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Hyperbolic geometry and non-Kihler manifolds
with trivial canonical bundle

JOEL FINE
DMITRI PANOV

We use hyperbolic geometry to construct simply connected symplectic or complex
manifolds with trivial canonical bundle and with no compatible Kihler structure. We
start with the desingularisations of the quadric cone in C*: the smoothing is a natural
S3 —bundle over H?3, its holomorphic geometry is determined by the hyperbolic met-
ric; the small-resolution is a natural S?—bundle over H* with symplectic geometry
determined by the metric. Using hyperbolic geometry, we find orbifold quotients
with trivial canonical bundle; smooth examples are produced via crepant resolutions.
In particular, we find the first example of a simply connected symplectic 6-manifold
with ¢; = 0 that does not admit a compatible Kihler structure. We also find infinitely
many distinct complex structures on 2(S? x S$3) #(S2? x S$*) with trivial canonical
bundle. Finally, we explain how an analogous construction for hyperbolic manifolds
in higher dimensions gives symplectic non-Kéhler “Fano” manifolds of dimension 12
and higher.

53D35, 32Q55; 51M10, 57M25

1 Introduction

The main goal of this article is to describe how hyperbolic geometry can be used to
construct simply connected complex and symplectic manifolds with trivial canonical
bundle, which admit no compatible Kdhler structure. In the symplectic case, trivial
means c¢; = 0, whilst in the complex case, trivial means holomorphically trivial. Our
examples have real dimension six. Hyperbolic geometry in dimension three gives
complex examples whilst hyperbolic geometry in dimension four leads to symplectic
examples.

Using this approach we find, amongst other things the following kind of examples.

Theorem 1 There exists a compact simply connected 6—manifold X which admits a
symplectic structure with ¢; = 0. Moreover, there is no Kéhler metric on X which has
c1 = 0.

To the best of our knowledge, this is the first such 6—dimensional example.
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Theorem 2 There are infinitely many distinct complex structures on 2(S> x S3) #
(S2 x S§*) all with trivial canonical bundle.

These examples are necessarily non-Kéhler because all degree 2 cohomology classes
on 2(S3 x S3)# (52 x S*) have zero top power.

Before giving an outline of the constructions, we begin by recalling some background.

1.1 Non-Kihler examples in dimension four

First consider the case of real dimension four. It follows from the classification of
compact complex surfaces that the only simply connected compact complex surfaces
with trivial canonical bundle are K3 surfaces and so, in particular, are Kihler. In the
symplectic case the situation is not yet understood, but it is a folklore conjecture that
Kéhler K3 surfaces again provide the only examples. So, conjecturally, in dimension
four all simply connected symplectic manifolds with ¢; = 0 are Kdhler too. If we
believe this conjecture, to find the first non-Kéhler examples of simply connected
manifolds with trivial canonical bundle, we should look to higher dimensions.

1.2 Non-Kihler examples in dimension six

In dimension six, much use has been made of ordinary double-points and their desin-
gularisations. An ordinary double-point is modelled locally on a neighbourhood of the
origin in the quadric cone ) zj2 =0 in C*. To desingularise the cone, one can smooth
it to obtain the smooth affine quadric ) Z]-2 = 1; this replaces the double point by a
three-sphere. Alternatively, one can resolve the double-point by the so-called small
resolution, which is the total space of O(—1) @ O(—1) — CP!; here the double point
is replaced by a two-sphere. (We will give more detail about these desingularisations
later in Section 2.) Note that the double point and both desingularisations have trivial
canonical bundle.

In the complex setting this approach was used by Friedman [16] and Tian [41], following
ideas of Clemens [8], to produce complex manifolds with trivial canonical bundle.
Starting from a complex manifold X with trivial canonical bundle and ordinary double
points they considered the manifold X’ obtained by smoothing all the double points.
Under certain conditions, the complex structure on X can be smoothed to give a
complex structure on X, again with trivial canonical bundle. In this way one finds a
family of complex structures on 7(S?3 x S3) for all # > 2, with trivial canonical bundle.
(The article of Lu-Tian [28] explains the details for these particular smoothings.) These
manifolds are clearly not Kéhler.
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There is an analogous story on the symplectic side, explained in the article of Smith—
Thomas—Yau [39]. Here, one starts with a symplectic manifold Y with ordinary double
points and trivial canonical bundle and considers the manifold ¥’ obtained by the small
resolution of all the double points. Under certain conditions, the symplectic structure on
Y can be resolved to give a symplectic structure on Y/ with ¢; = 0. In this way Smith—
Thomas—Yau produced many interesting examples of simply connected symplectic
manifolds with ¢; = 0 which are widely believed to be non-Kéhler. However, in
contrast with the complex side, they were unable to find examples which violate the
standard Kihler topological restrictions. It is still unknown if any of the examples they
give actually are non-Kihler.

1.3 Non-Kihler examples in dimension 4 n

In [21], Guan constructs examples of simply connected compact complex-symplectic
manifolds of dimension 4n for n > 2, which do not admit a compatible Kihler
structure. (See also the article [5] of Bogomolov for an alternative exposition of Guan’s
construction.) Taking the real part of the complex symplectic form, one obtains a
symplectic manifold in the real sense which has ¢; = 0. In [21], Guan proves that his
examples are not diffeomorphic to hyperkihler manifolds. In fact even more is true;
whilst it is not proven directly in [21], Guan has informed us that it follows from the
results of [21] that his manifolds admit no Kihler structure whatsoever.

Guan’s construction uses Kodaira—Thurston surfaces to produce a single example of
a simply connected 4n—manifold for each n > 2 which admits complex-symplectic
structures. One might think of Guan’s construction as a non-Kéhler analogue of the
infinite series of hyperkidhler manifolds coming from the Hilbert scheme of n points
on a hyperkihler surface. In contrast, the construction we present here produces large
numbers of topologically distinct symplectic manifolds all of the same dimension.
Whilst we describe just one in this article, we produce examples with arbitrarily high
Betti numbers in a sequel [14]. The idea is outlined here in Section 6.

1.4 A hyperbolic picture of the desingularisations

As in the articles [8; 16; 41; 39] mentioned above, the construction of symplectic and
complex manifolds that we explore in this article relies on the desingularisations of the
threefold quadric cone. However, rather than using the small resolution or smoothing as
local models for desingularising double-points, here we consider their global geometry.

1.4.1 H* and the small resolution As we explain in Section 2.3, the symplectic
geometry of the small resolution R = O(—1) & O(—1) is intimately related to hy-
perbolic geometry in dimension four. R is a natural S2—bundle over H*, with the
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symplectic Calabi—Yau structure on R determined by the metric on H*. Indeed, R is
symplectomorphic to the twistor space of H*; the symplectic structure on the twistor
space was first defined by Reznikov [36] and Davidov—Muskarov—Grantcharov [10] and
a symplectomorphism with R was given by the authors in [15]. In Section 2.3.2 and
Section 2.3.3 we give two additional descriptions: symplectically, R can be seen as a
coadjoint orbit of SO(4, 1), or as a certain pseudo-Kéhler manifold, via a construction
involving quaternions, analogous to the twistor fibration CP3 — HP! = S*. It follows
that any hyperbolic 4-manifold carries an S2—bundle—its twistor space—whose total
space is a symplectic manifold with trivial canonical bundle.

To produce a simply connected example, in Section 4 we use a version of the Kummer
construction. Recall that in the Kummer construction, one considers the quotient of
an abelian surface by the central involution z — —z. Resolving the 16 orbifold points
gives a K3 surface.

The role of the abelian surface in our situation is played by a beautiful hyperbolic
4-manifold called the Davis manifold [11] (see also the description in Ratcliffe—
Tschantz [34]). This manifold is constructed by gluing opposite 3—faces of a 120—cell
in H*, a certain regular four-dimensional polyhedron (so-called because it has 120
three-dimensional faces, each a regular dodecahedron).

An important point for our purposes is that reflection in the centre of the 120—cell gives
an isometry of the Davis manifold A . This isometry gives a quotient M/Z, which
is a simply connected singular manifold with 122 isolated singularities modelled on
Z +> —z, just as in the Kummer construction. In terms of the symplectic SZ—bundle
Z — M , the isometry induces a symplectic action of Z, on Z which fixes 122 fibres.
The quotient is a symplectic orbifold with trivial canonical bundle, with singularities
along 122 2—spheres. Making a symplectic crepant resolution of these singularities
gives a smooth simply connected symplectic manifold Z . As we will see, b3 (2 )=0,
which can never happen for a simply connected Kihler manifold with ¢; = 0.

1.4.2 H? and the smoothing There is an analogous story for the smoothing S =
22 z; = = 1}, this time relating the complex geometry of S with hyperbolic geometry in
d1mens10n three. S is a natural S3—bundle over H3 with the complex geometry of S
determined by the metric on 3. One way to see this is to note that S 2 SL(2, C); the
action of SU(2) on SL(2, C) makes it a principal bundle over SU(2)\ SL(2,C) = H?3,
the principal spin bundle of H>. As a consequence, any hyperbolic 3—manifold carries
an S3—bundle whose total space is a complex manifold with trivial canonical bundle.

To produce simply connected examples, in Section 3 we consider hyperbolic orbifold
metrics on S* with cone angle 277/m along a knot K. It is a standard fact that there
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is a smooth hyperbolic manifold M admitting an isometric Z,,—action with quotient
M — S3 branched over K. Now, as M is hyperbolic, its spin bundles are complex
manifolds with trivial canonical bundle. As we will show, provided the spin-structure
P — M is well-chosen, the generator of the Z,,—action lifts to P where it generates
a Z,m,—action (covering the Z,,—action on M via the projection Zy,, — Zm).

The quotient P/Z,,, is just the quotient of the frame bundle Q — M by the lift of
the action of Z,. It is straightforward to see that Z,, acts freely on Q and so Q/Z,,
is smooth and has fundamental group equal to the original orbifold fundamental group
of the metric on S3. To remedy this, we “twist” the Z,,,—action on P around the
knot K; this induces fixed points in the fibres over K and results in a singular but
simply connected quotient of P. Finally, we obtain a smooth manifold by taking a
crepant resolution.

The examples we find this way have a smooth surjection X — S3. Away from the
knot, this makes X a trivial fibration S3 x (S3\ K). These threefolds can never be
Kihler; as we explain, they admit a C*—action with no fixed points. This construction
provides, amongst other things, infinitely many distinct complex structures with trivial
canonical bundle on 2(S3 x S3)# (52 x S4).

1.5 Symplectic non-Kihler “Fano’” manifolds

In Section 5 we outline a relationship between symplectic and hyperbolic geometry
in all even dimensions: a hyperbolic manifold of dimension 27 is the base of a fibre
bundle whose total space is a symplectic manifold of real dimension #n(n + 1). (The
fibre bundle is the twistor space; these symplectic manifolds were first considered
by Reznikov [36].) When n = 1 the fibres are zero-dimensional and the total space
is just the original surface. In this case, the symplectic manifold is “general type”
with symplectic class a negative multiple of ¢;. When n = 2, we have the situation
described above, for which ¢; = 0. For all higher dimensions, however, it turns out
that the symplectic manifold has symplectic class equal to a positive multiple of c;.
No compact example produced this way can be Kihler (eg, for fundamental group
reasons). To the best of our knowledge, these examples (found first by Reznikov)
are the first symplectic non-Kéhler manifolds which have symplectic class equal to a
positive multiple of ¢, symplectic analogues of Fano varieties.

