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Symplectic topology of Mañé’s critical values

KAI CIELIEBAK

URS FRAUENFELDER

GABRIEL P PATERNAIN

We study the dynamics and symplectic topology of energy hypersurfaces of me-
chanical Hamiltonians on twisted cotangent bundles. We pay particular attention
to periodic orbits, displaceability, stability and the contact type property, and the
changes that occur at the Mañé critical value c . Our main tool is Rabinowitz Floer
homology. We show that it is defined for hypersurfaces that are either stable tame
or virtually contact, and that it is invariant under homotopies in these classes. If the
configuration space admits a metric of negative curvature, then Rabinowitz Floer
homology does not vanish for energy levels k > c and, as a consequence, these level
sets are not displaceable. We provide a large class of examples in which Rabinowitz
Floer homology is nonzero for energy levels k > c but vanishes for k < c , so levels
above and below c cannot be connected by a stable tame homotopy. Moreover, we
show that for strictly 1=4–pinched negative curvature and nonexact magnetic fields
all sufficiently high energy levels are nonstable, provided that the dimension of the
base manifold is even and different from two.

53D40; 37D40

1 Introduction

In this paper we study the significance of Mañé’s critical value to the symplectic
topology of energy hypersurfaces. Steps in this direction were taken by Bernard [7],
the third author, Polterovich and Siburg [62] and Viterbo [67], but here we will have a
different focus. We will attempt to relate Mañé’s critical value with stable Hamiltonian
structures and a new type of Floer homology that we develop along the lines of the
first two authors’ paper [13], namely Rabinowitz Floer homology.

On the cotangent bundle � W T �M !M of a closed manifold M we consider au-
tonomous Hamiltonian systems defined by a convex Hamiltonian

H.q;p/D
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2
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and a twisted symplectic form

! D dp^ dqC ���:

Here dp ^ dq is the canonical symplectic form in canonical coordinates .q;p/ on
T �M , jpj denotes the dual norm of a Riemannian metric g on M , U W M !R is a
smooth potential, and � is a closed 2–form on M . This Hamiltonian system describes
the motion of a particle on M subject to the conservative force �rU and the magnetic
field � .

We assume that � vanishes on �2.M /, so its pullback ��� to the universal cover
� W �M !M is exact. The Mañé critical value1 is defined as

c D c.g; �;U / WD inf
�

sup
q2 �M

zH .q; �q/;

where the infimum is taken over all 1–forms � on �M with d� D ��� and zH is the
lift of H .

We wish to understand how dynamical and symplectic topological properties of regular
level sets †k DH�1.k/ change as k passes the Mañé critical value. More specifically,
we will investigate the following properties.

Dynamics The dynamics usually changes drastically at the Mañé critical value; we
will provide abundant examples of this in Section 6 of this paper. We will pay particular
attention to the existence or nonexistence of periodic orbits in given free homotopy
classes of loops. The study of the existence of closed orbits of a charged particle in a
magnetic field was initiated by V I Arnol’d [4] and S P Novikov [58] in the 1980’s.

Displaceability A subset A of a symplectic manifold .V; !/ is displaceable if there
exists a Hamiltonian diffeomorphism (time–1 map of a time-dependent compactly
supported Hamiltonian system) � with �.A/\AD∅. Among the many consequences
of displaceability, the most relevant for this paper is the following result of Schlenk [64]:
If for H as above and some k0 the set fH � k0g is displaceable, then it has finite
Hofer–Zehnder capacity [40] and for almost every k � k0 the energy level †k carries
a contractible periodic orbit.

1More generally, there is a Mañé critical value associated to any cover of M on which � becomes
exact. In this paper, we will mostly restrict to the universal and abelian covers.
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Contact type A hypersurface † in a symplectic manifold .V 2n; !/ is of contact
type if !j† D d� for a contact form � on †, ie a 1–form such that �^ .d�/n�1 is
nowhere vanishing. This property was introduced by Weinstein [70] and has important
dynamical consequences. For example, for large classes of contact type hypersurfaces
the existence of a periodic orbit has been proved (“Weinstein conjecture”; see eg Hofer
and Zehnder [40] and Viterbo [68]). Moreover, algebraic counts of periodic orbits
can be organized into invariants of such hypersurfaces such as contact homology or
symplectic field theory (see Eliashberg, Givental and Hofer [23]).

We say that a hypersurface † is virtually contact if ��!jz† D d� for a contact form �

on a cover � W z†!† satisfying

sup
x2z†

j�xj � C <1; inf
x2z†

�.R/� " > 0;

where j � j is a metric on † and R is a vector field generating ker.!j†/ (both pulled
back to z†). A virtually contact homotopy is a smooth homotopy .†t ; �t / of virtually
contact hypersurfaces together with the corresponding 1–forms on the covers such that
the preceding conditions hold with constants C; " independent of t .

Stability and tameness A hypersurface † in a symplectic manifold .V 2n; !/ is
stable if there exists a 1–form � on † which is nonzero on ker.!j†/ and satisfies
ker.!j†/ � ker.d�/. Note that contact type implies stability, but stability is more
general, eg it allows for !j† to be nonexact. The notion of stability was introduced by
Hofer and Zehnder [40] and shares many consequences of the contact type condition,
eg existence results for periodic orbits [40] and algebraic invariants arising from
symplectic field theory [23]. A stable homotopy is a smooth homotopy .†t ; �t / of
stable hypersurfaces together with the corresponding 1–forms.

Suppose now ! vanishes on �2.V /, and let X.†/ be the set of all closed characteristics
in † which are contractible in V . We define the function

�W X.†/!R

by choosing for v 2 X.†/ a filling disk xv in V which exists since v is contractible
in V , and setting

�.v/D

Z
xv�!:

The pair .†; �/ is said to be tame if there exists a positive constant c such thatˇ̌̌̌Z
v��

ˇ̌̌̌
� cj�.v/j
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for all v 2X.†/. Again, abundant examples of tame stable hypersurfaces will be given
in Section 6, but we should mention that there are also examples of stable nontame
hypersurfaces; see Contreras, Macarini and Paternain [21, Example 5.1] and Cieliebak
and Volkov [17].

A stable homotopy .†t ; �t / is said to be tame if each .†t ; �t / is tame and the constant c

is independent of t .

We remark that when V is a cotangent bundle T �M , then X.†/ coincides with the
closed orbits in † whose projection to M is contractible. Moreover, if dim M � 3

and there is no potential, it follows from the homotopy sequence of a fibration that
�1.†/ injects into �1.T

�M / and thus X.†/ coincides with the set of closed orbits
in † which are contractible in † itself.

Rabinowitz Floer homology In [13] the first two authors associated to a contact
type hypersurface † in a symplectic manifold .V; !/ (satisfying suitable conditions;
see Section 4) its Rabinowitz Floer homology RFH.†/. This is a graded Z2 –vector
space which is invariant under contact type homotopies of †. Its relevance for our
purposes rests on the following two results in [13]: Displaceability of † implies
vanishing of RFH.†/, and vanishing of RFH.†/ implies the existence of a periodic
orbit on † which is contractible in V . To make these results applicable to the situation
considered in this paper, we generalize in Section 4 the construction of Rabinowitz
Floer homology to hypersurfaces that are stable tame or virtually contact, and to the
corresponding homotopies. The generalization to the stable case is definitely nontrivial.
The generalization to the virtually contact case is straightforward, but necessary, as we
will try to explain in due time. In what follows we shall assume that † is separating,
ie V n† consists of two connected components.

We call a symplectic manifold .V; !/ geometrically bounded if it admits an !–compa-
tible almost complex structure J and a complete Riemannian metric such that

(i) there are positive constants c1 and c2 such that

!.v;Jv/� c1jvj
2; j!.u; v/j � c2jujjvj

for all tangent vectors u and v to V ;

(ii) the sectional curvature of the metric is bounded above and its injectivity radius
is bounded away from zero.

This is slightly stronger than the corresponding notion of Audin, Lalonde and Polter-
ovich [6] since we demand !–compatibility. It is proved by Lu [46] that twisted
cotangent bundles are geometrically bounded.
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Theorem 1.1 Let .V; !/ be a geometrically bounded symplectic manifold such that
!j�2.V / D 0 (eg a twisted cotangent bundle as above).

(a) Rabinowitz Floer homology RFH.†/ is defined for each tame stable hypersur-
face † and invariant under tame stable homotopies.

(b) Rabinowitz Floer homology RFH.†/ is defined for each virtually contact hyper-
surface † and invariant under virtually contact homotopies provided that �1.†/

injects into �1.V /.

(c) If † is as in (a) or (b) and is displaceable, then RFH.†/D 0.

(d) If † is as in (a) or (b) satisfies RFH.†/ D 0, then it carries a periodic orbit
which is contractible in V .

We remark at once that Schlenk’s result alluded to above can be derived right away from
Theorem 1.1 if we assume that the hypersurface is tame. However, the compactness
result proved in Section 4 will show that one can recover Schlenk’s result fully, ie we
can do without the tameness assumption, this is explained in Section 4.3.

One of the goals of this paper is to provide supporting evidence for the following
paradigms:

k > c : Above the Mañé critical value, †k is virtually contact. It may or may not be
stable. Its Rabinowitz Floer homology RFH.†k/ is defined and nonzero, so †k is
nondisplaceable. The dynamics on †k is like that of a geodesic flow; in particular, it
has a periodic orbit in every nontrivial free homotopy class.

k D c : At the Mañé critical value, †k is nondisplaceable and can be expected to be
nonstable (hence noncontact). (When M is the 2–torus, an example is given in [21] in
which †c is of contact type.)

k < c : Below the Mañé critical value, †k may or may not be of contact type. It is
stable and displaceable (provided that �.M /D 0), so its Rabinowitz Floer homology
RFH.†k/ is defined and vanishes. In particular, †k has a contractible periodic orbit.

Some of these statements will be proved and others verified for various classes of
examples, while some remain largely open. It should be said that the paradigms for
energies k � c are only rough approximations to the true picture. For example, work in
progress of Macarini and the third author [48] shows that there are convex superlinear
Hamiltonians on Tn (for any n� 2) for which †c is actually stable.

The first supporting evidence for the paradigms comes from the following:

Theorem 1.2 For � D 0 all the paradigms are true. Moreover, in this case all regular
level sets are of contact type.

Geometry & Topology, Volume 14 (2010)
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A well-known example with � ¤ 0 where all the paradigms are true is a closed
hyperbolic surface with � the area form; see Ginzburg [29]. Here for k > c D 1=2,
†k is contact and Anosov with all closed orbits noncontractible; for k < 1=2, †k is
stable (in fact contact with the opposite orientation) and the flow is completely periodic
with contractible orbits; for k D 1=2, †k is unstable and the flow is the horocycle flow
without periodic orbits. We briefly discuss this example, as well as its generalization to
higher dimensions, in Section 5.2.

Theorem 1.3 Suppose that M admits a metric of negative curvature. Then for k > c

the Rabinowitz Floer homology RFH.†k/ is defined and does not vanish. In particular,
†k is nondisplaceable for k � c .

Remark We point out that the chosen metric on M need not have negative curvature
(we merely ask the existence of such a metric on M ) and the dynamics on †k need not
be a small perturbation of the geodesic flow. The proof of Theorem 1.3 uses invariance
of Rabinowitz Floer homology in a crucial way. In fact, existence of a metric of negative
curvature is a technical hypothesis that can most likely be removed by establishing in-
variance of Rabinowitz Floer homology under more general deformations, eg deforming
the symplectic form in a suitable class or adding an additional Hamiltonian term.2

If � is exact one can define another Mañé critical value

c0 D c0.g; �;U / WD inf
�

sup
q2M

H.q; �q/;

where the infimum is taken over all 1–forms � on M with d� D � . Note that c0 � c .
For k > c0 the level set †k encloses the Lagrangian graph gr.��/ and is therefore
nondisplaceable by Gromov’s theorem [32]. However, there are examples [61] with
c < c0 . Nondisplaceability for the gap c � k � c0 is new. In Theorem 5.5 we show
that the gap appears rather frequently and in Section 6 we will explain how a gap of
size 1=4 appears quite explicitly in the geometry PSL.2;R/.

We set c0 WD1 if � is nonexact. Then the contact type property behaves as follows
with respect to the values c and c0 . Suppose dim M � 3. Then

� for k > c0 , †k is of contact type (Lemma 5.3);

� for c < k � c0 , †k is virtually contact but not of contact type (Lemma 5.1
and [18, Theorem B.1]).

2Note added in proof: Nonvanishing of RFH.†k/ has in the meantime been proven without the
hypothesis of a metric of negative curvature, for � exact and k > c0 in [1], and for general � and all
k > c in [55].
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It turns out that whole intervals of unstable levels may appear in the gap. The first
example where this phenomenon occurs was constructed in [61] on surfaces of negative
curvature and with exact � ; see Theorem 5.4 below. With nonexact � , this phenomenon
always occurs for strictly 1=4–pinched negative sectional curvature.

Theorem 1.4 Let .M;g/ be a closed Riemannian manifold of even dimension differ-
ent from two whose sectional curvature satisfies the pinching condition �4�K < �1.
Let � be a closed 2–form with cohomology class Œ� �¤ 0. Then c < c0 D1 and for
any k > c sufficiently large, the hypersurface †k is not stable.

The theorem becomes false if the strict pinching condition is replaced by the weak one
�4�K � �1: Compact quotients of complex hyperbolic space with � given by the
Kähler form are stable for high energies (cf Section 5.2).

The next result is an easy consequence of the results by Schlenk and will be useful to
show nonstability at the Mañé critical value in the various examples.

Theorem 1.5 Suppose that at the Mañé critical value c , †c has no contractible
periodic orbits. Then †c is nonstable provided that all level sets †k with k < c are
displaceable.

More evidence for the displaceability of †k with k < c comes from results of Lau-
denbach and Sikorav [45] and Polterovich [63] which assert that the zero section of
.T �M; !/ is actually displaceable if � is nonzero (assuming �.M /D 0). Moreover,
for a large class of cotangent bundles of solvable manifolds with Œ� �¤ 0, displaceability
for all k < c D1 is proved by Butler and the third author [10].

As an illustration of the homogeneous examples considered in Section 6, let G be the
3–dimensional Heisenberg group of matrices0@1 x z

0 1 y

0 0 1

1A ;
where x;y; z 2 R. The 1–form  WD dz � xdy is left-invariant and we let � WD d

be the exact magnetic field. If � is a co-compact lattice in G , M WD � nG is a closed
3–manifold and � descends to an exact 2–form on M . Now let H be the left-invariant
Hamiltonian defined in dual coordinates by

2H WD p2
xC .py Cxpz/

2
Cp2

z :
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Theorem 1.6 Consider M , H and � as above. Then all the paradigms are true. More
precisely: Each level †k except the Mañé critical level c D c0 D 1=2 is stable and
tame. For k > 1=2 it is contact and RFH.†k/¤ 0. For k < 1=2 it is noncontact and
displaceable, so RFH.†k/D 0. †k has no contractible periodic orbits for k � 1=2.
The level set †1=2 is not stable.

By invariance of Rabinowitz Floer homology under tame stable homotopies, this
implies:

Corollary 1.7 In the example of Theorem 1.6 two level sets †k ; †` with k < 1=2<`

are smoothly homotopic and tame stable, but not tame stably homotopic.

An even more intriguing example arises on compact quotients M WD � n PSL.2;R/.
Let .x;y; �/ be coordinates on PSL.2;R/ arising from its identification with SH2 Š

H2 �S1 , the unit tangent bundle of the upper half plane. The left-invariant 1–form
 D dx=yC d� gives rise to an exact magnetic field � WD d on M . Let H be the
left-invariant Hamiltonian defined in dual coordinates by

2H WD .ypx �p� /
2
C .ypy/

2
Cp2

� :

Theorem 1.8 Consider M , H and � as above. Then all the paradigms are true. More
precisely: Each level †k except the Mañé critical levels c D 1=4 and c0 D 1=2 is
stable and tame. For k > 1=2 it is contact and RFH.†k/¤ 0. For 1=4 < k < 1=2 it
is noncontact and RFH.†k/¤ 0. For k < 1=4 it is noncontact and displaceable, so
RFH.†k/ D 0. †k has no contractible periodic orbits for k � 1=4. The level sets
†1=4 and †1=2 are not stable.

Remark Nonstability of the Mañé critical level c in Theorems 1.6 and 1.8 follows
from Theorem 1.5. Nonstability of the level c0 in Theorem 1.8 follows from a detailed
analysis of the dynamics on the level set. Note that the level c0 is virtually contact; in
fact for any k > 1=4, †k is virtually contact.

Finally, we also point out the following examples with infinite Mañé critical value. An
analogous picture arises on Sol–manifolds discussed in Section 6.4.

Theorem 1.9 Consider the n–torus M DTn and a nonzero constant 2–form � . Then
the Mañé critical value is c D1 and all level sets †k are noncontact, stable, tame and
displaceable, so RFH.†k/D 0 for all k .

We conclude this paper with a discussion of very high and low energy levels. For levels
k > c the only remaining issue is:
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Conjecture For k > c the Rabinowitz Floer homology RFH.†k/ does not vanish.
In particular, †k is nondisplaceable for k � c .

It is known that for k > c , †k carries a periodic orbit in every nontrivial free homotopy
class of loops. (This is proved by the third author in [60] under a mild technical
condition on �1.M /, which is removed by Merry in [54].)

For k < c the dynamics is much less well understood, even for very small values of k .
If � ¤ 0, the results of Polterovich and Schlenk mentioned above yield a k0 > 0 such
that †k is displaceable for all k � k0 and carries a contractible periodic orbit for
almost all k � k0 . However, the following basic question is wide open:

Question Is †k stable for sufficiently small k , at least in the case that � is a sym-
plectic form on M ?

A positive answer to the question would give an alternative proof of the existence of
closed contractible orbits on every low energy level for � symplectic. This has been
recently proved by Ginzburg and Gürel [30]. In Section 6.5 (Proposition 6.19) we
give an affirmative answer in the homogeneous symplectic case: Let M D � nG be a
compact homogeneous space with a left-invariant metric and a left-invariant symplectic
form � . Then there exists k0 > 0 such that for all k < k0 the hypersurface †k is
stable.

Acknowledgements We wish to thank L Macarini, F Schlenk and E Volkov for several
useful discussions related to this paper. We also thank W Merry for comments and
corrections on previous drafts. We thank the organizers of the wonderful Conference
on Symplectic Geometry, Kyoto 2007, which inspired the present work. Finally, we
thank the referee for numerous corrections. The first author was partially supported by
DFG grant CI 45/1-3.

2 Stable Hamiltonian structures and hypersurfaces

Stable Hamiltonian structures Let † be a closed oriented manifold of dimension
2n� 1. A Hamiltonian structure on † is a closed 2–form ! such that !n�1 ¤ 0.
So its kernel ker.!/ defines a 1-dimensional foliation which we call the character-
istic foliation of ! . We orient the characteristic foliation by a 1–form � such that
�^!n�1 > 0.

A Hamiltonian structure is called stable if there exists a 1–form � such that ker! �
ker d� and �^!n�1 > 0. We call � a stabilizing 1–form. Define the Reeb vector
field R by �.R/D 1 and iR! D 0 (which implies iRd�D 0).
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The following two results give equivalent formulations of stability.

Theorem 2.1 (Wadsley [69]) A Hamiltonian structure .†; !/ is stable if and only if
its characteristic foliation is geodesible, ie there exists a Riemannian metric such that
all leaves are geodesics.

Theorem 2.2 (Sullivan [66]) A Hamiltonian structure .†; !/ is nonstable if and
only if there exists a foliation cycle which can be arbitrarily well approximated by
boundaries of singular 2–chains tangent to the foliation.

The simplest obstruction to stability that can appear in Sullivan’s theorem is a Reeb
component, ie an embedded annulus tangent to the characteristic foliation such that its
boundary components are closed leaves with opposite orientations.

The following criterion for stability (whose proof is immediate) will be useful in later
examples.

Lemma 2.3 Let .†˙; !˙/ be stable Hamiltonian structures and f W †C ! †� a
smooth (not necessarily injective) map which maps leaves diffeomorphically onto
leaves. If a 1–form � stabilizes .†�; !�/, then f �� stabilizes .†C; !C/.

For a Hamiltonian structure .†; !/ we denote by

ƒ.†;!/ WD f� 2�1.†/ W ker! � ker d�; �^!n�1 > 0g

the space of stabilizing 1–forms. It obviously satisfies:

Lemma 2.4 The space ƒ.†;!/ is a convex cone in �1.†/. In particular, if it is
nonempty, then it is contractible.

Stable hypersurfaces We call a closed oriented connected hypersurface † in a con-
nected symplectic manifold .V 2n; !/ stable if the following holds:

(i) !j† defines a stable Hamiltonian structure.

(ii) † is separating, ie V n† consists of two connected components.

Condition (a) in the following lemma gives a more dynamical formulation of stability
and justification for its name.
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Lemma 2.5 [16] For a closed hypersurface † in a symplectic manifold .V; !/ the
following are equivalent:

(a) † is stable in the sense of [40], ie there exists a tubular neighborhood .�"; "/�†
of †D f0g �† such that the Hamiltonian line fields on frg �† are conjugate
for all r 2 .�"; "/.

(b) There exists a vector field Y transverse to † such that ker.!j†/� ker.LY !j†/.

(c) .†; !j†/ is a stable Hamiltonian structure.

A stable homotopy of hypersurfaces in .V; !/ is a smooth homotopy .†t ; �t / of stable
hypersurfaces together with stabilizing 1–forms.

Stable tubular neighbourhoods Now assume that † is a stable hypersurface in a
symplectic manifold .V; !/. We abbreviate

!† D !j†:

If �† 2ƒ.†;!†/ we call the pair .†; �†/ a stabilized hypersurface. For a stabilized
hypersurface .†; �†/ a stable tubular neighbourhood is a pair .�;  / where � > 0

and  W Œ��; ���†! V is an embedding satisfying

 jf0g�† D idj†;  �! D !†C d.r�†/D !†C rd�†C dr ^�†:

Note that a stable tubular neighbourhood satisfies condition (a) of Lemma 2.5. We
abbreviate by T .†; �†/ the space of stable tubular neighbourhoods of .†; �†/. We
further denote by

T .†/D
[

�†2ƒ.†;!j†/

T .†; �†/

the space of stable tubular neighbourhoods for the stable (but not stabilized) hypersur-
face †. If .†� ; �� / for � 2 Œ0; 1� is a stable homotopy of hypersurfaces we abbreviate
by T .f†�g/ the space of smooth families .�� ;  � / of stable tubular neighbourhoods.

Proposition 2.6 (a) Assume that .†� ; �� / is a stable homotopy of compact hyper-
surfaces. Then T .f†�g/ is nonempty.

(b) If † is a compact stable hypersurface, T .†/ is nonempty and path-connected.

Proof (a) Choose a smooth family of vector fields X� on V satisfying

(1) �X�!x D �� ; x 2†� :

Since †� is compact the flow �r
X�

exists locally near †� . We observe that plugging
in the Reeb vector field into (1) implies that X� is transverse to †� . Hence we can
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define a smooth family of diffeomorphisms z � W .�z�� ; z�� /�†� ! V for z�� > 0 by
the formula

z � .r;x/D �
r
X�
.x/; .r;x/ 2 .�z�� ; z�� /�†� :

!� D !†� C d.r�� /:We abbreviate

Perhaps after shrinking z�� it follows that !� is a symplectic structure on .�z�� ; z��/�†� .
Moreover, it follows from (1) that !� and z ��! agree at points of f0g�†� . Applying
Moser’s argument ( see for example McDuff and Salamon [52, Lemma 3.14]), we find
a smooth family of �� > 0 and a smooth family of embeddings �� W .��� ; �� /�†�!
.�z�� ; z�� /�†� satisfying

�� jf0g�†� D id; ���
z ��! D !� :

 � D z � ı�� :Now set

Then .�� ;  � / lies in T .f†�g/. In particular, T .f†�g/ is nonempty.

(b) In view of part (a), T .†/ is nonempty. To prove that it is path-connected we
first show that for each � 2 ƒ.†;!†/ the space T .†; �/ is path-connected. Let
.�1;  1/; .�2;  2/ 2 T .†; �/. By hypothesis,

!� D !j†C d.r�/

is symplectic on U WD .��; �/ for some � >max.�1; �2/. There exist neighbourhoods
U1 and U2 of f0g �† in U such that  �1

2
ı 1W U1! U2 is an isomorphism and�

 �1
2 ı 1

��
!�jU2

D !�jU1
:

 �1
2 ı 1jf0g�† D id:Note further that

Hence after choosing U1 even smaller we can in a Weinstein neighbourhood identify the
graph � �1

2
ı 1
� .U �U; !�˚�!�/ with an open subset of the graph �� �T �U of a

closed one-form � on U . Considering the homotopy of graphs �t� for t 2 Œ0; 1� we find
an � > 0 and a path in T .†; �/ between .�;  1j.��;�/�†/ and .�;  2j.��;�/�†/. Now
concatenating this path with shrinking paths between .�1;  1/ and .�;  1j.��;�/�†/ as
well as between .�2;  2/ and .�;  2j.��;�/�†/ we obtain a path between .�1;  1/ and
.�2;  2/. This proves that for fixed �2ƒ.†;!†/ the space T .†; �/ is path-connected.

