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Bounds on exceptional Dehn filling I1

IAN AGOL

We show that there are at most finitely many one cusped orientable hyperbolic 3—
manifolds which have more than eight nonhyperbolic Dehn fillings. Moreover, we
show that determining these finitely many manifolds is decidable.

57M50; 30F40

1 Introduction

Thurston demonstrated that if one has a hyperbolic knot complement, all but finitely
many Dehn fillings give hyperbolic manifolds [46]. The example with the largest
known number of nonhyperbolic Dehn fillings is the figure-eight knot complement,
which has 10 fillings which are not hyperbolic. Call a Dehn filling exceptional if it is
not hyperbolic. Previous authors have distinguished between hyperbolike manifolds,
which are atoroidal and aspherical, and hyperbolic manifolds, defining an exceptional
filling to be one which is not hyperbolike. But by the geometrization theorem [39;
40; 28; 35; 16], a manifold is hyperbolic if and only if it is hyperbolike, so we need
no longer make this distinction. Bleiler and Hodgson [7] showed that there are at
most 24 exceptional Dehn fillings, using Gromov and Thurston’s 27 —theorem and
estimates on cusp size due to Colin Adams [1]. We made an improvement on the
2m —theorem [3], independently discovered by Lackenby [29], and used improved lower
bounds on cusp size due to Cao and Meyerhoff [15], to get an upper bound of 12
exceptional Dehn fillings. In this paper, we show that there are at most finitely many
one cusped hyperbolic manifolds which have exceptional Dehn fillings ry, r, such that
A(ry,rp) > 5 (where A(rq, ;) denotes the intersection numbers of the slopes of the
Dehn fillings). This theorem is sharp, in that the (—2, 3, 8) pretzel link complement W’
admits two exceptional Dehn fillings 7y, 7, with A(rq,r;) = 5. By hyperbolic Dehn
filling the other cusp of W', we see that there are infinitely many 3—manifolds with
A(ry,r3) = 5. This theorem implies that there are only finitely many one cusped
hyperbolic 3—manifolds with more than 8 exceptional Dehn fillings, since there can
be at most 8 curves on a torus with A(ry,r;) < 5. We also prove the existence of an
algorithm which will determine the manifolds which have A(ry, r;) > 5 for exceptional
Dehn fillings ry, r», and therefore which manifolds may have more than 8 exceptional
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Dehn fillings. It is conjectured that there are only four orientable hyperbolic manifolds
with two exceptional Dehn fillings 7y, 7, so that A(ry, r;) > 5. These manifolds are the
Dehn fillings W(—1), W(5), W(5/2) and W(—2) on one component of the Whitehead
link complement W, and are conjectured by Gordon to be the only such examples
[23, Conjecture 3.4]. Of these four examples, only the figure eight knot complement
W(—1) has more than 8 exceptional Dehn fillings. It is conjectured that there are only
finitely many one cusped hyperbolic 3—manifolds with more than 6 exceptional Dehn
fillings; see Kirby [27, Problem 1.77].

Remark In the process of preparation of this manuscript, Lackenby and Meyerhoff
gave a proof that a one cusped hyperbolic 3—manifold has at most 10 exceptional Dehn
fillings [30]. They also prove that the distance between exceptional fillings is at most 8.
Their approach uses extensive computation based on Gabai, Meyerhoff and Milley [20],
as well as some improved estimates on lengths of slopes of exceptional Dehn fillings
under certain geometric hypotheses. Our results imply that it ought to be possible to
continue the computational approach even further.

Our theorem depends on results of Anderson, Canary, Culler and Shalen [5] which
have been subsequently strengthened by a culmination of various results in Kleinian
groups. In particular, we use the result that Kleinian groups are limits of geometri-
cally finite Kleinian groups (proved independently by Ohshika [37] and Namazi and
Souto [36]), which depends on the classification of Kleinian groups, including the
tameness conjecture proved by the author [2] and Calegari and Gabai [14] (see also
Soma [44] and Bowditch [10]) and the ending lamination conjecture proved by Brock,
Canary and Minsky [12; 34], and generalizes many previous results on density of
geometrically finite Kleinian groups in the space of Kleinian groups by Brock and
Bromberg [13; 11], going back to work of Jgrgensen on the space of punctured torus
groups [26] and Thurston’s double limit theorem [45; 38]. We remark that these
arguments depend on the ending lamination conjecture for general Kleinian groups,
which has been claimed by Brock, Canary and Minsky and is treated in the preprint
of Bowditch [9] based on their approach. The key geometric consequence that we
make use of is the following result stated in Theorem 3.4: if a maximal horocusp in an
orientable hyperbolic manifold has volume < 7w — € for € > 0, then the volume of the
manifold is uniformly bounded as a function of .
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2 Background and definitions

Let N be a hyperbolic 3-manifold. Then N = H3/T" where I' = 7;(N) is a
discrete torsion-free subgroup of Isom(H?), with p: H® — N the covering map.
We will assume that the reader is familiar with Margulis’ constant € and the thick-
thin decomposition in the case of hyperbolic 3-manifolds; see Thurston’s notes [46,
Chapter 5] for an introduction to this. The following definitions are needed only for part
of the proof of Lemma 3.2. If g is a loxodromic isometry of hyperbolic 3—space H?3,
we shall let A, denote the hyperbolic geodesic which is the axis of g. The cylinder
about Ag of radius r is the open set Z,(g) = {x € H? | dist(x, Ag) < r}. If C is
a simple closed geodesic in N then there is a primitive loxodromic isometry g € I'
with p(4g/(g)) = C. For any r > 0, the projection p(Z,(g)/(g)) of Z,(g) under
the covering projection is a neighborhood of C in N . By the Margulis lemma, for
sufficiently small » > 0 we have

{hel' | h(Z(9)NZr(g) # T} = (g).

