t � .r2/

�2�2
i , and conclude

jRmygi
j.x; t/�

1

t
C

1

.r2/�2�2
i

for t 2 .0; .r2/
�2�2

i � and x 2 Bygi .t/.xxi ; .r2/
�1�i/. Equivalently we have

jRmgi
j.x; t/�

1

t
C

1

�2
i

for t 2 .0; �2
i � and x 2 Bgi .t/.xxi ; �i/. In particular

jRmgi
j.xxi ;xti/�

1

xti
C

1

�2
i

�
2

xti

for i large enough. This contradicts with the assumption of Case 1 that z̨ in (3) is
infinity.

Case 2 z̨ 2 .0;1/. Let yti + xQixti . Let ygi.t/ + xQigi

�
. xQi/

�1t
�
, t 2 Œ0; yti �. Let b0

be a constant bigger than .11=3/.n�1/.z̨ C1/C1 to be chosen later (see (10) below).
By passing to a subsequence we have

(2i) jRmygi
j.x; t/� 4 for x 2 Bygi .0/.xxi ;Ai/ and t 2 Œ0; yti �,

(2ii) jRmygi
j.xxi ; yti/D 1,

(2iii) jRmygi
j.x; 0/� xQ�1

i for x 2 Bygi .0/.xxi ;Ai/,

(2iv) yti � z̨C 1, yti! z̨ , Ai > 2e4.n�1/.z̨C1/b0 , and Ai!1.

Geometry & Topology, Volume 14 (2010)
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Applying Lemma 3.2 to ygi.t/ with b D b0 we get a function hi W Mi � Œ0; yti �! Œ0; 1�

such that the support

supp hi. � ; t/� xBygi .t/

�
xxi ; 2b0�

11

3
.n� 1/t

�
� Bygi .0/.xxi ;Ai/�

@

@t
��ygi .t/

�
hi �

10

b2
0

hi :and

Recall the curvature Rmygi
of Ricci flow ygi.t/ satisfies�

@

@t
��ygi

�
jRmygi

j
2
� �2jrygi

Rmygi
j
2
C 16jRmygi

j
3:

Now we compute the evolution equation of hi jRmygi
j2 .�

@

@t
��ygi

�
.hi jRmygi

j
2/

D

��
@

@t
��ygi

�
hi

�
jRmygi

j
2
Chi

��
@

@t
��ygi

�
jRmygi

j
2

�
�2rygi

hi �rygi
jRmygi

j
2

�
10

b2
0

hi jRmygi
j
2
Chi

�
�2jrygi

Rmygi
j
2
C16jRmygi

j
3
�
C

4
p

10

b0

jRmygi
j�h

1=2
i jrygi

Rmygi
j

�

�
10

b2
0

C64

�
hi jRmygi

j
2
�2hi jrygi

Rmygi
j
2
C

16
p

10

b0

�h
1=2
i jrygi

Rmygi
j

�

�
10

b2
0

C64

�
.hi jRmygi

j
2/C

320

b2
0

;

where we have used

jrygi
hi j D

j�0.w/j

b0

jrygi
dygi .t/.x; xxi/jygi

�

p
10

b0

h
1=2
i

and jRmygi
j � 4 on supp hi. � ; t/. Here � is the function defined in the proof of Lemma

3.2.

Let ui + hi jRmygi
j2 . We have proved�

@

@t
��ygi

�
ui �

�
10

b2
0

C 64

�
ui C

320

b2
0

on Mi � Œ0; yti �.

Geometry & Topology, Volume 14 (2010)
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Let Hi > 0 be the backward heat kernel to the conjugate heat equation on .Mi ; ygi.t//,
t 2 Œ0; yti �, centered at xxi , ie,�

@

@t
C�ygi

�Rygi

�
Hi D 0;

lim
t!yti

Hi.x; t/D ıxxi
:

Note that
R

Mi
Hi. � ; t/ d�ygi .t/ D 1.