Now assume more generally that .�0;  0/; .�1;  1/2 T .†/. Then there exist �0; �1 2

ƒ.†;!� / such that

.�0;  0/ 2 T .†; �0/; .�1;  1/ 2 T .†; �1/:
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Since we have already seen that T .†; �0/ and T .†; �1/ are path-connected it suffices
to connect arbitrary elements in these spaces by a path in T .†/. To do that we make
use of Lemma 2.4 giving us a path �� in ƒ.†;!†/ connecting �0 and �1 . Hence we
can apply part (a) to the stable homotopy .†; �� /. This proves the proposition.

Contact structures A Hamiltonian structure .†; !/ is called contact if there exists
a 1–form � such that d� D ! and � ^ !n�1 > 0. In particular, � is a stabilizing
1–form and � is a (positive) contact form, ie �^ .d�/n�1 > 0. Note that .†; !/ can
be contact only if ! is exact.

Sullivan’s theory in [66] also provides a necessary and sufficient condition for an exact
Hamiltonian structure .†; !/ being contact. Fix a positive vector field R generating
ker! . Every Borel probability measure � on † invariant under the flow of R gives
rise to a 1–current via

h�; ˇi D

Z
†

ˇ.R/d�; ˇ 2�1.†/:

We say � is exact if it is exact as a 1–current, ie h�; ˇi D 0 for all closed 1–forms ˇ .

Theorem 2.7 (McDuff [51]) An exact Hamiltonian structure .†; !/ is noncontact if
and only if there exists a nontrivial exact positive invariant Borel measure � such that
h�; ˛i D 0 for some (and hence every) 1–form ˛ with d˛ D ! .

The simplest obstruction to the contact property arises if � is supported on a closed
orbit: If there exists a null-homologous closed orbit  of ker! such that

R
 ˛ D 0 for

a primitive ˛ of ! , then .†; !/ is noncontact.

The following immediate consequence of the theorem will be useful below.

Corollary 2.8 An exact Hamiltonian structure .†; !/ is noncontact provided there
exist two nontrivial exact invariant Borel measures �˙ such that h�C; ˛i � 0 and
h��; ˛i � 0 for some (and hence every) 1–form ˛ with d˛ D ! .

Proof For �˙ as in the corollary, some positive linear combination �D aC�CC

a��� satisfies the condition in Theorem 2.7.

A particular invariant measure is given by the Liouville measure associated to a Hamil-
tonian structure .†; !;R/ with a chosen vector field R generating ker! . It is defined
by the unique volume form � 2�2n�1.†/ satisfying

iR�D
!n�1

.n� 1/!
:
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Lemma 2.9 Consider a twisted cotangent bundle .T �M; ! D dp^ dqC ���/ with
a convex Hamiltonian H.q;p/D 1

2
jpj2CU.q/ as in the Introduction. If M ¤ T2 ,

then on every regular level set .†k DH�1.k/; !j†k
;RDXH / the Liouville measure

is exact as a current.

Proof We claim that !n�1j†k
is exact if M ¤ T2 . To see this, let � WD p dq be the

Liouville form and compute

!n�1
D .d� C ���/n�1

D .d�/n�1
C .n� 1/��� ^ .d�/n�2:

On the right-hand side the first term is exact. For n � 3 the second term is exact as
well and the claim follows, so it remains to consider the case nD 2. If k < max U

the projection �k WD � j†k
W †k !M is not surjective, so � is exact on the image

of �k and the claim follows. If k >max U the Gysin sequence of the circle bundle
�k W †k !M yields

H 0.M IR/
[e
�!H 2.M IR/

��
k
�!H 2.†k IR/;

where e is the Euler class of the cotangent bundle of M . If M ¤ T2 this Euler class
is nonzero, so the first map is an isomorphism and ��

k
the zero map. This proves the

claim.

Now let ‚ be a primitive of !n�1j†k
and ˇ 2�1.†k/ be closed. Then

.n� 1/!ˇ.R/�D .n� 1/!ˇ^ iR�D ˇ^!
n�1
j†k
D ˇ^ d‚D�d.ˇ^‚/

is exact, so its integral over †k vanishes. This proves exactness of � and hence the
lemma.

The following immediate consequence of Lemma 2.9 will be used repeatedly in this
paper.

Corollary 2.10 In the situation of Lemma 2.9, there exists no 1–form � on †k with
d�D 0 and �.R/ > 0.

3 Tame hypersurfaces

In this section we introduce the notion of weakly tame hypersurfaces in a symplectic
manifold and the notion of tameness for stable hypersurfaces. As the name suggests,
tame stable hypersurfaces are also weakly tame. We further explain what a tame, stable
homotopy is. In the forthcoming Section 4 we then show how for weakly tame, stable
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hypersurfaces Rabinowitz Floer homology can be defined and that Rabinowitz Floer
homology is invariant under tame, stable homotopies.

Given a closed hypersurface † in a symplectically aspherical symplectic manifold
.V; !/ we denote by X.†/ the set of closed characteristics in † which are contractible
in V . We define the function

�W X.†/!R

by choosing for v 2 X.†/ a filling disk xv in V which exists since v is contractible
in V and putting

(2) �.v/D

Z
xv�!:

Note that since V is symplectically aspherical the function � is well-defined indepen-
dent of the choice of the filling disk. We refer to the function � as the !–energy of a
closed characteristic. For a� b we abbreviate

X b
a .†/D

˚
v 2X.†/ W a��.v/� b

	
:

The hypersurface † is called weakly tame if for each a � b the space X b
a .†/ is

compact (with the topology of uniform convergence).

An example of weakly tame hypersurfaces are hypersurfaces of restricted contact type.
Indeed if ! D d� is exact and the restriction �j† is a contact form on †, then each
closed characteristic can be parametrised as a periodic orbit of the Reeb vector field R�

and hence

�.v/D

Z
xv�! D

Z
v��D T�.v/;

where T�.v/ is the period of v as a periodic orbit of the Reeb vector field R� . Therefore
the theorem of Arzela–Ascoli implies that † is weakly tame. On the other hand an
obstruction for being weakly tame is the existence of a closed characteristic of vanishing
!–energy. Indeed, taking iterates of it we get a sequence of closed characteristics of
vanishing !–energy having no convergent subsequence.

If the hypersurface † is stable we can define for each � 2ƒ.†;!/ another function

T�W X.†/! .0;1/; v 7!

Z
v��:

The function T� associates to v its period as a Reeb orbit of the Reeb vector field R� .
We note that for two different �1; �2 2 ƒ.†;!/ the functions T�1

and T�2
are

proportional in the sense that there exist positive constants c�1;�2
and xc�1;�2

such that

(3) c�1;�2
T�2
� T�1

� xc�1;�2
T�2

:
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Indeed, the Reeb vector fields R�1
and R�2

are pointing in the same direction at each
point of † so that there exists a positive function f�1;�2

2 C1.†; .0;1// such that
the formula

R�1
D f�1;�2

R�2

holds. Since † is compact the function f�1;�2
attains a positive maximum and a

positive minimum on † and we set

c�1;�2
D

1

maxf�1;�2

; xc�1;�2
D

1

minf�1;�2

for which (3) holds.

A stable hypersurface is called tame if there exists �2ƒ.†;!/ and a constant c� such
that for all v 2X.†/

(4) T�.v/� c�j�.v/j:

We remark that it follows from (4) and the theorem of Arzela–Ascoli that a tame stable
hypersurface is weakly tame. We refer to the constant c� as a taming constant for �.
We note that if there exists a taming constant for one �1 2ƒ.†;!/ then there exists
also a taming constant for every other stabilizing one-form �2 2ƒ.†;!/. Indeed, it
follows from (3) that

c�2
D

c�1

c�1;�2

is a taming constant for �2 . We finally introduce the tameness condition for stable
homotopies.

A stable homotopy .†t ; �t / for t 2 Œ0; 1� is called tame, if there exists a taming constant
c > 0 such that

T�t
.v/� cj�.v/j; 8 t 2 Œ0; 1�; 8 v 2X.†t /:

4 Rabinowitz Floer homology

Rabinowitz Floer homology as the Floer homology of Rabinowitz’ action functional was,
for the restricted contact type case, introduced by the first two authors in [13]. In this
section we generalize as far as possible the construction of Rabinowitz Floer homology
to the stable case. This generalization is not straightforward. The compactness proof
for the moduli space of gradient flow lines has to be modified considerably in the stable
case. The crucial point is the occurrence of a second Liapunov functional on the moduli
space of gradient flow lines which is defined via a stabilizing 1–form. One could define
Rabinowitz Floer homology for a stabilized hypersurface by using a filtration from
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both action functionals. However, since the second action functional depends on the
stabilizing form, such homology groups might depend on the stabilizing 1–form. To
avoid this difficulty we only define Rabinowitz Floer homology in the case of weakly
tame stable hypersurfaces, in which case this trouble does not occur.

As in the restricted contact type case the Rabinowitz Floer homology groups have the
property that they vanish if the hypersurface is displaceable and that they coincide with
the singular homology of the hypersurface in the case that there are no contractible
Reeb orbits on the hypersurface. In particular, using Rabinowitz Floer homology one
can recover a theorem due to Schlenk, that on displaceable stable hypersurfaces there
always exists a contractible Reeb orbit. Schlenk’s theorem actually does not need
the weakly tame condition. And indeed, if one looks only at the local Rabinowitz
Floer homology around the action value zero, the general compactness theorem for the
moduli space of gradient flow lines of Rabinowitz action functional suffices, to recover
Schlenk’s theorem also in the not weakly tame case.

A further trouble in the stable case which one does not have to worry about in the
restricted contact type case, is the difficulty that the stability condition is not open [15]
and hence Rabinowitz action functional cannot be assumed to be generically Morse–Bott.
We therefore have to introduce an additional perturbation which makes a generically
perturbed Rabinowitz action functional Morse. It is however not clear that compactness
for the moduli space of gradient flow lines for the perturbed Rabinowitz action functional
continues to hold. Nevertheless, one can partially overcome this trouble be a procedure
which is somehow reminiscent of the Conley index in the finite dimensional case. For
a fixed action window it is possible to choose the perturbation so small that one can
get a boundary operator by counting only gradient flow lines of the perturbed action
functional which are sufficiently close to the gradient flow lines of the unperturbed
action functional. Since the perturbation depends on the action window the drawback
of this construction is, that one cannot define the full Rabinowitz Floer chain complex
by using Novikov sums as in [13]. Instead one first defines filtered Rabinowitz Floer
homology groups and then takes their inverse and direct limits. Because inverse and
direct limits do not necessarily commute one obtains in this way actually two types
of Rabinowitz Floer homology groups which we denote by RFH and RFH . One can
show [12] that in the restricted contact type case the Rabinowitz Floer homology RFH
as defined in [13] via Novikov sums coincides with RFH . The two homology groups
are connected by a canonical homomorphism

�W RFH! RFH:

It is an open question if � is always an isomorphism. The results of [12] suggest that it
should at least be surjective. But even that is not clear yet, since in [12] the first two
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authors made heavy use of a bidirect system of chain complexes which we do not have
in the stable case.

The Rabinowitz Floer homology groups are invariant under tame, stable homotopies.
We prove this via an adiabatic version of Floer’s continuation homomorphism. For this
we need a compactness theorem for gradient flow lines in the case that Rabinowitz
action functional is also allowed to depend on time.

This section is organised in the following manner. In Section 4.1 we recall the definition
of Rabinowitz action functional, show how its critical points are given by Reeb orbits
and derive the gradient flow equation.

In Section 4.2 the main ingredient for the compactness proof of the moduli spaces of
gradient flow lines is established. Rabinowitz action functional is a Lagrange multiplier
action functional and the main difficulty is to obtain a uniform bound on the Lagrange
multiplier along gradient flow lines. Once this bound is established, the compactness for
the moduli spaces of gradient flow lines follows from standard arguments well-known
in Floer theory.

In Section 4.3 we give a new proof of Schlenk’s theorem about the existence of a
contractible Reeb orbit on a displaceable, stable hypersurface. This proof can also be
used to derive the vanishing of Rabinowitz Floer homology for displaceable, weakly
tame, stable hypersurfaces.

In Section 4.4 we introduce a class of perturbations of Rabinowitz action functional
and show that for a generic perturbation Rabinowitz action functional becomes Morse.
We then explain how for a fixed action window one can find small perturbations such
that the moduli space of gradient flow lines can be written as the disjoint union of two
closed parts where one part (which we refer to as the essential part) is compact. We
then explain how the essential part can be used to define a boundary operator.

In Section 4.5 we define the two Rabinowitz Floer homology groups RFH and RFH
for weakly tame, stable hypersurfaces. We show that both homology groups vanish for
displaceable hypersurfaces and that both homology groups coincide with the singular
homology of the hypersurface in the case that the hypersurface carries no contractible
Reeb orbit.

In Section 4.6 we finally establish invariance of Rabinowitz Floer homology for tame,
stable homotopies.

4.1 Rabinowitz action functional

We first give the general definition of Rabinowitz action functional and its gradient
flow, postponing technical details to later subsections.
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Consider a symplectically aspherical manifold .V; !/ and a separating closed hyper-
surface † � V . Choose a Hamiltonian xH with xH�1.0/ D †. Such Hamiltonians
exist since † is assumed to be separating. Denote by L� C1.S1;V / the component
of contractible loops in the free loop space of V . Rabinowitz action functional

A xH W L�R!R

is defined as

A xH .v; �/ WD
Z 1

0

xv�! � �

Z 1

0

xH .v.t// dt; .v; �/ 2 L�R;

where xvW D2 ! V is an extension of v to the disk. One may think of A xH as
the Lagrange multiplier functional of the unperturbed action functional of classical
mechanics also studied in Floer theory to a mean value constraint of the loop. The
critical points of A xH satisfy

(5)

(
@tv.t/D �X xH .v.t//; t 2R=Z;

xH .v.t//D 0:

Here we used the fact that xH is invariant under its Hamiltonian flow.

It is also useful to consider Rabinowitz action functional for “weakly” time dependent
Hamiltonians. Here weakly means that the Hamiltonian is just the product of a time
independent Hamiltonian with a function depending only on time, ie

H.t;y/D �.t/ xH .y/; y 2 V; t 2 S1:

Normalizing, we assume in addition that

(6)
Z 1

0

�.t/ dt D 1:

We define Rabinowitz action functional AH as before with xH replaced by H . The
critical point equation then becomes

(7)

(
@tv.t/D ��.t/X xH .v.t//; t 2R=Z;

xH .v.t//D 0;

ie the new critical points can just be obtained by reparametrisation of the previous ones.
Moreover, the action value remains constant.

We next describe a class of metrics on L�R. Pick a smooth !–compatible almost
complex structure J on V . For such a J we define a metric m on L � R for
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.v; �/ 2 L�R and .yv1; y�1/; .yv2; y�2/ 2 T.v;�/.L�R/ by

m
�
.yv1; y�1/; .yv2; y�2/

�
D

Z 1

0

!.yv1;J.v/yv2/ dt C y�1 � y�2:

The gradient of AH with respect to this metric is given by

rAH
DrmAH

D

 
�J.v/

�
@tv� �XH .v/

�
�
R 1

0 H.t; v. � ; t// dt

!
:

Thus (positive) gradient flow lines of rAH are solutions .v; �/2C1.R�S1;V �R/
of the following problem

(8)

8̂<̂
:
@svCJ.v/.@tv� �XH .v//D 0;

@s�C

Z 1

0

H.t; v. � ; t/ dt D 0:

The boundary operator of Rabinowitz Floer homology counts gradient flow lines
connecting critical points of AH . In order to prove that this is well defined one has to
show that the moduli spaces of gradient flow line are compact modulo breaking. There
are three difficulties one has to solve.

� An L1–bound on the loop v 2 L.

� An L1–bound on the Lagrange multiplier � 2R.

� An L1–bound on the derivatives of the loop v .

The first and the third point are standard problems in Floer theory one knows how to
deal with: The L1–bound for the loop follows from suitable assumptions on .V; !/
such as convexity at infinity or geometrical boundedness, and the derivatives can be
controlled if V is symplectically aspherical, meaning that ! vanishes on �2.V /, and
hence there is no bubbling of pseudo-holomorphic spheres.

The new feature is the bound on the Lagrange multiplier �, which can only hold under
some additional hypothesis on the hypersurface †. It was derived in [13] for † of
restricted contact type. In the next subsection we will bound the Lagrange multiplier
provided † is stable.

4.2 Bound on the Lagrange multiplier

In this section we discuss the bound on the Lagrange multiplier. In the restricted contact
case this was carried out in [13]. There the first two authors of this paper used the fact
that in the restricted contact case the action value of Rabinowitz action functional at a
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critical point coincides with the Lagrange multiplier. This is not true anymore in the
stable case. Nevertheless, using stability one can define a modified Rabinowitz action
functional whose action value at critical points still is given by the Lagrange multiplier.
However, the modified action is not necessarily a Liapunov function for gradient flow
lines, so that the proof in [13] cannot be mimicked in the stable case by just using
the modified version. The crucial observation is that the difference of the two action
functionals is actually a Liapunov function for gradient flow lines and this fact can be
used to still get a bound on the Lagrange multiplier.

In Section 4.2.1 we explain how the additional Liapunov functional arises and why it
can be used to get the bound on the Lagrange multiplier. Technical details of Section
4.2.1 are postponed to Section 4.2.2. In Section 4.2.4 we also derive a bound on the
Lagrange multiplier for gradient flow lines, when the Rabinowitz action functional
itself is allowed to depend on time. For this we need a short stable homotopy. Using the
notion of the stable pseudodistance, explained in Section 4.2.3, we can make precise
what “short” means.

4.2.1 A second Liapunov function for gradient flow lines From now on we assume
that †� V is a stable hypersurface. We first explain the general strategy to obtain a
bound on the Lagrange multiplier. Assume that � 2ƒ.†;!/ and let RDR� be the
Reeb vector field of the stabilizing 1–form �. We will use Hamiltonians xH such that
xH�1.0/D† and in addition X xH DR along †. To obtain the bound on the Lagrange

multiplier we also have to choose xH carefully outside the stable hypersurface. For that
we have to assume that the stabilizing 1–form � is small enough, but we will give a
detailed explanation of this construction later in Section 4.2.2. The additional condition
implies that the critical point equations (7) are equivalent to

(9)

(
@tv.t/D ��.t/R.v.t//; t 2R=Z;

v.t/ 2†; t 2R=Z;

ie v is up to reparametrisation a periodic orbit of the Reeb vector field on † with
period �.3

The bound on the Lagrange multiplier is derived by comparing the Rabinowitz action
functional to a different action functional. This modified version of Rabinowitz action
functional is obtained using an extension of the stabilizing 1–form � on † to a
compactly supported 1–form ˇ� on V . We also postpone the precise construction of

3The period � may be negative or zero. We refer in this paper to Reeb orbits moved backwards as
Reeb orbits with negative period and to constant orbits as Reeb orbits of period zero.
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ˇ� . But given ˇ� we define the auxiliary action functional yAH W L�R!R by

yAH .v; �/ WD

Z 1

0

xv�dˇ�� �

Z 1

0

H.t; v.t// dt;

We will further use the difference of the two Rabinowitz action functionals

A WDAH
� yAH

W L�R!R; .v; �/ 7!

Z 1

0

xv�.! � dˇ�/:

Note that A.v; �/ is in fact independent of �. We further use an !–compatible almost
complex structure J on V which has a special form on a stable tubular neighbourhood
of †; see Section 4.2.2. For that J we consider the following two bilinear forms on
the tangent bundle T .L�R/:

m
�
.yv1; y�1/; .yv2; y�2/

�
WD

Z 1

0

!.yv1;J yv2/ dt C y�1y�2;

ym
�
.yv1; y�1/; .yv2; y�2/

�
WD

Z 1

0

dˇ�.yv1;J yv2/ dt C y�1y�2:

Here the bilinear form m (which has already been defined in the previous subsection)
is positive definite. The main point in the choice of H , ˇ� and J is to make sure that
the following Proposition becomes true.

Proposition 4.1 If .v; �/ 2 L�R and .yv; y�/ 2 T.v;�/.L�R/ then the following two
assertions hold:

(i) d yAH .v; �/.yv; y�/D ym
�
rmAH .v; �/; .yv; y�/

�
;

(ii) .m� ym/
�
.yv; y�/; .yv; y�/

�
� 0:

We prove Proposition 4.1 in Section 4.2.2. Assertion (i) might be interpreted as

r ym
yAH
DrmAH :

However, we point out that the gradient with respect to the bilinear form ym is not
uniquely determined since ym is not positive definite. We can use Proposition 4.1 to
show that the difference action functional A is a Liapunov function for the gradient
flow lines of AH .

Corollary 4.2 The functional A is nondecreasing along gradient flow lines of Rabi-
nowitz action functional.
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Proof Let w 2C1.R;L�R/ be a gradient flow line of Rabinowitz action functional,
ie, a solution of

@sw.s/DrmAH .w.s//; s 2R:

We estimate using Proposition 4.1

d

ds
A.w/D dAH .w/.@sw/� d yAH .w/.@sw/

Dm
�
rmAH .w/;rmAH .w/

�
� ym

�
rmAH .w/;rmAH .w/

�
� 0:

This concludes the proof of the Corollary.

Since the restriction of ˇ� to † equals � we obtain using Stokes’ theorem and (9) the
following period-action equality for critical points .v; �/ of AH ,

yAH .v; �/D �:

An elaboration of this observation is the second assertion of the following Lemma
which might be thought of as a period-action inequality for almost Reeb orbits. For the
statement of the Lemma we use the abbreviation

kHk1 D

Z 1

0

sup
V

jH j dt D k xHk1:

Lemma 4.3 If the stabilizing 1–form � is small enough in the C 0 –topology, then for
every � > 0 and for every  2 Œ0; 1/ we can choose the Hamiltonian xH in such a way
that for every � satisfying (6) the following two conditions hold for H D � xH .

(i) kHk1 �  C � .

(ii) For .v; �/ 2 L�R the following implication holds:

krAH .v; �/k �
2

3
) j�j �

1

1� 
j yAH .v; �/jC

2

3.1�  /
:

Here the norms and the gradient are taken with respect to m.

Proof The Lemma follows from Lemma 4.7 below.

Proposition 4.4 Suppose that the stabilizing 1–form � is small enough and H is as
in Lemma 4.3 for � > 0 and  2 .0; 1� ��. Assume that w D .v; �/ 2 C1.R;L�R/
is a gradient flow line of rAH for which there exist a� b such that

(10) AH .w/.s/; A.w/.s/ 2 Œa; b�; 8 s 2R:
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Then the L1–norm of � is bounded by

k�k1 �

�
9� 5

4 .1�  /

�
.b� a/C

2

3.1�  /
C

9.b� a/

4 2
�:

Proof For � 2R we set

�.�/D inf
�
� � 0 W

rAH
�
w.� C �/

�� 2

3

�
:

To obtain a bound on �.�/ we estimate using the gradient flow equation and (10)

b� a � AH .w.�//�AH .w.� C �.�//

D

Z �C�.�/

�

d

ds

�
AH .w/

�
ds

D

Z �C�.�/

�

dAH .w/.@sw/ ds

D

Z �C�.�/

�

rAH .w/
2

ds

�

�
2

3

�2

�.�/

from which we deduce

�.�/�
9.b� a/

4 2
:

Furthermore, for every s 2R the modified version of Rabinowitz action functional can
be estimated from above using (10) again byˇ̌

yAH .w.s//
ˇ̌
D
ˇ̌
AH .w.s//�A.w.s//

ˇ̌
� b� a:

The above two inequalities together with Lemma 4.3 and the equation @s�.s/ D

�
R 1

0 H.t; v.s; t// dt following from the gradient flow equation imply

j�.�/j � j�.� C �.�//jC

Z �C�.�/

�

j@s�.s/j ds

�
1

1� 

�
b� a

�
C

2

3.1�  /
C . C �/�.�/

�

�
9� 5

4 .1�  /

�
.b� a/C

2

3.1�  /
C

9.b� a/

4 2
�:

Since � 2R was arbitrary the proposition follows.
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Corollary 4.5 Suppose that the stabilizing 1–form is small enough. Then for given
a � b the Hamiltonian xH D xH .b � a/ can be chosen in such a way that for every �
satisfying (6) and for every gradient flow line w D .v; �/ 2 C1.R;L�R/ of rAH

which satisfies (10) the L1–norm of � is bounded by

k�k1 �

�
5

2

�2

.b� a/C 2:

Proof Choose  D3=5 and ��4=.25.b�a// and let xH D xH .b�a/ be the correspond-
ing Hamiltonian. With these choices the Corollary follows from Proposition 4.4.

Remark The Corollary is somehow the optimal Corollary from Proposition 4.4, since
the function

f 2 C1..0; 1/;R/;  7!
9� 5

4 .1�  /

attains at the point  D 3=5 its unique minimum.

