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Relative rounding in toric and logarithmic geometry

CHIKARA NAKAYAMA

ARTHUR OGUS

We show that the introduction of polar coordinates in toric geometry smoothes a
wide class of equivariant mappings, rendering them locally trivial in the topological
category. As a consequence, we show that the Betti realization of a smooth proper
and exact mapping of log analytic spaces is a topological fibration, whose fibers
are orientable manifolds (possibly with boundary). This turns out to be true even
for certain noncoherent log structures, including some families familiar from mirror
symmetry. The moment mapping plays a key role in our proof.

14D06, 14M25, 14F45, 32S30; 53D20, 14T05

Introduction

Our goal in this note is to study singularities of mappings of toric varieties, and more
generally, logarithmic analytic spaces. We shall show that the introduction of polar
coordinates—which effectuates a kind of real blowing up—smoothes out a wide class of
such mappings, rendering them locally trivial (submersive) in the topological category.
Suitably globalized, this technique provides a powerful tool for analyzing the geometry
of degenerations. Some cohomological manifestations of this technique have already
been studied by Kajiwara and Nakayama in [9], with applications to monodromy and
vanishing cycles by Illusie, Kato and Nakayama in [7], and by Ogus in [15].

To give a flavor of our results, let us consider some simple examples. The most basic
is the long-studied case of stable reduction. Let

f W X D C�C! CD S

be the map sending .x1;x2/ to t WD x1x2 . All the fibers Xt for t ¤ 0 are isomorphic,
and in fact the entire family becomes trivial over S� WDS nf0g: there is a commutative
diagram

X � WD f �1.S�/
h- C� �S�

S�

pr2

?

f �

-
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2190 Chikara Nakayama and Arthur Ogus

where pr2 is the projection to the second factor and h is a homeomorphism, for example
the map taking .x1;x2/ to .x1;x1x2/. Such a trivialization cannot extend to the entire
family over S , because the fiber X0 D f.x1;x2/ W x1x2 D 0g is not homeomorphic
to the “general” fibers Xt . The situation changes if one introduces polar coordinates.
Let R� WD fr 2 R W r � 0g, let S1 WD f� 2 C W j�j D 1g, let Clog WD R� � S1 , and
let � W Clog! C be the map sending .r; �/ to r� . Note that � is a proper surjective
morphism; it is a real oriented blowup of the origin. (We will not need to define this
notion precisely.) Then if Xlog WD Clog �Clog , the map f lifts naturally to Xlog , so
that there is a commutative diagram:

.R� �R�/� .S1
�S1/

Š- Xlog
�X- X

R� �S1

���

?
Š- Slog

flog

?
�S - S

f

?

Here the map � W S1 � S1! S1 sends .�1; �2/! �1�2 and can be trivialized in the
same way as f � . The map �W R� �R�! R� sends .r1; r2/! r1r2 . Its fiber over
a nonzero r 2 R� is homeomorphic to the set R> of positive numbers, and its fiber
over zero consists of two copies of R� glued together at the origin. In fact this fiber
is homeomorphic to all of R and hence to all the other fibers, and it is not difficult
to write down a trivialization of the entire family � . This means that the blown-up
family flogW Xlog ! Slog has become trivial. For a more complicated example, let
X WD f.z1; z2; z3; z4/ 2C4 W z1z2D z3z4g and let f W X ! S WDC be the function z4 .
Then there is an evident polar blowup flogW Xlog ! Slog , and it turns out that this
too is, in the topological category, a trivial family, in which the fibers are topological
manifolds with boundary. (A more subtle blowup allows one to obtain a family of
manifolds without boundary.)

The examples above are equivariant mappings of affine toric varieties. Such mappings,
to which our methods apply quite generally, serve as local models for many typical
degenerations in algebraic geometry. The language of log geometry allows one to piece
together these local models in a canonical way, thus justifying our study of equivariant
mappings. As in the examples above, the main difficulty comes in the study of the
“nonnegative real part” of such mappings.

