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Quotient groups of the fundamental groups
of certain strata of the moduli space of quadratic differentials

KATHARINE C WALKER

In this paper, we study fundamental groups of strata of the moduli space of quadratic
differentials. We use certain properties of the Abel–Jacobi map, combined with local
surgeries on quadratic differentials, to construct quotient groups of the fundamental
groups for a particular family of strata.

30F30; 14D20

1 Introduction

Little is currently known about the fundamental groups of strata of the moduli spaces
of either abelian or quadratic differentials. In this paper we construct a quotient group
of the fundamental group for a certain family of strata of quadratic differentials. We do
so by mapping a stratum into a larger configuration space of points on surfaces and
showing that the image of the fundamental group of the stratum under this map is in
the kernel of a version of the Abel–Jacobi map. We then construct a set of generators
for the kernel of the Abel–Jacobi map and show that in some cases the image of the
fundamental group of the stratum in the fundamental group of the configuration space
is equal to this kernel.

More specifically, let Qg be the space of quadratic differentials over Teichmüller
space Tg and let �D .k1; : : : ; kn/ be a partition of 4g�4. Define Qg.k1; : : : ; kn/D

Q� to be the subset of Qg of quadratic differentials with n zeroes of order k1; : : : ; kn .
Let xQg and xQ� be the analogous spaces over moduli space, Mg . We are interested
in �1. xQ�/; however, when Q� and xQ� are both connected we have a short exact
sequence

1! �1.Q�/! �1. xQ�/! �g! 1

where �g is the genus g mapping class group. In many cases (although not all) both
Q� and xQ� are connected, so we focus on proving results about �1.Q�/.

To do this we first embed Q� into a larger configuration space. In particular, to any
partition � we associate a generalized symmetric group S� that allows points of equal
weights to be exchanged. For M 2 Tg and � of length n, let M Œn� denote the space of
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n ordered distinct marked points on M , and let Sym�.M / denote M Œn�=S� . Define
Sym�g to be the associated bundle over Tg , and Pic4g�4

g the bundle over Tg with fiber
Pic4g�4.M /, the Picard variety parametrizing line bundles on M of degree 4g� 4.
Then we have the following maps:

(1) Q�
i
! Sym�g

AJ
! Pic4g�4

g

The first map is given by considering the zeroes of a quadratic differential as weighted
marked points. The second map is the Abel–Jacobi map, given by mapping a divisor to
its associated line bundle. The maps in (1) induce a sequence of maps:

(2) �1.Q�/
i�
! �1.Sym�g/

AJ�
! �1.Pic4g�4

g /ŠH1.M;Z/

We show that AJ� ıi�W �1.Q�/!H1.†;Z/ is trivial, so the image of i� will be in
the kernel of AJ� . In the case where there are at least O.

p
g/ zeroes of order 1 in �,

we are able to construct a set of generators for the kernel of AJ� .

Theorem 1.1 Let � D .ka
1
; k

b2

2
; : : : ; k

bm
m /, with exponents satisfying

Pm
iD2 bi D b

and a�.3C
p

9C 8.2gC b� 2//=2. Then the kernel of AJ�W �1.Sym�g/!H1.M;Z/
is generated by transpositions of zeroes of equal weight, squares of transpositions of
zeroes of unequal weight, moving sets of points of equal weight opposite ways around
generators of �1.M /, and in some cases moving single points around homologically
trivial curves.

A more precise statement of Theorem 1.1 is given in Section 4. To show that the
elements detailed in Theorem 1.1 are contained in �1.Q�/ we first follow a variety
of authors, including Eskin, Masur and Zorich [3], Lanneau [8] and Kontsevich and
Zorich [6], to create local surgeries on surfaces with quadratic differentials that affect
the flat metric induced by the quadratic differential in only a small area around a zero.
We then take advantage of the fact that for any genus 0 stratum, Q� Š Sym�.P1/ (in
other words, a quadratic differential on P1 may have zeroes at any set of points) to
create explicit curves of quadratic differentials in the hyperelliptic loci of certain strata.
This leads to the following theorem:

Theorem 1.2 Let �D .1a; k1; : : : ; kn/ with a>maxfgC5; k1; : : : ; kng, all ki even,
and some ki D kj , 1 � i; j � n. Then im.i�W �1.Q�; .M; q// ! �1.Sym�g// D
ker.AJ�/.

Theorem 1.2 states that for certain � we can describe the image of �1.Q�/ in �1.Sym�g/.
However, the kernel of �1.Q�/! �1.Sym�g/ may be nontrivial, so we have created a
quotient group of �1.Q�/.
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The structure of the paper is as follows. In Section 2 we give some general background.
In Section 3 we collect some results about �1.Sym�g/, and in Section 4 we construct
a set of generators for the kernel of AJ� when � has sufficiently many zeroes of the
same order. In Section 5 we recall some local surgeries that allow us alter the flat
metric associated to a quadratic differential near a particular zero. In Section 6 and
Section 7 we use the results of Section 5 to construct explicit elements in the ker.AJ�/.
Section 8 summarizes when we have the image of �1.Q�/! �1.Sym�g/ equal to the
kernel of AJ�W �1.Sym�g/!H1.M;Z/. Theorem 1.1 and Theorem 1.2 are proved in
Section 4 and Section 8, respectively.

2 Preliminary definitions

A meromorphic quadratic differential, q , on a Riemann surface, M , is a meromorphic
section of the square of the canonical bundle, KM , of M . In local coordinates q

assigns to each .U˛; z˛/ a meromorphic function f˛ such that

fˇ.zˇ/

�
dzˇ

dz˛

�2

D f˛.z˛/; dzˇ D
d

dz˛
zˇdz˛

on U˛ \Uˇ .

A horizontal trajectory, or simply a trajectory, of a quadratic differential q on M is a
smooth curve  W Œ0; 1�!M such that f . .t//. 0.t/dt/2 is real and positive for all t .
Similarly, a vertical trajectory of q is  W Œ0; 1�!M such that f . .t//. 0.t/dt/2 is
real and negative, and a � –trajectory is  such that the argument of f . .t//. 0.t/dt/2

is 2� . (For q D dz2 on C these correspond to straight lines of angle � .) Through
every regular point of q there exist unique horizontal and vertical trajectories that are
transverse. Near a zero of q of order n, p0 , we can choose a local coordinate, � , such
that � D 0 at p0 and q D �nd�2 . Then the nC 2 curves  .t/ D tei.2�=.nC2//k for
kD 0; 1; : : : ; nC1; are all horizontal trajectories that dead-end into p0 . A � –trajectory
between two critical points of q is called a saddle connection.

Any nonzero quadratic differential on M gives us a metric on M

j jq D

Z


jf .z/j1=2jdzj

for  a real curve on M . Geodesics in this metric are unions of � –trajectories, with
vertices at critical points of q .

Through much of this paper we will be concerned not just with individual quadratic
differentials but also their moduli spaces. Let Tg be the Teichmüller space of a closed
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genus g surface and Mg the genus g moduli space. We consider the bundle E over
Tg with fiber H 0.M;K2

M
/ over M 2 Tg , and define Qg to be the subspace of the

total space of E consisting of quadratic differentials that are not zero sections of K2
M

.
Define Qg.k1; : : : ; kn/ to be the subspace of Qg of quadratic differentials with zeroes
of order k1; : : : ; kn ,

Pn
1 ki D 4g � 4 and ki 2 N . The set of integer partitions of

4g� 4 give a natural stratification of Qg and a single Qg.k1; : : : ; kn/ is often called
stratum of Qg . We also occasionally consider an analog of E where each fiber is
the space of meromorphic sections of K2 with up to some fixed number of single
poles, and then we can consider Qg.k1; : : : ; kn/ where some of the ki D�1. All of
these spaces are well known to be manifolds (see Veech [12], for example). E is also
well-known to be the cotangent bundle of Tg , and from this we see Qg is a complex
manifold of dimension 6g� 6. Unless nD 1 Qg.k1; : : : ; kn/ is not closed in Qg , as
zeroes may collide to form higher order zeroes.

One can construct the analog of E over Mg , xE!Mg , again with fiber H 0. SM ;K SM 2/

over SM 2Mg . Let xQg be the total space of xE minus zero sections. Alternatively, the
mapping class group, �g , acts on Qg by a lift of its action on Tg . We can also define
xQg as the quotient of Qg by �g . Similarly define xQg.k1; : : : ; kn/ as the quotient
of Qg.k1; : : : ; kn/ by �g . Since �g does not act freely, the xQg.k1; : : : ; kn/ will be
complex orbifolds.

In general we do not require the ki to be distinct, but if a stratum has multiple zeroes
of the same order we will sometimes use the notation Qg.k

n
1
; k2; : : : ; kn/ to indicate

Qg.k1; k1; : : : ; k1; k2; : : : ; kn/. We denote elements of Qg.k1; : : : ; kn/ as .M; q/

where M is a Riemann surface together with a homeomorphism from a fixed genus g

surface to M , defined up to isotopy. When the specific orders of the zeroes are not
important we will sometimes let �D .k1; : : : ; kn/ denote a partition of 4g� 4 and let
Q� DQg.k1; : : : ; kn/. The length of � will be the number of ki in the partition.

The following sums up the structure of various strata:

Theorem 2.1 (Masur, Smillie, Veech) Every Qg.k1; : : : ; kn/ is nonempty, with four
exceptions: Q1.∅/;Q1.�1; 1/;Q2.3; 1/;Q2.4/. With the exception of these four
strata, the Qg.k1; : : : ; kn/ are complex manifolds of dimension 2g� 2C n.

The same is true of the xQg.k1; : : : ; kn/, except that they are orbifolds instead of
manifolds. Proofs of the above may be found in Masur and Smillie [9] and Veech [12].
Genus 0 is special in that it is possible to construct a rational function, f W P1! P1 ,
with zeroes and poles wherever desired, and f .z/dz2 is then a quadratic differential
on P1 . This implies that Q0.k1; : : : ; kn/ is simply the configuration space of n points
on the sphere, which is well-known to be connected.
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Proposition 2.2 Any Q0.k1; : : : ; kn/ is connected.

If one has a (ramified) cover of some M , one can pull back a quadratic differential
on M to get one on its cover.

Lemma 2.3 Let � W �M !M be a ramified double cover, q a quadratic differential
on M and zq its pullback under � . Let zp be a ramification point of � and p D �. zp/.
Then, if p is a singularity of order k of q , zp will be a singularity of order 2kC 2 on zq .

One can see this by noticing that a singularity of order k corresponds to a cone angle
of .kC2/� ; doubling the cone angle at this singularity gives a cone angle of 2kC4�

or a singularity of order 2kC 2. More detailed proofs of Proposition 2.2 and Lemma
2.3 may be found in Lanneau [8].

Using double covers one may construct a continuous map between two different strata
of quadratics differentials.

Construction 2.4 Let
Pn

1 ki D �4, n � 2g C 2. We can construct a local map
Q0.k1; : : : ; kn/!Qg.2k1C2; : : : ; 2k2gC2C2; k2

2gC3
; : : : ; k2

n/ by taking .M 0; q0/2

Q0.k1; : : : ; kn/ to its double cover ramified at its zeroes of order k1; : : : ; k2gC2 . This
gives a surface .M; q/ of genus g such that each of the first 2gC 2 zeroes of order ki

goes to one with order 2ki C 2, and we get 2 copies of each remaining zero.

For the above map to be global one would need to be able to distinguish between zeroes
of the same order, so as to consistently choose ramification points.