Let R denote the supremum of the set of r for which this condition holds (R depends
on C). We define tube(C) = Zg(g)/{g) to be the maximal tube about C. A set U is
said to be precisely invariant under the group I' if for every g € ', either g(U) =U
or g(U)NU = @, which is equivalent to saying that U/ stab(U) embeds in H?/T.
Then tube(C) is the largest precisely invariant tube about C'.

There is a similar situation when we have a maximal parabolic subgroup P < T.
We define an open horoball to be a subset of H? isometric to {(z,7) |z € C, ¢ > 1},
where H3 = {(z,¢) | t > 0} C C xR is the upper half-space model of the hyperbolic
3—space. By the Margulis lemma there is an open horoball H c H? so that P =
{g €T | g(H)="H}. Choose H maximal subject to the condition that {# € T |
h(H)NH # @} = P (thatis, H is a maximal precisely invariant horocusp for I" such
that stab(#) = P). Then we call p(?’:z) =Hx= 7T[/P a maximal horocusp. If P >~ 7.2,
then H = S' x S' xR, and if P =~ Z, then H = S! x R?. Since H is maximal
subject to this condition, there exists € I' — P so that ¥ (3H) N dH = x. We may
assume that I' is normalized by a conjugation so that P fixes co, and dH is a plane
of height one, so that y () is a ball of height 1. Note that y~'(0H) N dH =y~ (x)
will also be a point of tangency. Then y ! (ﬁ) is also a horoball of height one call the
Adams horoball [1] (see Figure 1). We will call the group B = (P, y) a bicuspid group
(see Agol, Culler and Shalen [4, Lemma 6.2]), so called because it corresponds to a
point in H? where the closure of two maximal horoballs meet, corresponding to two
preimages of a neighborhood of a cusp of N . In this paper, when Z?2 = P, we will use
the notation P = («, ), where «, 8 are parabolic elements. Then B is free bicuspid
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Figure 1: A bicuspid group associated to a maximal horocusp

if B~ P x(y)=7Z?xZ. For any cusp of N with associated maximal horocusp #,
there will be finitely many bicuspid subgroups of I" up to conjugacy in one-to-one
correspondence with the T" orbits of points x € H? so that x = y(aﬁ) N dH for some
y € I' — P. One may think of each of these points as “self-tangencies” of dH .

Here we develop a normalization for the generators of the bicuspid group B which
will be used in examples and in the proof of Theorem 5.5. Let N = H?3/B. We have
A = Area(0H) = 2Vol(#H). As mentioned in the previous paragraph, we assume that
H is normalized to be centered at oo and to have height 1 in the upper half-space
model. The generators «, § of P translate by complex numbers a,b € C in dH=C,
which has the standard Euclidean metric induced from the hyperbolic metric of H?.
We may assume the generators for the parabolic subgroup P are chosen so that «
represents the shortest closed path in 974, and § the next shortest path, by choosing
b/a to lie in the standard fundamental domain for the moduli space of tori. Also, since
ay(7-[) N y(7-[) = ¢, we must have |a| > 1 (this is an observation of Adams [1]; see
Figure 1). Moreover, by the normalization, |b| < 2A/+/3 as follows from an analysis
of the fundamental domain of moduli space. Conjugating B by a parabolic or elliptic
element fixing oo, and taking ¥~ (c0) to 0, we may normalize «, B,y as elements in
SL,C such that # is the horoball centered at oo of height 1, y(0) = oo, and

1 a 15 c —1
0 “:(0 1)’ ﬂ:(o 1)’ V:(l o)’

where 1 < |a| < |b| < 2A/+/3. Further multiplication of y on the left by elements
of P allows us to assume that ¢ lies in a fundamental domain for the action of P
on C consisting of points closest to 0, and therefore that |c¢| < |b| (this requires a bit
of analysis of fundamental domains of tori, but is not hard to show, and the precise
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estimate is not important for our argument). We will denote the parameter space by

2) Pa={(a.b,c)|1 <|a| <|b| <24//3.|c| < |bl}.

3 Maximal embedded cusps of hyperbolic manifolds

The following result generalizes [25, Theorem IV.4.1] to Kleinian groups with cusps.
This lemma is used in the proof of Lemma 5.3. One could give a purely topological
proof, but we choose to make use of some Kleinian group theory.

Lemma 3.1 If Q is a bicuspid group of infinite covolume, then Q is free bicuspid.

Proof Since H?/Q has infinite volume and is finitely generated, there is a compact
3—manifold with boundary N such that H3/Q = int(N) (by tameness [2; 14]). Also,
B1(N) = B1(Q) < 3. Since bicuspid groups are nonelementary, x(N) < 0. Thus N
has a boundary component 7" which is a torus, and a boundary component ¥ with
x(¥) < 0. By half-lives, half-dies, ¥ must be a genus 2 surface, since 8;(7") +
B1(X) < B1(0N) < 6. The space of characters X of discrete faithful representations
of m1(N) — PSL(2,C) has complex dimension 3 (see Bers [6] and Marden [32,
Theorem 10.8]). We also see that this is the dimension of the variety of characters of
7* x 7, which are rank 2 parabolic on Z2. But the character variety of N must be a
subvariety of the same dimension, which means that 7r; (N) must have no relations
among the bicuspid generators, and is therefore free. |

The following geometric result is made possible by recent advances in Kleinian groups,
and generalizes [4, Lemma 4.3].

