
Geometry & Topology 14 (2010) 1479–1501 1479

Manifolds with small Heegaard Floer ranks

MATTHEW HEDDEN

YI NI

We show that the only irreducible three-manifold with positive first Betti number and
Heegaard Floer homology of rank two is homeomorphic to zero-framed surgery on
the trefoil. We classify links whose branched double cover gives rise to this manifold.
Together with a spectral sequence from Khovanov homology to the Floer homology
of the branched double cover, our results show that Khovanov homology detects the
unknot if and only if it detects the two component unlink.

57M27; 57M25

1 Introduction

In a sequence of papers, Ozsváth and Szabó defined invariants for a wide variety
of topological and geometric objects in low dimensions, including three- and four-
manifolds, knots and links and contact structures [29; 28; 27; 35; 30]. These invariants
proved to be quite powerful, with striking applications to questions in Dehn surgery,
contact and symplectic geometry, knot concordance and questions about unknotting
numbers (to name only a few).

The Ozsváth–Szabó invariants are particularly suited to understand homologically
essential surfaces embedded in three-manifolds. In the context of knots, they demon-
strated this by the theorem that knot Floer homology detects the Seifert genus of a
knot [26]. More generally, Ozsváth and Szabó showed the Floer invariants capture the
Thurston norm on the homology of link complements and closed three-manifolds [26;
36]. These theorems have the immediate consequence that knot Floer homology detects
the unknot, as this is the only knot of Seifert genus zero.

In addition to the Thurston norm of a homology class ˛ 2H2.Y; @Y /, the Ozsváth–
Szabó invariants answer the subtler question of when a knot complement or closed
three-manifold fibers over the circle with fiber an embedded surface †, whose homology
class equals ˛ ; see Ghiggini [9], Ni [23; 24] and Ai and Ni [1]. For knots, this again
has a beautiful corollary by Ghiggini [9], namely that knot Floer homology detects the
trefoil and figure eight knots. This follows from the well-known fact that these are the
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only fibered knots with Seifert genus one (together with an easy computation showing
their Floer homologies are different).

In this article we prove a similar theorem in the context of closed three-manifolds.
Namely, we determine which irreducible three-manifolds with positive first Betti number
have rank 2 Floer homology; there is only one.

Theorem 1.1 Suppose Y is a closed oriented irreducible 3–manifold which satisfies
b1.Y / > 0. If rank cHF.Y /D 2, then Y is homeomorphic (via a possibly orientation-
reversing map) to S3

0
.31/, the manifold obtained by zero surgery on the trefoil.

Removing the irreducibility requirement, we obtain the following:

Corollary 1.2 Suppose Y is a closed oriented 3–manifold with b1.Y / > 0. If the
rank of cHF.Y / is 2, then Y D Y 0 # Z , where Y 0 is either ˙S3

0
.31/ or S1 �S2 and

Z is an integer homology sphere satisfying cHF.Z/Š Z.

In addition to our interest in the theorem as it pertains to understanding the power of
Heegaard Floer homology, we can use it to gain new insight into the mysterious world
of quantum invariants. Indeed, the existence of a spectral sequence from the Khovanov
homology of a link to the Heegaard Floer homology of its branched double cover given
by Ozsváth and Szabó [32] allows us to prove the following theorem. To state it, let
F D Z=2Z.

Theorem 1.3 Suppose L� S3 is a link with det.L/D 0. Then

rankF Kh.LIF/ > 4

unless L is isotopic to a two-component split link LDK1 tK2 satisfying

rankF Kh.Ki IF/D 2; i D 1; 2:

Corollary 1.4 Khovanov homology detects the unknot if and only if it detects the
two-component unlink.

Remark Recently, Kronheimer and Mrowka proved that Khovanov homology detects
the unknot [18]. Hence Khovanov homology detects the two-component unlink. It
is worth pointing out that our result does not directly follow from Kronheimer and
Mrowka’s argument.
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This theorem should be compared with the results of Thistlethwaite [40] and Eliahou,
Kauffman and Thistlethwaite [6] which provide examples of two (or more) component
links with Jones polynomial equal to that of the unlink. By construction these links
are nonsplit, so our result implies that they are distinguished from the unlink by their
Khovanov homology. This highlights the strength of Khovanov homology over its
Euler characteristic and indicates that the question of whether Khovanov homology
detects the unknot may be of a much different nature than the corresponding question
for the Jones polynomial.

The proof of Theorem 1.1 begins by using the Thurston norm detection of Floer homol-
ogy to show the rank assumption implies that the manifold contains a homologically
essential torus. The ability of Floer homology to detect fibering then shows that this
torus is the fiber in a surface bundle over the circle. Lower bounds on the rank of Floer
homology in terms of H1.Y IZ/, together with a simple analysis of this group for torus
fibrations, show that the manifold is zero surgery on the trefoil or figure eight. The
latter manifold, however, has Floer homology of rank four by direct calculation.

Theorem 1.3 follows from the spectral sequence from Khovanov homology to the Floer
homology of the branched double cover mentioned above. The main work in this
step is to understand which links in the three-sphere have S3

0
.31/ as their branched

double cover. We classify such links (there are essentially only two) in Section 4 by a
geometric argument based on the fact that S3

0
.31/ admits a Euclidean geometry.

We conclude by remarking that the question of whether Khovanov homology detects the
unknot could likely be understood through Heegaard Floer homology if the manifolds,
Z , appearing in Corollary 1.2 could be appropriately classified. Indeed, the question
of which integer homology three-spheres have rank one Floer homology (the so-called
homology sphere L–spaces) is interesting for a variety of reasons. Even with our limited
understanding of homology sphere L–spaces, one can gain useful information about
Khovanov homology. For instance, one can easily show that the Khovanov homology
of the two-cable (and many other satellite operations) detects the unknot; see Hedden
[12] and Hedden and Watson [13]. See also Eftekhary [5] and Grigsby and Wehrli [10]
for related results.
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2 Preliminaries

In this section we recall some necessary background on the Heegaard Floer and Kho-
vanov homology theories, respectively. Our purpose is mainly to establish notation and
collect results which will be used in the subsequent sections. For the unfamiliar reader,
we refer to Ozsváth and Szabó [34; 31] for an introduction to Ozsváth–Szabó theory
and Khovanov [16] and Bar-Natan [3] for material on Khovanov homology.

