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The local Donaldson–Thomas theory of curves

A OKOUNKOV

R PANDHARIPANDE

The local Donaldson–Thomas theory of curves is solved by localization and degenera-
tion methods. The results complete a triangle of equivalences relating Gromov–Witten
theory, Donaldson–Thomas theory, and the quantum cohomology of the Hilbert
scheme of points of the plane.

14N10

Dedicated to the memory of Raoul Bott

1 Introduction

1.1 Overview

Let X be a nonsingular projective variety of dimension 3 over C . Gromov–Witten
theory is defined by integration over the moduli space of stable maps to X , and
Donaldson–Thomas theory is defined by integration over the moduli space of ideal
sheaves of X (see Donaldson–Thomas [5], Maulik et al [24; 25] and Thomas [34]).

If X is quasi-projective, the Gromov–Witten and Donaldson–Thomas theories may not
be well-defined. However, if X is the total space of a rank 2 bundle over a nonsingular
projective curve,

N ! C;

local Gromov–Witten and Donaldson–Thomas theories are defined via equivariant
residues (see Bryan–Pandharipande [4] and Maulik et al [24]).

The Gromov–Witten and Donaldson–Thomas theories of X relative to a nonsingular
surface

S �X

are defined via moduli spaces of maps and sheaves with boundary conditions along S .
See Eliashberg–Givental–Hofer [6], Ionel–Parker [12], Li–Ruan [16], Li [17; 18] and
Maulik et al [25] for various treatments of the subject.
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1504 A Okounkov and R Pandharipande

If X is the total space of a rank 2 bundle, a natural set of surfaces is determined by the
fibers of N over points of C . The data

(1) .N ! C; p1; : : : ;pr /

determine relative local Gromov–Witten and Donaldson–Thomas theories of N over
C .

The local theory of curves refers to all relative local Gromov–Witten and Donaldson–
Thomas theories1 specified by data of type (1). The main result of the paper is a proof
of the Gromov–Witten/Donaldson–Thomas correspondence for the local theory of
curves.

The local Gromov–Witten theory of curves is determined in Bryan–Pandharipande [4].
Our focus here is on the local Donaldson–Thomas theory of curves. The paper has at
least three motivations:

(i) local curves provide a rich class of non-toric examples of the GW/DT correspon-
dence,

(ii) the proof yields a computation of the 1–legged equivariant vertex,

(iii) the correspondence for local curves will likely play a basic role in the proof of
the GW/DT correspondence for all 3–folds.

The 1–legged equivariant vertex (ii) contains the Calabi–Yau 1–legged vertex governed
by the Gopakumar–Mariño–Vafa formula (see Liu–Liu–Zhou [21], Mariño–Vafa [23]
and Okounkov–Pandharipande [29]) as a special case. The computation of the 1–legged
equivariant vertex may be viewed as a Hodge integral result on the Gromov–Witten
side or a vertex measure result on the Donaldson–Thomas side.

The main foundational reference for Donaldson–Thomas theory in algebraic geometry
is Thomas [34], see also Maulik et al [24]. The required foundational development
of relative Donaldson–Thomas theory has yet to be written.2 We will assume two
basic properties of relative Donaldson–Thomas theory: existence and degeneration (see
Maulik et al [25]).

1.2 Definitions

1.2.1 Ideal sheaves Let C be a nonsingular projective curve, and let N be the total
space of a rank 2 bundle,

N ! C:

1We study here theories with no internal insertions.
2See Li–Wu [19] for recent developments.
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The local Donaldson–Thomas theory of curves 1505

Let In.N; d/ denote the moduli space of of ideal sheaves

0 �! IZ �!ON �!OZ �! 0

of proper subschemes Z �N of degree d and Euler characteristic

nD �.OZ /:

The degree of Z is simply the length of the intersection

Z \Np;

where p 2 C is a generic point.

1.2.2 Partition functions If N decomposes as a direct sum of line bundles,

(2) N DL1˚L2;

the splitting determines a scaling action of a 2–dimensional torus T on N . The level
of the splitting is the pair of integers .k1; k2/ where,

ki D deg.Li/:

Of course, the scaling action and the level depend upon the splitting (2).

Since every T –fixed proper subscheme Z must be supported on the zero section of
N , the T –fixed point set

In.N; d/
T
� In.N; d/

is proper.

The moduli space In.N; d/ carries a T –equivariant perfect obstruction theory ob-
tained from (traceless) Ext0.I; I/, see Thomas [34]. Though N is quasi-projective,
Ext0.I; I/ is well-defined since the associated quotient scheme Z � N is proper.
Alternatively, for any T –equivariant compactification,

N � xN ;

the obstruction theory on
In.N; d/� In. xN ; d/

is obtained by restriction.

The definition of the local Donaldson–Thomas invariants of N follows the strategy of
Bryan–Pandharipande [4] and Maulik et al [24]. We define Z.N /d formally by:

(3) Z.N /d “D ”
X
n2Z

qn

Z
ŒIn.N;d/�vir

1:

Geometry & Topology, Volume 14 (2010)
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The variable q indexes the Euler characteristic n. The integral on the right of (3) is
well-defined by the virtual localization formula as an equivariant residue.

Definition 1 The partition function for the degree d local Donaldson–Thomas invari-
ants of N is defined by:

(4) Z.N /d D
X
n2Z

qn

Z
ŒIn.N;d/T �vir

1

e.Normvir/
:

The T –fixed part of the perfect obstruction theory for In.N; d/ induces a perfect ob-
struction theory for In.N; d/

T and hence a virtual class (see Graber–Pandharipande [9]
and Maulik et al [24]). The equivariant virtual normal bundle of the embedding,

In.N; d/
T
� In.N; d/;

is Normvir with equivariant Euler class e.Normvir/. The integral in (4) denotes equi-
variant push-forward.

Following the notation of Maulik et al [24; 25], Z.N /d is unprimed since the degree
0 contributions have not yet been removed. Since a geometrical method of removing
the degree 0 contribution from Donaldson–Thomas theory is not available, a formal
method is followed.

Definition 2 The reduced partition function Z0
DT
.N /d for the degree d local Don-

aldson–Thomas invariants of N is defined by:

Z0.N /d D
Z.N /d

Z.N /0
:

The residues defined by the localization formula take values in the localized T –
equivariant cohomology of a point,Z

ŒIn.N;d/T �vir

1

e.Normvir/
2Q.t1; t2/:

Here, t1; t2 are the weights of the standard representations of the factors of T .

If N is an indecomposable rank 2 vector bundle, the total space of N admits a scaling
action of a 1–dimensional algebraic torus. The local Donaldson–Thomas theory of N

can be defined as above with respect to the 1–dimensional scaling torus. However, since
every indecomposable bundle N is deformation equivalent to a split bundle over C ,
the indecomposable case is recovered from the split case via restriction to the diagonal
torus.

In our study of the local Donaldson–Thomas theory of N , we will always assume a
splitting (2) of N and an action of a 2–dimensional scaling torus T .

Geometry & Topology, Volume 14 (2010)
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1.2.3 Relative geometry The fiber of N over a point p 2 C determines a T –
equivariant divisor

Np �N

isomorphic to C2 with the standard T –action. We will consider the local theories of
N relative to the divisor

S D

r[
iD1

Npi
�N

determined by the fibers over p1; : : : ;pr 2 C .

Let In.N=S; d/ denote the relative moduli space of ideal sheaves, see Li [18] and
Maulik et al [25] for a discussion. The construction of In.N=S; d/, and the existence
of a canonical T –equivariant Ext0.I; I/ obstruction theory will be assumed here.

For each pi , let �i be a partition of d weighted by the equivariant Chow ring,

A�T .Npi
;Q/ŠQŒt1; t2�;

of the fiber Npi
. By Nakajima’s construction, a weighted partition �i determines a

T –equivariant class
C�i 2A�T .Hilb.Npi

; d/;Q/

in the Chow ring of the Hilbert scheme of points. In Donaldson–Thomas theory, the
weighted partition �i specifies relative conditions via the boundary map

�i W In.N=S; d/! Hilb.Npi
; d/:

An element � 2 P.d/ of the set of partitions of d may be viewed as a weighted
partition with all weights set to the identity class 12H�

T
.Npi

;Q/. The Nakajima basis
of A�

T
.Hilb.Npi

; d/;Q/ consists of identity weighted partitions indexed by P.d/. The
T –equivariant intersection pairing in the Nakajima basis is:Z

Hilb.Npi
;d/

C�[C� D
1

.t1t2/`.�/

.�1/d�`.�/

z.�/
ı�;� ;

where

z.�/D

`.�/Y
iD1

�i � jAut.�/j:

The notation �.Œ0�/ will be used to set all weights to Œ0� 2A�
T
.Npi

;Q/. Since

Œ0�D t1t2 2A�T .Npi
;Q/;

the weight choice has only a mild effect.

Geometry & Topology, Volume 14 (2010)



1508 A Okounkov and R Pandharipande

Following the notation of Bryan–Pandharipande [4] and Maulik et al [25], the relative
local Donaldson–Thomas partition function,

Z.N=S/d;�1;:::;�r D

X
n2Z

qn

Z
ŒIn.N=S;d/T �vir

Qr
iD1 �

�
i .C�i /

e.Normvir/
;

is well-defined. Let

Z0.N=S/d;�1;:::;�r D
Z.N=S/d;�1;:::;�r

Z.N=S/0
:

denote the reduced relative partition function.

1.3 Degeneration

Simpler notation for the partition functions will often be used. If N is split with level
.k1; k2/ over a genus g base curve C , then let

Z.gjk1; k2/d;�1;:::;�r D Z.N=S/d;�1;:::;�r ;

Z0.gjk1; k2/d;�1;:::;�r D Z0.N=S/d;�1;:::;�r :

For many formulas, the q–shifted function,

DT.gjk1; k2/d;�1;:::;�r D q�d.1�g/Z0.gjk1; k2/d;�1;:::;�r ;

will be more convenient. In the relative cases, the redundant degree subscript d will
often be dropped.

Let
a

d be the inverse of the T –equivariant intersection form of the Nakajima basis of
Hilb.C2; d/,

(5)
i

d

.�; �/D .�1/d�`.�/.t1t2/
`.�/z.�/ ı�;� :

The indices of the DT partition function are raised by
a

d :

DT.gjk1; k2/
�1;:::;�t

�1;:::;�s D DT.gjk1; k2/�1;:::;�s ;�1;:::;�t

tY
iD1

i

d

.�i ; �i/:

All the partition functions discussed here lie in the ring Q.t1; t2/..q// of Laurent series
in q .

The degeneration formulas for the local Donaldson–Thomas theory of curves are
conveniently expressed in terms of the DT partition functions:

DT.gjk1; k2/
�1;:::;�t

�1;:::;�s D

X



DT.g0jk 01; k
0
2/



�1;:::;�sDT.g
00
jk 001 ; k

00
2 /
�1;:::;�t


 ;

Geometry & Topology, Volume 14 (2010)
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where g D g0Cg00 , and ki D k 0i C k 00i , and

DT.gjk1; k2/�1;:::;�s D

X



DT.g� 1jk1; k2/



�1;:::;�s ;

;

see Maulik et al [25] for a discussion. The above degeneration formulas will be assumed
here.

1.4 Localization

Our localization formulas trace their origins to Bott’s remarkable paper [1] with many
stops along the way.

The virtual localization formula of Graber–Pandharipande [9], proven in the abstract
setting of perfect obstruction theories, applies to the Donaldson–Thomas virtual class.
Applications in absolute Donaldson–Thomas theory (without relative conditions) are
treated foundationally in Maulik et al [24]. Applications in the relative setting follow
from the existence of a T –equivariant Ext0.I; I/ obstruction theory.

1.5 GW/DT correspondence

Let N be the a rank 2 bundle over a genus g curve C with splitting of level .k1; k2/.
The GW/DT correspondence for the local theory of curves consists of three results.

First, the relative local degree 0 series of N is determined in terms of the McMahon
function,

M.q/D
Y
n�1

1

.1� qn/n
;

the generating series for 3–dimensional partitions.

Theorem 1 The degree 0 Donaldson–Thomas partition function is determined by:

Z.N=S/0 DM.�q/
R

N c3.TN Œ�S �˝KN ŒS �/:

Here, TN Œ�S � is the sheaf of tangent fields on N with logarithmic zeros, KN ŒS �

is the logarithmic canonical bundle, and the integral in the exponent is defined via
localization on N ,Z

N

c3.TN Œ�S �˝KN ŒS �/D

Z
C

c3.TN Œ�S �˝KN ŒS �/

e.N /

D .2g� 2C r/
.t1C t2/

2

t1t2
� .k1C k2/;

Geometry & Topology, Volume 14 (2010)
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where r is the number of relative points on C .

Second, the reduced Donaldson–Thomas series are proven to satisfy a basic rationality
condition.

Theorem 2 The reduced series Z0.N=S/d;�1;:::;�r is a rational function in the variables
t1 , t2 , and q .

Finally, the local Gromov–Witten theory and the local Donaldson–Thomas theories of
curves are proven to exactly match.

Theorem 3 After the change of variables eiu D�q ,

.�iu/d.2�2gCk1Ck2/�ıZ0GW .N=S/d;�1;:::;�r D

.�q/�
d
2
.2�2gCk1Ck2/Z0DT .N=S/d;�1;:::;�r ;

For the Gromov–Witten side, we follow the definitions and notations of Bryan–Pandhar-
ipande [4]. In particular,

ı D

rX
iD1

d � `.�i/:

1.6 Method

Theorems 1–3 are proven by solving the local Donaldson–Thomas theory of curves.
The GW/DT correspondence is obtained by matching the Gromov–Witten results of
[4] with the Donaldson–Thomas results here.

The solution of the local Donaldson–Thomas theory of curves follows the TQFT
strategy of [4]. The first step is the determination of the level .0; 0/ theory of P1 .
In the Gromov–Witten case, integral evaluations over the moduli space of curves are
required [4]. Parallel Donaldson–Thomas integrals are evaluated here via connections
to the quantum cohomology of the Hilbert scheme points of the plane. Next, the level
.�1; 0/ theory of P1 is determined by a direct calculation. Together, the results solve
the local Donaldson–Thomas theory of curves and prove the GW/DT correspondence.

The GW/DT correspondence for the local theory of curves has been studied in the
absolute case for the anti-diagonal action by Y Song. The correspondence for P2 –
bundles over curves is closely related (see Gholampour [7] and Gholampour–Song [8]).