It is interesting to compare this with the situation in dimension four. There, it is a
consequence of the work of Gromov [20], Taubes [40] and McDuff [30] that a symplectic
Fano 4-manifold must be Kédhler. Meanwhile, the lowest dimension attained by our
construction is twelve. It is natural to ask for the minimal dimension in which non-
Kihler examples occur. Do they exist in dimension six? The symplectic Fanos coming
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from hyperbolic 2n—manifolds also have the property that ¢ can be arbitrarily large
(it is essentially the volume of the hyperbolic 2n—manifold). Again, it seems natural
to ask for the minimal dimension in which Fano manifolds exist for which ¢ can be
made arbitrarily large.
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2 Hyperbolic geometry and the conifold

2.1 Desingularisations of the conifold

Fix a nondegenerate complex quadratic form ¢ on C*. The conifold is the affine
quadric cone Q = {¢(¢) = 0}. We will consider two well-studied ways to remove
the singularity at the origin, giving smooth Kéhler manifolds with trivial canonical
bundle. We describe this briefly here; for more details we refer to [39], from where we
originally learnt this material.

One desingularisation is the smooth affine quadric S = {¢({) = 1}, called the smoothing
of Q. S is a Kihler manifold with trivial canonical bundle, although we will be
concerned only with the complex geometry of S.

Another way to desingularise the conifold is to take a resolution. Choose coordinates
(x, y,w, z) so that the quadratic form is given by ¢(x, y,z,w,) = xw — yz. Let R
denote the total space of 7: O(—1) @ O(—1) — CP!. Each summand of R has a
natural map O(—1) — C?; these combine to give a map p: R — C? @ C? = C*.
Here, we use the identification ((a, b), (c,d)) — (a,b,c,d). The image of p consists
of points (x, y, z, w) such that [x : y] = [z: w], ie, such that xw — yz = 0, which is
the conifold. So p: R — Q is a resolution, called the small resolution, in which the
singularity has been replaced by the zero section in R.

In this description, we could equally have chosen to identify C? @ C? =~ C* by
((a,b), (c,d)) — (a,c,b,d). With this choice, the image of p: R — C* consists of
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points (x, y, z, w) such that [x : z] = [y : w] which is again the conifold xw — yz = 0.
So, in fact, there are two inequivalent ways to view R as the small resolution of Q.
Put another way, there are two small resolutions R4 — @} each is isomorphic to
O(—1) & O(—1) abstractly, but there is no isomorphism between them which respects
the projections to Q.

There is an alternative coordinate-free description of the small resolutions. Blow up
the origin in C* to obtain C*. The proper transform Q of QO meets the exceptional
CP3 c C* in a quadric surface. This surface is biholomorphic to CP! x CP! and
each of the rulings has negative normal bundle. Blowing down one or other of the
rulings gives the two small resolutions R4+ — Q of the conifold.

Either resolution R is a Kdhler manifold with trivial canonical bundle, although we
will be concerned only with the symplectic geometry of R. The symplectic form is
given by

wRr =1 wcp1 + proca
where 7: R — CP! and p: R — Q C C* are the vector bundle and resolution
projections respectively.

The first hint of a link with twistor geometry is provided by considering the symplectic
action of SO(4) on R. The Hermitian metric and complex quadratic form on C*
define a choice of conjugation map (the real points are those on which the Hermitian
and complex forms agree). Then SO(4) is the subgroup of U(4) which commutes
with this conjugation. In this way SO(4) acts by Kéhler isometries on the conifold Q
and this action lifts to a Kéhler action on the small resolutions R4 . The action on the
exceptional CP! in R4 is given by one or other of the projections SO(4) — PSU(2)
arising from the exceptional isomorphism

SU(2) x SU(2)

(1) SO(4) =~ —

2.2 Hyperbolic geometry and the smoothing
To describe the connection between hyperbolic geometry and .S the smoothing, use

coordinates (x, y,z,w) in which the quadratic form ¢ is given by ¢(x, y,z,w) =
xw — yz. Identify C* with the set of complex 2 x 2 matrices by

Xy
(z w) = (x,y,z,w).

When evaluated on a matrix A4, the quadratic form is ¢(A4) = det A. Hence, in this
picture, S =~ SL(2, C) is given by matrices with determinant 1. Consider the action
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of SU(2) on SL(2, C) given by multiplication on the left; this makes SL(2, C) into a
principal SU(2)-bundle over the symmetric space SU(2)\ SL(2, C) which is precisely
hyperbolic space H3. (See, for example, page 453 of Helgason [22].) In fact, the
bundle SL(2,C) — H? can be identified with the principal spin bundle of H*. To
verify this note that Isom(H?*) 2 PSL(2, C) acts freely and transitively on the frame
bundle of H?3;so PSL(2,C) can be identified with the frame bundle of H?> whilst its
double cover SL(2, C) is identified with the principal spin bundle.

As it is a complex Lie group, SL(2, C) has a holomorphic volume form which is
invariant under right-multiplication. It will be essential to us that this same form is
also invariant under lefr-multiplication; in other words, that SL(2, C) is a complex
unimodular group. Given P, Q € SL(2,C), consider the biholomorphism of S =
SL(2,C) defined by A~ P~'AQ. This sets up an isomorphism

SL(2,C) x SL(2, C)
+1 ‘

(This is, of course, just the complexification of (1).) Unimodularity of SL(2,C) now
amounts to the following:

@) SO(4,C) =

Proposition 3 SO(4, C) acts by biholomorphisms on S. Moreover, S admits an
invariant holomorphic volume form.

Alternatively, the SO(4, C)-invariant volume form can be seen directly, without
reference to SL(2,C) and unimodularity. SO(4, C) preserves both the Euclidean
holomorphic volume form €2 and the radial vector e = x0dx + y0, +2z0; + woy,
which is transverse to S'. Hence the volume form 2 =, on S is also invariant.

To produce compact quotients of S, let M be an oriented compact hyperbolic 3—
manifold with fundamental group I' C PSL(2, C). Since M is spin (as all oriented
3-manifolds are), I' lifts to SL(2, C) and the total space of the principal spin bundle
of M is X =SL(2,C)/ T", where I" acts by right-multiplication. More precisely, each
choice of lift of I" to SL(2, C) gives a spin structure on M ; this correspondence is
one-to-one: lifts and spin structures are both parametrised by H'(M, Z,). Whatever
the choice of lift, the action of I preserves the holomorphic volume form on SL(2, C)
and so X is a compact complex threefold with trivial canonical bundle.

Left-multiplication gives us additional freedom. Denote the chosen lift by o: I' —
SL(2,C) and let p: I' — SL(2, C) be some other homomorphism. From p we obtain
anew action of ' on S:

y-A=p(y) ' Ada(y).
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We will use this “twisting” to produce orbifold quotients of .S, but it was originally
used in a different context by Ghys [17]. Ghys studies infinitesimal deformations of
the complex manifold X = SL(2,C)/ ", where I' acts by right-multiplication, ie,
where p is the trivial homomorphism in the above picture. He shows that infinitesimal
holomorphic deformations of X are equivalent to infinitesimal deformations of the
trivial homomorphism. It is possible to extend this picture, giving a description of
part of the space of complex structures on X, something we address in forthcoming
work [13].

2.3 Hyperbolic geometry and the small resolution

This section proves the analogue of Proposition 3 for the small resolution R.

Proposition 4 SO(4, 1) acts symplectomorphically on R, extending the action of
SO(4). Moreover, R admits an invariant compatible almost complex structure and
invariant complex volume form.

Before proving this, we give three different descriptions of the hyperbolic geometry
of R.

2.3.1 Twistorial description The twistor space of H* carries a natural symplectic
structure (a fact noticed independently by Reznikov [36] and Davidov—Muskarov—
Grantcharov [10]) and this was shown to be symplectomorphic to the small resolution
in [15]. We very briefly recall the idea here.

Choose coordinates z;j on C*# in which the conifold is {Y_ zj2 =0}. The map Q — R*
given by z > Re z exhibits Q \ 0 as an S?-bundle over R*\ 0. The fibre over a
point x is all points of the form x 4 iy where y € (x)* with |y| = |x|.

The twistor space of R* is the bundle of unit-length self-dual two forms. Given
x € R*\ 0, interior contraction with x gives an isomorphism A% = (x)L. In this way
we can identify Q \ 0 with the twistor space of R*\ 0. This identification extends
over the small resolution to give an SO(4)—equivariant identification of R with the
twistor space of R*. (More precisely it extends over one of the two small resolutions,
to obtain the other small resolution we should consider A™.)

It was proved in [15] that, up to homotheties and rescaling, there is a unique SO(4)—
invariant symplectic form on the twistor space R of R* with infinite volume and
whose sign changes under the antipodal map. From this twistorial view-point, it comes
naturally from hyperbolic geometry. The Levi—Civita connection of the hyperbolic
metric on R* = H* induces a metric connection in the vertical tangent bundle V — R.
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Its curvature —2mi @ determines the symplectic form. It follows from this that there is a
symplectic action of the hyperbolic isometry group SO(4, 1) extending that of SO(4).

In [9], Davidov—Muskarov—Grantcharov compute the total Chern form of the tangent
bundle of the twistor space. Combining their calculation with the symplectomorphism
of the twistor space and the small resolution in [15] gives a proof of Proposition 4. We
give a separate proof later, using an alternative description of R.

2.3.2 Quaternionic description The next description, involving quaternions, is anal-
ogous to the standard picture of the twistor fibration CP3 — S* which we recall
first. This description of the twistor space of S* appears in the original article of
Atiyah—Hitchin—Singer [3] as well as paragraph 13.84 of Besse [4]. The analogous
description of the twistor space of H* appears very briefly in the final line of 13.84
in [4] and more detail can be found in, for example, LeBrun [25; 26].

In the case of S*, we begin by identifying C* =~ H?. Each complex line in C*
determines a quaternionic line in H?, giving a map t: CP? — HP! = S*. The
fibre t=!(p) is the CP! of all complex lines in the quaternionic line p. A choice of
positive-definite Hermitian form on C* gives a Fubini—Study metric on CP3 and a
round metric on S*. The isometries SO(5) of S* are identified with those isometries
of CP? which preserve the fibres of 7, giving an injection SO(5) — PSU(4).

To describe the twistor fibration of H* in an analogous way we use an indefinite
Hermitian form: let C2+2 denote C* together with the Hermitian form /(w) = |w; | +
|w,|? — |w3|?> — |ws|? and consider the space

N ={w e C*?%: h(w) <0}/C*

of negative lines in C22; N is an open set in CIP3. Transverse to a negative line in
C?2:2, h is indefinite with signature (2, 1); accordingly N inherits a pseudo-Kihler
metric of signature (2, 1), in the same way that a positive definite Hermitian form
determines a Fubini—Study metric on CP?. The pseudo-Kihler metric makes N into
a symplectic manifold. Alternatively, one can see the N as the symplectic reduction of
C?2-2 by the diagonal circle action; the Hamiltonian for this action is just / and the
reductionat h = —1is N.

