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Perturbative invariants of
3–manifolds with the first Betti number 1

TOMOTADA OHTSUKI

It is known that perturbative invariants of rational homology 3–spheres can be con-
structed by using arithmetic perturbative expansion of quantum invariants of them.
However, we could not make arithmetic perturbative expansion of quantum invariants
for 3–manifolds with positive Betti numbers by the same method.

In this paper, we explain how to make arithmetic perturbative expansion of quantum
SO.3/ invariants of 3–manifolds with the first Betti number 1 . Further, motivated by
this expansion, we construct perturbative invariants of such 3–manifolds. We show
some properties of the perturbative invariants, which imply that their coefficients are
independent invariants.

57M27

In the late 1980s, Witten [44] proposed topological invariants of a closed 3–manifold
M for a simple compact Lie group G , what we call quantum G invariant, which is
formally presented by a path integral whose Lagrangian is the Chern–Simons functional
of G connections on M . There are two approaches to obtain mathematically rigorous
information from a path integral: the operator formalism and the perturbative expansion.
Motivated by the operator formalism of the Chern–Simons path integral, Reshetikhin
and Turaev [34] gave the first rigorous mathematical construction of quantum invariants,
as linear sums of quantum invariants of framed links. After that, rigorous constructions
of quantum invariants were obtained by various approaches; in particular, Kirby and
Melvin [14] constructed the quantum SO.3/ invariant, which we denote by �SO.3/

r .M /;
it is defined to be a linear sum of the quantum sl2 invariant (the colored Jones poly-
nomial) of framed links at an r th roots of unity. On the other hand, the perturbative
expansion of the Chern–Simons path integral suggests that we can construct perturbative
invariants which describe asymptotic behavior of quantum invariants at r!1; in fact,
it is known (see, for example, the author’s book [28]) that we can construct perturbative
invariants of rational homology 3–spheres based on arithmetic perturbative expansion
of quantum invariants of them.

We review the construction of the perturbative SO.3/ invariant of a rational homology
3–sphere M , as follows. Let p be an odd prime, and put � D exp.2�

p
�1=p/. Since
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it is known (by Murakami [23]) that �SO.3/

p .M / 2 ZŒ��, we can make an expansion,

�SO.3/

p .M /D ap;0C ap;1.� � 1/C ap;2.� � 1/2C � � �C ap;N .� � 1/N ;

with some integers ap;n . Though this expansion is not unique, .ap;n mod p/2Z=pZ is
uniquely determined by the value of �SO.3/

p .M /, since ZŒ�� is isomorphic to ZŒq�=T .q/

where

T .q/D
qp � 1

q� 1
D

�
p

1

�
C

�
p

2

�
.q� 1/C

�
p

3

�
.q� 1/2C � � �C

�
p

p

�
.q� 1/p�1:

The author showed in [26] that there exist �n.M / 2 Z
�

1
2
; 1

3
; : : : ; 1

m

�
, where m D

max
˚
2nC1; jH1.M IZ/j

	
and jH1.M IZ/j denotes the order of H1.M IZ/, such

that

ap;n �
.p/

�
jH1.M IZ/j

p

�
�n.M /

for any odd prime p �max
˚
2nC3; jH1.M IZ/j

	
, and defined the perturbative SO.3/

invariant of M by

�.M /D �0.M /C�1.M /.q� 1/C�2.M /.q� 1/2C � � � 2QJq� 1K:

We call this the arithmetic perturbative expansion of �SO.3/

p .M /. In particular, by
results of Murakami [23], we can see that the first two coefficients are presented by
“(semi-)classical” invariants,

�0.M /D
1

jH1.M IZ/j
; �1.M /D

6�.M /

jH1.M IZ/j
;

where �.M / denotes the Casson–Walker invariant [43] of M . Further, when M is
obtained from S3 by f surgery along a knot K , �.M / is presented by Gaussian inte-
gral of the following form (see Rozansky [38; 40], Bar-Natan, Garoufalidis, Rozansky
and Thurston [1; 2; 3] and the author’s book [28]),

�.M /D .constant/ �
Z

n2R
qf .n

2�1/=4Œn�2
�
perturbative expansion of Jn.KI q/

�
dn;

where Œn�D .qn=2�q�n=2/=.q1=2�q�1=2/, and Jn.KI q/ denotes the colored Jones
polynomial of K , whose perturbative expansion is a power series in q � 1 with
coefficients of polynomials in q and qn . Note that, when f D 0, this integral diverges.

In this paper, motivated by the arithmetic perturbative expansion of �SO.3/

p .M /, we
construct a perturbative invariant of a 3–manifold M with the first Betti number 1,

�.M I c/D �0.M I c/C�1.M I c/.q� 1/C�2.M I c/.q� 1/2C � � � 2CJq� 1K;
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where c is 0 or a zero of the Alexander polynomial �.t/ of M , and prove that it
is a topological invariant of M (Theorem 1.1). When M is obtained from S3 by 0

surgery along a knot K , instead of the f D 0 case of the above Gaussian integral, we
consider the following integral,

.constant/ �
Z

t2fjzjD1g�C

�
loop expansion of Œn�2Jn.KI q/

ˇ̌
qn!t

�dt

t
;

where the loop expansion of Jn.KI q/ is a power series in q� 1 with coefficients of
rational functions of qn whose denominators are powers of the Alexander polynomial
of K , and our construction of the perturbative invariant is obtained as the residue of
this integral,

�.M I c/D .constant/ �Res
tDc

1

t

�
loop expansion of Œn�2Jn.KI q/

ˇ̌
qn!t

�
:

The 0th coefficient �0.M I c/ is presented by the Alexander polynomial of M (Propo-
sition 5.3), noting that the Alexander polynomial can be regarded as the Z equivariant
version of the order of the first homology group. Further, when M is obtained from
S3 by 0 surgery along a knot K , �1.M I c/ is presented by the 2–loop polynomial of
K , which can be regarded as “Z equivariant Casson invariant” of the infinite cyclic
cover of the complement of K (see the author’s paper [29]). �1.M I c/ can be regarded
as another extension of the Casson–Walker invariant than the Casson–Walker–Lescop
invariant (see Lescop [20; 21]), for 3–manifolds with the first Betti number 1. The
coefficients of the arithmetic expansion of �SO.3/

p .M / are presented by linear sums
of 1 and

�
.1C ci/=.1� ci/

�p , where c˙1
1
; : : : ; c˙1

n are the zeros of the Alexander
polynomial. As we explain in Section 2, the space of such series can be described by
the “Tamagawa map”,� nX

iD1

�
1C ci

1� ci

�apCb�
pW primes

7�!

nX
iD1

�
1C ci

1� ci

�a

˝

�
1C ci

1� ci

�b

2C˝Q C:

Through this map, we can regardX
cD0;c1;:::;cn

1C c

1� c
˝

1� c

1C c
�.M I c/ 2 .C˝Q C/Jq� 1K

as an arithmetic perturbative expansion of �SO.3/

p .M /.

An idea of constructing our perturbative invariants is to consider equivariant invariants
(see the author’s papers [29; 32; 31]). As mentioned above, the Alexander polynomial
and the 2–loop polynomial can be regarded as equivariant invariants. More generally,
the loop expansion of the Kontsevich invariant of a knot can be regarded as the “Z
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equivariant LMO invariant” of the infinite cyclic cover of the knot complement. As
its sl2 reduction, the loop expansion of the colored Jones polynomial of a knot can be
regarded as the “Z equivariant perturbative SO.3/ invariant” of the infinite cyclic cover
of the knot complement. In this sense, our perturbative invariants of 3–manifolds with
the first Betti number 1 can be regarded as “Z equivariant perturbative invariants” of
the infinite cyclic cover of such 3–manifolds. By considering equivariant invariants of
covering spaces, we can construct perturbative invariants of such 3–manifolds, though
we could not define perturbative invariants of such 3–manifolds by the method for
homology 3–spheres.

It is known that, though the LMO invariant (see Le, Murakami and Ohtsuki [19]) is
powerful enough to be expected to classify integral homology 3–spheres, it is weak
for 3–manifolds with positive first Betti numbers; in fact, when b1.M / > 0, the value
of the LMO invariant of M can be determined from “classical” invariants such as the
cohomology ring, the Alexander polynomial and the Casson–Walker–Lescop invariant
of M (see Garoufalidis–Habegger [6], Habegger [10], Habegger–Beliakova [11] and
Lieberum [22]). On the other hand, Proposition 5.2 suggests that our perturbative
invariant is as fine as the perturbative SO.3/ invariant for homology 3–spheres in
the sense that the perturbative SO.3/ invariant of a homology 3–sphere N can be
determined from the values of our perturbative invariants of M #N and M for a
3–manifold M with the first Betti number 1. Moreover, Proposition 5.4 implies that
the coefficients of our perturbative invariants are independent invariants. Since the
LMO invariant dominates all perturbative invariants for homology 3–spheres (see the
author’s book [28]), it is expected that there exists a refinement of the LMO invariant;
this will be discussed in [25]. Out perturbative invariants would be the sl2 reduction
of such a refinement of the LMO invariant.

It is still an open problem to interpret our perturbative invariants from the Chern–
Simons path integral. It might be necessary to consider a Z equivariant version of
the Chern–Simons theory. It might be related to the fact that the space of irreducible
SU.2/ representations of the fundamental group of a knot complement branches from
the space of reducible representations at zeros of the Alexander polynomial of the knot.

The paper is organized as follows. In Section 1, we define perturbative invariants for
3–manifolds with the first Betti number 1, and show their concrete values for some
examples. In Section 2, we explain how we can describe the arithmetic perturbative
expansion of �SO.3/

p .M / in terms of the perturbative invariants. In Section 3, we review
the loop expansions of the Kontsevich invariant and the colored Jones polynomials,
which are used in the proof of the main theorem. In Section 4, we prove the main
theorem, which states the topological invariance of the perturbative invariants. In
Section 5, we show some properties of the perturbative invariants. In Section 6, we
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calculate arithmetic limits of some rational functions of roots of unity, which we use
when we calculate arithmetic expansion of quantum invariants.

The author would like to thank Akio Tamagawa for the description of the space of
certain arithmetic series, and Lev Rozansky for discussion on the loop expansion of
the colored Jones polynomial. He is also grateful to Kazuo Habiro, Andrew Kricker,
Tomoyoshi Yoshida, Christine Lescop, Jørgen Andersen, Gregor Masbaum, Thang Le
for valuable comments and suggestions. He would also like to thank the referee for
many helpful comments.

Notation

We denote by �.t/ the Alexander polynomial of a knot K or a 3–manifold M with
b1.M /D 1; they are equal when M is obtained from S3 by 0 surgery along K . We
normalize �.t/ in such a way that �.t/D�.t�1/ and �.1/ is equal to the order of the
torsion subgroup of H1.M IZ/. Further, we normalize the colored Jones polynomial
Jn.KI q/ in such a way that Jn.the trivial knotI q/D 1. We note that Œn�Jn.KI q/ is
equal to the quantum .sl2;Vn/ invariant for any knot K with 0 framing, which is the
invariant defined from the irreducible n–dimensional representation Vn of the quantum
group of sl2 (see, for example, the author’s book [28]).

For a prime number p , we denote by Z.p/ the subring of Q consisting of rational
numbers whose denominators are not divisible by p . For x;y 2Z.p/ , we write x�

.p/
y

if x�y is divisible by p in Z.p/ . Let F be an extension of Q, let O be the integer
ring of F , and let p be a prime ideal of O . We denote by O.p/ the subring of F
consisting of elements of the form a=b for a 2O and b 2O� p. For x;y 2O.p/ , we
write x�

.p/
y if x�y 2 pO.p/ .

For Jacobi diagrams D1 and D2 , we write D1 �
.sl2/

D2 if their images by the sl2 weight
system are equal.

1 Definition of the perturbative invariants

In this section, we define perturbative invariants for 3–manifolds with the first Betti
number 1, motivated by the arithmetic perturbative expansion of the quantum SO.3/

invariant. We show concrete values of the perturbative invariants for some examples
and for the case where the Alexander polynomial has small degree.