2.1 Twisted Heegaard Floer homology

Heegaard Floer homology (or Ozsváth–Szabó homology) assigns chain complexes to a
Spinc three-manifold, .Y; s/. One can import the general construction of homology
with twisted coefficients (see, for instance Hatcher [11]) into this theory in a variety of
useful ways, which we now recall.

The input for the theory is an admissible pointed Heegaard diagram

.†; ˛; ˇ ; z/

for .Y; s/. Taking the symmetric product of the diagram, one arrives at the 2g–
dimensional symplectic manifold Symg.†/, together with two Lagrangian submani-
folds T˛;Tˇ; and a distinguished hypersurface, Vz , which arise from the attaching
curves and basepoint, respectively (see Ozsváth and Szabó [29] for more details,
specifically Sections 2 and 4).

The most general construction of Heegaard Floer homology with twisted coefficients de-
fines a chain complex CF1.Y; s/ which is freely generated over the ring ZŒU;U�1�˝Z

ZŒH 1.Y IZ/� by intersection points x 2 T˛ \Tˇ whose associated Spinc structure
corresponds to s. Here H 1.Y IZ/ is the first singular cohomology of Y , and U is a
formal variable of degree �2.

Given x; y 2 T˛ \Tˇ , let �2.x; y/ denote the set of homotopy classes of Whitney
disks connecting x to y. The twisted coefficient ring is a reflection of the fact that
�2.x; y/ Š Z˚H 1.Y IZ/.1 Pick an additive assignment A W �2.x; y/! H 1.Y / in
the sense of Definition 2:12 of [29], and define an endomorphism

@W CF1.Y; s/! CF1.Y; s/;

1To identify this with the standard construction of homology with twisted coefficients, observe that
�2.x; y/ is the fundamental group of the configuration space of paths in Symg.†/ from T˛ to Tˇ .
Heuristically, Heegaard Floer homology is the Morse homology of this configuration space with respect to
a specific action functional.
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by the formula:

@xD
X

y2T˛\Tˇ

X
f�2�2.x;y/j�.�/D1g

#.cM.�//U nz .�/˝ eA.�/
� y;

where cM.�/ is the quotient of the moduli space of unparametrized J –holomorphic
disks representing the homotopy class � , �.�/ is the Maslov index, and nz.�/ D

#�\Vz is the algebraic intersection of � with the hypersurface. Here, we have denoted
elements in ZŒH 1.Y /� in the typical exponential notation. Gromov compactness for
J –holomorphic curves ensures that @ ı @ D 0, and we denote the homology of the
resulting chain complex by HF1.Y; s/. The results of [29; 28] indicate that these
groups depend only on the Spinc –diffeomorphism type of the pair .Y; s/. We refer the
reader to the aforementioned papers for more details. Section 8 of [28], in particular,
introduces this notion of twisted coefficients.

We could alternatively take the chain complexes to be generated over either of the rings

U �ZŒU �˝ZŒH 1.Y /� ZŒU;U�1�=U �ZŒU �˝ZŒH 1.Y /�:

We denote the resulting complexes by CF�.Y; s/;CFC.Y; s/, respectively. Positivity of
intersections for J –holomorphic curves ensures that this is well-defined and, moreover,
that we have a short exact sequence

0! CF�.Y; s/! CF1.Y; s/! CFC.Y; s/! 0

(with corresponding long exact sequence of homology). We can also define a complexcCF.Y; s/ by the exact sequence

0! cCF.Y; s/! CFC.Y; s/
�U
! CFC.Y; s/! 0:

The homology of the various complexes are invariants of the pair .Y; s/ and are denoted
HFC;HF�;bHF .

Note ZŒU;U�1�˝ZŒH 1.Y /� is naturally a ZŒH 1.Y /� module (by letting ZŒH 1.Y /�

act trivially on ZŒU;U�1�). Thus, for any ZŒH 1.Y /�–module, M , it makes sense to
consider Heegaard Floer homology with coefficients in M . By definition, these are
the groups

HFı.Y; sIM / WDH�.CFı.Y; s/˝ZŒH 1.Y /�M /;

where CFı denotes any of the chain complexes ( ẏ ;1) considered above.

We will be interested in ZŒH 1.Y /�–modules which focus attention on the part of
H 1.Y / which pairs nontrivially with certain 1–dimensional homology classes. More
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precisely, given ! 2 H1.Y /, we consider the ring R D QŒT;T �1� as a ZŒH 1.Y /�

module by defining the action

e � 1D T .!/;

where 1 2 QŒT;T �1�, e 2 ZŒH 1.Y /�, and  .!/ is the natural pairing between
cohomology and homology. We denote chain complexes with coefficients in R by

CFı.Y; sIR!/ WD CFı.Y; s/˝ZŒH 1.Y /�R;

and refer to them as the !–twisted Heegaard Floer chain complexes. We can also
complete this coefficient ring in a particularly useful way. Define an R–module by

ƒD

(X
r2R

ar T r

ˇ̌̌̌
ar 2R; #far j ar ¤ 0; r � cg<1 for any c 2R

)
;

where R acts on ƒ by polynomial multiplication. We refer to ƒ as the universal
Novikov ring, and the corresponding chain complexes

CFı.Y; sIƒ!/ WD CFı.Y; sIR!/˝R ƒ

as Heegaard Floer chain complexes with !–twisted Novikov coefficients or, follow-
ing [15], as the !–perturbed Floer homology. Observe that ƒ is a field.