Now we compute

d

dt

Z
Mi

uiHi d�ygi

D

Z
Mi

��
@

@t
��ygi

�
ui

�
Hi d�ygi

C

Z
Mi

ui

��
@

@t
C�ygi

�Rygi

�
Hi

�
d�ygi

�

Z
Mi

��
10

b2
0

C 64

�
ui C

320

b2
0

�
Hi d�ygi

D

�
10

b2
0

C 64

�Z
Mi

uiHi d�ygi
C

320

b2
0

:

Hence it follows from a simple integration that Ui.t/+
R

Mi
uiHi d�ygi

satisfies

(6) Ui.t/� e.10=b2
0
C64/tUi.0/C

320

.10=b2
0
C 64/b2

0

.e.10=b2
0
C64/t

� 1/

for t 2 Œ0; yti �.

By the definition of hi we have at t D yti

(7) Ui.yti/D ui.xxi ; yti/D �

�
.11=3/.n� 1/yti

b0

�
jRmygi

j
2.xxi ; yti/D 1:

On the other hand we have

Ui.0/D

Z
Mi

hi.x; 0/jRmygi
j
2.x; 0/Hi.x; 0/ d�ygi .0/

�

Z
Bygi .0/.xxi ;2b0/

jRmygi
j
2.x; 0/Hi.x; 0/ d�ygi .0/

� xQ�2
i

Z
Bygi .0/.yxi ;2b0/

Hi.x; 0/ d�ygi .0/

� xQ�2
i

Z
Mi

Hi.x; 0/ d�ygi .0/

Geometry & Topology, Volume 14 (2010)
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where we have used support supp hi. � ; 0/�Bygi .0/.xxi ; 2b0/ in the first inequality and
(2iii) in the second inequality. Hence we have proved

(8) Ui.0/� xQ
�2
i :

By combining (6), (7) and (8) we get

1� e.10=b2
0
C64/yti xQ�2

i C
320

.10=b2
0
C 64/b2

0

.e.10=b2
0
C64/yti � 1/:

Hence

(9) 1� e.10=b2
0
C64/.z̨C1/ xQ�2

i C
320

.10=b2
0
C 64/b2

0

e.10=b2
0
C64/.z̨C1/:

Let

(10) b0 + max
�

11

3
.n� 1/.z̨ C 1/C 1; 3e33.z̨C1/

�
:

For such choice of b0 we have

320

.10=b2
0
C 64/b2

0

e.10=b2
0
C64/.z̨C1/ <

5

9
:

Equation (9) is impossible since xQi ! 1. We get the required contradiction for
Case 2.

Case 3 z̨ D 0. The proof of this case is similar to the proof of Case 2. Let yti + xQixti .
Let ygi.t/+ xQigi

�
. xQi/

�1t
�
, t 2 Œ0; yti �. By passing to a subsequence we have

(3i) jRmygi
j.x; t/� 4 for x 2 Bygi .0/.xxi ;Ai/ and t 2 Œ0; yti �,

(3ii) jRmygi
j.xxi ; yti/D 1,

(3iii) jRmygi
j.x; 0/� xQ�1

i for x 2 Bygi .0/.xxi ;Ai/,

(3iv) yti � 1=.6.n� 1//, yti! 0, Ai > 4e2 and Ai!1.

Applying Lemma 3.2 to ygi.t/ with b D 2 we get a function hi W Mi � Œ0; yti �! Œ0; 1�

such that the support

supp hi. � ; t/� xBygi .t/

�
xxi ; 4�

11

3
.n� 1/t

�
� Bygi .0/.xxi ;Ai/�

@

@t
��ygi .t/

�
hi �

5

2
hi :and
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We compute�
@

@t
��ygi

�
.hi jRmygi

j
2/

D

��
@

@t
��ygi

�
hi

�
jRmygi

j
2
Chi

��
@

@t
��ygi

�
jRmygi

j
2

�
�2rygi

hi �rygi
jRmygi

j
2

�
5

2
hi jRmygi

j
2
Chi

�
�2jrygi

Rmygi
j
2
C16jRmygi

j
3
�
C2
p

10jRmygi
j�h

1=2
i jrygi

Rmygi
j

�
133

2
hi jRmygi

j
2
�2hi jrygi

Rmygi
j
2
C8
p

10 h
1=2
i jrygi

Rmygi
j

�
133

2
.hi jRmygi

j
2/C80;

where we have used

jrygi
hi j D

j�0.w/j

2
jrygi

dygi .t/.x; xxi/jygi
�

p
10

2
h

1=2
i

and jRmygi
j � 4 on supp hi. � ; t/. Here � is the function defined in the proof of Lemma

3.2.