It is standard that N is symplectomorphic to R. (One way to prove this is to use the
fact that both admit Hamiltonian 7'*-actions with equivalent moment polytopes.) To
use this picture to relate R to H*, let H!»! denote H? together with the indefinite
form h'(p) = |p1|* —|p2|*. The map

(w1, wa, w3, wg) = (W1 + jwy, w3 + jwy)
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identifies the Hermitian spaces C2>> = H!-!. There is a natural projection from N
to the space of negative quaternionic lines in H!-!, ie, to the quaternionic-hyperbolic
space

Hj ={peH"' :1'(p) <0}/H*.
In general, the space of negative lines in H"™! is the quaternionic analogue of hyperbolic
or complex-hyperbolic n—space. When n = 1, however, this is isometric to H*, four-
dimensional real-hyperbolic space. (In the lowest dimension, the symmetric spaces
associated to complex or quaternionic geometry coincide with their equidimensional
real analogues.)
So, analogous to t: CP3 — S*, we have a projection t: R — H*; the fibre 1~ (p)
is the CP! of all complex lines in the quaternionic line p. The pseudo-Kihler
isometries of R are PSU(2,2) whilst the isometries SO(4, 1) of H* can be identi-
fied with those isometries of R which preserve the fibres of ¢, giving an injection
SO(4,1) — PSU(2,2). In this way we see again an action of SO(4,1) on R by
symplectomorphisms.

2.3.3 A coadjoint description Let G be a Lie group and & € g*; denote the orbit
of & under the coadjoint action by O(§). It is a standard fact that there is a G'—invariant
symplectic structure on O(£). We will show how the small resolution fits into this
general theory as a certain coadjoint orbit of SO(4, 1).

The Lie algebra so(4, 1) is 5x5 matrices of the form

0 u’
® ().
where u is a column vector in R* and A4 € so(4). Those elements with # = 0 generate
SO(4) C SO®4,1).

The Killing form is nondegenerate on so0(4, 1) and so gives an equivariant isomorphism
s50(4,1) = s0(4,1)*. We consider the orbit of

00
:=(0 1)
where Jy € s0(4) is a choice of almost complex structure on R* (e, J(f = —1). The
subalgebra b of matrices commuting with & is those with u = 0 and [4, Jo] = 0,
ie, h = u(2) C s0(4) C so(4,1). It follows that the stabiliser of & is U(2) and so
O(§) =S0(4, 1)/ U(2).

Lemma 5 There is an isomorphism of U(2)-representation spaces:

s0(4,1) = u(2) @ A*(C*)* @ C2.
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Proof There is a U(2)—equivariant isomorphism s0(4) 2 u(2) @ A%(C?)*. To see
this, write s0(4) = A2(R*)*. Given a choice of almost complex structure on R*,
any real 2—form a can be written uniquely as ¢ = o + 8 + E where « € Aﬁg’l is a
real (1, 1)—form and B € A%°. Identifying a with («, B) gives a U(2)—equivariant
decomposition A]%R ~ Aﬁg’l @ A%0. But, via the Hermitian form, Aﬁg’l is identified

with skew-Hermitian matrices u(2) and this gives the claimed isomorphism.

There is also an SO(4)—equivariant isomorphism s0(4, 1) 2 s0(4) ®R*. In the form (3),
the 50(4) summand is given by u = 0 whilst the R* summand by 4 = 0. Combining
these two isomorphisms completes the proof. a

Lemma 6 Up to scale, there is a unique SO(4, 1)—invariant symplectic form on

O(¢) =50(4,1)/U(Q2).

Proof The existence follows from coadjoint orbit description. For uniqueness, we
begin by describing all invariant nondegenerate 2—forms. This amounts to describing all
nondegenerate 2—forms at a point which are invariant under the stabiliser U(2). From
Lemma 5 the tangent space at a point is isomorphic as a U(2)-representation space
to A2(C?)* @ C2. Up to scale, there is a unique invariant 2—form on each summand,
giving two SO(4, 1)—invariant 2—forms @, b on SO(4, 1)/ U(2). It follows that, up to
scale, all nondegenerate invariant 2—forms have the form a + ¢ for ¢ # 0. At most
one of these can be closed, ¢ being fixed by the requirement that da = —tdb. a

Corollary 7 O(§) is symplectomorphic to R.

Proof This follows from the previous lemma and the transitive action of SO(4, 1)
on R which can be seen in either the twistorial or quaternionic pictures. a

We make a small digression to point out a simple consequence of the coadjoint orbit
description of R which is, perhaps, less apparent from its Kédhler description as the
total space of O(—1) @ O(—1). We omit the details since this description of R is not
relevant to what follows.

Proposition 8 R is symplectomorphic to T*(S? x R) with the symplectic structure
Wean + p*wg2, Where wean is the canonical symplectic form on the cotangent bundle,
wg> is an area-one 2—form on S? and p: T*(S x R) — S? is the composition of
projections T*(S?> xR) — S? xR — S2.

Sketch proof As R is a coadjoint orbit of SO(4, 1), the action of SO(4, 1) is Hamil-
tonian. It follows that R admits a free Hamiltonian R3 —action given as follows: fix
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a point p at infinity on H* and consider the subgroup R3 C SO(4, 1) which acts by
linear translations on the horospheres centred at p. The action on R admits a section
(ie, a smoothly varying choice of representative from each orbit) given by considering
the restriction of R — H* to a geodesic through p; this shows that the orbit space is
S2 x R. Moreover, on this section, the symplectic form w restricts to the pullback of
an area-one form on S? via S xR — S2.

Now we appeal to a standard result concerning Hamiltonian R” actions. Let (M, w)
be a symplectic 2n—manifold with a free Hamiltonian action of R” and moment
map pu: M — (R")* with image U. Suppose there is a section s: U — M of .
Let @ = s*w. Then translating the section via the R” action gives a diffeomorphism
M =~ U xR" =~ T*U under which w is identified with we,, +7*a. Here, 7: TV > U.
(If the section were Lagrangian, we would in the perhaps more familiar situation in
which the moment map identifies M symplectomorphically with the cotangent bundle
of U.) m|

An alternative way to write this symplectic manifold is as the symplectic product
O(—2)xR2. Here, O(—2)—the cotangent bundle to S —has the symplectic structure
given by adding the pullbacks of the standard forms via the projection to CP! and the
resolution O(—2) — C2/Z,.

Corollary 9 R contains no Lagrangian 3—spheres.

Proof Since O(—2) is convex at infinity, this statement follows from recent work of
Welschinger [44] (see, for example, Corollary 4.13). a

2.34 An SO(4, 1)—invariant complex volume form We now give the proof of
Proposition 4, which says that the small resolution admits an SO(4, 1)—invariant
compatible almost complex structure and invariant complex volume form.

Proof of Proposition 4 We use the coadjoint orbit description. Lemma 5 says that
at each point z there is a U(2)—equivariant isomorphism of the tangent space 7, =
A?(C?)*@C?. Accordingly, there is a natural U(2)—invariant almost complex structure
on 7T, which is w—compatible and, hence, an SO(4, 1)—invariant compatible almost
complex structure J on O(§).

For the complex volume form, note that U(2) acts trivially on A3T} =~ A?(C?) ®
A2(C?)* hence any nonzero element of A3 T} can be extended in a unique way to an
SO(4, 1)—invariant complex volume form. a
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We remark in passing that Lemma 5 and the almost complex structure used here also
have a straightforward interpretation in the twistorial picture. Recall that R — H*
is a CP!-bundle and that @ is nondegenerate on the fibres. Hence TR =V @ H
where V is the vertical tangent bundle and H its complement with respect to . This
corresponds to the splitting in Lemma 5. The pseudo-Kéhler metric is negative definite
on V and positive definite on H. Let

J = —Jindlv + JintlH

where Jiy is the integrable complex structure on R C CP3. J isan SO(4, 1)—invariant
almost complex structure and coincides with that coming from the coadjoint orbit picture.
It is an instance of the Eells—Salamon almost complex structure on the twistor space of
a Riemannian four-manifold [12].

With this hyperbolic description in hand, we can use hyperbolic four-manifolds to
produce symplectic quotients of the small resolution: a hyperbolic four-manifold carries
a two-sphere bundle—its twistor space—whose total space is symplectic with trivial
canonical bundle. Of course, any compact example will have infinite fundamental
group. We will produce a simply connected example in Section 4 by considering a
certain hyperbolic orbifold.

3 Complex examples

Compact complex manifolds will be built starting from hyperbolic orbifold metrics
on S3 with cone angle 27 /m along a knot K C S*. When such a metric exists,
K is said to be 27 /m-hyperbolic. Such knots are well-known to be plentiful. As
is explained in [6], it is a consequence of Thurston’s orbifold Dehn surgery theorem
that when K is a hyperbolic knot—ie, when S\ K admits a complete finite-volume
hyperbolic metric— K is also 27/ m—hyperbolic for all m > 3 with one sole exception,
namely when K is the figure eight knot and m = 3. There are also infinitely many
7 —hyperbolic knots. (We are grateful to Michel Boileau for advice on this matter.)

Let H?/T be a hyperbolic orbifold metric on S3 with cone angle 27r/m along a
knot K where I' C PSL(2, C) is the orbifold fundamental group. It is standard that
there is smooth hyperbolic manifold M which is an m—fold cyclic cover M — S3
branched along the knot K. (By Mayer—Vietoris, H;(S>\ K) = Z; hence there is a
homomorphism 71 (S3\ K) — Z which in turn induces a homomorphism : I' — Z,,,;
the kernel I'” of v has no fixed points on H* and is the fundamental group of M .)

Since M is a hyperbolic manifold, its spin bundles are complex manifolds with trivial
canonical bundle (as is described in Section 2.2). When the spin-structure P — M 1is
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well-chosen, the generator of the Z,,—action lifts to P where it generates a Z,,, —action.
To produce a simply connected quotient of P, we then “twist” this action around the
knot; this induces fixed points in the fibres over K and results in a singular quotient
for which all the fibres are simply connected, giving a simply connected total space.
Finally, we obtain a smooth manifold by taking a crepant resolution.

3.1 The model singularity and resolution

We begin by considering the model situation. Take a geodesic y in H?> and let Z,,
act on H? by fixing y pointwise and rotating perpendicular to y by 27/m. Let
@ = e™/™ In appropriate coordinates, Z,, C PSL(2, C) is generated by the class [U]

of the diagonal matrix U with entries ¢, ¢ ~!.

The group Z,, € PSL(2, C) is covered by the copy of Z,,, C SL(2, C) generated by U .
The action of Z,, on H3 is covered by the action of Z,,, by right multiplication on
SL(2, C). However, this action on SL(2, C) is free and so the quotient has nontrivial
fundamental group. To produce a singular but simply connected quotient, we “twist”
to introduce fixed points. This additional twist is given by simultaneously multiplying
on the left.