Before explaining the general case, for simplicity, we explain the definition when M is
obtained from S3 by surgery along a knot K with 0 framing. Let p be an odd prime,
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and put � D exp.2�
p
�1=p/. Then, the quantum SO.3/ invariant �SO.3/

p .M / of M

is presented by

�SO.3/

p .M /D
1

c0

X
1�n<p
n is odd

Œn�2�Jn.KI �/;

where Jn.KI q/ denotes the colored Jones polynomial of K ,

Œn�� D .�
n=2
� ��n=2/=.�1=2

� ��1=2/

and c0 D

X
1�n<p
n is odd

Œn�2� D
1
2

X
n2Z=pZ

�nC ��n� 2

�C ��1� 2
D

�p

�C ��1� 2
:

Further, as shown by Rozansky [41] (see also Remark 3.2), the loop expansion of the
colored Jones polynomial is presented by

(1) Jn.KI q/D

1X
`D0

P`.q
n/

�.qn/2`C1
.q� 1/`;

where P`.t/ 2 ZŒt˙1� and, in particular, P0.t/D 1, and �.t/ is the Alexander poly-
nomial of K , which is equal to the Alexander polynomial of M . Hence, for each
n,

Jn.KI �/D

NX
`D0

P`.�
n/

�.�n/2`C1
.� � 1/`CO

�
.� � 1/NC1

IZ.p/Œ��
�
:

By substituting this to the formula of �SO.3/

p .M /,

�SO.3/

p .M /D
1

c0

X
1�n<p
n is odd

�nC��n�2

�C��1�2

NX
`D0

P`.�
n/

�.�n/2`C1
.��1/`CO

�
.��1/NC1

�

D�
1
2

NX
`D0

�
1

p

X
n2Z=pZ

.�nC��n�2/P`.�
n/

�.�n/2`C1

�
.��1/`CO

�
.��1/NC1

�
:

Further, by Proposition 6.1, �SO.3/

p .M / 2 Z.p/Œ�� and

(2) �SO.3/

p .M /D�1
2

NX
`D0

� X
cD0;c1;:::;cn

�
1C c

1� c

�p

Res
tDc

.1� t�1/2P`.t/

�.t/2`C1

�
.� � 1/`

CO
�
.� � 1/minfNC1;p�1g

�
;
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for all but finitely many primes p , where c1; c
�1
1
; : : : ; cn; c

�1
n are the zeros of �.t/.

Motivated by this formula, we define the perturbative invariant of M at c by

(3) �.M I c/D�
1

2
�
1C c

1� c

1X
`D0

�
Res
tDc

.1� t�1/2P`.t/

�.t/2`C1

�
.q� 1/` 2CJq� 1K;

where c is 0 or a zero of the Alexander polynomial �.t/ of M .

In general, we define the perturbative invariant, as follows. Let M be a 3–manifold
with the first Betti number 1. Then, M can be obtained from a rational homology
3–sphere N by surgery along a null-homologous knot K with 0 framing in N . By
Proposition 3.1,

Wsl2;Vn

�
ZLMO.N;K/

�
D Œn�

1X
`D0

P`.q
n/

�.qn/2`C1
.q� 1/`

for some P`.t/ 2 QŒt˙1�, where �.t/ is the Alexander polynomial of K , which is
equal to the Alexander polynomial of M ; in particular, P0.t/

�
D �.1/

�
is equal

to the order of the torsion part of H1.M IZ/. By using these P`.t/, we define the
perturbative invariant �.M I c/ at c by (3), where c is 0 or a zero of the Alexander
polynomial �.t/ of M . By Remark 3.2, this definition fits the previous definition
when N D S3 .

Theorem 1.1 �.M I c/ does not depend on the choice of N and K , that is, �.M I c/
is a topological invariant of a 3–manifold M with b1.M /D 1.

We show the proof of the theorem in Section 4.

By definition, �.M I 0/2QJq�1K. By Proposition 1.6, if the irreducible factors of �.t/
are of degree �1, then �.M I c/2QJq�1K. By Proposition 5.1, �.M I c/D �.M I c�1/

for a zero c of �.t/. We denote by �`.M I c/ the `th coefficient of �.M I c/, that is,
�.M I c/D

P1
`D0 �`.M I c/.q� 1/` and

�`.M I c/D�
1

2
�
1C c

1� c
Res
tDc

.1� t�1/2P`.t/

�.t/2`C1
2C:

Note that �`.M I 0/ 2Q, and, if the irreducible factors of �.t/ are of degree � 1, then
�`.M I c/ 2Q.

Example 1.2 By definition, �.S1�S2I 0/D 1, since S1�S2 is obtained from S3 by
0 surgery along the trivial knot. Hence, by Proposition 5.2, for a rational homology
3–sphere N , �

�
.S1�S2/#N I 0

�
is equal to the product of the perturbative SO.3/

invariant (see the author’s paper [26]) of N and the order of H1.N IZ/.
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Example 1.3 For the 3–manifold obtained from S3 by 0 surgery along the .a; b/
torus knot,

�.M I 0/D

(
�

1
2
q if .a; b/D .2; 3/;

0 otherwise,
�.M I c/D

1� c�2

2�0.c/
q.a�a�1/.b�b�1/=4;

where c is a zero of

�.t/D
.tab=2� t�ab=2/.t1=2� t�1=2/

.ta=2� t�a=2/.tb=2� t�b=2/

and we regard the right-hand sides of the formulas as in QJq� 1K by expanding them
into power series in q� 1.

Proof Rozansky [39] showed that the loop expansion of the colored Jones polynomial
is presented by

Jn.KI q
n/D

q.ab�a=b�b=a/=4

t1=2� t�1=2

1X
mD0

1

m!

�
log q

ab

�m�
t

d

dt

�2m
t1=2� t�1=2

�.t/
;

where the equality holds by putting t D qn after we calculate the right-hand side.
Hence, by definition,

�.M I c/D�
q.ab�a=b�b=a/=4

2
�
1C c

1� c

�

1X
mD0

1

m!

�
log q

ab

�m

Res
tDc

t1=2� t�1=2

t

�
t

d

dt

�2m
t1=2� t�1=2

�.t/
:

The residue of this formula is calculated recursively by using

(4) Res
tDc

.t1=2
� t�1=2/

d

dt

�
t'.t/

�
D�

1
2

Res
tDc

.t1=2
˙ t�1=2/'.t/;

where we obtain this formula from

d

dt

��
t1=2
� t�1=2

��
t'.t/

��
D

1
2

�
t1=2
˙ t�1=2

�
'.t/C

�
t1=2
� t�1=2

� d

dt

�
t'.t/

�
;

since the residue of the differential of some function equals 0. It follows that

�.M I c/D�
q.ab�a=b�b=a/=4

2
�
1C c

1� c

1X
mD0

1

m!

�
log q

ab

�m

�
1

4m
Res
tDc

t C t�1� 2

t�.t/

D�
q.a�a�1/.b�b�1/=4

2
�
1C c

1� c
Res
tDc

t C t�1� 2

t�.t/
:
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When c D 0, we calculate �.M I 0/, as follows. If .a; b/ D .2; 3/, then �.t/ D

t � 1C t�1 , and we obtain the required formula by concrete computation. Otherwise,
deg�.t/ > 1. Hence, putting

�.t/D .tn
C t�n/C � � � ;

the function of the residue has the form

tn� 2tn�1C tn�2

t2nC � � �C 1
;

and it has no pole at t D 0. Therefore, its residue equals 0, and we obtain the required
formula.

When c is a zero of �.t/, the residue is calculated as

Res
tDc

t C t�1� 2

t�.t/
D lim

t!c

.t � c/.t C t�1� 2/

t�.t/
D lim

t!c

t C t�1� 2

t�0.t/
D
.c � 1/2

c2�0.c/
:

Hence, by using this formula, we obtain the required formula.

Example 1.4 Rozansky [39] calculated “approximation” of loop polynomials of some
knots. If his “approximate” formulas would be the exact ones, we can calculate our
invariants by using them for 3–manifolds obtained from S3 by 0 surgery along those
knots. For example, for the 3–manifold M obtained from S3 by 0 surgery along the
figure-eight knot,

�.M I 0/D
?

1
2
C 0.q� 1/C 0.q� 1/2C � � � ;

�
�
M I 3C

p
5

2

�
D
?
�

1
2
C 0.q� 1/� 1

125
.q� 1/2C � � � :

Further, for the 3–manifold M obtained from S3 by 0 surgery along the 52 knot,

�.M I 0/D
?
�

1
4
C

5
16
.q� 1/� 23

64
.q� 1/2C � � � ;

�
�
M I 3C

p
�7

4

�
D
?

1
4
�

31
112
.q� 1/C 915

3126
.q� 1/2C � � � :

The 0th and 1st coefficients of the right-hand sides are correct, since we can calculate
the 2–loop polynomial exactly for arbitrarily given knot; see Kricker [18] and the
author’s papers [30; 33].
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1.1 The case where �.t/ is of degree 0

In this case, �.t/D b , where b is the order of the torsion subgroup of H1.M IZ/. We
can calculate the perturbative invariant from the loop polynomial by

�`.M I 0/D�
1

2
Res
tD0

.t C t�1� 2/P`.t/

b2`C1t

D�
1

2b2`C1

�
constant term of .t C t�1

� 2/P`.t/
�
:

Remark 1.5 When H1.M IZ/ŠZ and the Alexander polynomial �.t/ of M equals
1, independently of the author, Kazuo Habiro and Thang Le constructed an invariant,
presented by “Habiro expansion”, which is an expansion of the form

1X
nD0

an.q� 1/.q2
� 1/ : : : .qn

� 1/:

It is an equivalent invariant to �.M I 0/ for such 3–manifolds in the sense that their
invariant is uniquely determined by �.M I 0/. Further, they showed that the value of
each �SO.3/

p .M / is obtained from their invariant by substituting a root of unity to q .
It follows that �.M I 0/ is universal among quantum invariants �SO.3/

p .M / for such
3–manifolds.

1.2 The case where the irreducible factors of �.t/ are of degree 1

In this case, we show Propositions 1.6 and 1.7, in this subsection.

Proposition 1.6 If the irreducible factors of �.t/ are of degree 1, �.M I c/2QJq�1K.

Proof It is sufficient to show that �`.M I c/ 2Q for a zero c of �.t/, where c is a
zero of a factor 1� a.t C t�1� 2/ of �.t/. By definition,

�`.M I c/D�
1

2b2`C1
0

�
1C c

1� c
Res
tDc

.t C t�1� 2/P`.t/

t�.t/2`C1
:

It can be presented by a linear sum of

1C c

1� c
Res
tDc

.t C t�1� 2/m

t
�
1� a.t C t�1� 2/

�mC1
:

Further, by Lemma 6.5, this is equal to

.�1/m2

�
2m�1

m

��
1� c

1C c

�2m

D
.�1/m2

.4aC 1/m

�
2m�1

m

�
2Q;
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since 4aC 1D .1C c/2=.1� c/2 . Hence, �`.M I c/ 2Q.

Proposition 1.7 If �.t/ is of degree 1, the following (1) and (2) holds, where we put
�.t/D b0� b1.t C t�1� 2/ with non-zero integers b0; b1 , and c is a zero of �.t/.

(1) The 0th coefficients of the perturbative invariants are presented by

�0.M I 0/D
b0

2b1

; �0.M I c/D�
b0

2b1

:

(2) Putting the 2–loop polynomial by P1.t/D f .t/�.t/
3Ca2�.t/

2Ca1�.t/Ca0 ,
the first coefficients of the perturbative invariants are presented by

�1.M I 0/D�
1
2

�
constant term of .t C t�1

� 2/f .t/
�
C

a2

2b1

;

�1.M I c/D�
a2

2b1

C
a1

b0.4b1C b0/
C

a0.b1C b0/

b2
0
.4b1C b0/2

:

Proof We obtain (1) by Proposition 5.3.

We show (2), as follows. By definition, putting z D t C t�1� 2,

�1.M I 0/D�
1
2

Res
tD0

zP1.t/

t�.t/3

D�
1
2

Res
tD0

z

t

�
f .t/C

a2

b0� b1z
C

a1

.b0� b1z/2
C

a0

.b0� b1z/3

�
:

Since

Res
tD0

z

t.b0� b1z/`
D

(
�

1
b1

if `D 1;

0 if ` > 1;

we obtain the required formula of �1.M I 0/. Similarly, we have that

�1.M I c/D�
1

2
�
1C c

1� c
Res
tDc

z

t

�
f .t/C

a2

b0� b1z
C

a1

.b0� b1z/2
C

a0

.b0� b1z/3

�
:

Since

1C c

1� c
Res
tDc

z

t.b0� b1z/`
D

8̂̂<̂
:̂

1
b1

if `D 1;

�
2

b0.4b1Cb0/
if `D 2;

�
2.b1Cb0/

b2
0
.4b1Cb0/2

if `D 3;

we obtain the required formula of �1.M I c/.
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2 Arithmetic perturbative expansion of �SO.3/

p .M /

In this section, we explain how we can describe the arithmetic perturbative expansion of
�SO.3/

p .M /. We define �.M I �/, which describes the behavior of the series
�
y�p;`.M /

�
for certain subsequences of p . Further, we define �.M /, which is obtained from the
vector

�
�.M I �/

�
�

by such a coordinate change that the resulting �.M / does not
depend on � .