Lemma 3.2 Let («, B,y) be a free bicuspid group, with maximal horocusp H. Then
Vol(H) > .

Proof To prove the theorem, first we approximate Q by geometrically finite groups
Q; such that Q; = («a;, Bi, i) and such that o; — «, B; — B,y; — y. Denote by
N; = H3/Q; the hyperbolic manifold which is homeomorphic to the interior of a
compression body which is the boundary connect sum (72 x I) LI (S! x D?) = N;.
Denote S; to be the torus boundary component of ;. In fact, one may assume that
in the groups Qj;, the only parabolic elements are conjugate into («;, 8;). This is
possible by the fact that geometrically finite groups without rank one parabolics are
dense in the space of all Kleinian groups in the algebraic topology [37, Theorem 1.1;
36, Theorem 1.1]. We may assume that N; contains a maximal embedded horocusp
neighborhood #; such that Vol(#;) — Vol(H).
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Next, we proceed as in Lemma 4.3 of [4]. Suppose that (P;) is an infinite sequence of
distinct hyperbolic manifolds obtained by Dehn filling N; along S; using Thurston’s
hyperbolic Dehn surgery theorem for geometrically finite manifolds (see Bonahon and
Otal [8] or Comar [17]). Then 71 (Pj) is free two generator, and the manifolds (P;)
converge geometrically to /V;. Moreover, the core curve of the Dehn filling P; of N;
is isotopic to a geodesic C; in Pj. The length L; of C; tends to 0 as j — 00;
and the sequence of maximal tubes (tube(Cj)), j > 1 converges geometrically to H,;.
In particular limj_, o Vol(tube(C;)) = Vol(#;). According to [4, Corollary 4.2],
since 7y (P;) is free, log3 is a strong Margulis number for each of the hyperbolic
manifolds P; . It therefore follows from [5, Corollary 10.5] that Vol(tube(Cj)) > V(L;),
where V is an explicitly defined function such that limy_, V(x) = 7. In particular, this
shows that Vol(H;) > limj o V(L;) = 7. Now, since H; converges geometrically
to H, we conclude that Vol(H) > 7. O

Remark The estimates of [5] depend on a paradoxical decomposition argument for a
2—generator free group acting on H* given in [19]. We believe that it should be possible
to give a more direct argument for the previous lemma by analyzing an appropriate
generalization of the paradoxical decomposition for free bicuspid groups.

Example Consider the group I" = («, 8, y), where

(1) =) )

One may show that this group is free as follows. Consider the geodesic planes in the
upper half space model of H? bounding the circles {|z—c| =2|c € Z2+Z(14i~/3)},
and cut out the open half-spaces disjoint from oo bounded by these planes to obtain a
region R C H?. These bounding circles have two orbits under the group (a, B), with
representatives at centers ¢ =0, 2, and thus R/(a, 8) will be homeomorphic to 7% xR
with two geodesic disks in its boundary. Under the map y, the circle |z| = 2 is sent to
the circle |z — 2| = 2, and therefore  maps the corresponding planes bounding these
circles to themselves. Thus, N = H3/ T is obtained from R/(x, B) by gluing the two
geodesic planes in the boundary using the identification given by y . This has the effect
of adding a handle onto 72 x R, and therefore N is homeomorphic to the interior of a
compression body with fundamental group identified with I = {«, 8) * (y). Thus, we
see that I" is free bicuspid. If H is the horosphere centered at 0o of height one in H?3,
then H/ (e, B) embeds as a cusp ‘H C N, since it is disjoint from the geodesic planes
given above. We have Vol(#) = 2+/3 = 3.46. ... Thus, the bound given in Lemma
3.2 is fairly close to optimal.

Here is another way to find free bicuspid groups.
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Lemma 3.3 Let M be an orientable hyperbolic 3—manifold with a maximal horocusp
‘H and an associated bicuspid subgroup B < wy(M). If rank H{(M;Z/pZ) > 4,
where p is prime and

(1) M has one cusp and p > 3 or

(2) M has at least two cusps and p > 2,
then B is free bicuspid, and therefore Vol(H) > .

Proof This essentially follows from the arguments of [4, Lemma 4.3, Proposition 5.3,
Proposition 6.3]. First, assume that M has 4 or more cusps, or rank H; (M ; Q) > 4.
Then there exists amap ¢: w; (M) — Z*. As rank B/[B, B] <3, rank ¢ (71 (B)) < 3,
and therefore B has infinite index in 771 (M). Thus, B is free bicuspid (see Lemma 3.1).