Geometry & Topology, Volume 14 (2010)
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1.7 Quantum cohomology of Hilb.C2;d/

For �;�; � 2 P.d/, define the series h�;�; �iHilbd of genus 0, 3–pointed, T –equivar-
iant Gromov–Witten invariants of Hilb.C2; d/ by a sum over curve degrees

h�;�; �iHilbd D

X
n�0

qn
h�;�; �i

Hilbd

0;3;n
:

The insertions on the right stand for Nakajima basis elements. See Okounkov–Pandhar-
ipande [31] for a complete discussion of the Gromov–Witten invariants of the Hilbert
scheme Hilb.C2; d/.

The results of [31] together with our calculation of the local Donaldson–Thomas theory
of curves yields a Donaldson–Thomas/Hilbert correspondence.

Theorem 4 DT.0j0; 0/d;�;�;� D h�;�; �i
Hilbd :

Our results complete the triangle of equivalences studied in the earlier papers:

Quantum cohomology of Hilbd .C
2/ [31]

Gromov–Witten theory of P1 �C2 [4] Donaldson–Thomas theory of P1 �C2

A fourth vertex of equivalence is obtained from the orbifold quantum cohomology of
the stack symmetric product .C2/d=†d , see Bryan–Graber [2].
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2 Degree 0

2.1 Vertex measures

The degree 0 calculation of the local Donaldson–Thomas theory of curves is easily
obtained from the results of Maulik et al [24; 25]. Let

(6) W.∅;∅;∅/DM.�q/
�
.s1Cs2/.s1Cs3/.s2Cs3/

s1s2s3

Geometry & Topology, Volume 14 (2010)
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denote the generating series of the equivariant vertex measures of finite 3–dimensional
partitions at a 3–fold fixed point with tangent weights s1; s2; s3 . Let

(7) W.∅;∅;∅/S DM.�q/
�

s2Cs3
s1

denote series of the finite vertex measures at a 3–fold fixed point on a relative divisor
S with normal weight s1 and tangent weights s2; s3 .

The evaluations (6) and (7) are Theorem 1 and Corollary 1 of [25] with an appropriate
adjustment of signs to match the conventions here.

2.2 Localization

Let S denote the 1–dimension torus acting on P1 with respective tangent weights s

and �s at the fixed points 0;12 P1 .

Let N DL1˚L2 be a splitting of level .k1; k2/ over P1 . The S –action on P1 can
be lifted to N with fiber weights .k1s; k2s/ over 0 2 P1 and fiber weights .0; 0/ over
1 2 P1 . Since the scaling T –action on N commutes with S , the 3–dimensional
torus,

TD S �T;

acts on N .

We may calculate the degree 0 Donaldson–Thomas series Z.0jk1; k2/0 via virtual
localization with respect to T, see Graber–Pandharipande [9] and Maulik et al [24; 25].
By the evaluation of the finite vertex measure (6),

Z.0jk1; k2/0 D
h
W.∅;∅;∅/

ˇ̌
s; t1Ck1s; t2Ck2s

�W.∅;∅;∅/
ˇ̌
�s;t1;t2

i
sD0

DM.�q/
�2

.t1Ct2/
2

t1t2
�.k1Ck2/:

The series Z.0jk1; k2/0;∅ relative to 12 P1 is also determined by virtual localization.
Here, measure (6) arises at the T–fixed point over 0, and measure (7) arises at the
T–fixed point over 1 of the relative divisor:

Z.0jk1; k2/0;∅ D
h
W.∅;∅;∅/

ˇ̌
s; t1Ck1s; t2Ck2s

�W.∅;∅;∅/N1
ˇ̌
�s;t1;t2

i
sD0

DM.�q/
�
.t1Ct2/

2

t1t2
�.k1Ck2/:

By the above evaluations, the proof of Theorem 1 is complete for the cases Z.0jk1; k2/0
and Z.0jk1; k2/0;∅ .
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2.3 Degeneration

The degeneration formulas for the degree 0 theory take the following two forms:

Z.gjk1; k2/0;∅; : : : ;∅„ ƒ‚ …
r

D Z.g0jk 01; k
0
2/0;∅; : : : ;∅„ ƒ‚ …

r 0

;∅ �Z.g
00
jk 001 ; k

00
2 /0;∅;∅; : : : ;∅„ ƒ‚ …

r 00

;

where g D g0Cg00 , ki D k 0i C k 00i , r D r 0C r 00 , and

Z.gjk1; k2/0;∅; : : : ;∅„ ƒ‚ …
r

D Z.g� 1jk1; k2/0;∅; : : : ;∅„ ƒ‚ …
r

;∅;∅:

The first degeneration formula yields a recursive equation for r � 2:

Z.0jk1; k2/0;∅; : : : ;∅„ ƒ‚ …
r

D Z.0jk1; k2/0;∅; : : : ;∅„ ƒ‚ …
r�1

ı
Z.0j0; 0/0;∅:

From the r D 0; 1 cases, we deduce

Z.0jk1; k2/0;∅; : : : ;∅„ ƒ‚ …
r

DM.�q/
.�2Cr/

.t1Ct2/
2

t1t2
�.k1Ck2/:

Finally, Theorem 1 is obtained for g > 0 by applications of the second degeneration
formula.

3 TQFT

3.1 Overview

The degeneration structure of local Donaldson–Thomas theory of curves is most con-
cisely formulated as a functor of tensor categories,

DT.�/W 2CobL1;L2 !Rmod:

Our treatment here exactly follows the TQFT construction in Bryan–Pandharipande [4]
for the local Gromov–Witten theory of curves. A more detailed discussion can be found
there.

3.2 2CobL1;L2

The objects of the category 2CobL1;L2 are compact oriented 1–manifolds. A morphism
in 2CobL1;L2 ;

Y1! Y2;

Geometry & Topology, Volume 14 (2010)
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is an equivalence class of triples .W;L1;L2/ where W is an oriented cobordism from
Y1 to Y2 and L1;L2 are complex line bundles on W , trivialized on @W . The triples
.W;L1;L2/ and .W 0;L0

1
;L0

2
/ are equivalent if there exists a boundary preserving

oriented diffeomorphism,
f W W !W 0;

and bundle isomorphisms
Li Š f

�L0i :

Composition is given by concatenation of the cobordisms and gluing of the bundles
along the concatenation using the trivializations.

The isomorphism class of Li is determined by the Euler class

e.Li/ 2H 2.W; @W /;

which assigns an integer to each component of W . For a connected cobordism W , we
refer to the pair of integers .k1; k2/, determined by the Euler classes of L1 and L2 ,
as the level. Under concatenation, the levels simply add. For example:

.2; 0/ .�4;3/

.7;�3/
.�3;1/

.2; 1/

The empty manifold is a distinguished object in 2CobL1;L2 . A morphism in 2CobL1;L2

from the empty manifold to itself is given by a compact, oriented, closed 2–manifold
X together with a pair of complex line bundles L1˚L2!X .

The category 2CobL1;L2 is generated by the following finite set of morphisms [4]:

.0; 0/

.0; 0/ .0; 0/

.0; 0/

.0; 0/

.0; 0/ .0; 0/

.0; 1/ .1; 0/ .0;�1/ .�1; 0/

Geometry & Topology, Volume 14 (2010)
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3.3 The functor DT.�/

Let R be the ring of Laurent series in q with coefficients given by rational functions
in t1 and t2 ,

RDQ.t1; t2/..q//:

The collection of partition functions DT.gjk1; k2/�1;:::;�r of degree d gives rise to a
functor

DT.�/W 2CobL1;L2 !Rmod

as follows. Define
DT.S1/DH D

M
�`d

Re�

to be the free R–module with basis fe�g�`d labelled by partitions of d , and let

DT
�
S1
a
� � �

a
S1
�
DH ˝ � � �˝H:

Let W t
s .gjk1; k2/ be the connected genus g cobordism from a disjoint union of s

circles to a disjoint union of t circles, equipped with lines bundles L1 and L2 of level
.k1; k2/. We define the R–module homomorphism

DT
�
W t

s .gjk1; k2/
�
W H˝s

!H˝t

by

e�1 ˝ � � �˝ e�s 7!

X
�1:::�t`d

DT.gjk1; k2/
�1;:::;�t

�1;:::;�s e�1 ˝ � � �˝ e�t :

We extend the definition of DT.�/ to disconnected cobordisms by tensor product:

DT
�
W Œ1�

a
� � �

a
W Œn�

�
D DT .W Œ1�/˝ � � �˝DT.W Œn�/ :

Proposition 3 DT.�/W 2CobL1;L2 !Rmod is a well-defined functor.

Proof The degeneration formula of Donaldson–Thomas theory (see Maulik et al [25])
implies the following compatibility:

DT
�
.W;L1;L2/ ı .W

0;L01;L
0
2/
�
D DT.W;L1;L2/ ıDT.W 0;L01;L

0
2/:

We must also prove DT.�/ takes identity morphisms to identity morphisms. Since the
tube W 1

1
.0j0; 0/ is the identity morphism from S1 to S1 in 2CobL1;L2 , we require

(8) DT.0j0; 0/�� D ı
�
�:

Equation (8) is proven in Lemma 4 below.
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Lemma 4 DT.0j0; 0/�� D ı
�
�:

Proof Let N DOP1˚OP1 be the trivial bundle with level .0; 0/ splitting on P1 . The
moduli space Id .N=N0[N1; d/ is isomorphic to the Hilbert scheme Hilb.C2; d/.
The q–constant terms of DT.0j0; 0/�;� are therefore determined by the intersection
form in the Nakajima basis:

DT.0j0; 0/�;� D
1

.t1t2/`.�/

.�1/d�`.�/

z.�/
ı�;� :

Hence, the Lemma is proven for q–constant terms.

The degeneration formula in Donaldson–Thomas theory yields the following factoriza-
tion X

�

DT.0j0; 0/��DT.0j0; 0/
�
� D DT.0j0; 0/��:

Since the matrix DT.0j0; 0/�� is invertible by the q–constant analysis, DT.0j0; 0/��
must be the identity matrix (with no q–dependence).

4 Vanishing

4.1 Summary

Consider the local Donaldson–Thomas theory of level .0; 0/ on a nonsingular curve
C . Let

T DC� �C�

be the 2–dimensional scaling torus. Let T˙ denote the 1–dimensional anti-diagonal
subtorus,

T˙ D f.�; ��1/ j � 2C�g � T:

The T˙–equivariant Donaldson–Thomas invariants are obtained from the T –equivari-
ant invariants by the substitution

t1 D t; t2 D�t;

where t is the weight of the standard representation of T˙ . We prove vanishing results
for the T˙–equivariant Donaldson–Thomas invariants of level .0; 0/.
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4.2 Descendent insertions

Let N be a split rank 2 bundle on a nonsingular curve C with a scaling T –action. We
will consider the local Donaldson–Thomas theory of N with descendent insertions.
We review the definitions of Maulik et al [25].

The moduli space In.N; d/ is canonically isomorphic to the Hilbert scheme of curves
of N . Let �1 and �2 denote the projections to the respective factors of In.N; d/�N .
Consider the universal ideal sheaf I,

I! In.N; d/�N:

Since I is �1 –flat and N is nonsingular, a finite resolution of I by locally free sheaves
on In.N; d/�N exists. Hence, the Chern classes of I are well-defined.

For 
 2Al
T
.N;Q/, let chkC2.
 / denote the following operation on the Chow homol-

ogy of In.N; d/:

chkC2.
 /W A
T
� .In.N; d/;Q/!AT

��kC1�l.In.N; d/;Q/;

chkC2.
 /
�
�
�
D �1�

�
chkC2.I/ ��

�
2 .
 /\�

�
1 .�/

�
:

Though �1 is not proper, the T –equivariant push-forward �1� is well-defined by
localization.

Descendent fields in Donaldson–Thomas theory, denoted by �k.
 /, correspond to the
operations chkC2.
 /. The T –equivariant descendent invariants are defined by

(9)
˝
�k1

.
l1
/ � � � �kr

.
lr
/
˛N
n;d
D

Z
ŒIn.N;d/T �vir

Qr
iD1 chkiC2.
li

/

e.Normvir/
;

where the latter integral is the push-forward to a point of the class

chk1C2.
l1
/ ı � � � ı chkrC2.
lr

/

�
ŒIn.N; d/

T �vir

e.Normvir/

�
:

The descendent invariants of N may be viewed equivalently as equivariant residues:

˝
�k1

.
l1
/ � � � �kr

.
lr
/
˛N
n;d
D ResIn.N;d/T

� Z
ŒIn.N;d/�vir

rY
iD1

chkiC2.
li
/

�
:

The definition of T –equivariant descendent invariants in relative Donaldson–Thomas
theory of N is identical. The boundary condition over a relative point pi 2 C is
determined by a partition �i weighted by H�

T
.Npi

;Q/.

Brackets with relative conditions on the right will often be used. For example,

(10)
˝
�k1

.
l1
/ � � � �kr

.
lr
/
ˇ̌
�1; : : : ; �s

˛N
n;d
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denotes a descendent invariant relative to s points of C .

4.3 Brackets

Efficient bracket notation for Donaldson–Thomas invariants will be used throughout
the paper.

For absolute brackets (without relative conditions), the degree subscript d is always
required. If the Euler characteristic subscript n is omitted, a sum is signified,DY

i

�ki
.
li

/
EN
d
D

X
n

qn
DY

i

�ki
.
li

/
EN
n;d
:

If a relative condition occurs in a bracket, the degree subscript is redundant and therefore
may be omitted, DY

i

�ki
.
li

/
ˇ̌̌
�
EN
n
D

DY
i

�ki
.
li

/
ˇ̌̌
�
EN
n;j�j

:

If all subscripts in a relative bracket are omitted, a sum is signified,DY
i

�ki
.
li

/
ˇ̌̌
�
EN
D

X
n

qn
DY

i

�ki
.
li

/
ˇ̌̌
�
EN
n;j�j

;

as in the absolute case.

Most of our Donaldson–Thomas computations will concern the local theory of P1 . If
the superscript N is replaced by a level .k1; k2/, the theory of P1 is signified,DY

i

�ki
.
li

/
ˇ̌̌
�
E.m1;m2/

D

DY
i

�ki
.
li

/
ˇ̌̌
�
EOP1 .m1/˚OP1 .m2/

:

If the superscript is omitted altogether, then the level .0; 0/ theory of P1 is signified,DY
i

�ki
.
li

/
ˇ̌̌
�
E
D

DY
i

�ki
.
li

/
ˇ̌̌
�
E.0;0/

:

Of course, redundant labels may be kept in various formulas for emphasis.