4.2.2 Admissible tuples In this section we prove Proposition 4.1 and Lemma 4.3.

For � 2ƒ.†;!/ denote by I.†; �/ the space of !†–compatible complex structures
on the bundle �� D ker�. Note that actually I.†; �/ only depends on the ray of
� 2ƒ.†;!/ since ��� D �� for � > 0. For I 2 I.†; �/ we introduce the quantity

�.�; I/ WD sup
w2��
w¤0

jd�.w; Iw/j

!.w; Iw/
� 0:

We define the upper semicontinuous function

�W ƒ.†;!/! Œ0;1/; � 7! inf
I2I.†;�/

�.�; I/:

Note that � has the following scaling behaviour

�.��/D ��.�/; � > 0; � 2ƒ.†;!/:

Recall from Section 2 the notion of a stable tubular neighbourhood. We further introduce
the lower semicontinuous function

%W ƒ.†;!/! .0;1/

measuring the size of stable tubular neighbourhoods which is defined for �2ƒ.†;!/ by

%.�/D sup
˚
� W .�;  / 2 T .†; �/

	
:
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The scaling behaviour for the function % is given by

%.��/D
1

�
%.�/:

Definition A stabilizing 1–form � 2ƒ.†;!/ is called small if

max
�
�.�/;

1

%.�/

�
< 1:

We abbreviate by ƒs.†; !/�ƒ.†;!/ the subset of small stabilizing 1–forms.

Remark It follows from the scaling behaviour of the functions � and % that for every
� 2ƒ.†;!/ there exists � > 0 such that �� is small.

We introduce three spaces of functions. Given � > 1 the first space

F1.�/� C1.R;R/

consists of functions � for which there exists �0 2 .1; �/ such that the following
conditions are met:

(11)

8̂<̂
:

�.r/D r C 1; r 2 Œ��0; �0�;

�0.r/� 1; r 2R;

supp.�/� .��; �/:

Given  � 0 and � > 0 the second space

F2.; �/� C1.R;R/

consists of functions h for which the following holds:

(12)

8̂̂̂̂
<̂
ˆ̂̂:

h.r/D r; r 2 Œ�;  �;

0� h0.r/� 1C �; r 2R;

h.r/D  C � r �  C �;

h.r/D� � � r � � � �:

The third space
F3 � C1.S1;R/

consists of functions � 2 C1.S1;R/ satisfyingZ 1

0

�.t/ dt D 1:

Remark All three spaces F1.�/, F2.; �/ and F3 are convex and nonempty.
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Definition A stable tubular neighbourhood � D .�;  / 2 T .†; �/ is called large
if � > 1. We abbreviate by T`.†; �/ � T .†; �/ the subset of large stable tubular
neighbourhoods.

We remark that if � is a small stabilizing 1–form, then the space of large tubular
neighbourhoods is not empty by definition of small.

Definition Given � > 0 and  2 Œ0; 1��� a .; �/–admissible quintuple for the stable
hypersurface † in V

˛ D .�; �; �; h; �/

consists of � 2 ƒs.†; !/, � D .�;  / 2 T`.†; �/, � 2 F1.�/, h 2 F2.; �/, and
� 2 F3 .

Remark We sometimes omit the reference to  and � and refer to a .; �/–admissible
quintuple as an admissible quintuple.

We abbreviate by
A;� D A;�.†;V /

the space of all .; �/–admissible quintuples for † in V . We denote by

� W A;�!ƒs.†; !/

the projection to the first factor. Note that for each � 2ƒs.†; !/ the fiber

A
;�

�
D ��1.�/

is nonempty. As we have seen in Corollary 4.5 and the Remark following it the
somehow optimal choice to bound the Lagrange multiplier is  D 3=5. Hence for
� 2 .0; 2=5� we set

A� D A3=5;�:

We further abbreviate
AD

[
�2.0;2=5�

A�:

For a stable tubular neighbourhood � D .�;  / 2 T .†; �/ we denote by

U� D  
�
Œ��; ���†/

its image in V . We introduce a compactly supported 1–form on V for an admissible
quintuple which extends the 1–form � on † by

ˇ˛.y/D

(
�.r/�.x/ y D  .x; r/ 2 U� ;

0 y 2 V nU� :
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We will also sometimes suppress some of the dependencies of ˇ˛ and write

ˇ D ˇ� D ˇ˛:

Using the notion of admissible quintuples we are now in position to give the precise
definition of the Rabinowitz action functional. For a .; �/–admissible quintuple
˛ D .�; �; �; h; �/ with � D .�;  / we define H 2 C1.V �S1;R/ for y 2 V by the
condition

H.y; t/DH˛.y; t/D

(
�.t/h.r/ y D  .x; r/ 2 U� ; t 2 S1;

H.y; t/D˙�.t/. C �/ y 2 V nU� ; t 2 S1:

For later reference we introduce the abbreviation

xH .y/D

Z 1

0

H.t;y/:

We sometimes use the notation

A˛ DAH ; yA˛ D yAH ; A˛ DA

to make the dependency of the three action functionals on the parameters explicit.

To define the bilinear form m and ym we have to pick a suitable subspace of !–
compatible almost complex structures on V . We first make the following definition.

Definition If � 2ƒ.†;!/ then the space of small !†–compatible almost complex
structures on �� is defined as

Is.†; �/D fI 2 I.†; �/ W �.�; I/� 1g:

We note that if � is small, then by definition the space Is.†; �/ is nonempty.

Recall from the introduction that a compatible almost complex structure J is called
geometrically bounded if !. � ;J � / is a complete Riemannian metric with bounded
sectional curvature and injectivity radius bounded away from zero.

If ˛ is an admissible quintuple, and I 2 Is.†; �.˛// we denote by J .˛; I/ the
subspace of !–compatible geometrically bounded almost complex structures J on
V which split on the stable tubular neighbourhood U� D  

�
Œ��; ���†

�
� V with

respect to the decomposition

T V jU� D ��˚ �
!
�

as J D

�
I 0

0 J0

�
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where J0 is the standard complex structure on the symplectic complement of ��
spanned by the Reeb vector field R� and @=@r . We further set

J .˛/D
[

I2Is.†;�.˛//

J .˛; I/:

The following Lemma is the main technical point to establish Proposition 4.1.

Lemma 4.6 Assume that ˛ D .�; �; �; h; �/ is an admissible quintuple for the stable
hypersurface † in V , and J 2 J .˛/. Then for every w 2 T V the following estimate
holds:

(13) dˇ˛.w;Jw/� !.w;Jw/:

Proof The inequality (13) is clear on the complement of the stable tubular neighbour-
hood U� since there dˇ˛ vanishes and !. � ;J � / is positive definite. For � D .�;  /
we identify via  the neighbourhood U� of † in V symplectically with Œ��; ���†
and ! D !†C d.r�/. Then the exterior derivative of ˇ˛ is given by the formula

dˇ˛jU� D �.r/d�C�
0.r/dr ^�:

For u D .r;x/ 2 U� and w 2 TuV we write w D w1 C w2 with respect to the
decomposition T V jU� D ��˚�

!
�

. Note that since J 2J .˛/ there exists I 2 Is.†; �/

such that
Jw D Iw1CJ0w2:

We first observe that the following implications follow from (11)

�.r/� 0) �.r/� r C 1; �.r/� 0) �.r/� r C 1:

Moreover, since I 2 Is.†; �/ it follows that

jd�.w1; Iw1/j � !†.w1; Iw1/:

Using further �0 � 1 following from (11) we estimate

dˇ˛.w;Jw/D �.r/d�.w1; Iw1/C�
0.r/dr ^�.w2;J0w2/

� max
˚
.r C 1/d�.w1; Iw1/; 0

	
C!.w2;Jw2/

Dmax
˚
rd�.w1; Iw1/C!†.w1; Iw1/; 0

	
C!.w2;Jw2/

D !.w1;Jw1/C!.w2;Jw2/

D !.w;Jw/:

This proves the Lemma.
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Proof of Proposition 4.1 The inequality (13) implies that

.m� ym/
�
.yv; y�/; .yv; y�/

�
D .m� ym/

�
.yv; 0/; .yv; 0/

�
� 0:

Recall that the gradient of AH with respect to the metric m, defined by the equation

dAH .v; �/.yv; y�/Dm
�
rmAH .v; �/; .yv; y�/

�
;

rmAH .v; �/D
�
�J.v/

�
Pv� �XH .v/

�
;

Z 1

0

H.v/ dt
�
:is given by

Here the Hamiltonian vector field XH , defined by the equation dH D�iXH
! , equals

zero outside the region Œ��; ���† and on this region it is given by XH D �.t/h
0.r/R.

Hence the stability condition iRd�D 0 together with the first equality in (11) yields
dH D�iXH

dˇ˛ , which in turn implies that

d yAH .v; �/.yv; y�/D ym
�
rmAH .v; �/; .yv; y�/

�
:

This proves the Proposition.

We finally show Lemma 4.3 by proving the following Lemma whose proof is an
elaboration of the proof of [13, Proposition 3.1]. To see how this Lemma actually
implies Lemma 4.3 it only remains to note if ˛ is a .; �/–admissible quintuple, then

kH˛k1 D  C �:

Lemma 4.7 Assume that ˛ D .�; �; �; h; �/ is a .; �/–admissible quintuple with
� D .�;  /. Then the following implication holds:

krA˛.v; �/k �
2

3
) j�j �

1

1� 

�ˇ̌
yA˛.v; �/

ˇ̌
CkrA˛.v; �/k

�
:

Proof For �0�� we use the following notation for the stable tubular subneighbourhood
of � :

��0 D .�
0;  jŒ��0;�0��†/:

The Lemma is proved in two steps.

Step 1 Assume that v.t/ for every t 2 S1 is contained in the stable tubular neighbour-
hood U� . Then the inequality for j�j holds.

We first note that the Hamiltonian vector field and the one-form satisfy on U� the
relation

ˇ˛.XH /jS1�U�
DH jS1�U�

C�:
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In the following estimate we denote by k k1 and k k2 the L1 – and, respectively,
L2 –norm on the circle.

j yA˛.v; �/j D
ˇ̌̌̌ Z 1

0

v�ˇ˛ � �

Z 1

0

H.t; v.t// dt

ˇ̌̌̌
D

ˇ̌̌̌
�

Z 1

0

ˇ˛.XH .v// dt C

Z 1

0

ˇ˛
�
@tv� �XH .v/

�
dt � �

Z 1

0

H.t; v.t// dt

ˇ̌̌̌
�

ˇ̌̌̌
�

Z 1

0

� dt

ˇ̌̌̌
�

ˇ̌̌̌ Z 1

0

ˇ˛
�
@tv� �XH .v/

�
dt

ˇ̌̌̌
� j�j � .1C  /k@tv� �XH .v/k1

� j�j � .1C  /k@tv� �XH .v/k2

� j�j � .1C  /krA˛.v; �/k:

This proves Step 1.

Step 2 Assume that krA˛.v; �/k � 2=3. Then v.t/ 2 U� for every t 2 S1 .

We argue by contradiction and exclude the following two cases.

Case 1 There exists t0; t1 2 S1 such that v.t0/ 2 U�2=3
and v.t1/ 2 V nU� .

Case 2 For all t 2 S1 , we have that v.t/ 2 V nU� .

We first observe that in Case 1 there exist two disjoint intervals I1D Œs1
0
; s1

1
�� S1 and

I2 D Œs2
0
; s2

1
� such that

v.s1
0/ 2 @U� ; v.s1

1/ 2 @U�2=3
; v.s2

0/ 2 @U�2=3
; v.s2

1/ 2 @U� ;

v.s/ 2 U� nU�2=3
; s 2 I1

[ I2:and

Identifying U� with Œ�;  ��† we write for s 2 I1[ I2

v.s/D
�
r.s/;u.s/

�
2 Œ�;  ��†:

We estimate

krA˛.v; �/k> k@tv� ��XH .v/k2

� k@tv� ��XH .v/k1

�

Z s1
1

s1
0

j@t r.s/j dsC

Z s2
1

s2
0

j@t r.s/j ds

�
2

3
:

This contradiction excludes Case 1.
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To exclude Case 2 we estimate

krA˛k �
ˇ̌̌̌ Z 1

0

H.t; v.t// dt

ˇ̌̌̌
>

2

3
;

which contradicts the assumption. Thus Step 2 and hence the Lemma follow.

4.2.3 The stable pseudo-distance We later prove invariance of Rabinowitz Floer
homology via an adiabatic homotopy argument. For that we need short homotopies
of stable hypersurfaces. In order to say what “short” means we introduce the stable
pseudo-distance.

We define the stable pseudo-distance as the infimum of the length of paths of stable
quadruples between two stable hypersurfaces. To begin with here is the definition of a
stable quadruple.

Definition A stable quadruple in V

SD .†; �; �; I/

consists of a stable hypersurface †� V , a small stabilizing 1–form � 2ƒs.†; !/, a
large tubular neighbourhood � 2 T`.†; �/ and a small !†–compatible almost complex
structure I 2 Is.†; �/. We also refer to a stable quadruple as above as a stable
quadruple for the stable hypersurface †.

Let PD fS�g D f.†� ; �� ; �� ; I�/g for � 2 Œ0; 1� be a smooth path of stable quadruples.
To be precise, we require for a smooth path �� of large stable tubular neighbourhoods
that for a fixed � > 1 we have a smooth family of maps  � W Œ��; ���†! V where †
is a fixed manifold diffeomorphic to every †� �V such that �� D .�;  �/2 T`.†� ; ��/
for every � 2 Œ0; 1�. We associate to such a path a distance in the following way. For
fixed � 2 Œ0; 1� define a vector field on Œ��; ���† by

X � .r;x/D  
�
�

d

d�

ˇ̌̌̌
�D0

 �C� .r;x/; .r;x/ 2 Œ��; ���†:

We refer to the expression

VP.�/D�

�
max

Œ��;���†�

ˇ̌
!.X � ;R�� /

ˇ̌
C max
Œ��;���†�

ˇ̌
d �X �

��.R�� /
ˇ̌
Cmax

†�

ˇ̌
P��.R�� /

ˇ̌�
as the speed of the path P at � . We define the length of the path P by the formula

�.P/D

Z 1

0

VP.�/ d�:
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The stable pseudo-distance between two stable hypersurfaces †0 and †1

�.†0; †1/ 2 Œ0;1�

is defined as the infimum of the length of all paths of stable quadruples whose endpoints
are stable quadruples for the stable hypersurfaces †0 respectively †1 . Here we
understand that the stable pseudo-distance is infinite if there is no such path.

4.2.4 The time-dependent case In this section we establish a bound on the Lagrange
multiplier for gradient flow lines, when the Rabinowitz action functional is allowed to
depend itself on time.

Given two stable hypersurfaces †�; †C � V and ˛˙ 2 A.†˙;V / we denote by

(14) H.˛�; ˛C/� C1.V �R/

the space of time dependent Hamiltonians H 2 C1.V �R/ for which there exists
R > 0 with the property that the family of Hamiltonians Hs D H. � ; s/ becomes
constant for jsj �R, and

Hs DH˛˙ 2 C1.V /; ˙s �R:

Theorem 4.8 For � > 0 there exists a constant �.�/ > 0 with the following property.
Assume that †�; †C � V are stable hypersurfaces such that

�.†�; †C/��.�/:

Then there exist admissible quintuples ˛˙ 2A.†˙;V /, a time-dependent Hamiltonian
H 2H.˛�; ˛C/ and a time-dependent metric mDfmsgs2R on L�R which is constant
for jsj large such that the following holds true. For every a � b and for every flow
line wD .v; �/2C1.R;L�R/ of the time-dependent gradient rms

AHs converging
asymptotically lims!˙1w.s/D w

˙ to critical points of A˛˙ satisfying

A˛˙.w˙/; A˛˙.w
˙/ 2 Œa; b�;

the following L1–estimate holds for �:

k�k1 �

�
5

2
C �

�2

.b� a/C 2:

Proof Assume that †�; †C are stable hypersurfaces whose stable pseudodistance
is �. Hence for every �0 > 0 there exists a path PDP�0

DfS�g of stable quadruples
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S� D .†� ; �� ; �� ; I�/ for � 2 Œ0; 1� such that

�.P/��C �0

†0 D†
�; †1 D†

C:and

Let � > 1 be such that �� D .�;  �/. Recall from Section 4.2.2 the spaces F1.�/,
F2.; �/ and F3 . Choose

� 2 F1.�/; � 2 F3:

Moreover, assume that �0 � 2=5 and pick

h 2 F2

�
3

5
; �0

�
:

˛� D .�� ; �� ; �; h; �/; � 2 Œ0; 1�Then the family

is a smooth family of .3=5; �0/–admissible quintuples for †� . Choose further a smooth
function

�1 2 C1.R; Œ0; 1�/

0� �01.s/� 1; s 2Rsuch that

�1.s/D

(
0 s � �1;

1 s � 1:
and

For R> 0 define �R 2 C1.R; Œ0; 1�/ by

�R.s/D �1

�
s

R

�
; s 2R:

Note that k�0Rk �
1

R
.

Set ˛� D ˛0; ˛C D ˛1

and define H R
2H.˛�; ˛C/

by H R
s DH˛�R.s/

; s 2R:

To define the time-dependent metric mD fmsgs2R choose a smooth family

J� 2 J .˛� ; I�/:

If .v; �/ 2 L�R and .yv1; y�1/; .yv2; y�2/ 2 T.v;�/.L�R/ we set

mR
s

�
.yv1; y�1/; .yv2; y�2/

�
WD

Z 1

0

!.yv1;J�R.s/yv2/ dt C y�1y�2:
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Now assume that w D .v; �/ 2 C1.R;L�R/ is a gradient flow line of rmR
s
AH R

s .
We show in four steps that for R large enough and � small enough the required
L1–bound on � holds.

Step 1 For every � 2R the following inequalities hold:

(15) a� 2.�C �0/k�k1 �AH R
� .w.�//� bC 2.�C �0/k�k1:

We first claim that for any y 2 V the estimate

(16)
ˇ̌
@s
xH R

s .y/
ˇ̌
� 2@s�R.s/VP.�R.s//

holds. This is clear if y does not lie in the stable tubular neighbourhood U��R.s/
since

there @s
xH R

s vanishes. On the other hand, if y D  �R.s/.x; r/ 2 U��R.s/
, thenˇ̌

@s
xH R

s .y/
ˇ̌
D
ˇ̌
h0.r/@s�R.s/!.X �R.s/

;R��R.s/
/
ˇ̌
� .1C �0/@s�R.s/VP.�R.s//

which implies (16) since �0 is already chosen to be less than or equal 2=5. We estimate
using (16)

AH R
� .w.�//�A˛�.w�/D

Z �

�1

d

ds

�
AH R

s .w.s//
�

ds(17)

D

Z �

�1

�
@sAH R

s
�
.w.s// ds

C

Z �

�1

dAH R
s .w.s//@sw.s/ ds

D�

Z �

�1

Z 1

0

�.s/
�
@sH R

s

�
.v.s; t// dt ds

C

Z �

�1

mR
s

�
rmR

s
AH R

s .w.s/; @sw.s/
�

ds

� �2k�k1

Z �

�1

@s�R.s/VP.�R.s// ds

C

Z �

�1

mR
s

�
@sw.s/; @sw.s/

�
ds

� �2k�k1

Z 1
�1

@s�R.s/VP.�R.s// ds

D�2k�k1

Z 1

0

VP.�/ d�

D�2k�k1�.P/

D�2k�k1.�C �0/:
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Now using the fact that A˛�.w�/ � a shows the estimate from below in (15). The
estimate from above is derived in a similar manner. This finishes the proof of Step 1.

To formulate Step 2 we recall that the energy of w with respect to the metric mR
s is

defined as

E.w/D

Z 1
�1

mR
s

�
@sw.s/; @sw.s/

�
ds:

Step 2 There exists a constant cP such that for every � 2R the inequalities

a� 4.�C �0/k�k1�
cP
�
E.w/C 1

�
p

R
�A˛�R.�/

.w.�//;

A˛�R.�/
.w.�//� bC 4.�C �0/k�k1C

cP
�
E.w/C 1

�
p

R

are satisfied.

For the extension of the stabilizing 1–form ��R.s/ we use the abbreviation

ˇR
s D ˇ��R.s/

:

We claim that for any y 2 V the following estimate holds:

(18)
ˇ̌
@sˇ

R
s

�
X xH R

s
.y/
�ˇ̌
� 4@s�

R.s/VP.�
R.s//:

If y … U�
�R.s/

, then ˇR
s vanishes and the estimate obviously holds. We abbreviate

P̌R
s D @�RˇR

s :

Denoting by L the Lie derivative we compute for y D  �R.s/.x; r/ 2 U��R.s/

P̌R
s

�
X xH R

s
.y/
�
D h0.r/ P̌Rs

�
R�

�R.s/

�
D h0.r/LX 

�R.s/

ˇR
s

�
R�

�R.s/

�
C h0.r/�.r/P��R.s/

�
R�

�R.s/

�
D h0.r/d �X 

�R.s/

ˇR
s

�
R�

�R.s/

�
C h0.r/�X 

�R.s/

dˇR
s

�
R�

�R.s/

�
C h0.r/�.r/P��R.s/

�
R�

�R.s/

�
D h0.r/d

�
�.r/�X 

�R.s/

��R.s/

��
R�

�R.s/

�
C h0.r/�X 

�R.s/

�
�0.r/dr ^��R.s/C�.r/d��R.s/

��
R�

�R.s/

�
C h0.r/�.r/P��R.s/

�
R�

�R.s/

�
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D h0.r/�.r/d
�
�X 

�R.s/

��R.s/

��
R�

�R.s/

�
C h0.r/�0.r/�X 

�R.s/

��R.s/dr
�
R�

�R.s/

�
C h0.r/�X 

�R.s/

�
!†C�

0.r/dr ^��R.s/C�.r/d��R.s/

��
R�

�R.s/

�
C h0.r/�.r/P��R.s/

�
R�

�R.s/

�
D h0.r/�.r/d

�
�X 

�R.s/

��R.s/

��
R�

�R.s/

�
C h0.r/!

�
X 

�R.s/
;R�

�R.s/

�
C h0.r/�.r/P��R.s/

�
R�

�R.s/

�
:

In the fifth equality we have used that the Reeb vector field lies in the kernel of !† .
Using

max� � �C 1� 2�; max h0 � 1C �0 � 2

we obtain from that the estimateˇ̌
P̌R
s

�
X xH R

s
.y/
�ˇ̌
� 4VP.�R.s//

implying (18).

As in the time-independent case we consider the following time-dependent bilinear
form on T .L�R/

ymR
s

�
.yv1; y�1/; .yv2; y�2/

�
WD

Z 1

0

dˇR
s .yv1;J�R.s/yv2/ dt C y�1y�2:

By Proposition 4.1 we have for any s 2R

rmR
s
AH R

s Dr
ymR

s

yAH R
s :

Hence the computation in Corollary 4.2 shows that

d

ds

�
A˛�R.s/

.w.s//
�
D
�
@sA˛�R.s/

�
.w.s//(19)

C
�
mR

s � ym
R
s

��
rmR

s
AH R

s .w.s//;rmR
s
AH R

s .w.s//
�

�
�
@sA˛�R.s/

�
.w.s//:

For � 2 Œ0; 1� let � be the compactly supported 1–form

� D P̌�� ıJ�
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and define the constant cP as

cP D max
�2Œ0;1�
y2V

k�.y/k

where the norm is taken with respect to the metric !. � ;J� � /. Again we only show the
estimate from below. This is derived similarly as the estimate (17) in Step 1. Using
(18) and (19) we obtain

A˛�R.�/
.w.�//�A˛�.w�/ � �

Z �

�1

�
@sA˛�R.s/

�
.w.s// ds

D�

Z �

�1

@s�R.s/

�Z 1

0

v� P̌Rs dt

�
ds

D�

Z �

�1

@s�R.s/�.s/

�Z 1

0

P̌R
s

�
�XH R

s
.v.s; t//

�
dt

�
ds

�

Z �

�1

@s�R.s/

�Z 1

0

P̌R
s

�
J�R.s/@sv.s; t/

�
dt

�
ds

� �4k�k1

Z �

�1

@s�R.s/VP.�R.s// ds

�cP

Z �

�1

Z 1

0

@s�R.s/k@sv.s; t/k dt ds

� �4k�k1

Z 1
�1

@s�R.s/VP.�R.s// ds

�cP

Z 1
�1

@s�R.s/

Z 1

0

�
p

Rk@sv.s; t/k
2
C

1
p

R

�
dt ds

� �4k�k1

Z 1

0

VP.�/ d� �
cP
p

R

Z 1
�1

@s�R.s/ ds

�
cP
p

R

Z 1
�1

k@sw.s/k
2 ds

� �4k�k1.�C �0/�
cP
�
E.w/C 1

�
p

R
:

This finishes the proof of Step 2.

Step 3 The energy can be estimated by

E.w/�A˛C.wC/�A˛�.w�/C 2k�k1.�C �0/� b� aC 2k�k1.�C �0/:

A careful look at (17) reveals Step 3.
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Step 4 We prove the theorem.