Let ui + hi jRmygi
j2 . We have proved�

@

@t
��ygi

�
ui � 67ui C 80

on Mi � Œ0; yti �.

Let Hi > 0 be the backward heat kernel to the conjugate heat equation on .Mi ; ygi.t//,
t 2 Œ0; yti �, centered at xxi . Note that

R
Mi

Hi. � ; t/ d�ygi .t/ D 1. We compute

d

dt

Z
Mi

uiHi d�ygi
D

Z
Mi

��
@

@t
��ygi

�
ui

�
Hi d�ygi

�

Z
Mi

.67ui C 80/Hi d�ygi

D 67

Z
Mi

uiHi d�ygi
C 80:

Hence it follows from a simple integration that Ui.t/+
R

Mi
uiHi d�ygi

satisfies

(11) Ui.t/� e67tUi.0/C
80

67
.e67t

� 1/

for t 2 Œ0; yti �.
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At t D yti we have

(12) Ui.yti/D ui.xxi ; yti/D �

�
.11=3/.n� 1/yti

2

�
jRmygi

j
2.xxi ; yti/D 1:

On the other hand by an argument similar to the proof of (8) we have

(13) Ui.0/� xQ
�2
i :

By combining (11), (12) and (13) we get

1� e67yti xQ�2
i C

80

67
.e67yti � 1/:

This is impossible since yti ! 0 and xQi !1. We get the required contradiction for
Case 3.

Now we have finished the proof of Proposition 2.1 modulo the proofs of Lemmas 3.1
and 3.2.

3 Proof of two technical lemmas

In the proof of Proposition 2.1 we have used the following two lemmas. Intuitively
the first lemma says that if a ball of radius 1 has bounded sectional curvature and is
volume noncollapsing, then the isoperimetric constant on small certain size ball is close
to the Euclidean one. Note that the next lemma and essential the same proof are also
given by Wang [5].

Lemma 3.1 Given n� 2, v0 > 0 and ı0 > 0, there is r > 0, depending only on n; v0 ,
and ı0 , which has the following property. Let B .x0; 1/ be a ball in a Riemannian
manifold .M n;g/ which satisfies the following:

(I) The closed ball B.x0; 1/ is compact in M .

(II) The Riemann curvature jRmj � 1 on B.x0; 1/.

(III) The volume Vol.B.x0; 1//� v0 > 0.

Then we have

(14)
�

Area.@�/
�n
� .1� ı0/cn

�
Vol.�/

�n�1

for any regular domain �� B .x0; r/. Here cn D nn!n is the isoperimetric constant
for Euclidean space.
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Proof Step 1 (Injectivity radius bound) Under the assumption of Lemma 3.1, by a
theorem of Cheeger–Gromov–Taylor [2, Theorem A.7] there is a �0 > 0 depending
only on n and v0 such that the injectivity radius injx0

� �0 .

Step 2 (Metric tensor on ball B.x0; 1/) Let x D .xi/ be the normal coordinates at
x0 . It follows from a result of Hamilton (see Cao et al [1, Theorem 4.10, page 308])
that for any " > 0 there is �0 D �0.n; "/ such that metric tensor

(15) .1� "/.ıij /� .gij /� .1C "/.ıij /

for jxj � �0 . Note that .ıij / is the Euclidean metric in the coordinates .xi/.

Step 3 (Approximation argument) Let r+ min f�0; �0g and let expx0
W B.r/ !