Now suppose that rank H; (M ;Z/pZ) >4, and we have amap ¢: 71 (M) — (Z/ pZ)*.
Then rank ¢ (B) < 3, so there exists a map (M) — (Z/ pZ)*/p(B) — Z/ pZ. Take
the kernel of this map to get a p—fold cover M — M such that B < T (Z\7 ). Under
the hypotheses of the theorem, M has at least 4 cusps, and by the previous paragraph,
B must be free bicuspid. Then Vol(H) > 7 by Lemma 3.2. ad

We did a search of manifolds in the SnapPea census [47], and found that the manifold
M =v1902 has an embedded cusp of volume 3.238 . ... Moreover, the bicuspid group
associated to v1902 is free. One may see this by finding an irregular 3—fold cover
M — M (cover 8 in SnapPea’s notation) which has 3 maximal cusps with the same
volume as M, and has H; (]\7 ) =73+ Z/37 (see Figure 2). It follows that the
b1cusp1d subgroup of w1 M is free, since it lifts to 74 M, and any bicuspid subgroup
of nlM is free by Lemma 3.3 since rank H (M 7.)37) =4.

In fact, there will be an optimal constant 7 < R < 3.238... such that the quotient mani-
fold of every free bicuspid group will have an embedded horocusp H with Vol(H) > R.
It is an interesting question to obtain better upper and lower bounds on R. The following
theorem will be reproved in Section 5; however we include this proof here as it is a
bit more direct than the argument of Theorem 5.5. The following theorem would hold
with R replacing .

Theorem 3.4 For € > 0, there exists a constant V(¢) such that if N is an orientable
hyperbolic 3—manifold with a maximal horocusp H with Vol({{) < m — €, then
Vol(N) < V(e).
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Figure 2: Pattern of horoballs in H?* for the manifold v1902 3—fold cover 8
from the SnapPea census with cusp volume 3.238...

Proof Let Q < m; N be a bicuspid subgroup corresponding to the maximal horo-
cusp H. First, suppose that Q is a free product Q = («, B) *(y) = (Z +Z) *Z. Then
Vol(H) = 7 by Lemma 3.2, contradicting the assumption that Vol(H) < & —e.

Thus, we may assume that Q is not a free product. Then Q must be indecomposable,
and in fact H3/Q must be finite volume, by Lemma 3.1. We get a contradiction in this
case by taking a geometric limit. Suppose we have I'; <PSL(2,C) with N; = H3/ I,
such that Vol(/N;) — oo and maximal bicuspid subgroups Q; < I'j, such that Q; is
not free bicuspid and Vol(H;) <  —e, where ; is a maximal cusp of H3/Q;. Then
Vol(H?®/Q;) < oo by Lemma 3.1, so [[j : Qj] < co. Normalize Q; as a standard
bicuspid group with H; C H3/0 j the maximal cusp, and with self-tangency point of
xj € 9H; C H?/Q; as in Equation (1).

1 a; 1 b; -1
3) “f:(oalj)’ ﬂf:(o 11) Vf:(clj 0)’

where we assume that the generators are normalized so that (a;, bj, cj) € Pay.

Since by the Margulis lemma the injectivity radius inj(x;) is bounded below, we
may take a subsequence j such that (H3/Qj,,x;j,) converges geometrically to
(Moo, Xo0), Where Hoo C M is a maximal cusp with self-tangency point xo, and
Vol(Moo) = 00, and so that (aj, , bj, ,cj, ) converges to a point (deo, boo, Coo) € Par .
We are using the standard fact here that the algebraic limit of a sequence of groups
is a subgroup of the fundamental group of the geometric limit (or perhaps the limit
in the Chabauty topology). Then Q; converges algebraically to a bicuspid subgroup
(0oos Boos Voo) = Qoo < m1(Meso) such that Ho lifts to a maximal cusp in H?/ Qoo
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and Vol(H?/Qs) = oo . By Lemma 3.1, Qoo = (Z + Z) * Z, so that Q is a
free bicuspid group. The cusps H; — Hoo in the Gromov-Hausdorff topology. Since
Vol(Hoo) > m by Lemma 3.2, we see that there is k& such that Vol(#;, ) > m —e€. This
gives a contradiction, so we see that the assumption that Vol(H?3/Q i) — oo is false,
and thus there exists V'(€) such that Vol(N;) < V(e). |

Remark A similar argument to the previous theorem shows that there is a constant V'
such that if M is a hyperbolic 3—manifold with Margulis constant < log 3, then
Vol(M) < V by applying [19]. It would be interesting to get some idea of the
distribution of Margulis constants < log 3.

4 Exceptional Dehn fillings
In this section, we prove the main theorem of the paper.

Theorem 4.1 There are only finitely many one cusped orientable hyperbolic 3 —mani-
folds of finite volume N such that N has two exceptional Dehn fillings ay,a, so that
A(Cll , az) > 5.

Proof Fix some € < 7w — 3. If Vol(N) = V(e), where V(e¢) is the constant from
Theorem 3.4, then N has a maximal horocusp H C N so that Vol(H) > & —e > 3.
Then Area(dH) > 6. It was proven by Agol [3, Theorem 6.2] and Lackenby [29,
Theorem 3.1] that if « is a slope such that N («) is an exceptional Dehn filling, then
I(a) < 6. Thus by the proof of [3, Theorem 8.1], if a1, a, are two slopes on N so
that N (a;) are exceptional Dehn fillings, then A(ay,a,) < 62/Area(d7) < 6. Thus,
N does not violate the theorem.