As in the proof of Proposition 4.4, we set for � 2R

�.�/D inf
�
� � 0 W

rAH R
�
�
w.� C �/

�� 2

5

�
:

In the time dependent case we still can estimate

(20) �.�/�
25E.w/

4
:

Since ˛� is .3=5; �0/–admissible for every � 2 Œ0; 1� we conclude from Lemma 4.7
applied to  D 3=5 together with the fact that kH R

s k1 � 3=5C �0 for every s 2 R
and (20) the following estimate

j�.�/j � j�.� C �.�//jC

Z �C�.�/

�

j@s�.s/j ds(21)

�
5

2
sup

ˇ̌
yAH R

ıw
ˇ̌
C 1C �.�/kH R

k1

�
5

2
sup

ˇ̌
yAH R

ıw
ˇ̌
C 1C

25E.w/

4

�
3

5
C �0

�
:

From Steps 1 and 2 we obtain the estimate

sup
ˇ̌
yAH R

ıw
ˇ̌
D sup

ˇ̌
AH R

ıw�A˛�R
ıw

ˇ̌
(22)

� b� aC 6.�C �0/k�k1C
cP.E.w/C 1/
p

R
:

Combining (21) and (22) with Step 3 we obtain

k�k1 �
5

2
.b� a/C 1C

5cP

2
p

R
C

�
15

4
C

25�0

4
C

5cP

2
p

R

�
E.w/(23)

C 15.�C �0/k�k1

�

�
25.1C �0/

4
C

cP
p

R

�
.b� a/C 1C

5cP

2
p

R

C

�
45

2
C

25�0

2
C

5cP
p

R

�
.�C �0/k�k1:

We now choose �D�.�/ in such a way that

0<�<min
�

2�

125C 100�
;

1

60

�
:
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The positive number �0 which already had to be chosen in such a way that �0 � 2=5

is now supposed to satisfy

0< �0 �min
�

1

60
��;

2�

125C 100�
��

�
:

Moreover, we choose R such that

R�max
��

5cP

2.1� 60.�C �0//

�2

;

�
cP

�

�2�
:

With these choices we get from (23)

k�k1 �

�
25

4
C 2�

�
.b� a/C 2

�
1� 30.�C �0/

�
C 30.�C �0/k�k1:

Using �C �0 � 2�=.125C 100�/ we obtain

k�k1 �
1

1� 30.�C �0/

�
25

4
C 2�

�
.b� a/C 2

�

�
25

4
C 5�

�
.b� a/C 2

�

�
5

2
C �

�2

.b� a/C 2:

This finishes the proof of the theorem.

4.3 An existence result for a periodic Reeb orbit

In this subsection we show how compactness for gradient flow lines of Rabinowitz
action functional leads to existence of a periodic Reeb orbit on stable displaceable
hypersurfaces. This result is not new. Indeed, Schlenk proved it before in [64] using
quite different methods. Before stating the theorem we recall some well-known notions.

A hypersurface † in a symplectic manifold .V; !/ is called displaceable, if there exists
a compactly supported Hamiltonian F 2 C1.V � S1/ such that the time-one flow
�F of the time dependent Hamiltonian vector field XFt

with Ft D F. � ; t/ 2 C1.V /

satisfies
�F .†/\†D∅:

The positive and the negative part of the Hofer norm for the compactly supported
Hamiltonian F are given by

kFkC D

Z 1

0

max
V

Ft dt; kFk� D�

Z 1

0

min
V

Ft dt
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and the Hofer norm itself by

kFk D kFkCCkFk�:

If †� V is a displaceable hypersurface its displacement energy is given by

e.†/D inffkFk W �F .†/\†D∅g:

Recall from (2) the !–energy for closed characteristics.

Theorem 4.9 (Schlenk) Assume that † is a stable, displaceable hypersurface in a
symplectically aspherical, geometrically bounded, symplectic manifold .V; !/. Then
† has a closed characteristic v which is contractible in V and satisfies

�.v/� e.†/:

Our proof of Theorem 4.9 is based on a homotopy stretching argument for a time
dependent perturbation of Rabinowitz action functional where the perturbation is given
by the displacing Hamiltonian.

The crucial point is that the perturbed Rabinowitz action functional has no critical
points anymore. This is actually true for any separating closed hypersurface † in a
symplectically aspherical, symplectic manifold .V; !/. If †D xH�1.0/ for a Hamil-
tonian xH 2 C1.V / we choose � 2 C1.S1;R/ of integral one which in addition
meets the condition

supp�� .0; 1=2/

and set as usual
H.t;y/D �.t/ xH .y/; y 2 V; t 2 S1:

Without changing the Hofer norm we furthermore can reparametrize the flow of the
displacing Hamiltonian Ft such that we can assume that

Ft D 0; t 2 Œ0; 1=2�:

The perturbation of Rabinowitz action functional which we consider is the functional
AH

F
W L�R!R defined by

AH
F .v; �/DAH .v; �/�

Z 1

0

Ft .v.t// dt; .v; �/ 2 L�R:

We further denote by

S.X xH /D clfy 2 V WX xH .y/¤ 0g
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the support of the Hamiltonian vector field of xH . The following Lemma is proved
in [13] where it appears as Lemma 3.10. It immediately implies that a suitable perturbed
Rabinowitz action functional has no critical points anymore.

Lemma 4.10 Assume that S.X xH / is compact and �F

�
S.X xH /

�
\ S.X xH / D ∅.

Then for every !–compatible almost complex structure J on V there exists a constant
�D�.J / > 0 such that if r is the gradient and k�k is the norm of the metric on L�R
induced from J , then for every .v; �/ 2 L�R,

krAH
F .v; �/k � �:

With the help of this Lemma we are now armed for the proof of Schlenk’s Theorem.

Proof of Theorem 4.9 Given �0 > 0 we choose a time dependent Hamiltonian Ft

satisfying the conditions

Ft D 0; t 2 Œ0; 1=2�; �F .†/\†D∅; kFk< e.†/C �0:

We further choose a .; �/–admissible quintuple ˛ D .�; �; �; h; �/ which satisfies

supp�� .0; 1=2/; �F .U� /\U� D∅:

The first condition can obviously be achieved. To see that one can also assume without
loss of generality the second condition we note that since † is compact there exists
an open neighbourhood U† of † in V which is also displaced by �F . Now by
choosing � arbitrarily small we can arrange that even a large tubular neighbourhood U�
is contained in U† .

We further choose a smooth family of cutoff functions ˇr 2C1.R; Œ0; 1�/ for r 2 Œ0;1/

with the properties

(24)

8̂<̂
:
ˇr .s/D 0 jsj � r;

ˇr .s/D 1 jsj � r � 1;

sˇ0r .s/� 0 8 r;8 s:

We now consider the r –parametrised family of time dependent perturbed Rabinowitz
action functionals defined by

A˛r .v; �; s/DA˛.v; �/�ˇr .s/

Z 1

0

Ft .v.t// dt; v 2 L; � 2R; s 2R; r 2 Œ0;1/:

A˛0 DA˛We note that

is independent of the s–variable. We further choose an !–compatible almost complex
structure J 2 J .˛/ and denote by r the gradient with respect to the metric m on
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L�R induced from J . We fix a point x 2† and think of it as a loop in L. We are
studying solutions .w; r/D .v; �; r/ 2 C1.R;L�R/� Œ0;1/ of the problem

(25) @sw.s/DrA˛r .s; w.s//; s2R; lim
s!�1

w.s/D .x; 0/; lim
s!1

w.s/2†�f0g:

We use the following abbreviation for its moduli space

MD
˚
.w; r/ W .w; r/ solution of (25)

	
:

To prove the Theorem we argue by contradiction and assume

(26) �.v/ > kFk; 8 v 2X.†/:

To see how this leads to a contradiction, we first show the following claim.

Claim If (26) holds, then M is compact.

We prove the Claim in four steps. For the first step recall that the energy of w is
defined by

E.w/D

Z 1
�1

k@swk
2 ds

where the norm is taken with respect to the metric m induced from the !–compatible
almost complex structure J .

Step 1 If .w; r/ 2M then E.w/� kFk.

We estimate using (25)

E.w/D

Z 1
�1

dA˛r .w/.@sw/ ds

D

Z 1
�1

d

ds
A˛r .w/ ds�

Z 1
�1

�
@sA˛r /.w/ ds

D 0C

Z 1
�1

ˇ0r .s/

�Z 1

0

Ft .v/ dt

�
ds

� kFkC

Z 0

�1

ˇ0r .s/ ds�kFk�

Z 1
0

ˇ0r .s/ ds

� kFkCCkFk�

D kFk:

This finishes the proof of Step 1.

Step 2 There exists r0 2R such that if .w; r/ 2M then r � r0 .

Geometry & Topology, Volume 14 (2010)



1808 Kai Cieliebak, Urs Frauenfelder and Gabriel P Paternain

Combining Lemma 4.10 with Step 1 we obtain the estimate

kFk �

Z r

�r

krA˛F .w/k
2 ds

� 2�2r

r �
kFk

2�2
DW r0:implying that

This finishes the proof of Step 2.

Step 3 There exists a constant c > 0 such that for all .w; r/ D .v; �; r/ 2M the
Lagrange multiplier � is uniformly bounded by k�k � c .

To prove Step 3 we estimate the functional ADA˛ � yA˛ along w . Note that we do
not perturb A with the displacing Hamiltonian F . It is useful to introduce further the
functional

F W L�R!R; .v; �/ 7!

Z 1

0

Ft .v.t// dt

which actually only depends on the first variable. By Proposition 4.1 we have

r ym
yA˛ DrmA˛:

Hence using (25) we estimate similarly as in Corollary 4.2

d

ds
A.w/D dA˛.w/@sw� d yA˛.w/@sw

Dm
�
rmA˛.w/; @sw

�
� ym

�
rmA˛.w/; @sw

�
D .m� ym/

�
@sw; @sw

�
Cˇr .m� ym/

�
rmF.w/; @sw

�
� ˇr .m� ym/

�
rmF.w/; @sw

�
:

Since F has compact support there exists a constant c0 such that for all w 2 L�R.m� ym/�rmF.w/; �
�

m
� c0:

Hence we obtain for � 2R using Steps 1 and 2

A.w.�//D
Z �

�1

d

ds
A.w/ ds �

Z �

�1

ˇr .m� ym/
�
rmF.w/; @sw/ ds

� �c0

Z r

�r

k@swkm ds

� �c0

Z r

�r

�
k@swk

2
mC 1

�
ds

� �c0

�
2r CE.w/

�
� �c0

�
2r0CkFk

�
:
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Similarly, one gets

�A.w.�//D
Z 1
�

d

ds
A.w/ ds � c0

�
2r0CkFk

�
:

Defining the constant
c1 D c0

�
2r0CkFk

�
we obtain from the previous two estimates the uniform L1–bound

kA ıwk � c1:

Moreover, a closer look at the estimate in Step 1 reveals that

kA˛r ıwk � kFk:

Noting that for s … .�r; r/ we have A˛r . � ; s/DA˛ we obtain from the previous two
inequalities

(27) j yA˛.w.s//j � c1CkFk; s 2R n .�r; r/:

The proof for the bound of the Lagrange multiplier now proceeds similarly as in
Proposition 4.4. For � 2R we set

�.�/D inf
�
� W � C � … .�r; r/; krA˛.w.� C �/k �

2

3

�
:

Again �.�/ can be estimated in terms of the energy by

(28) �.�/�
9E.w/

4 2
C 2r �

9kFk

4 2
C 2r0:

Combining Lemma 4.3 with (27) and (28) and using @s�D�
R 1

0 H.v/ dt we estimate

j�.�/j � j�.� C �.�//jC

Z �C�.�/

�

j@s�j ds

�
3c1C 3kFkC 2

3.1�  /
C . C �/�.�/

�
3c1C 3kFkC 2

3.1�  /
C

9kFk. C �/

4 2
C 2r0. C �/:

Since � was arbitrary we are done with Step 3.

Step 4 We prove the claim.

For � 2 N let .w� ; r�/ D .v� ; �� ; r�/ be a sequence in M. Since the homotopy
parameter r� is uniformly bounded by Step 2 and the Lagrange multiplier �� is
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uniformly bounded by Step 3 standard arguments in Floer theory imply that .w� ; r�/
has a C1loc –convergent subsequence. Indeed, v� satisfies a uniform C 0 –bound by the
assumption that .V; !/ is geometrically bounded and the derivatives of v� can be
controlled because there is no bubbling since .V; !/ is symplectically aspherical. Let
.w; r/ be the limit of the subsequence. .w; r/ obviously satisfies the first equation
in (25). It remains to check that w satisfies the asymptotic conditions. Again by
compactness it follows that w.s/ converges to critical points w˙ D .v˙; �˙/ of A˛
as s goes to ˙1. On the other hand it follows from Step 1 that

A˛r .w.s// 2 Œ�kFk; kFk�; 8 s 2R

�.v˙/DA˛.w˙/ 2 Œ�kFk; kFk�:and hence

Therefore (26) implies that v˙ has to be constant and hence

w� D .x; 0/; wC 2†� f0g:

This finishes the prove of the claim.

Given the claim we are now in position to prove the theorem in a last step.

Step 5 We prove the theorem.

Given the claim it remains to argue that the compactness of the moduli space M is
absurd in order to show that (26) cannot be true. For r D 0 there is precisely one point
.w; 0/ 2M namely the constant gradient flow line w D .x; 0/. The constant gradient
flow line is regular in the sense that the linearization of the gradient flow equation
at it is surjective. Thinking of the moduli space M as the zero set of a Fredholm
section from a Banach space into a Banach bundle and using that it is compact we can
perturb this section slightly to make it transverse. The zero set of the perturbed section
is now a compact manifold with one single boundary point .x; 0; 0/. However, such
manifolds do not exist. Therefore (26) had to be wrong and we conclude that there
exists v 2X.†/ such that

�.v/� kFk< e.†/C �0:

Since �0 > 0 was arbitrary the theorem follows.

4.4 Approvable perturbations

Except in the case where V is zero dimensional, the Rabinowitz action functional is
never Morse, since its critical set contains the constant solutions and each nontrivial
Reeb orbit comes in an S1 –family coming from time-shift. The best situation we
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can hope for, is that Rabinowitz action functional is Morse–Bott. However, since
the stability condition is not an open condition [15], a slight perturbation of a stable
hypersurface might not be stable anymore.

In this subsection we study a class of perturbations of Rabinowitz action functional.
We first show that for a generic perturbation the perturbed Rabinowitz action functional
is Morse. We then explain how in the weakly tame case for small perturbations the
moduli space of gradient flow lines in a fixed action interval can be written as the
disjoint union of two closed subspaces where one of them is compact. We refer to the
compact part as the essential part of the moduli space of gradient flow lines. We finally
explain how the essential part of the moduli space of gradient flow lines can be used to
define a boundary operator for a fixed action interval.

The perturbations of Rabinowitz action functional we consider are reminiscent of the
ones we considered in the previous subsection, however they are more general, since
we do not require that the time support of the additional perturbation Hamiltonian is
disjoint from the time support of the Hamiltonian H˛ . Namely we choose a compactly
supported time-dependent Hamiltonian F 2C1c .V �S1/ and define A˛

F
W L�R!R

as in the previous subsection by

A˛F .v; �/DA˛.v; �/�
Z 1

0

Ft .v.t// dt:

Critical points of the action functional A˛
F

are solutions of the problem

(29)

(
@tv D �XH .v/CXFt

.v/;R 1
0 H.v.t// dt D 0:

We first show that for generic perturbations the perturbed action functional is Morse.

Proposition 4.11 Given an admissible quadruple ˛ , there exists a subset U.˛/ 2
C1c .V �S1/ of the second category such that A˛

F
is Morse for every F 2 U.˛/.

Proof Consider the Hilbert manifold

HDW 1;2.S1;V /�R

where we define W 1;2.S1;V / by embedding V into RN for N large enough. Over
the Hilbert manifold H we introduce the Hilbert bundle

� W E!H

whose fibre over .v; �/ 2H is given by

E.v;�/ DL2.S1; v�T V /�R:
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Choose an !–compatible almost complex structure J and denote by r the gradient
with respect to the metric !. � ;J � /. For F 2 C1c .V �S1/ we define a section

sF W H! E

sF .v; �/D

 
J@tv� �rH.v/�rFt .v/R 1

0 H.v.t// dt

!
:by

Note that the zero set s�1
F
.0/ coincides with the solutions of (29). If w 2H� E then

there is a canonical splitting

TwE D Ew �TwH:
…wW TwE! EwWe denote by

the projection along TwH . If .v; �/ 2 s�1
F
.0/ we introduce the vertical differential

DsF .v; �/W T.v;�/HDW 1;2.S1; v�T V /�R! E.v;�/
DsF .v; �/D….v;�/ ı dsF .v; �/:by

The action functional A˛
F

is Morse if and only if the vertical differential DsF .w/ is
surjective for every w 2 s�1

F
.0/ meaning that sF is transverse to the zero section

(30) sF t 0:

We prove in two steps that (30) holds for generic F 2C1c .V �S1/. In the first step we
prove transversality for weaker differentiability assumptions. The smooth case follows
then by an argument due to Taubes.

Step 1 Assume that 2 � k <1. Then there exists Uk.˛/ � C k
c .V � S1/ of the

second category, such that (30) holds for any F 2 Uk.˛/.

Consider the section
S W C k

c .V �S1/�H! E
which is defined by

S.F; w/D sF .w/; F 2 C k
c .V �S1/; w 2H:

If .F; w/ 2 S�1.0/ with w D .v; �/, then the vertical differential

DS.F; w/W T.F;w/
�
C k

c .V �S1/�H
�
D C k

c .V �S1/�TwH! Ew

is given for yF 2 C k
c .V �S1/ and yw 2 TwH by

(31) DS.F; w/. yF ; yw/DDsF .w/ ywC

�
�r yFt .v/

0

�
:
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We first show the following claim.

Claim For every .F; w/ 2 S�1.0/ the operator DS.F; w/ is surjective.

Pick .F; w/ 2 S�1.0/. Since DsF .w/ is Fredholm, the image of DS.F; w/ is closed.
Hence to show surjectivity, it suffices to prove that the orthogonal complement of the
image of DS.F; w/ vanishes. To see that pick

x D .y; �/ 2 im DS.F; w/?:

It follows from (31) that

(32)

(
hDsF .w/ yw;xi D 0; 8 yw 2 TwH;

hr yF .v/;yi D 0; 8 yF 2 C k
c .V �S1/:

The first equation in (32) implies that

x 2 ker.DsF .w//
�

which forces y to be of class C k�1 . Now we assume by contradiction that there exists
t0 2 S1 such that

y.t0/¤ 0:

Choose yFt0
2 C k

c .V / such that˝
r yFt0

.v.t0//;y.t0/
˛
> 0:

Since we have seen that y is continuous, there exists � > 0 such that˝
r yFt0

.v.t//;y.t/
˛
� 0; t 2 .t0� �; t0C �/:

Now choose a smooth cutoff function ˇ 2 C1.S1; Œ0; 1�/ such that ˇ.t0/ D 1 and
ˇ.t/D 0 for t … .t0� �; t0C �/ and set yFt D ˇ.t/ yFt0

. It follows that

˝
r yF ;y

˛
D

Z 1

0

ˇ.t/
˝
r yFt0

.v.t//;y.t/
˛
dt > 0;

contradicting the second equation in (32). This proves that y has to vanish identically.

It remains to show that � vanishes. To see this we write

yw D .yv; y�/ 2 TwHDW 1;2.S1; v�T V /�R:

Since y vanishes identically the first equation in (32) becomes

�

Z 1

0

dH.v.t//yv.t/ dt D 0; 8 yv 2W 1;2.S1; v�T V /:
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Note that .v; �/ is a solution of (29). Hence, since 0 is a regular value of H , it follows
from the second equation in (29) that dH.v/ does not vanish identically along v .
Therefore, there exists yv 2W 1;2.S1; v�T V / such thatZ 1

0

dH.v.t//yv.t/ dt ¤ 0:

� D 0:Consequently,

This finishes the proof of the claim.

Since F 2 C k
c .V �S1/ it follows that the section S is C k�1 . Hence by the claim

the implicit function theorem shows that S�1.0/ is a C k�1 –manifold. Consider the
C k�1 –map

pW S�1.0/! C k
c .V �S1/; .F; w/ 7! F:

It follows from the Sard–Smale theorem that the set of regular values of the map p

is of the second category in C k
c .V �S1/. But F is a regular value of p , precisely if

sF t 0. This finishes the proof of Step 1.

Step 2 We prove the proposition.

We explain the argument by Taubes in our set-up (cf [53, page 52]).

Since XH and XFt
have compact support and 0 is a regular value of H it follows

that there exists a compact subset V0 � V such that for every .v; �/ 2 crit.A˛
F
/,

(33) v.t/ 2 V0; t 2 S1:

Choose T > 0 and abbreviate

critT .A˛F /D
˚
.v; �/ 2 crit.A˛F / W j�j � T

	
:

It follows from (33), the first equation in (29) and the Theorem of Arzela–Ascoli that
critT .A˛F / is compact. For 2� k �1 we abbreviate

Uk
T .˛/D

˚
F 2 C k

c .V �S1/ WDsF .w/ surjective; 8w 2 critT .A˛F /
	
:

Since critT .A˛F / is compact it follows that Uk
T
.˛/ is open in C k

c .V �S1/. Moreover,
it follows from Step 1 that if k <1 it is also dense in C k

c .V �S1/. Since C1 is
dense in C k for every k , a diagonal argument shows that U1

T
.˛/ is also dense in

C1c .V �S1/. It follows that

U.˛/D
\

T2N

U1T .˛/

is of the second category in C1c .V �S1/. This finishes the proof of the proposition.
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If J 2 J .˛/ is an !–compatible almost complex structure and mDmJ is the metric
induced from J we denote by M.A˛

F
;J / the moduli space of all finite energy gradient

flow lines of rmA˛
F

. For a; b 2R we abbreviate

Mb
a.A˛F ;J /D

n
w 2M.A˛F ;J / WA

˛
F .w.s// 2 Œa; b�; 8 s 2R

o
:

We cannot expect that gradient flow lines of the perturbed action functional are still
compact up to breaking. However, we show that in the case of weakly tame stable
hypersurfaces for small perturbations there is a decomposition of Mb

a.A˛F ;J / into a
disjoint union of closed subsets

Mb
a.A˛F ;J /DMb

a.A˛F ;J /tM
b
a.A˛F ;J /

where Mb
a.A˛F ;J / is compact up to breaking of gradient flow lines. We call Mb

a.A˛F ;J /
the essential part of the moduli space Mb

a.A˛F ;J / and Mb
a.A˛F ;J I a; b/ the unessen-

tial part. The boundary operator then takes only account of the essential part of the
moduli space of gradient flow lines.

If † is weakly tame then by definition for a� b the set

critba.A˛/D
˚
w 2 crit.A˛/ W a�A˛.w/� b

	
is compact. Hence we can define

@.a; bI˛/Dmin
n
a;min

˚
A.w/ W w 2 critba.A˛/

	o
;

Æ.a; bI˛/Dmax
n
b;max

˚
A˛.w/ W w 2 critba.A˛/

	o
:

Note that @.a; b/ and Æ.a; b/ actually only depend on �.˛/D � 2ƒs.†; !/ so that
we can set

@.a; bI�/D @.a; bI˛/; Æ.a; bI�/D Æ.a; bI˛/:
We next introduce a subspace of perturbations F which have the property that the
Lagrange multiplier along gradient flow lines either becomes large or remains small.
We first introduce the number

Ç.a; bI�/D
�

5

2

�2�
Æ.a; bI�/�@.a; bI�/

�
and define the interval

I.a; bI�/D ŒÇ.a; bI�/C 3; Ç.a; bI�/C 4�:

We set

zUb
a.˛;J /D

n
F 2 C1c .V �S1/ W k�k1 … I.a; bI�/; 8w D .v; �/ 2Mb

a.A˛F ;J /
o
:
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Lemma 4.12 Assume that † is a weakly tame stable hypersurface in a symplectically
aspherical, geometrically bounded, symplectic manifold .V; !/ and ˛ 2 A.†;V / is
a .3=5; �/–admissible quintuple with � � 1=Ç.a; bI�/, J 2 J .˛/ and a � b . Then
zUb

a.˛;J / is open and nonempty.

Proof We first show that zUb
a.˛;J / is open. This is actually true for any admissible

quintuple ˛ . For openness we prove that the complement is closed. Hence let

F� 2 C1c .V �S1/ n zUb
a.˛;J /; � 2N

be a sequence of perturbations in the complement of zUb
a.˛;J / such that

lim
�!1

F� D F 2 C1.V �S1/:

It remains to show that F … zUb
a.˛;J /. By definition of zUb

a.˛;J / there exists for each
� 2N a gradient flow line

w� D .v� ; ��/ 2Mb
a.A˛F� ;J /

such that

(34) k��k1 2 I.a; bI�/:

Since the Lagrange multiplier is uniformly bounded the usual compactness arguments
in Floer homology (boundedness at infinity and no bubbling because of symplectic
asphericity) imply that w� has a convergent subsequence w�j such that

lim
j!1

w�j D w D .v; �/ 2M
b
a.A˛F ;J /:

Since I.a; bI�/ is closed it follows from (34) that

k�k1 2 I.a; bI�/:

F … zUb
a.˛;J /:Consequently

This finishes the proof of openness.