Our main local result is most conveniently expressed in terms of constructions involving
monoids. All monoids discussed in this paper will be commutative. A (commutative)
monoid Q is said to be fine if it is integral (ie, cancellative), and finitely generated (as
a monoid), and to be sharp if its group of units Q� is trivial. We let .R�; � / denote the
multiplicative monoid of nonnegative real numbers, endowed with its usual topology.
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Let Q be a monoid and let XQ be the set of monoid homomorphisms from Q to
.R�; � /. Each q 2Q defines a function

eqW XQ! R�; x 7! x.q/;

and we endow XQ with the weak topology and monoid structure defined by the set of
such functions. The following result is a simple but important special case of our main
theorem.

Proposition 0.1 Let Q be a fine sharp monoid and let p be a nonzero element of Q.
Then the map epW XQ! R� is homeomorphic to a product map. That is, there exist a
topological space Z and a commutative diagram

XQ
- Z �R�

R�

pr2

?
ep -

in which the horizontal map XQ!Z �R� is a homeomorphism.

Somewhat more generally, let VQ WD R˝Qgp and let CQ be the real subcone of VQ

spanned by Q (that is, the set of linear combinations of elements of Q with nonnegative
coefficients). Then each c 2 CQ also defines a function ec W XQ! R� , and in fact
Proposition 0.1 is true for all nonzero c 2 CQ .

It is natural to ask if Proposition 0.1 holds more generally for a suitable class of
morphisms � W P !Q of finitely generated monoids or cones. Some hypotheses are
clearly required; for example, if � W N2! N2 is the map sending .a; b/ to .a; aC b/,
the dimension of the fibers of X� is not constant, so X� cannot be homeomorphic
to a projection mapping. Our generalization of Proposition 0.1 depends on Kato’s
important notion of exactness. After a review of this notion and some of its variants
(see Definition 2.1), we shall prove the following result.

Theorem 0.2 Let P and Q be fine monoids and let � W CP ! CQ be an injective,
exact, and locally exact morphism of their corresponding real cones. Then there exist a
topological space Z and a commutative diagram

XQ
- Z �XP

XP

pr2

?
X� -

in which the horizontal map is a homeomorphism.
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2192 Chikara Nakayama and Arthur Ogus

This result affirmatively answers the question raised by Kajiwara and Nakayama in [9,
B.3] under the rubric “relative rounding,” in the context of log geometry. As explained
by Kato and Nakayama in [13], associated to an analytic space X endowed with a
log structure (satisfying suitable conditions which we relax here), there is a canonical
surjective and proper map �X W Xlog ! X , globalizing the construction using polar
coordinates we saw in the initial examples. Then Theorem 0.2 and some standard
arguments, which we shall review in Section 3, imply the following.

Theorem 0.3 Let f W X ! Y be a smooth and exact morphism of fine log analytic
spaces. Then the associated map of Betti realizations flogW Xlog! Ylog is a topological
submersion. That is, locally on Xlog and Ylog it is homeomorphic to a projection from
a product; furthermore the fibers are topological manifolds with boundary.

It follows (see Theorem 5.1) that if f is exact, smooth, separated, and proper, then flog

is a “fiber bundle”: locally on Ylog , flogW Xlog! Ylog is a projection from a product.
This result can be used to give a new and more direct proof of some of the main
theorems of Kajiwara and Nakayama [9]—for example, that the cohomology sheaves
Rqflog�.Z/ are locally constant on Ylog .

As we shall see in Theorem 3.7, many of these results apply even more generally, to
some log structures which are not “coherent,” but only “relatively coherent.” Such log
structures arise naturally in the study of some degenerations of Calabi Yau varieties
and have been considered already by Ogus in [15] and Gross and Siebert in [4]. For
example, our results hold for the Dwork family of K3 surfaces over S WDCn�4 defined
by s.X 4

0
CX 4

1
CX 4

2
CX 4

3
/D 4X0X1X2X3; s 2 S , even though this family is not

d –stable and falls outside the scope of the results of Kajiwara and Nakayama [9]. (This
uses the “more subtle blowup” we referred to earlier.)