Definition 2.5 Define a quadratic differential .M; q/ 2Qg.k1; : : : ; kn/ to be hyperel-
liptic if M is a hyperelliptic Riemann surface and q is invariant under the hyperelliptic
involution. Define Qg.k1; : : : ; kn/ to be hyperelliptic if it contains a hyperelliptic
quadratic differential.

This definition of a hyperelliptic stratum is somewhat different from one frequently
used in the literature, where a connected component of a stratum is called hyperelliptic
if every quadratic differential in it is hyperelliptic.

Finally, since 1!�g!Q�! xQ�!1 is a fibration, if Q� and xQ� are both connected
then 1! �1.Q�/! �1. xQ�/! �0.�g/Š �g! 1 will be short exact. Interestingly,
not all of the xQ� are actually connected. For those that are disconnected, the connected
components are classified by whether or not hyperelliptic quadratic differentials form a
full-dimensional subset of the stratum. Lanneau proves this in [8].
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Theorem 2.6 (Lanneau) For g � 3 the following strata have two connected compo-
nents:

(1) xQg.4.g� k/� 6; 4kC 2/, 0� k � g� 2

(2) xQg..2.g� k/� 3/2; 4kC 2/, 0� k � g� 1

(3) xQg..2.g� k/� 3/2; 2kC 12/, �1� k � g� 2

where one is hyperelliptic and the other is not. For g � 5 all other strata have one
component; for gD3; 4 all other strata are connected with the following four exceptions:
xQ3.�1; 9/, xQ3.�1; 3; 6/, xQ3.�1; 3; 3; 3/, and xQ4.12/. These four sporadic strata

have two connected components, but neither is hyperelliptic. For g D 0; 1 all strata are
connected, and for g D 2 xQ2.3; 3;�1;�1/ and xQ2.6;�1;�1/ have two components,
but all others are connected.

In [13] we showed the following:

Theorem 2.7 Let g � 2. Then any stratum of the form Qg.1
g; k1; : : : ; kn/ is con-

nected.

For � as in Theorem 2.7 both Q� and xQ� are connected, and 1! �g! �1.Q�/!
�1. xQ�/! 1 is short exact.

3 Surface braid groups

In this section we collect some results about surface braid groups, to use in analyzing
the kernel of AJ� .

Let Sn be the standard symmetric group on n letters. To any partition, �, of 4g� 4

we associate a symmetric group, S� , which allows equal values to be exchanged. For
example, to .14; 2; 52/ we associate S4 �S2 . The length of � will be the number of
elements it contains. For a particular M 2 Tg and partition � of length n, let M Œn�

denote the space of n ordered distinct marked points on M , and let Sym�.M / be
M Œn�=S� .

�1.M
Œn�/ is well-known as the pure or special braid group of n elements on a genus g

surface, which we will denote by SBn.M / or simply SBn . Similarly, �1.M
Œn�=Sn/

is the full braid group on M , Bn.M / or Bn . The generators of both SBn and Bn

are well-known. In particular, let l1; : : : ; l2g be 2g standard generators of �1.M /,
let .p1; : : : ;pn/ 2M Œn� , and let �ij , 1 � i � n, 1 � j � 2g , denote an element of
SBn such that pi follows a path that is homotopic to lj . Let D be any disk containing
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pk ;pl , 1� k < l � n, and let �kl be either generator of �1.D
Œ2�; .pk ;pl//. (We may

extend this to an element of �1.M
Œn�/ by letting the other n� 2 points move along

constant paths.) Similarly, let �st be either generator of �1.D
Œ2�=S2; .ps;pt //. The

following theorem is classical.

Theorem 3.1 SBn is generated by the �ij , 1 � i � n, 1 � j � 2g , and the �kl ,
1� k < l � n. Bn is generated by the �ij and the �s.sC1/ , 1� s < n.

It should be noted that there are multiple nonequivalent ways to define each of the �ij ,
�kl , and �s.sC1/ ; however, any choice yields a generating set.

Let Mm denote M � fpnC1; : : : ;pnCmg, where the pnCi are any distinct points
on M , and let SBn;m denote SBn.Mm/ and Bn;m denote Bn.Mm/. (We will only
be concerned with the topology of Mm , which does not depend on the choice of
fpnC1; : : : ;pnCmg.) Let �kl , 1 � k � n, n < l � nCm, denote pk moving in a
simple loop around pl . Again the generators of both SBn;m and Bn;m are well-known.

Theorem 3.2 SBn;m is generated by the �ij and the �kl , 1 � j � 2g , 1 � i; k � n,
1 � l � nCm. Bn;m is generated by the �ij , the �s.sC1/ , 1 � s < n, and the �kl ,
1� k � n, n< l � nCm.

A reference for Theorem 3.1 and Theorem 3.2 is Birman [1].

We will primarily be interested in �1.Sym�.M //, which we will denote by B�.M / or
B� . For �D .kn/, B� is just Bn . For more complicated � we note that the covering
map M Œn�! Sym�.M / is normal and thus

SBn! B�! S�

is a short exact sequence. This tells us the generators of B� :

Proposition 3.3 Let � be a partition of 4g� 4 of length n. Then B� is generated by
the �ij , 1� i � n, 1� j � 2g , and for each pair 1� k < l � n, either �kl if pk and
pl are of the same weight, or �kl if pk and pl are of different weights.

In fact it is possible to generate B� with fewer transpositions; however, this generating
set will suffice for our purposes. Although it will not be explicitly used in this paper, it
is also worth noting that for particular choices of generating sets, the relations among
the generators of SBm; SBn;m and Bn are well-known (see Scott [11], for example),
and thus the same will be true for any of their subgroups.

Another classical result about surface braid groups is the following, from [4]:

Theorem 3.4 (Fadell–Neuwirth) The map .Mm/
Œn�! .Mm/

Œr � is a fibration, with
fiber .MmCr /

Œn�r � .
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This fibration induces a long exact sequence of homotopy groups. All higher homotopy
groups are trivial, so

1! SBn�r;mCr .M /! SBn;m.M /! SBr;m.M /! 1

is a short exact sequence.

Finally, we will sometimes want to distinguish the many different transpositions of two
points on a surface. Let p;p0 2M and define an edge, e , to be an embedding of the in-
terval Œ0; 1� in M with endpoints p and p0 . Let U �M be a contractible neighborhood
of e . Then we define �e to be either of the two generators of �1.U

Œ2�=S2; .p;p
0//,

with ��1
e its inverse, and �e to be either of the two generators of �1.U

Œ2�; .p;p0//

with ��1
e its inverse. For a particular .M; q/, let P D fp1; : : : ;png be the zeroes of q

and define xEM;q D feW I ,!M je.I/\P D e.0/[ e.1/g to be the set of all edges on
.M; q/. We say e � e0 if e and e0 are homotopic in M nP relative to their endpoints,
and define EM;q D

xEM;q= �. We index the set of all transpositions associated to
.M; q/ by EM;q .

4 The kernel of the Abel–Jacobi map

In this section we first define the Abel–Jacobi map, and then construct a set of generators
for its kernel.

Define Sym�g to be the bundle over Tg with fiber Sym�.M /. Similarly let Pic4g�4.M /

be the Picard variety parametrizing line bundles of degree 4g� 4, and define Pic4g�4
g

to be the bundle over Tg with fiber Pic4g�4.M /. Let ƒg be the set of all integer
partitions of 4g� 4.

Then we have a sequence of maps:

(3) Q�
i
! Sym�g

AJ
! Pic4g�4

g

The first map is given by considering the zeroes of a quadratic differential as marked
points, weighted by the order of the zero. The second map is the Abel–Jacobi map, given
by mapping a divisor to its associated line bundle, AJ.D/D jDj. The composition of
these maps is fiber-wise trivial because every element of Q� over a particular M 2 Tg

maps to K2
M
2 Pic4g�4

g .

Using the fact that Pic.M /Š Jac.M /, the Jacobian variety of M , AJ may alternatively
be defined (on each fiber of Sym�g ) as a map Sym�g.M /! Jac.M /, defined as follows.
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Choose holomorphic 1–forms !i , 1 � i � g such that the !i form a basis for
H 0.M; �1

M
/, and choose a basepoint p0 2M . Then for D D

Pn
1 kipi ,

AJ.D/D

 
nX
1

ki

Z pi

p0

!1; : : : ;

nX
1

ki

Z pi

p0

!g

!
:

See Griffiths and Harris [5], for example, for the equivalence of these definitions
of AJ. Since Jac.M / D H 0.M;KM /�=H1.M;Z/, there is a natural isomorphism
H1.Jac.M /;Z/!H1.M;Z/. The Hurewicz map, �1.Jac.M //!H1.Jac.M /;Z/,
is an also an isomorphism in this case. From this perspective one can see that

AJ�W �1.Sym�g.M //!H1.Jac.M /;Z/ŠH1.M;Z/

takes a braid in �1.Sym�g.M // to a union of homology classes of loops in M , where
the loop followed by pi is weighted by ki .

As previously noted it is possible that Q� is not connected, and in general we will
denote a connected component of Q� by Q0

�
. Then the maps in (3) induce a sequence

of maps:

(4) �1.Q0
�/

i�
! �1.Sym�g/

AJ�
! �1.Pic4g�4

g /ŠH1.M;Z/

(�1.Pic4g�4.M //Š �1.Jac.M //ŠH1.M;Z/, and Pic4g�4
g is a bundle over a con-

tractible space, so �1.Pic4g�4
g /ŠH1.M;Z/ as well.) AJ� ıi� will take the sum of the

paths travelled by the zeroes of quadratic differentials to their corresponding homology
class, where the paths are weighted by the order of the zero.

Since Tg is simply connected, if the map Q�! Tg has no empty fibers, then the image
of Q� under AJ ıi is also simply connected. In this case AJ� ıi� will again be trivial.

It is not always true that Q�! Tg has no empty fibers; for example, there exist � for
which the dimension of Q� is less than the dimension of Tg . In this case we consider
the inclusion �W Q� ,!Qg , and the induced map of their fundamental groups.

Q0
�

i //

�

))

Sym�g AJ // Pic4g�4
g �1.Q0

�
/

i� //

��

**

�1.Sym�g/
AJ� // H1.M;Z/

Qg

AJ

OO

�1.Qg/

AJ�

OO

The diagram on the left clearly commutes, so the diagram on the right does as well.
Since the image of Qg under Qg! Tg is indeed simply connected, we have AJ� ı��
is trivial, and thus AJ� ıi� is as well. The combination of these two cases gives us the
following.
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Proposition 4.1 For all � 2ƒg and any connected component Q0
�

of Q�

AJ� ıi�W �1.Q0
�/!H1.M;Z/

is trivial.

Proposition 4.1 implies that the image of �1.Q0
�
/! �1.Sym�g/ will be in the kernel

of AJ� . Since Tg is contractible, �1.Sym�g/ Š B� . Thus, we now use the gen-
erators of B� constructed in the previous section to create a set of generators for
ker.AJ�W �1.Sym�g/ ! H1.M;Z//. In Section 4.1 we consider � D .kn/, and in
Section 4.2 more general �.

4.1 Strata with zeroes of only one weight

We wish to calculate the kernel of AJ� for �D .kn/ and n reasonably large. Recall
that we defined Mf to be the surface M with f punctures. We have the following
from [2]:

Theorem 4.2 (Copeland) If the surface M has the structure of a polyhedron (a
two-dimensional cell complex) of genus g with n vertices and f faces such that the
associated 1–skeleton has no double edges and no loops (edges with both ends at the
same vertex), then ker.AJ�W �1.Symn.Mf //!H1.M;Z// is generated by the edge
set. Specifically the base point of Symn.Mf / may be chosen to be the vertices of the
cell complex, each face may be viewed as having a puncture, and each edge may be
viewed as a transposition of its two vertices.