Consider the action of Z, on SL(2,C) generated by conjugation 4 — U~ 1AU.
Explicitly, in coordinates, the generator is

-2
@ (F2)=(570)

The points of SL(2, C) fixed by Z,, are the C* subgroup of diagonal matrices. On a
tangent plane normal to the fixed points, the Z,,—action is that of the A,,—singularity
(ie, C?/Z, with action generated by U? € SU(2)). Left multiplication on SL(2, C)
by the C* subgroup of diagonal matrices is free and commutes with the action of Z, ;
hence it descends to a free C*—action on the quotient. The C*-action is transitive
on the fixed locus and so gives an identification of the neighbourhood of the orbifold
points with the product of C* x V', where V is a neighbourhood of the singular point
in the A,,-singularity.

The Z,,—action preserves the fibres of SL(2, C) — H? and covers the Z,, action on
H?*—the fibres are right cosets of SU(2) and U € SU(2)—hence there is a projection
SL(2,C)/Z — H?/Zy,. The Z,,—fixed points form a circle bundle over the geo-
desic y. We have implicitly oriented y in our choice of coordinates (4); the image of
the fixed points in the frame bundle PSL(2, C) are those frames whose first vector is
positively tangent to y .
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Since the A,,—singularity admits a crepant resolution, it follows that SL(2,C)/Z,
does too. The exceptional divisor of the resolution W — SL(2, C)/Zj,, maps to the C*
of singular points with fibre a chain of m — 1 rational curves over each point, as in the
standard crepant resolution of the A,, singularity.

In our model example, the Z,, fixed locus in H3 is a geodesic y. In our compact
examples, the branch locus will be a closed geodesic loop. The geodesic y is “closed
up” by the action of Z on SL(2, C) generated by right-multiplication by the diagonal
matrix with entries @, !, where a € C has |a| > 1. This action is free and commutes
with the Z,, action described above, hence it induces an action of Z on SL(2,C)/Z,
and on the crepant resolution W. The quotient W /Z is a crepant resolution of
SL(2,C)/(Zm & Z), a complex orbifold whose singular locus is an elliptic curve. This
is the singularity which will actually appear in our compact examples.

Finally note that the free C*—action on SL(2, C)/Z,, described above commutes with
the action of Z and so descends to SL(2,C)/(Z, @ Z). It induces a locally free
C*—action on the resolution, ie, it is generated by a nowhere vanishing vector field.
This is a feature which will be shared by our compact examples.

3.2 Compact examples

We now consider a hyperbolic orbifold metric on S3 with cone angle 277/m along a
knot K. It is a standard fact that there a is smooth hyperbolic manifold M which is
an m—fold cyclic cover M — S3 branched along the knot K. Z,, acts by isometries
on M , fixing the geodesic branch locus pointwise and rotating the normal bundle by
27t /m. The action of Z,, on the universal cover H> of M is precisely the situation
considered in Section 3.1: Z,, C PSL(2, C) is generated (in appropriate coordinates)

by the class [U] of a matrix U which is diagonal with entries ¢ and ¢~!, where

¢ = eTi/m.

In order to produce a complex orbifold we first try to lift the Z,,—action to a spin
bundle of M . Let Q denote the frame bundle of M and P a choice of spin bundle.
The generator of the Z,,—action on M induces a diffeomorphism f of Q and we
aim to choose the spin structure so that f* lifts to P. For this we state the following
standard result:

Lemma 10 Let Y be a connected manifold, f: Y — Y adiffeomorphism and Y, —Y
the double cover corresponding to the element h € H' (Y, Z,). Then f lifts to Y}, if
and only if f*h =h.

Double covers of Q are parametrised by H'(Q, Z,) and spin structures correspond
to elements which are nonzero on restriction to the fibres of Q0 — M . So to lift the
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generator f of the Z,,—action to P we must find a suitable invariant 7 € H'(Q,Z5).
For certain values of m, this can always be done.

Lemma 11 Ifm is odd or m =2 then there is a Z,, —invariant element of H'(Q, Z5)
corresponding to a spin structure P — Q.

Proof If m is odd, take any 1 € H'(Q, Z,) whose restriction to a fibre is nonzero
and average over the group Z,, to give an invariant element. Since m is odd, the
fibrewise restriction remains nonzero.

When m = 2" we use a lemma from knot theory: the 2" —fold cover M’ — S3 branched
along a knot has H! (M, Z,) =0 (see, eg, page 16 of Gordon [18]). It follows that
M has a unique spin structure, H'(Q, Z,) = Z, and the generator of H'(Q,Z,) is
Z.mm—invariant. m|

So, when m is odd or m = 2", there is a choice of spin structure P — Q for which
generator of the Z,,—action lifts. Upstairs in P, the lifted action has order 2m. This
can be seen by considering the Z,,—action on a fibre of Q over a point in K: here
we have lifted the standard action of rotation by 2w /m on SO(3) to its double cover
SU(2); it is straightforward to check the order upstairs is 2m. The action of Z,,, on
the universal cover SL(2,C) of P is generated (again, in appropriate coordinates) by

right multiplication by the matrix U which is diagonal with entries ¢ and ¢!, where
¢ = eTi/m.

Now we can “twist” the action around the knot, to introduce a singularity just as
in the model case. We define an action of Z,, on P by sending the generator to
conjugation by U . More correctly, this defines an action of Z,, on the universal cover
of P; but we have only altered the original Z,,,—action by left-multiplication and all
deck transformations come from right-multiplication, so the Z,,—action on SL(2, C)
commutes with the action of 1 (M) by deck transformations and hence descends to
a Z,—action on P. We consider the quotient P/Z,,. Just as the model singularity
projects SL(2,C)/Z, — H?3/Zy, there is a projection P/Z,, — S*. Away from the
knot K this is a locally trivial S3-bundle, over a small neighbourhood of K we have
precisely the model singularity considered above in Section 3.1. It follows that we can
glue in a neighbourhood of the exceptional divisor from the model crepant resolution
to obtain a crepant resolution X — P/Z,,, giving a complex manifold with trivial
canonical bundle.

Lemma 12 The resolution X admits a unique (up to scale) nowhere-vanishing holo-
morphic vector field. Moreover, it generates a C* —action.
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Proof We start by showing the existence of the vector field. The Z,,—action on P
is given (on the universal cover SL(2, C)) by conjugation by a diagonal matrix with
determinant 1. Hence, on the universal cover, it commutes with left-multiplication by
the whole C* of such diagonal matrices. Since the remaining deck transformations are
all given by right-multiplication, they also commute with left-multiplication by C*,
hence this C*—action descends to P/Z,, and then lifts to the resolution X . The action
is locally free on X —ie, it is generated by a nowhere vanishing vector field—since
the same is true of the C*—action on SL(2,C).

Next we show uniqueness. Notice first that every holomorphic vector field v on X
defines a holomorphic vector field on P. Indeed v defines a holomorphic vector
field on the complement to the singular curve of P/Z,,, and so it can be lifted to the
complement of the branch locus of the Z,, action on P. This last locus is a union of
curves, so by Hartog’s extension theorem (see, eg, Griffiths and Harris [19]) the lifted
field extends holomorphically to P. Finally, recall that the tangent bundle of P is trivial;
by construction there is a unique vector field on P invariant under the action of Z,,. O

3.3 Simple connectivity and non-Kéhlerity

To show that our examples are simply connected, we begin by with a result from
algebraic topology. We recall that a space is said to be LC”" if every point has a
neighbourhood which is n—connected (ie, all homotopy groups up to and including 7,
are trivial). In particular, all CW—complexes are LC" for every n, which is the most
generality we will consider. Moreover, we need only the n = 2 case of the following
result.

Theorem 13 (Smale [38]) If f: X — Y is a proper, surjective map of connected,
locally compact, separable metric spaces, X is LC", and each fibre is LC"™! and
(n—1)—connected, then the induced homomorphism m;(X) — n;(Y) is an isomor-
phism for j <n—1 and surjective for j =n.

Lemma 14 Let X be the complex threefold associated to a 27 / m—hyperbolic knot,
as described above. Then X is simply connected.

Proof First, we consider the projection f: P/Z, — S3. We will prove that the
group 11 (P/Z,) is trivial. Away from the knot K this is a locally trivial S3—fibration.
The fibre of f over a point in K is the quotient SU(2)/Z,, via the action (4) which
is easily seen to be homeomorphic to S3. Hence Theorem 13 applies to 1, giving
71 (P L) = m1(S?) = 1.
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To deduce that the resolution X is also simply connected we apply the n = 2 case
of Theorem 13 again, this time to the map »: X — P/Z,,. Away from the singular
locus, r is one-to-one; meanwhile each point on the singular locus has preimage a
chain of m — 1 copies of S2. Since all fibres are simply connected and locally simply
connected, the result follows. O

Lemma 15 There is no compatible Kéhler structure on the complex threefold associ-
ated to a 27t / m—hyperbolic knot.

Proof The fact that our examples are simply connected (Lemma 14) and admit a
locally free C*—action (Lemma 12) implies that they have no compatible Kéhler metric.
For if they admitted a compatible Kidhler metric, by averaging it would be possible
to find an S' C C* invariant Kihler form. Now b; = 0 implies that the symplectic
S!_action would, in fact, be Hamiltonian and hence have fixed points. a

3.4 Diffeomorphism type for = -hyperbolic knots

We now turn to the question of the diffeomorphism type of our examples in the
topologically most simple case, that of a & —hyperbolic knot. We proceed via Wall’s
classification theorem [42]. Wall’s result states that oriented, smooth, simply connected,
spin, 6—manifolds with torsion-free cohomology are determined up to oriented-diffeo-
morphism by:

¢ the integer b3,
o the symmetric trilinear map H? x H? x H?> — Z given by cup product,

e the homomorphism H? — Z given by cup product with the first Pontrjagin
class.

The goal of this section is to prove:

Theorem 16 Given a w —hyperbolic knot, the resulting complex threefold constructed
above is diffeomorphic to 2(S3 x S3) #(S? x S$4).

To compute the cohomology of the complex threefold, we begin with the topology of
the orbifold P/Z,. In fact, the results here hold for P/Z,, with any choice of m.

Let K C S3 be a 27/ m-hyperbolic knot (with m odd or m = 2") and let U be a
small tubular neighbourhood of K. We write the boundary of U as S 11 x S 21 where S 11
is a meridian circle, which is contractible in U, and S 21 is a longitudinal circle, which
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is contractible in S3\ K. Let f: P/Z;, — S* denote the projection from the complex
orbifold to the hyperbolic orbifold. Write X; = f~1(S3\ K) and X, = f~1(U).

In what follows, (co)homology groups are taken with coefficients in Z unless explicitly
stated. We begin with a couple of standard topological lemmas.

Lemma 17 Given any knot K C S*, the knot complement has H,(S3\ K) = Z,
generated by the class of S, whilst H,(S3\ K) = 0= H3(S3\ K).