A key role in our proof is played by the moment map, which gives a linear description
of the topological space XQ . Let S be any finite set of generators for a fine monoid Q.
Then the associated moment map is defined by

�S W XQ! CQ; x 7!
X
s2S

x.s/s:

It is essentially proved in the textbook of Fulton [2, Section 4.2] that this map is a
homeomorphism, compatible with the faces of XQ and CQ (see Theorem 1.4 for a
more precise and general statement). The difficulty in applying this construction is that
it is not functorial with respect to morphisms of monoids. However our methods show
that a certain functoriality can be “forced,” as explained in Proposition 2.11.

Our paper is organized as follows. Section 1 is a review of some basic facts about
cones and monoids, including a new (and for us more conceptual) treatment of the
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moment mapping which will play a crucial role. The heart of our paper is Section 2,
which contains the proof of Theorem 0.2. Section 3 contains a brief introduction to log
geometry and the proof of Theorem 0.3 and its relatively coherent variant. Section 4
describes a generalization of our main results to “idealized” monoids and log analytic
spaces, which can be useful in dealing with the strata that arise naturally from log
structures. The last section is devoted to applications to cohomology, including a
discussion of monodromy, orientation, and duality. There is also an appendix with an
elementary proof that higher direct images of a locally constant sheaf by a separated
proper submersion are again locally constant.

Many special cases and consequences of our results have been known for a long time.
The case of semistable reduction for example, has a long history, going back at least to
SGA 7 [5, Exposé I] (before the invention of log structures) and more recently was
treated in the context of log geometry by Usui [20; 19]. Cohomological and homotopical
versions appear in works by Kajiwara and Nakayama [9] and Ogus [16; 15].

We are grateful to many mathematicians who helped and encouraged us in this work.
Particular thanks go to Robion Kirby and Martin Olsson for many discussions, to
Bernd Sturmfels for pointing us to the book Algebraic statistics for computational
biology [17], and to Luc Illusie for his help and advice with Section 5. We are also very
grateful to Ofer Gabber who pointed out a considerable simplification of our original
argument, and to the referee for correcting many misprints.

1 The moment map

We begin by reviewing some well-known facts about the structures of XQ and CQ

which will be important in the proofs and applications of our main results.

Recall that an ideal in a monoid Q is a subset J which is invariant under translation
by elements of Q, and that an ideal is prime if its complement is a submonoid of Q.
The submonoids F of Q whose complements are prime ideals are the faces of Q.
If F is a face of Q, then q1C q2 belongs to F if and only if q1 and q2 belong to F .
For q 2Q, we denote by hqi the smallest face of Q containing q , ie, the set of all f
such that there exist f 0 2 Q and n 2 N such that f C f 0 D nq . If hW Q! Q0 is
a homomorphism of monoids and F 0 is a face of Q0 , then h�1.F 0/ is a face of Q.
If S is a subset of Q, we denote by �S W Q! QS the localization of Q by S , ie,
the universal map from Q to a monoid in which the elements of S become invertible.
If F is a face of Q, then F D ��1

F
.Q�

F
/. A basic fact from duality theory for monoids

asserts that if F is a face of a fine monoid Q, there is a homomorphism hW Q! .N;C/
such that F D h�1.0/ [14].

Geometry & Topology, Volume 14 (2010)
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Remark 1.1 Let Q be an integral monoid, let VQ WDR˝Qgp , and let CQ � VQ be
the real cone spanned by Q, ie, the set of linear combinations of elements of Q with
nonnegative coefficients. Then the map Q! CQ induces a bijection from the set of
faces of CQ to the set of faces of Q. To check this, first note that we may assume
without loss of generality that Qgp is torsion free, since the map from Q to its image Q0

in Qgp=Q
gp
tor induces a bijection Spec Q0! Spec Q and an isomorphism CQ! CQ0 .