Using the natural projection �1.Symn.Mf //! �1.Symn.M // one can show that the
kernel of �1.Symn.M //! H1.M;Z/ is a quotient group of the kernel of the map
�1.Symn.Mf //!H1.M;Z/ and is also generated by transpositions. Then Theorem
4.2 implies that if we can construct a graph with any number of faces on M of the form
described in the theorem, the kernel of AJ�W �1.Symn.M //!H1.M;Z/ is generated
by transpositions.

Copeland shows in [2] that it is possible to construct such a graph for any g > 2 and
n D 4g � 4. We would like to show the same is true for smaller n, since � D .kn/

implies n� 4g� 4. In general, the best bound for n we can hope to achieve will be
on the order of

p
g . This is because a graph with n vertices, no double edges, and no

loops can have a maximum of
�
n
2

�
edges. The Euler characteristic then implies that

2� 2g � n�

�
n

2

�
Cf:
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Since f must be � 1, at most g grows at the rate of n2 . More specifically, solving
the equation above we get n� .3C

p
9C 8.2gCf � 2//=2. To show that graphs of

the required form exist for n close to this bound we will need some standard results
from graph theory. Through the remainder of the section we will assume all graphs are
connected, with no double edges or loops.

A 2–cell embedding of a graph, G , into a genus g topological surface, Mg , is
an embedding, 'W G ! Mg , such that each component of Mgn'.G/ is a 2–cell.
The genus of G ,  .G/, is the minimal g for which G embeds into Mg (such an
embedding will always be a 2–cell embedding). The maximal genus of G , M .G/, is
the maximal g for which G has a 2–cell embedding into Mg . Let v.G/ and e.G/

denote the number of vertices and edges of G . For ' a 2–cell embedding of G , let
f .G; '/ denote the number of components of Mgn'.G/, which we will call faces.
Finally, let Kn denote the complete graph on n vertices. The following are well-known
results in graph theory:

Proposition 4.3 For any integer n� 3:

(1) M .Kn/D b.e.Kn/� v.Kn/C 1/=2c D b.n� 2/.n� 1/=4c.

(2)  .Kn/D d.n� 3/.n� 4/=12e.

(3) Kn has a 2–cell embedding into Mg if and only  .Kn/� g � M .Kn/.

See Kronk, Ringeisen and White [7], for example, for a survey of these results. Note that
the maximal genus of G is simply the largest genus for which v.G/�

�
v.G/

2

�
Cf D2�2g

has a positive solution for f . A 2–cell embedding of Kn into Mg has
�
n
2

�
�nC2�2g

faces. We would like to show that graphs with a wider range of faces embed into Mg ,
and in fact knowing that Kn 2–cell embeds into Mg we can also show that “almost
complete” graphs on n vertices have 2–cell embeddings into Mg .

Lemma 4.4 If Kn has a 2–cell embedding into Mg , then for any f such that 1 �

f �
�
n
2

�
� nC 2� 2g there exists a graph with n vertices that has a 2–cell embedding

into Mg with f faces.

Proof We prove the lemma by induction on the number of faces. First, Kn embeds into
Mg with

�
n
2

�
�nC 2� 2g faces. Now suppose we have a connected graph G that has

a 2–cell embedding 'W G!Mg with f .G; '/ faces, 2� f .G; '/�
�
n
2

�
�nC2�2g .

Each edge of a graph is adjacent to two faces (it may be adjacent to the same face
twice), and since G is connected any face must share at least one edge with some
other face. Call this edge e . Gne will still be connected and 'jGne will be a 2–cell
embedding of Gne with one face fewer than G .
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Proposition 4.5 Let 1� f � 4g�4. Then for any n� .3C
p

9C 8.2gCf � 2//=2

there exists a graph embedded into a surface of genus g with n vertices, f faces, no
loops and no double edges.

Proof First, it suffices to show that for n D d.3C
p

9C 8.2gCf � 2//=2e there
exists such a graph, G ; to construct such a graph for n0 > n we simply subdivide the
edges of G with the required number of additional vertices.

To prove the proposition for nD d.3C
p

9C 8.2gCf � 2//=2e note that

3C
p

9C 8.2gCf � 2/

2
� n�

3C
p

9C 8.2gCf � 2/

2
C 1

which implies

2gCf �
.2n� 3/2� 9

8
C 2; 2gCf �

.2n� 5/2� 9

8
C 2:

Since 1� f � 4g� 4,

g �
..2n� 3/2� 9/=8C 2� 1

2
; g �

..2n� 5/2� 9/=8C 2C 4

6
:

Simplifying, we see that if nD d.3C
p

9C 8.2gCf � 2//=2e and 1� f � 4g� 4,

n2� 5nC 16

12
� g �

.n� 1/.n� 2/

4
:

Since n is positive, .n2�7nC12/=12� .n2�5nC16/=12, and by Proposition 4.3 Kn

has a 2–cell embedding into Mg . If nD .3C
p

9C 8.2gCf � 2//=2, the embedding
of Kn has f faces and is the desired graph. Otherwise the embedding of Kn has f 0

faces, f 0 > f , but then by Lemma 4.4 there exists a graph with n vertices and an
embedding into Mg with f faces.

Corollary 4.6 For g � 2, 1 � f � 4g � 4 and n � .3C
p

9C 8.2gCf � 2//=2,
ker.AJ�W �1.Symn.Mf //!H1.M;Z// is generated by transpositions.

Proof This is an immediate consequence of Theorem 4.2 and Proposition 4.5.

Corollary 4.7 For g � 2, n� .3C
p

1C 16g/=2 and �D .kn/,

ker.AJ�W �1.Sym�g/!H1.M;Z//

is generated by transpositions.
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Proof Corollary 4.6 implies that ker.AJ�W �1.Symn.M1//!H1.M;Z// is generated
by transpositions. There is a natural projection pW �1.Symn.M1//! �1.Symn.M //;
hence, ker.AJ�W �1.Symn.M //! H1.M;Z// may be viewed as a quotient group
of ker.AJ�W �1.Symn.M1//!H1.M;Z//. This implies ker.AJ�W �1.Symn.M //!

H1.M;Z// is generated by products of transpositions. However, any single transpo-
sition in �1.Symn.M1// is not in the kernel of p ; thus, ker.AJ�W �1.Symn.M //!

H1.M;Z// is generated by transpositions.

Corollary 4.7 gives us the structure of the kernel of AJ� for �D .kn/ and n reasonably
large.

When the length of � is small, it is more difficult to enumerate a set of generators
for the kernel of AJ� . It is not true in general that the kernel will be generated by
transpositions; for example, consider i�Qg.4g�4/� Sym1

g . We may move the single
marked point around a curve that is homologically but not homotopically trivial. This
will be in the kernel of AJ� but is not a product of transpositions. However, for �
with sufficiently many zeroes of the same order we may make some generalizations
to the results of this subsection. In particular, a combination of Corollary 4.6 and the
Fadell–Neuwirth fibration will allow us to generalize Corollary 4.7 to a larger class
of �, and this is what we will do in the next subsection.

4.2 Strata with zeroes of more than one weight

We would like to generalize Corollary 4.7 to �D .kn1

1
; : : : ; k

nm
m / with n1 large. Let

� be of length n and let .p1; : : : ;pn/ 2 Sym�g.M / be the basepoint of B� . From
Section 3 we know that B�Š�1.Sym�g/ is generated by the �ir , 1� i �n, 1� r �2g ,
and for each pair 1� i < j � n, either �ij if pi and pj are of the same weight, or �ij

if pi and pj are of different weights. We can immediately show that some of these
generators are in ker.AJ�W �1.B�/!H1.M;Z//:

Lemma 4.8 Any transposition or square transposition in B� , �ij or �ij , is in the
kernel of AJ� .

Proof A transposition of two points of equal weight consists of moving them in
opposite directions along homotopic paths. The sum of these paths is then homotopic
(and therefore homologous) to zero. A square transposition of two points of unequal
weight moves each point along some path, and then back along a homologous path.
Thus both points follow paths that are homologous to zero.
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An individual �ir will not be in the kernel of AJ� ; however, there are two cases when
it is easy to see that a product of them will be. First, if two sets of points of equal total
weight follow lr and l�1

r respectively, then their paths will cancel each other out in
H1.M;Z/. Second, a single pi may follow a path that is homologically trivial but not
homotopically trivial. More precisely, we have the following two definitions.

Definition 4.9 Fix r , 1 � r � 2g . A null �r is a product
Qm

nD1 �
˙1
inr such thatPm

nD1˙kin
D 0, where the sign in front of kin

is given by the sign of the exponent
of �inr .

Definition 4.10 Let �D .k1; : : : ; kn/, fix i , 1� i �n, and let Mn�i be M punctured
at piC1; : : : ;pn . An i –commutator is a product of �ir and �ij , 1� r � 2g , i C 1�

j � n, such that the path followed by pi is in Œ�1.Mn�i/; �1.Mn�i/�.

In the remainder of the section we show that for �D .kn1

1
; : : : ; k

nm
m / with n1 large,

transpositions, square transpositions, null �r , and i –commutators for pi not of or-
der k1 suffice to generate the kernel of AJ� . For n2; : : : ; nm all sufficiently large,
transpositions, square transpositions, and null �r suffice to generate.

To show this first recall that for any � of length n

(5) 1! SBn! �1.Sym�g/Š B�
pr
! S�! 1

is a short exact sequence. Thus for the remainder of the section we regard SBn as a
natural subgroup of B� . From Section 3 we have that SBn is generated by �ir and
�ij , 1� i < j � n, 1� r � 2g .

Lemma 4.11 Any Z 2B� can be written as Y �X where Y is a product of transposi-
tions and X 2 SBn .

Proof Let pr.Z/D xY 2S� . For every pi ;pj of the same weight, pick a transposition,
�ij 2 B� . Let pr.�ij /D x�ij and note that S� is generated by the x�ij . Then we can
write xY as a product of the x�ij , and we construct Y 2B� by writing Y as a product of
the corresponding �ij . Then pr.Y /D pr.Z/D xY . Let X D Y �1Z . Since pr.X /D 1

and (5) is exact, X 2 SBn .

Let KD ker.AJ�W B�!H1.M;Z//. Then K\SBnD ker.AJ�W SBn!H1.M;Z//.
By Lemma 4.11, to prove that any Z 2 K is a product of null �r ; �ij , �ij , and i –
commutators it suffices to show that this is true for all X 2 SBn . To show this we use
the short exact sequence of Theorem 3.4:

(6) 1! SBa;b! SBaCb D SBn

pr0
! SBb! 1
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for any a; b such that aC b D n. Again we regard SBa;b as a natural subgroup of B�
for the remainder of the section. K\SBa;b D ker.AJ�W SBa;b!H1.M;Z//. Lemma
4.13 will prove that words in K \ SBa;b can be written as a product of the desired
elements, and Theorem 4.14 will then prove the same for words in K \ SBn (and
therefore K ).

First we need a technical lemma, and in it we break up SBa;b further, using Theorem 3.4,

(7) 1! SBa�1;bC1! SBa;b

pr00
! SB1;b! 1

for the purpose of analyzing it.