Lemma 18 Every SO(4)-bundle over a 3—manifold with Hy = 0 = Hj is trivial.

We apply these results to show that for j = 1,2, the subset f~!(S jl) carries all the
homology of Xj.

Lemma19 f: X; — S3\ K isa trivial S3—fibration. The inclusion f~! (Sll) — X1
induces an isomorphism on homology.

Proof SL(2,C) — H? is an SU(2)-bundle so, in particular is an S>—bundle with
structure group SO(4). Moreover, this SO(4) structure is preserved by the image of
SU(2) xSL(2, C) in SO(4, C). Accordingly, away from K, the map f: X; — S*\ K
has structure group SO(4). The result now follows from the previous two lemmas. O

Lemma 20 X, retracts to f~'(K). The inclusion f_l(Szl) — X, induces an
isomorphism on homology.

Proof To prove that X, retracts as claimed it suffices to consider the model of Section
3.1, SL(2,C)/(Z & Z,,). The orthogonal retraction of H?3 onto the (Z @ Z,,)—fixed
geodesic induces a retraction of a small tubular neighbourhood of the geodesic loop in
the quotient H3/(Z @ Z,). This lifts to give the claimed retraction of the preimage
of the tubular neighbourhood in SL(2,C)/(Z & Z,). It follows from this that the
embedding f/~'(S}) — X, induces an isomorphism on homology. |

Now we are in a position to compute the homology of the complex orbifold.
Proposition 21 P/Z,, has the integral homology of S3 x S3.

Proof We compute the cohomology of P/Z,, by applying the Mayer—Vietoris se-
quence to the pair (X7, X;). For this we need the maps (i1)+« and (i)« induced on
homology by the inclusions i1: X1 N X, — X7 and iy: X1 N X, — X,. It follows
from Lemma 19 that X; N X is the product f~1(U \ K)x S3. In particular, it retracts
to f_l(Sl1 szl) = Sl1 sz1 x S3.
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Let i { and ié denote the compositions of the retraction of X7 N X3 to Sl1 X 521 x S3
with a consecutive projection to Sl1 x S3 and 521 x S3 respectively. The preceding
Lemma 19 and Lemma 20 show that the images of the maps (i;)« and (i)« coincide
with the images of the maps (i])« and (i})« respectively. It follows from this that
the Mayer—Vietoris sequence of the pair (X7, X») can be identified with the Mayer—
Vietoris sequence of the pair ((S*\ K) x S? U x S3). Since this second sequence
calculates the homology of S* x S3, the proposition is proved. a

The singular locus of P/Zy, is an elliptic curve C. The next step is to compute the
homology of the pair (P/Z,, C).

Lemma 22 The nonzero relative homology groups Hj(P/Zy,, C) are
Hy(P)Zm,C)=7% H3(P/Zm C)=7> H¢(P/Zm C)=T7Z.

Proof This follows immediately from the exact sequence of the pair (P/Z,,,C)
along with the fact that P/Z,, has the integral homology of S3 x S3. a

To convert this into information about the homology of the resolution X we restrict to
the case when K is w—hyperbolic.

Proposition 23 Let X be the complex threefold constructed from a w —hyperbolic
knot, as described above. Then X has the integral homology of 2(S3 x S3)#(S? x S*4).

Proof Let E C X denote the exceptional divisor of the resolution X — P/Z,. The sin-
gularity in P/Z, is locally the product of the elliptic curve C with the 4,-singularity
in C2. So E =~ CP! x C, with normal bundle O(—2) pulled back from CP!.

Since X/ E (where E is crushed to a point) is homeomorphic to (P/Z,)/C, it follows
that the relative groups H; (X, E) = Hj(P/Z,,C) are given by Lemma 22. We now
consider the long exact sequence of the pair (X, E). Since Hs(E) =0= Hs(X, E),
we have that Hs(X) = 0. Meanwhile, since Hs(X, E) = 0= H4(X, E) we have that

From here we can compute all the Betti numbers. Indeed, by Poincaré duality, b, (X) =
b4(X) = 1; now considering the alternating sum of the ranks of the groups in the part
of the sequence from Hy(X, E) =0 to H;(X) = 0 gives b3 = 4. So the rational
homology of X coincides with that of the connected sum. It remains to show that
H,(X) and H;(X) are torsion-free.

Since Hy4(X, E) = 0, the long exact sequence gives:

0= Hy(E) > H3(X) > Hy(X, E) = -
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As H3(X, E) = 73 is torsion-free, all torsion in H3(X) must be contained in ker ;.
However, ker j = H3(E) = Z? is torsion-free, hence so is H3(X).

The argument for H,(X) is more involved. First, note that since H;(X) = 0 and
H>(X,E) = Z? =~ H,(E), the map H,(X,E) — H;(E) in the sequence of the
pair (X, E) is an isomorphism. Now the preceding part of the sequence gives that
H,>(E) — H,(X) is surjective. E =~ C xCP!, so Hy(E) = Z? is generated by the
class of a CIP!—fibre and the class of a C—fibre. Since H,(X) has rank 1, to show
that H,(X) = Z it suffices to show that the C —fibre in E is null-homologous in X .

For this it suffices to consider the model case of the resolution X’ — SL(2, C)/(Z,®Z)
as in Section 3.1. This is because if there is a three-chain bounding C in X’, then
the retraction in H* onto the fixed geodesic pushes this 3—chain into an arbitrarily
small neighbourhood of the exceptional divisor; hence there is such a 3—chain in the
resolution X .

SL(2,C)/(Z, & Z) is the quotient of SL(2,C)/Z by an involution with fixed locus
an elliptic curve C. Away from C, there is a two-to-one map SL(2,C)/Z --> X".
This extends to the blow-up X of SL(2,C)/Z along C to give a ramified double
cover X — X'. (This is analogous to the fact that, for bundles over CIP!, the map
O(—1) = O(=2) induced by z > z2 in the fibres gives a ramified double cover of
the Az—resolutlon ) The ramlﬁcauon locus in X is the exceptional divisor E of the
blow up X > SL(2,C)/7Z. E is identified with the branch locus in X', which is the
exceptional divisor E of the resolution X’ — SL(2,C)/(Z, ® Z). So E=~CP!'xC
and to show that a C—fibre of E is null-homologous in X" it suffices to show that a
C—fibre of E is null- homologous in X.

To prove this statement, first note that SL(2, C)/Z is homeomorphic to S3 x S x R2.
The elliptic curve C corresponds to taking the product of a Hopf circle S! c §3
with S! x {pt}. Choosing a different Hopf circle gives another copy C’ of C which
lies entirely inside (SL(2,C)/Z) \ C. On the one hand, C’ is null-homologous in
(SL(2,C)/Z) \ C (simply move it in the R?—direction so that it lies in a complete
copy of S3x S1). On the other hand, when thought of as a 2—cycle in the blow-up X,
C’ is homologous to a C —fibre of E . Hence the C—fibre of E is zero in homology
and the proposition is proved. a

Lemma 24 Let X be the complex threefold constructed from a w —hyperbolic knot,
as described above. Then all the Chern classes of X vanish.

Proof We already know that ¢; =0 and ¢3 =0 (as it is the Euler characteristic). Since
H4(X) is generated by the exceptional divisor E, to prove ¢, = 0 it suffices to show
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that (c,, E) = 0. Now, the normal bundle to E = CP! x C is O(—2) pulled back
from CPP!'. Combining this with the fact that ¢;(X) = 0 gives that over £ we have a
topological isomorphism 7TX |g =~ O(=2) ® O(2) & O. Since all of these bundles are
pulled back to E from CP! we see that (c,, E) = 0, as claimed. a

We are now ready to prove that X is diffeomorphic to 2(S3 x S3) # (52 x S*4).

Proof of Theorem 16 In order to apply Wall’s Theorem we must first check that X
is spin, which follows from the fact that it is complex with trivial canonical bundle.

Next, we must show the cup product is trivial on H?2. In the proof of Proposition 23,
we saw that H2%(X) is generated by the Poincaré dual e to the exceptional divisor E .
Since H,(X) is generated by E, it suffices to check that (e, E) = 0. The normal
bundle of E = CP! x C is pulled back from CP'. Hence, when restricted to E, e is
also pulled back from CP! and so squares to zero.

Finally, we must show that p;(X) = 0, but this follows from the formula p; = 6‘12 —2¢;
combined with ¢c; =0 =r¢;. a

3.5 Recovering the orbifold from the threefold

In this section we prove that the hyperbolic orbifold can be recovered from the complex
threefold, so distinct orbifolds lead to distinct threefolds.

Theorem 25 Let X and X' be the complex threefolds constructed from hyperbolic
orbifolds N and N' as above. If X and X’ are biholomorphic then N and N’ are
isometric.

Proof Suppose that X is constructed from an orbifold metric on S3 with cone
angle 2mr/m, whilst X’ involves the cone angle 27r/m’. Away from the elliptic curve
C C P/Zpy of singular points, r: X — P/Z,, is an isomorphism. The exceptional
locus E = r~1(C) is biholomorphic to the product of C with a chain ©,, of m — 1
copies of CP! as in the A,,-resolution.

First, we claim that any analytic surface in X is contained in E. Any surface not
contained in £ would project to a surface in P/Z,,; its preimage would then be an
analytic surface in P = SL(2, C). However, it is known that the quotient of SL(2, C)
by a cocompact subgroup never contains an analytic surface [23, Theorem 9.2]. It
follows that E is the union of all surfaces in X . Since X and X’ are biholomorphic,
the union of all surfaces in X is also biholomorphic to C x ©,,. It follows that the
exceptional loci E’, E are biholomorphic and so m = m’.
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Next, note that a neighbourhood of E is canonically biholomorphic to the product of C
with a neighbourhood of ®,, in the A4,,-resolution. The canonical biholomorphism
is provided by the C*—action on P/Z,, which acts by translations on C and which
lifts to X . It follows that there is a canonical choice of contraction of the exceptional
loci E which produces P/Z,,. Next we use the fact that the C*—actions on X and X’
are unique (up to scale) by Lemma 12. It follows that the biholomorphism between
X and X’ must match up the C*-actions (up to scale) and so also the neighbour-
hoods of E and E’. It follows that the biholomorphism induces a biholomorphism
P/l =P |lp.

By construction, the orbifold universal cover of P/Z,, is SL(2,C) and that of N
is H3 and both are obtained as quotients by the action of the same group. Hence the
orbifold fundamental groups of P/Z,,fand N coincide. So P/Z, = P’/Z,, induces
an isomorphism between the orbifold fundamental groups of N and N’ and hence, by
Mostow rigidity, an isometry between N and N'. O

4 A symplectic example

In this section we will explain how a similar approach—passing from a hyperbolic
orbifold to a symplectic manifold via a crepant resolution—can be used to build a
simply connected symplectic manifold with ¢; = 0 which does not admit a compatible
Kihler structure.

We content ourselves here with a single example for which it is not hard to find a
crepant resolution because of the simple nature of the singularities. In Section 6 we
describe an infinite sequence of hyperbolic 4—orbifolds with slightly more complicated
singularities to which this procedure could be applied.