To see finally that zUb
a.˛;J / is nonempty we observe that by our assumptions on the

admissible quintuple ˛ it follows from Corollary 4.5 that

0 2 zUb
a.˛;J /:

Hence we are done with the proof of the Lemma.
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Definition For a fixed pair .˛;J / consisting of an admissible quintuple ˛ and an
!–compatible almost complex structure J 2J .˛/ and a� b we say that a perturbation
F 2 C1c .V �S1/ is .a; b/–approvable if A˛

F
is Morse and contained in zUb

a.˛;J /.
We set

Ub
a .˛;J /D fF 2

zUb
a.˛;J / WA˛F Morseg

for the set of .a; b/–approvable perturbations.

Combining Proposition 4.11 with Lemma 4.12 we obtain the following Corollary.

Corollary 4.13 Under the assumptions of Lemma 4.12 the set Ub
a .˛;J / is nonempty.

We finally explain how to associate to an .a; b/–approvable perturbation F a homology
group HFb

a.A˛F ;J /. We first define the set

(35) Cb
a .A˛F /D

˚
w D .v; �/ 2 critba.A˛F / W j�j< Ç.a; bI�/C 3

	
:

Because critba.A˛F /�Mb
a.A˛F ;J / and F is .a; b/–approvable we infer

Cb
a .A˛F /D

˚
w D .v; �/ 2 critba.A˛F / W j�j � Ç.a; bI�/C 3

	
:

Applying the Theorem of Arzela–Ascoli to the critical point equation (29) of A˛
F

we
see that Cb

a .A˛F / is compact. Since A˛
F

is Morse, the set Cb
a .A˛F / is also discrete and

hence finite. Thus
CFb

a.A˛F /D Cb
a .A˛F /˝Z2

is a finite dimensional Z2 –vector space. We further define the essential part of the
moduli space Mb

a.A˛F ;J / to be

Mb
a.A˛F ;J /D

˚
w D .v; �/ 2Mb

a.A˛F ;J / W k�k1 < Ç.a; bI�/C 3
	
:

Since F is .a; b/–approvable, Mb
a.A˛F ;J / is a closed subset of Mb

a.A˛F ;J /. More-
over, since the Lagrange multiplier is by definition uniformly bounded in Mb

a.A˛F ;J /
standard arguments in Floer theory using that .V; !/ is geometrically bounded and
symplectically aspherical imply that Mb

a.A˛F ;J / is C1loc –compact. Hence we can use
Mb

a.A˛F ;J / to define a linear map

@b
aW CFb

a.A˛F /! CFb
a.A˛F /

by counting gradient flow lines. Since the metric m induced from J does not necessarily
fulfill the Morse–Smale condition one may need to perturb the gradient flow equation
to show that @b

a ı@
b
a D 0. It is quite likely that this can actually be achieved by taking a

generic family of !–compatible almost complex structures Jt . However, we have not
checked the details since this is nowadays not needed anymore in view of the progress
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of abstract perturbation theory. For example, if one compactifies the moduli space of
unparametrised trajectories Mb

a.A˛F ;J /=R by adding broken gradient flow lines, this
compactified space can be interpreted as the zero-set of a Fredholm-section

& W P! E

where P is an M –polyfold and E is an M –polyfold bundle over P [38]. If one
perturbs this section to make it transverse [39], one can define a boundary operator by
counting the perturbed broken gradient trajectories between two critical points. Indeed,
if } is a generic abstract perturbation and

&} W P! E

is the perturbed section, then its zero-set

N .}/D &�1
} .0/

is a compact manifold with corners. We denote by N0.}/ its zero-dimensional part. For
a generic perturbation the section &} is also transverse with respect to the boundary of
the polyfold P and hence elements in N0.}/ consist still of unparametrised trajectories
Œw� 2 C1.R;L�R/=R which are unbroken and converge asymptotically to critical
points in Cb

a .A˛F /. Hence for w˙ 2 Cb
a .A˛F / we abbreviate

N0.}Iw
�; wC/D

n
Œw� 2N0.}/ W lim

s!˙1
w.s/D w˙

o
and introduce the Z2 –number

n.w�; wC/D #2N0.}Iw
�; wC/

where #2 denotes the count in Z2 . We define a linear map

@b
a.A˛F ;J I}/W CFb

a.A˛F /! CFb
a.A˛F /

which is defined on generators by

@b
a.A˛F ;J I}/Œw

C�D
X

w�2Cb
a .A˛F /

n.w�; wC/w�:

Standard arguments show that @b
a.A˛F ;J I}/ is actually a boundary operator, ie its

square is zero. The boundary operator might depend indeed on the abstract perturbation
but the homology

(36) HFb
a.A˛F ;J /D

ker @b
a.A˛F ;J I}/

im @b
a.A˛F ;J I}/

is independent of the abstract perturbation by standard homotopy arguments.
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4.5 Definition of Rabinowitz Floer homology

In this subsection we assume that † is a weakly tame stable hypersurface in a symplec-
tically aspherical, geometrically bounded, symplectic manifold .V; !/. In this situation
we define Rabinowitz Floer homology. We further compute it for two relevant cases.
One case is when there are no closed orbits in † contractible in V , and the other is
when † is displaceable.

We define the �–spectrum of † to be

Ã.†/D f˙�.v/ W v 2X.†/g[ f0g

where we recall that X.†/ denotes the set of closed characteristics in † which are
contractible in V . Since each �.v/ corresponds to a critical value of Rabinowitz action
functional A˛ for an admissible quintuple ˛ 2 A.†;V / the set Ã.†/ is a meager
subset of R by Sard’s theorem.

Our first aim is to define Rabinowitz Floer homology groups RFHb
a for a; b …Ã.†/.

These groups basically depend only on † and V . However, there is a little subtlety
to note. We do not know if the space of all !–compatible geometrically bounded
almost complex structures J on V is connected. Therefore Rabinowitz Floer homology
actually could depend on the choice of the geometrically bounded compatible almost
complex structure. We therefore fix one such complex structure J0 . For an admissible
quintuple ˛ we abbreviate by

J .˛;J0/� J .˛/

the set of all J 2 J .˛/ which outside of a compact set coincide with J0 . We observe
that the space J .˛;J0/ is connected. It is possible that Rabinowitz Floer homology
depends on the choice of J0 , although this seems unlikely. We refer in the following
to the triple .V; !;J0/ as the geometrically bounded symplectic manifold. We often
skip the reference to ! and J0 and just mention V .

If a; b …Ã.†/, ˛ 2A.†;V / meets the assumptions of Lemma 4.12, and J 2J .˛;J0/

we introduce the subset of perturbations

zVb
a.˛;J /D

n
F 2 zUb

a.˛;J / WA˛F .w/ … fa; bg; 8w 2 C
b
a .A˛F ;J /

o
where we refer to (35) for the definition of Cb

a .A˛F ;J /. By the Theorem of Arzela–
Ascoli zVb

a.˛;J / is an open subset of zUb
a.˛;J /. Moreover, since a; b …Ã.†/ the zero

perturbation is contained in zVb
a.˛;J /. Hence we abbreviate by

yVb
a.˛;J /�

zVb
a.˛;J /
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the connected component of zV.˛;J / containing 0. We set

Vb
a .˛;J /D fF 2

yVb
a.˛;J / WA˛F Morseg:

By Proposition 4.11 and Lemma 4.12 the set Vb
a .˛;J / is nonempty. Hence we pick

F 2 Vb
a .˛;J / and define

RFHb
a.†;V /D HFb

a.A˛F ;J /

where the right-hand side was defined in (36). It is straightforward to check that this
definition is independent of the choices of F , J and ˛ . For this we actually use that
the space J .˛;J0/ is connected.

There are canonical homomorphisms between Rabinowitz Floer homology groups

�b
a2;a1
W RFHb

a1
! RFHb

a2
; a1 � a2 � b

and �
b2;b1
a W RFHb1

a ! RFHb2
a ; a� b1 � b2:

These maps satisfy

(37)

8̂̂<̂
:̂
�b

a3;a2
ı�b

a2;a1
D �b

a3;a1
; a1 � a2 � a3 � b;

�b3;b2
a ı �b2;b1

a D �b3;b1
a ; a� b1 � b2 � b3;

�b2;b1
a2

ı�b1
a2;a1

D �b2
a2;a1

ı �b2;b1
a1

; a1 � a2 � b1 � b2:

In particular, the Rabinowitz Floer homology groups together with these maps have
the structure of a bidirect system of Z2 –vector spaces.

We next describe the construction of the map �b
a2;a1

. Assume that

a1 � a2 � b a1; a2; b …Ã.†/:

We first pick a small stabilizing 1–form � 2ƒs.†;V /. We note that

(38) Ç.a1; bI�/� Ç.a2; bI�/:

We pick a
�
3=5; �

�
–admissible quintuple ˛ with �.˛/D� and �� 1=Ç.a1; bI�/. Note

that because of (38) this quintuple meets the assumptions of Lemma 4.12 for .a1; b/

as well as for .a2; b/. We introduce the closed interval

I.a1; a2; bI�/D ŒÇ.a2; bI�/C 3; Ç.a1; bI�/C 4�� I.a2; bI�/:

We set

zUb
a2;a1

.˛;J /D
n
F 2 zUb

a1
.˛;J / W k�k1 … I.a1; a2; bI�/; 8 .v; �/ 2Mb

a2
.A˛F ;J /

o
:
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A similar reasoning as in Lemma 4.12 shows that zUb
a2;a1

.˛;J / is an open set of
C1c .V �S1/ containing the zero perturbation. We define

zVb
a2;a1

.˛;J /D
n
F 2 zUb

a2;a1
.˛;J / WA˛F .w/ … fa1; a2; bg; 8w 2 Cb

a1
.A˛F ;J /

o
:

Again this is an open subset of C1c .V �S1/ containing the zero perturbation. Let

yVb
a2;a1

.˛;J /� zVb
a2;a1

.˛;J /

be the connected component containing 0 and set

Vb
a2;a1

.˛;J /D fF 2 yVb
a2;a1

.˛;J / WA˛F Morseg:

Note that Vb
a2;a1

.˛;J / is nonempty and satisfies

Vb
a2;a1

.˛;J /� Vb
a1
.˛;J /\Vb

a2
.˛;J /:

F 2 Vb
a2;a1

.˛;J /:We pick

Abbreviate

Ca2
a1
.A˛F ; b/D

˚
w D .v; �/ 2 crita2

a1
.A˛F / W j�j< Ç.a1; bI�/C 3

	
:

Since a2 is not a critical value of A˛
F

and there is no critical point w D .v; �/ 2

critba2
.A˛

F
/�Mb

a2
.A˛

F
;J / with � 2 I.a1; a2; bI�/, we have a disjoint union

Cb
a1
.A˛F /D Cb

a2
.A˛F /t C

a2
a1
.A˛F ; b/:

This leads to a direct sum of Z2 –vector spaces

CFb
a1
.A˛F /D CFb

a2
.A˛F /˚CFa2

a1
.A˛F ; b/

CFa2
a1
.A˛F ; b/D Ca2

a1
.A˛F ; b/˝Z2:with

pb
a2;a1
W CFb

a1
.A˛F /! CFb

a2
.A˛F /Let

be the projection along CFa2
a1
.A˛

F
; b/. Using the fact that the action is increasing along

gradient flow lines we observe that the projection pb
a2;a1

commutes with the boundary
operators and hence induces a homomorphism

�b
a2;a1
W HFb

a1
.A˛F ;J /! HFb

a2
.A˛F ;J /:

A usual homotopy argument shows that this homomorphism is independent of F , ˛ ,
and J and hence can be interpreted as homomorphism

�b
a2;a1
W RFHb

a1
! RFHb

a2
:
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The construction of the homomorphism

�b2;b1
a W RFHb1

a ! RFHb1
a

is similar and will not be carried out here. We also omit the proof of (37).

Given the bidirect system of Z2 –vector spaces .RFH; �; �/ we can extract out of it
two Rabinowitz Floer homology groups

RFH D lim
�!

b!1

lim
 �

a!�1

RFHb
a;

RFH D lim
 �

a!�1

lim
�!

b!1

RFHb
a:

Since inverse and direct limits do not necessarily commute it is an open problem if
the two Rabinowitz Floer homology groups coincide. However, it is well known (see
Mac Lane [47, page 215]) that there is a canonical homomorphism which takes account
of the interchange of inverse and direct limits

�W RFH! RFH:

In general the canonical homomorphism does not need to be an isomorphism, although
we have no example where � fails to be an isomorphism in Rabinowitz Floer homology.
We finish this subsection by computing the Rabinowitz Floer homology groups in two
easy examples.

Theorem 4.14 Suppose that † is a weakly tame, stable hypersurface in a symplecti-
cally aspherical, geometrically bounded, symplectic manifold .V; !/.

(i) Assume that there are no closed characteristics in † which are contractible in V .
Then

RFH.†;V /D RFH.†;V /DH.†IZ2/;

where H denotes (ungraded) singular homology.

(ii) Assume that † is displaceable in V . Then

RFH.†;V /D RFH.†;V /D f0g:

Proof We first prove assertion (i). If there are no closed characteristics on † which
are contractible in V , the unperturbed Rabinowitz action functional A˛ is Morse–Bott
with critical manifold given by f.x; 0/g where x 2† is thought of as a constant loop.
Since A˛ is constant on the critical manifold its homology is just the homology of the
critical manifold, hence the homology of the hypersurface †.
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We next show assertion (ii). A reasoning similar as in the proof of Theorem 4.9 shows
that if d � e.†/, the displacement energy of †, and a� b , then

�bCd
aCd;a

ı �bCd;b
a D 0W RFHb

a.†;V /! RFHbCd
aCd

.†;V /:

This implies the vanishing of the two Rabinowitz Floer homology groups.

4.6 Invariance

In this subsection we show that Rabinowitz Floer homology is invariant under stable
tame homotopies.

Theorem 4.15 Assume that S D .†� ; ��/ for � 2 Œ0; 1� is a stable tame homotopy.
Then there are isomorphisms

x̂ D x̂S W RFH.†0;V /! RFH.†1;V /;

ˆDˆS
W RFH.†0;V /! RFH.†1;V /;

such that the following diagram commutes:

(39) RFH.†0;V /
x̂

//

�

��

RFH.†1;V /

�

��
RFH.†0;V /

ˆ // RFH.†1;V /:

Proof Given a stable homotopy S D .†� ; ��/ there exists a smooth family of positive
real numbers �� > 0, such that ���� is small for every � 2 Œ0; 1� and there exists a
smooth path �� 2 T`.†� ; ����/ of large tubular neighbourhoods and a smooth path
I� 2 Is.†� ; ��/ of small !†� –compatible complex structures such that

PD .†� ; ���� ; �� ; I�/

is a smooth path of stable quadruples. We further remark that the stable homotopy
.†� ; ����/ is still tame.

Since each path of stable quadruples can be obtained by concatenating short paths it
actually suffices to prove the theorem only for short paths of stable quadruples. We
need the following Lemma. We refer the reader to (14) for the definition of H.˛�; ˛C/
and to Theorem 4.8 for the definition of �.1=2/.
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Lemma 4.16 Assume that PD .†� ; �� ; �� ; I�/ for � 2 Œ0; 1� is a short path of stable
quadruples such that .†� ; ��/ is tame with taming constant c and P is short in the
sense that

(40) �.P/�min
�

1

144 �maxf1; cg
; �

�
1

2

��
:

Then there exist admissible quintuples ˛� for †0 and ˛C for †1 , a time dependent
Hamiltonian H 2H.˛�; ˛C/, and a time-dependent metric mD fmsgs2R on L�R
which is constant for jsj large such that the following holds true. Suppose that w D
.v; �/ 2 C1.R;L�R/ is a gradient flow line of the time dependent gradient rms

AHs

which converges asymptotically lims!˙1w.s/D w
˙ to critical points of A˛˙ , such

that aDA˛�.w�/ and b DA˛C.wC/. Then the following holds:

(i) If a� 1=9, then b � a=2.

(ii) If b � �1=9, then a� b=2.

Proof We choose H as in Theorem 4.8. Combining tameness with Theorem 4.8 for
� D 1=2 and using (40) we obtain

(41) k�k1 � 9 maxfc; 1gjb� ajC 2:

Moreover, by letting � tend to 1 in Step 1 of Theorem 4.8 we obtain

(42) b � a� 2�.P/k�k1:

From (40)–(42) we extract

(43) b � a�
jb� aj

8
�

1

36
:

To prove assertion (i) we first consider the case

jbj � a; a�
1

9
:

In this case we estimate

b � a�
jaj

4
�

1

36
D

3a

4
�

1

36
�

a

2
:

Hence to prove assertion (i) it suffices to exclude the case

(44) �b � a�
1

9
:

But in this case (43) leads to a contradiction in the following way:

b �
1

9
�
jb� aj

8
�

1

36
� �
jb� aj

8
�

b

4
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implying that 3b=4 � 0 and hence b � 0 contradicting (44). This proves the first
assertion.

To prove assertion (ii) we set

b0 D�a; a0 D�b:

We note that if (43) holds for a and b , it also holds for b0 and a0 . Hence we get from
assertion (i) the implication

�b �
1

9
) �a� �

b

2

which is equivalent to assertion (ii). This finishes the proof of the Lemma.

Proof of Theorem 4.15 continued In view of Lemma 4.16 we obtain for a� �1=9

and b � 1=9 homomorphisms

ˆb
aW RFHb=2

a .†0;V /! RFHb
a=2.†1;V /

defined by counting gradient flow lines of the time dependent Rabinowitz action
functional. Again to count gradient flow lines we have to choose small perturbations
which make Rabinowitz action functional Morse and then take the count (possibly after
a further abstract perturbation) of the essential part of the moduli space of gradient flow
lines of the perturbed time dependent functional. These homomorphisms interchange
the maps � and � and hence induce homomorphisms

x̂ W RFH.†0;V /! RFH.†1;V /;

ˆW RFH.†0;V /! RFH.†1;V /;

such that (39) commutes.

It remains to show that x̂ and ˆ are isomorphisms. By using the homotopy backwards
we get homomorphisms

‰b
a W RFHb=2

a .†1;V /! RFHb
a=2.†0;V /:

A standard homotopy of homotopy argument shows that for a� �2=9 and b � 2=9

the composition of ˆ and ‰ is given by

‰b
a=2 ıˆ

b=2
a D �b

a=4;a ı �
b;b=4
a W RFHb=4

a .†0;V /! RFHb
a=4.†0;V /

and analogously

ˆb
a=2 ı‰

b=2
a D �b

a=4;a ı �
b;b=4
a W RFHb=4

a .†1;V /! RFHb
a=4.†1;V /:
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Hence we conclude that

S‰ ı x̂ D idjRFH.†0;V /
; x̂ ı S‰D idjRFH.†1;V /

;

‰ ıˆD idjRFH.†0;V /; ˆ ı‰D idjRFH.†1;V /:

This implies that x̂ and ˆ are isomorphisms with inverses

x̂�1
D S‰; ˆ�1

D‰:

This finishes the proof of the theorem.

5 Mañé’s critical values

In this section we summarize the main properties associated with the various Mañé’s
critical values. We also show that there are open sets of hypersurfaces with high energy
which are not stable; however these are virtually contact, showing the need to consider
the latter notion.

5.1 Definition and basic properties

As in the Introduction we consider the cotangent bundle � W T �M !M of a closed
manifold M and the autonomous Hamiltonian system defined by a convex Hamiltonian

H.q;p/D
1

2
jpj2CU.q/

and a twisted symplectic form

!� D ! D dp^ dqC ���:

Here dp ^ dq is the canonical symplectic form in canonical coordinates .q;p/ on
T �M , jpj denotes the dual norm of a Riemannian metric g on M , U W M !R is a
smooth potential, and � is a closed 2–form on M . This Hamiltonian system describes
the motion of a particle on M subject to the conservative force �rU and the magnetic
field � . In local coordinates q1; : : : ; qn on M and dual coordinates p1; : : : ;pn the
Hamiltonian system is given by

Pqi D
@H

@pi
;

Ppi D�
@H

@qi
C

nX
jD1

�ij .q/
@H

@pj
;
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� D
1

2

nX
i;jD1

�ij .q/dqi ^ dqj ; �ij D��ji :where

In particular, the q–components of the Hamiltonian vector field XH are independent
of � :

XH D .Hp;�/; Hp D
@H

@p
:

Let …W �M !M be a cover of M and suppose that …�� is exact. The Hamiltonian H

lifts to Hamiltonian yH and we define the Mañé critical value of the cover as

c. yH / WD inf
�

sup
q2 �M

yH .q; �q/;

where the infimum is taken over all 1–forms � on �M with d� D…�� .

If SM is a cover of �M , then clearly c. xH /� c. yH / and equality holds if SM is a finite
cover of �M .

The critical value may also be defined in Lagrangian terms. Consider the Lagrangian
on T �M given by

yL.q; v/D
1

2
jvj2�U.q/C �q.v/;

where � is any primitive of …�� . It is well known that the extremals of yL, ie, the
solutions of the Euler–Lagrange equations of yL,

d

dt

@ yL

@v
.q; v/D

@ yL

@q
.q; v/

coincide with the projection to �M of the orbits of the Hamiltonian yH . The action of
the Lagrangian yL on an absolutely continuous curve  W Œa; b�! �M is defined by

A yL. /D

Z b

a

yL. .t/; P .t// dt:

We define the Mañé critical value of the Lagrangian yL as (this was Mañé’s original
definition):

c. yL/D inf
˚
k 2R WA yLCk

. /� 0 for any absolutely continuous closed curve 

defined on any closed interval Œ0;T �
	
:

Note that c. yL/ may depend on the primitive � chosen, but it will remain unchanged
for all primitives of the form � C df , thus it could only change if we consider another
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primitive � 0 such that ��� 0 determines a nonzero class in H 1. �M ;R/. The relationship
between the Lagrangian and Hamiltonian critical values is given by (cf [8; 20]):

c. yH /D inf
Œ$�2H 1. �M ;R/

c. yL�$/:

There are two covers which are distinguished: the universal cover � W �M !M and
the abelian cover �0W M0 ! M . The latter is defined as the cover of M whose
fundamental group is the kernel of the Hurewicz homomorphism �1.M / 7!H1.M;R/
(we could also take coefficients in Z; this will not alter the discussion below since
critical values are unchanged by finite covers). We denote the lifts of H to �M resp. M0

by zH resp. H0 and the corresponding Mañé critical values (when defined) by

c WD c. zH /D c. zL/; c0 WD c.H0/D c.L0/:

The critical value c D c. zH /D c. zL/ is the one given in the Introduction. We note here
some of its properties:

(i) c <1 if and only if ��� has a bounded primitive (with respect to the lifted
Riemannian metric).

(ii) If M admits a metric of negative curvature, any closed 2–form � has bounded
primitives in �M [33].

(iii) If Œ� � 2 H 2.M;R/ is nonzero and �1.M / is amenable4, c D 1 (see Gro-
mov [33] and also Paternain [60, Corollary 5.4]).

Lemma 5.1 For any k > c , the hypersurface †k is virtually contact.

Proof If k > c we may choose " > 0 and a primitive � of ��� such that

(45) "Cj�qj �

q
2.k � zU .q//

for all q 2 �M .

Let � be the Liouville form on �M . Then we may write z! D d.�C z���/: Since
X zH D .

zHp;�/, on z†k we have

(46) .�Cz���/.X zH /D jpj
2
C �q. zHp/D 2.k � zU .q//C �q. zHp/:

4A group G is amenable eg if it is abelian, solvable or nilpotent. If G contains a free subgroup on two
generators (which is the case eg for the fundamental group of a closed surface of genus at least 2) it is not
amenable.
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But �q. zHp/� �j�qj

q
2.k � zU .q// for all q 2 �M . It follows from (45) and (46) that

.�Cz���/.X zH /� 2.k � zU .q//� j�qj

q
2.k � zU .q//

�

q
2.k � zU .q//

�q
2.k � zU .q//� j�qj

�
� "2:

On the other hand (45) also implies that there is a constant C > 0 such that

sup
.q;p/2f†k

j.�Cz���/.q;p/j< C

and thus †k is virtually contact.

5.2 Hyperbolic spaces

The results in this subsection are well known; we include them here for the reader’s
convenience (cf [29]). Let � be a cocompact lattice of PSL.2;R/. The standard
horocycle flow ht is given by the right action of the one-parameter subgroup�

1 t

0 1

�
on �nPSL.2;R/. The horocycle flow is known to be uniquely ergodic [28]. Moreover,
it has zero topological entropy since

�0
t ı hs D hse�t ı�0

t

for all s; t 2R, where �0 is the geodesic flow given by the one-parameter subgroup�
et=2 0

0 e�t=2

�
:

(The relation �0
t ı hs D hse�t ı�0

t implies that for any t , the flows s 7! hs and s 7!

hse�t are conjugate and thus they must have the same entropy. But for t ¤ 0, this
forces the entropy of hs to be zero.)