Suppose the theorem is false. Then there is an infinite sequence of orientable one cusped
hyperbolic 3—manifolds (/N;);en such that i — oo and N; has two exceptional Dehn
fillings of distance > 5. By the previous paragraph, we may assume that Vol(N;) < V(e).
Let H; be a maximal cusp neighborhood in N;. By [46, Theorem 5.12.1], we may
choose a subsequence J C N and an orientable hyperbolic 3—manifold M with > 2
rank two cusps so that each N;,i € J is obtained by hyperbolic Dehn filling on M , and
Nj converges to M in the Gromov-Hausdorff topology. Moreover, M has a distin-
guished cusp with maximal cusp neighborhood H such thatas i — oco,i € J, H; = H
in the Gromov—Hausdorff topology. In fact, since Vol(H) < & — €, we may assume
that M has at most three cusps, by Lemma 3.3. This observation is not necessary
for the proof, but makes the notation of the proof simpler. By [22, Theorem 1.3], the
distance between exceptional filling slopes on the cusp H of M is <5.
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Let dM = Ty U Ty U Ty, where Tp corresponds to . For slopes g; € Q Uoo U *,
j =0,1,2, let M(qo,q1,q2) be Dehn filling on the boundary component 7; with
slope ¢;, where the % denotes that the boundary component is unfilled. Let N; =
M(*,qi1.4i2), i €J. Foreach 0 < j <2, there is a finite subset £; C Q U co so
that if ¢; € E;, then M (qo.q1,q2) is hyperbolic [46, Theorem 5.8.2]. For i € J large
enough, ¢; j € E;, for j =1,2. This implies that the only nonhyperbolic Dehn fillings
on N; must correspond to a subset of the slopes Ey. Let Ey C Eq be such that ¢ € E},
if and only if ¢t € Ey and M (¢, *, *) is hyperbolic. For t;,t, € Eg — E}, we have
A(ty,t) <5 by [22, Theorem 1.3] as noted above. For each slope ¢ € E}, there are
finite subsets E; j; C Q U oo so that M(¢,qy,q>2) is hyperbolic if g; € E; ; (again by
[46, Theorem 5.8.2]). Let F; = Ej Useg, E; ;. Thenif g; ; € F; and t € E},, then
Ni(t) is also hyperbolic. Therefore, we see that for i large, the distance between two
exceptional slopes of N; is at most 5. This gives a contradiction to our assumption
that there is a sequence of manifolds contradicting the theorem with volumes bounded
by V(e), thus proving the theorem. |

Corollary 4.2 There are only finitely many one cusped orientable hyperbolic 3—
manifolds of finite volume N such that N has > 8§ exceptional Dehn fillings.

Proof By [3, Lemma 8.2], if the distance between exceptional Dehn fillings is < 5,
take the next largest prime and add one, to conclude there are at most 8 exceptional
Dehn fillings on N . |

5 An algorithm to find exceptional Dehn fillings

We would like to classify the finitely many manifolds with two exceptional Dehn
fillings of distance > 5 given by Theorem 4.1. Since the proof of Theorem 3.4 is by
contradiction, it’s not clear that there is a procedure one could run which would for a
given € identify all of the manifolds which have an embedded cusp of volume < 7w —e€.
Thus, we must devise a method to classify manifolds with a small volume cusp. This
is similar to the procedures implemented in [21; 20], which find manifolds with small
radius tubes around a short geodesic, or small volume cusped manifolds. We modify
their approach to show that finding the manifolds with exceptional fillings in Theorem
4.1 and Corollary 4.2 is decidable. First, we need some preliminary results.

Theorem 5.1 Given a finite volume hyperbolic 3—manifold M , there is an algorithm

which will determine the set of all exceptional Dehn fillings on M for which any proper
sub—Dehn filling is hyperbolic.
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Proof We approximate the hyperbolic structure on the cusped manifold well enough
to determine the area and modulus (for example using interval arithmetic ) of simultane-
ously embedded equal sized horocusp neighborhoods of all the cusps, up to some small
error. This uses the algorithms to compute Ford domains in Riley [42], Hildebrand and
Weeks [24] and SnapPea [48] (see also Manning [31]). We determine which slopes on
each cusp have length < 6, and therefore could lead to nonhyperbolic Dehn fillings by
[3; 29]. We perform all of the Dehn fillings along these short slopes, determining which
ones result in hyperbolic manifolds using the algorithms described in [42; 48; 31], then
repeat. At each stage we get hyperbolic manifolds with fewer cusps, and so this process
eventually terminates with a finite collection of cusped hyperbolic manifolds along
with a finite collection of slopes associated to each cusp, so that every exceptional
Dehn filling on M is obtained by Dehn filling on one of the slopes associated to one
of the members of this finite collection. O

Lemma 5.2 Let N be a hyperbolic 3—manifold, and R C N be a connected region,
such that im{; (R) — 1(N)} is elementary. Then Vol(R) < 1Area(dR).

Proof This follows from the isoperimetric inequality for H?3 plus the fact that the
image of 71 R in w1 N is amenable. Alternatively, one may also use the method of
[41, Lemma 3.2, Theorem 4.1], which is essentially a calibration argument. O

Lemma 5.3 Suppose Q = {(«, B8, y) is a (discrete torsion-free) bicuspid group which
is not free. Let N =H?3/Q. Let w(x, y,z) € ((x) x (»)) * (z) be a cyclically reduced
word, such that w(e, B.y) =1 € Q. Let d(w) be the number of occurrences of z+!
in the word w. Then Vol(N) < n(d(w) —2).