Note that we can disregard the twisting altogether by letting R act trivially on Q (or
any other ring, eg Z; or Z=2Z) by the rule T �aD a; where a2Q (with corresponding
trivial action on any other ring). The resulting chain complexes

CFı.Y; sIQ/ WD CFı.Y; sIR!/˝R Q

are the ordinary (untwisted) Heegaard Floer chain complexes with coefficients in Q.
Throughout, we will adopt the notation that HFı.Y; s/ WD HFı.Y; sIZ/, ie in the
untwisted world we use Z coefficients unless otherwise specified.

Finally, given ŒF � 2 H2.Y IZ/, we can consider the direct sum of chain complexes
corresponding to Spinc structures on Y whose first Chern class evaluates on ŒF � as a
specified integer. In this case, we adopt the notation:

CFı.Y; ŒF �; i/ WD
M

fs2Spinc.Y /jhc1.s/;ŒF �iD2ig

CFı.Y; s/;

with corresponding notation for homology groups and the various coefficient rings
described above.
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2.2 Nontriviality theorems

In this subsection, we collect a few key theorems concerning nontriviality of Floer
homology. We first state a generalization of Ozsváth and Szabó’s theorem that Floer
homology detects the Thurston norm of a closed three-manifold. To do this recall that
the complexity of a closed surface, F , is the quantity

x.F /D
X

Fi�F

maxf0;��.Fi/g;

where the sum is taken over all connected components of F and � is the Euler
characteristic. A homologically nontrivial surface, F , in an irreducible three-manifold is
called taut if it minimizes complexity amongst all embedded surfaces whose associated
homology class is equal to ŒF � 2H2.Y IZ/. We have the following:

Theorem 2.1 [22, Theorem 3.6] Suppose Y is a closed irreducible 3–manifold, and
F is a taut surface in Y . Then there exists a nonempty open set U �H1.Y IR/, such
that for any ! 2 U ,

HFC.Y; ŒF �; 1
2
x.F /Iƒ!/¤ 0; cHF.Y; ŒF �; 1

2
x.F /Iƒ!/¤ 0:

This implies the following for the homology with untwisted coefficients:

Theorem 2.2 Suppose Y is a closed 3–manifold, F is a taut surface in Y . Then

cHF.Y; ŒF �; 1
2
x.F //˝Q¤ 0:

Proof In Theorem 2.1, we can choose ! be a rational homology class. Since
HFC.Y Iƒ!/Š HFC.Y Iƒk!/ for any nonzero k , we may assume ! is an integral
homology class.

Since RDQŒT;T �1� is a PID, the universal coefficients theorem [39] implies

cHF.�Iƒ!/Š .cHF.�IR!/˝R ƒ/˚TorR.cHF.�IR!/;ƒ/:

Since ƒ is R torsion-free the Tor term vanishes. The nonvanishing result for the
left-hand side (Theorem 2.1) then implies that cHF.Y; ŒF �; 1

2
x.F /IR!/˝R ƒ ¤ 0,

and hence cHF.Y; ŒF �; 1
2
x.F /IR!/ has positive rank as an R–module. Applying the

universal coefficients theorem again,

cHF.�IQ/Š .cHF.�IR!/˝R Q/˚TorR.cHF.�IR!/;Q/;
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we find that the untwisted Floer homology with Q coefficients is nontrivial. On the
other hand, this latter group is isomorphic to

cHF.�IQ/Š .cHF.�/˝Z Q/˚TorZ.cHF.�/;Q/:

The Tor term vanishes since Q has no Z torsion. This yields the result.

Lemma 2.3 If HF1.Y; s/ contains k copies of ZŒU;U�1� as direct summands, then

rank cHF.Y; s/� k:

Proof This follows easily from the two exact sequences

� � � ! HF�! HF1! HFC! � � �

� � � ! HFC! HFC! cHF! � � �

and the fact that HF�i D 0 when i is sufficiently large.

2.3 Khovanov homology

To a link L � S3 , Khovanov homology associates a collection of bigraded abelian
groups, Khi;j .L/ [16]. The graded Euler characteristic of these groups is the Jones
polynomial, in the sense that

.qC q�1/ �JL.q
2/D

X
j

�X
i

.�1/irank Khi;j .L/

�
� qj ;

where JL.q/ is the Jones polynomial, and “rank” is taken to mean the rank as a Z–
module. For the present purpose, it will not be necessary to explain the precise details
of Khovanov’s construction. It suffices to say that the groups arise as the (co)homology
groups of a bigraded (co)chain complex, CKhi;j .D/, associated to a link diagram, D .
The complex is obtained by applying a .1C 1/ dimensional topological quantum field
theory to the cube of complete resolutions of D . The i –grading is the cohomological
grading ie the differential increases this grading by one, while the j –grading is the
so-called quantum grading (corresponding to the variable in the Jones polynomial).
In the original treatment, the differential preserved the j –grading. Lee considered a
perturbation of this differential which does not preserve the j –grading, but instead
makes CKhi;j .L/ into a complex filtered by j [19]. This perturbation was useful
for several purposes, most notably in Rasmussen’s combinatorial proof of Milnor’s
conjecture on the unknotting number of torus knots [37]. A consequence of Lee’s work
which will be useful for us is the following:
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Theorem 2.4 [19] Let L� S3 be a link of jLj components. Then

rank Kh.L/� 2jLj:

The main feature of Khovanov homology which we use is a connection with the
Heegaard Floer invariants.

Theorem 2.5 [32, Theorem 1.1] Let L� S3 be a link. There is a spectral sequence
whose E2 term consists of fKh.xLIZ=2Z/, Khovanov’s reduced homology of the mirror
of L, and which converges to cHF.†.L/IZ=2Z/, the Heegaard Floer homology of the
branched double cover of L.