4.4 Restriction to T ˙

Consider the level .0; 0/ theory on a nonsingular curve C . Since the T˙–fixed locus of
In.OC ˚OC ; d/ is proper, the T˙–equivariant descendent invariants are well-defined
by residues. The restriction of the T –equivariant descendent invariants to T˙ yield
the T˙–equivariant descendent invariants. The restriction to T˙ can also be seen to
be well-defined by the following more precise result.
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Lemma 5 The relative T –equivariant descendent invariants of level .0; 0/ on C take
values in the subring

QŒt1; t2�.t1t2/ �Q.t1; t2/:

Proof Let N DOC ˚OC . As before, let

J!N

denote the universal ideal sheaf over the universal total space

N ! In.N=S; d/:

Since N D C �C2 , there is a proper morphism

�W N ! In.N=S; d/�C2:

Moreover, ��.ON =J/ is flat family over In.N=S; d/ of torsion sheaves of C2 of
length n if the genus of C is 0. There is an associated morphism of Hilbert–Chow
type,

�W In.N=S; d/! Symn.C2/:

If the genus gC > 0, a parallel construction yields

�W In.N=S; d/! SymnCdgC .C2/:

A T –equivariant, proper morphism,

�0W SymnCdgC .C2/!˚
nCdgC

1
.C2/;

is obtained via the higher moments,

�0
�
f.xi ;yi/g

�
D

�X
i

xi ;
X

i

yi

�
˚

�X
i

x2
i ;
X

i

y2
i

�
˚� � �˚

�X
i

x
nCdgc

i ;
X

i

y
nCdgc

i

�
:

Let j D �0 ı �.

Since j is a T –equivariant, proper morphism, there is T –equivariant push-forward

j�W A
T
� .In.N=S; d/;Q/!AT

� .˚
nCdgC

1
.C2/;Q/:

Descendent invariants are defined via the T –equivariant residue of�Y
i

chki
.
li

/[ �rel

�
\ ŒIn.N=S; d/�

vir
2AT
� .In.N=S; d/;Q/;
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where �rel denotes the relative conditions. We may instead calculate the T –equivariant
residue of

j�

��Y
i

chki
.
li

/[ �rel

�
\ ŒIn.N=S; d/�

vir
�
2AT
� .˚

nCdgC

1
.C2/;Q/:

Since the space ˚nCdgC

1
.C2/ has a unique T –fixed point with tangent weights,

t1; t2; 2t1; 2t2; : : : ; .nC dgC /t1; .nC dgC /t2;

we conclude the descendent invariant has only monomial poles in the variables t1 and
t2 .

We denote the restriction of the T –equivariant descendent invariants to the anti-diagonal
subtorus by an additional superscript ˙. For example, the restriction of (10) is denoted
by ˝

�k1
.
l1

/ � � � �kr
.
lr

/
ˇ̌
�1; : : : ; �s

˛N˙
n;d

:

4.5 Absolute P1

The bundle N DOP1 ˚OP1 admits a natural action of the 3–dimensional torus,

TD S �T;

via the canonical lifting of S , see Section 2.2. The T –equivariant descendent invariants
of N can be calculated by localization on In.N; d/ with respect to the T–action.

The localization of the virtual class ŒIn.N; d/�
vir to the T–fixed points of In.N; d/ is

determined by the formulas of Maulik et al [24; 25] in terms of vertex and edge terms.

Consider first the vertex terms. Let ….�;∅;∅/ be the set of 3–dimensional partitions
with outgoing 2–dimensional partitions �, ∅, and ∅. The partitions � 2….�;∅;∅/
are finite in two of the three outgoing directions. The generating series W.�;∅;∅/ is
defined by

W.�;∅;∅/D
X

�2….�;∅;∅/

w.�/qj�j:

Here, w.�/ is the equivariant vertex measure, and j�j is the number of boxes of �
which remain after removing the infinite outgoing cylinder [24; 25].

Lemma 6 For � 2….�;∅;∅/ satisfying j�j>0, the measure w.�/js;t1;t2
is divisible

by t1C t2 .
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Proof The proof exactly follows the derivation of [25, Lemma 4]. We determine here
the precise positive power of t1C t2 dividing the measure w.�/js;t1;t2

.

Let � and � be two partition diagrams satisfying ���. The difference �=� between
� and � is a skew diagram. The content c.�/ of a square of a partition diagram with
coordinates .i; j / is defined by

c.�/D j � i :

A rim hook is a connected skew diagram which does not contain two squares of equal
content.

For any skew diagram �=� there is a minimal integer r for which

�D �0 � �1 � � � � � �r D �

and each �kC1=�k is a rim hook. The minimal r is the rank of �=�. The rank can be
determined by repeatedly peeling off maximal rim hooks from �. The process can be
seen in a rank 4 example:

Let ak be the number of squares in �=� of content k . The rank is determined in terms
of ak by

(11) rank�=�D
1

2

X
k

jak � akC1j

since the right side of (11) receives contributions from the beginning and end of every
rim hook. Since each summand in (11) is either 0 or 1, each term can be squared

(12) rank�=�D
1

2

X
k

.ak � akC1/
2 :

A 3–dimensional partition with one leg of profile � can be viewed as a sequence of
slices by planes perpendicular to the direction of the leg:

�0
� �.1/ � �.2/ � �.M /

D � � � D �.1/ D � ; M � 0 :
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The order of divisibility of w.�/js;t1;t2
by t1C t2 is

(13) ord.t1Ct2/ w.�/js;t1;t2
D

1X
kD0

rank�.k/=�.kC1/ ;

where, in fact, only finitely many terms are nonzero. Formula (13) is a direct conse-
quence of (12) and the proof of [25, Lemma 4].

The T–fixed points of In.N; d/ are isolated and correspond bijectively to triples
.�; �; � 0/ where �; � 0 2….�;∅;∅/ and

j�jC j� 0j D n� j�j:

The vertex partitions �; � 0 determine the nonreduced structure of the T–fixed ideal over
0;12 P1 . The edge partition � determines the nonreduced structure over P1 nf0;1g.

The T–equivariant localization of the virtual class ŒIn.N; d/�
vir to the fixed point

.�; �; � 0/ is

(14) w.�/js;t1;t2
�E.�/ �w.� 0/j�s;t1;t2

;

where the edge terms E.�/ are the (inverse) tangent T –weights to Hilb.C2; j�j/ at
the T –fixed point indexed by �. The edge terms are easily seen to be prime to t1C t2 .

By Lemma 6, the localization (14) vanishes when restricted to the anti-diagonal torus
T˙ if either j�j or j� 0j are positive.

Lemma 7 For n> d , ˝
�k1

.
l1
/ � � � �kr

.
lr
/
˛OP1˚OP1˙

n;d
D 0:

Proof The result is a consequence of the vanishing (14) of the virtual class when
localized to the T–fixed points (and restricted to T˙ ). The descendent integrand plays
no role.

Lemma 7 is the first vanishing result for the T˙–equivariant Donaldson–Thomas
invariants of level .0; 0/.

4.6 The matrix Md

Let N DOP1 ˚OP1 be the trivial bundle with level .0; 0/ splitting over P1 . Let N0

denote the fiber of N over 0 2 P1 . Let

ŒN0� 2A1
T .N;Q/
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The local Donaldson–Thomas theory of curves 1523

be the associated class.

We define a matrix Md of descendent invariants of N relative to N1 indexed by the
set P.d/ of partitions of d . For partitions �; � 2 P.d/, let

Md .�; �/D q�d

�Y
i

��i�1.ŒN0�/

ˇ̌̌̌
�.Œ0�/

�N

;

following the bracket conventions of Section 4.3. The partition � specifies a descendent
insertion, and the partition � specifies a relative condition along N1 . Since, the
minimal Euler characteristic of a degree d subscheme of N is d , the elements of Md

lie in the ring QŒt1; t2�.t1t2/JqK.

Define the length partial order on P.d/ by the following rule: �� �0 if `.�/ > `.�0/
or if �D �0 .

Lemma 8 Md is upper triangular with respect to the length partial ordering.

Proof Let N � xN denote the T –equivariant compactification over P1 defined by

xN D P.N ˚OP1/:

Here, T acts trivially on the additional OP1 . We will only consider the curve classes
on xN obtained from N .

Let xN1 denote the fiber of the compactification over 12 P1 . Let

0"; 0! 2 xN1

be the two new T –fixed points with normal T –weights

t1� t2;�t2; and t2� t1;�t1

respectively.

By the residue definition, the T –equivariant Donaldson–Thomas descendent invariant

(15)
�Y

i

��i�1.ŒN0�/

ˇ̌̌̌
�.Œ0�/

�N

n

occurs as a summand in the localization computation of the T –equivariant descendent

(16)
�Y

i

��i�1.Œ xN0�/

ˇ̌̌̌
�.Œ0�/

� xN
n

for any partition � — not necessarily a partition of d .
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The virtual dimension of the moduli space In. xN = xN1; d/ is 2d . The integrand and
relative constraints of (16) impose

j�j � `.�/C d C `.�/

conditions. Therefore, since xN is proper, the integral (16) vanishes if

j�j � `.�/C `.�/ < d:

The T –localization formula expresses (16) as the following sum of triple products of
relative local Donaldson–Thomas invariants of N :

(17)
X

n0Cn"Cn!Dn

X
A0[A"[A!Df1;:::;`.�/g

� Y
i2A0

��i�1.ŒN0�/

ˇ̌̌̌
�.Œ0�/

�N

n0

�

� Y
i2A"

��i�1.ŒN0�/

ˇ̌̌̌
∅
�N

n"

ˇ̌̌̌
t1�t2;�t2

�

� Y
i2A!

��i�1.ŒN0�/

ˇ̌̌̌
∅
�N

n!

ˇ̌̌̌
t2�t1;�t1

:

The relative localization formula is applied with a factorization rule — the T –fixed
loci do not geometrically factor.3

By induction on n and `.�/, we conclude

(18)
�Y

i

��i�1.ŒN0�/

ˇ̌̌̌
�.Œ0�/

�N

n

D 0

if j�j � `.�/C `.�/ < d . In particular,

Md .�; �/D 0

if `.�/ > `.�/.

If j�j � `.�/C `.�/D d , the constraints of (16) impose exactly 2d conditions. The
nonequivariant integral

(19)
�Y

i

��i�1.Œ xN0�/

ˇ̌̌̌
�1.Œ
 �/; �2.Œ0�/; : : : ; �`.�/.Œ0�/

� xN
n

is independent of 
 2 xN1 — the parts of the relative condition over 1 are written
explicitly here. After specializing 
 to a T –fixed point of xN1 , the invariant (19) can
be computed by localization with respect to T .

3 In the absolute case, the T –fixed loci of In. xN ; d/ factor as a triple product. The T –fixed loci relative
to a fiber, In. xN = xN1; d/ do not factor. However, a factorization rule holds. Factorization can be deduced
from the relative localization formula applied to disjoint unions following the discussion of connected/
disconnected issues in relative Gromov–Witten theory in Maulik–Pandharipande [26, Section 1.8].
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If 
 is specialized to 0 2 xN1 , T –equivariant localization expresses (19), as before, as
a sum of triple product (17). The vanishing (18) removes most terms.

If 
 is specialized to 0" , the T –equivariant localization formula for (19) takes a
different form:

(20) X
n0Cn"Cn!Dn

X
A0[A"[A!Df1;:::;`.�/g

� Y
i2A0

��i�1.ŒN0�/

ˇ̌̌̌
�2.Œ0�/; : : : ; �`.�/.Œ0�/

�N

n0

�

� Y
i2A"

��i�1.ŒN0�/

ˇ̌̌̌
�1.Œ0�/

�N

n"

ˇ̌̌̌
t1�t2;�t2

�

� Y
i2A!

��i�1.ŒN0�/

ˇ̌̌̌
∅
�N

n!

ˇ̌̌̌
t2�t1;�t1

:

By repeated use of the comparison of the two evaluations of (19), we find�Y
i

��i�1.ŒN0�/

ˇ̌̌̌
�.Œ0�/

�N

n

D 0

unless there are disjoint subpartitions �Œi �� � such that

(21) j�Œi �j � `.�Œi �/C 1D �i :

If � 2 P.d/ and `.�/D `.�/, condition (21) implies �D � . Hence,

Md .�; �/D 0

if `.�/D `.�/ unless �D � .

Lemma 9 Md is invertible in the ring of matrices with QŒt1; t2�.t1t2/JqK coefficients.

Proof The minimal Euler characteristic of a degree d subscheme of N is d . Since

Id .N; d/Š Hilb.N1; d/;

the matrix of q–constant terms of Md is determined by the classical (equivariant)
intersection theory of the Hilbert scheme of points of the plane and is well-known to
be invertible.

Let M˙
d

denote the restriction of Md to the anti-diagonal torus. The following
vanishing result holds.

Lemma 10 M˙
d

has no q dependence.
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Proof Let Cd be a matrix indexed by partitions P.d/ with the coefficients

Cd .�; �/D q�d

�Y
i

��i�1.ŒN0�/ �
Y
j

��j�1.ŒN1�/

�N

d

:

The degeneration formula in Donaldson–Thomas theory, yields the factorization

(22) Md

i

d

M t
d D Cd ;

where
a

d is defined by (5). The matrix
a

d has no q dependence.

Equation (22) is obtained by a degeneration of the base to a reducible nodal curve:

1

0 1

0

The bundle N specializes to a sum of trivial bundles on the reducible curve. The
degeneration is equivariant for the scaling torus T .

The restriction C˙
d

has no q dependence by Lemma 7. The T˙–restriction of (22) is
a Gauss decomposition of C˙

d
. Uniqueness of the Gauss decomposition implies the

Lemma.

Lemma 10 can be restated as an explicit vanishing of Donaldson–Thomas invariants.
For n> d ,

(23)
�Y

i

��i�1.ŒN0�/

ˇ̌̌̌
�.Œ0�/

�OP1˚OP1˙

n;d

D 0;

where �; � 2 P.d/.
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4.7 Degeneration

Let N DOC ˚OC be the trivial bundle with level .0; 0/ splitting over a nonsingular,
genus g curve C . The class

ŒNz � 2A1
T .N;Q/

is independent of z 2 C . We will denote the fiber class ŒNz � by F .

Lemma 11 For n> d.1�g/,

(24)
DY

i

�ki
.F /

ˇ̌̌
�1; : : : ; �s

EOC˚OC˙

n;d
D 0:

Proof Since the matrix M˙
d

is invertible and has no q dependence, the relative
conditions in the Donaldson–Thomas integral (24) can be systematically traded for
descendent insertions. The Lemma is then equivalent to the vanishing for n> d.1�g/

of all absolute invariants

(25)
DY

i0

�k0
i0
.F /

EOC˚OC˙

n;d
D 0:

After degenerating C to a nodal rational curve (and again trading relative conditions
for descendent insertions), we need only prove the vanishing (25) in case C is P1 . The
latter vanishing is a consequence of Lemma 7.