We briefly review some preliminaries of number theory used in this section; for details
see, for example, Neukirch [24] and Ribenboim [35]. We denote by F the minimal
splitting field of �.t/, which is a Galois extension of Q. We denote by O the integer
ring of F . It is known that, for any prime number p , the ideal pO �O decomposes
into the form,

pOD .p1 : : : pg/
e;

where the pi s are prime ideals in O such that pi \ZD .p/; they are related to each
other by pj D �.pi/ for some � 2 Gal.F=Q/. When e D 1, pi is called unramified.
Let p denote a prime ideal in O such that .p/D p\Z. It is known that p is unramified
for all but finitely many p. The decomposition group of p is defined by

Dp D
˚
� 2 Gal.F=Q/

ˇ̌
�.p/D p

	
:

Let kp denote the residue field O=p, which is a Galois extension of the prime field
Fp . It is known that, when p is unramified, the left map of the following line is an
isomorphism,

Gal.kp=Fp/
Š
 �Dp � Gal.F=Q/:

Let Frp denote the Frobenius map kp!kp taking x to xp . It is known that Gal.kp=Fp/

is generated by Frp . When p is unramified, by the above map, we associate the
Frobenius automorphism Frp D � 2Gal.F=Q/ with p. Let P be the set of unramified
prime ideals of O . For each � 2Gal.F=Q/, we put P.�/ to be the set of p2P whose
Frobenius automorphism is � , that is,

P.�/D
˚
p 2 P

ˇ̌
Frp D �

	
:

When p 2P.�/, �.p/ 2P.����1/ for � 2Gal.F=Q/. It is known by the Chebotarev
density theorem (see, for example, Neukirch [24, Theorem VII.13.4] and Ribenboim [35,
Section 25.3]) that P.�/ is an infinite set for each � 2 Gal.F=Q/.

2.1 Arithmetic perturbative expansion

We calculate the arithmetic perturbative expansion of �SO.3/

p .M / under the following
assumption; this is a technical assumption (see Remark 2.3).
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Assumption 2.1 M is a 3–manifold obtained from S3 by 0 surgery along a knot K .

In this case, as mentioned before, �SO.3/

p .M /2Z.p/Œ��. We expand this as a polynomial
in .� � 1/,

(5) �SO.3/

p .M /D

p�2X
`D0

y�p;`.M /.� � 1/`CO
�
.� � 1/p�1

IZ.p/Œ��
�

for some y�p;`.M /. This expansion is not unique, but
�
y�p;`.M / modulo p

�
is uniquely

determined from �SO.3/

p .M /, so we regard y�p;`.M / as in the prime field Fp . Further,
by (2),

(6) y�p;`.M /�
.p/

X
c

�
1C c

1� c

�p�1

�`.M I c/ 2 Z.p/

for all but finitely many primes p (to be precise, for an odd prime p such that p>`C1

and p > 1C deg Pk.t/� .2kC 1/ deg�.t/ for any k � ` and �.1/ is not divisible
by p ). For � 2 Gal.F=Q/, we put

�.M I �/D
X

cD0;c1;:::;cn

1C �.c/

1� �.c/
�

1� c

1C c
�.M I c/ 2 FJq� 1K�CJq� 1K;

where c1; c
�1
1
; : : : ; cn; c

�1
n are the zeros of �.t/. In particular, its `th coefficient is

given by

(7) �`.M I �/D
X

cD0;c1;:::;cn

1C �.c/

1� �.c/
�

1� c

1C c
�`.M I c/ 2 F �C:

Let O.p/ denote the subring of F consisting of elements of the form a=b for a 2O
and b 2O� p. Then, �`.M I �/ 2O.p/ for p with �.1/ 62 p.

Proposition 2.2 Under Assumption 2.1, for all but finitely many prime ideals p 2

P.�/,
y�p;`.M / �

.p/
�`.M I �/ 2O.p/

where p is the prime given by p\Z D .p/. Hence, the value of �`.M I �/ 2 F is
uniquely determined by the series

�
y�p;`.M /

�
pW primes since P.�/ is an infinite set.

A more concrete assumption of p 2 P.�/ for the proposition is that �.1/ 62 p, and
p>`C1, and p> 1Cdeg Pk.t/�.2kC1/ deg�.t/ for any k� `. By the proposition,
we can regard �.M I �/ as an arithmetic perturbative expansion of �SO.3/

p .M / for such
a subsequence of p 2 P.�/.
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Proof of Proposition 2.2 Since p 2 P.�/,�
1C c

1� c

�p

D Frp

�
1C c

1� c

�
D �

�
1C c

1� c

�
D

1C �.c/

1� �.c/
:

Hence, by (6) and (7), we obtain the required formula.

Remark 2.3 Rozansky informed the author that we can show the loop expansion
(1) of the colored Jones polynomial with integer coefficients for knots in integral
homology 3–spheres; see Rozansky [36; 37]. If we show the above procedure using
this, Assumption 2.1 can be replaced with the assumption that H1.M IZ/Š Z.

In the following of this section, we explain how to describe the series
�
y�p;`.M /

�
pW primes

under Assumption 2.1 and, for simplicity, the following assumption.

Assumption 2.4 The Alexander polynomial �.t/ of M does not have a multiple
zero.

From (6) and the definition of �`.M I c/, we have that

y�p;`.M /�
.p/
�`.M I 0/�

1
2

nX
iD1

�
1C ci

1� ci

�p

Res
tDci

.1� t�1/2P`.t/

�.t/2`C1

for all but finitely many primes p , where we put �.t/D
Qn

iD1

�
1�˛i.t C t�1� 2/

�
with distinct ˛i 2C , and ci is a zero of 1�˛i.t C t�1� 2/. Hence, y�p;`.M / can be
presented by a Q–linear sum of 1 and

nX
iD1

�
1C ci

1� ci

�p

Res
tDci

fm.˛i/

t
�
1�˛i.t C t�1� 2/

�m
for some polynomials fm.˛/ 2QŒ˛�, because, for example, putting z D t C t�1� 2,

1

�.t/
D

nX
iD1

˛n�1
iQ

j¤i.˛i � j̨ /

1

1�˛iz

D
1

d

nX
iD1

˛n�1
i

Y
j¤i

.˛i � j̨ /
Y

j ;j 0¤i
j¤j 0

. j̨ � j̨ 0/
2 1

1�˛iz
D

nX
iD1

f .˛i/

1�˛iz

for some polynomial f .˛/2QŒ˛�, where d D
Q

i¤j .˛i� j̨ /
2 2Q, since a symmetric

polynomial in j̨ s (j ¤ i ) can be presented by a polynomial in ˛i with rational
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coefficients. Therefore, in the same way as in the proof of Proposition 1.6, y�p;`.M /

can be presented by a Q–linear sum of 1 and

nX
iD1

�
1C ci

1� ci

�p�1

g.˛i/

for some polynomial g.˛/ 2QŒ˛�. Putting �i D .1C ci/=.1� ci/ (and, hence, 4˛i C

1 D �2
i ), y�p;`.M / can be presented by a Q–linear sum of 1 and

Pn
iD1 �

pCk
i for

k D �1; 1; 3; : : :. Further, we note that �2
1
; : : : ; �2

n equals the zeros of F.x/, where
we set r.z/ 2QŒz� by �.t/Dr.z/D

Q
i.1�˛iz/ putting z D t C t�1� 2, and set

F.x/ 2QŒx� by F.x/D znr.1=z/D
Q

i.z�˛i/ putting x D 4zC 1. Since F.x/ is
a polynomial of degree n,

Pn
iD1 �

pCk
i for each odd k can be presented by a Q–linear

sum of
Pn

iD1 �
pCb
i for b D 1; 3; : : : ; 2n�1. Therefore, y�p;`.M / can be presented by

a Q–linear sum of 1 and
Pn

iD1 �
pCb
i for b D 1; 3; : : : ; 2n�1.

Let us regard the series
�
y�p;`.M /

�
pW primes as in

F D
Y

primes p

Fp

ı M
primes p

Fp;

that is, we consider the series
�
y�p;`.M /

�
pW primes 2

Q
primes pFp modulo the equivalence

that .ap/� .a
0
p/ when apDa0p for all but finitely many primes p . Note that F forms

a Q–algebra. In F , the series
�
y�p;`.M /

�
pWprimes can be presented by a linear sum of 1

and
�P

i �
pCb
i

�
pW primes for b D 1; 3; : : : ; 2n�1.

Further, by the Tamagawa map given in Section 2.2, such a linear sum in F is
identified with an element in C˝Q C , and, in particular, the Tamagawa map takes�
y�p;`.M /

�
pW primes to

(8)

�
1
2

X
cD0;c1;:::;cn

1C c

1� c
˝Res

tDc

.1� t�1/2P`.t/

�.t/2`C1
D

X
cD0;c1;:::;cn

1C c

1� c
˝

1� c

1C c
�`.M I c/2C˝Q C:

So, we put

(9) �.M /D
X

cD0;c1;:::;cn

1C c

1� c
˝

1� c

1C c
�.M I c/ 2

�
C˝Q C

�
Jq� 1K:

It can be shown from the topological invariance of �SO.3/

p .M / (without using Theorem
1.1) that this is a topological invariant of M , when M satisfies Assumptions 2.1 and
2.4.
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As mentioned before, �.M I �/ can be regarded as an arithmetic perturbative expansion
of �SO.3/

p .M / for a subsequence P.�/. The vector
�
�.M I �/

�
�

is taken to �.M /, by
the inverse matrix of the matrix

�
�.fi/

�
�;i

given in the proof of Lemma 2.6. Hence,
�.M / is an invariant obtained from the vector

�
�.M I �/

�
�

by such a coordinate change
that the resulting �.M / does not depend on the Galois group.

2.2 The Tamagawa map

The arguments of this subsection are due to Akio Tamagawa. For the preliminary of
number theory used in this subsection, see, for example, Neukirch [24] and Riben-
boim [35].

Let F.x/ and �1; : : : ; �n be as above. We use the notation given at the beginning of
this section.

Proposition 2.5 (A Tamagawa) The following map

(10)
� nX

iD1

�
apCb
i

�
pW primes

7�!

nX
iD1

�a
i ˝ �

b
i 2 F ˝Q F �C˝Q C

induces an isomorphism between algebras,

(11)
spanQ

�� nX
iD1

�
apCb
i

�
p

ˇ̌̌̌
aCb is even

�
Š
�! spanQ

� nX
iD1

�a
i ˝�

b
i

ˇ̌̌̌
aCb is even

�
:

� �

F F ˝Q F

Recall that kp is the residue field O=p for a prime ideal p�O . Similarly as F is a
Q–algebra,

Q
p kp

ıL
p kp forms an F –algebra, where p runs over all prime ideals of

O in the direct product and in the direct sum; we can further assume that p 2 P , since
we can ignore finitely many p in

Q
p kp

ıL
p kp .

Proof of Proposition 2.5 We consider the following homomorphisms,

F �!
Y
p

kp

ıM
p

kp
�
 � F ˝Q F ;

where the left homomorphism is the natural homomorphism induced by the inclusion
Fp ! kp , and the right homomorphism � is defined by �.� ˝ ı/ D

�
�pı

�
p2P . By

definition, the images of� nX
iD1

�
apCb
i

�
pW primes

and
nX

iD1

�a
i ˝ �

b
i
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in
Q

p kp

ıL
p kp are equal. Further, since the homomorphism � is injective by Lemma

2.6 below, the homomorphism (10) is well defined.

Moreover, since the inverse homomorphism of (11) is well defined, (11) is an isomor-
phism.

Lemma 2.6 (A Tamagawa) The homomorphism

�W F ˝Q F �!
Y
p

kp

�M
p

kp

given by �.�˝ ı/ D
�
�pı

�
p2P is an injective F –homomorphism, where we regard

F ˝Q F as an F –algebra by the multiplication of a scalar 2 F to the second factor of
F ˝Q F .

Proof Since P splits into the disjoint union of P.�/s, we have thatY
p

kp

�M
p

kp D

M
�

� Y
p2P.�/

kp

� M
p2P.�/

kp

�
:

We consider the map

F �!
Y

p2P.�/

kp

� M
p2P.�/

kp

induced by the natural map O.p/ ! kp . Since P.�/ is an infinite set, this map is
injective. By making the direct sum of such maps, we have an injective linear map.