The reduced Khovanov homology is a variant of Khovanov homology defined via a
chain complex, eCKh , which has half the rank (taken in any coefficient ring) of CKh.L/.
In the case of Z=2Z coefficients, there is little difference between the reduced and
ordinary theories. Indeed,

(1) Kh.LIZ=2Z/Š fKh.LIZ=2Z/˝V;

where V is the rank 2 vector space over Z=2Z obtained as the Khovanov homology
of the unknot (see, for instance, Shumakovitch [38]).

Packaging all of this, the result we use is the following:

Proposition 2.6 Let L � S3 be a link of jLj components and †.L/ denote its
branched double cover.

rankZ=2Z Kh.LIZ=2Z/� 2 � rankZ cHF.†.L//

Proof Theorem 2.5 immediately yields

rankZ=2Z
fKh.xLIZ=2Z/� rankZ=2Z cHF.†.L/IZ=2Z/:

The left-hand side of this inequality is equal to rankZ=2Z
fKh.LIZ=2Z/ by a duality

theorem for Khovanov homology under taking mirror images [16, Corollary 11]. We
have

rankZ=2Z cHF.†.L/IZ=2Z/� rankZ cHF.†.L//;

by the universal coefficients theorem. Multiplying by 2 and combining with Equation
(1) yields the desired inequality.
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3 Manifolds with rank 2 Heegaard Floer homology

In this section we prove our theorem characterizing manifolds with rank 2 Floer
homology. The basic idea of the proof is simple. We first use the rank assumption to
show that the only nontrivial class in H2.Y IZ/ is represented by a torus. The rank
being this small further implies, by work of Ai and the second author [1], that this
torus is a fiber in a fibration of the three-manifold over the circle. The scarcity of
three-manifolds which fiber in this way then pins down the manifold exactly.

Proof of Theorem 1.1 Suppose Y is a closed irreducible 3–manifold with b1.Y / > 0

and rank cHF.Y /D 2.

Claim 1 Y contains a nonseparating torus.

Since b1.Y / > 0, there exists a closed connected surface F � Y , such that ŒF � ¤
0 2 H2.M / and F is Thurston norm minimizing. F is not a sphere since Y is
irreducible so, in particular, F is taut. By Theorem 2.2, cHF.Y; ŒF �;g� 1/¤ 0, where
g is the genus of F . A symmetry property of Floer homology further implies thatcHF.Y; ŒF �; 1�g/ ¤ 0 [28, Theorem 2.4]. Note that since b1.Y / > 0, [28, Proposi-
tion 5.1] implies �.cHF.Y; s//D0. In particular cHF.Y; ŒF �;g�1/ and cHF.Y; ŒF �; 1�g/

each have rank at least 2. If g > 1, then

rank cHF.Y /� rank cHF.Y; ŒF �;g� 1/C rank cHF.Y; ŒF �; 1�g/� 4;

which is impossible. So F must be a torus.

Claim 2 Y is a torus bundle over the circle.

The tool for proving this claim will be the main theorem of [1], which indicates that
Floer homology detects torus fibrations:

Theorem 3.1 [1, Theorem 1.2] Let Y be an irreducible oriented 3–manifold. Sup-
pose F � Y is an embedded torus and there exists ! 2H1.Y IZ/ satisfying ! � ŒF �¤ 0,
and for which

rankƒHFC.Y Iƒ!/D 1:

Then Y fibers over the circle with fiber F .

Note that to be consistent, we have stated this theorem in terms of coefficients twisted
by ! 2H1.Y IZ/ rather than ! 2H 2.Y IR/ as in [1]. The definition of the modules
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involved, together with Poincaré duality, shows that the chain complexes are isomorphic.
Also recall that cHF.Y Iƒ!/ denotes the sum of Floer groups over all Spinc structures.

We wish to apply the above theorem. By Theorem 2.1, we can choose a homology class
! 2H1.Y / with ! � ŒF �¤ 0 and HFC.Y; ŒF �; 0Iƒ!/¤ 0. Moreover, an application
of the adjunction inequality [28, Theorem 7.1] shows that HFC.Y; ŒF �; 0Iƒ!/ D
HFC.Y Iƒ!/. More precisely, the adjunction inequality adapted to twisted coefficients
tells us that HFC.Y; sIƒ!/ D 0 for any Spinc structure satisfying hc1.s/; ŒF �i ¤

0. Thus it remains to show that our assumption rankZ cHF.Y / D 2 implies that
rankƒ HFC.Y; ŒF �; 0Iƒ!/D 1. This will follow easily from the universal coefficients
theorem and the exact sequence relating HFC to bHF .

As an intermediary, let us consider the !–twisted Heegaard Floer homologycHF.Y; ŒF �; 0IR!/

(recall that R D QŒT;T �1�). As in Section 2.1 we have two natural R–modules:
the trivial module Q and the universal Novikov ring ƒ. Correspondingly, we have
the untwisted Heegaard Floer homology cHF.Y; ŒF �; 0IQ/ and the !–perturbed Floer
homology cHF.Y; ŒF �; 0Iƒ!/.

We can apply the universal coefficients theorem to getcHF.Y; ŒF �; 0IQ/Š .cHF.Y; ŒF �; 0IR!/˝R Q/˚TorR.cHF.Y; ŒF �; 0IR!/;Q/:

By assumption, we have cHF.Y; ŒF �; 0IQ/ŠQ2 , so

rankR
cHF.Y; ŒF �; 0IR!/� 2:

Again by the universal coefficients theorem, we havecHF.Y; ŒF �; 0Iƒ!/Š .cHF.Y; ŒF �; 0IR!/˝R ƒ/˚TorR.cHF.Y; ŒF �; 0IR!/;ƒ/:

Since ƒ is R–torsion free, we have TorR.cHF.Y; ŒF �; 0IR!/;ƒ/D 0. Thus

rankƒcHF.Y; ŒF �; 0Iƒ!/� 2:

The proof of the following lemma will be given in the Appendix.