4.8 Cotangent lines, rubber and topological recursion

Let N DOC ˚OC be the trivial bundle with level .0; 0/ splitting over a nonsingular
curve C . Consider the moduli space of ideal sheaves In.N=Np; d/ relative to the fiber
over p 2 C . The cotangent line bundle,

Lp! In.N=Np; d/;

is defined by the cotangent space at the relative point p of the target curve. The torus
T acts trivially on Lp . Let

 p 2A1
T .In.N=Np; d/;Q/

denote the first Chern class of Lp .

The Donaldson–Thomas theory of rubber naturally arises at the boundary of the moduli
space In.N=Np; d/. Let R be a rank 2 bundle of level .0; 0/ over P1 . Let

R0;R1 �R
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denote the fibers over 0;1 2 P1 . The 1–dimensional torus S acts on R via the
symmetries of P1 . Let In.R=R0 [R1; d/ be the relative moduli space of ideal
sheaves, and let

In.R=R0[R1; d/
ı
� In.R=R0[R1; d/

denote the open set with finite stabilizers for the S –action and no destabilization over
12 P1 . The rubber moduli space,

In.R=R0[R1; d/
�
D In.R=R0[R1; d/

ı=S;

denoted by a superscripted tilde, is determined by the (stack) quotient. The moduli
space is empty unless n> d . The rubber theory of R is defined by integration against
the rubber virtual class,

ŒIn.R=R0[R1; d/
� �vir:

All of the above rubber constructions are T –equivariant.

The rubber moduli space In.R=R0[R1; 0/
� carries cotangent lines at the dynamical

points 0 and 1 of P1 . Let

 0;  1 2A1
T .In.R=R0[R1; d/

� ;Q/

denote the associated cotangent line classes. Rubber integrals with relative conditions
� over 0 and � over 1 are denoted by the bracket

(26)
D
� j  a

0 
b
1 j �

E�
n;d

:

Cotangent line classes in Donaldson–Thomas theory of N can be removed via topo-
logical recursion relations. For the relative theory of N=[s

iD1
Npi

, the topological
recursion relation is:�Y

i

�ki
.F /

sY
jD1

 
aj
pj

ˇ̌̌̌
�1; : : : ; �s

�N

n;d

D

X
j�jDd

X
n1Cn2DnCd

�Y
i

�ki
.F /

Y
j¤1

 
aj
pj

ˇ̌̌̌
�; �2; : : : �s

�N

n1;d

�

i

d

.�; �/
˝
�
ˇ̌
 a1�1
1

ˇ̌
�1
˛�
n2;d

:

The proof follows from the degeneration formula of Donaldson–Thomas theory applied
to the boundary expression for  p1

on the Artin stack of target destabilizations. The
relative conditions away from p1 and the descendent insertions are bystanders in the
topological recursion relation.
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4.9 Rubber calculus

The rubber integrals (26) are determined via a Donaldson–Thomas rubber calculus.
The technique, following Gromov–Witten theory (see Maulik–Pandharipande [26] and
Okounkov–Pandharipande [30]), involves rigidification and topological recursion.

The universal target over the rubber moduli space is no longer a product. Let

� W R! In.R=R0[R1; d/
�

denote the universal target. The space R can be viewed as a moduli space of rubber
ideal sheaves together with a point r of the target rubber. The point r is not permitted
to lie on the relative divisors R0 and R1 . The stability condition is given by finiteness
of the associated automorphism group. The virtual class of R is obtained via � –flat
pull-back,

ŒR�vir
D ��

�
ŒIn.R=R0[R1; d/

� �vir
�
:

As before, let
J!R

denote the universal ideal sheaf on R.

The target point r together with R0 and R1 specifies 3 distinct points of the destabi-
lized P1 over which the rubber is fibered. By viewing the target point as 1 2 P1 , we
obtain a rigidification map,

�W R! In.N=N0[N1; d/;

where N DOP1 ˚OP1 is the trivial bundle with level .0; 0/ splitting over P1 . By a
comparison of deformation theories,

(27) ŒR�vir
D ��

�
ŒIn.N=N0[N1; d/�

vir
�
:

Rubber calculus transfers rubber integrals (26) to descendent integrals on rigid (non-
rubber) targets via the maps � and � . To start,

.d � n/ŒIn.R=R0[R1; d/�
vir
D ��

�
ch3.J/\ ŒR�vir

�
by a � –fiberwise calculation. Since n> d , for nonempty rubber moduli spaces, d �n

is negative. By the push-pull formula,

(28) .d � n/
˝
�
ˇ̌
 a

0 
b
1

ˇ̌
�
˛�
n;d
D
˝
�
ˇ̌

ch3.J/ �
�. a

0 
b
1/

ˇ̌
�
˛R�
n;d

:

Next, we compare the cotangent lines ��. 0/ and ��. 0/ on R. A standard argument
yields:

��. 0/D �
�. 0/��

�.D0/;
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where

D0 � In.N=N0[N1; d/

is the virtual boundary divisor for which the rubber over 1 carries Euler characteristic
n. Similarly,

��. 1/D �
�. 1/��

�.D1/:

We will apply the cotangent line comparisons to the right side of (28).

Consider the Hilbert scheme of points Hilb.R0; d/ of the relative divisor. The boundary
condition � corresponds to a Nakajima basis element of A�

T
.Hilb.R0; d/;Q/. Let J0

be the universal ideal sheaf on

Hilb.R0; d/�R0;

and let

�1 D ��
�
ch3.J0/

�
2A1

T .Hilb.R0; d/;Q/:

The class �1 in A1
T
.Hilb.R1; d/ is defined in the same way.

The cotangent line comparisons and equation (28) together yield the following result:

(29) .d � n/
˝
�
ˇ̌
 a

0 
b
1

ˇ̌
�
˛�
n;d
D˝

�
ˇ̌
�1.F /  

a
0 

b
1

ˇ̌
�
˛N
n;d
�
˝
�1 ��

ˇ̌
 a�1

0  b
1

ˇ̌
�
˛�
n;d
�
˝
�
ˇ̌
 a

0 
b�1
1

ˇ̌
�1 � �

˛�
n;d
:

The rubber integrals (26) are expressed in terms of the relative Donaldson–Thomas
theory of N with descendent insertions �k.ŒF �/ by repeated applications of equation
(29) and the topological recursion relations.

The following two vanishing statements are a consequence of the rubber calculus and
Lemma 11.

Lemma 12 For n> d.1�g/,�Y
i

�ki
.F /

sY
jD1

 
aj
pj

ˇ̌̌̌
�1; : : : ; �s

�OC˚OC˙

n;d

D 0:

Lemma 13 For n> d , ˝
�
ˇ̌
 a

0 
b
1

ˇ̌
�
˛�˙
n;d
D 0:

Geometry & Topology, Volume 14 (2010)



The local Donaldson–Thomas theory of curves 1531

4.10 Parallels

The anti-diagonal vanishing in level .0; 0/ holds for all vertices in the triangle of
equivalences of Section 1.7.

The Gromov–Witten vanishing follows easily from Mumford’s Hodge bundle relation

c.E/ � c.E_/D 1

on the moduli space of curves xMg , see Bryan–Pandharipande [4]. The Hilbert scheme
vanishing is obtained from the existence of a modified virtual class in the hyperkähler
setting. The proof requires a restriction of the obstruction theory of maps to Hilb.C2; d/,
see Okounkov–Pandharipande [31]. The Donaldson–Thomas vanishing proven here
could also be pursued via a construction of a modified virtual class.4 Instead, our
derivation proceeds formally from the equivariant vertex calculations of Maulik et
al [24; 25] using localization and degeneration.

5 Additivity

5.1 Summary

The level .0; 0/ Donaldson–Thomas theory of P1 relative to 0;1 2 P1 will play a
crucial role in the study of local curves. The main results of the Section are vanishing
and additivity properties for the invariants

(30)
˝
�
ˇ̌
�1.F /

ˇ̌
�
˛
:

We follow here the bracket conventions of Section 4.3.

The vanishing of the invariants (30) in most cases is established by the following three
results.

Lemma 14 If j`.�/� `.�/j> 1, then
˝
�
ˇ̌
�1.F /

ˇ̌
�
˛

vanishes.

Lemma 15 If j`.�/� `.�/j D 1, then
˝
�
ˇ̌
�1.F /

ˇ̌
�
˛
n;d

vanishes for n> d .

Lemma 16 If `.�/D `.�/, then
˝
�
ˇ̌
�1.F /

ˇ̌
�
˛

vanishes unless �D � .

4Recently, such vanishing arguments have appeared: see Kiem–Li [13] and Maulik–Pandharipande–
Thomas [27].
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In the diagonal case, we will obtain the form

(31)
˝
�
ˇ̌
�1.F /

ˇ̌
�
˛
n
D 
�;n.t1t2/

�`.�/.t1C t2/

for 
�;n 2 Q and prove a crucial additivity property parallel to Equation (25) of
Okounkov–Pandharipande [31].

Proposition 17 An additivity relation holds:˝
�
ˇ̌
�1.F /

ˇ̌
�
˛˝

�
ˇ̌
�
˛
j�j;j�j

D

X
i

qj�j��i

˝
�i

ˇ̌
�1.F /

ˇ̌
�i

˛˝
�i

ˇ̌
�i

˛
�i ;�i

� .`.�/ � 1/.t1 C t2/q
j�jˆ.q/ :

The bracket
˝
�
ˇ̌
�
˛
j�j;j�j

is the intersection form

˝
�
ˇ̌
�
˛
j�j;j�j

D
1

.t1t2/`.�/

.�1/d�`.�/

z.�/

in the Nakajima basis. The function ˆ.q/ is defined by

ˆ.q/D q
d

dq
log M.�q/;

where M.q/ is the MacMahon series.

5.2 Proofs of Lemmas 14 and 15

Let N DOP1 ˚OP1 be the trivial bundle with splitting of level .0; 0/. Let xN denote
the compactification of N defined in Section 4.6. The proofs are obtained from
dimensional analysis for integrals in the Donaldson–Thomas theory of xN .

By linearity, we can trade the invariants with unweighted relative conditions for weighted
relative conditions:˝

�
ˇ̌
�1.F /

ˇ̌
�
˛
D

1

.t1t2/`.�/

˝
�.Œ0�/

ˇ̌
�1.F /

ˇ̌
�
˛

D
1

.t1t2/`.�/

˝
�
ˇ̌
�1.F /

ˇ̌
�.Œ0�/

˛
By T –localization on xN and the vanishing of Lemma 4, we find˝

�.Œ0�/
ˇ̌
�1.F /

ˇ̌
�
˛ xN
n
D
˝
�.Œ0�/

ˇ̌
�1.F /

ˇ̌
�
˛
n

Cqd
˝
�.Œ0�/

ˇ̌
�
˛
d;d
�
˝
∅
ˇ̌
�1.F /

ˇ̌
∅
˛
n�d

ˇ̌
t1�t2;�t2

Cqd
˝
�.Œ0�/

ˇ̌
�
˛
d;d
�
˝
∅
ˇ̌
�1.F /

ˇ̌
∅
˛
n�d

ˇ̌
t2�t1;�t1

Geometry & Topology, Volume 14 (2010)



The local Donaldson–Thomas theory of curves 1533

If 1C `.�/� `.�/ < 0, then ˝
�.Œ0�/

ˇ̌
�1.F /

ˇ̌
�
˛ xN
n
D 0

by dimension considerations since xN is proper. If `.�/� `.�/ < 0, then˝
�.Œ0�/

ˇ̌
�
˛
d;d
D 0:

Therefore, 1C `.�/� `.�/ < 0 implies˝
�.Œ0�/

ˇ̌
�1.F /

ˇ̌
�
˛
n
D 0:

Similarly, if 1� `.�/C `.�/ < 0, then˝
�
ˇ̌
�1.F /

ˇ̌
�.Œ0�/

˛
n
D 0:

We conclude
˝
�
ˇ̌
�1.F /

ˇ̌
�
˛

vanishes unless j`.�/� `.�/j � 1. Lemma 14 is proven.

If the equality j`.�/� `.�/j D 1 holds, then the argument yields a finer result. Either˝
�.Œ0�/

ˇ̌
�1.F /

ˇ̌
�
˛
n;d
D
˝
�.Œ0�/

ˇ̌
�1.F /

ˇ̌
�
˛ xN
n;d
2Q

or ˝
�
ˇ̌
�1.F /

ˇ̌
�.Œ0�/

˛
n;d
D
˝
�
ˇ̌
�1.F /

ˇ̌
�.Œ0�/

˛ xN
n;d
2Q:

If n> d , the factor .t1C t2/ must divide the invariant

(32)
˝
�
ˇ̌
�1.F /

ˇ̌
�
˛
n;d

by Lemma 11. Thus, if j`.�/� `.�/j D 1 and n > d , the integral (32) must vanish.
Lemma 15 is proven.

5.3 Degree 0 calculation

We calculate the integral
˝
∅
ˇ̌
�1.F /

ˇ̌
∅
˛
. By the degeneration formula and Theorem

1, ˝
∅
ˇ̌
�1.F /

ˇ̌
∅
˛
D

˝
�1.F /

˛
0˝

∅
ˇ̌ ˛
�
˝ ˇ̌

∅
˛

DM.�q/
2
.t1Ct2/

2

t1t2

˝
�1.F /

˛
0
:

To complete the calculation, we determine the series
˝
�1.F /

˛
0

via localization with
respect to the T–action defined in Section 2.2. Let the T–equivariant lift of F be
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specified by ŒN0�. Then,˝
�1.F /

˛
0
D
�
W�1.s/.∅;∅;∅/js;t1;t2

�W.∅;∅;∅/j�s;t1;t2

�
sD0

:

Lemma 18 The vertex measure W�1.s/.�;∅;∅/ with a descendent insertion is deter-
mined by

W�1.s/.�;∅;∅/js;t1;t2
D s

�
� q

d

dq
C c.�I t1; t2/C

j�j

2
.t1C t2/

�
W.�;∅;∅/js;t1;t2

:

Here, c.�I t1; t2/ is the sum of the .t1; t2/–contents of all squares in �

c.�I t1; t2/D
X
.i;j/2�

�
i t1C j t2

�
:

Viewing � as a Young diagram, the sum is over the interior corners of the squares —
the corners closest to the origin. For j�j � 1, the total content c.�I t1; t2/ vanishes.