F˚m
�!

Y
p

kp

�M
p

kp;

where m is the degree of the extension F=Q, which is equal to the cardinality of
Gal.F=Q/. This linear map takes the natural basis of F˚m to

e� D
�
e�;p

�
p2P ; e�;p D

(
1 if p 2 P.�/;
0 otherwise.

In terms of e� , the linear map

�W F ˝Q F �! F˚m
�

Y
p

kp

�M
p

kp

is presented by

�.�˝ ı/D
�
�pı

�
p2P D

X
�

Frp.�/ıe� D
X
�

�.�/ıe� :
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For an integral basis ffig of O , this linear map is presented by the matrix
�
�.fi/

�
�;i

.
Its determinant is the discriminant of the extension F=Q, and is non-zero. Hence, � is
an injective F –linear map. Further, since � is a homomorphism by definition, � is an
injective F –homomorphism.

Remark 2.7 This remark is on a personal history of the research of this paper. In
an early stage of the research, the author observed that the arithmetic perturbative
expansion of �SO.3/

p .M / can be presented by a linear sum of 1; 
0; : : : ; 
n�1 where


j D

nX
iD1

�
pC2j�1
i and �i D .1C ci/=.1� ci/

for the zeros c˙1
1
; : : : ; c˙1

n of �.t/, and obtained results such as those in Sections 2.3
and 2.4, when the irreducible factors of the Alexander polynomial �.t/ is of degree
� 2. In order to obtain results when irreducible factors of �.t/ is of general degree, it
was a problem to describe the space W D spanQf1; 
0; : : : ; 
n�1g. The author asked
Akio Tamagawa how to describe W , and Tamagawa soon constructed the map (11)
for aD 1. Motivated by this map, the author presented the coefficients of the linear
sum in terms of integral, showing Proposition 6.1, and observed that the image of the
linear sum by the Tamagawa map (11) is presented by the tensor product (8) for the
`th coefficient of the arithmetic perturbative expansion of �SO.3/

p .M /. After that, the
author directly proved Theorem 1.1, which implies that the second factor of this tensor
product is also a topological invariant, by introducing the t –through relation.

2.3 The case where �.t/ is of degree 0

In this case, the arithmetic perturbative expansion of �SO.3/

p .M / is described (without
using the Tamagawa map), as follows.

As a particular case of (6), we have

Proposition 2.8 Under Assumption 2.1, for all but finitely many primes p ,

y�p;`.M /�
.p/
�`.M I 0/:

That is, for such p ,

�SO.3/

p .M /D �.M I 0/.�`/CO
�
.� � 1/`C1

IZ.p/Œ��
�
;

where we put �.M I �/.�`/ D
P`

kD0 �k.M I �/.q� 1/k .
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A more concrete assumption of p for the proposition is that b0 is not divisible by p

and p > `C 1 and p > 1C deg Pk.t/ for any k � `.

Therefore, as an alternative form of (9), �.M / D 1˝ �.M I 0/ is regarded as the
arithmetic perturbative expansion of �SO.3/

p .M /.

2.4 The case where the irreducible factors of �.t/ are of degree 1

In this case, the arithmetic perturbative expansion of �SO.3/

p .M / is described, as follows.

Proposition 2.9 Let M be a 3–manifold whose Alexander polynomial is presented
by �.t/D

Qn
iDn

�
1� ai.t C t�1 � 2/

�
with ai 2Q, satisfying Assumptions 2.1 and

2.4. Then, for all but finitely many primes p ,

y�p;`.M /�
.p/
�`.M I 0/C

nX
iD1

�
4ai C 1

p

�
�`.M I ci/;

where ci is a zero of 1� ai.t C t�1� 2/, and
�
�
p

�
denotes the Legendre symbol. That

is, for such p ,

�SO.3/

p .M /D �.M I 0/.�`/C

nX
iD1

�
4ai C 1

p

�
�.M I ci/

.�`/
CO

�
.� � 1/`C1

IZ.p/Œ��
�
:

A more concrete assumption of p for the proposition is that �.˙1/ are not divisible
by p and p > `C 1 and p > deg Pk.t/� 2` for any k � `.

Proof of Proposition 2.9 By (6),

y�p;`.M /�
.p/
�`.M I 0/C

nX
iD1

�
1C ci

1� ci

�p�1

�`.M I ci/:

Since 1� ai.ci C c�1
i � 2/D 0, we have that ci C c�1

i � 2D a�1
i . Hence,�

1C ci

1� ci

�2

D
a�1

i C 4

a�1
i

D 4ai C 1;

and
�

1C ci

1� ci

�p�1

D .4ai C 1/.p�1/=2
�
.p/

�
4ai C 1

p

�
:

By substituting this formula to the above formula of y�p;`.M /, we obtain the required
formula.
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We put

"k D

��
k

2

�
;

�
k

3

�
;

�
k

5

�
; : : :

�
2 F ;

and denote by R1 the subring of F generated by "k for non-zero integers k , ignoring
primes p for which the Legendre symbol

�
k
p

�
is not defined. Then,

(12) R1 DQŒ"�1; "2; "3; "5; : : :�
ı
."2
�1D"

2
2D"

2
3D"

2
5D� � �D1/

by the Dirichlet prime number theorem which implies that there are infinitely many
primes with same values for Legendre symbols. We can verify that the relations among
"k in (12) are sufficient, since R1 is embedded into C˝Q C by the Tamagawa map
(11),

R1 �!C˝Q C; "k 7�!
p

k˝
1
p

k
;

which is an algebra homomorphism in this domain. Therefore, as an alternative form
of (9),

�.M I 0/C

nX
iD1

"4aiC1�.M I ci/ 2R1Jq� 1K

is regarded as the arithmetic perturbative expansion of �SO.3/

p .M /.

3 The loop expansion

In this section, we review the loop expansions of the Kontsevich invariant and the
colored Jones polynomials in Section 3.1 and 3.2 respectively. The latter can be obtained
from the former by sl2 reduction; we explain its concrete procedure in Section 3.2.

3.1 The loop expansion of the Kontsevich invariant

In this subsection, we review the loop expansion of the Kontsevich invariant and how
we obtain it by the rational version of the Aarhus integral.

The Kontsevich invariant is defined in the space of Jacobi diagrams on S1 , which we
define as follows. For a 1–manifold X , a Jacobi diagram on X is the manifold X

together with a uni-trivalent graph such that univalent vertices of the graph are distinct
points on X and each trivalent vertex is vertex-oriented, where a vertex-oriented
trivalent vertex is a trivalent vertex such that a cyclic order of the three edges around
the trivalent vertex is fixed. In figures we draw X by thick lines and the uni-trivalent
graphs by thin lines, in such a way that each trivalent vertex is vertex-oriented in the
counterclockwise order. We define the degree of a Jacobi diagram to be half the number
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of univalent and trivalent vertices of the uni-trivalent graph of the Jacobi diagram. We
denote by A.X / the quotient vector space spanned by Jacobi diagrams on X subject
to the following relations, called the AS, IHX, and STU relations respectively,

D� ;

D � ;

D � :

The Kontsevich invariant Z.K/ [16] of a knot K is defined to be in A.S1/; for details
of its constructions see, for example, the author’s book [28].

The loop expansion of the Kontsevich invariant is defined in the space of open Jacobi
diagrams. An open Jacobi diagram is a vertex-oriented uni-trivalent graph. We denote
by A.�/ the quotient vector space spanned by open Jacobi diagrams subject to the
AS and IHX relations. The Poincare–Birkhoff–Witt isomorphism �W A.�/!A.#/ is
defined by

(13) D
�
7�!

D ;

for any diagram D , where the box denotes the symmetrizer

(14)

n lines

D
1

n!

0B@ C C C � � �

1CA :
A label of a power series f .„/D c0C c1„C c2„

2C c3„
3C � � � implies that

(15)
f .„/

D c0 C c1
„C c2

„

„C c3

„

„

„
C � � � :

Note that

f .„/

=
f .�„/
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by the AS relation, in the notation of this paper. Any open Jacobi diagram can be
presented by a trivalent graph with labels on its edges. It is known (see Rozansky [42],
Kricker [17] and Garoufalidis–Kricker [9]) that the Kontsevich invariant of a knot K

has a presentation, called the loop expansion,

��1Z.K/D�t expt

0BB@
�

1
2

log�.t/

C

finiteX
i

pi;1.t/=�.t/

pi;2.t/=�.t/

pi;3.t/=�.t/

C
�
terms of (� 3)-loop presented in the same way

�1CCA ;
where we put t D e„ , and expt denotes the exponential with respect to the disjoint-
union product of open Jacobi diagrams, �.t/ denotes the Alexander polynomial of K ,
and pi;j .t/ is a polynomial in t˙1 , and we put

�D ��1Z
�
the trivial knot

�
D expt

0BB@
1
2

log sinh.„=2/
„=2

1CCA :

Similarly, it can be shown that the LMO invariant of a pair of a rational homology
3–sphere N and a null-homologous knot K in N is also presented by the loop
expansion,

��1ZLMO.N;K/D

ZLMO.N /t�t expt

0BB@
�

1
2

log
�
�.t/=�.1/

�
C

finiteX
i

pi;1.t/=�.t/

pi;2.t/=�.t/

pi;3.t/=�.t/

C
�
terms of (� 3)-loop presented in the same way

�1CCA :
We briefly review how we obtain the loop expansion; for detailed and precise arguments,
see Kricker [17] and Garoufalidis–Kricker [9]. The Kontsevich invariant of the long
Hopf link is presented by

(16) ��1Z

0@ 1AD t t
� � �

t�1 t�1
t�;
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where we put tD e„ . A pair of a rational homology 3–sphere N and a null-homologous
knot K in N can be obtained from .S3;K0/ by surgery along K for some framed
link K0 [ L in S3 such that K0 is the trivial knot and each component of L is
null-homologous in the complement of K0 . Let A be the equivariant linking matrix
(see Kojima–Yamasaki [15] and Garoufalidis–Kricker [7]) of a lift of L in the infinite
cyclic cover of S3�K0 ; its entries are in ZŒt˙1�. Then, the Kontsevich invariant of
K0[L can be presented by the form

��1Z.K0[L/D�t exp

0@1
2

X
i;j

Aij

yi yj

1AtR;

where R is a linear sum of open Jacobi diagrams with labels of polynomials in t˙1

and with at least 3 univalent vertices; this presentation follows from (16). The rational
version of the Aarhus integral takes it to

��1ZLMO.N;K/D c
��C
C c����

Z rat
��1Z.K0[L/dY D

c
��C
C c���� t�t expt

0B@ �
1
2

log
�
�.t/=�.1/

�1CAt
˝

exp

0@�1
2

X
i;j .A�1/ij

@yj @yi
1A ;R

˛
;

where c˙ 2A.∅/ are some normalization constants, �˙ are the number of positive
and negative eigenvalues of the linking matrix of L, and the bracket is defined by

hD1;D2i D

8̂̂<̂
:̂

DD1 2

if the number of @yi–legs of D1 equals
the number of yi–legs of D2 for each i ,

0 otherwise,

for open Jacobi diagrams D1 with @yi –legs and D2 with yi –legs. Here, a shaded box
means the sum of all ways of connecting the left lines to the right lines, which is equal
to n! times (14).