In fact, ht parametrizes the strong stable manifolds of �0 . A matrix X in sl.2;R/
gives rise to a flow � on �nPSL.2;R/ by setting

�t .�g/D �getX :
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The geodesic and horocycle flows are just particular cases of these algebraic flows.
Consider the following path of matrices in sl.2;R/:

R 3 s 7!Xs WD

�
1=2 0

0 �1=2

�
C s

�
0 1=2

�1=2 0

�
:

The flows �s on �nPSL.2;R/ associated with the matrices Xs can be interpreted
as magnetic flows. Since PSL.2;R/ acts by isometries on the hyperbolic plane H2 ,
M WD �nH2 is a compact hyperbolic surface provided � acts without fixed points,
and the unit sphere bundle SM of M can be identified with �nPSL.2;R/. A simple
calculation shows that �s is the Hamiltonian flow of the Hamiltonian H.x; v/ D

.1=2/jvj2x with respect to the twisted symplectic form on TM given by

!s D d˛� s ���;

where � is the area form of M , � W TM !M is the canonical projection and ˛ is
the Liouville 1–form that generates the geodesic flow of M . For s D 0, �0 is the
geodesic flow and for s D 1, �1 is the flow induced by the one-parameter subgroup
with matrix on sl.2;R/ given by

X1 D

�
1=2 1=2

�1=2 �1=2

�
:

Observe that there exists an element c 2 PSL.2;R/ such that

c�1X1c D

�
0 1

0 0

�
:

c D
1
p

2

�
1 1

�1 1

�
:Explicitly

Then the map f W �nPSL.2;R/! �nPSL.2;R/ given by f .�g/D �gc conjugates
�1 and h, ie f ı �1

t D ht ı f . (In fact, any matrix in sl.2;R/ with determinant
zero will give rise to a flow which is conjugate to ht or h�t . So, up to orientation,
there is just one algebraic horocycle flow.) Note that det Xs D�.1=4/.1� s2/, so for
jsj< 1, the flow �s is conjugate to the geodesic flow �0 , up to a constant time scaling
by
p

1� s2 . Hence the magnetic flows �s are just geodesic flows, but with entropy
p

1� s2 . Similarly, for jsj > 1, �s is up to a constant time scaling conjugate to the
flow generated by

V WD

�
0 1=2

�1=2 0

�
;

which is actually the fibrewise circle flow.
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In the discussion above we have kept the hypersurface SM (k D 1=2) fixed and
changed � by s � . This was just done for convenience, since the flow �s on SM is
equivalent to the Hamiltonian flow on †k with respect to � , where s2 D 1=2k . Note
that !s restricted to SM has a primitive given by  s WD ˛�s , where  is the unique
left-invariant 1–form which takes the value one on V and zero on�

1=2 0

0 �1=2

�
;

�
0 �1=2

�1=2 0

�
:

The 1–form  is also the connection 1–form determined by the Levi-Civita connection
of the hyperbolic metric. Also note that  s.Xs/D 1� s2 and thus †k is of contact
type for all k ¤ 1=2 (with opposite orientation for k < 1=2).

The fact that the Mañé critical value is c D 1=2 can be seen as follows. The form
y�1dx is a primitive of the area form y�2dx ^ dy and has norm 1. This shows that
c � 1=2. To see that in fact c D 1=2 one performs a calculation with geodesic circles
exactly as the one in the proof of Lemma 6.11 below.

Summarizing, we have obtained the picture described in the Introduction (Section 1):

� For k > 1=2, the dynamics is Anosov and conjugate (after rescaling) to the
underlying geodesic flow. The energy levels are contact.

� At the Mañé critical value k D 1=2 we hit the horocycle flow. There are no
closed orbits and the level is unstable.

� For k < 1=2 all orbits are closed and contractible. Energy levels are contact but
with opposite orientation.

A very similar picture is obtained if we take compact quotients of complex hyperbolic
space Hn

C with its Kähler form; see Dairbekov and Paternain [22, Appendix]. If we
normalize the Kähler structure .g; �/ to have holomorphic sectional curvature �1 (so
the sectional curvature K satisfies �1�K ��1=4), then the Mañé critical value is
cD 1=2, †k is Anosov for k > 1=2, for k D 1=2 one obtains a unipotent ergodic flow
without closed orbits, and for k < 1=2 all orbits are closed and contractible. However,
there is an essential difference between the case nD 1 and n� 2. As we saw above,
for nD 1 the restriction of the symplectic form to †k is exact. This is no longer the
case for n� 2. Nevertheless it is easy to see that for k > 1=2, †k is stable. Indeed,
since the flow is algebraic, the strong stable and unstable bundles are real analytic and
together they span a hyperplane bundle � in †k invariant under the magnetic flow.
If we define a 1–form � such that �.XH /D 1 and � D ker�, then � is a stabilizing
1–form. Observe that in this case d� and ! span a 2–dimensional space of flow
invariant 2–forms. For nD 1 this space is just one dimensional.
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5.3 The exact case

Now we focus on the case that � is exact. We begin with the case � D 0.

Lemma 5.2 Suppose � D 0. Then c D max U and any regular level set †k is of
contact type.

Proof If � D 0 the infimum in the definition of cD c. yH / is attained for � D 0, hence
c Dmax U and k D c is a singular value of H . If k > c Dmax U , then †k encloses
the Lagrangian zero section and is thus of contact type (with the Liouville form � as
contact form). Suppose then k < c is a regular value. A quick glance at the proof of
the previous lemma shows that �.XH /D jpj

2 � 0. Note that the set fp D 0g \†k

does not contain any set invariant under the flow of XH since XH .q; 0/D .0;�/¤ 0.
Therefore, for any invariant Borel probability measure � we haveZ

†k

�.XH / d� > 0

and †k is of contact type by Theorem 2.7. Alternatively, the condition XH .q; 0/D

.0;�/ ¤ 0 allows us to pick a function f W T �M ! R with df .XH / > 0 along
fp D 0g\†k , hence (for f small) .�C df /.XH / > 0 and �C df is a contact form
on †k .

More generally, we have:

Lemma 5.3 A closed 2–form � on M is exact if and only if ��
0
� has a bounded

primitive. The Mañé critical value c0 associated to the abelian cover �0W M0!M is
given by the formula in the Introduction (Section 1)

c0 D c.H /D inf
�

sup
q2M

H.q; �q/;

where the infimum is taken over all 1–forms � on M with d� D � (and c0 D1 if �
is not exact). If k > c0 the hypersurface †k is of contact type.

Proof The first two statements follow from the fact that the deck transformation group
of the cover �0W M0!M is abelian, hence amenable, so a bounded primitive of ��

0
�

can be averaged to a primitive of � on M [33; 60, Corollary 5.4]. The proof of the
last statement is analogous to the proof of Lemma 5.1 (but simpler).

Remark Note that in the last two lemmas we actually obtain restricted contact type.
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Relation to Mather’s ˛–function Suppose now that � is exact and fix a primitive �
in M and consequently a Lagrangian L. As Mañé pointed out [49; 19], there is a
close relationship between the critical values and Mather’s minimizing measures [50].
Mather’s ˛ function is a convex superlinear function ˛W H 1.M;R/!R given by

˛.Œ$�/D�min
�

Z
TM

.L�$/ d�

where � runs over all Borel probability measures on TM invariant under the Euler–
Lagrange flow of L. It turns out that

˛.Œ$�/D c.L�$/

and therefore [61; 20]

c0 D c.H /D min
Œ$�2H 1.M;R/

˛.Œ$�/:

The value c0 D c.H / is also called the strict critical value. We now summarize some
of the main properties of c0 :

(i) The value c0 D c.L0/ D c.H0/, where L0;H0 are the lifts of L;H to the
abelian cover M0 [61].

(ii) If M ¤ T2 and c < k � c0 , then †k is not of contact type [18, Theorem B.1].

(iii) There is a characterization of c0 in terms of Symplectic Topology [62]: it is
the infimum of the values of k such that the region bounded by †k contains a
Lagrangian submanifold Hamiltonian isotopic to gr.��/. (in fact the whole of
Mather’s ˛ function can be characterized in a similar way just by considering
Lagrangian submanifolds with a fixed Liouville class).

(iv) If �1.M / is amenable, c D c0 [24].

The gap between c and c0 The inequality c � c0 could be strict. Examples of this
phenomenon were given for the first time in [61]:

Theorem 5.4 [61] On a closed oriented surface M of genus � 2 there exists a metric
of negative curvature and an exact 2–form � such that c < c0 . Moreover, there exists
an open interval I � .c; c0/ such that all level sets †k with k 2 I are Anosov. In
particular, these levels are virtually contact but not stable.

Proof All statements except the last one are proven in [61]. The levels k 2 I are
virtually contact by Lemma 5.1. On the other hand, suppose a level k 2 I is stable and
let � be a stabilizing 1–form. The transitivity of the flow and the fact that dim M D 2

easily imply the existence of a constant a such that d�D a! . If a¤ 0 we obtain a
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contradiction with the fact that these energy levels cannot be contact by property (ii)
above. If aD 0, we obtain a contradiction with Corollary 2.10.

Next we describe a large class of manifolds exhibiting a large gap between c and c0 .
Consider a closed manifold M with a closed 2–form � such that 0¤ Œ��2H 2.M;Z/.
Suppose moreover that � has a bounded primitive in �M . Consider a circle bundle
pW P !M with Euler class Œ�� and  a connection 1–form with p��D�d . Fix
any Riemannian metric h on M and consider for " > 0 the metric g" on P given by

g".u; v/D "
�1h.dp.u/; dp.v//C .u/ .v/:

Theorem 5.5 For H D .1=2/jpj2" on T �P and � D �d the strict Mañé critical
value satisfies c0.g"; �/D 1=2 for all " > 0, but c.g"; �/! 0 as "! 0.

Proof Since Œ��¤ 0, the Gysin sequence of the circle bundle pW P !M shows that
p�W H 1.M;R/!H 1.P;R/ is an isomorphism. Thus the orbits of the circle action
are all null-homologous in H1.P IR/. Let V be the vector field dual to  and note
that g".V;V /D 1. Clearly this implies c0.g"; �/� 1=2. To show that equality holds
we consider the Lagrangian on P given by

L.q; v/D
1

2
jvj2" � q.v/;

and we note that the action ALCk of the orbits of V equals 2�.k � 1=2/. Since the
orbits of V are null-homologous in H1.P IR/ and this action is negative if k < 1=2

we must have c0.g"; �/D 1=2.

Let � W �M !M be the universal cover and ypW ��P ! �M , the pullback bundle. Let
y� W ��P ! P be the obvious map such that p ı y� D � ı yp . Clearly y� is a covering
map of P . By hypothesis, we may write ���D d� , where j� j1D sup

q2 �M j�qj<1.
Note that

d yp�� D�d y�� D y���

j�qj" D min
jvj"D1

j�q.v/j D " min
jvjD1

j�q.v/j D " j�qj:and that

c.g"; �/�
"j� j21

2
�! 0 as "! 0:Thus

This proves the Theorem.

Later on in Section 6 we shall see another very explicit example which together with the
preceding result suggests that the gap between c and c0 is rather frequent on manifolds
with nonamenable fundamental groups.
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5.4 Instability for large energies when Œ� �¤ 0

The purpose of this subsection is to show that when Œ� �¤ 0, there can be hypersur-
faces †k which are not stable for any sufficiently large k . More precisely, we will
prove:

Theorem 5.6 Let .M;g/ be a closed Riemannian manifold of even dimension differ-
ent from two whose sectional curvature satisfies the pinching condition �4�K < �1.
Let � be a closed 2–form with Œ� �¤ 0. Then for any k sufficiently large, the hypersur-
face †k is not stable.

Remark Note that these levels are actually virtually contact by Lemma 5.1 and the
fact that � has bounded primitives on the universal cover of M .

The ideas for the proof of this theorem come from [26; 25; 34; 41].

We start with a preliminary discussion on Anosov Hamiltonian structures.

Recall that the flow �t of a vector field F on a manifold † is Anosov if there is a
splitting T†DRF˚Es˚Eu and positive constants � and C such that for all x 2†,

jdx�t .v/j � Ce��t
jvj for v 2Es and t � 0;

jdx��t .v/j � Ce��t
jvj for v 2Eu and t � 0:

If an Anosov vector field F is rescaled by a positive function its flow remains Anosov [3;
59]. It will be useful for us to know how the bundles Es and Eu change when we
rescale F by a smooth positive function r W †! RC . Let z� be the flow of rF and
zEs its stable bundle. Then (cf [59])

(47) zEs.x/D fvC z.x; v/F.x/ W v 2Es.x/g;

where z.x; v/ is a continuous 1–form (ie linear in v and continuous in x ). Moreover,
if we let l D l.t;x/ be (for fixed x ) the inverse of the diffeomorphism

t 7!

Z t

0

r.�s.x//
�1 ds

then

(48) d z�t .vC z.x; v/F.x//D d�l.v/C z.�l.v/; d�l.v//F.�l.x//:

There is a similar expression for zEu . It is clear from the discussion above that the
weak bundles RF˚Es and RF˚Eu do not change under rescaling of F (the strong
bundles Es;u are indeed affected by rescaling as we have just seen).

Geometry & Topology, Volume 14 (2010)



1836 Kai Cieliebak, Urs Frauenfelder and Gabriel P Paternain

Let .†; !/ be a Hamiltonian structure. We say that the structure is Anosov if the flow
of any vector field F spanning ker! is Anosov.

We say that an Anosov Hamiltonian structure satisfies the 1=2–pinching condition or
that it is 1–bunched [36; 35] if for any vector field F spanning ker! with flow �t

there are functions �f ; �sW †�RC!RC such that

� limt!1 supx2† �s.x; t/
2=�f .x; t/D 0;

� �f .x; t/jvj � jd�t .v/j � �s.x; t/jvj for all x 2†, t > 0 and v 2Es.x/, and
�f .x; t/jvj � jd��t .v/j � �s.x; t/jvj for all x 2†, t > 0 and v 2Eu.�tx/.

We remark that the 1=2–pinching condition is invariant under rescaling. Indeed,
consider the flow z�t of rF . It is clear from (47) and (48) that there is a positive
constant � such that

1

�
�f .x; l.t;x//jzvj � jd z�t .zv/j � ��s.x; l.t;x//jzvj

for t > 0 and zv 2 zEs (with a similar expression for zEu ). We know that given " > 0,
there exists T > 0 such that for all x 2† and all t > T we have

�s.x; t/
2

�f .x; t/
< ":

On the other hand, there exists a > 0 such that l.t;x/ � at for all x 2† and t > 0.
Hence for all t > T=a we have

�s.x; l.t;x//
2

�f .x; l.t;x//
< "

for all x 2†. Therefore

lim
t!1

sup
x2†

�s.x; l.t;x//
2

�f .x; l.t;x//
D 0

and thus z�t is also 1=2–pinched.

Hence the Anosov property as well as the 1=2–pinching condition are invariant under
rescaling and thus intrinsic properties of the Hamiltonian structure. One of the main
consequences of the 1=2–pinching condition is that the weak bundles RF ˚Es and
RF ˚Eu are of class C 1 by Hasselblatt [35, Theorem 5] (see also Hirsch, Pugh and
Shub [37]).

Suppose now .†; !/ is a stable Anosov Hamiltonian structure satisfying the 1=2–
pinching condition and let � be the stabilizing 1–form and R the Reeb vector field.
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Invariance under the flow implies that ! and � both vanish on Es and Eu . Since the
flow �t of R is Anosov and Es˚Eu D ker� which is C1 , it is clear that Es and
Eu must be C 1 since Es;u D .RF ˚Es;u/\ ker�. Under these conditions we can
introduce the Kanai connection [41] which is defined as follows.

Let I be the .1; 1/–tensor on † given by I.v/D�v for v 2Es , I.v/D v for v 2Eu

and I.R/D 0. Consider the symmetric nondegenerate bilinear form given by

h.X;Y / WD !.X; IY /C�˝�.X;Y /:

The pseudo-Riemannian metric h is of class C 1 and thus there exists a unique C 0

affine connection r such that

(i) h is parallel with respect to r ;

(ii) r has torsion !˝R.

This connection has the following desirable properties [25; 41]:

� The connection is invariant under �t .

� The Anosov splitting is invariant under r : if X is any section of Es;u , rvX 2
Es;u for any v .

� The restriction of r to the weak stable and unstable manifolds (ie leaves of the
weak stable and unstable foliations) is flat.

� Parallel transport along curves on weak stable/unstable manifolds coincide with
the holonomy transport determined by the stable/unstable foliations.

The other good consequence of the 1=2–pinching condition, besides C 1 smoothness
of the bundles, is the following lemma (cf [41, Lemma 3.2]).

Lemma 5.7 r.d�/D 0.

Proof Suppose � is any invariant .0; 3/–tensor annihilated by R. We claim that �
must vanish. To see this, consider for example a triple of vectors .v1; v2; v3/ where
v1; v2 2Es but v3 2Eu . Then there is a constant C > 0 such that

j�x.v1; v2; v3/j D j��t x.d�t .v1/; d�t .v2/; d�t .v3//j

� C�s.x; t/
2�f .x; t/

�1
jv1jjv2jjv3j:

By the 1=2–pinching condition the last expression tends to zero as t!1 and therefore
�x.v1; v2; v3/D 0. The same will happen for other possible triples .v1; v2; v3/ when
we let t !˙1.
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Since d� and r are �t –invariant, so is r.d�/. Since iRd� D 0, r.d�/ is also
annihilated by R (to see that rR.d�/ D 0 use that d� is �t –invariant and that
rR DLR ). Hence by the previous argument applied to � Dr.d�/ we conclude that
r.d�/D 0 as desired.

Since ! is nondegenerate, there exists a smooth bundle map LW Es˚Eu!Es˚Eu

such that for sections X;Y of Es˚Eu

d�.X;Y /D !.LX;Y /D !.X;LY /:

The map L is invariant under �t and preserves the decomposition Es ˚ Eu , ie
LDLsCLu , where LsW Es!Es and LuW Eu!Eu . In particular, L commutes
with I .

Suppose now dim†D 2n� 1, where n is an even integer. Since dim Es D n� 1 is
odd, Ls

x admits a real eigenvalue � (note that by transitivity of �t , the characteristic
polynomial of Ls

x is independent of x 2†). Let

H.x/ WD fv 2Es.x/ WLs
xv D �vg:

Since r.d�/D 0 (Lemma 5.7), H.x/ is invariant under the parallel transport of r
and thus x 7!H.x/ is a C 1 subbundle of Es .

Let W s.x/ be the strong stable manifold through x . We note that the restriction of H

to W s.x/ is integrable. Indeed, let X and Y be parallel sections of Es over W s.x/

(such sections must be C 1 ) and observe that since r has zero torsion on Es we have
ŒX;Y �DrX Y �rY X D 0.

The maximal integral submanifolds of H on W s.x/ define a foliation of class C 1 on
W s.x/ and thus a foliation F of class C 1 on †.

Proof of Theorem 5.6 Suppose the sectional curvature K of a Riemannian metric
satisfies �A2 � K � �a2 for some positive constants a and A. Then, comparison
theorems show that, by Klingenberg [43, Theorem 3.2.17] (see also Knieper [44,
Proposition 3.2]) there is a constant C > 0 such that

1

C
jvje�At

� jdx�t .v/j � C jvje�at for v 2Es and t � 0;(49)

1

C
jvje�At

� jdx��t .v/j � C jvje�at for v 2Eu and t � 0;(50)

where �t is the geodesic flow of the Riemannian metric. If we let �s D Ce�at and
�f D .1=C /e�At we see that �t is 1=2–pinched as long as A < 2a. Therefore the
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geodesic flow of a metric whose sectional curvature satisfies �4 �K < �1 is 1=2–
pinched. For sufficiently large k , .†k ; !� / is an Anosov Hamiltonian structure since
it can be seen as a perturbation of the geodesic flow. In fact it is also 1=2–pinched.
This can be seen as follows. An equivalent claim is that .†1=2; !s� / is 1=2–pinched
for small s . An inspection of the proof of (49) and (50) in [43, Theorem 3.2.17] shows
that if we do the same analysis for the magnetic Jacobi (or Riccati) equation we obtain
numbers A.s/ and a.s/ for which (49) and (50) hold. These numbers will be as close
as we wish to A.0/ D 2 and a.0/ D

p
�max K > 1 if s is small enough and the

1=2–pinching condition follows.

We now make some remarks concerning the space of leaves of the weak foliations. The
weak unstable foliation Wu of .†k ; !� / is transverse to the fibres of the fibration by
.n�1/–spheres given by

� W †k !M:

(This simply follows from the fact that this property is true for the geodesic flow.) Let�M denote the universal cover of M and let z†k denote the preimage of †k in T � �M .
We also have a fibration by .n�1/–spheres

z� jz†k
W z†k !

�M :

Let �Wu be the lifted foliation and note that the foliation �Wu is also transverse to the
fibration z� jz†k

W z†k !
�M . Since the fibres are compact a standard result in foliations

[11, page 91] implies that for every p 2 z†k the map

z� j �Wu.p/W
�Wu.p/! �M

is a covering map. Since �M is simply connected, z� j �Wu.p/ is in fact a diffeomorphism
and �Wu.p/ is simply connected. Consequently, �Wu.p/ intersects each fibre of the
fibration z� jz†k

W z†k !
�M at just one point and therefore the space of leaves Bu WD

z†k= �Wu of the weak unstable foliation can be identified topologically with the .n�1/–
sphere. Similarly the space of leaves of the weak stable foliation is also an .n�1/–
sphere. Note that �1.M / acts on Bu . Since the characteristic foliation of .†k ; !� / is
topologically conjugate to that of the geodesic flow, the action of �1.M / on the space
of leaves is topologically like in the geodesic flow case: Every element in �1.M / acts
on Bu as a north-south dynamics, ie a homeomorphism of Sn�1 with exactly two fixed
points P˙ such that every other point converges to P˙ under forward resp. backward
iteration.

Now suppose that †k is stable. Our previous discussion produces a foliation F of class
C 1 on †k . This foliation can be lifted to z†k and then projected to Bu (F is invariant
under holonomy maps) to produce a C 1 foliation of positive dimension on Bu which

Geometry & Topology, Volume 14 (2010)



1840 Kai Cieliebak, Urs Frauenfelder and Gabriel P Paternain

is �1.M /–invariant. By the result in [27], such a foliation must be trivial, ie consist of
just one leaf. This implies that H DEs , and hence

d�D �!�

for some constant � . By Corollary 2.10, the constant � cannot be zero. It follows
then that !� must be exact on †k . However, the Gysin sequence of the sphere bundle
shows that this is impossible since Œ� �¤ 0 and n¤ 2.

Thus †k cannot be stable for high energies, which proves Theorem 5.6.

Remark The proof above can be considerably improved following the ideas in [34]
to show the following result: suppose Œ� � ¤ 0 and n � 3 (not necessarily even). If
.†k ; !� / is a 1=2–pinched Anosov Hamiltonian structure, then it cannot be stable [56].
If we drop the 1=2–pinching condition, the result is no longer true since compact
quotients of complex hyperbolic space with the Kähler form are stable for high energies
(cf Section 5.2) It is tempting to conjecture that these are the only stable Anosov
Hamiltonian structures with Œ� �¤ 0 and n� 3.

6 Homogeneous examples

In this section we study magnetic flows for left-invariant metrics on some compact
homogeneous spaces � nG and verify the paradigms in the introduction. Here G is
always a Lie group and � �G a cocompact lattice, ie a discrete subgroup such that
the left quotient � nG is compact. The magnetic field � will be always a left-invariant
2–form.

Using left translations we identify T �G with G�g� so left-invariant smooth functions
f W T �G!R are just elements in C1.g�/. As before we set !� D dp^ dqC ��� ,
where dp ^ dq is the canonical symplectic form in T �G . Let f ; g� be the Poisson
bracket of !� defined as fH;Fg� D !� .XH ;XF /. Since all the objects involved are
left-invariant, in the next lemma we just focus on the identity e 2G .

Lemma 6.1 Let � 2 g� , .v; �/; .w; �/ 2 T.e;�/.G � g
�/D g� g� . We have that

(i) !� .e; �/..v; �/; .w; �//D �.w/� �.v/��.Œv; w�/C �e.v; w/;

(ii) given f;g 2 C1.g�/,

ff;gg� .�/D �.Œd�f; d�g�/� �e.d�f; d�g/

where we canonically identify .g�/� with g;
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(iii) given f 2 C1.g�/, if Xf be the Hamiltonian vector field of f with respect to
!� , then

Xf .e; �/D .d�f;Ef .�//;

where Ef .�/ 2 g
� is given by

Ef .�/.w/D �.Œd�f;w�/� �e.d�f;w/:

We will call Ef the Euler vector field of f .

Proof The proof of the lemma for � D 0 can be found in [2, Section 4.4]. When
� ¤ 0 the lemma follows right away from the definition of !� ; we leave the details to
the reader.

Suppose f 2 C1.g�/ has a compact level set Sk WD f
�1.k/ � g� . Clearly Ef is

tangent to Sk ; let  t be its flow. Let �t be the flow of Xf in †k D .� nG/�Sk . Let
�2W .� nG/� Sk ! Sk be the second factor projection. Clearly �2 ı �t D  t ı �2 .
Thus, if Ef is geodesible on Sk , then †k is a stable hypersurface. This observation is
nothing but a rephrasing of Lemma 2.3 in this context.