Lemma 3.2 Suppose Y contains a torus F and ! 2H1.Y / satisfies ! � ŒF �¤ 0. Then
the U –action

U W HFC.Y Iƒ!/! HFC.Y Iƒ!/

is zero.
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Having bounded the rank of cHF , recall the exact sequence

� � � ! HFC
U
����! HFC! cHF! � � � :

By Lemma 3.2, U D 0. Since HFC.Y; ŒF �; 0Iƒ!/¤ 0, we must have

rankƒHFC.Y; ŒF �; 0Iƒ!/D 1;

which completes the proof of the claim.

Claim 3 Y is obtained by zero surgery on the trefoil knot.

Since Y is a torus bundle, b1.Y / � 3. If b1.Y / D 3, then Y D T 3 , for which cHF
is known to be isomorphic to Z6 [25, Proposition 8.4]. If b1.Y / D 2 or H1.Y IZ/
contains torsion, [28, Theorem 10.1] and Lemma 2.3 imply that rank cHF.Y /� 4. Thus
H1.Y IZ/Š Z.

Let A 2 SL.2;Z/ be the matrix representing the monodromy of the torus bundle. In
order to have H1.Y IZ/ Š Z, we must have det.A� I / D ˙1 (by Mayer–Vietoris),
so traceAD 1 or 3. Up to conjugacy in SL.2;Z/, there are only three such matrices
[41, 21.15], which correspond to the zero surgeries on the two trefoil knots and on the
figure 8 knot. The first two manifolds have cHFŠZ2 while the last one has cHFŠZ4

[25, Section 8].

4 The zero surgery on the trefoil as a branched double cover

For a link L� S3 , we let †.L/ denote the branched double cover of S3 , branched
along L. We will denote the manifold obtained by zero surgery on the trefoil by M .
In this section, we classify the links for which †.L/ŠM . It turns out there are only
two.

Proposition 4.1 Suppose †.L/ ŠM; the manifold obtained by 0–surgery on the
trefoil knot. Then L is isotopic to one of the two links, H1;3 or H�1;�3 , pictured in
Figure 1.

Remark We consider M as an unoriented manifold, and hence the links are specified
up to taking mirror images.

We will prove the proposition by a geometric argument, which we now sketch. The
argument begins with the observation that M admits a Euclidean geometric structure.
Existing results about group actions on such manifolds will show that the involution
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presenting M as a branched double cover can be assumed to be an isometry. Analyzing
this situation, we will show that the involution restricts to an involution on the two
pieces of the decomposition of M as a torus bundle

M Š T 2
� I [

A
T 2
� I:

Using this fact, we can show that L must result from 2–cabling each component of
the Hopf link, as shown in Figure 1. An analysis of H1.†.L/IZ/ for such L then
specifies the link exactly. With the general idea in place, we begin.

n m

1

�1

�

�

Hn;m

Figure 1: A satellite of the Hopf link formed by 2–cabling each of its com-
ponents. The numbers n and m indicate the number of crossings, according
to the convention on the right.

Proof of Proposition 4.1 Suppose M is homeomorphic to †.L/. Let � W M ! S3

be the branched covering map, and let �W M !M be the deck transformation, which
is an involution. Then ��1.L/ is the set of fixed points of � . The following lemma
captures the geometry of our setup.

Lemma 4.2 There exists a flat metric on M which is preserved by � . With respect to
this metric, there exists a totally geodesic (embedded) torus T representing a generator
of H2.M /Š Z.

Proof M is a torus bundle over S1 with a 6–periodic monodromy, so the 6–fold
cyclic cover of M is T 3 . Thus M admits a Euclidean structure. According to [20,
Theorem 2.1], there exists a flat metric on M with respect to which � is an isometry.

Suppose f W T 2 !M is a least area map representing a generator of H2.M /. [7,
Theorem 5.1] implies that either (i) f is an embedding, or (ii) f double covers an
embedded one-sided surface in M . The latter is ruled out by the fact that f�.ŒT 2�/¤

0 2 H2.M /, hence f is an embedding (strictly speaking, to apply the theorem we
must also verify that M is irreducible and contains no RP2 , but this follows easily
from the fact that M is a torus bundle). Let T denote the image of f . Since T
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is area minimizing, it is a minimal surface, and hence the mean curvature vector
vanishes identically. Since M is flat, the Gaussian curvature of T is the product of
its principal curvatures, and is nonpositive since the mean curvature (the average of
the principal curvatures) vanishes. The Gauss–Bonnet Theorem then implies that the
Gaussian curvature of T is 0 everywhere, and hence the principal curvatures also
vanish everywhere, so T is totally geodesic.

The geometry at hand tightly constrains the behavior of the covering involution with
regard to the torus. We have the following

Lemma 4.3 In the previous lemma, one can assume that the totally geodesic torus
satisfies �.T /\T D∅ and Œ�.T /�D�ŒT � 2H2.M /.

Proof Since H2.M /Š Z, �.T / is homologous to ˙T . Endow the three-torus, T 3 ,
with the flat metric obtained by pulling back the metric on M under the 6–fold cyclic
covering map pW T 3!M . We will compare the lifts of T and �.T / under p .