Proof Let T act of C3 with tangent weights s; t1; t2 at the origin. Let � be a 3–
dimensional partition with a single infinite leg of cross-section � in the direction of the
tangent weight s . Let I� denote the corresponding T–fixed ideal. We first compute
the restriction

ch3.I/jŒI� ��0;

where I is the universal ideal sheaf.

Let s1; s2; s3 be the associated weights of the T–action on the coordinates x1;x2;x3

of C3 ,
s1 D�s; s2 D�t1; s3 D�t2:

Consider a graded free resolution of I� of length 3,

0!
M

k

xck A!
M

j

xbjA!
M

i

xai A! I� ! 0;

where ADCŒx1;x2;x3� is the coordinate ring and

ai ; bj ; ck 2 Z3

denote the degrees of the generators in each step.

Computing the Chern character via the resolution, we find

ch3.I/jI��0 D
1

3!

�X
i

.s; ai/
3
�

X
j

.s; bj /
3
C

X
k

.s; ck/
3

�
:

Here, s D .s1; s2; s3/, and .s; v/ denotes the standard inner product of s and v in Z3 .
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By calculating the trace of the T–representation defined by A=I� , we obtain a second
relation:

(33) 1�
X

i

e.s;ai /C

X
j

e.s;bj /�
X

k

e.s;ck/ D

.1� es2/.1� es3/
X
.i;j/2�

eis2Cjs3 C .1� es1/.1� es2/.1� es3/
X

p2� 0

e.s;p/

where � 0 denotes � minus the infinite leg. In particular, the renormalized volume j�j
is the number of squares in � 0 .

Extracting the cubic term in (33), we find

ch3.I/jI��0 D�s2s3

�
c.�I s2; s3/C

j�j

2
.s2C s3/

�
C s1s2s3j�j

D t1t2

�
� sj�jC c.�I t1; t2/C

j�j

2
.t1C t2/

�
:

When applied to the computation of W�1.s/.�;∅;∅/js;t1;t2
, the argument of the de-

scendent �1.s/ and the equivariant push-forward together remove the prefactor t1t2 .

By evaluation (6) of W.∅;∅;∅/ and Lemma 18,

W�1.s/.∅;∅;∅/D
.t1C t2/.t1C s/.t2C s/

t1t2
ˆ.q/ W.∅;∅;∅/

ˇ̌
s;t1;t2

:

After multiplying all the factors,

(34)
˝
∅
ˇ̌
�1.F /

ˇ̌
∅
˛
D .t1C t2/ ˆ.q/:

5.4 Proofs of Lemma 16 and Proposition 17

The proof is via T –localization on xN . We follow the notation of Section 4.6 for the
T –fixed points of xN1 . Let

0"; 0! 2 xN1

be the two new T –fixed points with normal T –weights

t1� t2;�t2; and t2� t1;�t1

respectively.
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For `.�/D `.�/, consider the T –equivariant localization formula for the integral˝
�
ˇ̌
�1.F /

ˇ̌
�.Œ0�/

˛ xN
D

˝
�
ˇ̌
�1.F /

ˇ̌
�.Œ0�/

˛
Cqd

˝
�
ˇ̌
�.Œ0�/

˛
d;d
�
˝
∅
ˇ̌
�1.F /

ˇ̌
∅
˛ˇ̌

t1�t2;�t2

Cqd
˝
�
ˇ̌
�.Œ0�/

˛
d;d
�
˝
∅
ˇ̌
�1.F /

ˇ̌
∅
˛ˇ̌

t2�t1;�t1
:

After evaluation and rearrangement,

(35)
˝
�
ˇ̌
�1.F /

ˇ̌
�.Œ0�/

˛
D
˝
�
ˇ̌
�1.F /

ˇ̌
�Œ.0/�

˛ xN
C
.�1/d�`.�/ı�;�

z.�/
.t1C t2/q

dˆ.q/

We find
˝
�
ˇ̌
�1.F /

ˇ̌
�Œ.0/�

˛
is a linear function of t1 and t2 . By symmetry, the integral

must be a function of t1C t2 .

We draw two conclusions. First, in the diagonal case �D � , the form (31) is proven.
Second,

˝
�
ˇ̌
�1.F /

ˇ̌
�Œ.0/�

˛
is determined by restriction to t2 D 0.

If `.�/ D 1, the Lemma and Proposition are empty. Let `.�/ � 2. We proceed by
induction on `.�/.

The strategy of the proof is to compare two T –equivariant integrals:

m.�1/
˝
�
ˇ̌
�1.F /

ˇ̌
�Œ.0/�

˛ xN
n

and ˝
�
ˇ̌
�1.F /

ˇ̌
�1.Œ0"�/; �2Œ.0/�; : : : ; �`.�/.Œ0�/

˛ xN
n
;

where m.�1/ is the multiplicity of the part �1 in � . Both integrals evaluate to linear
functions of t1 and t2 . The answers are not equal — the integrands are different
T –equivariant classes. Consider the 1–dimensional subtorus

T1 � T

determined by the first factor. The points

0; 0" 2 xN1

define equivalent T1 –equivariant classes on xN . Hence, the two integrals above are
equal after the restriction t2 D 0.

Consider the T –equivariant localization formula for the second integral. The formula
immediately yields 0 unless there is a part �1 of � equal to �1 . Let �� and �� denote
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the subpartitions obtained by removing the first parts of � and � . Then,

˝
�
ˇ̌
�1.F /

ˇ̌
�1.Œ0"�/; �

�.Œ0�/
˛ xN
D q�1

.�1/�1�1

�1

˝
��

ˇ̌
�1.F /

ˇ̌
��.Œ0�/

˛
C qj�

�j .�1/j�
�j�`.��/ı��;��

z.��/

˝
�1

ˇ̌
�1.F /

ˇ̌
�1.Œ0�/

˛ˇ̌
t1�t2;�t2

C qd .�1/�1�1

�1

.�1/j�
�j�`.��/ı��;��

z.��/
.�2t1C t2/ˆ.q/

Comparing the t2 D 0 restriction with (35) and using induction, we find˝
�
ˇ̌
�1.F /

ˇ̌
�Œ.0/�

˛
D 0

unless �D � proving Lemma 16.

We now assume �D � . Combining all the equations yields the following additivity
relation:˝
�
ˇ̌
�1.F /

ˇ̌
�
˛˝

�
ˇ̌
�
˛
j�j;j�j

Dq�1

˝
��

ˇ̌
�1.F /

ˇ̌
��
˛˝

�
ˇ̌
�
˛
j��j;j��j

Cqj�
�j

˝
�1

ˇ̌
�1.F /

ˇ̌
�1

˛˝
�1

ˇ̌
�1

˛
�1;�1

�.t1Ct2/q
dˆ.q/:

The induction step is complete and Proposition 17 is proven.

6 Degree 1

6.1 Vertex measure

The following formula for the degree 1 vertex measure was stated (without proof) in
Maulik et al [25].

Proposition 19 At a 3–fold fixed point with tangent weights s1 , s2 , and s3 , the degree
1 vertex measure is

W.1;∅;∅/D .1C q/
s2Cs3

s1 M.�q/
�
.s1Cs2/.s1Cs3/.s2Cs3/

s1s2s3 ;

where the unique degree 1 leg extends in the s1 direction.

As an easy application of Proposition 19, we calculate the series˝ ˛
1
D

X
n�1

qn
˝ ˛

n;1
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via T–localization:˝ ˛
1
D

h
W.1;∅;∅/js;t1;t2

�
q

t1t2
�W.1;∅;∅/j�s;t1;t2

i
sD0

D
q

t1t2
M.�q/

�2
.t1Ct2/

2

t1t2 :

Empty Donaldson–Thomas brackets
˝ ˛

denote the integrand 1,˝ ˛
1
D
˝
1
˛
1
:

6.2 Proof of Proposition 19

The Proposition is proven by using two geometric constraints for the vertex measure
W.1; 0; 0/.

The effective curve classes of P1 �P2 are generated by ˇ1 and ˇ2 where

ˇ1 D ŒP1
� 0�; ˇ2 D Œ0�P1�:

We will calculate Donaldson–Thomas series associated to these two classes.

Consider first ˇ1 . The virtual dimension of In.P1 �P2; ˇ1/ is 2. There is a Hilbert–
Chow morphism

�W In.P1
�P2; ˇ1/! P2

which specifies the location of the line over the second factor of P1 � P2 . We will
compute the Donaldson–Thomas series

(36)

˝
��.P /

˛P1�P2

ˇ1˝ ˛P1�P2

0

D

P
n�1 qn

˝
��.P /

˛P1�P2

n;ˇ1P
n�0 qn

˝ ˛P1�P2

n;0

;

where P is the class of a point in P2 . The integrand in the numerator of (36) has
dimension 2, so the integrals are well-defined.

We will calculate (36) by equivariant localization. Let the 1–dimensional torus S act
on P1 with fixed points 0;12 P1 and tangent weights s;�s . Let the 2–dimensional
torus T act on P2 with fixed points p;p0;p00 . Let t1; t2 be the tangent T –weights at
p . Localization of (36) by the action of the 3–dimensional torus,

TD S �T;

yields ˝
��.P /

˛P1�P2

ˇ1˝ ˛P1�P2

0

D t1t2
W.1;∅;∅/
W.∅;∅;∅/

ˇ̌̌̌
s;t1;t2

�
q

t1t2
�
W.1;∅;∅/
W.∅;∅;∅/

ˇ̌̌̌
�s;t1;t2

:
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Here, the T–equivariant lift of P is specified by P D Œp�. We conclude

(37) W0.1;∅;∅/js;t1;t2
W0.1;∅;∅/j�s;t1;t2

2QJqK;

where

W0.1;∅;∅/D
W.1;∅;∅/
W.∅;∅;∅/

:

Next, consider the class ˇ2 . The virtual dimension of In.P2 �P1; ˇ1/ is 3. There is a
Hilbert–Chow morphism

�W In.P1
�P2; ˇ2/! P1

� .P2/_

which specifies the line component. We will compute the Donaldson–Thomas series

(38)

˝
��.Q/

˛P1�P2

ˇ2˝ ˛P1�P2

0

D

P
n�1 qn

˝
��.Q/

˛P1�P2

n;ˇ2P
n�0 qn

˝ ˛P1�P2

n;0

;

where Q is the class of a point in P1 � .P2/_ . The integrand in the numerator of (36)
has dimension 3, so the integrals are well-defined.

The T–equivariant localization formula yields the following evaluation of the series
(38):˝
��.Q/

˛P1�P2

ˇ2˝ ˛P1�P2

0

D st2.t2� t1/
W.1;∅;∅/
W.∅;∅;∅/

ˇ̌̌̌
t1;s;t2

�
q

st2.t2� t1/
�
W.1;∅;∅/
W.∅;∅;∅/

ˇ̌̌̌
�t1;s;t2�t1

:

The T–equivariant lift of Q is specified by the line over 0 2 P1 connecting T –fixed
points p;p0 2 P2 where the tangent T –weights at p0 are �t1; t2� t1 . We conclude

W0.1;∅;∅/jt1;s;t2
W0.1;∅;∅/j�t1;s;t2�t1

2QJqK:

After renaming the variables, we obtain

(39) W0.1;∅;∅/js;t1;t2
W0.1;∅;∅/j�s;t1;t2�s 2QJqK;

and, by symmetry,

(40) W0.1;∅;∅/js;t1;t2
W0.1;∅;∅/j�s;t1�s;t2

2QJqK;

By definition of the equivariant vertex measure,

W.1;∅;∅/js;t1;t2
2Q.s; t1; t2/JqK:

The q0 coefficient is 1. By Lemma 6, the coefficient of qn is divisible by t1C t2 for
n> 0.
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By repeated applications of the logarithms of equations (37), (39), and (40), we find

log
�
W0.1;∅;∅/

�ˇ̌
s;t1;t2

C log
�
W0.1;∅;∅/

�ˇ̌
�s;t1�is;t2�js

2QJqK

for all non-negative integers i and j . The coefficients

log
�
W0.1;∅;∅/

�ˇ̌
s;t1;t2

D

X
n�1

fn.s; t1; t2/q
n

must therefore satisfy

fn.s; t1; t2/Cfn.�s; t1�xs; t2�ys/D gn.x;y/

for variables x and y . Differentiation with respect to x yields

�s
@fn

@t1
.�s; t1; t2/D

@gn

@x
.0; 0/:

Similarly

�s
@fn

@t2
.�s; t1; t2/D

@gn

@y
.0; 0/:

Hence, by integration and symmetry,

fn.s; t1; t2/D 
n
t1C t2

s
;

where 
n 2 Q. Since fn must be divisible by t1 C t2 , the constant of integration
vanishes.

After specializing to Calabi–Yau weights sC t1C t2 D 0, we find

fn D�
n:

However, after Calabi–Yau specialization, the equivariant vertex measure takes the
simple form

w.�/D .�1/j�j

for 3–dimensional partitions � , see Maulik et al [24].

Lemma 20 log
�
W0.1;∅;∅/

�ˇ̌
sCt1Ct2D0

D� log.1C q/.

The Lemma is a special case of the vertex evaluation required for the calculation of
the level .�1; 0/ cap (see Okounkov–Reshetikhin [32]), see Section 10.7 for a detailed
discussion.

Lemma 20 determines the constants 
n and completes the proof of Proposition 19.
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6.3 Descendent calculation

We calculate the series
˝
.1/

ˇ̌
�1.F /

ˇ̌
.1/
˛
. By the degeneration formula,

˝
.1/

ˇ̌
�1.F /

ˇ̌
.1/
˛
D

q2

.t1t2/2

˝
�1.F /

˛
1˝

.1/
ˇ̌ ˛
�
˝ ˇ̌
.1/
˛

D
q

t1t2

˝
�1.F /

˛
1˝ ˛

1

DM.�q/
2
.t1Ct2/

2

t1t2

˝
�1.F /

˛
1
:

To complete the calculation, we determine the series
˝
�1.F /

˛
1

via localization with
respect to the T–action. Let the T–equivariant lift of F be specified by ŒN0�. Then,˝

�1.F /
˛
1
D

�
W�1.s/.1;∅;∅/js;t1;t2

�
q

t1t2
�W.1;∅;∅/j�s;t1;t2

�
sD0

:

By Proposition 19 and Lemma 18,

W�1.s/.1;∅;∅/D .t1C t2/
�
�q

1C q
C

1

2

�
W.1;∅;∅/s;t1;t2

C
.t1C t2/.t1C s/.t2C s/

t1t2
ˆ.q/W.1;∅;∅/js;t1;t2

:

After multiplying all the factors,

(41)

˝
.1/

ˇ̌
�1.F /

ˇ̌
.1/
˛˝

.1/
ˇ̌
.1/
˛
1;1

D
.t1C t2/

2
q

1� q

1C q
C .t1C t2/qˆ.q/:

6.4 Cap

We calculate the partition function DT.0j0; 0/� corresponding to the cap in the TQFT
formalism.