When Qgp is torsion free, the map Q!CQ is injective, and we write it as an inclusion.
Note that if G is a face of CQ , then necessarily G is invariant under the action of
R� . Indeed, if r 2 R� and g 2 G , choose n 2 N with n � r . Then ng 2 G , and
ngD rgC.n�r/g , hence rg belongs to G . Now any g2G can be written gD

P
rqq

with rq 2 R� and q 2Q, and it follows that q 2G whenever rq > 0. Hence G is the
cone spanned by G\Q, a face of Q. Conversely, we claim that if F is any face of Q,
then CF is a face of CQ and CF\QDF . Suppose that cD

P
rf f and c0D

P
rf 0f

0

belong to CQ and cC c0 2 CF . There is a fine submonoid Q0 of Q such that CQ0

contains all f and f 0 with rf or rf 0 nonzero. Choose a homomorphism hW Q0! N
such that h�1.0/D F \Q0 . Then h induces a homomorphism ChW CQ0 ! .R�;C/,
and one sees immediately that C�1

h
.0/D CF\Q0 . It follows that CF\Q0 is a face of

CQ0 and hence that c and c0 belong to CF\Q0 � CF . Hence CF is a face of CQ .
Similarly, if q 2Q\CF , say q D

P
rf f with f 2 F , there is a fine submonoid Q0

of Q containing q and all f with rf > 0. Then choosing h as above, we see that
h.q/D Ch.q/D 0, and hence q 2 F .

An ideal J of CQ is said to be a radical ideal if rq 2 J whenever q 2 J and r > 0.
Then if c 2 CQ nJ , it follows that hci � CQ nJ . Hence CQ nJ is the union of the
faces F of CQ not meeting J , and J is the intersection of the prime ideals which
contain J .

If † is a subset of Q, let Z.†/ be the set of x 2XQ which vanish on †. Then Z.†/

is closed ideal in the topological monoid XQ , and Z.†/DZ.I/, where I is the ideal
of Q generated by †. In fact the set of all subsets of the form Z.I/ defines another
topology on XQ , the Zariski topology. The irreducible closed sets for this topology are
those defined by the prime ideals p of Q. The complement F of a prime ideal p of Q

(resp. CQ ) is a face of Q (resp. CQ ) and there is a natural embedding iF W XF !XQ ,
where

iF .x/.q/ WD

(
x.q/ if q 2 F ,

0 otherwise.

The image of iF is precisely Z.p/ and we will allow ourselves to identify XF with
Z.p/�XQ . Then we have identifications

X �F WDXF gp D fx 2XQ W x
�1.R��/D Fg;
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and XQ is the disjoint union XQ D[X �
F

as F ranges over the faces of Q. For each
x 2XQ , let F.x/ WD fq 2Q W x.q/¤ 0g, the face of Q such that x 2X �

F.x/
.

Observe that if S is any finite set of generators of CQ , the map XQ! RS sending x

to the sequence .x.s/ W s 2 S/ is injective and that its image is a closed subset of RS ;
furthermore XQ has the topology and monoid structure induced from RS .

A morphism � W CP ! CQ of finitely generated cones induces a morphism

X� W XQ!XP ; x 7! x ı �:

Then X� is continuous with respect to the standard topology and the Zariski topology.

The subset
X �Q WD Hom.Q;R��/D Hom.Qgp;R�/

is a submonoid of XQ and in fact is a topological group, isomorphic to a product of
copies of .R��; � / (which in turn is isomorphic to the topological group .R;C/ via
the logarithm map). It acts naturally on XQ , and each X �

F
is stable under this action.

In fact each X �
F

is also naturally a Lie group. If f 2 F and x 2 XQ , ef .x/ > 0 if
x 2X �

F
. Then log.ef / is a well-defined function on X �

F
, and its differential d log.ef /

is an invariant differential form. Then f 7! d log.ef / induces a natural isomorphism
from VF WD R˝F gp to the space of invariant differential forms on X �

F
, and hence

an isomorphism from the Lie algebra of X �
F

to V _
F
WD Hom.F gp;R/. To simplify

the notation we write these isomorphisms as identifications. Thus if f 2 F , we view
1˝ f 2 VF as an invariant differential form on X �

F
, and if � 2 V _

F
we view � as an

invariant vector field on X �
F

. With this notation, we have the formula

(1) def D ef ˝f:

Similarly, the interior C o
F

of the cone spanned by F has a natural structure of a C1

manifold, induced from the inclusion C o
F
� VF , and the invariant vector fields on the

ambient space VF are naturally identified with elements of VF .