Let zT denote a component of p�1.T /. eT is, like T , totally geodesic. The surface
p�1 ı�.T / is a disjoint union of totally geodesic tori in T 3 , such that each component
is homologous to ˙Œ zT �. We claim that zT is either a component of p�1 ı �.T / or
disjoint from p�1 ı �.T /. This follows from elementary Euclidean geometry. Indeed,
since all the tori are geodesic they lift to planes in the universal cover, E3 . The
assumption that the tori are homologous up to sign implies that these planes are parallel
or have a pair of components which coincide (if not, they would intersect in a line that
projects to a nonseparating circle of intersection between the tori in T 3 , contradicting
the homological assumption). This proves the claim. In the case that zT is disjoint from
p�1ı�.T / we see that �.T /\T D∅, as desired. If zT is a component of p�1ı�.T /,
then �.T /D T as a set.

In the case that �.T / D T , we claim that ��ŒT � D �ŒT �. Suppose, otherwise, that
��ŒT �D ŒT �. Then �jT is an orientation-preserving involution. Thus �.T / is a closed
oriented surface in S3 . Choose a simple closed curve  �M intersecting T exactly
once. Then �. / is a closed curve in S3 which has algebraic intersection number 2

with �.T /, contradicting the fact that H1.S
3/D 0.

Thus ��ŒT �D�ŒT � if �.T /D T . For some small " > 0, consider the set

N" D fx 2M j dist.x;T /� "g

Then @N" consists of two flat tori, T" and T�" . The assumptions that ��ŒT �D�ŒT �
and �.T /D T imply that �.T"/D T�" . By working with T" instead of T , we obtain
the desired conclusion.
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Finally, if �.T /\ T D ∅, we claim that ��ŒT � D �ŒT � also holds. Indeed, T and
�.T / split M into two parts, C1 and C2 , both of which are homeomorphic to T 2�I .
Now if ��ŒT �D ŒT �, then � would have to switch C1 and C2 . Since � has no fixed
points on @C1 D T [ �.T /, this would imply that � is free, a contradiction.

Next, we show that L must result from 2–cabling the components of the Hopf link.

Lemma 4.4 If M D †.L/, then there exists a genus one Heegaard splitting S3 D

V1[V2 , such that L is the union of a closed 2–braid in V1 and a closed 2–braid in V2

(see Figure 1).

Proof The last lemma showed that we can assume T and �.T / split M into two parts
C1 and C2 , with each Ci homeomorphic to T 2 � I . Moreover, since ��ŒT �D�ŒT �,
we have �.Ci/D Ci , and Vi D �.Ci/ is a manifold with torus boundary. Since �.T /
is an embedded torus in S3 , the two manifolds V1;V2 bounded by �.T / have the
same homology groups as the solid torus.

Let h be a generator of H2.V1; @V1/ Š Z. Since � W C1 ! V1 is a proper map of
nonzero degree, there exists a primitive element zh2H2.C1; @C1/ such that ��.zh/D2h.
We can choose an annulus A�C1DT 2�I representing zh, hence �.A/ represents 2h.
By Gabai’s theorem that the singular Thurston norm is equal to the Thurston norm [8,
Corollary 6.18], the Thurston norm of 2h is 0, hence the Thurston norm of h is also 0.
Let G � V1 be a Thurston norm minimizing surface in the homology class h. Then
@G represents a primitive element in H1.@V1/. Attaching annuli to @G if necessary,
we may assume j@Gj D 1, and hence the component of G containing @G is a disk.
Since V1 � S3 , it follows that V1 is a solid torus.

Now C1 is homeomorphic to T 2 � Œ0; 1�, and @C1 consists of two parallel flat tori.
The universal cover fC1 of C1 is a submanifold of E3 bounded by two parallel planes.
After scaling the metric, fC1 is isometric to E2 � Œ0; 1� and each E2 � t is preserved
by the (isometric) action of �1.C1/. Let Rt D .E2 � t/=�1.C1/. Then C1 is foliated
by the flat tori Rt , and the distance between Rt and R0 is t . Since � is an isometry
and �.R0/DR1 , � must send Rt to R1�t .

Now as the fixed point set of an isometry, ��1.L/ is geodesic. Each Ci must contain
some components of ��1.L/. Let K D ��1.L/\C1 . Since K is a geodesic disjoint
from the flat tori R0 and R1 , K should be parallel to them. Indeed, since � is an
isometry, for each component Ki of K

dist.Ki ;R0/D dist.�.Ki/; �.R0//D dist.Ki ;R1/;
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so Ki lies on the torus R1=2 . Hence K �R1=2 . Let RŒ0;1=2� D
S

t2Œ0;1=2�Rt , then
RŒ0;1=2� is homeomorphic to T 2�Œ0; 1=2�, and �.RŒ0;1=2�/\RŒ0;1=2�DR1=2 . Choose
a properly embedded surface W � RŒ0;1=2� such that each component of W is an
annulus whose boundary consists of a component of K and a curve on R0 . Then
�.W / is a disjoint union of annuli in V1 D �.C1/, where each annulus connects a
component of L to an essential curve on @V1 . It follows that L\V1 is a torus link in
the solid torus V1 . A simple Euler characteristic count shows that L intersects each
meridian disk of V1 in two points, so L\V1 is a 2–braid in V1 .

The same argument as above shows that V2 is a solid torus, and L\V2 is a 2–braid
in V2 . Now V1[V2 is a genus one Heegaard splitting for S3 .

To complete the theorem, let LDHm;n � S3 be the link from the previous lemma,
such that Hm;n\V1 is isotopic to the .2;m/ torus link in V1 and Hm;n\V2 is isotopic
to the .2; n/ torus link in V2 .

Lemma 4.5 The manifold †.Hm;n/ is a torus bundle, and the monodromy is repre-
sented by the matrix �

mn� 1 n

�m �1

�
:

Proof The proof of Lemma 4.4 shows that †.Hm;n/ is a torus bundle. We only need
to determine its monodromy.

Choose two curves �; � on the surface @V1 D�@V2 , such that �; � are the meridians
of V1;V2 , respectively. Moreover, the curves are oriented such that � ��D 1.