Lemma 4.12 Let �D .kn1

1
; : : : ; k

nm
m /, with

Pm
1 ni D n. Pick any a, 1� a� n, let

bDn�a, and let pa have weight kl , 1� l�m. Then im.pr00W K\SBa;b!SB1;b/ lies
in fS 2SB1;bjAJ�.S/2dH1.M;Z/g, where d is the smallest positive integer such that
there exist c1; c2; : : : ;�cl ; : : : ; cm2Z such that c1�k1Cc2�k2C� � �Cd �klC� � �Ccm�kmD

0 has a solution.

Proof SBa;b is generated by �ir ; �ij , 1 � i � a, 1 � j � aC b , 1 � r � 2g . We
need not consider the �ij as they all go to zero under AJ� . Let w.i/ be the weight
of pi , w.i/ 2 fk1; : : : ; kmg. Any word W in K \ SBa;b has the property that for a
fixed r the product of �˙1

ir in W must be such that
P
˙w.i/D 0. (The sign in front

of w.i/ corresponds to the sign in the exponent of �ir .) This implies that the number
of times �ar occurs in a particular word must be a multiple of d .

Lemma 4.13 Let �, a and b be as in Lemma 4.12. For all Xb 2 K \ SBa;b there
exists W 2 K \ SBa;b such that pr00.Xb/ D pr00.W / and W is a product of null �r ,
�aj or �aj , and a–commutators.

Proof As in Lemma 4.12 let pa be of weight kl and also let c1; c2; : : : ;�cl ; : : : ; cm , and
d be as in Lemma 4.12. SB1;b D�1.Mb/ is generated by x�ar ; x�aj , aC1� j � aCb ,
1� r � 2g , where �ar ; �aj 2 SBa;b project to their corresponding barred elements. (In
SBa;b the points p1; : : : ;pa move around punctures paC1; : : : ;paCb ; under pr00 , pa

moves around paC1; : : : ;paCb .) Let G D ŒSB1;b; SB1;b � be the commutator of SB1;b .

Since G abelianizes SB1;b , for all Xb 2 K \ SBa;b there exists xh 2 G such that
xh � pr00.Xb/ is a product of x�ar ; x�aj , such that all x�aj are on the right of all x�ar and
if r1 < r2 , x�ar1

is to the left of x�ar2
. In other words, xh � pr00.Xb/ is a word such that

for fixed r all x�ar are adjacent. By Lemma 4.12, the power of any x�ar in xh � pr00.X /
must be a multiple of d .
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Now we construct W 2 K \ SBa;b by inserting ci elements of weight ki moving
around lr adjacent to each set of d elements of weight kl moving around the lr in
xh � pr00.Xb/, and then multiplying by h�1 , pr00.h/D xh. For example, let �D .k1; k2/

with p1 of weight k1 , p2 of weight k2 , and ck1�dk2D0. If xh�pr00.X /D x� n1
2r1
x� n2

2r2
x�12 ,

then W Dh�1.�n1
2r1
��.c=d/n1

1r1
/.�n2

2r2
��.c=d/n2

1r2
/�12 , where Lemma 4.12 implies n1 and

n2 are divisible by d . Both of the elements in parentheses are null �r . W is thus
made up of null �r , �aj , and a–commutators. By construction pr00.W /D pr00.Xb/.

If there are sufficiently many points of weight kl (ifnl � .3C
p

9C 8.2gC b� 2//=2),
then by Corollary 4.6 ker.AJ�W �1.Symnl .Mb/!H1.M;Z// is generated by trans-
positions. This implies that the a–commutators that make up h�1 above can be written
as products of transpositions.

Theorem 4.14 Let �D .ka
1
; k

b2

2
; : : : ; k

bm
m /, with exponents satisfying

Pm
kD2 bk D b

and a � .3C
p

9C 8.2gC b� 2//=2 (as in Corollary 4.6). Then any Z 2 K can
be written as a product of null �r , �ij , �ij , 1 � i; j � aC b , 1 � r � 2g , and
i –commutators for pi not of weight k1 .

Proof By Lemma 4.11 it suffices to prove the theorem for all X 2K\ SBaCb . By
Corollary 4.6 the theorem is true for all Xb 2K\ SBa;b .

For O � k � b we have the following version of the short exact sequence in (7):

1! SBaCk�1;b�kC1! SBaCk;b�k

pr00
! SB1;b�k ! 1

Using this and Lemma 4.13 we show that if elements of K\ SBaCk�1;b�kC1 are of
the desired form, then so are elements of K\ SBaCk;b�k .

Let Xk be an element of K \ SBaCk;b�k . By Lemma 4.13 we construct Wk 2

K \ SBaCk;b�k such that pr00.Wk/ D pr00.Xk/ and Wk is a product of the desired
elements. Using the above exact sequence W �1

k
� Xk 2 K \ SBaCk�1;b�kC1 . If

W �1
k
�Xk and Wk are both of the desired form, then so is Xk .

Therefore by induction elements of K\ SBaCb are of the desired form.

Corollary 4.15 Let � D .ka
1
; k

b2

2
; : : : ; k

bm
n / with exponents satisfying

Pm
2 bk D b

and a� .3C
p

9C 8.2gC b� 2//=2. Additionally assume that for 2�k�m, we have
bk � .3C

p
9C 8.2gC bkC1C � � �C bm� 2//=2. Then any Z 2 ker.�1.Sym�g/!

H1.M;Z// may be written as a product of �ij , �ij , and null �r , 1 � i; j � aC b ,
1� r � 2g .
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Proof This differs from Theorem 4.14 only in that we eliminate the i –commutators,
a< i � aC b . We may do this because any i –commutator is contained in the kernel
of �1.Symbi .MbiC1C���Cbm

//!H1.M;Z/ and may thus by Corollary 4.6 be written
as products of transpositions.

This gives us a description of ker.AJ�W Sym�g!H1.M;Z// for � with at least one
reasonably large set of points of the same weight (on the order of

p
g ). The rest of

the paper will be spent in determining which of the elements of this kernel are also
elements of �1.Q�/. To do so we first present some methods for surgering existing
quadratic differentials to create new ones.

5 Some local surgeries

We denote by Q0
�

a connected component of Q� , and by cl.Q�/ the closure of Q� .
Choose �1; �2 such that Q0

�2
� cl.Q0

�1
/. In this section we present a method whereby,

for certain .M; q/ 2 Q0
�1

sufficiently near to an element of Q0
�2

, we may construct
some transpositions and square transpositions of zeroes of q in �1.Q0

�1
; .M; q//. For

�D .k1; : : : ; kn/ we refer to the zeroes of q as p1; : : : ;pn with pi of order ki , and
we let P WD fp1; : : : ;png. We also sometimes refer to a (square) transposition of pi

and pj – by this we will mean a transposition if ki D kj and a square transposition
otherwise.

First we consider the following definition and two lemmas, which closely follow lemmas
in [3] and [8], amongst others. The lemmas allow us in certain cases to construct an
element of Q0

�1
from an element of Q0

�2
. For a fixed .M; q/ and p 2M let D".p/

denote the disk of radius " centered at p in the q metric.

Definition 5.1 A zero p of .M; q/ of order k1 can be broken into zeroes of order
l1; : : : ; lm ,

Pm
1 li D k1 , if there exists "0 such that for every " < "0 there exists a

quadratic differential .M 0; q0/ and a disk D0 �M 0 of radius " in the q0 metric such
that M nD".p/ is isometric to M 0nD0 and D0 contains zeroes of order l1; : : : ; lm . If
.M; q/ 2Qg.k1; k2; : : : ; kn/, then .M 0; q0/ 2Qg.l1; : : : ; lm; k2; : : : ; kn/.

Lemma 5.2 Let .M; q/ 2 Qg.k1; : : : ; kn/. Pick l1; l2 2 N such that l1C l2 D ki ,
where if ki is even then l1 and l2 are even as well. Let pi be a zero of q of order ki .
Then pi can be broken into zeroes of order l1; l2 .

Lemma 5.3 Let .M; q/ 2 Qg.k1; : : : ; kn/. Pick l1; l2; l3 2 N such that l1 C l2 C

l3 D ki . Then pi can be broken into zeroes of order l1; l2; l3 . Similarly, given any
l1; l2; l3; l4 2N such that l1C l2C l3C l4D ki , pi can be broken into zeroes of order
l1; l2; l3; l4 .
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Sketch of Proof A proof of all but the 4 point case may be found in [8]; we prove
the two point case with both zeroes even here. Consider a disk D" , centered at pi , of
radius " in the flat metric given by q , where " is small enough that D" contains no
other zeroes of q . Since pi is of order ki , kiC 2 horizontal trajectories will dead-end
into pi . Cut along these to make ki C 2 half-disks, each with a marked point given
by pi half way along the cut. Pick some ı with 0 < ı < ". Construct two special
half-disks by splitting the marked point given by pi into two marked points 2ı apart.
Also shift the marked point given by pi by ı on the remaining disks, as in Figure 1.
The trajectory structures on the individual half-disks do not change, and the half-disks

" 2ı "� ı

" " "� ı 2ı "C ı "� ı

Figure 1: Taking a zero of order 4 to two zeroes of order 2 via split-
ting/moving the zero on individual half-disks. These diagrams are purely
schematic and not to scale; the angle between any two straight lines in the
disks is � .

can be glued back together, again as in Figure 1, to give an " disk containing zeroes
of order l1; l2 , with the same trajectory structure at the boundary as the original D" .
We have a choice of the direction of the newly formed saddle connection: if we label
one of the ki C 2 horizontal trajectories that dead-end into pi as 0ı , then the new
saddle connection can be in any direction � , � 2 Œ0; .ki C 2/�/. The surgered surface
is completely determined by ı and � . If l1 D l2 D ki=2 then the surface given by
ı; � is the same as the surface given by ı; � C .l1C 1/� , so we restrict ourselves to
� 2 Œ0; .l1C 1/�/.

The remaining two and three point cases are proved similarly to the one above. For the
case of four zeroes, if any of the lj are even then we may apply so combination of two
and three point surgeries to get the desired result. If l1; l2; l3; l4 are all odd then we
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cut D" around pi into kiC 2 half-disks and glue as in Figure 2. Again, in all of these
surgeries we have a choice of both ı and � 2 Œ0; .ki C 2/�/.

"

"

"
"

ı ı ı

"� ı
"� ı

"� ı

"� ı"� 2ı

"� 2ı

"C ı

"C ı

"C ı

"C 2ı

Figure 2: Splitting an even zero of high order into 4 odd zeroes of lower order

Define Q0
�2

to be a degeneration of Q0
�1

if it is possible to obtain an element in Q0
�1

by (possibly repeatedly) applying the surgeries of Lemma 5.2 and Lemma 5.3 to an
element in Q0

�2
. This puts a partial ordering on ƒ, the set of partitions of 4g� 4: we

say �1>�2 if there exists a component of Q�2
that is a degeneration of a component of

Q�1
. Note that if Q0

�2
is a degeneration of Q0

�1
, then Q0

�2
� cl.Q0

�1
/, but the converse

is not necessarily true. For example, Qg.1
4g�6; 2/ is in the closure of Qg.1

4g�4/

(cl.Qg.1
4g�4/ D Qg , so every stratum is in its closure), but Qg.1

4g�6; 2/ is not a
degeneration of Qg.1

4g�4/.