Let RŒQ� (resp. RŒCQ�) be the real monoid algebra of Q (resp. CQ ). Its underlying
vector space is just the set of real linear combinations of elements of Q (resp. CQ ),
which we also refer to as cycles in Q (resp. CQ ). We say a cycle is effective if its
coefficients are all nonnegative; the set of effective cycles is a submonoid of RŒQ�
(resp. RŒCQ�/ under addition (and multiplication). Each cycle A WD

P
aqq of RŒCQ�

defines a function eAW XQ! R� , where eA.x/D
P

aqeq.x/ W q 2 CQ .

Definition 1.2 The moment map of an effective cycle A in CQ is the function XQ!

CQ defined by
�A.x/ WD

X
q2CQ

aqx.q/q:
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An effective cycle A in CQ can be viewed as a function CQ!R� with finite support.
Thus if F is a face of Q, the restriction AjF of A to CF can be viewed as an
effective cycle in CF . If x 2XF �XQ , then eq.x/D 0 if q 62 F , so eA ı iF D eAjF

.
Furthermore,

�A.x/D
X

q2CQ

aqx.q/q D
X
f 2CF

af x.f /;

and the following diagram commutes.

(2)

XF
iF- XQ

�A- CQ

XF

�AjF-

id -

CF

6

This will allow us to identify eAjF
with eAjXF

and �AjF
with �AjXF

. Note that if the
support S of A generates CQ , then S \CF necessarily generates CF , and if x 2XF

(resp. X �
F

), then �A.x/ belongs to CF (resp. C o
F

).

The following result describes the differential properties of the moment map.

Proposition 1.3 Let A be an effective cycle in CQ , let S � CQ be its support, and
let F be a face of Q.

(1) The restriction of the moment map �A to X �
F

is the differential of the restriction
of the function eA to X �

F
.

(2) Let x be a point of X �
F

and consider the derivative of �A at x :

�x WD Tx.�A/W Tx.X
�
F /! T�A.x/.C

o
F / ie; V _F ! VF :

Then the associated bilinear form ˇx on V _
F

:

ˇx.�;  / WD  .�x.�//

is symmetric and positive semidefinite. If S \CF generates CF , then ˇx is
positive definite and �x is an isomorphism.

Proof As we have seen,
eA ı iF D

X
f 2F\S

af ef ;

so by the formula (1) for def on X �
F

,

deAjF
D

X
f 2F\S

af def D
X

f 2F\S

af ef ˝f D �AjF
:
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Then

Tx.�A/D
X

af def ˝f D
X

af ef ˝f ˝f 2 RŒCF �˝Hom.V _F ;VF /:

In particular, for x 2X �
F

and � 2 V _
F

,

�x.�/D
X
f

af x.f /�.f /f

ˇx.�;  /D
X
f

af x.f /�.f / .f /:and

Thus ˇx is symmetric. Since af and x.f / are nonnegative, ˇx is also positive
semidefinite. If S \ CF generates CF , then S \ CF spans VF , so ˇx is positive
definite and consequently �x is an isomorphism.

The following result is well-known. We present a proof based on a combination of
ideas from Fulton [2] and Kajiwara and Nakayama [9, A.1.1], with a simplification
suggested by Gabber.

Theorem 1.4 Let Q be a fine monoid and A an effective cycle in CQ whose support
generates CQ . The moment map �A is a homeomorphism

�AW XQ! CQ

compatible with the stratifications of XQ and CQ induced by the faces of Q.