Let T1;T2 be the two components of ��1.@V1/. Let

z�i D �
�1.�/\Ti ; z�i D �

�1.�/\Ti :

The preimage of the meridian disk of V1 is an annulus which gives a homology (in
C1 D �

�1.V1/) between Œz�1� and �Œz�2�, so

Œz�1�D�Œz�2� 2H1.C1/:

Moreover, there is a compact surface A� V1 , such that A is an annulus when m is
odd and A is the union of two annuli when m is even, and @A consists of Hm;n\V1

and a .2;m/ torus link on @V1 . The preimage of A gives a homology (in C1 ) between
2Œz�1�CmŒz�1� and 2Œz�2�CmŒz�2�. Since Œz�1�D�Œz�2� in C1 , it follows that

Œz�1�D Œz�2�CmŒz�2� 2H1.C1/:

Geometry & Topology, Volume 14 (2010)



Manifolds with small Heegaard Floer ranks 1495

In V2 , the roles of � and � are switched. The same argument as above shows that

Œz�1�D�Œz�2�; Œz�1�D Œz�2�C nŒz�2�

in H1.C2/.

Consider the manifold C1[T2
C2 , which is homeomorphic to T 2 � I . There are two

copies of z�1; z�1 on its boundary, and their homological relation can be computed as
follows:

Œz�1�D Œz�2�C nŒz�2�

D�Œz�1�C n.Œz�1�CmŒz�1�/

D .mn� 1/Œz�1�C nŒz�1�

Œz�1�D�Œz�2�

D�.Œz�1�CmŒz�1�/:

So the monodromy of the torus bundle is given by the matrix�
mn� 1 n

�m �1

�
:

We are now able to finish the proof of Proposition 4.1. If †.Hm;n/ is homeomorphic
to the zero surgery on the trefoil knot, then the monodromy of the torus bundle has
order 6. This implies that the trace of the matrix is 1. By the preceding lemma we find
that mnD 3, and hence mD˙1; nD˙3 or mD˙3; nD˙1. Since Hn;m 'Hm;n ,
the link is H1;3 or H�1;�3 .

Remark Note that our proof applies equally well to classify links whose branched
double cover gives rise to any torus bundle possessing a Euclidean structure. In
particular, we recover the well-known result that T 3 is not a branched double cover of
a link in S3 [14].

5 Links with rank 4 Khovanov homology

In this section, we prove Theorem 1.3. The theorem will follow quickly from the
results of the preceding two sections, together with Proposition 2.6. It will be useful,
however, to first understand essential spheres in branched double covers. The following
proposition is a well-known consequence of the Equivariant Sphere Theorem, originally
proved by Meeks, Scott and Yau [21]. (See also Dunwoody [4] for the version we use
here.)
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Proposition 5.1 (1) Suppose L is a link in S3 . If L D L1 # L2 , then †.L/ D
†.L1/ #†.L2/. If LDL1 tL2 , then †.L/D S1 �S2 #†.L1/ #†.L2/.

(2) Suppose L is a nonsplit prime link in S3 , then †.L/ is irreducible.

(3) If L is a nonsplit link, then †.L/ contains no S1 �S2 summand.

Proof (1) This fact is obvious.

(2) Assume †.L/ is reducible. By the Equivariant Sphere Theorem, there exists an
essential sphere S �†.L/, such that �.S/D S or �.S/\S D∅.

If �.S/ D S , then S doubly branched covers �.S/, hence �.S/ is an embedded
surface in S3 , and it is either a disk, a sphere or a projective plane. The last case is
immediately ruled out since S3 does not contain any embedded projective plane.

If �.S/ is a disk, then @.�.S// is a component of L which bounds a disk in the
complement of L. This contradicts the assumption that L is nonsplit.

If �.S/ is a sphere, then �jS is a 2–fold branched covering with two ramification
points. So L intersects �.S/ in exactly two points. The sphere �.S/ splits S3 into
two balls B1;B2 . If L\Bi is a trivial arc in Bi , then ��1.Bi/ is a ball bounded
by S in †.L/, contradicting the assumption that S is essential. So L is a nontrivial
connected sum, which is impossible since L is prime.

If �.S/\S D∅, then �.S/ is an embedded sphere in the complement of L. Since L

is nonsplit, �.S/ bounds a ball in S3�L. It follows that S bounds a ball in †.L/, a
contradiction.

(3) If L is nonsplit, there exists a collection of spheres S1; : : : ;Sn � S3 , such that
each Si intersects L in exactly two points, and they decompose L as a connected sum
of nonsplit prime links L1; : : : ;LnC1 . Thus †.L/ is a connected sum of †.Li/’s.
By (2), each †.Li/ is irreducible, so †.L/ contains no S1 �S2 summand.

Proof of Theorem 1.3 Let L be a link with det.L/D 0. By Theorem 2.4, if L is an
n–component link, then rank Kh.L/� 2n . So we can assume L has two components
(it cannot have one-component, since knots satisfy det.K/¤ 0).

If L is split with two components K1;K2 , then

rankF Kh.LIF/D rankF Kh.K1IF/� rankF Kh.K2IF/;

where FDZ=2Z. Indeed, there are chain complexes for which CKh.L/ŠCKh.K1/˝

CKh.K2/. Thus L has Khovanov rank 4 (over F ) if and only if each Ki has Khovanov
rank 2.
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If L is nonsplit, then †.L/ contains no S1 �S2 summand by Proposition 5.1. Since
det.L/D 0, b1.†.L// > 0 (recall that jdet.L/j D jH1.†.L/IZ/j when det.L/¤ 0

and, if det.L/D 0, that H1.†.L/IZ/ has infinite order). Moreover, the fact that L

has two components implies that b1.†.L//� 1, and hence b1.†.L//D 1.