4.1 The Davis manifold

Our construction is based on a beautiful hyperbolic 4—manifold called the Davis
manifold M (see Davis [11] as well as the description in Ratcliffe-Tschantz [34]
which also computes the homology groups of M'). The key fact for us is that M
admits an isometric involution which kills the fundamental group. This is analogous to
the role played in the Kummer construction by the involution z +— —z on an abelian
surface.

The manifold M is built using a regular polytope called the 120—cell (or hecatonicosa-
choron). The 120—cell is a four-dimensional regular solid with 120 three-dimensional
faces, the “cells”, each of which is a solid dodecahedron. Each edge is shared by
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3 dodecahedra and each vertex by 4 dodecahedra. In total, the 120—cell has 600
vertices, 1200 edges and 720 pentagonal faces. Take a hyperbolic copy P C H*
of the 120—cell in which the dihedral angles are 27/5. For each pair of opposite
dodecahedral faces of P there is a unique hyperbolic reflection which identifies them.
Gluing opposite faces via these reflections gives the hyperbolic four-manifold M .

All vertices of the polytope are identified to a single point of M, which inherits a
cell decomposition with one O—cell, sixty 1—cells, one-hundred and forty-four 2—cells
sixty 3—cells and one 4—cells. (See Ratcliffe—Tschantz [34] for more details on the
cell decomposition.)

The central involution of H* which fixes the centre of P preserves both P and the
identifications of opposite faces, hence it gives an isometric involution o of M . Our
symplectic construction will begin with the resulting orbifold M /o, which we call the
Davis orbifold.

To analyse the fixed points of ¢ it is helpful to use the so-called “inside-out” isometry
of M (defined in [34]). To describe this, note that P can be divided up into 14400
hyperbolic Coxeter simplices. The vertices of a simplex are given by taking first the
centre of P, then the centre of one of its 120 3—faces F', then the centre of one of the
12 2—faces f of F, then the centre of one of the 5 edges e of f and, finally, one of
the two vertices of e. Denote by vy, v2, V3, V4, V5 one such choice. The corresponding
simplex has a isometry that exchanges v; (the centre of P) with vs (a vertex of e), v,
(the centre of F') with vy (the centre of an edge of F’) and fixes v3 (the centre of f).
This isometry of the simplex extends to define the inside-out isometry of M , which
commutes with o.

Lemma 26 The fixed set of o consists of 122 points. The quotient M /o is simply
connected as a topological space.

Proof In the interior of the 120—cell there is only one fixed point, the centre, all other
fixed points of o lie on the image in M of the boundary of P. Let F denote the
image in M of a three-dimensional face of P; o preserves F and induces on it the
symmetry of the dodecahedron given by inversion x — —x with respect to its centre.
So, once again, in the interior of F there is only one fixed point, its centre. Considering
all opposite pairs of three-dimensional faces of M this gives 60 more fixed points
of 0. All remaining fixed points are contained in the image in M of the union of the
2—faces of P.

The symmetry o takes 2—faces to 2—faces. We claim next that o does not fix an
interior point of any pentagonal 2—face. Assume for a moment that it does fix such
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a point. Then it would give an involution of the pentagon which would hence fix a
vertex and so also the line joining the vertex to the centre of the polygon. The Davis
manifold has two distinguished points, the centre and the image of all the vertices of
the 120—cell. The assumption that o fixes an interior point of a pentagonal 2—face
gives a o—fixed tangent direction at the vertex point in M . However, the inside-out
isometry exchanges the centre and vertex of M . Since o acts as x — —x at the centre
it does so also at the vertex and hence acts freely on the tangent space there. It follows
that o does not fix an interior point of any 2—face.

The remaining fixed points are contained in the image in M of the union of the edges
of P. Under the inside-out involution of M , the middles of all edges are exchanged
with centres of all 3—faces whilst the centre of P is exchanged with the image in M
of the vertices of P. Since the inside-out isometry commutes with o, this give an
additional 61 fixed points of o making 122 in total.

We now turn to the (topological, not orbifold) fundamental group 71 (M /o). The map
w1 (M) — w1 (M/o) is surjective so we need to show its image is trivial. Consider the
60 closed geodesics y; in M going through the centre of P and joining the centres of
opposite faces. The deck transformations corresponding to these geodesics generate the
whole of 71 (M). Indeed, these deck transformations take the fundamental domain P
to all its 120 neighbours. Now the result follows from the fact that every loop o (y;) is
contractible. Indeed, o restricts to an involution on each y;, so o(y;) is a segment in
M /o which joins two fixed points of o, hence is contractible. O

4.2 The model singularity and resolution

Locally, the singularities of M /o are modelled on the quotient of H* by x > —x.
(Here x is the coordinate provided by the Poincaré ball model of H*.) By Proposition 4
we know that the corresponding symplectomorphism of R is given by z — —z in
the vector bundle fibres of O(—1) @ O(—1). The quotient (O(—1) & O(—1))/Z, is a
Kihler Calabi—Yau orbifold with singular locus CP! corresponding to the zero section.
We next describe a crepant resolution of this singularity.

Lemma 27 There is a crepant resolution
0(=2,-2) > (O 0(-1))/Z>

where O(—2,—2) — CP! x CP! is the tensor product of the two line bundles given
by pulling back O(—2) — CP! from either factor.

Proof Blow up the zero section of O(—1) & O(—1) to obtain the total space of
O(=1,—1) = CP! x CP!. The Z,-action lifts to this line bundle where it again has
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fixed locus the zero section and acts by z +— —z in the fibres. For such an involution
on any line bundle L, the square gives a resolution L?> — L/Z,. Hence

0(-2,-2) > O0(—1,-1)/Z, - (O(-1)®d O(—1))/Z,

gives the claimed resolution a

It must be emphasised that this is resolution is holomorphic. The total space of
O(—2,—-2) is a Kihler manifold with trivial canonical bundle and, away from the
exceptional divisor, the map in Lemma 27 is a biholomorphism when we consider
(O(=1)® O(-1))/Z, with its holomorphic complex structure. However, when con-
structing symplectic six-manifolds from hyperbolic four-manifolds, the relevant almost
complex structure and volume form on O(—1) @ O(—1) (and its Z,—quotient) are not
the holomorphic ones; rather we use the SO(4, 1)—invariant almost complex structure
and complex volume form from Proposition 4. Lemma 27 can only be used to provide
crepant resolutions of Calabi—Yau singularities modelled on the holomorphic geometry
of (O(—1) & O(—1))/Z, and not the SO(4, 1)—invariant almost complex structure
and complex volume form of Proposition 4.

So, in order to apply Lemma 27 to resolve singularities in hyperbolic twistor spaces,
we need to interpolate between the holomorphic structures near the zero section in
O(—1) ®& O(-1) to the SO(4, 1)—invariant structures outside a small neighbourhood
of the zero section. This interpolation is provided by the following result.

Lemma 28 Let Ry denote the part of R lying over a geodesic ball in H* of radius §.
For any § > 0, there is an SO(4)—invariant compatible almost complex structure J
on R and an SO(4)—invariant nowhere-vanishing section 2 of the J —canonical bundle
such that:

e Over Rg, J and Q2 agree with the standard holomorphic structures.

e Over R\ R,5, J and Q agree with the SO(4, 1)—invariant structures from
Proposition 4.

Proof As is standard, an SO(4)-invariant interpolation between the “inside” and
“outside” Hermitian metrics gives the existence of J .

To produce 2 we start with a description of the SO(4)—action away from the zero-
section Rg. The stabiliser of a point p € R\ Ry is a circle Sp1 C SO(4) and the orbit
of p is 5—dimensional (in fact, isomorphic as an SO(4)—space to the unit tangent
bundle of S3). The lift of a geodesic ray out of the origin in H* meets each SO(4)—
orbit in a unique point, giving a section for the action. We interpolate between the
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holomorphic and hyperbolic complex volume forms along the relevant portion of this
lifted ray and then use the SO(4)—action to extend the resulting 3—form to the whole
of R. In order for this to work it is sufficient that at every point p € R\ R the action
of § ; on the fibre of the J—canonical bundle at p is trivial. But since the weight
is integer valued and continuous it is constant on R\ Ry so we can compute it for
some p outside of R;, where everything agrees with the hyperbolic picture. Here we
already have an SO(4)—invariant (hence S ; —invariant) complex volume-form so the
weight is zero as required. |

4.3 The twistor space of the Davis orbifold

With Lemma 27 and Lemma 28 in hand, we can now take a crepant resolution of
the twistor space of the Davis orbifold M/o. Let Z — M denote the twistor space
of the Davis manifold The involution o lifts to an involution of Z which we still
denote 0. Z /o is a symplectic orbifold with singularities along 122 copies of CP!,
each modelled on O(—1) & O(—1)/Z,.

Let § be a positive number small enough that the geodesic balls in M of radius 238
centred on the o —fixed points are embedded and disjoint. Then, by Lemma 28, on Z
we can find a new almost complex structure J and complex volume form €2 such
that outside the geodesic 26—balls they agree with the hyperbolic structures coming
from Proposition 4, whilst inside the balls of radius § they agree with the holomorphic
structures coming from the holomorphic geometry of O(—1) ® O(—1). It follows from
the SO(4)—invariance in Lemma 28 that J and 2 are o—invariant.

In this way the quotient Z /o is a symplectic orbifold with an almost complex struc-
ture and complex volume form which are modelled near the singular curves on the
holomorphic geometry of O(—1) & O(—1)/Z,. It follows from Lemma 27 that there
is a resolution Z — Z /o in which the singular curves have been replaced by copies of
CP! x CP! with normal bundle O(—2, —2); moreover, Z carries an almost complex
structure J and complex volume form Q so that ¢; (2 J )=0.

Finally we need to define the symplectic structure on Z. Pulling back the symplectic
form via Z — Z gives a symplectic form on the complement of the exceptional
divisors. To extend it we use a standard fact about resolutions in Kihler geometry.
Given any neighbourhood U of the zero locus in O(—2, —2), there is a Kéhler metric
on O(—2,—2) for which the projection to O(—1) & O(—1)/Z, is an isometry on the
complement of U. (This amounts to the fact that the zero locus has negative normal
bundle.)

So, in the model, the pullback of the symplectic form extends over the exceptional
divisor in a way compatible with holomorphic complex structure. Taking U sufficiently
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small and doing this near all 122 exceptional divisors defines a symplectic form o
on Z which is compatible with J .

4.4 Simple connectivity and non-Kéhlerity

This section proves that Z is simply connected and admits no compatible integrable
complex structure. The second fact will follow from the first and the fact that b3(Z) =0

Lemma29 Z is simply connected.

Proof We first apply Theorem 13 (with n = 2) to the map Z /o — M /o . The fibres
are 2—spheres and we see that 771(Z /o) = 1. Next we apply Theorem 13to Z — Z /0.
This time the fibres are points or 2—spheres and we deduce that 7,(Z) = 1. a

To prove that b3 (Z ) =0 we invoke a lemma of McDuff on the cohomology of manifolds
obtained by symplectic blow-ups.