Lemma 21 The invariants of the level .0; 0/ cap are given by

DT.0j0; 0/� D

(
1

d!.t1t2/d
if �D .1d /

0 if �¤ .1d /.

Proof If �¤ .1d /, then `.�/ < d . By equation (18),˝ ˇ̌
�.Œ0�/

˛
D 0
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if `.�/ < d . Since

DT.0j0; 0/� D q�d

˝ ˇ̌
�
˛˝ ˇ̌

∅
˛ D q�d

.t1t2/`.�/

˝ ˇ̌
�.Œ0�/

˛˝ ˇ̌
∅
˛ ;

the cap DT.0j0; 0/� vanishes if �¤ .1d /.

If �D .1d /, then the Donaldson–Thomas invariant for the compactified geometry˝ ˇ̌
�.Œ0�/

˛.0;0/
is a constant independent of the equivariant parameters t1 and t2 . By specializing the
partition weights to different T –fixed points and localizing, we obtain˝ ˇ̌

�.Œ0�/
˛˝ ˇ̌

∅
˛ D 1

d!

 ˝ ˇ̌
1.Œ0�/

˛˝ ˇ̌
∅
˛ !d

:

The degree 1 calculation, ˝ ˇ̌
1.Œ0�/

˛˝ ˇ̌
∅
˛ D q;

completes the proof of the Lemma.

7 The operator M�

7.1 Fock space formalism

Let the 2–dimensional torus T act on C2 by standard diagonal scaling. We review
the Fock space description of the T –equivariant cohomology of the Hilbert scheme of
points of C2 , see Grojnowski [10] and Nakajima [28].

By definition, the Fock space F is freely generated over Q by commuting creation
operators ˛�k , k 2 Z>0 , acting on the vacuum vector v∅ . The annihilation operators
˛k , k 2 Z>0 , kill the vacuum

˛k � v∅ D 0; k > 0 ;

and satisfy the commutation relations

Œ˛k ; ˛l �D k ıkCl :

A natural basis of F is given by the vectors

(42) j�i D
1

z.�/

Y
˛��i

v∅ :
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indexed by partitions �. Here,

z.�/D jAut.�/j
Y

�i

is the usual normalization factor.

The Nakajima basis defines a canonical isomorphism,

F ˝Q QŒt1; t2�Š
M
d�0

A�T .Hilb.C2; d/;Q/:

The Nakajima basis element corresponding to j�i is

1

…i�i
ŒV��

where ŒV�� is (the cohomological dual of) the class of the subvariety of Hilb.C2; j�j/

with generic element given by a union of schemes of lengths

�1; : : : ; �`.�/

supported at `.�/ distinct points of C2 . The vacuum vector v∅ corresponds to the
unit in A�

T
.Hilb0;Q/:

The standard inner product on the T –cohomology induces the following nonstandard
inner product on Fock space after an extension of scalars:

(43)
˝
�
ˇ̌
�
˛
F D

1

.t1t2/`.�/

.�1/j�j�`.�/

z.�/
ı�� :

With respect to the inner product,

(44) .˛k/
�
D .�1/k�1.t1t2/

sgn.k/ ˛�k :

If there is no ambiguity, the subscript F will be omitted from the bracket (43).

7.2 The class D

Let O=I be the rank d tautological bundle on Hilb.C2; d/, and let

D D c1.O=I/:

A straightforward calculation shows

D D�
ˇ̌
2; 1d�2

˛
:
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The classical multiplication of D on the Fock space F is given by the following
operator:

(45) �.t1C t2/
X
k>0

k � 1

2
˛�k ˛k C

1

2

X
k;l>0

�
t1t2 ˛kCl ˛�k ˛�l �˛�k�l ˛k ˛l

�
;

see Lehn [14], Lehn–Sorger [15], Li et al [20] and Okounkov–Pandharipande [31].

The first summand of (45) contains a term proportional to the energy operator,

j � j D

X
k>0

˛�k ˛k :

The energy operator acts diagonally on Fock space with eigenvalue j�j on the vector
j�i.

7.3 Operators

The following operator on Fock space plays a central role in the paper:

(46) M.q; t1; t2/D .t1C t2/
X
k>0

k

2

.�q/k C 1

.�q/k � 1
˛�k ˛kC

1

2

X
k;l>0

�
t1t2 ˛kCl ˛�k ˛�l �˛�k�l ˛k ˛l

�
:

The q–dependence of M is only in the first sum in (46) which acts diagonally in the
basis (42). The two terms in the second sum in (46) are known respectively as the
splitting and joining terms. The operator M is self-adjoint

(47) M� DM

with respect to (44).

Let the operator M� on Fock space be defined by matrix elements˝
�
ˇ̌
M�

ˇ̌
�
˛
F D q�d

˝
�
ˇ̌
� �1.F /

ˇ̌
�
˛

D

X
n�d

qn�d
˝
�
ˇ̌
� �1.F /

ˇ̌
�
˛
n;d

for partitions satisfying
j�j D j�j D d:

The matrix elements of M� are understood to vanish unless j�j D j�j. Define the
operator �M� DM� .t1C t2/ˆ.q/ � Id :
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Proposition 22 M� D �M�
We check here three initial compatibilities required for Proposition 22. Proposition 22
will be proven in Section 8 by relating Donaldson–Thomas integrals to Gromov–Witten
invariants of the Hilbert scheme Hilb.C2; d/.

First, Proposition 22 requires the negative of the q–shifted operator bracket,

�qd
˝
�
ˇ̌ �M� ˇ̌ �˛F ;

to satisfy the additivity property of Proposition 17. The required additivity is easily
checked.

Second, Proposition 22 is valid for qD 0. Let N be the trivial bundle with level .0; 0/
splitting on P1 . There is an isomorphism of moduli spaces

(48) Id .N=N0[N1; d/Š Hilb.Nz; d/

for any z 2 P1 . Under the isomorphism (48), the Donaldson–Thomas descendent
class ��1.ŒNz �/ determines an element of A1

T
.Hilb.Nz; d/;Q/. By a Riemann–Roch

calculation,

��1.Nz/DD�
t1C t2

2
d:

Proposition 22 correctly equates the q D 0 evaluation �M� .0/ of �M� with the classical
multiplication (45) of D shifted by � t1Ct2

2
d .

Third, Proposition 22 is valid in degrees 0 and 1 by the descendent evaluation (34),˝
∅
ˇ̌
M�

ˇ̌
∅
˛
F D

˝
∅
ˇ̌
� �1.F /

ˇ̌
∅
˛
D�.t1C t2/ˆ.q/;

and the descendent evaluation (41),˝
.1/

ˇ̌
M�

ˇ̌
.1/
˛
F˝

.1/
ˇ̌
.1/
˛
F

D q�1

˝
.1/

ˇ̌
� �1.F /

ˇ̌
.1/
˛˝

.1/
ˇ̌
.1/
˛
1;1

D�
.t1C t2/

2

1� q

1C q
� .t1C t2/ˆ.q/:

8 Proof of Proposition 22

8.1 Induction strategy

Our proof of Proposition 22 closely follows the proof of Theorem 1 in Okounkov–
Pandharipande [31] though several differences occur. Since the results and the geometry
differ, the closeness of the proof is somewhat surprising.
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We proceed by induction on the degree d . If d D 0 or 1, Proposition 22 has already
been proven by descendent calculations. Let d > 1.

Next, we induct on the Euler number n. In the minimal case nD d , Proposition 22
recovers classical multiplication by D on the Hilbert scheme of points. Let n> d .

The induction step relies upon the addition formula of Proposition 17. We will compute
an invariant ˝


1

ˇ̌
� �1.F /

ˇ̌

2

˛
n

for which the expansions of the classes


1; 
2 2A2d
T .Hilb.C2; d/;Q/;

in the Nakajima basis contain nontrivial multiples not divisible by .t1C t2/ of the class
j.d/i. By the addition rules, if

(49)
˝

1

ˇ̌
� �1.F /

ˇ̌

2

˛
n
D
˝

1

ˇ̌ �M� ˇ̌ 
2

˛
F ;n�d

;

then Proposition 22 is proven for Euler number n.

Both sides of (49) are constant multiples of t2d
1
.t1C t2/ modulo .t1C t2/

2 . By (31),˝
.d/

ˇ̌
� �1.F /

ˇ̌
.d/

˛
n
D

d;n

t2
1

.t1C t2/ mod .t1C t2/
2:

Hence, we need only verify the equality (49) modulo .t1C t2/
2 .

8.2 Induction step: I

Let d > 1 and let n> d . For the induction step, we will compute the invariant

(50)
˝ �
I.d/

� ˇ̌
� �1.F /

ˇ̌ �
I.d�1;1/

� ˛
n
:

Here, I� denotes the monomial ideal corresponding to the partition �, and ŒI�� denotes
the T –equivariant class of the associated fixed point in Hilb.C2; j�j/.

The T –fixed point ŒI�� corresponds to the Jack polynomial

J� 2 F ˝QŒt1; t2�:

For �t2=t1 D 1, the Jack polynomials specialize to the Schur functions. Hence,

J� �
.�1/j�j j�j!

dim�

X
�

��� t
j�jC`.�/
1

ˇ̌
�
˛

mod t1C t2 ;

where dim� is the dimension of the representation � of the symmetric group and
��� is the evaluation of the corresponding character on the conjugacy class �, see
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Macdonald [22]. In particular, the coefficient of
ˇ̌
d
˛

in the expansion of both J.d/ and
J.d�1;1/ is nonzero.

Lemma 23 We have

(51)
˝
J.d/

ˇ̌ �M� ��M� .0/ ˇ̌ J.d�1;1/
˛
F �

.�1/d .t1C t2/
t2d
1
.d!/2

d � 1

�
q

1C q
C d

.�q/d

1� .�q/d

�
mod .t1C t2/

2 :

Here, the operator �M� ��M� .0/ is formed by the terms of positive degree in q in the
operator �M� .

The proof of Lemma 23 follows exactly the derivation of equation (31) of Okounkov–
Pandharipande [31]. The differences between our operator �M� and the operator MD

of [31] yield constant functions orthogonal to the non-trivial character �.d�1;1/ .

8.3 Localization

8.3.1 Overview Our goal now is to reproduce the answer (51) by calculating the
Donaldson–Thomas invariant˝�

I.d/
� ˇ̌
� �1.F /

ˇ̌ �
I.d�1;1/

�˛
n
:

By the rubber calculus (29),

(52)
˝�
I.d/

� ˇ̌
� �1.F /

ˇ̌ �
I.d�1;1/

�˛
n
D .n� d/

˝�
I.d/

� ˇ̌ �
I.d�1;1/

�˛�
n
:

We calculate the right side of (52) by T –equivariant localization on the rubber moduli
space

Rn;d D In.R=R0[R1/
� ;

see Section 4.8.

Since the T –fixed locus of the moduli space Rn;d is proper, the virtual localization
formula of Graber–Pandharipande [9] may be applied. However, since Rn;d contains
positive dimensional families of T –invariant ideal sheaves, a straightforward applica-
tion is difficult. Our strategy for computing (52) uses comparisons to integrals in the
quantum cohomology of the Hilbert scheme of points Hilb.C2; d/.
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8.3.2 Skewers and twistors Consider the rubber moduli space Rn;d for n> d . Let

ŒI � 2RT
n;d

be a T –fixed ideal sheaf. The ideal sheaf I is defined on a rubber target fibered by C2

over a chain C of rational curves. The diagram below gives an example of a subscheme
associated to a T –fixed ideal sheaf on a reducible rubber target.

Let P �C be a rational component. The restriction IP of I to the component C2�P

of the target rubber is either a skewer or a twistor:

(i) A skewer is determined by an element

ŒIsk� 2 I�
�
C2
�P1; d

�T
where the factor P1 is rigid. Certainly the skewer Isk is T –fixed on the rubber
C2 �P . The component on the right of the above diagram is a skewer.

(ii) A twistor is obtained from a T –fixed element

Œftw� 2M0;f0;1g

�
Hilb

��
C2; d

�
;�
��T

:

By pulling-back the universal ideal sheaf over the Hilbert scheme, ftw determines
a T –fixed ideal sheaf Itw on the rubber C2 �P . The component on the left of
the diagram is a twistor.
The degree of the map ftw to the Hilbert scheme and the Euler number ntw of
Itw are related by

deg.ftw/D ntw� d:

Elementary considerations show these disjoint constructions exhaust all T –fixed ideal
sheaves on the rubber C2 �P .
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8.3.3 Comparison We will calculate (52) via a comparison result.

Proposition 24 We have˝ �
I.d/

� ˇ̌ �
I.d�1;1/

� ˛�
n
D
˝ �
I.d/

� ˇ̌ �
I.d�1;1/

� ˛Hilb.C2;d/

n�d
mod .t1C t2/

2:

Proposition 24 is proven in Section 8.3.5. As a first step, a simpler comparison result
is obtained here.

Consider the open set of stable maps,

Un;d �
xM0;f0;1g

�
Hilb

�
C2; d

�
; n� d

�
for which the domain is a chain of rational curves. The open set Un;d carries a T –
equivariant Gromov–Witten obstruction theory via restriction. By pulling-back the
universal ideal sheaf over the Hilbert scheme (as in the twistor construction), we obtain
an open immersion

�W Un;d �Rn;d :

Hence, Un;d also carries a T –equivariant Donaldson–Thomas theory.

Lemma 25 The T –equivariant Gromov–Witten and Donaldson–Thomas obstruction
theories of Un;d are canonically isomorphic.

Proof Let �
f W C ! Hilb

�
C2; d

��
2 Un;d

be a stable map, and let

�.Œf �/D ŒI � 2Rn;d

be the associated ideal sheaf. Since both obstruction theories can be defined relative
to the degenerations of the domain, we need only check the Gromov–Witten complex
associated to the cohomology H�.C; f �THilb/ matches the shift of the complex as-
sociated to Ext0.I; I/. For a point p 2 C , the tangent to the Hilbert scheme may be
viewed as Ext10.Ip; Ip/. Moreover,

Ext00
�
Ip; Ip

�
D Ext20

�
Ip; Ip

�
D 0:

The required matching is then a straightforward application of the Leray spectral
sequence.
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8.3.4 Tangent representations Let ŒI � 2RT
n;d

be a T –fixed ideal sheaf on a rubber
target fibered by C2 over a chain C of rational curves.