Since rankF Kh.LIF/D4, Proposition 2.6 implies that rank cHF.†.L//�2. For a man-
ifold with b1.M /D1, [28, Theorem 10.1] and Lemma 2.3 imply that rank cHF.M /�2,
so we see that rank cHF.†.L// D 2. Calling on Corollary 1.2, we see that †.L/ D
˙S3

0
.31/ # Z for some homology sphere, Z . Now by Proposition 5.1 and the unique-

ness of the Kneser–Milnor prime decomposition, L has a connected summand, L0 ,
such that †.L0/ D ˙S3

0
.31/. Proposition 4.1 shows that, up to taking mirror im-

ages, L0 is either H�1;�3 or H1;3 . Since L0 has two components, the other prime
summands of L are all knots.

For the reduced Khovanov homology, we have the connected sum formula [17]fKh.L0 # L00/Š fKh.L0/˝fKh.L00/;

which implies that the rank of fKh.L/ is not less than the rank of fKh.L0/.

If L0 DH�1;�3 , the Jones polynomial of H�1;�3 is

�t�23=2
C t�21=2

� t�13=2
� t�9=2;

so the rank of fKh.L/ is at least 4. The same rank estimate works when L0 DH1;3 .
It follows from (1) that the rank of Kh.L/ is at least 8, a contradiction. This implies
that L must be split.

Proof of Corollary 1.4 Assume that Khovanov homology detects the unknot. If
Kh.L/ŠKh.U2/, where U2 is the two-component unlink, then rank Kh.L/D 4. Also,
the Jones polynomial, JL.q/, is equal to that of the unlink. In particular, we have
jdet.L/j D jJL.�1/j D 0. Theorem 1.3 now shows that L is isotopic to a split link,
each component of which has the Khovanov homology of the unknot. Our assumption
implies that both components are unknotted.

Conversely, if Khovanov homology detects the two-component unlink, then it clearly
detects the unknot (given a knot K , consider the split link obtained from K union an
unknot).

Appendix: The proof of Lemma 3.2

In this appendix, we give a proof of Lemma 3.2. We first learned this result from Peter
Ozsváth. The argument presented here was told to us by Yanki Lekili.
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Suppose W is a cobordism from Y1 to Y2 , � 2 H2.W; @W /, and !1; !2 are the
restriction of � on Y1;Y2 , respectively (ie the image of � under the natural map
H2.W; @W /!H1.@W /). Then there is a map [33, Section 2.7]

FC
W ;�
W HFC.Y1Iƒ!1

/! HFC.Y2Iƒ!2
/:

Consider the cobordism W D Y � I . Let  be an arc connecting Y � 0 to F � 1=2.
Let W1 be the neighborhood of .Y �0/[ [.F �1=2/ in W , and let W2DW �W1 .
Then W1 is a cobordism from Y to Y 0 D Y # .F � S1/. Given ! 2 H1.Y /, let
� D ! � ŒI � 2 H2.W; @W /, and let �i be the restriction of � to H2.Wi ; @Wi/.
Considering the maps on HFC.�Iƒ!/ induced by cobordisms, we have

(2) IdD FC
W ;�
D FC

W2;�2
ıFC

W1;�1
W HFC.Y Iƒ!/! HFC.Y Iƒ!/;

which factors through HFC.Y 0Iƒ�jY 0/. Here �jY 0 is a homology class in H1.Y
0/

which is the intersection of � and ŒY 0�. We claim that .�jY 0/ � ŒF �¤ 0. In fact, let
�� 2H 2.W / be the Poincaré dual of �, and let eW Y 0!W be the inclusion map.
Then PD�1.�jY 0/D e�.��/. It follows that

.�jY 0/ � ŒF �D he�.��/; ŒF �i

D h��; e�ŒF �i

D� � ŒF �

¤ 0:

Since H1.Y
0/ Š H1.Y /˚H1.F � S1/, we can further restrict �j.F � S1/ and,

according to [2, Theorem 1.1] and the claim, we have

(3) HFC.F �S1
Iƒ�j.F�S1//Šƒ:

Adapted to twisted coefficients, the product theorem for the Floer homology of con-
nected sums [28, Theorem 6.2] yields isomorphisms

HF�.Y 0Iƒ�jY 0/ŠH�.CF�.Y Iƒ�jY /˝ƒŒU � CF�.F �S1
Iƒ�j.F�S1///;

HF1.Y 0Iƒ�jY 0/ŠH�.CF1.Y Iƒ�jY /˝ƒŒU;U�1� CF1.F �S1
Iƒ�j.F�S1///:

[15, Corollary 8.6] shows that HF1.F �S1Iƒ�j.F�S1//D 0 for all Spinc –structures
with nontrivial HFC , so by the Künneth theorem, HF1.Y 0Iƒ�jY 0/D 0. Using the
exact sequence relating HF�;HF1;HFC; we see that

HFC.Y 0Iƒ�jY 0/Š HF�.Y 0Iƒ�jY 0/;
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where we are implicitly considering only Spinc structures which do not violate the
adjunction inequality. By (3) and the Künneth theorem, we have

HF�.Y 0Iƒ�jY 0/Š HF�.Y Iƒ�jY /˝ƒŒU �ƒ˚TorƒŒU �.HF�.Y Iƒ�jY /;ƒ/;

which shows that the U –action on HF�.Y 0Iƒ�jY 0/, and hence on HFC.Y 0Iƒ�jY 0/,
is zero (note that the Tor term can be identified with cHF.Y; ƒ�jY / which has trivial
U –action, by definition).

It now follows from (2) that the ƒŒU �–module map

FC
W2;�2

W HFC.Y 0Iƒ�jY 0/! HFC.Y Iƒ!/

is surjective, so the U –action on HFC.Y Iƒ!/ is also zero. This finishes the proof of
Lemma 3.2.
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A I Stipsicz, Z Szabó, editors), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 3–27
MR2249247
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