3.2 The loop expansion of the colored Jones polynomial

In this subsection, we explain the loop expansion of the colored Jones polynomial
(Proposition 3.1 and Remark 3.2) is obtained from the loop expansion of the Kontsevich
invariant by sl2 reduction.
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The sl2 reduction is a procedure reducing an open Jacobi diagram with labels of rational
functions to a rational function, in the following way. We resolve trivalent vertices by

(17) �
.sl2/

2h

0@ �

1A ;
where h is a variable satisfying that q D eh , noting that the sl2 weight system of both
sides are equal; see Chmutov–Varchenko [4] and the author’s book [28]. By using this
formula recursively, we have that

„k

D

k legs

�
.sl2/

(�p
2C � h

�k
C
�
�
p

2C � h
�k for k > 0,

3 for k D 0,

where C denotes the diagram consisting of a single arc. Hence, for a function '.t/
which has an expansion '.e„/ 2QJ„K,

'.t/

�
.sl2/

'.yt/C'.yt�1/C'.1/;

where we put t D e„ and yt D e
p

2C �h . In a similar way, we can also show (see the
author’s paper [30]) that

'1.t/

'2.t/

'3.t/

�
.sl2/

2h
X

fi;j ;kgDf1;2;3g

'i.yt/'j .yt
�1/'k.1/;(18)

'.t/  .t/

�
.sl2/

2h
�
'.yt/�'.yt�1/

��
 .yt/� .yt�1/

�
;(19)

for rational functions 'i.t/, '.t/ and  .t/. In general, we can decrease the number of
trivalent vertices, as follows. Consider a trivalent vertex,

'1.t/

'2.t/

'3.t/

:

By putting y'i.t/D 'i.t/�'i.1/, the above diagram is equal to the sum of diagrams
obtained from it by replacing each 'i.t/ with y'i.t/ or 'i.1/. If we choose y'i.t/ for
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all i , the diagram vanishes, since

�
.sl2/

0

by (17). Hence, at least one of the 'i.t/s is replaced with 'i.1/. By applying (17) to
the edge corresponding to 'i.1/, we can decrease the number of trivalent vertices. In
this way, we can reduce a Jacobi diagram with labels of rational functions of t to a
rational function of yt by sl2 reduction. Further,

expt

0B@ �
1
2

log
�
�.t/=�.1/

�1CA �
.sl2/

exp
�
� log

�
�.yt/=�.1/

��
D
�.1/

�.yt/
:

Therefore, since the sl2 reduction of ZLMO.N / 2 A.∅/ is given by a power series
in QJhKŠQJq� 1K, the sl2 reduction of the loop expansion of ��1ZLMO.N;K/ is
presented by

��1ZLMO.N;K/t��1
�
.sl2/

1X
`D0

yP`.yt/

�.yt/2`C1
.q� 1/`

for some symmetric polynomials yP`.yt/ 2QŒyt˙1�.

Proposition 3.1 Let K be a null-homologous knot in a rational homology 3–sphere
N . Then, Wsl2;Vn

�
ZLMO.N;K/

�
is presented by the form,

(20) Wsl2;Vn

�
ZLMO.N;K/

�
D Œn�

1X
`D0

P`.q
n/

�.qn/2`C1
.q� 1/`;

for some polynomials P`.t/ 2QŒt˙1�, where �.t/ is the Alexander polynomial of K ;
in particular, P0.t/

�
D�.1/

�
is equal to the order of H1.N IZ/.

Proof Since �.�/ is the Kontsevich invariant of the trivial knot, Wsl2;Vn

�
�.�/

�
D Œn�.

Hence,

� �
.sl2/

e
p

2C �h=2� e�
p

2C �h=2

p
2C � h

Wsl2;Vnı�

7�! Œn�D
qn=2� q�n=2

q1=2� q�1=2
:

By replacing h with kh,

1

k
�
ytk=2�yt�k=2

yt1=2�yt�1=2
�� 7�! Œn� �

tk=2� t�k=2

t1=2� t�1=2
�

1

Œk�
;
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where we put yt D e
p

2C �h and t D qn . Therefore,

'.yt/� 7�! Œn� �
1

t1=2� t�1=2
�

D˛

ŒD˛ �

��
t1=2
� t�1=2

�
'.t/

ˇ̌
t1=2!e˛

�
D Œn� �

1

t1=2� t�1=2
�

D

ŒD�

��
t1=2
� t�1=2

�
'.t/

�
;

where we put D˛ D
d

d˛
and D D 2t d

dt
, regarding D

ŒD�
D

eh=2�e�h=2

ehD=2�e�hD=2 D as a power
series in .hD/2 and h. Hence, we can determine P`.t/ by

(21)
X
`

P`.t/

�.t/2`C1
.q�1/`D

1

t1=2�t�1=2
�

D

ŒD�

��
t1=2
�t�1=2

�X
`

yP`.t/

�.t/2`C1
.q�1/`

�
;

where we can show that P`.t/ 2QŒt˙1�, since

1

t1=2� t�1=2
� .hD/2m

��
t1=2
� t�1=2

� yP`.t/

�.t/2`C1
.q� 1/`

�
is presented by a linear sum of the form fk.t/

�.t/2kC1 .q� 1/k for some polynomials
fk.t/ 2QŒt˙1�.

Remark 3.2 In particular, when N D S3 ,

Wsl2;Vn

�
ZLMO.S3;K/

�
DWsl2;Vn

�
Z.K/

�
D Œn�Jn.KI q/:

Hence, in this case, Proposition 3.1 implies the loop expansion of the colored Jones
polynomial,

Jn.KI q/D

1X
`D0

P`.q
n/

�.qn/2`C1
.q� 1/`:

This formula was shown by Rozansky; he further shows that P`.t/ 2 ZŒt˙1� in [41].

Remark 3.3 In the defining relation (2) of the perturbative invariant, we can replace
P`.t/ with yP`.t/, since

(22) Res
tDc

.1� t�1/2P`.t/

�.t/2`C1
D Res

tDc

.1� t�1/2 yP`.t/

�.t/2`C1
;

where this equality is obtained as follows. By (4),

Res
tDc

t1=2� t�1=2

t
D'.t/D�Res

tDc

t1=2˙ t�1=2

t
'.t/
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for D D 2t d
dt

. Hence,

Res
tDc

t1=2� t�1=2

t
D2'.t/D Res

tDc

t1=2� t�1=2

t
'.t/:

Therefore, when we consider the residue of (21) of the form (22), we can replace D2

with 1, and, hence, we obtain (22).

4 Proof of Theorem 1.1

In this section, we prove Theorem 1.1, which states the topological invariance of the
perturbative invariants of 3–manifolds with the first Betti number 1. We show “Kirby
theorem” for surgery presentations of such 3–manifolds in Proposition 4.1, and prove
Theorem 1.1 by introducing the t –through relation. To prove the theorem, we also
show some properties of the t –through relation.

Let M be a closed 3–manifold with the first Betti number 1. We choose a framed link
L0 in S3 such that M is obtained from S3 by surgery along L0 . Then, H 1.M IZ/ is
presented by the kernel of the homomorphism Zn!Zn given by the multiplication of
the linking matrix A of L0 , and, hence, a cohomology class in H 1.M IZ/ is presented
by a 2Zn such that AaD 0. We can assume, without loss of generality, that all entries
in the first row and the first column of A are equal to 0 and aD

�
1 0 � � � 0

�
T , by

changing L0 by handle slide moves if necessary. This implies that the first component
of L0 has 0 framing and the other components are null-homologous in the complement
of the first component. Further, we can assume that the first component of L0 is the
trivial knot K0 , because we can untie the first component by a sequence of crossing
changes and each crossing change can be realized by a surgery along a small trivial
knot winding around the crossing. It follows, by putting L0 D K0 [L, that, for a
3–manifold M with the first Betti number 1, we can choose a framed link K0[L in
S3 as a surgery presentation of M such that K0 is the trivial knot with 0 framing and
each component of L is null-homologous in the complement of K0 .

Proposition 4.1 Let K0 be the trivial knot with 0 framing in S3 , and let L and L0

be framed links in S3 �K0 such that each component of them is null-homologous
in S3 �K0 , and let S3

K0[L
and S3

K0[L0
denote the 3–manifolds obtained from S3

by surgery along K0 [L and K0 [L0 respectively. Then, S3
K0[L

and S3
K0[L0

are
homeomorphic if and only if L and L0 are related by a sequence of the KI and KII
moves on the link and the KII moves over K0 , where the KI and KII moves are as
shown in Figure 1.
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The KI move W Lt  ! L  ! Lt

The KII move W  !

Figure 1: The KI and KII moves

Proof We denote by LK0
and L0

K0
the framed links in S2 �S1 obtained from L

and L0 by surgery along K0 ; note that they are null-homotopic in S2�S1 . Let WLK0

and WL0
K0

be the 4–manifolds obtained from S2 � S1 � I by attaching 2–handles
along LK0

and L0
K0

respectively. Then, @WLK0
Š @WL0

K0

Š .S2�S1/t SM . Further,
the diagram

�1.WLK0
/Š ZŠ �1.WL0

K0

/

?

�

�1.M /

?

�

�1.M /-D

commutes, and H4.Z/ŠH4.S
1/D 0. Hence, by Fenn–Rourke [5, Theorem 6], LK0

and L0
K0

are related by the KI and KII moves. Therefore, L and L0 are related by the
KI and KII moves on the link and the KII moves over K0 .

To show the invariance under the KII move over K0 , we introduce the t –through
relation among Jacobi diagrams with labels of polynomials in t . We define the t –
through relation to be the relation generated by

∗

D
� 0;

where D is a Jacobi diagram with labels of polynomials in t , and we define a diagram
with the marking to be the sum of diagrams obtained from the original diagram by
connecting the marking at the right side of each t ; for example,

t

t ∗
2

D t

t 2

C t

t t

C t

t t

:
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This operation is well-defined, since, for the equality,

t
D

t

t

;

we have that

t D
t

t

C
t

t

:

Lemma 4.2 Let K0 be the trivial knot with 0 framing in S3 , and let L and L0 be
framed links in S3 �K0 such that each component of them is null-homologous in
S3�K0 . If L and L0 are related by the KII move over K0 , then ��1Z.K0[L/t��1

and ��1Z.K0[L0/t��1 are related by the t –through relation.

Proof From the definition of the Kontsevich invariant (see, for example, the author’s
book [28]), we have that

Z

 !
�Z

 !
D� C

1
2

� � � � ;

where

D C C � � �C :

Further, from (16) and the definition of the t –through relation, we have that

��1Z

 !
t��1

� ��1Z

 !
t��1:

This implies the lemma.

Proof of Theorem 1.1 We recall the construction of the perturbative invariant �.M I c/,
where M is a 3–manifold with the first Betti number 1 and c is a zero of the Alexander
polynomial �.t/ of M . As mentioned before, we choose a framed link K0 [L in
S3 as a surgery presentation of M such that K0 is the trivial knot with 0 framing
and each component of L is null-homologous in the complement of K0 . Let N

be the 3–manifold obtained from S3 by surgery along L. By Proposition 3.1, the
loop expansion of Wsl2;Vn

�
ZLMO.N;K/

�
is presented by (20) for some polynomials

P`.t/ 2 QŒt˙1�. By using these P`.t/, we defined the perturbative invariant by (3).
Further, by Remark 3.3, we can replace P`.t/ with yP`.t/, that is,

�.M I c/D�
1

2
�
1C c

1� c

1X
`D0

�
Res
tDc

.1� t�1/2 yP`.t/

�.t/2`C1

�
.q� 1/`;
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where yP`.t/ 2QŒt˙1� are determined by

(23)

1X
`D0

yP`.yt/

�.yt/2`C1
.q� 1/` �

.sl2/
��1ZLMO.N;K/t��1

D c
��C
C c����

Z rat
��1Z.K0[L/dY t��1:

By Proposition 4.1, it is sufficient to show the invariance of �.M I c/ under the ori-
entation change of K0 and under the KI and KII moves on L and under the KII
moves over K0 . By the orientation change of K0 , labels of ��1Z.K0[L/ changes
by replacing t with t�1 . Since the sl2 reduction is invariant under this change, we
obtain the invariance of �.M I c/ under the orientation change of K0 . The invariance
of (23) under the KI and KII moves on L is obtained from basic properties of the
Aarhus integral; the invariance under the KI move is obtained since the change of the
Aarhus integral under the KI move cancels with the change of the normalization factor
c
��C
C c���� , and the invariance under the KII move is obtained since the KII move can

be presented by certain variable change of the Aarhus integral and the Aarhus integral
is unchanged under such variable change; for details, see Bar-Natan, Garoufalidis,
Rozansky and Thurston [1; 2; 3] and Garoufalidis and Kricker [9]. Hence, it is sufficient
to show the invariance of �.M I c/ under the KII move over K0 .