Proof This result generalizes [18]. Consider the word w = q1z¢1q2z2 -+ g2k,
where we assume that €; # 0, and ¢; € (x) x (y) —{1}. Then d(w) = Z{:l l€i]. Let
wo=1,andfor k =1,...,d(w), let wi(x, y, z) be a prefix of w so that d(wy) =k
and wy ends in z*! (thus W) = w). Thus wy_; is a prefix of wy such that
w,:_ll wg = qzT! for some g € (x) x (y). Then we may find a string of geodesics g,
k=1,...,d(w) in H? so that gz connects wx_; (e, B,¥)(00) and w (a, B,y)(c0),
and so that gg(,) connects wgy)—1 (e, B, ¥)(00) to oo = w(oo). We may find a map
of a disk r: D — H? with d(w) punctures in dD so that r(dD) C g; U---U gd(w)
by coning each g; to oo, for 1 <i < d(w). The disk (D) will be made of d(w)—2
triangles, and therefore Area(r(D)) = n(d(w) —2). Let § C H3 be the geodesic
connecting 0o to y(oo) passing through the self-tangency point of H with )/(7?[). Let

_llwk = gz*!, for some ¢ € (x) x (y). Then ¢~ wy_;(a, B.y) "' (gk) connects

w
k—
oo to q_lw,:llwk(oz,ﬂ, ¥)(00) = yE1(00), and we see that g is a translate of &.

Geometry € Topology, Volume 14 (2010)



1932 lan Agol

Thus under the projection map p: H* — N, each g; will project to the same geodesic
g C N, and the boundary projects to p(r(dD)) C g.

Let W C N be a submanifold which is a regular neighborhood of p(r (D)) union a
small horocusp. Let U = N\W, and let U = U,U,, where each Uy is a connected
component of U . Define a submanifold U’ C U by the property Uy C U’ if and only
if im{m{(Uy) — 71(N)} is elementary (that is, the image of the fundamental group
is either trivial, Z or Z + 7). Now, let N’ C N be defined by N’ = W U U’. Then
ON’ C oW, and in particular N’ is compact. What we will now endeavor to show is
that N = N’. We will let U” =U\U’, sothat N = N'UU".

To see how the proof will be finished, suppose that N is irreducible and atoroidal. Then
dN’ has no sphere components, and x(dN') < 0, otherwise 71(U”) is elementary.
Thus, m1(N’) is a Kleinian group with x(N’) < 0. Consider the covering space
N" — N’ such that

im{m;(N") = 71 (N')} = im{Z? « Z — 7 (N')}.

Then 71(N") must also be a bicuspid group. Since p(r(D)) gives a relation in N’
which lifts to N, we see that r1(N") is not free. By Lemma 3.1, N/ must be finite-
volume. Since N’ is atoroidal, each torus component of dN” must map to a torus
boundary component of N’, which must therefore be a torus boundary component of N .
This implies that N” — N is a finite-sheeted cover, which implies that N = N' = N .
Thus, our goal is to show that N’ is irreducible and atoroidal. This actually might not
hold initially, but we modify N’ until it does hold.

We now prove some properties of the submanifold N’. Suppose that S C N’ is a
2—sphere. Since N is irreducible, S = 9B, for some ball BC N. If B Z N’, then
BN (N —N')# @, so there is a component Ug C U” C U such that Ug C B. But
then im{r; (Ug) — 71(N)} = 1, which contradicts the fact that Ug € U’ C N’. Thus,
we have shown that N’ is irreducible.

Now, suppose that 7 C N’ is 2—torus. Since N is atoroidal, 7" is separating and either
T is parallel to a cusp of N, or T is compressible in N . In the first case, 7 = 0H,
where H =~ T x [0, 00) is a neighborhood of a cusp in N. If H £ N’, then there is a
component Ug C H, in which case im{r{(Ug) — 71 (N)} <im{m(H) — m1(N)} =
Z + Z, which contradicts Ug Z U’ .

Thus, we may assume that 7" is compressible in N. Let D C N\T be a compressing
disk for 7', and let S C N(D U T) be the 2—sphere component resulting from
compressing 7" by D. Then S = 9B, where B C N is a ball. There are two
possible cases here: either T € B or T C B. If T € B, then T = dQ, where
Q C N is a solid torus. If O &€ N’, then there is a component Ug C Q. Then
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im{m;(Ug) — m1(N)} <im{m;(Q) — m(N)} = Z, which contradicts the fact that
Ug £ U’. Thus, we conclude that Q C N'.

In the second case, where 7" C B, then 7" bounds a knot complement Q inside of B,
since the other side of T is a punctured solid torus in B. As before, if Q € N’, then
we conclude that there is a component Ug C Q C B, which gives a contradiction as
before.

Thus, we conclude that every torus 77 C N’ must either be essential and bound a
product neighborhood of a cusp T = 0dH, H C N',or T = 3dQ, Q C N/, where
Q is a (possibly trivial) knot complement. Suppose Q C N’ is a nontrivial knot
complement inside of N” whose boundary is incompressible in N'. On T = 9Q, there
is alongitude ¢ C T'. In this case, there isaball Q C B. Thenlet B'= B\QU7—3r R,
where R = D? x S! is a solid torus (R stands for ring) such that the meridian of R
is attached to the longitude ¢ C T under the identification 7" = dR (really, we should
think of R as a trivial knot complement, in which case the meridian is the longitude,
and we remove a nontrivial knot complement, and replace it with a trivial one). There is
amap f: B — B suchthat fj3p is the identity, and f(Q) = R (Figure 3). Moreover,
this map is homotopy equivalent to the identity map relative to the boundary dB. We
may extend this homotopy equivalence to a map f: N — N which is the identity
outside of B which is homotopic to the identity.