The special points of C consist of 0;12 C and all the nodes. Over the special points
of s 2 C , the ideal I must correspond to T –fixed points ŒIs � 2 Hilb.C2; d/.

Let P � C be a component containing the special points s; s0 of C . Fractional T –
weight wP;s and wP;s0 are defined by the T –representation of the tangent space to P

at s and s0 :

(i) If P � C corresponds to a skewer, then

ŒIs �D ŒIs0 �

and wP;s D wP;s0 D 0:

(ii) If P � C corresponds to a twistor, then

ŒIs �¤ ŒIs0 �

and wP;s; wP;s0 ¤ 0 modulo .t1C t2/, see Okounkov–Pandharipande [31].

In fact, in the twistor case, if

ŒIs �D ŒI��; ŒIs0 �D ŒI� �;

then
wP;s D w

nP�d
�;� D�wnP�d

�;� D�wP;s0 ;

where nP is the Euler characteristic associated to IP and wn
�;� is the universal function

defined in [31, Lemma 4] viewed here as a T –weight.

8.3.5 Proof of Proposition 24 We index the T –equivariant localization contributions
to the invariants ˝

ŒI��
ˇ̌
ŒI� �

˛�
n

by graphs following [31]. An oriented chain of Euler number n is a graph ��;� D
.V; v1; v2; �;E;S; ı/,

(i) V is a finite vertex set with distinguished elements v1 and v2 ,

(ii) �W V ! P.d/,
(iii) E is a finite edge set,

(iv) S � V ,

(v) ıW E [S ! Z>0 is an assignment,

satisfying the following conditions
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(a) � is a connected chain with initial vertex v1 and final vertex v2 ,

(b) �.v1/D I�; �.v2/D I� ,

(c) if v0; v00 2 V are connected by an edge, then �.v0/¤ �.v00/,

(d) if v 2 V nS has edge valence 2 with neighbors v0; v00 , then

w
ı.e.v;v0//

�.v/;�.v0/
Cw

ı.e.v;v00//

�.v/;�.v00/
¤ 0 mod t1C t2;

(e)
P

e2E ı.e/C
P

s2S ı.s/D nC d.jEjC jS j � 1/:

Let ŒI � 2RT
n;d

be T –fixed ideal sheaf on a rubber target fibered by C2 over a chain
C of rational curves. We associate an oriented chain,

�I D .V; v1; v2; �;E;S; ı/;

of Euler number n to I by the following construction. The vertex set

V D V1[V2[V3;

is a union of three disjoint subsets:

(1) V1 is the set of maximal connected subcurves of skewer components of the base
C ,

(2) V2 is the set of nodes of s 2 C for which the incident components P;P 0 � C

are twistors and satisfy the breaking condition

wP;sCwP 0;s ¤ 0 mod t1C t2;

(3) V3 is subset of the marking 0;12 C which lie on twistors.

The markings 0;12C are associated to elements of the union V1[V3 — the markings
determine v1 and v2 . The function � is obtained from I . Chains of unbroken twistors
of C link the vertices of V . The edge set E is determined by such chains. The set
S equals V1 . The degree assignment ı is obtained from the Euler number of the
restriction of I to the associated components.

The oriented chain �I is easily seen to satisfy conditions (a)–(e). Condition (c) is a
consequence of [31, Lemma 5]. The chain �I is invariant as ŒI � varies in a connected
component of the T –fixed locus of RT

n;d
.

Let Gn.�; �/ denote the finite set of oriented chains trees ��;� of Euler number n.
Let

R� �RT
n;d
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denote the substack of T –fixed maps corresponding to the tree � 2Gn.�; �/. Let˝
ŒI��

ˇ̌
ŒI� �

˛��
d

denote the localization contribution of R� . By the virtual localization formula (see
Graber–Pandharipande [9]),

(53)
˝
ŒI��

ˇ̌
ŒI� �

˛��
d
D

Z
ŒR� �vir

��
0
.ŒI��/[ ��1.ŒI� �/

e.N vir/
:

By decomposing the Donaldson–Thomas obstruction theory, we can express the integral
(53) in terms of descendent skewer integrals corresponding to the vertices S and
descendent twistor integrals corresponding to the edges E .

The edge integrals are exactly equal to associated integrals in the Gromov–Witten
theory of the Hilbert scheme Hilb.C2; d/ by Lemma 25. Moreover, the Hilbert scheme
integrals which arise for each edge compute a Gromov–Witten residue for the T˙–
action. Hence, the edge term contributions to (53) are divisible by .t1C t2/.

We prove the skewer integrals are also divisible by .t1C t2/ by localizing a rubber
integral:˝
ŒI
 �

ˇ̌
 a

0 
b
1

ˇ̌
ŒI
 �

˛�
n
D
˝
ŒI
 �

ˇ̌
 a

0 
b
1

ˇ̌
ŒI
 �

˛�0

;
 �
C

X
�2Gn.
;
 /nf�0g

˝
ŒI
 �

ˇ̌
 a

0 
b
1

ˇ̌
ŒI
 �

˛��
:

Here, �0

;
 is the unique chain with a single skewer vertex. By Lemma 13, the rubber

integral on the left is divisible by .t1C t2/. The �0 contribution is the skewer integral
of interest. The second summand on the right is expressed in terms of skewer integrals
of lower Euler number and edge integrals. The former are divisible by .t1C t2/ by
induction. We conclude the skewer integrals are divisible by .t1C t2/.

We now specialize to the localization analysis of the rubber integral,˝
ŒI.d/�

ˇ̌
ŒI.d�1;d/�

˛�
n
D

X
�2Gn.�;�/

˝
ŒI.d/�

ˇ̌
ŒI.d�1;1/�

˛��
:

Assume �¤ � . Since both skewer vertices and edges contribute factors of .t1C t2/,˝
ŒI.d/�

ˇ̌
ŒI.d�1;1/�

˛�
n
D
˝
ŒI.d/�

ˇ̌
ŒI.d�1;1/�

˛�0
�;�� mod t1C t2;

where �0
�;� is the unique single edged chain with S D∅. The Proposition 24 is then

a consequence of Lemma 25.
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8.4 Induction step: II

By Lemma 23, Proposition 24, and the Hilbert scheme calculation of Okounkov–
Pandharipande [31], we obtain˝ �

I.d/
� ˇ̌
� �1.F /

ˇ̌ �
I.d�1;1/

� ˛
n
D
˝
J.d/

ˇ̌ �M� ��M� .0/ ˇ̌ J.d�1;1/
˛
F ;n�d

completing the proof of Proposition 22.

9 The level .0; 0/ theory

9.1 The operator MD

Let D denote the insertion of the relative condition �.2; 1d�2/ in the local Donaldson–
Thomas theory of curves. Let the operator MD on Fock space be defined by matrix
elements ˝

�
ˇ̌
MD

ˇ̌
�
˛
F D DT.0j0; 0/�;D;�

D�DT.0j0; 0/�;.2;1d�2/;� :

By definition, the insertion D vanishes in degrees d D 0; 1.

Proposition 26 MD DM� t1Ct2

2
.�q/C1
.�q/�1

j � j :

Proof By applying the degeneration formula to the definition of M� , we obtain˝
�
ˇ̌
M�

ˇ̌
�
˛
F D q�d

˝
�
ˇ̌
� �1.F /

ˇ̌
�
˛

D

X



q�dZ.0j0; 0/�;
;�
i

d

.
; 
 /q�d
˝


ˇ̌
� �1.F /

˛
D

X



DT.0j0; 0/�;
;�
i

d

.
; 
 /q�d

˝


ˇ̌
� �1.F /

˛˝
∅
ˇ̌ ˛

By equation (18), ˝


ˇ̌
� �1.F /

˛
D 0

if `.
 / < d � 1. Hence, there are only two nonvanishing terms in the sum over the
partition 
 :˝
�
ˇ̌
M�

ˇ̌
�
˛
F D DT.0j0; 0/�;.1d /;�

d!.t1t2/
d

qd

h.1d /j � �1.F /i

h∅ j i

�DT.0j0; 0/�;.2;1d�2/;�

2.d � 2/!.t1t2/
d�1

qd

h.2; 1d�2/j � �1.F /i

h∅ j i
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By Lemma 21 for the cap DT.0j0; 0/� , the insertion .1d / can be freely added or
removed in the local Donaldson–Thomas theory of curves. Hence,

DT.0j0; 0/�;.1d /;� D DT.0j0; 0/�;�

D
˝
�
ˇ̌
�
˛
F ;

Similarly,

q�d

˝
.1d /

ˇ̌
� �1.F /

˛˝
∅
ˇ̌ ˛ D q�d

˝
.1d /

ˇ̌
� �1.F /

ˇ̌
.1d /

˛˝
∅
ˇ̌
∅
˛

D
˝
.1d /

ˇ̌
M�

ˇ̌
.1d /

˛
D
.t1C t2/

d!.t1t2/d

�
d

2

.�q/C 1

.�q/� 1
�ˆ.q/

�
;

where the last equality is obtain from Proposition 22. Finally,

q�d

˝
.2; 1d�2/

ˇ̌
� �1.F /

˛˝
∅
ˇ̌ ˛ D q�d

˝
.2; 1d�2/

ˇ̌
� �1.F /

ˇ̌
.1d /

˛˝
∅
ˇ̌
∅
˛

D
˝
.2; 1d�2/

ˇ̌
M�

ˇ̌
.1d /

˛
F

D�
˝
.2; 1d�2/

ˇ̌
.2; 1d�2/

˛
F :

We conclude˝
�
ˇ̌
MD

ˇ̌
�
˛
F D�DT.0j0; 0/�;.2;1d�2/;�

D
˝
�
ˇ̌
M�

ˇ̌
�
˛
F � .t1C t2/

˝
�
ˇ̌
�
˛
F

�
d

2

.�q/C 1

.�q/� 1
�ˆ.q/

�
D

D
�
ˇ̌̌
M�

t1C t2

2

.�q/C 1

.�q/� 1
j � j

ˇ̌̌
�
E
F
;

where the last equality is obtained from Proposition 22.

9.2 Proof of Theorem 3 in level .0; 0/

9.2.1 Starred series The terminology of Bryan–Pandharipande [4] is convenient for
discussing the GW/DT correspondence. On the Gromov–Witten side, let

GW�.gjk1; k2/�1:::�r D .�iu/d.2�2gCk1Ck2/�ı Z0.N /�1:::�r ;

where N is rank 2 bundle of level .k1; k2/ on a genus g curve and

ı D

rX
iD1

.d � `.�i//:
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On the Donaldson–Thomas side, let

DT�.gjk1; k2/�1:::�r D .�q/�
d
2
.2�2gCk1Ck2/ Z0DT .N /�1:::�r

D .�1/�d.1�g/.�q/�
d
2
.k1Ck2/DT.gjk1; k2/:

Theorem 3 of the Gromov–Witten/Donaldson–Thomas correspondence for local curves
can be restated as the equality

(54) GW�.gjk1; k2/�1:::�r D DT�.gjk1; k2/�1:::�r ;

after the variable change eiu D�q ,

9.2.2 TQFT Slightly altered metrics are defined for raising the indices of the starred
series:

GW�.gjk1; k2/
�1:::�t

�1:::�s D

 
tY

iD1

z.�i/.�t1t2/
l.�i /

!
GW�.gjk1; k2/�1:::�s�1:::�t ;

DT�.gjk1; k2/
�1:::�t

�1:::�s D

 
tY

iD1

z.�i/.�t1t2/
l.�i /

!
DT�.gjk1; k2/�1:::�s�1:::�t :

With respect to the above metrics, the starred partition function satisfy the same
degeneration rules as their unstarred counterparts:

GW�.gjk1; k2/
�1;:::;�t

�1;:::;�s D

X



GW�.g0jk 01; k
0
2/



�1;:::;�sGW
�.g00jk 001 ; k

00
2 /
�1;:::;�t


 ;

DT�.gjk1; k2/
�1;:::;�t

�1;:::;�s D

X



DT�.g0jk 01; k
0
2/



�1;:::;�sDT
�.g00jk 001 ; k

00
2 /
�1;:::;�t


 ;

where g D g0Cg00 , and ki D k 0i C k 00i , and

GW�.gjk1; k2/�1;:::;�s D

X



GW�.g� 1jk1; k2/



�1;:::;�s ;

;

DT�.gjk1; k2/�1;:::;�s D

X



DT�.g� 1jk1; k2/



�1;:::;�s ;

:

Hence, tensor functors

GW�;DT�W 2CobL1;L2 !Rmod:

can be defined just as before.
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9.2.3 Matching in level .0; 0/ Using the TQFT structure, to prove Theorem 3 in
level .0; 0/, we must establish the following three equalities:

GW�.0j0; 0/� D DT�.0j0; 0/�;

GW�.0j0; 0/�� D DT�.0j0; 0/��;

GW�.0j0; 0/��� D DT�.0j0; 0/��� ;

corresponding respectively to the cap, the tube, and the pair of pants.

The matching of the level .0; 0/ cap is a consequence of [4, Lemma 6.2] for the
Gromov–Witten side and Lemma 21 of Section 6 for the Donaldson–Thomas side.
Similarly, the level .0; 0/ tube matching is a consequence of [4, Lemma 6.1] and
Lemma 4 of Section 3.

The pair of pants matching in level .0; 0/ is more subtle. The main result of the
Appendix of [4] is the unique determination of the level .0; 0/ TQFT for the local
Gromov–Witten theory of curves by the cap, the tube, and the set of series

GW�.0j0; 0/�;.2;1d�2/;�

for all � and � . Since the cap and the tube have been shown to match, the equality

(55) GW�.0j0; 0/�;.2;1d�2/;� D DT�.0j0; 0/�;.2;1d�2/;�

suffices to complete the matching in level .0; 0/. Equality (55) is a consequence of [4,
A.3] and Proposition 26 above.

10 The cap of level .�1; 0/

10.1 TQFT

By [4, Theorem 4.1], the proof of Theorem 3 for all levels now requires only the
equality

(56) GW�.0j � 1; 0/� D DT�.0j � 1; 0/�:

The Gromov–Witten side was calculated in Bryan–Pandharipande [3; 4]. By [4,
Lemma 6.3 and Section 6.4.1],

GW�.0j � 1; 0/� D .�q/�d=2t
�`.�/
2

.�1/d�`.�/

z.�/
t
�`.�/
2

`.�/Y
iD1

1

1� .�q/��i
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In order to prove (56), we must find the following evaluation:

DT.0j � 1; 0/� D .�1/d .�q/�d=2DT�.0j � 1; 0/�

D t
�`.�/
2

.�1/d�`.�/

z.�/
q�d

`.�/Y
iD1

1

1� .�q/��i

D
t
�`.�/
2

z.�/

`.�/Y
iD1

1

1� .�q/�i
:

10.2 T–action

Let T be the standard 2–dimensional torus action on the bundle

N DO.�1/˚O

over P1 with scaling weights t1 and t2 on the factors O.�1/ and O respectively. Let
the 1–dimensional torus S act with weights s;�s at the fixed points

0;12 P1

and weights .�s; 0/ on the fiber of N1 . We will consider the full

TD S �T

action on N .