When we change K0[L by the KII move over K0 , ��1Z.K0[L/t��1 changes by
the t –through relation by Lemma 4.2. Further, by Lemma 4.7, ��1ZLMO.N;K/t��1

changes by the t –through relation on Jacobi diagrams with labels of rational functions.
Hence, the change of ��1ZLMO.N;K/t��1 is presented by

expt

0B@ �
1
2

log
�
�=�1

�1CA ∗

D
D

expt

0B@ �
1
2

log
�
�=�1

�1CA
0B@� 1

2 D

t�0=�

C
∗

D

1CA
for some diagram D with labels of rational functions, where we put � D �.t/,
�1 D�.1/, and �0 D d

dt
�.t/. By sl2 reduction, it is sufficient to consider the case

where
∗

D
�
.sl2/

'1.t/ '2.t/

� � �

'n.t/ ∗ .t/
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for some rational functions 'i.t/ and  .t/ satisfying that 'i.t/D 'i.t
�1/, 'i.1/D 0

and  .t/D� .t�1/. In this case,

D

t�0=�

�
.sl2/

8
yt�0.yt/ .yt/

�.yt/

Y
i

2'i.yt/;

∗

D
�
.sl2/

8yt'1.yt/ .yt/
Y
i¤1

2'i.yt/C 8yt'2.yt/ .yt/
Y
i¤2

2'i.yt/C � � �

C 8yt'n.yt/ .yt/
Y
i¤n

2'i.yt/C 4

�
yt 0.yt/C

yt C 1

yt � 1
 .yt/

�Y
i

2'i.yt/

D 4yt

�
 .yt/

Y
i

2'i.yt/

�0
C 4
yt C 1

yt � 1
 .yt/

Y
i

2'i.yt/;

Hence, by putting '.t/D 4 .t/
Q

i 2'i.t/,

�
1
2 D

t�0=�

C
∗

D
�
.sl2/
�
yt�0.yt/'.yt/

�.yt/
Cyt'0.yt/C

yt C 1

yt � 1
'.yt/:

Therefore, the change of
P
`

�
yP`.t/=�.t/

2`C1
�
.q� 1/` is given by

�.1/

�.t/

�
�

t�0.t/'.t/

�.t/
C t'0.t/C

t C 1

t � 1
'.t/

�
D�.1/

�
t

�
'.t/

�.t/

�0
C

t C 1

t � 1
�
'.t/

�.t/

�
:

Further, the change of the defining formula of �.M I c/ is given by

�
1

2
�
1C c

1� c
Res
tDc

.1� t�1/2�.1/

�
t

�
'.t/

�.t/

�0
C

t C 1

t � 1
�
'.t/

�.t/

�
D�

�.1/

2
�
1C c

1� c
Res
tDc

�
.t C t�1� 2/'.t/

�.t/

�0
D 0;

since the residue of the differential of some function is always equal to 0. Hence, we
obtain the invariance of �.M I c/ under the KII move over K0 .

In order to show Lemma 4.7 below, we extend the definition of the t –through relation
to Jacobi diagrams with labels of rational functions. To extend it, we show some
properties of the marking connected to a label of a rational function, as follows. We
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define the marking connected to a label of tk by

(24)

∗

tk
D tk

C tk�1 t C � � �C t tk�1

D tk
1CtC� � �Ctk�1

D tk
.tk�1/=.t�1/

for k 2 Z. By extending this definition linearly, we define the marking connected to a
label of a polynomial f 2QŒt˙1�. Then, we can show, for polynomials f;g 2QŒt˙1�,
that

(25)
∗

fg D

∗

f g C
∗

f g ;

by reducing the proof to the case where f D t i and g D tj . Further, we define
the marking connected to a label of a rational function f=g (for f;g 2QŒt˙1� with
g.1/¤ 0) by

∗

f=g D

∗

f 1=g �

∗

f=g g 1=g :

In particular,

∗

1=g D�

∗

1=g g 1=g :

Note that these two formulas imply that

(26)
∗

f=g D

∗

f 1=g C

∗

f 1=g :

Lemma 4.3 For polynomials f;g 2QŒt˙1� with g.1/¤ 0,

∗

f=g D

∗

1=g f C

∗

1=g f :

Proof By definition, it is sufficient to show that

∗

f 1=g �

∗

f=g g 1=g D

∗

1=g f �

∗

1=g g f=g :

By multiplying g from both sides of each term, this formula is equivalent to the formula

∗

g f �
∗

f g D

∗

f g �

∗

g f :
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This is obtained by applying (25) to diagrams with labels of fg and gf .

Lemma 4.4 For polynomials f;g 2QŒt˙1� with f .1/;g.1/¤ 0,

∗

1=fg D

∗

1=f 1=g C

∗

1=f 1=g :

Proof By definition, it is sufficient to show that

�

∗

1=fg fg 1=fg D�
∗

1=f f 1=fg �

∗

1=fg g 1=g :

This is obtained by applying (25) to the label of fg .

Lemma 4.5 For rational functions ' ,  of t ,

∗

' D

∗

'  C

∗

'  :

Proof We put ' D f1=g1 and  D f2=g2 for polynomials fi ;gi 2 QŒt˙1� with
gi.1/¤ 0. Then, the left-hand side of the required formula is equal to

∗

f1f2 1=g1g2 C

∗

f1f2 1=g1g2 D

∗

f1 f2=g1g2 C

∗

f1 f2 1=g1g2 C

∗

f1f2 1=g1 1=g2C

∗

f1f2=g1 1=g2 ;

where the equality is obtained from (25) and Lemma 4.4. Further, since we can exchange
the order of f2 and 1=g1 in the second and third terms by (26) and Lemma 4.3, the
above formula is equal to

∗

f1 f2=g1g2 C

∗

f1 1=g1 f2=g2

C

∗

f1=g1 f2 1=g2C

∗

f1f2=g1 1=g2 :

By definition, the right-hand side of the required formula is equal to this formula.
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Extending the previous definition, we redefine the t –through relation to be the relation
generated by

∗

D
� 0;

where D is a Jacobi diagram with labels of rational functions of t , and we define a
diagram with the marking to be the sum of diagrams obtained from the original diagram
by connecting the marking at each label; for example,

∗

'
 

D ∗'
 

C

∗

'
 

:

Lemma 4.6 For a rational function ' of t ,

∗'

D

t'0

:

Proof When ' D tk , we obtain the lemma,

∗

tk

D

ktk

;

since this equality is obtained from (24) and the property
f

t D

f

:

In general, putting ' D f=g for polynomials f and g in t˙1 , we obtain the lemma,

∗

f=g

D

∗

f 1=g

�

∗

f=g g 1=g

D

t.f=g/0

;

where we obtain the second equality in the same way as above.

Extending Lemma 4.6, we define the marking connected to a label of logf on a loop
for a polynomial f in t˙1 by

∗logf
D

tf 0=f

:
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Lemma 4.7 If ��1Z.K0 [L/ and ��1Z.K0 [L0/ are related by the t –through
relation, then

R rat
��1Z.K0[L/dY and

R rat
��1Z.K0[L0/dY are related by the

t –through relation on Jacobi diagrams with labels of rational functions.

Proof When L is of 1 component, we show the lemma, as follows. In this case, the
difference of the t –through relation is generated by the form
(27)

exp

0B@1
2

�

y y

1CA
∗

D

y y y

Dexp

0B@1
2

�

y y

1CA
0BBBB@

∗

D

y y y

C
1
2

∗

D�

y y
y y y

1CCCCA ;

where D is a diagram with 2k legs. By the rational version of the Aarhus integral, this
is taken to
(28)

expt

0BB@ �
1
2

log
�
�=�1

�1CCA
$

exp

0B@� 1
2

1=�

@y @y
1CA ; ∗

D

y y y

C
1
2

∗

D�

y y
y y y

%

:

Further, the part of the bracket is calculated as

1

.�2/kk!

0BBBBBBB@
∗

D

1=� 1=� 1=�

�
1
2

∗ D
�

1=�

1=� 1=� 1=�

� k

∗ D
�

1=�

1=� 1=� 1=�

1CCCCCCCA
:

Hence, (28) is equal to

(29) expt

0B@ �
1
2

log
�
�=�1

�1CAt 1

.�2/kk!

∗

D

1=� 1=� 1=�

;

where we use

(30)

∗log.�=�1/

D

t�0=�

D

∗

� 1=�

:
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Therefore, the Aarhus integral of (27) is presented by the form (29), and this implies
the lemma. Note that (29) can also be presented by

expt

0B@ �
1
2

log
�
�=�1

�1CA
 

exp

0B@� 1
2

1=�

@y @y
1CA ;

∗

D

y y y

!

:

In general, the difference of the t –through relation is generated by the form,

exp

0B@1
2

X
i;j

Aij

yi yj

1CA
∗

D

yi1
yi2

yi2k

D

exp

0B@1
2

X
i;j

Aij

yi yj

1CA
0BBBBB@

∗

D

yi1
yi2

yi2k

C
1
2

X
i;j

∗

D
Aij

yi yjyi1
yi2

yi2k

1CCCCCA :

Similarly as the above case, we can show, by replacing � and 1=� with Aij and
.A�1/ij , that the Aarhus integral takes the above formula to

expt

0B@ �
1
2

log
�
�=�1

�1CA
 

exp

0@�1
2

X
i;j .A�1/ij

@yj @yi
1A ;

∗

D

yi1
yi2

yi2k

!

;

where, instead of the second equality of (30), we use

t�0=�

D

X
i;j

∗

Aij .A�1/ji

;

since �0=�D trace.A0 �A�1/D
P

i;j A0ij � .A
�1/ji . This completes the proof.

Lemma 4.8 Let D1 and D2 be Jacobi diagrams with a marking such that they are
related by the procedure of sl2 reduction explained in Section 3.2. Then, the diagrams
obtained from D1 and D2 by applying the marking on themselves are related by sl2
reduction.
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The lemma implies that the operation of the marking � commutes with sl2 reduction.
In other words, it implies that if

∗

D1
�
.sl2/

∗

D2
;

then

∗

D1

�
.sl2/

∗

D2

:

Proof The procedure of sl2 reduction mainly consists of the application of (17), and
this commutes with the operation of the marking �. The non-trivial part is the procedure
of ignoring a trivalent vertex whose adjacent edges have labels 'i.t/ (i D 1; 2; 3) with
'i.1/D 0. Hence, it is sufficient to show that

(31)

'1

'2

'3

∗

C

'1

'2

'3

∗

C

'1

'2

'3
∗

�
.sl2/

0

for rational functions 'i.t/ with 'i.1/ D 0. We put 'i D fi=gi for polynomials fi

and gi with fi.1/D 0. Then, the left-hand side of the above formula is equal to

1=g1 f1

1=g2 f2

1=g3 f3

∗

C

1=g1 f1

1=g2 f2

1=g3 f3

∗

C

1=g1 f1

1=g2 f2

1=g3 f3
∗

C

1=g1 f1

1=g2 f2

1=g3 f3

∗

C

1=g1 f1

1=g2 f2

1=g3 f3

∗

C

1=g1 f1

1=g2 f2

1=g3 f3
∗

Further, the sum of the first three terms is equivalent to 0 by sl2 reduction, since
fi.1/ D 0 for all i . Hence, it is sufficient to show (31) when 'i D fi . Further, the
proof can be reduced to the case where fi D tki � 1. In this case, we can check (31)
concretely by (24) and (17).
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Lemma 4.9 For a rational function '.t/ with '.t/D�'.t�1/,

∗

'.t/
�
.sl2/

4yt'0.yt/C 4
yt C 1

yt � 1
'.yt/:

Proof We put '.t/Df .t/=g.t/ for polynomials f .t/ and g.t/ with f .t/D�f .t�1/

and g.t/D g.t�1/. By definition,

∗

'.t/
D

∗

f 1=g
�

∗

f=g g 1=g
:

Further,

∗

f 1=g
�
.sl2/

2f .yt/

�
1

g.1/
C

1

g.yt/

�
yt C 1

yt � 1
C

4ytf 0.yt/

g.yt/
;

where we can show this equivalence by (18) and (24) putting f .t/D tk C t�k . In a
similar way, we can show that

∗

f=g g 1=g
�
.sl2/

2f .yt/

�
1

g.1/
�

1

g.yt/

�
yt C 1

yt � 1
C

4ytf .yt/g0.yt/

g.yt/2
:

Hence,
∗

'.t/
�
.sl2/

4yt

�
f 0.yt/

g.yt/
�
f .yt/g0.yt/

g.yt/2

�
C 4
yt C 1

yt � 1
�
f .yt/

g.yt/
;

which implies the required formula.

5 Properties of the perturbative invariants

In this section, we show some properties of the perturbative invariants. As before, we
let M be a 3–manifold with the first Betti number 1.

Proposition 5.1 For a zero c of �.t/, �.M I c/D �.M I c�1/.

Proof It is sufficient to show that �`.M I c/D �`.M I c�1/. By definition, �`.M I c/
is presented by the form,

1C c

1� c
Res
tDc

'.t/

t
D

1C c

1� c
�

1

2�
p
�1

Z

.c/

'.t/
dt

t
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for some rational function '.t/ with '.t/D'.t�1/, where 
 .c/ is a small loop winding
around c . Further, �`.M I c�1/ is calculated by the same formula replacing the variable
by t D 1=u. Since dt=t D�du=u and .1C c/=.1� c/D�.1C c�1/=.1� c�1/, we
obtain that �`.M I c/D �`.M I c�1/.