6.1 Tori

Consider the torus Tn (n � 2) and let � be a nonzero constant 2–form. Let !� D
dp ^ dqC ��� be the twisted symplectic form on T �Tn . We shall consider on Tn

the usual flat metric and we let †k WDH�1.k/, where H.q;p/D .1=2/jpj2 . Below
we will make use of the following elementary lemma.

Lemma 6.2 Consider Rk with its usual inner product and let AW Rk!Rk be an anti-
symmetric linear map. Consider the 1–form ˛ in Rk given by p̨.�/D .1=2/hp;A�i.
Then

d p̨.�1; �2/D h�1;A�2i:

Proposition 6.3 If � is nonzero, then the hypersurface †k is stable, tame and dis-
placeable for any k > 0.

Proof Write T �Tn D Tn � Rn and let � W Tn � Rn ! Rn be the second factor
projection. The equations of motion of any Hamiltonian H.q;p/ with respect to !�
are given by

Pq DrpH;

Pp D JrpH �rqH;
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where J W Rn!Rn is the antisymmetric linear map determined by �. � ; � /D h � ;J � i.
In particular, for the Hamiltonian H.q;p/D .1=2/jpj2 we obtain

Pq D p;

Pp D Jp:

Split Rn orthogonally as RnDKer J˚ Im J and let P1W R
n!Ker J and P2W R

n!

Im J be the corresponding orthogonal projections. The restriction of J to Im J is
invertible and we let A WD .J jImJ /

�1 . With this choice of A we obtain a 1–form ˛

on Im J as in Lemma 6.2.

Let f W Tn � Rn ! Tn � Rn be the map f .q;p/ D .q;P1.p// and let � be the
Liouville 1–form in T �Tn . We claim that

� WD f ��C .P2 ı�/
�˛

is a stabilizing 1–form on †k for any k > 0. Note that df.q;p/.XH / D .p; 0/ and
d�.q;p/.XH /D Jp: Thus

�.q;p/.XH /D �.q;P1.p//.p; 0/C˛P2.p/.Jp/D jP1.p/j
2
C

1
2
jP2.p/j

2

which is always positive on †k . On the other hand using Lemma 6.2 we obtain

iXH
d�.q;p/.x;y/D d�.q;P1.p//..p; 0/; .x;P1.y///ChJp;AP2.y/i;

where .x;y/ denotes a vector in T.q;p/.T
n � Rn/. Using the fact that d� is the

standard symplectic form on T �Tn we obtain

d�.q;P1.p//..p; 0/; .x;P1.y///D�dH.q;P1.p//.x;P1.y//D�hp;P1.y/i:

Using the definition of A the other term is

hJp;AP2.y/i D �hp;JAP2.y/i D �hp;P2.y/i

iXH
d�.q;p/.x;y/D�hp;yi D 0and hence

for .x;y/ 2 T.q;p/†k . This proves .iXH
d�/j†k

D 0, so � is a stabilizing 1–form
for †k .

Displaceability of †k is easy to see (cf [10, Theorem B] and the proof of Theorem 3.1
in [31]): Pick any a 2 Rn with Ja ¤ 0 (this exists since � ¤ 0) and consider the
Hamiltonian h.q;p/D ha;pi. The corresponding Hamiltonian flow defined by

Pq D a; Pp D Ja

contains a translation in direction Ja and hence displaces every compact subset
of T �Tn .
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In order to show that †k is tame we need to locate the contractible closed orbits. We
can readily find the flow �t of XH . Since J is antisymmetric, the solution to Pp D Jp

is a 1–parameter subgroup t 7! etJ 2 SO.n/. We have

(51) �t .q;p/D

�Z t

0

esJ p dsC q; etJ p

�
:

Write p D p1C p2 , where p1 2 Ker J and p2 2 Im J . Then esJ p D p1C esJ p2

and thus

(52)
Z t

0

esJ p ds D p1t C

Z t

0

esJ p2 ds:

Let yJ WD J jImJ . Then es yJ D esJ jImJ . But yJ is invertible, so we may writeZ t

0

esJ p2 ds D

Z t

0

. yJ /�1 d

ds
.es yJ p2/ ds D . yJ /�1.et yJ

� I/p2:

Combining this with (51) and (52) we see that .q;p/ 2 †k gives rise to a closed
contractible orbit of period T if and only if p1 D 0, eTJ p2 D p2 and jp2j

2 D 2k .

Now, a primitive for dp^dqC ��� in T �Rn is given by pdqC ��ˇ where ˇq.a/D

.1=2/hq;Jai (we use again Lemma 6.2). Thus, if v is a closed contractible orbit in
†k , we have

�.v/D

Z
v

.pdqC ��ˇ/D 2kT C

Z
�.v/

ˇ:

We computeZ
�.v/

ˇ D
1

2

Z T

0

h. yJ /�1.et yJ
� I/p2;Jet yJ p2i dt D�

1

2
jp2j

2 T D�kT;

�.v/D kTand therefore

which clearly shows that †k is tame.

Remark It is instructive to see what the form � looks like in the following special
cases:
� When nD 2 and � D dq1 ^ dq2 , then

�D�1
2
.p1dp2�p2dp1/;

� When nD 3 and � D dq1 ^ dq2 , then

�D p3dq3�
1
2
.p1dp2�p2dp1/:

Note that the Mañé critical value is infinite because a nonzero � has no bounded
primitives in Rn .
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6.2 The Heisenberg group

Let G be the 3–dimensional Heisenberg group of matrices0@1 x z

0 1 y

0 0 1

1A ;
where x;y; z 2R. If we identify G with R3 , then the product is

.x;y; z/ ? .x0;y0; z0/D .xCx0;yCy0; zC z0Cxy0/:

For � we take the lattice of those matrices with x;y; z 2 Z. However, the following
discussion will hold for any cocompact lattice � . In fact, all lattices are isomorphic to
the semidirect product Z2 ËA Z where

AD

�
1 k

0 1

�
;

for some positive integer k [65].

The 1–forms ˛ WD dx , ˇ WD dy and  WD dz �xdy are left-invariant and provide a
trivialization of T �G as G�g� . We let .x;y; z;p˛;pˇ;p / be the coordinates induced
by this trivialization. Note that .p˛;pˇ;p / descend to coordinates on T �.� nG/D

.� nG/�g� . The coordinates .p˛;pˇ;p / are related to the coordinates .px;py ;pz/

by p˛ D px , pˇ D py Cxpz and p D pz .

We consider the following left-invariant Hamiltonian H (dual to a suitable left-invariant
metric on G ):

2H D p˛
2
Cpˇ

2
Cp

2
D p2

xC .py Cxpz/
2
Cp2

z :

The magnetic field is given by the left-invariant 2–form

� WD �dx ^ dy:

Note that � descends to an exact 2–form on � nG since � D d . Also observe that
2H. /� 1, which implies that Mañé’s critical value c0 is � 1=2. Later on we will
see that c D c0 D 1=2.

The twisted symplectic form ! is

! D dpx ^ dxC dpy ^ dyC dpz ^ dz� dx ^ dy

D dp˛ ^ dxC dpˇ ^ dyC dp ^ dz�x dp ^ dy � .1Cp /dx ^ dy:
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The Hamiltonian vector field of a function H with respect to ! is given by (where
Hx etc. denote partial derivatives)

(53) XH D

8̂<̂
:
Px DHp˛ ; Pp˛ D�Hx � .1Cp /Hpˇ ;

Py DHpˇ ; Ppˇ D�Hy CxHzC .1Cp /Hp˛ ;

Pz D x Hpˇ CHp ; Pp D�Hz :

In particular, for the left-invariant Hamiltonian above we obtain

(54) XH D

8̂<̂
:
Px D p˛; Pp˛ D�pˇp �pˇ;

Py D pˇ; Ppˇ D p˛p Cp˛;

Pz D xpˇCp ; Pp D 0:

The nonzero Poisson brackets of the coordinate functions are (Xf .�/D ff; � g)

fp˛;xg D fpˇ;yg D fp ; zg D 1; fpˇ; zg D x; fp˛;pˇg D 1Cp :

Let the Liouville 1–form be � D pxdxCpydyCpzdz and let

 WD �C ��:

Clearly d D ! . We compute

 .XH /D p˛
2
Cpˇ.pˇ �xp /Cp .xpˇCp /Cp

D p˛
2
Cpˇ

2
Cp .p C 1/D 2H Cp :(55)

Let †k WDH�1.k/.

Lemma 6.4 The hypersurface †k is of contact type if and only if k > 1=2.

Proof Equation (55) tells us right away that if k > 1=2, then †k is of contact type
with contact form  since in this case

 .XH /D 2kCp � 2k �
p

2k > 0

for every point in †k .

An inspection of (54) reveals that p˛ D pˇ D y D 0, p D�
p

2k , x D x0 , z.t/D

z0�
p

2kt give orbits of XH with energy k which project to closed orbits in T �.�nG/.
These closed orbits are in fact null-homologous since ˛ and ˇ integrate to zero along
them and these two 1–forms span H 1.� n G;R/. (This is because by a theorem
of Nomizu [57] the de Rham cohomology ring of � n G is isomorphic to the Lie
algebra cohomology of g and the isomorphism is induced by the natural inclusion of
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left-invariant forms.) Let ı be one of these closed orbits. Using (55) we see that for
k � 1=2,

(56)
Z
ı

 D .2k �
p

2k/� � 0;

where � is the period of ı . Now let � be the Liouville measure on †k . Again, using
(55) we obtain

(57)
Z
†k

 .XH / d�D

Z
†k

.2kCp / d�D 2k > 0:

By Lemma 2.9 the Liouville measure is exact as a current, so (56), (57) and Corollary
2.8 ensure that †k cannot be of contact type. Alternatively, instead of the Liouville
measure one may also take the distinguished null-homologous closed orbits with
p˛ D pˇ D y D 0, p D

p
2k , x D x0 and z.t/ D z0C

p
2kt . The integral of  

along them has value .2kC
p

2k/� > 0.

Lemma 6.5 The hypersurface †k is stable for k < 1=2.

Proof Consider the following form on †k :

' WD
p˛dpˇ �pˇdp˛

p˛2Cpˇ
2

:

This form is smooth away from p D ˙
p

2k and d' D 0. We look for stabilizing
1–forms � of the form

�D f .p / Cg.p /';

where f and g are smooth functions in Œ�
p

2k;
p

2k� and g vanishes in small
neighbourhoods of the end points. Using  .XH /D 2kCp and '.XH /D 1Cp ,
the condition �.XH / > 0 is equivalent to

(58) .2kCp /f .p /C .1Cp /g.p / > 0;

and the condition iXH
d�D 0 is equivalent to

(59) .2kCp /f
0.p /C .1Cp /g

0.p /D 0:

To see that we can always choose f and g satisfying (58) and (59) provided that
2k < 1, take a nonnegative smooth function r.p / which vanishes near the end points
of Œ�

p
2k;
p

2k�, r.�2k/ > 0 (note that �
p

2k < �2k ) andZ p2k

�
p

2k

2kCp

1Cp
r.p / dp D 0:
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Note that this is always possible. Indeed as r we could take .1C p /q.2k C p /

where q.t/ is a smooth nonnegative even bump function with small support containing
the origin. Now let

f .p / WD

Z p

�2k

r.t/ dt

g.p / WD �

Z p

�
p

2k

2kC t

1C t
r.t/ dt:

Clearly (59) holds. With these choices, f vanishes only at �2k , is negative at the left
of �2k and positive at the right of �2k . Also g � 0, it vanishes near the end points
and g.�2k/ > 0, thus (58) also holds.

Lemma 6.6 The hypersurface †k is displaceable for k < 1=2.

Proof Consider the Hamiltonian in T �.� nG/ given by f D p˛ . Clearly p does
not change along the Hamiltonian flow of f and pˇ changes according to

Ppˇ D fp˛;pˇg D 1Cp :

Thus if k < 1=2 and we flow a point in †k along the Hamiltonian flow of f , we have
Ppˇ � 1�

p
2k > 0. Thus the flow of f will displace †k as desired.

Lemma 6.7 The hypersurface †k has closed contractible orbits if and only if k< 1=2.
If k<1=2 and v2X.†k/ then �.v/ is a positive integer multiple of 2�.1�

p
1� 2k/>

0 and †k is tame.

Proof The equations in (54) show that p is a first integral (in fact it is the Casimir
of g� ) and that if p C1¤ 0, then p˛ and pˇ are trigonometric functions with period
T D 2�=.1Cp / and p˛

2Cpˇ
2 D 2k �p

2 . Since p˛ and pˇ have zero integral
along the period, x and y are also T –periodic functions. Hence we get a closed
contractible orbit if and only if z is periodic of period T (or an integer multiple). To
analyze this condition, abbreviate � WD 1Cp ¤ 0 and a WD

p
2k �p2

 � 0. After
time shift, the solutions of Hamilton’s equations (54) are given by

p˛.t/D a cos�t; pˇ.t/D a sin�t; p D const; x.t/D x0C
a sin�t

�
:

Again looking at (54), we see that periodicity of z is equivalent toZ 2�=.1Cp /

0

.x.t/pˇ.t/Cp / dt D 0:
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Evaluating the integral, we obtain the condition

(60) 2p C
2k �p

2

1Cp
D 0:

If k < 1=2, then 1C p > 0 and there is a unique solution to (60) given by p Dp
1� 2k � 1 2 .�

p
2k; 0/, so we have contractible closed orbits.

If k � 1=2 it is easy to see that there are no such solutions. Indeed, this is clear if
1C p ¤ 0 because Equation (60) has no real solutions for k > 1=2 and only the
solution p D�1 for k D 1=2. It remains to analyse the case p D�1. It gives rise
to a circle p˛

2 C pˇ
2 D 2k � 1 of critical points for the Euler vector field (which

degenerates to a point when k D 1=2). Thus along solutions p˛;pˇ;p are constant,
and from (54) we see that

x.t/D x0Cp˛t; y.t/D y0Cpˇt

are periodic if and only if p˛ D pˇ D 0 (so in particular k D 1=2). But then z.t/D

z0Cp t is not periodic since p ¤ 0, so there are no contractible closed orbits for
k � 1=2.

Since d D ! , to compute �.v/ we just need to integrate  along one of the closed
orbits of XH described above. Since  .XH /D 2kCp we deduce

�.v/D T .2kCp /D 2�.1�
p

1� 2k/ > 0:

This also shows that †k is tame.

Remark It is not hard to show that for k < 1=2, the closed contractible orbits form a
Morse–Bott 4–dimensional submanifold of †k diffeomorphic to .� nG/�S1 .

Lemma 6.8 The Mañé critical values equal c D c0 D 1=2.

Proof As noted above, 2H. /� 1 implies c0 � 1=2. On the other hand, Lemma 6.4
and Lemma 5.3 imply c0 � 1=2, hence c0 D 1=2. Since � is nilpotent, it is amenable
and c D c0 by property (iv) in Section 5.3.

Lemma 6.9 The hypersurface †1=2 is not stable.

Proof By Lemma 6.7, †1=2 has no closed contractible orbits. By Lemma 6.6, †k is
displaceable for any k < 1=2, hence Theorem 1.5 implies that †1=2 is not stable.
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6.3 PSL.2 ;R/

The magnetic flow discussed here also appears in [9]. It will be convenient for us to
identify PSL.2;R/ with SH2 , the unit sphere bundle of the upper half plane with its
usual metric of curvature �1

dx2C dy2

y2
:

We recall that the standard identification �W SH2! PSL.2;R/ is given as follows:
�.x;y; v/ is the unique Möbius transformation T (with real coefficients) such that
T .i/ D xC iy and whose derivative at i takes the tangent vector .0; 1/ at i to the
tangent vector v at .x;y/. In SH2 we consider coordinates .x;y; �/ and the vector
fields

X D y cos �
@

@x
Cy sin �

@

@y
� cos �

@

@�
;

Y D�y sin �
@

@x
Cy cos �

@

@y
C sin �

@

@�
;

V D
@

@�
:

It is easy to check that these vector fields satisfy the bracket relations:

ŒX;Y �D�V; ŒV;X �D Y; ŒV;Y �D�X;

so they form the basis of a Lie algebra isomorphic to sl.2;R/. In fact under the
map � the vector fields X , Y and V correspond to the left invariant vector fields on
PSL.2;R/ whose values at the Lie algebra sl.2;R/ are

X D

�
1=2 0

0 �1=2

�
; Y D

�
0 �1=2

�1=2 0

�
; V D

�
0 1=2

�1=2 0

�
:

The dual coframe of left-invariant 1–forms f˛; ˇ;  g is given by

˛ D
cos � dxC sin � dy

y
;

ˇ D
� sin � dxC cos � dy

y
;

 D
dx

y
C d�:

Using this coframe we identify T �SH2 with SH2 � sl.2;R/� and we obtain coordi-
nates .x;y; �;p˛;pˇ;p /. The left-invariant coordinates .p˛;pˇ;p / are related to
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.px;py ;p� / by the formulas

p˛ D .ypx �p� / cos � Cypy sin �;

pˇ D�.ypx �p� / sin � Cypy cos �;

p D p� :

We will endow SH2 with its Sasaki metric. In this case this means the unique metric
that makes the basis fX;Y;V g an orthonormal frame at every point. Explicitly

ds2
D

1

y2

�
Px2
C Py2

C . P�yC Px/2
�
:

The Hamiltonian is

2H D .ypx �p� /
2
C .ypy/

2
Cp2

� D p˛
2
Cpˇ

2
Cp

2:

The magnetic field is given by the left-invariant exact 2–form

� WD d D
dx ^ dy

y2
:

The Hamiltonian vector field of H with respect to the twisted symplectic form ! is
given by

(61) XH D

8̂̂<̂
:̂
Px D y.ypx �p� /; Ppx D py ;

Py D y2py ; Ppy D .�ypxCp� /.pxC 1=y/�yp2
y ;

P� D 2p� �ypx; Pp� D 0:

In terms of the left-invariant coordinates we get

(62) XH D

8̂<̂
:
Px D y.p˛ cos � �pˇ sin �/; Pp˛ D 2pˇp Cpˇ;

Py D y.p˛ sin � Cpˇ cos �/; Ppˇ D�2p˛p �p˛;

P� D p �p˛ cos � Cpˇ sin �; Pp D 0:

The Poisson brackets of the left-invariant coordinate functions are

fp˛;pˇg D �p � 1; fp˛;p g D �pˇ; fpˇ;p g D p˛:

Let the Liouville 1–form be � D pxdxCpydyCp�d� and let

 WD �C ��:
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Clearly d D ! . We compute

 .XH /D pxy.ypx �p� /Cy2p2
y C .2p� �ypx/.p� C 1/C .ypx �p� /

D 2H Cp� D 2H Cp :(63)

H2 . We denote the quantities on the quotient T �.� n PSL.2;R// by the same letters
H; : : : . Let †k WDH�1.k/ (k > 0).

Lemma 6.10 The hypersurface †k is of contact type if and only if k > 1=2.

Proof Equation (63) tells us right away that if k > 1=2, then †k is of contact type
with contact form  since in this case

 .XH /D 2kCp � 2k �
p

2k > 0

for every point in †k . An inspection of (62) reveals that p˛ D pˇ D 0, p D�
p

2k ,
x D x0 , y D y0 , �.t/D �0�

p
2kt give orbits of XH with energy k which project

to closed orbits in T �.� nG/. These closed orbits are in fact null-homologous. To
see this note that � n PSL.2;R/ can be identified with the unit circle bundle of the
closed Riemann surface � nH2 . The closed orbits of XH under consideration, when
projected to � n PSL.2;R/, are precisely the unit circles in S.� nH2/. But these
circles are null-homologous. Indeed, it is well known (and it follows from the Gysin
sequence of the circle bundle), that the foot-point projection map S.� nH2/ 7! � nH2

induces an isomorphism H 1.� nH2;R/ŠH 1.S.� nH2/;R/.

Let ı be one of these distinguished null-homologous closed orbits of XH and let � be
its period. Using (63) we see that for k � 1=2,

(64)
Z
ı

 D .2k �
p

2k/� � 0:

Now let � be the Liouville measure on †k . Again, using (63) we obtain

(65)
Z
†k

 .XH / d�D

Z
†k

.2kCp / d�D 2k > 0:

By Lemma 2.9 the Liouville measure is exact as a current, so (64), (65) and Corollary
2.8 ensure that †k cannot be of contact type. Alternatively, instead of the Liouville
measure one may also take the distinguished null-homologous closed orbits with
p˛ D pˇ D 0, p D

p
2k , xD x0 , y D y0 and �.t/D �0C

p
2kt . The integral of  

along them has value .2kC
p

2k/� > 0.

We now prove that in this example we have a gap between c and c0 of size 1=4.
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Lemma 6.11 The strict Mañé critical value equals c0 D 1=2, but the Mañé critical
value equals c D 1=4.

Proof Note that 2H. / D 1 and thus c0 � 1=2. If c0 < 1=2, then by Lemma 5.3
we would have energy levels †k with k < 1=2 which are of contact type, which is
impossible by Lemma 6.10. Thus c0 D 1=2.

Now consider the 1–form

ı WD
dx

y
C

d�

2
:

Clearly dı D d in SH2 and 2H.ı/ D 1=2. (Note that ı is not left-invariant.)
Thus c � 1=4. The fact that c D 1=4 is most easily seen as follows. Consider the
Lagrangian L in SH2 determined by ı , namely

LD
1

2y2

�
Px2
C Py2

C . P�yC Px/2
�
C
Px

y
C

P�

2
:

Let Cr be the curve in H2 given by the boundary of a geodesic disk Dr of radius r .
We parametrize Cr so that it has hyperbolic speed equal to

p
2k and it is oriented

clockwise. Let `r D 2� sinh r be its hyperbolic length. If we let .x.t/;y.t// be the
chosen parametrization for Cr , let Br be the closed curve given by Œ0; `r=

p
2k� 3 t 7!

.x.t/=
p

2;y.t//. By taking � constant, we may see Br as a closed contractible curve
in SH2 . We will compute the action ALCk.Br / and show that for any k < 1=4, there
is r such that ALCk.Br / < 0. This implies c D 1=4 (cf Section 5). Indeed we have

ALCk.Br /D
p

2k`r C
1
p

2

Z `r =
p

2k

0

Px

y
dt

D
p

2k`r �
1
p

2

Z
Dr

dx ^ dy

y2

D 2�

�
p

2k sinh r �
cosh r � 1
p

2

�
:

The last expression shows that if k < 1=4, then ALCk.Br /!�1 as r !1.

Lemma 6.12 The hypersurface †k is stable for k < 1=4 and k 2 .1=4; 1=2/.

Proof Consider the following form on †k :

' WD
�p˛dpˇCpˇdp˛

p˛2Cpˇ
2

:
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This form is smooth away from p D ˙
p

2k and d' D 0. As in the case of the
Heisenberg group, we look for stabilizing 1–forms � of the form

�D f .p / Cg.p /';

where f and g are smooth functions in Œ�
p

2k;
p

2k� and g vanishes in neighbour-
hoods of the end points. Using  .XH / D 2k C p and '.XH / D 1C 2p , the
condition �.XH / > 0 is equivalent to

(66) .2kCp /f .p /C .1C 2p /g.p / > 0;

and the condition iXH
d�D 0 is equivalent to

(67) .2kCp /f
0.p /C .1C 2p /g

0.p /D 0:

To see that we can always choose f and g satisfying (66) and (67) provided that
k < 1=4 or k 2 .1=4; 1=2/ we proceed as in the case of the Heisenberg group, but we
will need some minor adjustments.

Case k< 1=4 Here �
p

2k < �1=2< �2k .

Take a nonnegative smooth function r.p / which vanishes outside a small neighbour-
hood of �2k which excludes �1=2 such that r.�2k/ > 0 andZ p2k

�
p

2k

2kCp

1C 2p
r.p / dp D 0:

Note that this is always possible. Indeed as r we could take .1C 2p /q.2k C p /

where q.t/ is a smooth nonnegative even bump function with small support containing
the origin. Now let

f .p / WD

Z p

�2k

r.t/ dt;

g.p / WD �

Z p

�
p

2k

2kC t

1C 2t
r.t/ dt:

Clearly (67) holds. With these choices, f vanishes only at �2k , is negative at the
left of �2k and positive at the right of �2k . Also g � 0, it vanishes outside a small
neighbourhood of �2k and g.�2k/ > 0, thus (66) also holds.

Case k 2 .1=4; 1=2/ Here �
p

2k < �2k < �1=2. As in the previous case, take a
nonnegative smooth function r.p / which vanishes outside a small neighbourhood

Geometry & Topology, Volume 14 (2010)



1854 Kai Cieliebak, Urs Frauenfelder and Gabriel P Paternain

of �2k which excludes �1=2 such that r.�2k/ > 0 andZ p2k

�
p

2k

2kCp

1C 2p
r.p / dp D 0:

f .p / WD

Z p

�2k

r.t/ dt;Also let

g.p / WD �

Z p

�
p

2k

2kC t

1C 2t
r.t/ dt:

Clearly (67) holds. With these choices, f vanishes only at �2k , is negative at the left
of �2k and positive at the right of �2k . But now g � 0, it vanishes outside a small
neighbourhood of �2k and g.�2k/ < 0, thus (66) also holds since now 1C 2p is
negative in the small neighbourhood of �2k .