Lemma 5.2 and Lemma 5.3 detail surgeries that allow us to break up zeroes of quadratic
differentials; however, again following [3] we may collapse zeroes in the reverse
process. We say three points, p1;p2 , and p3 , are colinear if for a fixed � there exist
� –trajectories between p1;p2 and p2;p3 .

Lemma 5.4 Suppose .M 0; q0/ 2Qg.k1; : : : ; kn/ is such that at least one of k1 and
k2 is even, there exists a saddle connection between p1 and p2 of length ı , and all
other saddle connections from p1 or p2 are of length greater than ı for both even or
.3=2/ı for one odd. Then there exists .M; q/ 2 Qg.k1 C k2; k3; : : : ; kn/ such that
.M 0; q0/ may be obtained from .M; q/ via the surgery of Lemma 5.2.
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Suppose .M 0; q0/ 2 Qg.k1; : : : ; kn/ is such that there exist saddle connections be-
tween p1;p2 and p2;p3 of length ı , p1;p2 , and p3 are colinear, and all sad-
dle connections from p2 are of length at least 3ı . Then there exists .M; q/ 2

Qg.k1C k2C k3; k4; : : : ; kn/ such that .M 0; q0/ may be obtained from .M; q/ via
the surgery of Lemma 5.2.

Proof We first prove the two point case. Label the points in each of the two top left
disks of Figure 3 by p1 and p2 . The top left disc (representing the one odd case) is
contained in Dı=2C".p1/[Dı=2C".p2/. Then there exists " > ı such that the disc
contains no other zeroes of q0 . Since " > ı we may reverse the cutting and pasting
process of Lemma 5.2 to obtain .M; q/. In the left of the second pair of discs, the disc
is again contained in Dı=2C".p1/[Dı=2C".p2/. Then there exists " > ı=2 such that
the disc contains no other zeroes of q0 , and since " > ı=2 we may reverse the cutting
and pasting process of Lemma 5.2 to obtain .M; q/.

For the three point case, label the points in the two bottom left discs of Figure 3 by
p1;p2;p3 , with p2 in the middle. DıC".p2/ contains either of these two discs. There
exists " > 2ı such that these disks contain no other zeroes of q0 and we may reverse
the cutting and pasting of Lemma 5.3 to obtain .M; q/.

In the next proposition we construct (square) transpositions of zeroes of .M 0; q0/2Q�1

by colliding two zeroes to get .M; q/ in a degeneration of Q�1
, and then breaking up

the newly formed zero of q with respect to varying � . Breaking up a single zero into
two zeroes in this manner gives us a transposition; however, breaking a single zero
into three gives us something slightly different. Define a transposition of pi and pj

mod pk to be an element of �1.Q�; .M; q// such that pi ;pj follow paths that are
not homotopic on M nP , but are homotopic on .M nP /[pk . If e is a path between
pi ;pj through pk we refer to a transposition of pi ;pj mod pk along e ; by this we
mean that pi and pj follow small deformations of e on opposite sides of pk . Similarly
if we refer to a transposition of pi ;pj along e we mean their transposition along a
slight deformation of e to one side of pk .

Proposition 5.5 Let �1D .k1; k2; : : : ; kn/, �2D .k1Ck2; k3; : : : ; kn/, and suppose
.M 0; q0/ 2Q�1

satisfies the conditions of Lemma 5.4 in the two point case. Then there
exists a trajectory of length ı between p1 and p2 (specified by Lemma 5.4), and an
element of �1.Q�1

; .M 0; q0// corresponding to the (square) transposition of p1;p2

along the specified trajectory.

Suppose �1 D .k1; k2; : : : ; kn/, �3 D .k1 C k2 C k3; k4; : : : ; kn/, and .M 0; q0/ 2

Q�1
satisfies the conditions of Lemma 5.4 in the three point case. Then there exists

a transposition of p1;p2 mod p3 along the union of two trajectories specified by
Lemma 5.4.
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Figure 3: (i) Colliding two zeroes, one of odd order and one of even order.
(ii) Colliding two zeroes of even order. (iii) Colliding three zeroes of odd
order. (iv) Colliding three zeroes, two of any order and one even.
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Proof We first prove the proposition for the two point case. Suppose .M 0; q0/ is
obtained from .M; q/ 2Q�2

by surgering with respect to ı0; �0 . Let e0 be the new
trajectory between p1;p2 of length ı0 . Create a curve �W Œ0; ı0� ! C l.Q�1

/ by
surgering .M; q/ with respect to t; �0 , t 2 .0; ı0�. Now, there exists a ball of some
radius ˛ around the zero of q of order k1Ck2 containing no other zeroes of q , so we
apply the surgery of Lemma 5.2 to .M; q/ with respect to some fixed ı1 <minfı0; ˛g
and vary � between 0 and either .k1C1/� or .k1Ck2C2/� (depending on whether
we transpose or square transpose p1 and p2 ) to get a loop of surfaces, �0 � Q�1

,
centered at .M; q/. � intersects �0 at �.ı1/, and we define z� to be the subcurve of �
from ı0 to ı1 . Then z� ı �0 ı z��1 gives us the desired loop in �1.Q�1

; .M 0; q0//.

Following the same procedure for three points, we get a (square) transposition of p1;p2

mod p3 along the union of the two trajectories between them in �1.Q�1
; .M 0; q0//.

Proposition 5.5 allows us to create (square) transpositions of various zeroes of a
quadratic differential (possibly mod a third zero); however, the (square) transpositions
created this way may be based at different elements of Q� . In the next section we
show that one way of obtaining elements based at the same .M; q/ is to consider
hyperelliptic quadratic differentials.

6 (Square) transpositions in certain strata

In the next two sections we show that there exists a family of � for which i�.�1.Q�//D
ker.AJ�/. We do so by explicitly constructing loops of quadratic differentials corre-
sponding to the generators of ker.AJ�/; in this section we construct the necessary
(square) transpositions, and in the next section the null �r and i –commutators. For
simplicity of notation we refer to the elements we construct as being in �1.Q�/.

We say that �1.Q0
�
; .M; q// contains all transpositions between pi ;pj if for all edges

e 2EM;q between pi and pj , �e or �e 2 i�.�1.Q0
�
; .M; q/// (depending on whether

pi and pj are of the same weight or not). We say that �1.Q0
�
; .M; q// contains all

transpositions if the above is true for all pairs of zeroes of q . In Lemmas 6.1–6.4 we
construct a variety of transpositions in hyperelliptic strata, and in the final proposition of
the section we show that for some � the transpositions constructed in the four lemmas
suffice to generate all transpositions in �1.Q0

�
; .M; q//.

For any hyperelliptic quadratic differential, .M; q/, we let � denote the hyperelliptic
involution on M and � the degree 2 projection of M to P1 . We will use �.M; q/

to denote the projection of q to P1 . Notice that any zero of a hyperelliptic quadratic
differential at a branch point of � must be of even order. Unless specified otherwise
we do not assume that the k1; : : : ; kn in Qg.k

n1

1
; k

n2

2
; : : : ; k

nm
m / are distinct.
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Lemma 6.1 Let .M0; q0/ 2Q0
�
DQ0

g.k
2
1
; : : : ; k2

m; kmC1; : : : ; kn/ be a hyperelliptic
quadratic differential, and label the zeroes of q0 by p˙

1
; : : : ;p˙m ;pmC1; : : : ;pn . Sup-

pose exactly pmC1; : : : ;pn are at branch points of M0 and at least one of k1; : : : ; km ,
say kl , is even. Let e be an edge between pCi ;p

C
j , 1 � i < j � m, such that

e \ �.e/ D ∅. Then �1.Q0
�
; .M0; q0// contains an element corresponding to the

(square) transposition of pCi ;p
C
j along e . Analogous statements are true for pCi ;p

�
j ,

and p�i ;p
�
j .

Sketch of proof To prove the lemma we construct paths in the hyperelliptic locus
of Q� , from .M0; q0/ to quadratic differentials with discs that satisfy the conditions
of Lemma 5.4 (as in Figure 3), and we then apply Proposition 5.5. In the case where
at least one of ki ; kj is even, this proves the lemma. In the case where both ki and
kj are odd the path we create moves pi ;pj near an even zero, pl , and we create a
(square) transposition of pi ;pj mod pl . However, since kl is even we also have a
square transposition of pj and pl , and the composition of the two gives us the desired
(square) transposition of pi and pj (see Figure 4).

Proof Let eW Œ0; 1� ,!M0 , e.0/D pCi ; e.1/D pCj , and let zeD � ıeW Œ0; 1�! P1 be
the projection of e to P1 . By abuse of notation we also use e; ze to mean the images
of Œ0; 1� under the maps e and ze .

We first assume at least one of ki ; kj is even. Define

.P1; zq0/D �.M0; q0/ 2Qz�

DQ0

�
k1; : : : ; km;

kmC1� 2

2
; : : : ;

kn� 2

2
;�12gC2�.n�m/

�
and label the singularities of zq0 by zp1; zp2; : : : ; zp2gC2Cm , such that �.p˙s /D zps for
1 � s � m and �.pt /D zpt for m < t � n. By Proposition 2.2 we may construct a
quadratic differential on P1 with arbitrary zeroes; thus, define .P1; zqt / 2 Qz� to be
the quadratic differential with zeroes at zp1; : : : ; zpi�1; ze.t/; zpiC1; : : : ; zp2gC2Cm . Let
.Mt ; qt / 2Q0

�
be the double cover of .P1; zqt /, ramified at zpmC1; : : : ; zp2gC2Cm .

As t approaches 1, e.t/ approaches pCj , and there exists t0 close to 1 such that
.Mt0

; qt0
/ satisfies the conditions of Lemma 5.4. Then we may apply Proposition 5.5

to obtain a (square) transposition, T 2 �1.Q
0
�
; .Mt0

; qt0
//, of pj and e.t0/ along a

trajectory homotopic to e.Œt0; 1�/. Let E be the image of Œ0; t0� in Q0
�

under t 7!

.Mt ; qt /. Along E�1 ıT ıE pCi and pCj (square) transpose along e . Further, p�i
follows a trivial path (since e\ �.e/D∅) and all other zeroes stay constant, so this
gives us the desired (square) transposition.
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Now suppose both ki and kj are odd. Let e be as above and recall that kl is even. let
ze0W Œ0; 1� ,!P1 be an edge from zpl to zpj such that ze0\zeD zpj , and let e0W Œ0; 1� ,!M0

be the edge between pCj and either pC
l

or p�
l

that projects to ze0 . Since ze0 does not
intersect itself e0\ �.e0/D∅, and also by construction e0\ e D pCj .