Proposition 5.2 For a rational homology 3–sphere N ,

�.M #N I c/D �.M I c/�.N /jH1.N IZ/j;

where M #N denotes the connected sum of M and N , c is 0 or a zero of the Alexander
polynomial of M , and �.N / 2QJq� 1K denotes the perturbative SO.3/ invariant of
N (see the author’s paper [26]).

Proof By the connected sum of N , the perturbative invariant �.M I c/ changes by
the multiple of

Wsl2

�
ZLMO.N /

�
D jH1.N IZ/j�.N / 2QJq� 1K;

where the equality is derived from the universality of the LMO invariant among
perturbative invariants of rational homology 3–spheres, see the author’s paper [27].
Hence, we obtain the proposition.

Proposition 5.3

�0.M I 0/D

8̂̂̂<̂
ˆ̂:

1 if deg�.t/D 0;

�
�.1/

�00.1/
if deg�.t/D 1;

0 if deg�.t/ > 1:

For a zero c of �.t/ of multiplicity m� 2,

�0.M I c/D

8̂̂<̂
:̂
.1� c�2/�.1/

2�0.c/
if mD 1;�

2.cC 1/

c3
C
.c�2� 1/�000.c/

3�00.c/

�
�.1/

�00.c/
if mD 2:

Proof We calculate �0.M I 0/, as follows. By definition,

�0.M I 0/D�
�.1/

2
Res
tD0

t C t�1� 2

t�.t/
:

If deg�.t/� 1, putting �.t/D b0 or �.t/D b1.t C t�1/C b0 , the required formula
can be shown concretely. If deg�.t/ > 1, putting �.t/ D bn.t

n C t�n/C � � � , the
function of the residue has the form .tn � 2tn�1C tn�2/=.bnt2nC � � � C bn/, and it
has no pole at t D 0. Hence, its residue equals 0.
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We calculate �0.M I c/, as follows. By definition,

�0.M I c/D�
�.1/

2
�
1C c

1� c
Res
tDc

t C t�1� 2

t�.t/
:

If c is a zero of �.t/ of multiplicity 1, the residue is calculated as

Res
tDc

t C t�1� 2

t�.t/
D lim

t!c

.t � c/.t C t�1� 2/

t�.t/
D lim

t!c

t C t�1� 2

t�0.t/
D
.c � 1/2

c2�0.c/
;

and we obtain the required formula. If c is a zero of �.t/ of multiplicity 2, putting
�.t/D .t � c/2f .t/, the residue is calculated as

Res
tDc

t C t�1� 2

t�.t/
D Res

tDc

�
t C t�1� 2

t.t � c/2f .t/
�

cC c�1� 2

c.t � c/2f .c/

�
D lim

t!c

1

t � c

�
t C t�1� 2

tf .t/
�

cC c�1� 2

cf .c/

�
D

d

dt

�
t C t�1� 2

tf .t/

�ˇ̌̌̌
tDc

:

Hence, noting that �00.c/ D 2f .c/ and �000.c/ D 6f 0.c/, we obtain the required
formula.

5.1 Clasper surgery formula

In this section, we show a surgery formula of the perturbative invariants under clasper
surgery; for claspers, see Habiro [12]. It follows from this surgery formula that the
coefficients of the perturbative invariants are independent invariants.

Let F be a Seifert surface of a knot K in an integral homology 3–sphere. The Seifert
form H1.F /˝H1.F /!R is defined by taking a˝b to the linking number of a and
bC , where bC denotes the puss-off of b in the normal direction of F . The Seifert
form is presented by a Seifert matrix V , fixing a basis of H1.F /. We denote by
ex; ey the vectors presenting cohomology classes x;y 2 H 1.F / for the basis. The
scaler eT

x .t
1=2V �t�1=2V T /�1ey depends only on the Seifert form and x;y 2H 1.F /,

independently of the choice of a basis of H1.F /. The Alexander polynomial of the
knot is given by �.t/D det.t1=2V � t�1=2V T /. A leaf of a clasper in the complement
of a Seifert surface F of a knot is associated with a cohomology class in H 1.F /

counting cycles as

:
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Let K be a knot with 0 framing in an integral homology 3–sphere, and let M be
the 3–manifold obtained from the integral homology 3–sphere by surgery along K .
Consider a graph clasper C of the following form, embedded in the complement of a
Seifert surface F of a knot K . Let x , y be cohomology classes in H 1.F / associated
with the leaves of the graph clasper.

`�1‚…„ƒ

Proposition 5.4 Let M and C be as above, and let MC denote the 3–manifold
obtained from M by surgery along C . Then, the change of the perturbative invariants
by the clasper surgery is presented by

�`.MC I c/��`.M I c/D�
1

2
�
1Cc

1�c
Res
tDc

2`C2
�
t1=2�t�1=2

�3
t�.t/

eT
x

�
t1=2V�t�1=2V T

��1
ey ;

�k.MC I c/D �k.M I c/

for any k < `.

Proof In the same way as [33, Proposition 4.17], we have that

Z.`–loop/

0@ 1A�Z.`–loop/

0@ 1AD F.t/=�.t/

;

where Z.`–loop/.K/ denotes the `–loop part of log��1Z.K/, and

F.t/

�.t/
D�.t1=2

� t�1=2/eT
x

�
t1=2V � t�1=2V T

��1
ey :

Hence, by this clasper surgery, P`.t/=�.t/
2`C1 changes by

2`C2.t1=2� t�1=2/

�.t/
eT

x

�
t1=2V � t�1=2V T

��1
ey ;

keeping Pk.t/ unchanged for any k < `. Therefore, from the definition of the pertur-
bative invariants, we obtain the proposition.

We can obtain similar surgery formulas for other forms of the graph clasper, in the
same way as in the author’s paper [33].
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5.2 Stability of the perturbative invariants for finite cyclic covers

There is a natural d –fold cyclic cover Md of a 3–manifold M with b1.M / D 1

(defined below). By regarding the perturbative invariant of Md as an invariant of
M (assuming that b1.Md / D 1), we have an infinite series of invariants of M . In
this section, we show that this series is stable for sufficiently large d in the cases of
Propositions 5.5 and 5.6.

For a positive integer d , let Md be the d –fold cyclic cover of M induced by the
homomorphism

�1.M / �!H1.M IZ/ �! Z �! Z=dZ;

where the first map is the abelianization, the second map is the map ingoring the torsion
part, and the third map is the projection. We assume that b1.Md / D 1, that is, the
Alexander polynomial �.t/ of M does not have a zero of a d th root of unity. We
choose a rational homology 3–sphere N and a null-homologous knot K in N such that
M is obtained from N by 0 surgery along K . Extending the above homomorphism,
we consider the homomorphism,

�1.N �K/ �! �1.M / �!H1.M IZ/ �! Z �! Z=dZ;

and this homomorphism induces the d –fold cyclic cover AN�K of N�K as a subset
of Md . The above homomorphism is equal to

�1.N �K/ �!H1.N �KIZ/ŠH1.N IZ/˚Z �! Z �! Z=dZ;

where the second map is the projection from Z ignoring H1.N IZ/. Let Nd be the
d –fold cyclic cover of N branched along K induced by the above homomorphism,
and let Kd be the knot of the branch set in Nd . Since Nd�Kd is the d –fold cyclic
cover of N�K induced by the above homomorphism, Nd�Kd is equal to AN�K .
Hence, Md is obtained from Nd by 0 surgery along Kd . Further, the Alexander
polynomial of Kd is presented by

�Kd
.t/D˙

Y
�dD1

�
�
�t1=d

�
;

where we choose the sign so that �Kd
.1/ > 0. Note that, for a zero c of �.t/, cd is a

zero of �Kd
.t/.

We define the total signature of a 3–manifold M with b1.M /D 1, as follows. As in
Section 4, M is obtained from S3 by surgery along some framed link K0[L such
that K0 is the trivial knot and each component of L is null-homologous in S3�K0 .
Let zL be the preimage of L in the d –fold cyclic cover of S3 branched along K0 , and
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let A and Ad be the linking matrices of L and zL respectively. We define the total
d –signature �d of M by

�d .M /D �.Ad /� d�.A/;

where �.�/ denotes the signature of a symmetric matrix. We can verify, by Proposition
4.1, that this is an invariant of M .

Proposition 5.5 When �.t/ is of degree 0, for any positive integer `, the degree � `
part of

�
q�.3=4/�d .M /�.Md I 0/

�1=d is stable (that is, constant) for sufficiently large d .

Hence, the stable part is presented by

z�.M I 0/D lim
d!1

�
q�.3=4/�d .M /�.Md I 0/

�1=d
2QJq� 1K:

Proof of Proposition 5.5 When �.t/ is of degree 0, the loop expansion (see Section
3.1) of ZLMO.N;K/ is presented by

��1ZLMO.N;K/D

ZLMO.N /t�t expt

�
linear sum of connected Jacobi diagrams
with labels of polynomials in t˙1

�
:

Its d –fold cover is calculated in the way shown by Garoufalidis and Kricker [8]; in
particular, in this case,

��1ZLMO.Nd ;Kd /�

e�d .M /�=16
tZLMO.N /d t�t expt

�
d �

�
constant terms of
the above linear sum

��
;

where � is the Jacobi diagram of the � graph, and this formula means that, for any
positive integer `, the .� `/–loop parts of both sides are equal for sufficiently large d .
Hence, the sl2 reduction of ��1ZLMO.Nd ;Kd /t�

�1 is stably presented by

(32) q.3=4/�d .M /
�
Wsl2

�
ZLMO.N /

�
� exp

�
Wsl2.the constant terms/

��d
;

and
�.Md I 0/� “(32)” �

�
�

1
2

�
Res
tD0

.1� t�1/2 D “(32)”:

Therefore, the degree � ` part of
�
q�.3=4/�d .M /�.Md I 0/

�1=d is stable for sufficiently
large d .

Proposition 5.6 Suppose that �.t/ has no multiple zeros, and let c˙1
1
; : : : ; c˙1

n be
the zeros of �.t/. Let c be 0 or a zero of �.t/. Let d be a positive integer satisfying
that �.t/ does not have a zero of a d th root of unity (that is, b1.Md /D 1). Then,
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(1) �0.Md I c
d / is presented by a rational function of cd

1
; : : : ; cd

n .

(2)
�
�1.Md I c

d /� 3
4
�d .M /�0.Md I c

d /
�
=d is stable, in the sense that it can be

presented by a rational function of cd
1
; : : : ; cd

n for sufficiently large d satisfying
the above condition.

Hence, the stable part can be presented by

z�1.M I c/D
��
�1.Md I c

d /� 3
4
�d .M /�0.Md I c

d /
�
=d for such d � 0

�
;

where this is a rational function of cd
1
; : : : ; cd

n .

Proof of Proposition 5.6 We show (1), as follows. We put

�.t/D b
Y

i

�
1� ai.t C t�1

� 2/
�
;

where a�1
i D ci C c�1

i � 2. Then

�Kd
.t/=�Kd

.1/D
Y

i

�
1� zai.t C t�1

� 2/
�
;

where zai
�1
D cd

i C c�d
i � 2. Hence, by Proposition 5.3, we obtain (1).

We show (2), in the following of this proof. Similarly as the proof of Proposition 5.5,

��1ZLMO.Nd ;Kd /�

e�d .M /�=16
tZLMO.N /d t�t expt

0B@ �
1
2

log
�
�Kd

.t/=�Kd
.1/
�1CA

t
�
1C .2–loop terms/C � � �

�
D e�d .M /�=16

t�t expt

0B@ �
1
2

log
�
�Kd

.t/=�Kd
.1/
�1CA

t
�
1C .2–loop part/C � � �

�
;

where the 2–loop part is determined by the 2–loop polynomial ‚Kd
.t1; t2/ (see

Garoufalidis–Kricker [8] and the author’s paper [33]),

(33)
‚Kd

.t1; t2/

�Kd
.t1/�Kd

.t2/�Kd
.t1t2/

D

1

d

X
�d

1
D�d

2
D1

‚
�
�1t

1=d
1

; �2t
1=d
2

�
�
�
�1t

1=d
1

�
�
�
�2t

1=d
2

�
�
�
�1�2t

1=d
1

t
1=d
2

� ;
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where ‚.t1; t2/ denotes the 2–loop polynomial of K . Hence, the sl2 reduction of
��1ZLMO.Nd ;Kd /t�

�1 is stably presented by

q.3=4/�d .M /

�
�Kd

.1/

�Kd
.t/
C
‚Kd

.t; 1/

�Kd
.t/3

.q� 1/C � � �

�
:

Further,

�0.Md I c
d /D�

1

2
�
1C cd

1� cd
Res
tDc

.1� t�1/2�Kd
.1/

�Kd
.t/

;

�1.Md I c
d /D

3

4
�d .M /�0.Md I c

d /�
1

2
�
1C cd

1� cd
Res
tDc

.1� t�1/2‚Kd
.t; 1/

�Kd
.t/3

:

Therefore, it is sufficient to show that ‚Kd
.t; 1/=d is presented by a rational function

of cd
1
; : : : ; cd

n for d >> 0.