Lemma 30 (McDuff [29]) Let X be a symplectic manifold and C C X a smooth
symplectic submanifold of codimension 2k . Let X denote the blow-up of X along C.
Then the real cohomology of X fits into a short exact sequence of graded vector spaces

0—> H*(X)—> H*(X) > A* >0

where the first arrow is pullback via X — X and where A* is a free module over
H*(C) with one generator in each dimension 2j, 1 < j <k —1.

Lemma 31 b5 (Z) =0.

Proof Recall that Z — M is the twistor space of the Davis manifold. We first blow
up the 122 fibres which lie over the fixed points of o to obtain the new manifold Z.
It follows from Lemma 30 that pulling back cohomology via Z — Z induces an
isomorphism H?3 (Z) ~ H3(Z).

Next, notice that o lifts to Z and that Z=27 /o . We now show that ¢ acts as —1 on
H3 (Z ). To see this, consider the action of o on the Davis manifold M . It acts on
H'(M) as —1 and hence also as —1 on H3(M). Now Z — M is a sphere bundle
so, by Leray—Hirsch, H*(Z) is a free module over H* (M) with a single generator
in degree 2 corresponding to the first Chern class of the vertical tangent bundle. This
generator is preserved by o, so o acts as —1 on H3(Z) and hence also as —1 on
H? (Z ). From this we deduce that H3 (Z ) = 0. For if it contained a nonzero element,
the pullback to Z would be a o—invariant element of H? (Z ). a
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Corollary 32 There is no Kéhler structure on Z with ¢y = 0. In particular, the
symplectic structure on Z described above admits no compatible complex structure.

Proof For a Kihler manifold, the vanishing of b; implies the Picard torus is trivial.
Now ¢; = 0 implies the existence of a holomorphic volume form, hence b3 > 2. (For
more details see Lemma 2.13 of [15].) m|

Note that whilst we have shown that there is no Calabi—Yau Kihler structure on Z , it
is not clear, to us at least, whether or not Z admits a Kéhler structure when one does
not place a restriction on cj .

5 Some symplectic “Fano’ manifolds

In this section we explain how hyperbolic geometry in higher dimensions leads to
symplectic manifolds for which the first Chern class is a positive multiple of the
symplectic class, non-Kihler analogues of Fano manifolds.

5.1 Hyperbolic geometry in even dimensions

The passage from hyperbolic 4-manifolds to symplectic 6—manifolds can be gen-
eralised to every even dimension, with hyperbolic 2rn—manifolds giving symplectic
n(n + 1)—manifolds. This was first explained via twistors, by Reznikov [36] (although
Reznikov did not consider the first Chern class of his examples). Here we give an
alternative description in terms of coadjoint orbits, as in Section 2.3.3.

We consider a certain coadjoint orbit of SO(2n, 1) (for each n = 1,2, ...). The Lie
algebra so(2n, 1) consists of (2n + 1) x (2n 4+ 1) matrices of the form

0 u’
u A)’°
where u is a column vector in R?” and A4 € so(2n). Those elements with u = 0
generate SO(2n) C SO(2#n, 1). We consider the following normalisation of the Killing
form on so(2n, 1):
(X.Y) > —1Tr(XY).

This is nondegenerate and so gives an equivariant isomorphism so(2n, 1) = so(2n, 1)*.
As in Section 2.3.3, we consider the orbit of

=0 1)
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where Jy € s0(2n) is a choice of almost complex structure on R?” (ie, J(f =—-1).
The stabiliser of & is a copy of U(n) inside SO(2n). We write Z,, for the coadjoint
orbit of .

So the theory of coadjoint orbits gives us a symplectic manifold of dimension n(n + 1),
which we write Z,, = U(n)\ SO(2n,1). It fibres over hyperbolic space H?" =
SO(2n)\ SO(2n, 1) with fibre isomorphic to the space U(n)\ SO(2n) of orthogonal
complex structures on R2” inducing a fixed orientation. In other words, it is the twistor
space of H?".

We are interested in the first Chern class of Z;,. Our goal is to show that ¢;(Z,,) =
(n — 2)[w]. We will do this in two steps. Firstly, we will investigate the class [w]. We
will prove:

Lemma 33

e There is a Hermitian line bundle L — Z,, and a lift of the SO(2n, 1)—action
on Z,, to an action on L by bundle isometries.

e There is a unitary connection in L whose curvature defines the symplectic form
w on Z,,. Hence [w] = ¢1(L). Moreover, this connection, and hence w, is
invariant under the action of SO(2n, 1).

Next we will consider the first Chern class of Z,,. We will prove:

Lemma 34

e There is an SO(2n, 1)—invariant almost complex structure on Z,, which is
compatible with . Note that the invariance implies that the corresponding
canonical bundle K is acted on by SO(2n, 1), lifting the action on Z,,, .

e There is an SO(2n, 1)—equivariant isomorphism K = L>".

It is also possible to describe L in terms of the fibration Z,, — H 21 see Remark 37
for these alternative descriptions. From Lemma 33 and Lemma 34 it follows that

c1(Z2p) = (n=2)c1 (L) = (n - 2)[w].
We focus now on Lemma 33. This result is a special case of the theory of integral

coadjoint orbits. We recall briefly the general theory here. Details and proofs can be
found in, for example, Wallach [43].

Let G be a Lie group, £ € g* with stabiliser H and let b be the Lie algebra of H. The
restriction of £ to h defines a map &: h — R which is a Lie algebra homomorphism, by
virtue of the fact that H fixes £. Regarding R as the Lie algebra of U(1), one can ask
if this Lie algebra homomorphism is induced by a group homomorphism H — U(1).
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Definition 35 The coadjoint orbit of £ is called integral if the Lie algebra homomor-
phism &: h — R is the derivative of a group homomorphism p: H — U(1).

When the orbit O(§) is integral, the general theory gives us exactly what we want.
Firstly there is a Hermitian line bundle L — O(£) and a lift of the G'—action on O(§)
to L by bundle isometries. Secondly, there is a G'—equivariant connection in L whose
curvature is .

We outline how L and the connection arise, referring eg, to [43] for the details. We first
describe the construction of L. The orbit O(£) = H\G is the base of a principal H—
bundle G — H\G. Given the representation p: H — U(1), we define the Hermitian
line bundle L — O(&) by L = G x, C, where we have taken the quotient of G x C by
the diagonal action of H given by /- (g,v) = (hg, p(h)~'v). Notice that the action
of G by right multiplication on G x C (with G acting trivially on C) commutes with
the H action and so descends to give a G action on L covering the action on H\G'.

We next describe the connection. At each point p € L, the infinitesimal G —action gives
amap rp: g — T, L. We restrict r, to the kernel of the map &: g — R. This gives a
subspace rp(ker&) in 7T, L which one checks is transverse to the fibres of L — K\G
and defines a unitary connection with curvature . By construction it is G —invariant.

We are now have the background to prove Lemma 33.
Proof of Lemma 33 From the above discussion, it suffices to prove that Z,, is an

integral coadjoint orbit. That is, we must prove that the map &: h — R integrates to a
group homomorphism H — U(1). Elements of h have the form

(v 4)

where A € so(2n) commutes with Jy. (The definition of £ requires a choice of
almost complex structure Jo on R2”.) Recall that we used the Killing form (X,Y) —
—% Tr(XY) to identify so(2n, 1) = so(2n, 1)*. So the map &: h — R is given by

A —1Tr(AJo).

On the other hand, using J to identify R?" = C", those elements A of s0(2n) which
commute with Jy become identified with skew-Hermitian matrices u(zn). If we write
Ac for A thought of as a skew-Hermitian matrix, then

Tr(AJy) = 2i ReTr(Ac).

From here we see that the map &: h — R is identified with the map — Tr: u(n) — iR.
This integrates to the homomorphism U(n) — U(1) given by M > (det M)~! and
so the coadjoint orbit is integral as required. a
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We now turn to the first Chern class of Z,, and the proof of Lemma 34. For this
we first need to pick a compatible almost complex structure. The same proof as in
Lemma 5 gives the following result.

Lemma 36 There is an isomorphism of U (n)-representation spaces:
s0(2n, 1) = u(n) ® A*(C")* & C".

Given a point z € Z,, with stabiliser U(n) C SO(2n, 1) there is a U(n)—equivariant
isomorphism

(5) T, =~ A>(CH* C",

in which the A%(C™)* summand is tangent to the fibre of the projection Z,, — H?".
We are now in a position to give the proof of Lemma 34

Proof of Lemma 34 As in Lemma 6, by U(n)—equivariance, the symplectic form
on T is proportional under (5) to the form induced by the Euclidean structure on C”.
To show this constant of proportionality is positive, first we check that the forms are
genuinely equal in the case n = 1, where s0(2, 1) = u(1)® C as a U(1)-representation.
This amounts to the fact that Z, = H? with symplectic form the hyperbolic area
form. Next, we use induction and the fact that the decompositions of so(2n, 1) and
s0(2n 4+ 2,1) from Lemma 36 are compatible with the obvious inclusions of the
summands induced by a choice of C" ¢ C"*!,

Having seen that the isomorphism of (5) is symplectic, we define a compatible
SO(2n, 1)—invariant almost complex structure on Z»,, by declaring (5) to be a complex
linear isomorphism. This gives the first part of Lemma 34.

For the second part, we recall that Z,, =~ U(n)\ SO(2x, 1) is the base of a principal
U(n)-bundle Q — Z,,,. What Lemma 36 tells us is that the tangent bundle of Z,, is
isomorphic to the complex vector bundle associated to Q via the natural action of U(n)
on A2(C™)* @ C". If follows that the anticanonical bundle of Z,, is the complex
line bundle associated to Q via the determinant of this representation.

The weight of U(n) acting on A2(C") is n— 1. This can be checked by induction, via
the isomorphism of representations A2(C"*T1) = A2(C") @ C". Hence the weight
of U(n) acting on A2(C™)* @ C" is 2 —n. It follows that the anticanonical bundle is
associated to Q via the representation U(n) — S given by M + (det M)>~",

Meanwhile, from the general theory of integral coadjoint orbits and the proof of Lemma
33, the Hermitian line bundle is built from Q via the representation U(n) — U(1) given
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by M +> (det M)~!. Tt follows that K = L2™". Moreover, the description of both
K and L?>7" as bundles associated to Q via the same representation U(n) — U(1)
means that this isomorphism can be chosen to be SO(2#, 1)—equivariant. a

Remark 37 In fact, this proof gives two additional alternative descriptions of L. From
Lemma 36 we see that the tangent bundle to Z,,, splits T'Z,,, = Ver & Hor as a sum of
complex bundles. Ver is tangent to the fibres of Z,, — H?" whilst Hor is transverse.
Considering weights as in the proof of Lemma 34 shows that L is isomorphic to
A™Hor* or that L"~! is isomorphic to A?"~D/2Ver (where n(n—1)/2 is the rank
of Ver).

Note that the fibres of Z,, — H?" are all homogeneous symplectic manifolds of
the form U(n)\ SO(2x). In fact, this space is well known to be an algebraic Fano
manifold, polarised by the top exterior power of its tangent bundle. The above weight
calculation shows that the restriction of L to each fibre is a positive power of this Fano
polarisation.