Define .P1; zq0t / 2Qz� to be the quadratic differential with zeroes at zp1; : : : ; zpi�1;

ze.t/; zpiC1; : : : ; zpl�1; ze
0.t/; zplC1; : : : ; zp2gC2Cm , and let .M 0

t ; q
0
t /2Q0

�
be the double

cover of .P1; zq0t /, ramified at zpmC1; : : : ; zp2gC2Cm . Again there will be some t0 such
that .M 0

t0
; q0t0

/ satisfies the conditions of Lemma 5.4. (Some slight deformation of e

and e0 may be required to get e.t/; e0.t/ and pCj colinear). Then by Proposition 5.5,
�1.Q�; .M 0

t0
; q0t0

// contains a transposition of e.t0/ and pj mod e0.t0/ along e.Œt0; 1�/.
However, since e0.t0/ is a zero of even order there exists a square transposition of
e0.t0/ and pj along e0.Œt0; 1�/, also in �1.Q�; .Mt0

; qt0
//. The composition of this

square transposition and the transposition of e.t0/ and pj mod e0.t0/ is shown in
Figure 4, and gives a true transposition of e.t0/ and pj along e.Œt0; 1�/. The rest of
the proof follows as in the even case.

pi p1 pj pi p1 pj

Figure 4: Homotopic paths along which to transpose pi ;pj , of odd order
when pl is of even order

Notice that any saddle connection, e , between two branch points of a hyperelliptic
quadratic differential will have a “twin” saddle connection, �.e/, parallel and of the
same length. We would like to prove a lemma similar to Lemma 6.1 for branch zeroes;
however, colliding two branch zeroes along e will also cause the length of �.e/ to go
to zero and a homology cycle to collapse. We deal with this by leaving the hyperelliptic
locus of Q� shortly before colliding the two zeroes, and showing that for a generic
element outside the hyperelliptic locus, the saddle connections corresponding to e and
�.e/ will be of different lengths.
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In particular, for any .M; q/ pick x 2M nP and notice that for any loop,  on M nP

based at x and v 2 TxM , parallel transport along  takes a vector v either to v or
�v . This gives us a homomorphism

holW �1.M nP;x/! Z2:

Following Masur and Zorich in [10], this gives us a double cover of M , �M , endowed
with an induced flat metric that by construction has trivial holonomy and thus defines
an abelian differential, . �M ; yq/ 2Hy� of genus yg , with zeroes yP . �M is the canonical
double cover of M , and has a natural involution, ' . Let e be an oriented saddle
connection (either closed or not) on M , and let ye0; ye00 be its lifts to �M . The lifts ye0 and
ye00 both determine homology classes Œye0�; Œye00� 2H1. �M ; yP IZ/. Again following [10],
if Œye0�D�Œye00� we define Œye� WD Œye0�; otherwise, we define Œye� WD Œye0�� Œye00�. We then say
two saddle connections, e1 and e2 , are yhomologous if Œye1�D˙Œye2� in H1. �M ; yP IZ/.

Now pick .M0; !/ 2 Hy� with zeroes P0 , and let  2 H1.M
0;P 0IZ/. The period

of  is j j WD
R
 !
0 . Fix a basis .1; : : : ; 2ygCn�1/ of H1.M0;P0IZ/. Any nearby

element, .M 0; !0/ 2 Hy� has the same underlying topological surface and singular
points, and therefore a well-defined notion of .1; : : : ; 2ygCn�1/. Then we have a
local map Hy�!H 1.M0;P0IC/ŠC2ygCn�1 ,

.M 0; !0/ 7! .j1j; : : : ; j2ygCn�1j/:

This is the called the period map and is a local homeomorphism of a neighborhood of
.M 0; !0/ with a domain of C2ygCn�1 . This gives us a local coordinates on Hy� and
an induced Lebesgue measure on Hy� . Back to . �M ; yq/, let H 1�. �M ; yP IC/ be the
subspace of H 1. �M ; yP IZ/ that is anti-invariant with respect to '� . Notice that locally
elements of Q� will have double covers in the same stratum of abelian differentials.
abelian differentials whose images lie in H 1�. �M ; yP IC/ are precisely those that arise
from quadratic differentials in Q� . This gives a local homeomorphism between a
neighborhood of Q� and a open domain of C2gCn�2 , and again a corresponding
Lebesgue measure on Q� . See Lanneau [8], for example. If e1 and e2 are not
yhomologous, the homology classes of ye1 , ye2 are independent in H�

1
. �M ; yP ;Z/, and

jŒye1�jDjŒye2�j only on a set of measure zero. Since jŒe�j WDj
R

e qjDj
R
ye0 yqjD .1=2/j

R
ye yqj,

the same will be true of e1 and e2 – if they are non- yhomologous jŒe1�j D jŒe2�j only
on a set of measure zero.

Lemma 6.2 Let .M0; q0/ and � be as in Lemma 6.1, with some ki odd, 1� i � n, at
least two branch zeroes, and g > 0. Let eC be a saddle connection between two of the
branch zeroes of q0 , and let e� WD �.eC/. Then there exists some open set, U �Q� ,
containing .M0; q0/, such that for almost every element of U these saddle connections
are not of the same length.

Geometry & Topology, Volume 14 (2010)



1154 Katharine C Walker

Proof As noted above, if eC and e� are not yhomologous in H�
1
. �M 0; yP0IZ/ then

they are generically not of the same length. Thus, to prove the lemma we suppose that
Œye� WD ŒyeC�� Œye��D 0 and show a contradiction.

If Œye� D 0 then ye 2 Œye� is a separating curve on �M 0 . Let �M 0 be the surface with
boundary obtained by cutting M0 along eC [ e� , which together form a nontrivial
cycle, and let p 2 �M 0nP0 . Since g > 0, �M 0 is connected. If any element of
�1. �M 0nP0;p/ mapped to �1 under holW �1. �M 0nP0;p/! Z2 then �M 0 cut at ye
would still be connected, which implies that every element of �1. �M 0nP0;p/ maps
to 1 under hol. But by assumption one of the zeroes of P0 is odd and a small loop
around it will map to �1 under hol, giving us the desired contradiction.

Now we can prove the analog of Lemma 6.1 for branch zeroes.

Lemma 6.3 Let .M0; q0/, � and z� be as in Lemma 6.1, with at least one ki odd,
1 � i � n, and let e be any edge between two branch zeroes of q0 , pi and pj ,
m < i < j � n. Then �1.Q0

�
; .M0; q0// contains a (square) transposition of pi ;pj

along e .

Proof Let eW Œ0; 1� ,!M0 , e.0/D pi , e.1/D pj , be the edge between pi ;pj , and
let ze WD � ı e be its projection to P1 . Let

z�D

�
k1; : : : ; km;

kmC1� 2

2
; : : : ;

kn� 2

2
;�12gC2�.n�m/

�
:

Let .P1; zq0/ D �.M0; q0/ 2 Qz� and label the singularities of zq0 as zp1; zp2; : : : ;

zp2gC2Cm . Define .P1; zqt / to be the element of Qz� with singularities at zp1; zp2; : : : ;

zpi�1; ze.t/, zpiC1; : : : ; zp2gC2Cm . Taking a double cover of .P1; zqt / branched at its
last 2gC 2 singularities we get an element of Q� , which we call .Mt ; qt /.

As t approaches 1, e.t/ approaches pj and all other pk are fixed. As in Lemma
6.1 we wish to show there exists a subset of some Mt containing e.t/ and pj , and
satisfying the conditions of Lemma 5.4. In particular, if e.t/ and pj are ı apart it
suffices to show that all other saddle connections on Mt are of length greater than ı .
This condition is not initially satisfied because on .Mt ; qt / there are two short saddle
connections of the same length running between e.t/ and pj . However, Lemma 6.2
implies that there exists .M; q/ arbitrarily close to any .Mt ; qt / such that the saddle
connection in the homotopy classes of e.Œt; 1�/ and �.e.Œt; 1�// are of different lengths.
Because of the involution on .Mt ; qt / we may assume the saddle connection on .M; q/

in the homotopy class of e.Œt; 1�/ is shorter and thus .M; q/ satisfies the conditions
of Lemma 5.4. Then there exists a (square) transposition of e.t/;pj along e.Œt; 1�/,
based at .M; q/. The rest of the argument follows as in Lemma 6.1.
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Lemma 6.4 Let .M0; q0/ and � be as in Lemma 6.1, and let b be a branch point
of M0 that is also a regular point of q0 . Let eb be an edge between b and pCi ,
1 � i �m, such that �.eb/\ eb D b . Then e WD eb [ �.eb/ is an edge between pCi
and p�i , and �1.Q0

�
; .M0; q0// contains an element corresponding to the transposition

of pCi ;p
�
i along e .

Proof Let e0 be a small deformation of e to one side of b that is still an edge.
We can always choose e0 so that e0 � e � �.e0/ and e0 \ �.e0/ D p˙i . As in the
previous two lemmas, let .P1; zq0/D �.M0; q0/, with singularities zp1; : : : ; zp2gC2Cm ,
and let ze0 D �.e0/. Define .P1; zqt / to be the quadratic differential with zeroes at
zp1; : : : ; zpi�1; ze

0.t/; zpiC1; : : : ; zp2gC2Cm , and let .Mt ; qt / be its double cover rami-
fied at zpmC1; : : : ; zp2gC2Cm . Then .M0; q0/ D .M1; q1/ and T W Œ0; 1�! Q� , t 7!

.Mt ; qt / is the desired element of �1.Q�; .M0; q0//.

The previous four lemmas will allow us to show that certain hyperelliptic strata contain
all of their transpositions, but first we need one more technical lemma. Recall that the
maximal number of faces a planar graph with n vertices can have is 2n� 4. (Such
a graph will be a triangulation, with 3n� 6 edges.) By removing edges from such a
graph it is always possible to construct a planar graph with n vertices and fewer than
2n� 4 faces. (As earlier in the paper, we do not allow graphs to have double edges or
loops.)

Lemma 6.5 Let � be a planar graph with n vertices and f faces, f � 2n� 4. Then
we may associate to each face of � a pair of vertices adjacent to the face such that the
same pair is not associated to more than 1 face.

Proof It suffices to associate a unique adjacent edge to each face of � , since this is
equivalent to associating the two vertices adjacent to the edge to the face. Pick any
face, F1 , of � and any edge, e1 , adjacent to F1 . The edge e1 is adjacent to one other
face, which we call F2 . F2 has at least two other possible adjacent edges, so again
pick any edge e2 ¤ e1 to associate to F2 , and let F3 be the other face adjacent to e2 .
Continue this process until one of two things happens. Either an edge is associated
to each face, or at stage k Fk D Fi for 1 � i � k and k ¤ f . In the first case we
are done, and in the second the remaining faces of the graph do not have any adjacent
edges that have been associated to any other face, so we pick any face, call it FkC1

and resume the process.

Proposition 6.6 Suppose that Q� D Qg.1
2n; k1; : : : ; km/ is such that 2n � gC 5,

k1; : : : ; km are all even, and there exists i; j , 1� i < j �m, such that ki D kj . Then
for any .M; q/ 2Q� , �1.Q�; .M; q// contains all transpositions.
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Sketch of Proof Our plan is to construct a hyperelliptic .M; q/ with higher order
zeroes at branch points, and then put a graph on M with the single zeroes of q at
the vertices and at most one higher order zero in each face. We use Lemma 6.1 and
Lemma 6.4 to construct the transpositions associated to each edge of the graph, which
via Theorem 4.2 gives us all (square) transpositions of single zeroes with each other
and with higher order zeroes. We then apply Lemma 6.3 to get (square) transpositions
of the higher order zeroes with each other.

Proof By Theorem 2.7 Q� is connected so we need not consider connected com-
ponents. Without loss of generality suppose k1 D k2 . Put a graph z� on P1 with
n vertices and gC 1 faces. Since n � .gC 5/=2, gC 1 � 2n� 4, and it is always
possible to construct such a graph. Mark 2 points in each of g faces of z� , and 3
points in the .gC1/–st. By Proposition 2.2 there exists zq on P1 such that the vertices
of z� are zeroes of zq of order 1, m � 1 marked points are zeroes of zq of order
k1; .k3 � 2/=2; .k4 � 2/=2; : : : ; .km � 2/=2, and the 2gC 3�m remaining marked
points are poles of zq of order 1. Since m < 2gC 2, zq has at least 2 poles and we
assume the .gC1/–st face contains the zero of order k1 and 2 poles. Denote the n

single zeroes of zq by p1; : : : ;pn . To each face of z� we associate a pair of vertices as
in Lemma 6.5.