B.x0; r/ be the exponential map. expx0
is a diffeomorphism. Now we consider

a regular domain �� B .x0; r/. We compute

Volg.�/D
Z
�

q
det.gij / � dx1

� � � dxn

�

Z
.expx0

/�1�

q
.1C "/n det.ıij / � dx1

� � � dxn

D .1C "/n=2 VolEuc..expx0
/�1�/:

Let f�ag
n�1
aD1

be an orthonormal frame of .@�; .ıij /j@�/ at some point x and let f��a g
be the dual frame. The area form d�.@�;.ıij /j@�/ at x is given by ��

1
^� � �^��

n�1
. The

area form d�.@�;gj@�/ at x is given byq
det.g.�a; �b//.n�1/�.n�1/ � �

�
1 ^ � � � ^ �

�
n�1:

We can estimateq
det.g.�a; �b//.n�1/�.n�1/ �

q
.1� �/n�1 det..ıij /.�a; �b//D .1� �/

.n�1/=2;

hence

Areagj@�
.@�/D

Z
@�

d�.@�;gj@�/

�

Z
@..expx0

/�1�/

.1� "/.n�1/=2d�.@..expx0
/�1�/;.ıij /j@..expx0

/�1�/
/

D .1� "/.n�1/=2 AreaEuc.@..expx0
/�1�//:
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Now we compute�
Areagj@�

.@�/
�n�

Volg.�/
�n�1

�

�
.1� "/.n�1/=2 AreaEuc

�
@..expx0

/�1�/
��n�

.1C "/n=2 VolEuc..expx0
/�1�/

�n�1

D

�
1� "

1C "

�.n�1/n=2

�

�
AreaEuc

�
@..expx0

/�1�/
��n�

VolEuc..expx0
/�1�/

�n�1

�

�
1� "

1C "

�.n�1/n=2

cn:

Given ı0 we choose " such that�
1� "

1C "

�.n�1/n=2

D 1� ı0;

which in turn requires us to choose the corresponding �0.n; "/ to ensure (15). Then
Lemma 3.1 holds for r Dminf�0; �0g.

The second lemma is about the existence of an auxiliary function.

Lemma 3.2 Let .M n;g.t//, t 2 Œ0; yt �, be a solution of the Ricci flow. Let b be
a constant bigger than .11=3/.n � 1/yt C 1 and let A be a constant bigger or equal
to 2e4.n�1/ytb . We assume that closed ball Bg.0/.xx;A/ � M is a compact subset
and that jRmj.x; t/ � 4 for .x; t/ 2 Bg.0/.xx;A/� Œ0; yt �. Then there is a function
hW M � Œ0; yt �! Œ0; 1� such that for each t 2 Œ0; yt � the support

supp h. � ; t/� xBg.t/.xx; 2b� .11=3/.n� 1/t/� Bg.0/.xx;A/�
@

@t
��g.t/

�
h�

10

b2
hand

on M � Œ0; yt �.

Proof Let �W R! Œ0; 1� be a smooth function which is strictly decreasing on the
interval Œ1; 2� and which satisfies

(16) �.s/D

(
1 if s 2 .�1; 1�;

0 if s 2 Œ2;1/;

and

.�0.s//2 � 10�.s/;(17a)

�00.s/� �10�.s/(17b)

Geometry & Topology, Volume 14 (2010)



1108 Peng Lu

for s 2R. We define for any t 2 Œ0;T �

h.x; t/D �

�
dg.t/.x; xx/C at

b

�
where a and b are two positive constants to be chosen. Note that supp h. � ; t/ �

Bg.t/.xx; 2b� at/.

By the curvature assumption we have Bg.t/.xx; e
�4.n�1/ytA/�Bg.0/.xx;A/ for t 2 Œ0; yt �.

We choose 2b � e�4.n�1/ytA so that supp h . � ; t/� Bg.0/ .xx;A/.