Figure 3: Reimbedding a handle

Let N = N'\QU R. Then N” = f(N’). One may see that N C N, such that
N\N" =~ N\N’'=U", and that N'\Q C N’ is homotopic to N"\R =~ N'\Q C N
so that N\N’ = N\N" by a homotopy equivalence. This has the effect of reimbed-
ding U” in N by a homotopy. Thus, each component Ug C U” still has nonelementary
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image of its fundamental group. Moreover, there is a degree one map f: QO — R,
such that df: dQ — 0R is a homeomorphism. This map extends to a degree one
map f: N’ — N’”. The operation of turning N’ into N” is a version of Fox re-
imbedding (rather, we reimbed N’\Q C N by a homotopy equivalence). We now
relabel Ny = N’, Ny = N”, and perform a sequence of reimbeddings, which have
associated degree one maps N; — N, — N3 — N4 — --- which are homeomorphisms
dN; — ON;41. Each N;,; is obtained by replacing a knot complement Q; C N;
by a solid torus, and therefore w1 (N;) — m1(N;41) is not 7y —injective. Since the
complementary regions of N; are homotopic for each i, we conclude that N; is
irreducible. By a result of Soma [43], there exists i such that N; — N;4 is a
homotopy equivalence, which gives a contradiction. Thus, there exists N, such that
every torus 7" C N, which is compressible in N must be compressible in V. Thus,
Ny, is irreducible and atoroidal. Moreover, we have a map ¢,: N’ — N,, which induces
an epimorphism 71 (N’) — 71 (N). The argument above shows that N\ N, is trivial,
which implies that N = N, = N’, as desired. O

Theorem 5.4 Given a rational number V , there is an algorithm which will find a finite
collection My, ..., My, of finite volume orientable hyperbolic 3—manifolds so that
any hyperbolic 3—-manifold of volume < V is obtained by Dehn filling on one of the
manifolds M;.

Proof Let ¢ be Margulis’ constant for hyperbolic 3—manifolds. By the method of proof
of the Jgrgensen—Thurston theorem, there is a constant C so thatif M is a hyperbolic 3—
manifold with Vol(M) < V', then Miyjck(¢) admits a triangulation with < C'V tetrahedra
(by construction, C is computable from the Margulis constant [33]). The first step of
the algorithm is to take < C'V tetrahedra, and glue them together in all possible ways
to get an orientable manifold with Euler characteristic zero. Next, we run the algorithm
described in [24; 48; 31] to decide which of these manifolds has a hyperbolic interior.
Then all hyperbolic 3—manifolds of volume < V will be obtained by Dehn filling on
one of the resulting finite collection of manifolds. O

The proof of the next theorem actually leads to an independent proof of Theorem 3.4.
Theorem 5.5 There is an algorithm which will determine the finitely many one cusped
orientable hyperbolic 3—-manifolds Ny, ..., Ny such that N; has two exceptional Dehn

fillings of distance > 5.

Proof We know that if N is a one cusped orientable hyperbolic 3—manifold which has
an embedded maximal horocusp neighborhood H C N such that Vol(#) > 3, then any
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two Dehn fillings on N have distance < 5. Thus, we must determine the one cusped
orientable hyperbolic 3—manifolds N which have a maximal cusp of volume =< 3 (see
the beginning of the proof of Theorem 4.1 for similar logic). By an argument similar
to Lemma 3.2 and Theorem 3.4 such manifolds have a non—free bicuspid subgroup
0 = (a, B, y) of finite index in 71 N = I', such that # lifts to a maximal cusp of
H?3/Q. Thus, we must determine the bicuspid groups Q which have a maximal cusp
of H3/Q of volume < 3. By Theorem 3.4, we know that Vol(H?/Q) < V(e), for
€ < —3. But we don’t know how to compute V'(¢) explicitly. For any € < 7 —3 we
show that there is an algorithm which will determine all bicuspid groups Q such that
H?3/Q has a maximal cusp of volume < 7 —e.

As in Section 2, we normalize a general bicuspid group Q = («, B8, y) so that

=) =) =)

where 1 < |a| <|b| <2A4/+/3, and |c| < ||, where 4 = Area(dH) < 2(m —e¢). This
gives a finite parameter space P4 to search through, and we know that when 4 < 27,
the group Q must either be non—free bicuspid by Lemma 3.2, or else Q is indiscrete
or not normalized. Furthermore, if Q is discrete but not a free product, then either
0 has finite covolume, or Q has torsion. In this case, there will be a nontrivial word
w(x, y,z) € ((x)x(y)*(z) = (Z + Z) = Z such that w(a, B8,y) =1 € Q. Alift of
w(a, B,y) to SL,C gives a matrix

* *
W(a,b,c) = (p(a,b,c) *) ,

such that W(a,b,c) = ((1) (1))
when the variables (a, b, c¢) correspond to the group Q. The lower left entry of
W(a, b, ¢) may be regarded as a polynomial p(a, b, c) € Z[a, b, c] which vanishes on
the parameters corresponding to Q.