Finally, we remark that this vertical-horizontal splitting can be seen from the twisto-
rial point of view. The fibre of Z,, over x is the space of all orthogonal linear
complex structures on Tx H>" compatible with a fixed choice of orientation. The
Levi-Civita connection of the hyperbolic metric determines the horizontal distribution
Hor. Moreover, at a point p € Z,,, the horizontal space Hor), is simply the tangent
space downstairs, Ty H?", equipped with the complex structure corresponding to p.

5.2 Compact quotients

The SO(2n, 1)—equivariance in Lemmas 33 and 34 imply the following result.

Lemma 38 Let " be a torsion-free lattice in SO(2n, 1) and write X = Z,,/ T for
the quotient. (Note the lack of torsion in I" implies X is smooth).

e Both the Hermitian line bundle L — Z,, and the unitary connection in L
descend to give a line bundle E — X and a unitary connection in E whose
curvature is a symplectic form w representing c1(E).

e The compatible almost complex structure on Z,, descends to X to give a
compatible almost complex structure whose associated canonical bundle K
satisfies K =~ E*>~". In particular, c¢;(X) = (n —2)[w].

This means we can find compact examples of symplectic manifolds for which ¢ (X)) is

a positive multiple of [w]. Let I' C SO(2#, 1) be the fundamental group of a compact
hyperbolic 2n—manifold M. I' acts by symplectomorphisms on Z;;, to give as
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quotient a symplectic manifold of dimension n(n 4 1). It fibres Z,,/T" — H?*"/T
over M as the twistor space of M. When n > 3, these are compact symplectic
manifolds for which ¢y is a positive multiple of [w]. Such manifolds can never be
Kihler since they have hyperbolic fundamental group (see Section 2 of [2]). Indeed,
Kéhler Fano manifolds are even simply connected (see page 126 of [24]). These
examples (originally appearing in Reznikov’s article [36]) are, to the best of our
knowledge, the first non-Kéhler symplectic “Fano” manifolds. The lowest dimension
which can be achieved in this way is 12. In this case, the fibration over M ¢ has fibres
CP? = SO(6)/ U(3).

6 Concluding remarks

The constructions presented here seem, to us at least, to lead several natural questions.
We describe some of these below.

6.1 Simply connected symplectic examples

Whilst we only give one example of a simply connected symplectic manifold with
c¢1 =0, we plan to exploit a similar construction to produce simply connected 6—
dimensional examples with arbitrarily large Betti numbers (see the forthcoming ar-
ticle [14]). By comparison, note that it is still unknown if there are infinitely many
topologically distinct Kdhler Calabi—Yau manifolds of fixed dimension.

First we describe an infinite sequence of simply connected compact symplectic orbifolds
with ¢; = 0. They come from hyperbolic orbifold metrics on S*, built using Coxeter
polytopes. Recall that a hyperbolic Coxeter polytope is a convex polytope with totally
geodesic boundary in H" and whose dihedral angles are 77/ k for k € N ; the polytope
is said to be right-angled if all dihedral angles are /2.

Lemma 39 Let P be an n—dimensional compact hyperbolic Coxeter polytope. Dou-
bling P gives a hyperbolic orbifold metric on S".

Proof Let G be the group of isometries of H” generated by reflections in the faces
of P and let G’ be the subgroup of G of index two consisting of all orientation
preserving elements. Then H" /G’ is the double of P. Indeed the fundamental domain
of G is P itself, whilst the fundamental domain of G’ is P U P’; where P’ is the
reflection of P in a face. Identifying further the faces of P U P’ via G’ we obtain
the double of P. The double is homeomorphic to S, since P is homeomorphic to a
closed n—ball. a
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Up to dimension 6, compact hyperbolic Coxeter polytopes are known to be abundant.

Theorem 40 (Potyagilo—Vinberg [33]; Allcock [1]) In all dimensions up to 6 there
exist infinitely many compact hyperbolic Coxeter polytopes. Moreover, in dimensions
up to 4 there are infinitely many compact hyperbolic right-angled polytopes.

We are interested in the case of 4 and 6 dimensions. The right angled 4—dimensional
polytopes are constructed by Potyagilo—Vinberg [33]. Here one uses that there is a
hyperbolic 120—cell with dihedral angles 7z/2. Gluing it to itself along a 3—face (via
the reflection in that face) produces a new right-angled polytope. This procedure can
be repeated giving infinitely many examples. An infinite family of 6—dimensional
polytopes is constructed by Allcock [1].

Doubling the 4—dimensional hyperbolic Coxeter polytopes gives infinitely many simply
connected symplectic 6—orbifolds with ¢; = 0.

When the polytope is doubled, the hyperbolic metric extends smoothly across the
3—faces; the singularities correspond to the 2—skeleton of the polytope. To understand
the singularities in the twistor space, consider the positive “octant” xi, X5, X3, X4 > 0
in R*, ie, the infinitesimal model for the vertex of a right-angled Coxeter polytope.
The (x1, x2)—plane lifts to two planes L, L’ in the twistor space, corresponding to the
two compatible complex structures on R* for which the (x1, x»)—plane is a complex
line. Reflection in the (xq, x;)—plane lifts to the twistor space where it fixes L, L’
pointwise. The other coordinate 2—planes behave similarly. The lifts of coordinate
2—planes are some of the points with nontrivial stabiliser under the action on the twistor
space generated by the reflections. The only other points with nontrivial stabiliser are
those on the twistor line over the origin. This line is fixed pointwise by the composition
of reflection in one 2—plane with reflection in the orthogonal 2—plane.

It follows that the orbifold singularities of the twistor space of a doubled right-angled
Coxeter polytope are of two sorts. The generic orbifold point has structure group Z, and
is modelled on the quotient of C3 by (zy, z5, z3) = (21, —z2, —z3). These correspond
either to the lifted coordinate 2—planes or the central twistor line in the above picture.
Then there are isolated points in the singular locus, where three surfaces of generic
orbifold points meet. Here the structure group is (Z,)?. This is most symmetrically
described via the action of (Z,)* on C3 where each generator changes the sign on one
of the three coordinate 2—planes in C3; the diagonal Z, acts trivially so the action
factors through (Z,)?. Such points correspond in the picture above to the intersection
of the twistor line at the origin with the lifts of two orthogonal coordinate 2—planes.

The concrete description of these singularities means that it is possible to find symplectic
crepant resolutions “by hand”, as it was for the Davis orbifold. This gives an infinite
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collection of simply connected symplectic manifolds with ¢; = 0 [14]. Meanwhile,
the twistor spaces of the 6—orbifolds of Allcock give an infinite collection of simply
connected symplectic Fano 12—orbifolds. It is natural to ask if these admit symplectic
Fano resolutions, although this looks much harder to answer than the corresponding
question for the 6—orbifolds.

On the subject of symplectic resolutions, we mention the recent work of Niederkriiger—
Pasquotto [32; 31], which gives a systematic approach to the resolution of symplectic
orbifolds arising via symplectic reduction, although they do not consider discrepancy.

6.2 Possible diversity of symplectic 6—manifolds with ¢; = 0

On the subject of hyperbolic orbifolds, there is a much more general existence question,
which we learnt from Gromov:

Question 41 Is there any restriction on the manifolds which can be obtained as
quotients of H" by a cocompact discrete subgroup of O(n, 1) ?

(The subgroup is allowed to have torsion, of course.) For n = 2 and 3 all compact
manifolds can be obtained as quotients (n = 2 is straightforward whilst # = 3 uses
geometrization). The relationship between hyperbolic and symplectic geometry outlined
here gives additional motivation to try to answer the question in dimension four. For
example, can any finitely presented group be the fundamental group of such a quotient?
The 4-dimensional quotients give rise to 6—dimensional symplectic orbifolds with
c¢1 = 0 and in this way one might ambitiously hope to approach the problem of which
groups can appear as the fundamental group of a symplectic manifold with ¢; = 0.
Of course, even if one had the orbifolds, they would still need to be resolved. In
algebraic geometry, crepant resolutions of threefolds always exist, thanks to the work
of Bridgeland—King—Reid [7]. Even independently of the hyperbolic orbifold approach
described here, it would be interesting to know what holds in the symplectic setting.

6.3 Rational curves in hyperbolic twistor spaces

We conclude our discussion of the symplectic examples with a brief look at the genus
zero Gromov—Witten invariants of hyperbolic twistor spaces.

Lemma 42 Let CP! — Z,, be pseudoholomorphic with respect to the SO(2n, 1)—

invariant almost complex structure defined above. Then the image lies entirely in a fibre
of Zp, — H*".
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Proof A theorem of Salamon [37] (Eells—Salamon [12] in the case # = 2) shows that
the image in H2" of a pseudoholomorphic curve in Z,, is a minimal surface. Since
H?*" contains no minimal spheres the result follows. a

It follows that there are pairs of points in Z;, (or any of its compact quotients) which do
not lie on a pseudoholomorphic rational curve. This is in stark contrast to the situation
for Kihler Fano manifolds. Of course, we consider here a particular almost complex
structure. The symplectic definition of rational connectivity (see Li—Ruan [27]) involves
the nonvanishing of certain genus zero Gromov—Witten invariants. A weaker property
than rational connectivity is that of being uniruled. In algebraic geometry a variety is
called uniruled if each point is contained in a rational curve. Again, the definition in
symplectic geometry involves a statement about genus zero Gromov—Witten invariants.
Li—Ruan [27] have asked if all symplectic Fano manifolds are uniruled in this sense.

We content ourselves here by mentioning that the above restriction on the image of
rational curves suggests an approach to computing the genus zero Gromov—Witten
invariants of the twistor spaces of hyperbolic 2n—manifolds. Whilst the invariant almost
complex structure is not generic, the obstruction bundle should be describable in simple
terms. Indeed, using this lemma it should be possible to localise calculations to the
case of a curve in the fibre of Z,, — H?" and exploit the action of the SO(2n) of
isometries fixing the point in H2".

6.4 Miles Reid’s fantasy
In [35], Miles Reid asked a question, which is now referred to as Reid’s fantasy:

Question 43 (Reid [35]) Consider the moduli space of complex structures on the
manifold (S3 x S3)*N with K = O which are deformations of Moishezon spaces. Is
it true that for large N this space is irreducible?

Do all simply connected Kahler Calabi—Yau threefolds appear as small resolutions of
3—folds with double points lying on the boundary of these moduli spaces?

The complex threefolds that we obtain do not appear directly in Reid’s fantasy and
indeed seem to be of a very different nature. There is no visible mechanism that would
enable one to connect these examples in any way to Moishezon manifolds. It seems
more reasonable that the structures we construct on 2(S3 x §3)#(S? x S%) belong
to an infinite family of disconnected components of complex structures with K = O.
If this were true, it would show that Reid was wise to limit himself in his fantasies
when he wrote “I aim to consider only analytic threefolds which are deformations of
Moishezon spaces” [35, page 331]. Of course we don’t know how one could try to
prove (or disprove) the existence of this infinite number of connected components.
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