10.3 Independence

Let L�N denote the T–equivariant divisor determined by the summand O.�1/, and
let

ŒL� 2A1
T.N;Q/

be the associated class. Let

�.ŒL�/D f�1.ŒL�/; : : : ; �`.�/.ŒL�/g

be a weighted partition of d . The reduced T–equivariant Donaldson–Thomas residue
integral relative to N1 ,

˝ ˇ̌
�.ŒL�/

˛0
.�1;0/

D

˝ ˇ̌
�.ŒL�/

˛.�1;0/

d˝ ˇ̌
∅
˛.�1;0/

0

;

is of degree 0 in the equivariant parameters s , t1 , and t2 .
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Lemma 27
˝ ˇ̌
�.ŒL�/

˛0
.�1;0/

is independent of s , t1 , and t2 .

Proof Let N � xN be a T–equivariant compactification, and let

ŒP � 2H2. xN ;Z/

be the push-forward to xN of the class of the zero section P � N . Consider the
restricted moduli space of ideal sheaves

RD ��1
1 .C�ŒL�/� In. xN = xN1; d ŒP �/;

following the notation of Section 1.2.3. Since the line bundle O.�1/ over P1 has no
nontrivial multisections, the elements of

ŒIZ � 2Rn

for which the entire 1–dimension support of Z lies on P determine an open and closed
T–equivariant substack R0

n �Rn

Dimension 0 integrals over R0
n are certainly independent of the equivariant parameters

s , t1 , and t2 . By localization,˝ ˇ̌
�.ŒL�/

˛0
.�1;0/

D

P
n qn

R
ŒR0

n�vir 1P
n qn

R
ŒIn. xN = xN1;0/�vir 1

:

Since the denominator on the right is also independent of the equivariant parameters,
the Lemma is proven.

10.4 Localization

The T–equivariant virtual localization formula for the series

(57)
˝ ˇ̌
�.ŒL�/

˛0
.�1;0/

involves an edge summation over all of the T –fixed points I� of the Hilbert scheme
Hilb.N1; d/. See Maulik et al [24; 25] for a discussion of localization in relative
Donaldson–Thomas theory.

We orient the partition � so that the rows of the associated Young diagram extend in
the O direction. Define n.�/ by a summation over rows:

(58) n.�/D

`.�/X
iD1

.i � 1/�i :

With our orientation conventions, d C n.�/ is the Euler characteristic of a pure edge
with profile �.
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By an application of the virtual localization formula, we find the series (57) equals

(59)
X
j�jDd

W.�;∅;∅/js;t1�s;t2

W.∅;∅;∅/js;t1�s;t2

� qn.�/E.�1;0/.�/ �

˝ �
I�
� ˇ̌

1
�s� 1

ˇ̌
�
˛�˝

∅
ˇ̌

1
�s� 1

ˇ̌
∅
˛� t

`.�/
2

:

The terms W and E.�1;0/ are respectively the equivariant vertex and the equivariant
edge weight [24; 25]. The rubber integral series in the numerator is˝ �

I�
� ˇ̌ 1

�s� 1

ˇ̌
�
˛�
D qd

˝ �
I�
� ˇ̌
�
˛
d;d
C

X
n>d

qn
˝ �
I�
� ˇ̌ 1

�s� 1

ˇ̌
�
˛�
n;d
:

The denominator series has a parallel definition.

By Lemma 27, the series (57) is independent s , t1 , and t2 . Hence the localization
formula can be evaluated after specialization of the equivariant parameters.

10.5 Rubber

We evaluate the localization formula (57) after the specialization

(60) t1C t2 D 0:

By the vanishing of Lemma 13, the rubber integrals on the right side simplify to˝�
I�
�ˇ̌

1
�s� 1

ˇ̌
�
˛�˝

∅
ˇ̌

1
�s� 1

ˇ̌
∅
˛� D qd

˝�
I�
� ˇ̌
�
˛
d;d
:

The matrix element on the right is the equivariant intersection form of the classical
cohomology of Hilb.N1; d/.

For opposite weights (60), the Hilbert scheme intersections reduce to characters of the
symmetric group, see for example Vasserot [35]. We find

(61)
˝�
I�
� ˇ̌
�
˛
d;d
D

t
d�`.�/
2

z.�/
�
�

�

Y
�2�

h.�/ :

Here, h.�/ denotes the hook length. A similar calculation can be found in Okounkov–
Pandharipande [31].

10.6 Edge

The edge term of the localization formula (59) also simplifies after the specialization
(57).
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We recall the formula for the edge term adapted to the level .�1; 0/ geometry (see
Maulik et al [24]). Given a partition �, form the following polynomials

Q�.x1;x2/D
X

.i;j/2�

xi
1 x

j
2
;

F�.x1;x2/D�Q��

xQ�

x1x2

CQ�
xQ�
.1�x1/.1�x2/

x1x2

:

The sum in the first definition is over the interior corners of the squares of the Young
diagram of � — the corners closest to the origin. Also,

xQ�.x1;x2/DQ�.x
�1
1 ;x�1

2 / :

The rational function

E� D
F�.x1;x2/

x0� 1
C

F�.x1x0;x2/

x�1
0
� 1

is readily seen to be a Laurent polynomial in the variables xi . The edge weight E.�/
is obtained from the following transformation:

(62) E� D
X

k

ak x
k0

0
x

k1

1
x

k2

2
7! E.�/D

Y
k

.k0sC k1.t1� s/C k2t2/
�ak :

Setting t1C t2 D 0 is equivalent to substituting

x0 D .x1x2/
�1

in the above formulas.

Lemma 28 We have

F�.x1;x2/D�
X
�2�

�
x

l.�/
1

x
�a.�/�1
2

Cx
�l.�/�1
1

x
a.�/
2

�
;

where a.�/ and l.�/ denote the arm-lengths and leg-length of a square in a diagram
(number of squares to the right and below �, respectively).

Proof The polynomial F� is, up to sign, the character of the scaling torus action
on the tangent space at

�
I�
�

to the Hilbert scheme of points in C2 . The exponents
in the formula are well known to be the weights of tangent action, see for example
Haiman [11].

Define an auxiliary function

G.x1;x2/D�
X
�2�

x
l.�/
1

x
�a.�/�1
2
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for which F DGC xG=.x1x2/. We compute

(63) E�
ˇ̌
x3D.x1x2/�1 D�Gjx1Dx�1

2
C

G �Gjx1Dx�1
2

.x1x2/�1� 1
�

xG � xGjx2Dx�1
1

.x1x2/� 1
:

All three terms of (63) are Laurent polynomials. The third term is minus bar of the
second one. By the transformation (62), the factors corresponding to the second and
third terms of (63) cancel up to a sign. This sign is the parity of the overall number of
monomials in the second term in (63) equal toX

�2�

l.�/D n.�/ :

We have proven the following result:

E.�/.�1;0/
js;t1�s;t2

D .�1/n.�/ t�d
2

Y
�2�

h.�/�1 :

10.7 Vertex

The T–equivariant tangent weights of N at the fixed point over 0 2 P1 satisfy the
Calabi–Yau condition after the specialization (60):

sC .t1� s/C t2 D 0:

The vertex W.�;∅;∅/ has a rather simple evaluation in the Calabi–Yau case (see
Maulik et al [24] and Okounkov–Reshetikhin–Vafa [33]):

W.�;∅;∅/js;t1�s;t2
D

X
�

.�q/j�j:

The sum is over all 3–dimensional partitions � with a single infinite leg in the s

direction asymptotic to �. Here, j�j is the renormalized volume — the number of
boxes remaining after the infinite leg is removed. In particular,

W.∅;∅;∅/js;t1�s;t2
DM.�q/;

a specialization of (6).

Evaluation of the Calabi–Yau vertex is reduced to the enumeration of 3–dimensional par-
tition. The enumeration for the 1–legged vertex is solved in Okounkov–Reshetikhin [32],

(64)
W.�;∅;∅/js;t1�s;t2

W.∅;∅;∅/js;t1�s;t2

D

Y
�2�

1

1� .�q/h.�/
;
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where the product is over all squares in the Young diagram of �.

The origin of hook lengths in (64) is the following classical formula (see Macdon-
ald [22]) for the value of the Schur function s� at the point .1; q; q2; : : : /,

(65) s�.1; q; q
2; : : : /D qn.�/

Y
�2�

1

1� qh.�/
:

10.8 Evaluation

Putting all pieces of the localization formula (59) together, we find:

˝
�.ŒL�/

ˇ̌ ˛0
.0;�1/

D
qd

z.�/

X
�

�
�

�
s�.1;�q; .�q/2; .�q/3; : : : / :

By a classical formula in the theory of symmetric functions,
P
� �

�

�
s� equals the

power sum symmetric function p� , see [22]. Since

pk.1;�q; .�q/2; .�q/3; : : : /D
1

1� .�q/k
;

we obtain the following result.

Proposition 29

(66)
˝
�.ŒL�/

ˇ̌ ˛0
.0;�1/

D
qd

z.�/

`.�/Y
iD1

1

1� .�q/�i

10.9 Proof of Theorem 3

By definition, we find ˝
�.ŒL�/

ˇ̌ ˛0
.0;�1/

D t
`.�/
2

qd DT.0j � 1; 0/:

Hence, by Proposition 29,

DT.0j � 1; 0/D
t
�`.�/
2

z.�/

`.�/Y
iD1

1

1� .�q/�i
:

The matching (56) of the .�1; 0/ cap is established, and the proof of Theorem 3 is
complete.
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10.10 Proof of Theorem 2

By Theorem 3, the rationality of the Donaldson–Thomas series for local curves is a
direct consequence of Theorem 6.4 of Bryan–Pandharipande [4]. The proof of Theorem
2 is complete.

11 The 1–legged vertex

11.1 Overview

The localization formula for the level .�1; 0/ cap together with a differential equation
for rubber integrals provides an effective determination of the 1–legged equivariant
vertex.

11.2 Differential equation

Consider the following Donaldson–Thomas rubber descendent series:D
�
ˇ̌̌ 1

1� 1

ˇ̌̌
�
E�
D qd

˝
�
ˇ̌
�
˛
d;d
C

X
n>d

qn
D
�
ˇ̌̌ 1

1� 1

ˇ̌̌
�
E�
n;d
:

Define a operator S on Fock space by the matrix elements

(67)
˝
�
ˇ̌
S
ˇ̌
�
˛
F D q�dM.�q/t1Ct2

D
�
ˇ̌̌ 1

1� 1

ˇ̌̌
�
E�
:

By the rubber calculus relation (29),

q
d

dq
q�d

D
�
ˇ̌̌ 1

1� 1

ˇ̌̌
�
E�
D q�d

D
�
ˇ̌̌
��1.F /

1� 1

ˇ̌̌
�
E
� q�d

D
�
ˇ̌̌ 1

1� 1

ˇ̌̌
D � �

E�
:

By the topological recursion relation of Section 4.8,

q�d
D
�
ˇ̌̌
��1.F /

1� 1

ˇ̌̌
�
E
D q�2d

X
�

˝
�
ˇ̌
��1.F /

ˇ̌
�
˛i

d

.�; �/
D
�
ˇ̌̌ 1

1� 1

ˇ̌̌
�
E�
:

Together with Proposition 22, we conclude

(68) q
d

dq
SDMS� SM.0/;

where M.0/ denotes the q–constant terms of M. The series ˆ.d/ drops out of right
side of (68).

The differential equation (68) for rubber descendents is almost identical to the quantum
differential equation for the Hilbert scheme of points of the plane (see Okounkov–
Pandharipande [31]).
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Lemma 30
˝
∅
ˇ̌

1
1� 1

ˇ̌
∅
˛�
DM.�q/�.t1Ct2/:

Proof The differential equation (68) takes a simple form in degree 0:

q
d

dq

˝
∅
ˇ̌
S
ˇ̌
∅
˛
F D 0:

The solution is a constant. The Lemma follows from definition (67).

By Lemma 30, we may express the matrix elements of S as ratios of Donaldson–Thomas
rubber series:

(69)
˝
�
ˇ̌
S
ˇ̌
�
˛
F D q�d

˝
�
ˇ̌

1
1� 1

ˇ̌
�
˛�˝

∅
ˇ̌

1
1� 1

ˇ̌
∅
˛� :

11.3 Computation of the 1–legged vertex

Let W0.�;∅;∅/ denote the reduced 1–legged vertex,

W0.�;∅;∅/D
W.�;∅;∅/
W.�;∅;∅/

:

The localization formula (59),˝ ˇ̌
�.ŒL�/

˛0
.�1;0/

DX
j�jDd

W0.�;∅;∅/js;t1�s;t2
� qn.�/E.�1;0/.�/ �

˝ �
I�
� ˇ̌

1
�s� 1

ˇ̌
�
˛�˝

∅
ˇ̌

1
�s� 1

ˇ̌
∅
˛� t

`.�/
2

;

has a fixed evaluation given by Proposition 29 independent of the equivariant parameters.
If the matrix

(70) E.�1;0/.�/ �

˝�
I�
�ˇ̌

1
�s� 1

ˇ̌
�
˛�˝

∅
ˇ̌

1
�s� 1

ˇ̌
∅
˛�

can be calculated, the above localization formula may be viewed as a square system
of linear equations for the unknown vector W0.�;∅;∅/, where � ranges over all
partitions of a fixed size.

The matrix (70) is a product of two factors. The first is an invertible diagonal matrix of
edge weights explicitly determined by (62). The second is the operator S written on
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the left in the fixed point basis. The operator S is completely determined by the linear
differential equation (68). The inverse of S satisfies

q
d

dq
S�1
DM.0/ S�1

� S�1 M :

In particular, S is invertible for q not equal to a root of unity.

An identical argument can be used in the local Gromov–Witten theory of curves to
determine 1–partition Hodge integrals from the results of Bryan–Pandharipande [4].
For Calabi–Yau Hodge integrals, the results specialize to the Gopakumar–Mariño–Vafa
formula proven in Liu–Liu–Zhou [21] and Okounkov–Pandharipande [29].

Alternatively, both the 1–legged vertex and the 1–partition Hodge integrals can be
recovered from an parallel localization formula for the level .0; 0/ cap. We leave the
details to the reader.
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