Let w.x; t/+ .dg.t/.x; xx/C at/=b . We compute�
@

@t
��g.t/

�
h

D
�0.w/

b

��
@

@t
��g.t/

�
dg.t/.x; xx/C a

�
�
�00.w/

b2

ˇ̌
rg.t/dg.t/.x; xx/

ˇ̌2
g.t/

�
�0.w/

b

��
@

@t
��g.t/

�
dg.t/.x; xx/C a

�
C

10

b2
h:

Choosing a such that ayt < b�1, then for x 2Bg.t/.xx; 1/ or x … supp h. � ; t/ we have
�0.w/.x; t/D 0, hence for such x we have�

@

@t
��g.t/

�
h�

10

b2
h:

For x … Bg.t/ .xx; 1/ and x 2 supp h. � ; t/, we use [4, Lemma 8.3(a)] with r0 D 1 and
K D 4 and get�

@

@t
��g.t/

�
dg.t/.x; xx/

ˇ̌̌̌
tDt0

� �.n� 1/

�
2

3
Kr0C

1

r0

�
D�

11

3
.n� 1/:

By choosing a + 11
3
.n� 1/ and using �0.w/� 0 we obtain�

@

@t
��g.t/

�
h�

10

b2
h:

The lemma is proved.

4 Two examples

In this section we give two example showing that neither the volume lower bound
assumption nor the completeness assumption in Theorem 1.2 can be dropped.
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Let r be an arbitrary positive constant in .0; 1�. Let g0
r be a Riemannian metric on

a topological sphere †2 which contains a round cylinder S1.r/� Œ�1; 1� of radius r

and length 2. We have Volg0
r
.†/ � 4�r . We assume volume Volg0

r
.†/ � 20r . Let

.†2;gr .t//, t 2 Œ0;Tr /, be the maximal solution of the Ricci flow with gr .0/D g0
r .

Then the blowup time

Tr D
1

8�
Volg0

r
.†/ 2

�
1

2
r;

5

2�
r

�
:

Let p 2 S1.r/. Then x0 + .p; 0/ is a point in †. For any �0 we can choose r small
enough so that Tr < �0 . Clearly we have jRmgr

j.x; 0/D 0 for x 2Bgr .0/.x0; 1/ and
Volgr .0/.Bgr .0/.x0; 1// � 4�r . For any � 2 ..1=2/r;Tr /, should the conclusion of
Theorem 1.2 hold for gr .t/ when r is small enough, we would have jRmgr

j.x0; �/�

��2
0

. Since � is arbitrary, we have limt!Tr
jRmgr

j.x0; t/ < �
�2
0

. However it is well-
known that the limit should be infinity. Hence Theorem 1.2 does not hold for gr .t/.
By taking the product of .†2;gr .t// with flat torus we get high dimensional examples.

The second example is a simple modification of the previous example, the idea of
construction is due to Peter Topping (unpublished work). Let

ˆW R� .�1; 1/! S1.r/� .�1; 1/�†

be the standard universal cover map. Then .R� .�1; 1/; ˆ�gr .t// is a incomplete solu-
tion of the Ricci flow. Clearly we have

ˇ̌
Rmˆ�gr

ˇ̌
.x; 0/D 0 for x 2Bˆ�gr .0/..0; 0/; 1/

and Volˆ�gr .0/.Bˆ�gr .0/..0; 0/; 1// D � . Arguing as in the previous example we
conclude that Theorem 1.2 does not hold for ˆ�gr .t/ with the ball center being .0; 0/
when r is small enough.

Finally we make a remark. It follows from the proof of Lemma 3.1 that under the same
assumption as the lemma there is a zr 2 .0; 1�, depending only on n, v0 , and ı0 , such
that

Vol .B.x0; zr//� .1� ı0/!nzr
n:

We need to switch the notation below. Denote the r0 in Theorem 1.1 by r1 and denote
the r0 in Theorem 1.2 still by r0 . Let ı0 to be the ı in Theorem 1.1. Let g.t/

be a solution of the Ricci flow satisfying the assumption of Theorem 1.2. Then the
assumption of Theorem 1.1 holds for g.t/ with r1 D r0zr , hence by Theorem 1.1 we
get a curvature bound which is essentially equivalent to the curvature bound given by
Theorem 1.2. The reason why we do not use Theorem 1.1 and the proof of Lemma 3.1
to give a more direct proof of Theorem 1.2 is that at the time of writing this note the
author is not aware of a detailed proof of Theorem 1.1 in the literature.
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