Take a double cover of .P1; zq/ ramified at the 2gC2 marked points in the faces of z� ,
minus the zero of order k1 . Assume each branch cut is between two points in the same
face and is contained in that face. This gives us .M; q/ 2 Qg.1

2n; k1; k2; : : : ; km/.
.M; q/ has two copies of z� embedded into it, z�C and z�� ; denote their vertices by
pC

1
; : : : ;pCn and p�

1
; : : : ;p�n , with �.pC

l
/D p�

l
, 1 � l � n. By associating a pair

of vertices to each face of z� we have associated a quadruplet of vertices, p˙i and
p˙j , to each of the gC 1 branch cuts of M . Construct a pair of edges, ek and �.ek/,
between pCi ;p

�
j and pCj ;p

�
j through the k –th branch cut, 1� k � g , as in Figure 5.

Notice that we may always construct ek and �.ek/ so that they do not intersect. For
the .gC1/–st branch cut, both branch points are regular and we construct edges, egC1

and e0
gC1

between p˙i and p˙j , as in Lemma 6.4. An example of this is shown in
Figure 6. The union z�C[ z��[ e1[ �.e1/[ � � � [ eg [ �.eg/[ egC1[ e0

gC1
gives

us a connected graph � on M with 2gC 2 faces and two faces associated to each
branch cut. This graph will be a 2–cell embedding and by construction satisfies all of
the hypotheses of Theorem 4.2. Exactly one branch point is in each of faces associated
to the first g branch cuts. For the two faces, F and F 0 , associated to the .gC1/–st
branch cut, F 0 D �.F / so again there is one zero of order k1.D k2/ in each of F;F 0 .

By Lemma 6.1 we may construct an element of �1.Q�; .M; q// corresponding to the
transposition of pCi ;p

�
j along both ek and �.ek/ for 1�k�g . Further, each edge eC
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pCi pC
k

pCj

b1 b2

p�
k p�i

p�j

b1 b2

Figure 5: The edges ek and �.ek/ between pCi ;p
�
j and p�i ;p

C

j . b1 and b2

denote branch points, and the line between them denotes a branch cut.

pCi pC
k

pCj

b1 b2

p�
k p�i

p�j

b1 b2

Figure 6: The edges egC1 and e0
gC1

between pCi ;p
�
i and p�j ;p

�
j

of z�C is contained entirely on one sheet of M , so eC \ �.eC/ D ∅ and again by
Lemma 6.1 �eC ; �e� 2 �1.Q�; .M; q//. Lemma 6.4 gives us transpositions associated
to egC1 and e0

gC1
. Consequently for every edge e of � , �e 2 �1.Q�; .M; q//. Since

there is at most one higher order zero in each face, Theorem 4.2 implies �1.Q�; .M; q//

contains all transposition of the 2n zeroes of order 1 with each other, and all square
transpositions of zeroes of order 1 with zeroes of order k1; : : : ; km .

Now pick any .P1; zq0/ 2 Q0.1
n; .k1 � 2/=2; : : : ; .km � 2/=2;�12gC2�m/, and let

.M 0; q0/2Q� be its double cover, ramified at the zeroes of zq0 not of order 1. Then all of
the even zeroes of q0 are at branch points of M 0 and by Lemma 6.3 �1.Q�; .M 0; q0//

contains all (square) transpositions of zeroes of order k1; : : : ; km with each other.
But �1.Q�; .M 0; q0// is isomorphic to �1.Q�; .M; q// so the same is then true for
�1.Q�; .M; q//. This proves the proposition.

7 Constructing the remaining generators

We have shown that in some cases all transpositions and square transpositions of
zeroes of q are contained in �1.Q

0
�
; .M; q//. However, for � where many but

not all points are of equal weight, Theorem 4.14 and Corollary 4.15 imply that the
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kernel ker.�1.Sym�g/! H1.M;Z// is generated by transpositions, null �r and i –
commutators. In some cases we can again use techniques of colliding and breaking
apart points from Section 5 to show that these last two types of elements are in
�1.Q0

�
; .M; q//.

Let l1; : : : ; l2g be standard generators of �1.M /, � of length n, and .p1; : : : ;pn/ a
base point for B� . Recall that in Section 3 and Section 4 we did not explicitly define
the �ir , 1� i � n, 1� r � 2g , we only stated that one of the generators of B� must
be a loop corresponding to pi moving around lr . There are infinitely many choices of
such a loop, differing by various products of transpositions.

Lemma 7.1 Let Q�1
D Qg.k1; k2; : : : ; kn/ contain all of its transpositions, and

suppose
Pl

iD1 ki D
Pm

jDlC1 kj . Further suppose there exists a degeneration of
Q0
�1

, Q0
�2
WD Q0

g.k1 C � � � C kl ; klC1 C � � � C km; kmC1; : : : ; kn/ 3 .M; q/, and
�1.Q0

�2
; .M; q// contains all transpositions of the two newly formed points. Define

˛.1/; ˛.2/; : : : ; ˛.l/ to all equal 1, and ˛.l C 1/; : : : ; ˛.m/ to all equal �1. Then
for any .M 0; q0/ 2Q�1

, for any choice of �1r ; : : : ; �nr , for any i1; : : : ; im such that
kis
D ks , 1� s �m, and for any � 2 Sm , �˛.�.1//i�.1/r

� � � �˛.�.m//i�.m/r
2 �1.Q0

�1
; .M 0; q0//.

  p1 p2
�2r �1r

Figure 7: On the left, transposing p1;p2 along both the solid curves is
equivalent to �˙

1r
�
�

2r
. On the right, surgering give us one possible choice of

�ir from the original two.

Proof To prove the lemma we first show that there exist explicit �1r ; : : : ; �nr such
that � WD�1r � � � �lr�

�1
.lC1/r

� � � ��1
mr 2�1.Q�; .M 0; q0//. We then pick any other choice

of generators, �0
1r
; : : : ; �0nr , any i1; : : : ; im (not necessarily distinct) such that kis

Dks ,
and any permutation � 2 Sm . We define �0 WD �

0˛.�.1//
i�.1/r

� � � �
0˛.�.m//
i�.m/r

. We show that �0

differs from � only by a product of transpositions and is thus also in �1.Q�; .M 0; q0//.
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Label the two zeroes of q of order k1 C k2 C � � � C kl as p1 and p2 . For any r

pick two edges, e and e0 , between p1;p2 such that e [ e0 is homotopic to lr and
e\e0D fp1;p2g, as in the left of Figure 7. By assumption �e; �e0 2 �1.Q0

�2
; .M; q//.

Further, defining �1r and �2r as in the left of Figure 7, �e�e0 is homotopic to �1r�
�1
2r

.
Thus �1r�

�1
2r
2 �1.Q0

�2
; .M; q//.

Now pick an explicit loop of surfaces in the homotopy class �1r�
�1
2r

, �W Œ0; 1�!Q0
�2

,
such that �.0/D �.1/D .M; q/.

Surger every �.t/ by one of the surgeries of Lemmas 5.2–5.3 such that the new trajectory
created is horizontal, and ıt varies continuously, with ı0 D ı1 . This creates a new
curve of surfaces,  W Œ0; 1�!Qg , ( .Œ0; 1�/ is either in Q�1

or in some “intermediate”
stratum between Q�1

and Q�2
) such that either  .0/ D  .1/ or  .0/ differs from

 .1/ in that the newly formed trajectories’ directions differ by a multiple of � . In
the latter case, label the direction of the trajectory formed by  .0/ as 0ı , so the one
formed by  .1/ will be in the direction k� , 1� k � k1Ck2C� � �CklC2. Consider
the curve of surfaces ˛W Œ0; k��!Qg created by surgering �.0/ with respect to ı0; t .
Concatenating  with ˛ gives us a closed curve of surfaces, again either in Q�1

or an
intermediate stratum.

Repeating the above process multiple times if necessary, we get a loop of surfaces
�0W Œ0; 1� ! Q�1

, and define .M 0; q0/ D �0.0/. Let p1.t/; : : : ;pm.t/ be the ze-
roes of �0.t/ of order k1; : : : ; km formed from the surgery. We have created an
element of �1.Q�1

; .M 0; q0// such that each of p1; : : : ;pm follows a path homo-
topic to l˙1

r . Thus we may choose to define �1r ; : : : ; �mr in such a way that
� WD �1r � � � �lr�

�1
.lC1/r

� � � ��1
mr 2 �1.Q�1

; .M 0; q0//.

Now let � be an element of Sm and consider �� WD �˛.�.1//�.1/r
� � � �˛.�.m//

�.m/r
. The product

���
�1 is an element of B� , but since p1.0/; : : : ;pm.0/ all return to themselves under

���
�1 and the other zeroes of .M 0; q0/ follow constant paths, we may view ���

�1

as an element of SBm . It is a theorem of Goldberg (see Birman [1, Section 1.4]) that
for any genus g topological surface, Mg , the following sequence is short exact:

1! SBm.D/! SBm.Mg/
 
!

mY
iD1

�1.Mg/! 1

where D �Mg is an open disc containing the m marked points that are the basepoint
of SBm . Since the path traveled by each of the zeroes of .M 0; q0/ under ����1 is
trivial in �1.M

0/, ����1 is in the kernel of  . Thus, it may be written as a product
of the generators of SBm.D/, which are square transpositions. We have assumed
�1.Q�; .M 0; q0// contains all (square) transpositions, so ����1 2 �1.Q�; .M 0; q0//

and therefore �� 2 �1.Q�; .M 0; q0//.
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Similarly define �0
1r
; �0

2r
; : : : ; �0nr to be a different choice of generators, and define

�0 WD �0
1r
� � � �0

lr
�
0�1
.lC1/r

� � � �
0�1
mr . Again �0��1 is in the kernel of  and thus �0 2

�1.Q�; .M 0; q0//.

Finally suppose we have pi1
; : : : ;pim

(not necessarily distinct) such that kis
D ks ,

1� s �m, and define �i WD �i1
� � � �il

��1
ilC1
� � � ��1

im
. Either s D is and �˙sr�

�

isr D 1 or
�˙sr�

�

isr may be written as a product of two transpositions, as in the first paragraph of
this proof. Then the following is in �1.Q�; .M 0; q0//:

ˇ WD �1r�
�1
i1r�2r�

�1
i2r � � � �lr�

�1
il r�
�1
.lC1/r�ilC1r � � � �

�1
mr�imr

As above �iˇ�
�1 is in the kernel of  and is therefore in �1.Q�; .M 0; q0//. This

then implies �i 2 �1.Q�; .M 0; q0//.

A combination of the above implies the lemma for the specific choice of .M 0; q0/,
surgered from .M; q/. However, since fundamental groups with different base points
are isomorphic, the same will be true for any element of Q�1

.

Lemma 7.1 shows that under certain degeneracy conditions it is possible to construct
any null �r involving points of certain weights. Notice that when l;mD 1 the lemma
implies that if �1.Q0

�1
; .M 0; q0// contains all of its transpositions, it also contains all

null �r involving two points of equal weights.

Proposition 7.2 Suppose that g > 2 and �1 D .1
a; k1; : : : ; kn/ with exponent a >

maxfgC 4; k1; : : : ; kng, and additionally assume that all ki are even and there exists
s; t , 1� s; t � n such that ks D kt . Then for any .M 0; q0/, all null �r are contained
in �1.Q�1

; .M 0; q0//.