We show it, in the following of this proof. For example, when �.t/D 1�a.tCt�1�2/,

�Kd
.t/D ad .cd

C c�d
� t � t�1/

for a zero c of �.t/. Further, since

�Kd
.sd /

�.s/
D ad�1s�dC1 .s

d � cd /.sd � c�d /

.s� c/.s� c�1/

D
ad�1s�dC1

c � c�1

�
sd � cd

s� c
.sd
� c�d /�

sd � c�d

s� c�1
.sd
� cd /

�
;

we can calculate ‚Kd
.t1; t2/ by (33) putting sD�i t

1=d
i . For example, when ‚.t1; t2/D

1, the summand of (33) is presented by

da3d�3

.c � c�1/3

3Y
iD1

�
sd
i � cd

si � c
.sd

i � c�d /�
sd
i � c�d

si � c�1
.sd

i � cd /

�
;

where we put si D �i t
1=d
1

, and s1s2s3D 1. Since the sum of (33) picks up the terms of
the form s

n1d
1

s
n2d
2

for n1; n2 2Z, we pick up the following term, for example, from a
part of the above product,

da3d�3

.c � c�1/3
�
sd
1
� cd

s1� c

sd
2
� cd

s2� c

sd
3
� cd

s3� c
� .sd

1 � c�d /.sd
2 � c�d /.sd

3 � c�d / 

da3d�3

.c � c�1/3
�
c3d � 1

c3� 1
� .t1� c�d /.t2� c�d /.t3� c�d /:
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Hence, in this way, we can show that

‚Kd
.t1; t2/

d
D

a3d�3.cC1/.cd�1/2

.c2�1/3.c3�1/cd�4

�

�
.cd�1�1/.cdC1�1/

cd
.t1t2C t1C t2C t�1

1 C t�1
2 C t�1

1 t�1
2 /

C
.cd � 1/2

cd

�
.cd
C c�d /.cC c�1

� 1/C 4cC 4c�1
C 2

��
:

For general ‚.t1; t2/ and �.t/, we can similarly show that ‚Kd
.t; 1/=d is presented

by a rational function of cd
1
; : : : ; cd

n for d � 0.

6 Arithmetic limits of rational functions of roots of unity

The aim of this section is to show Proposition 6.1, which is used when we calculate
arithmetic expansion of quantum invariants in Section 1.

Let p be an odd prime. We put � D exp.2�
p
�1=p/. We review some preliminaries.

It is known that p is divisible by .� � 1/ precisely p� 1 times in ZŒ�� (because p D

.�1/.p�1/=2
Q.p�1/=2

iD1

�
�2i�1� ��.2i�1/

�2 ; see, for example, Ireland and Rosen [13,
Proposition 6.4.2]). For non-negative integer i and an indeterminate x , the binomial
coefficient

�
x
i

�
is defined by�

x

i

�
D

1

i!
x.x� 1/.x� 2/ : : : .x� i C 1/:

Proposition 6.1 We set '.t/ by '.t/ D f .t/=g.t/ where f .t/;g.t/ 2 Z.p/Œt; t
�1�

with f .t/D f .t�1/, g.t/D g.t�1/ and g.1/ is not divisible by p . Then,

1

p

X
n2Z=pZ

'.�n/ 2 Z.p/Œ��:

Further, if p > degf .t/� deg g.t/, then,

1

p

X
n2Z=pZ

'.�n/D
X

cD0;c1;:::;cn

�
1C c

1� c

�p

Res
tDc

'.t/

t
CO

�
.� � 1/p�1

IZ.p/Œ��
�
;

where c1; c
�1
1
; : : : ; cn; c

�1
n are the zeros of g.t/.

To prove Proposition 6.1, we show some lemmas, which give particular cases of
Proposition 6.1.
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Lemma 6.2 Let '.t/ be a polynomial in QŒt; t�1� with '.t/ D '.t�1/. If p >

deg'.t/, then
1

p

X
n2Z=pZ

'.�n/D Res
tD0

'.t/

t
:

Proof It is sufficient to show the lemma when '.t/D t i for ji j< p . Then, both sides
of the required formula are equal to 1 if i D 0, 0 otherwise.

Lemma 6.3 We set '.t/ by '.t/D f .t/=g.t/ where g.t/D 1� b.t C t�1� 2/ with
b 2 Z.p/ and f .t/ 2 Z.p/Œt; t

�1� with f .t/ D f .t�1/. If p > degf .t/� deg g.t/,
then

1

p

X
n2Z=pZ

'.�n/D
X

cD0;c1

�
1C c

1� c

�p

Res
tDc

'.t/

t
CO

�
.� � 1/p�1

IZ.p/Œ��
�
;

where c1 is a zero of g.t/.

Proof We assume that b is not divisible by p (otherwise, the lemma is reduced
to Lemma 6.2). Further, by Lemma 6.2, we can reduce the lemma by subtracting
a polynomial from '.t/. Hence, it is sufficient to show the lemma when f .t/ D 1.
Putting �D �nC ��n� 2, we expand

1

1� b�
D

X
0�i<p

bi�i
C

�p

1� b�
�

X
0�i<p

bi�i ;

since �p 2O
�
.� � 1/2p

�
and 1� b� is invertible in Z.p/Œ��, where the equivalence in

the formula means the equivalence modulo O
�
.� � 1/2p

�
. Further, for i < p ,

1

p

X
n2Z=pZ

�i
D

1

p

X
n2Z=pZ

.�n
C ��n

� 2/i

D
�
constant term of .t C t�1

� 2/i D .t1=2
� t�1=2/2i

�
D .�1/i

�
2i

i

�
D 4i

�
�1=2

i

�
:

Hence

(34)

1

p

X
n2Z=pZ

1

1� b�
�

X
0�i<p

bi4i

�
�1=2

i

�
�
.p/

.p�1/=2X
iD0

.4b/i
�
.p�1/=2

i

�

�
.p/
.4bC 1/.p�1/=2

D

�
1C c1

1� c1

�p�1

;
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since b�1 D c1C c�1
1
� 2. Further,

Res
tD0

1

tg.t/
D 0;

Res
tDc1

1

tg.t/
D lim

t!c1

t � c1

tg.t/
D

1

c1g0.c1/
D�

1

b.c1� c�1
1
/
D

1� c1

1C c1

:

Therefore, noting that p 2O
�
.� � 1/p�1

�
, we obtain the required formula.

Lemma 6.4 For a positive integer `, we set '.t/ by '.t/D f .t/=g.t/` , where f .t/
and g.t/ are as in Lemma 6.3. If p > degf .t/� deg g.t/` , then

1

p

X
n2Z=pZ

'.�n/D
X

cD0;c1

�
1C c

1� c

�p

Res
tDc

'.t/

t
CO

�
.� � 1/p�1

IZ.p/Œ��
�
;

where c1 is a zero of g.t/.

Proof It is sufficient to show the lemma for '.t/D .tCt�1�2/`�1=.1�b.tCt�1�2//` ,
because other '.t/ can be obtained as a linear sum of a polynomial and such '.t/.
Similarly as (34), putting �D �nC ��n� 2, we have that

1

p

X
n2Z=pZ

�`�1

.1� b�/`
�

X
0�i<p�`C1

.�1/i
�
�`

i

�
bi�iC`�1

D

X
0�i<p�`C1

.�1/i
�
�`

i

�
bi4iC`�1

�
�1=2

i C `� 1

�
:

Further,

.�1/i
�
�`

i

�
4`�1

�
�1=2

i C `� 1

�
D 4`�1

�
i C `� 1

i

��
�1=2

i C `� 1

�
D 4`�1

�
�1=2

`� 1

��
1=2� `

i

�
;

and

4`�1

�
�1=2

`� 1

�
D

4`�1

.`� 1/!

�
�

1

2

��
�

3

2

�
: : :

�
�

2`� 3

2

�
D

2`�1

.`� 1/!
.�1/`C1.2`� 3/!!D .�1/`C12

�
2`� 3

`� 1

�
:
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Hence,

1

p

X
n2Z=pZ

�`�1

.1� b�/`
� .�1/`C12

�
2`� 3

`� 1

� X
0�i�.pC1/=2�`

�
1=2� `

i

�
.4b/i

� .�1/`C12

�
2`� 3

`� 1

�
.4bC 1/.pC1/=2�`

D .�1/`C12

�
2`� 3

`� 1

��
1C c1

1� c1

�p�2`C1

:

Further,

Res
tD0

.t C t�1� 2/`�1

t
�
1� b.t C t�1� 2/

�` D 0;

Res
tDc1

.t C t�1� 2/`�1

t
�
1� b.t C t�1� 2/

�` D .�1/`C12

�
2`� 3

`� 1

��
1� c1

1C c1

�2`�1

;

where the second formula is obtained by Lemma 6.5 below. Hence, we obtain the
required formula for '.t/D .t C t�1� 2/`�1=.1� b.t C t�1� 2//` .

Lemma 6.5 Put z D t C t�1� 2, and let t D c be a zero of 1� bz . Then

.1/` Res
tDc

z`

t.1� bz/`C1
D .�1/`2

�
2`� 1

`

��
1� c

1C c

�2`C1

,

.2/` Res
tDc

.`� 2b/z` � bz`C1

t.1� bz/`
D .�1/`2`

�
2`� 1

`

��
1� c

1C c

�2`�1

.

Proof We show that “.1/`, .2/` ”, as follows. The functions of the residues of .1/`
and .2/` are related by

z`

t.1� bz/`C1
�

b

`.4bC 1/
�

d

dt

�
.t � t�1/z`

.1� bz/`

�
D

1

`.4bC 1/
�
.`� 2b/z` � bz`C1

t.1� bz/`
:

Since the differential of a function does not contribute to the residue, .1/` is equivalent
to .2/` , noting that 4bC 1D .1C c/2=.1� c/2 .

We show that “.2/`C b.2/`C1 D .`� 2b/.1/` ”, as follows. We have that�
LHS of .2/`

�
C b

�
LHS of .2/`C1

�
D Res

tDc

.1� bz/..`� 2b/z` � bz`C1/C b..`C 1� 2b/z`C1� bz`C2/

t.1� bz/`C1

D Res
tDc

.`� 2b/z`

t.1� bz/`C1
D .`� 2b/

�
LHS of .1/`

�
:
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Further, it is shown by elementary calculation that�
RHS of .2/`

�
C b

�
RHS of .2/`C1

�
D .`� 2b/

�
RHS of .1/`

�
:

Hence, if .1/` and .2/` hold, then .2/`C1 holds.

Therefore, by induction, .1/` and .2/` hold for all `.

Proof of Proposition 6.1 We can assume that g.1/ D 1 by replacing g.t/ with its
quotient by g.1/.

If g.t/ is of degree 2, we put g.t/D
�
1�b1.tC t�1�2/

��
1�b2.tC t�1�2/

�
where

b1 and b2 are complex number in general, but b1C b2; b1b2 2 Z.p/ . If .b1� b2/
2 is

divisible by p , the proposition is reduced to Lemma 6.4. We assume that .b1�b2/
2 is

not divisible by p . We can put f .t/Df0Cf1.tCt�1�2/ by subtracting a polynomial
from '.t/. Then,

'.t/D
f .t/

g.t/
D

1

b1� b2

�
b1f0Cf1

1� b1.t C t�1� 2/
�

b2f0Cf1

1� b2.t C t�1� 2/

�
:

Further, in the same way as the proof of (34),

1

p

X
n2Z=pZ

'.�n/�
1

b1� b2

�
.b1f0Cf1/

�
1C c1

1� c1

�p�1

�.b2f0Cf1/

�
1C c2

1� c2

�p�1�
;

where ci is a zero of 1� bi.t C t�1� 2/. Since

Res
tD0

'.t/

t
D 0;

Res
tDci

'.t/

t
D lim

t!ci

.t � ci/f .t/

tg.t/
D

f .ci/

cig0.ci/
D

bif0Cf1

bi � b3�i

�
1� ci

1C ci
;

we obtain the required formula in this case.

For a general g.t/, we can present '.t/ as a linear sum of the '.t/ of Lemmas 6.3
and 6.4. Hence, we can show the required formula in the same way as above.
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