w X
. “_(yZ)

represents a matrix in SL,C, and if H is the horoball of height 1 centered at oo
in H3, then p(#) is a horoball of height 1/|y|? for y # 0. Thus, if HNpH) =
we see that |y| > 1. So, if u € Q is an element of the bicuspid group Q and 7—[ is
precisely invariant under Q, then we see that if |y| < 1, we must have H = (%),
and therefore p is a parabolic element, so y = 0.
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Similarly, if Q is indiscrete, then the closure O <SL,C must be dense in a Lie subgroup
of SL,C, and thus there are elements w(«, B, y) € O such that |[W(a,b,c) —I|*> <e,
for any small €. In particular, if

* *
W(a,b,c) = (p(a, b.c) *) ,

where p(a, b, c) <1, then either p(a, b, c) =0, or the three generator group associated
to the parameters (a, b, c) does not have an embedded horocusp H C H?/(a, B, y)
which is a projection of a horoball at height 1 in H?, and is therefore not bicuspid with
normalized generators. Find a finite collection of such polynomials {py,..., px} €
Zla, b, c] so that the sets {(a, b, c)|pi(a, b, c) < 1} cover P4. Each such polynomial is
determined by a word w; (x, y, z). We may find a finite collection since P4 has compact
closure. To make this search algorithmic, enumerate p(a, b, c) for all w(x, y,z) €
7* x 7. Cover P4 by compact subsets, such as cubes with dyadic vertices and
sidelength 27", such that each cube C C P4, (where 4 + § < 27), so that we
will cover all bicuspid groups with Vol(H) < 3 and still exclude free bicuspid groups.
For a given polynomial p(a, b, c), and a given cube C, one may determine whether
|p(a,b,c)| <1 for all points (a,b,c) € C, by determining the maximal value of
p(a,b,c) on C,which is algorithmic (an interior maximum is determined by computing
a point where the gradient V p(a, b, ¢) = 0, which may be computed via algebraic
geometry, whereas boundary maxima may be determined by Lagrange multipliers
inductively on the faces of the cube). Inductively, we refine the covering and increase
the number of polynomials, until we find a covering of P4 (this is similar to the process
employed in [21, Proposition 1.28]).

All of the discrete non-free bicuspid groups with a cusp of volume < 3 will occur
somewhere in the parameter space P4 with some w;(«, §, ) parabolic, and therefore
pi(a,b,c) =0. Conversely, if (a,b,c) € P4 is a point where p;(a, b, c) =0, then it
either corresponds to an irreducible bicuspid representation of Z?2 x Z when W(a, b, c)
is parabolic or trivial, or gives an indiscrete representation, or a representation with
torsion, or it may correspond to a bicuspid group whose generators have not been
normalized. If 0 < p;(a, b, ¢) < 1, then either the group is indiscrete, or it does not have
a maximal cusp H normalized as above, so does not correspond to a bicuspid group. If
pi(a,b,c) =0 and the associated bicuspid group is discrete, then w;(a, b, c) =™ p".
We may apply Lemma 5.3 to the word w’ = w;a™™ 87" to conclude that the covolume
of the discrete torsion-free Q will be bounded by the complexity 7w (d(w;) —2) =
7(d(w’) —2). Let V be the supremum of these numbers. Thus, we have shown the
existence of an algorithm to determine a bound on the covolume of bicuspid groups with
a maximal cusp of volume < w —e. Moreover, this gives another proof of Theorem 3.4.
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The next step is to enumerate all orientable hyperbolic manifolds with volume < V. We
use Theorem 5.4 to give a finite collection M7y, ..., M, of finite volume hyperbolic 3—
manifolds so that any hyperbolic 3—manifold of volume < V is obtained by hyperbolic
Dehn filling on one of the manifolds M; . Finally, we use Theorem 5.1 to determine the
set of all exceptional Dehn fillings on each M. We then search this list of exceptional
Dehn fillings for any one cusped manifolds with two exceptional fillings of distance > 5.
By Theorem 4.1, there will be only finitely many isometry types of hyperbolic one
cusped manifolds with two exceptional Dehn fillings of distance > 5. a

6 Conclusion

There are several problems suggested by the results in this paper. Of course, there
is Gordon’s conjectured classification of one cusped manifolds with two exceptional
fillings of distance > 5 (see [27, Problem 1.77, Conjecture (B)]). As we point out, it
will suffice to classify the manifolds with a cusp of volume =< 3. Searching through the
SnapPea census of cusped orientable manifolds [47], there appears to be few one or two
cusped manifolds which have cusp volume < 3 and which are not obtained by Dehn
filling on a manifold with corresponding cusp of volume very close to 3 and which
have fewer than three cusps. The collection of three cusped manifolds with a cusp of
volume < 3 is finite, as follows from the argument of Theorem 4.1. We show several
examples of three cusped manifolds with a cusp of volume < 3 in Figure 4, and which

T Q@
9 g

Figure 4: Some 3 component links with cusps of volume < 3
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give rise to infinite families of 3—manifolds with maximal cusps of volume < 3 via
Dehn filling. We remark that if one wants to classify manifolds with > 8 exceptional
Dehn fillings, it suffices to classify manifolds with two exceptional Dehn fillings ry, r;
with A(ry,rp) > 6. Thus, it suffices to consider manifolds with a cusp of volume < 2%
corresponding to the parameter space Ps L This would significantly simplify the search

space in the algorithm proposed in Theorem 5.5.
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