Lemma 6.13 The hypersurface †k is displaceable for k < 1=4.

Proof Consider the Hamiltonian in T �.� nG/ given by f D pˇ . Clearly pˇ does
not change along the Hamiltonian flow of f and p˛ and p change according to

Pp˛ D fpˇ;p˛g D p C 1;

Pp D fpˇ;p g D p˛:

These equations are easy to solve and one finds that

2p˛.t/D .p˛.0/Cp .0/C 1/et
C .p˛.0/�p .0/� 1/e�t :

But if k < 1=4 and .p˛.0//2C .pˇ.0//2C .p .0//2 D 2k , then

p˛.0/Cp .0/C 1� 1� 2
p

k > 0;

and the flow of f will displace †k as desired.

Closed contractible orbits and entropy We now will study dynamical properties of
the magnetic flow. For this purpose it is better to revert to PSL.2;R/ and use the group
structure.

Equation (62) gives the Euler equations in sl.2;R/� . These are easily solved and after
a time shift one obtains

p˛ DA cos�t; pˇ DA sin�t; p D C;
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where � WD�1�2C , A2CC 2D 2k and k is the value of the energy. This curve b.t/

in sl.2;R/� gives rise to a curve a.t/ in sl.2;R/ via the Legendre transform of H :

a.t/DA cos�tX CA sin�tY CC V

DA cos�t

�
1=2 0

0 �1=2

�
CA sin�t

�
0 �1=2

�1=2 0

�
CC

�
0 1=2

�1=2 0

�
D

A

2

�
cos�t � sin�t

� sin�t � cos�t

�
C

C

2

�
0 1

�1 0

�
:

Let us consider the loop of matrices in SO.2/ given by

Q.t/ WD

�
cos.�t=2/ sin.�t=2/

� sin.�t=2/ cos.�t=2/

�
:

Clearly Q.t/D etR where

RD

�
0 �=2

��=2 0

�
:

Then we may write a.t/ as

(68) a.t/DQ.t/

�
A=2 0

0 �A=2

�
Q�.t/C

C

2

�
0 1

�1 0

�
;

where Q�.t/ denotes the transpose of Q.t/. Since our system is left-invariant, in
order to find the solution of XH through a point .q;p/ 2 PSL.2;R/� sl.2;R/� with
H.p/D k and p D .A; 0;C / we may proceed as follows (cf [5, Appendix 2] or [2,
Section 4.4]). We compute a.t/ and then we solve the matrix differential equation in
PSL.2;R/ given by

Pg.t/D g.t/a.t/; g.0/D I:

The desired solution curve is .q g.t/; b.t//. To solve the matrix differential equation
we make the change of variables

h.t/ WD g.t/Q.t/:

A calculation using (68) shows that h satisfies

Ph.t/D h.t/ d;

where d is the constant matrix

d WD
1

2

�
A C C�

�.C C�/ �A

�
D

1

2

�
A �1�C

1CC �A

�
:
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Therefore we have obtained the following explicit formula for our magnetic flow �t :

(69) �t .q;p/D .q etdQ�.t/; b.t//:

From this equation we shall derive various dynamical consequences. We will say that
the matrix d 2 sl.2;R/ is elliptic if .1CC /2 >A2 , parabolic if .1CC /2 DA2 and
hyperbolic if .1CC /2 <A2 .

Recall from Section 3 the definition of tameness and the !–energy

�W X.†k/!R; v 7!

Z
xv�!:

Lemma 6.14 The hypersurface †k has closed contractible orbits if and only if
k < 1=4. If k < 1=4 and v 2 X.†k/ then �.v/ is a positive integer multiple of
�.1�

p
1� 4k/ > 0 and †k is tame.

Proof Before embarking into the proof we make some preliminary remarks about
PSL.2;R/. A matrix d 2 sl.2;R/ satisfies ed D˙I if and only if det d > 0 (ie d is
elliptic) and

p
det d=� is a positive integer. Let us call � WD�=

p
det d the period of d .

It has the property of being the smallest positive real number t for which etd D˙I

(and in fact equal to �I ). The fundamental group of PSL.2;R/D SH2 is of course
Z and is generated by the loop Œ0; � � 3 t 7! etd of any elliptic element d . Any two
such loops determined by elements d1 and d2 will be homotopic if and only if d1 and
d2 belong to the same side (ie connected component) of the solid cone det d > 0 in
the Lie algebra sl.2;R/. If they belong to opposite sides of the cone, they will have
opposite homotopy classes.

Suppose now that we look for a closed contractible orbit on †k with �¤ 0. For b.t/

to be periodic it must have period T WD 2� l=j�j where l is a positive integer. Using
(69) we see that

�T .q;p/D .q eT d ;p/D .q;p/

and this happens if and only if the matrix d is elliptic and eT d D˙I (recall that we
are working in PSL.2;R/). The last equality forces T Dm� , where m is a positive
integer and � is the period of d as defined above. In order for this closed orbit to be
contractible in †k we need the loop

Œ0;T � 3 t 7! etde�tR

to be contractible in PSL.2;R/. But the homotopy class of this loop is mŒd �� l ŒR�,
where Œd � and ŒR� denote the homotopy classes associated to d and R respectively.
Since m and l are positive and Œd �D˙ŒR�, the loop will be contractible if and only if
mD l and Œd �D ŒR� (ie d and R must belong to the same side of the cone det d > 0).
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Hence 2j�j D 1=
p

det d which translates into 2C 2C 2C D�2k . Since d is elliptic
we must have .1CC /2 >A2 D 2k �C 2 which implies k < 1=4 as desired.

The quadratic equation 2C 2C 2C D�2k gives the following values for C and �:

2C D�1˙
p

1� 4k; �D�
p

1� 4k:

However, the values 2C D �1 �
p

1� 4k , � D
p

1� 4k give rise to elements d

and R such that Œd �D�ŒR�. Hence the unique values of C and � for which we obtain
closed contractible orbits are

2C D�1C
p

1� 4k; �D�
p

1� 4k:

Finally, note that if we are at a p with �D 0, then the flow is just �t .q;p/D .qetd ;p/

and even though the orbits are all closed, they are clearly not contractible.

Since d D ! , to compute �.v/ for a contractible closed orbit v on †k we just
need to integrate  along one of the closed orbits of �t described above. Since
 .XH /D 2kCC we deduce

�.v/D T .2kCC /D �l.1�
p

1� 4k/ > 0:

This also shows that †k is tame.

Lemma 6.15 The topological entropy of �t on †k is zero if and only if k � 1=4.

Proof Recall that by the variational principle for topological entropy and Ruelle’s in-
equality, the topological entropy vanishes if all the Lyapunov exponents are zero. Recall
also that by Pesin’s formula, the topological entropy is at least the integral of the sum of
the positive Lyapunov exponents with respect to the Liouville measure [42]. Inspection
of (69) shows that all the Lyapunov exponents are zero if all possible d ’s are elliptic or
parabolic. It also shows that as soon as there are d ’s which are hyperbolic, there will be
a positive measure set (with respect to the Liouville measure) with positive Lyapunov
exponents. Hence the topological entropy of the flow is zero if and only if all possi-
ble d ’s are elliptic or parabolic. This will happen if and only if 2C 2C2CC1� 2k for
all C 2 Œ�

p
2k;
p

2k�. It is easy to see that this is equivalent to saying that k � 1=4.

Lemma 6.16 The hypersurfaces †1=2 and †1=4 are not stable.

Proof By Lemma 6.14, †1=4 has no closed contractible orbits. By Lemma 6.13, †k

is displaceable for any k < 1=4, hence Theorem 1.5 implies that †1=4 is not stable.
Alternatively, we could say that †1=4 contains a copy of the horocycle flow (arising
when �D 0) and thus it cannot be stable.
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The proof that †1=2 is not stable is a bit more involved and we need some preliminary
observations.

Lemma 6.17 Let N be a closed manifold with a nonzero geodesible vector field F .
Suppose G is a compact Lie group acting on N and leaving F invariant. Then there
exists a G –invariant 1–form which stabilizes F .

Proof Let � be the Haar probability measure and 'g the diffeomorphism on N

determined by g 2G . Let � be a stabilizing 1–form for F and set

z� WD

Z
G

'�g� d�.g/:

It is straightforward to check that z� is G –invariant and that it stabilizes F .

Consider the flow of V on � nPSL.2;R/; it is simply given by the right action of etV .
Its lift to T �.� nPSL.2;R//D � nPSL.2;R/� sl.2;R/� is given by

(70) .q;p/ 7! .qetV ;Ad�
etV .p//:

This gives an action of S1 that leaves H , �� and d invariant, so S1 acts on
.T �.� nPSL.2;R//; !/ by Hamiltonian transformations and it has moment map p .
We denote the vector field of this S1 action by V � .

Let †1=2;C �†1=2 be given by p DC and C is constant (energy-momentum reduc-
tion). Clearly S1 leaves †1=2;C invariant and, XH and V � are linearly independent
except when C D˙1.

Suppose †1=2 is stable. By Lemma 6.17 we may take an S1 –invariant stabilizing
1–form �. Consider the restriction of both � and  to the 4–manifold †1=2;C for
C > �1 close to �1. The forms d� and d D ! are both annihilated by XH . The
form d is annihilated by V � and we claim that d� is also annihilated by V � . To
see this, it suffices to show that �.V �/ is a constant function since � is S1 –invariant.
Observe that the function �.V �/ is invariant under both S1 and the flow of XH so it
descends to a function on †1=2;C =S

1 D � n PSL.2;R/ which is invariant under the
reduced flow of XH . However, this reduced flow is given by the right action of etd .
This follows from (69) and (70) (note that b.t/DAd�e�t�V .p/). Since d is hyperbolic
for �1< C < 0, the right action of etd is Anosov and thus �.V �/ must be a constant.

Hence, the forms d� and d D ! are both annihilated by XH and V � . Since d is
nondegenerate in a transverse plane to the span of XH and V � we deduce that there
exists a smooth function f W †1=2;C !R such that on †1=2;C we have

d�D f d :
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The function f is invariant under both S1 and the flow of XH so it also descends to
a function on †1=2;C =S

1 D � n PSL.2;R/ which is invariant under the reduced flow
of XH and as above, we deduce that f must be a constant. If we now let C vary close
to �1 we get f D f .C / and d�D f .C /d . We wish to derive a contradiction from
this.

We proceed as follows. On †1=2 D � n PSL.2;R/ � S2 we let zX WD .X; 0/ and
zY WD .Y; 0/. These vectors are of course tangent to †1=2;C for every C . A simple
calculation shows that d . zX ; zY /D d�. zX ; zY /C ��d . zX ; zY /D 0C 1D 1 and thus
f .C / D d�. zX ; zY /. We now let C !�1 and we may suppose that f .C /! a for
some a 2R. On †1=2;�1 D � nPSL.2;R/� f.0; 0;�1/g we have

d�D a d :

The 1–form �� a is closed and .�� a /.XH /D �.XH / > 0 since  .XH /D 0

on †1=2;�1 . But this is impossible since the Hamiltonian flow on †1=2;�1 is given
by the circle action

�t .q;p/D .qQ�.t/;p/;

which is completely periodic with all closed orbits homologous to zero. Thus †1=2

cannot be stable and Lemma 6.16 is proved.

6.4 Sol–manifolds

Let G D Sol be the semidirect product of R2 with R, with coordinates .y0;y1;u/

and multiplication

.y0;y1;u/ ? .y
0
0;y
0
1;u
0/D .y0C euy00;y1C e�uy01;uCu0/:

The map .y0;y1;u/ 7! u is the epimorphism Sol! R whose kernel is the normal
subgroup R2 . The group Sol is isomorphic to the matrix group0@eu 0 y0

0 e�u y1

0 0 1

1A :
It is not difficult to see that Sol admits cocompact lattices. Let A 2 SL.2;Z/ be such
that there is P 2 GL.2;R/ with

PAP�1
D

�
� 0

0 1=�

�
and � > 1. There is an injective homomorphism

Z2 ËA Z ,! Sol

Geometry & Topology, Volume 14 (2010)



1860 Kai Cieliebak, Urs Frauenfelder and Gabriel P Paternain

given by .m; n; l/ 7! .P .m; n/; .log�/ l/ which defines a cocompact lattice � in Sol.
The closed 3–manifold � n Sol is a 2–torus bundle over the circle with hyperbolic
gluing map A.

If we denote by pu , py0
and py1

the momenta that are canonically conjugate to u,
y0 and y1 respectively, then the functions

˛0 D eupy0
;

˛1 D e�upy1
;

� D pu

are left-invariant functions on T �Sol. The closed 2–form

(71) � D�dy0 ^ dy1

is also left-invariant, and we consider the twisted symplectic form

!� D dpu ^ duC dpy0
^ dy0C dpy1

^ dy1� dy0 ^ dy1:

The Casimir of g� is f D � C ˛0˛1 and the left-invariant Hamiltonian is given by
2H WD ˛2

0
C˛2

1
C �2 . An easy calculation shows that the vector field of the magnetic

flow is
XH D .e

u˛0; e�u˛1; �; �˛1C �˛0; ˛0� �˛1; ˛
2
1 �˛

2
0/:

The dynamics of the magnetic flow is very interesting and was investigated in [10]. It
turns out that all energy levels have positive Liouville entropy and they all carry closed
contractible orbits. The magnetic field is nonexact and is a generator of H 2.� nSol;R/.
Since the lattices are solvable there are no bounded primitives for � in Sol and the
Mañé critical value is 1.

Proposition 6.18 The hypersurface †k is stable and displaceable for any k > 0.

Proof Let

� WD fduC
1

2
.˛0d˛1�˛1d˛0/:

Since all objects involved in the definition of � are left-invariant, � descends to compact
quotients of Sol. A calculation using that df .XH /D 0 shows that iXH

d�D 0. One
also sees that

�.XH /D kC
�2

2
> 0;

and thus � stabilizes †k . The proof that †k is displaceable can be found in [10] and
is similar to the proof of Lemma 6.6.
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6.5 The case of � symplectic

In this subsection we study the special case in which the closed left-invariant 2–form �

is symplectic and we show that low energy levels are always stable.

Proposition 6.19 Assume that � is symplectic and let H.�/D j�j2=2 for some fixed
positive definite inner product in g� . Then there exists k0 > 0 such that for all k < k0

the hypersurface †k is stable.

Proof We will show that there exists k0 > 0 such that for all k < k0 the Euler vector
field E is geodesible in Sk . By Lemma 2.3 this implies the stability of †k .

Since � is symplectic, inspection of the bracket given in (ii) of Lemma 6.1 shows
that for all k sufficiently small, the Poisson bracket f ; g� is nondegenerate on the set
H�1.Œ0; k�/� g� . In other words, for all � 2H�1.Œ0; k�/ the linear map B�W g! g�

given by
B�.X /.w/ WD �.ŒX; w�/� �e.X; w/

is invertible. Let AW g! g� be A.X /.w/ WD �e.X; w/. We may write

E.�/DE0.�/�J�

where J W g�! g� is defined by J�.w/ WD �.d�H; w/ and E0 is the Euler vector
field for � D 0. A short computation shows that J is uniquely determined by

y�.�; �/ WD �.A�1�;A�1�/D h�;J�1�i:

For k small the Poisson structure f ; g� is induced by the symplectic form $ in
H�1.Œ0; k�/ given by

$.�/.B�.v/;B�.w// WD �.Œv; w�/� �.v; w/:

$ D�y� C d�Inverting B� we get

where � is a 1–form such that j�.�/j D O.k/ for � 2 H�1.Œ0; k�/. (The 2–form
$Cy� is O.k1=2/, so we can choose a primitive which is O.k/.) Let ˛ be the 1–form
in g� given by ˛.�/.�/ WD h�;J�1�i=2. Then

$ D d.�˛C �/:

On Sk we have iE$ D 0 and

.�˛C �/.�/.E.�//D ˛.�/.J�/�˛.�/.E0.�//C �.�/.E0.�//� �.�/.J�/

D kCO.k3=2/;

because ˛.J�/ D j�j2=2 D k and E0.�/ is quadratic in �. Thus for k small
.�˛C �/.E/ > 0 on Sk and E is geodesible (in fact contact).
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Suppose now that G admits a cocompact lattice � �G . Then we have a symplectic
manifold .� nG; �/. Any left invariant metric will give rise to a magnetic flow with
stable low energy levels. We now look in detail at a concrete example.

Example 6.20 Consider the 4–dimensional nilpotent Lie algebra g with basis fX1;

X2;X3;X4g whose only nonzero bracket is ŒX1;X2�D X3 . If fe1; e2; e3; e4g is the
dual basis of g� , then de1 D de2 D de4 D 0 and de3 D �e1 ^ e2 . The symplectic
2–form is

� D�e1 ^ e3� e2 ^ e4:

If xi denote the coordinates of �2 g� in the given basis we easily find that the nonzero
Poisson brackets of f ; g� are

fx1;x2g D x3; fx1;x3g D fx2;x4g D 1:

We see right away that f ; g is nondegenerate at every point � 2 g� . In this case it is
easy to invert the operator B� of the previous proposition and we find $ to be

$ D�� �x3 dx3 ^ dx4

D dx1 ^ dx3C dx2 ^ dx4�x3 dx3 ^ dx4:

� WD
x1dx3�x3dx1Cx2dx4�x4dx2

2
�

x2
3
dx4

2
If we let

$ D d�:then

Now take H.�/D j�j2=2, where the inner product is defined so that fe1; e2; e3; e4g

is an orthonormal basis. The Euler vector field EH is easily computed using Lemma
6.1. One finds

EH .�/D .�x2x3�x3;x1x3�x4;x1;x2/

DE0
H .�/�J�

D .�x2x3;x1x3; 0; 0/� .x3;x4;�x1;�x2/:

Next we compute �.EH / and we find

�.EH /D
x2

1
Cx2

2
Cx2

3
Cx2

4

2
�

x1x3x4

2
:

x1x3x4

2
D�

d.x2x4/.EH /

2
C

x2
4
�x2

2

2
Using that
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�
� C

d.x2x4/

2

�
.EH /D

x2
1
C 2x2

2
Cx2

3

2
:we obtain

' WD � C
d.x2x4/

2
Then

is a primitive of $ such that on Sk

'.EH /� 0

with equality if and only if x1 D x2 D x3 D 0 and x4 D˙
p

2k . Since this set is not
invariant under the flow of EH we conclude that for any invariant Borel probability
measure � on Sk we have Z

Sk

'.EH / d� > 0

and thus EH is in fact of contact type by Theorem 2.7.

Summarizing, we have shown that EH is geodesible on Sk for any k > 0. Let G

be the simply connected Lie group with Lie algebra g. This group certainly admits
cocompact lattices � . The manifold .� nG; �/ is symplectic (with first Betti number 3
in fact) and with the left invariant metric considered above we obtain that †k is stable
for any k > 0. Every compact set here is displaceable by [10, Theorem B] and the
Mañé critical value is 1 since � is nilpotent.

A realisation of G is H�R where H is the 3–dimensional Heisenberg group. The
metric is just the product metric. It is easy to see that H has no contractible closed
geodesics, hence the same is true for G .

7 Proofs of the theorems

7.1 Proof of Theorem 1.1

For the case of tame stable hypersurfaces and tame stable homotopies the theorem is a
consequence of Theorem 4.14 and Theorem 4.15. Note that we could take as definition
of RFH.†/ either RFH.†;V / or RFH.†;V /. The claims for the virtually contact
case are straightforward extensions of the contact case treated in [13]. Indeed, the
virtually contact condition implies that the period-action inequality for almost Reeb
orbits of Proposition 3.2 in [13] continues to hold with constants now depending on the
constants appearing in the virtually contact condition. Here we use that �1.†/ injects
into �1.M /. Similarly, for the time-dependent case Proposition 3.4 in [13] continues
to hold for a virtually contact homotopy. Having established these two Propositions
the forthcoming arguments can be repeated just word-by-word.
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Remark In the virtually contact case, one can replace the condition that �1.†/ injects
into �1.V / by a weaker condition which we now explain.

Consider a Hamiltonian structure ! on a closed odd dimensional manifold †. We
call the pair .†; !/ virtually contact, if on a cover � W z†!† there exists a primitive
�2�1.z†/ of ��! with the property that for one and hence every Riemannian metric g

on † there exists a constant c D c.g/ > 0 such that

k�k��g � c; k�k��g � cj�.�/j; 8 � 2 ker.��!/:

We refer to the one-form � as a bounded primitive. A closed hypersurface † in a
symplectic manifold .V; !/ is called of virtual restricted contact type, if there exists a
cover � W zV ! V and a primitive � of ��! such that �j��1.†/ is a bounded primitive
for .†; !j†/.

Lemma 7.1 Assume that .V; !/ is symplectically aspherical, ie ! vanishes on �2.V /,
and †� V is a closed hypersurface with the property that .†; !j†/ is virtually contact
and the inclusion homomorphism i�W �1.†/!�1.V / is injective. Then † is of virtual
restricted contact type.

Proof Let � W zV ! V be the universal cover of V . Since zV is simply connected we
have by Hurewicz theorem that

H2. zV IZ/D �2. zV /D �2.V /:

Since .V; !/ is symplectically aspherical we deduce that ��! vanishes on H2. zV IZ/
and hence

Œ��!�D 0 2H 2
dR.
zV /:

We conclude that there exists �0 2�
1. zV / such that

d�0 D �
�!:

Because .†; !j†/ is virtually contact, there exists a bounded primitive �1 on a cover
of †. Since �1 is bounded, there exists a bounded lift z�1 to ��1.†/� zV . Note that

d�0j��1.†/� dz�1 D �
�!j��1.†/��

�!j��1.†/ D 0:

We conclude that �0j��1.†/�
z�1 defines a class�

�0j��1.†/�
z�1

�
2H 1

dR

�
��1.†/

�
:

However, since i�W �1.†/!�1.V / is injective, each connected component of ��1.†/

is simply connected. Therefore H 1
dR

�
��1.†/

�
D f0g and consequently there exists
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f 2 C1
�
��1.†/;R

�
such that

df D �0j��1.†/�
z�1:

Extend f to a smooth map zf 2 C1. zV ;R/ and set

�D �0� d zf :

�j��1.†/ D �0j��1.†/� df D z�1Noting that

we conclude that � is a primitive of ��! whose restriction to ��1.†/ is bounded.
This finishes the proof of the lemma.

Theorem 1.1 continues to hold with the same proof if we assume that † is of virtual
restricted contact type. The hypersurfaces of Lemma 5.1 are of virtual restricted contact
type, but when dim M D 2, �1.†/ does not inject into �1.T

�M /.

7.2 Proof of Theorem 1.2

Let � D 0. By Lemma 5.2, the Mañé critical value is given by c D max U and all
regular level sets †k are of restricted contact type, so RFH.†k/ is defined.

For k > c each †k is regular. By the invariance of Rabinowitz Floer homology under
contact homotopies, we can compute RFH.†k/ for zero potential. In this case it is
nonzero by Corollary 1.12 in [14]. In particular, †k is nondisplaceable for k � c . The
dynamics on †k , k > c , is given by the geodesic flow of the Jacobi metric g=.k�U /.
The level set †c is singular.

For k < c , †k is displaceable because it misses one fibre.

7.3 Proof of Theorem 1.3

For k> c , †k is virtually contact by Lemma 5.1 (in fact it is of virtual restricted contact
type) thus RFH.†k/ is defined and invariant under virtually contact homotopies. In
particular the isomorphism type of RFH.†k/ is independent of k .

Consider a path of Riemannian metrics Œ0; 1� 3 t 7! gt such that g0 D g and g1

is a metric of negative curvature. By taking k > maxt2Œ0;1� ct and using that the
isomorphism type of RFH.†k;t / is independent of t as well, we may suppose that g

itself is negatively curved. But it is well known that the geodesic flow of a negatively
curved metric is Anosov and does not have nontrivial closed contractible orbits. By
structural stability the same is true for the orbits of †k provided k is sufficiently
large. It follows from Theorem 1.1 that RFH.†k/ does not vanish and thus †k is
nondisplaceable.
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7.4 Proof of Theorem 1.4

This is just Theorem 5.6.

7.5 Proof of Theorem 1.5

We argue by contradiction. Suppose the energy level †c is stable. We will show that
†c must contain a contractible periodic orbit. By Lemma 2.5 there exists a tubular
neighborhood .�"; "/�†c of †c such that the characteristic foliations on frg �†c

are conjugate for all r 2 .�"; "/. But by hypothesis, every compact set contained in the
set H�1.�1; c/ is displaceable, hence we may apply the main result of Schlenk [64],
to conclude that for almost every r , with r < 0, frg �†c carries a closed contractible
orbit. By stability, †c must also carry a closed contractible orbit.

7.6 Proofs of Theorems 1.6, 1.8 and 1.9

Theorem 1.6 follows from the lemmas in Section 6.2 and Theorem 1.1. Theorem 1.8
follows from the lemmas in Section 6.3 and Theorem 1.1. Theorem 1.9 follows from
the results in Section 6.1 and Theorem 1.1.
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