Proof By Theorem 2.7 there is only one connected component of Q�1
.

Let .M 0; q0/ 2Q�1
with p1; : : : ;pa the zeroes of q of order 1. By Proposition 6.6

�1.Q�1
; .M 0; q0// contains all of its transpositions; by Lemma 7.1 it contains any

�jr�
�1
lr

, 1� j ; l � a; 1� r � 2g .

For each ki , 1� i � n and each r we construct a null �r consisting of paCi and ki

zeroes of order 1. These, combined with the �jr�
�1
lr

where kj D kl D 1, generate all
null �r . We do this in two cases, when ki ¤ 2 and when ki D 2.

For ki ¤ 2, let Q�2
DQg.1

a�ki ; k1; : : : ; k
2
i ; : : : ; kn/ and notice that by Lemma 5.2

and Lemma 5.3, �1 > �2 (this is not true if ki D 2). Since ki is even there exists a
component of Q�2

, Q0
�2

, that contains a hyperelliptic element, .M; q/, for which both
zeroes of order ki are at branch points. By Lemma 6.3, �1.Q0

�2
; .M; q// contains all

transpositions of the two zeroes of order ki . Therefore Lemma 7.1 implies any null �r
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consisting of a single zero of order ki moving around lr and ki zeroes of order 1
moving around l�1

r is in �1.Q�1
; .M 0; q0//.

If ki D 2 we let Q�2
DQg.1

a�6; 42; k1; : : : ; yki ; : : : ; :kn/ and note that �1 > �2 . By
the same argument as in the previous paragraph there exists .M; q/ 2Q�2

such that
�1.Q�2

; .M; q// contains each of the 2g null �r involving only the two zeroes of
order 4. Thus we get the null �r involving a zero of order 2 and 2 zeroes of order 1
moving one way around lr , and 4 zeroes of order 1 moving the other. We compose and
cancel with null �r involving points of order 1 to get a null �r with a zero of order 2
moving around lr and two zeroes of order 1 moving around l�1

r .

This gives us any null �r consisting of a single zero of higher order moving one
way around lr and zeroes of order 1 moving the other. These and the �jr�

�1
lr

where
kj D kl D 1 generate all null �r .

Notice that there are strata of the form specified in Proposition 6.6 for which there exist
null �r to which Lemma 7.1 does not apply. For example, in Q10.1

16; 20/ we can
have a null �r consisting of the point of order 20 moving one way around lr and 20
points of order 1 moving the other, but since there are not 20 distinct points of order 1
we cannot collide them to use the technique of Lemma 7.1.

Finally we would like to consider when i –commutators are contained in �1.Q�/.

Proposition 7.3 Let �D .1a; k1; : : : ; kn/, where a and the ki are as in Proposition
7.2, 1� i � n. Then for any .M; q/ 2Q� , any i –commutator of a point not of weight
one is in �1.Q�; .M; q//.

Proof Let p1;p2; : : : ;pa be the zeroes of q of weight 1, and paC1; : : : ;paCn the ze-
roes of weight k1; : : : ; kn , where kj is by assumption is less than a, 1� j � n. Recall
we defined an i –commutator to be an element of the commutator of h�aCi;r ; �aCi;j i,
1 � r � 2g , aC i < j � n. Thus it suffices to show that �1.Q�; .M; q// contains
all elements of the form g�1h�1gh, where g and h are arbitrary words in the �aCi;r

and �aCi;j .

By Proposition 7.2 �1.Q�; .M; q// contains all of its null �r . Thus for any i , 1� i �n,
the following is also in �1.Q�; .M; q//:

(8) .�1r � � � �ki r�
�1
aCi;r /.�1s � � � �ki s�

�1
aCi;s/.�

�1
1r � � � �

�1
ki r�aCi;r /.�

�1
1s � � � �

�1
ki s�aCi;s/

For k ¤ j and lr \ ls D ∅, �kr commutes with �js , 1 � j ; k � aC n. If k ¤ j

but lr \ ls D 1 then �kr�js = �js�kr�e where �e is a square transposition of pk ;pj ,
defined appropriately with respect to �js; �kr . For example, in Figure 8 we have two
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�e l2

l1

Figure 8: �11; �22 , and �e defined on a torus with two marked points. The
solid line is e .

points moving around the cycles l1; l2 on a torus and an explicitly defined �e , with
�11�22 D �22�11�e .

Thus if lr \ ls D∅, (8) is equal to

(9) .�1r � � � �ki r�1s � � � �ki s�
�1
1r � � � �

�1
ki r�

�1
1s � � � �

�1
ki s/.�

�1
aCi;r�

�1
aCi;s�aCi;r�aCi;s/:

Notice that the maximal value for n is .4g � 4� .gC 5//=2, and this implies that
a�gC5� .3C

p
9C 8.2gC n� 2//=2. The first of the two elements in parentheses in

(9) is in the kernel of AJ�W �1.Syma.Mn//!H1.M;Z/, so we may apply Corollary
4.6 to show that it can be written as a product of transpositions. Proposition 6.6 says
that �1.Q�; .M; q// contains all of its transpositions; thus the element on the left is in
�1.Q�; .M; q//. This in turn implies �aCi;r�aCi;s�

�1
aCi;r�

�1
aCi;s 2 �1.Q�; .M; q//.

If lr \ ls D 1 then (8) is equal to (9) except that the first element in parentheses will
contain some additional �e ’s. However it will still be in the kernel of AJ� and again
�aCi;r�aCi;s�

�1
aCi;r�

�1
aCi;s 2�1.Q�; .M; q//. The above argument is easily generalized

to show that the commutators of arbitrary words in the �aCi;r , 1 � r � 2g , are in
�1.Q�; .M; q//.

Similarly, for pl a zero of higher order and e0 an edge between pi and pl , we
would like to show that ��1

e0 �
�1
aCi;r�e0�aCi;r is in �1.Q�; .M; q//, so we consider the

following:

(10) ��1
e0 .�1r � � � �ki r�

�1
aCi;r /�e0.�

�1
1r � � � �

�1
ki r�aCi;r /

By assumption both �˙1
e0 and the elements in parentheses are in �1.Q�; .M; q//, so

the whole element in (10) is. Since �e0 commutes with �1r ; : : : ; �kr , commuting
the �1r ; : : : ; �1k as from (8) to (9) gives us the desired result. A combination of this
argument and the above shows that the commutators of arbitrary words in the �aCi;r

and �aCi;j are in �1.Q�; .M; q//.
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8 Conclusion

We summarize by answering the question of when ker.AJ�W �1.Sym�g/!H1.M;Z//
is equal to im.i�W �1.Q�/! �1.Sym�g//.

Theorem 8.1 Let �D .1a; k1; : : : ; kn/ with a>maxfgC5; k1; : : : ; kng, all ki even,
and some ki D kj , 1� i < j � n. Then im.i�/D ker.AJ�/.

Proof Proposition 4.1 implies im.i�W �1.Q�/! �1.Sym�g//� ker.AJ�/. By Theo-
rem 4.14 and Corollary 4.15 ker.AJ�/ is generated by transpositions, square transposi-
tions, null �r and in some cases i –commutators. Proposition 6.6, Proposition 7.2, and
Proposition 7.3 show that all of these elements are in im.i�W �1.Q�/!�1.Sym�g//.

In [2], Copeland shows a similar result for g > 2 and �D .14g�4/. His techniques are
somewhat different and rely on the fact that in the top stratum one may interpolate two
quadratic differentials and expect the result to be in the same stratum.

Thus, for certain � we have constructed i�.�1.Q�//. Of course, we are actually
interested in �1.Q�/ and would thus like to determine the kernel of i� . However, it
may be difficult to say anything about this kernel.
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Études Sci. (2003) 61–179 MR2010740

[4] E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111–118
MR0141126

[5] P Griffiths, J Harris, Principles of algebraic geometry, Wiley Classics Library, Wiley,
New York (1994) MR1288523 Reprint of the 1978 original

[6] M Kontsevich, A Zorich, Connected components of the moduli spaces of Abelian differ-
entials with prescribed singularities, Invent. Math. 153 (2003) 631–678 MR2000471

Geometry & Topology, Volume 14 (2010)

http://www.ams.org/mathscinet-getitem?mr=0375281
http://www.ams.org/mathscinet-getitem?mr=2172340
http://dx.doi.org/10.1007/s10240-003-0015-1
http://dx.doi.org/10.1007/s10240-003-0015-1
http://www.ams.org/mathscinet-getitem?mr=2010740
http://www.ams.org/mathscinet-getitem?mr=0141126
http://www.ams.org/mathscinet-getitem?mr=1288523
http://dx.doi.org/10.1007/s00222-003-0303-x
http://dx.doi.org/10.1007/s00222-003-0303-x
http://www.ams.org/mathscinet-getitem?mr=2000471


1164 Katharine C Walker

[7] H V Kronk, R D Ringeisen, A T White, On 2–cell imbeddings of complete n-partite
graphs, Colloq. Math. 36 (1976) 295–304 MR0460164

[8] E Lanneau, Hyperelliptic components of the moduli spaces of quadratic differentials
with prescribed singularities, Comment. Math. Helv. 79 (2004) 471–501 MR2081723

[9] H Masur, J Smillie, Hausdorff dimension of sets of nonergodic measured foliations,
Ann. of Math. .2/ 134 (1991) 455–543 MR1135877

[10] H Masur, A Zorich, Multiple saddle connections on flat surfaces and the principal
boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal. 18 (2008)
919–987 MR2439000

[11] G P Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Cam-
bridge Philos. Soc. 68 (1970) 605–617 MR0268889

[12] W A Veech, The Teichmüller geodesic flow, Ann. of Math. .2/ 124 (1986) 441–530
MR866707

[13] K C Walker, Connected components of the strata of quadratic differentials over the
Teichmüller space, Geom. Dedicata 142 (2009) 47–60 MR2545455

Center for Communications Research
4320 Westerra Court, San Diego, CA 92121

kcwalk@ccrwest.org

Proposed: Benson Farb Received: 23 May 2008
Seconded: Danny Calegari, Joan Birman Revised: 19 November 2009

Geometry & Topology, Volume 14 (2010)

http://www.ams.org/mathscinet-getitem?mr=0460164
http://dx.doi.org/10.1007/s00014-004-0806-0
http://dx.doi.org/10.1007/s00014-004-0806-0
http://www.ams.org/mathscinet-getitem?mr=2081723
http://dx.doi.org/10.2307/2944356
http://www.ams.org/mathscinet-getitem?mr=1135877
http://dx.doi.org/10.1007/s00039-008-0678-3
http://dx.doi.org/10.1007/s00039-008-0678-3
http://www.ams.org/mathscinet-getitem?mr=2439000
http://www.ams.org/mathscinet-getitem?mr=0268889
http://dx.doi.org/10.2307/2007091
http://www.ams.org/mathscinet-getitem?mr=866707
http://dx.doi.org/10.1007/s10711-009-9357-2
http://dx.doi.org/10.1007/s10711-009-9357-2
http://www.ams.org/mathscinet-getitem?mr=2545455
mailto:kcwalk@ccrwest.org

	1. Introduction
	2. Preliminary definitions
	3. Surface braid groups
	4. The kernel of the Abel–Jacobi map
	4.1. Strata with zeroes of only one weight
	4.2. Strata with zeroes of more than one weight

	5. Some local surgeries
	6. (Square) transpositions in certain strata
	7. Constructing the remaining generators
	8. Conclusion
	References