Proof We have already observed that if F is a face of Q, �A maps XF to CF and
X �

F
to C o

F
, so that �A is compatible with the stratifications by faces. Thus to prove

that �A is injective it will suffice to prove that for each face F , �A induces an injection
X �

F
! C o

F
. To simplify notation, we may and shall assume that F DQ. We have an

isomorphism
expQW V

_
Q !X �Q; � 7! exp ı�:

If � and �0 are distinct points of V _
Q

, let  WD �0�� , and for each real number t , let
�t WD �C t and xt D expQ.�t /. Then it follows from (2) of Proposition 1.3 that
the derivative of  .�A.xt // with respect to t is ˇxt

. ;  / > 0. Explicitly,

 .�A.xt //D
X

s

as .s/ exp .�.s/C t .s// ;

and the derivative with respect to t isX
s

as. .s//
2xt .s/ > 0:

Thus  .�A.xt // is an increasing and hence injective function of t . This implies that
�A.exp ı�/¤ �A.exp ı�0/.
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Lemma 1.5 If the support S of A generates CQ , then �AW XQ! CQ is proper.

Proof We assume without loss of generality that 0 62 S . If S generates CQ , then
the evaluation map XQ! RS is a closed immersion. Thus a closed subset of XQ is
compact if its image in RS is bounded, and it will suffice to prove that ��1

A
.B/ is

bounded if B is. This is easy to verify if CQ is sharp. In this case, we can choose a
local homomorphism hW CQ! R� . Then if B is a bounded subset of CQ , h.B/ is a
bounded subset of R� , say bounded by M . If x 2 ��1

A
.B/, then

M � h.�A.x//D
X

s

ash.s/x.s/;

and hence each x.s/�M=am, where a is the minimum of fa.s/ W s 2 Sg and m is
the minimum of fh.s/ W s 2 Sg.

For the general case, we argue as follows.1 Let † denote the set of all subsets � of S

such that the subcone C� of CQ generated by � is sharp. For each such � , we can
choose a local homomorphism h� W C� ! R� , which we can then extend to a linear
map VQ! R. Since † is finite, we can choose an m > 0 such that h� .s/ >m for
all � 2 † and s 2 � . If x 2 XQ , let �x WD fs 2 S W x.s/ � 1g. Then x defines a
homomorphism C�x

! .R>; � / and hence log x is a homomorphism C�x
! .R;C/

which is nonnegative on each element of �x . It follows that C�x
is sharp, so that �x 2†.

Now if B is a bounded subset of CQ , there is a bound M for [fh� .B/ W � 2 †g.
Then if x 2 ��1

A
.B/,

M � h�x
.�A.x//D

X
s2�x

ash�x
.s/x.s/C

X
s 62�x

ash�x
.s/x.s/:

The second sum need not be positive, but its absolute value is bounded by c WDP
s asjh�x

.s/j. Thus for s 2 �x , ash�x
x.s/�M Cc and hence x.s/� .M Cc/=am.

On the other hand, for s 62 �x , x.s/� 1. It follows that ��1
A
.B/ is bounded.

It is now easy to see that, when S generates CQ , �A is a homeomorphism. For
each face F of Q, X �

F
D ��1

A
.C o

F
/, and in particular �A induces a proper map

�A;F W X
�
F
! C o

F
. As we have seen in Proposition 1.3, �A;F is a differentiable map

of differentiable manifolds which induces an isomorphism on tangent spaces at every
point, and it follows from the implicit function theorem that its image is open. Since it
is also proper, its image is also closed, and since C o

F
is connected, it follows that �A;F

is surjective. We conclude that �A is bijective, continuous, and proper, and it follows
that it is a homeomorphism, since a proper map of Hausdorff spaces is closed.

1This argument, more direct than our original one, is due to Gabber.
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Remark 1.6 The simple proof of surjectivity we explained above is due to Gabber.
Our original argument proved surjectivity directly, without using the properness of �A ,
which we proved after the surjectivity. Since this argument is also short and perhaps
interesting, we reproduce it here. This proof is inspired by the discussion of Birch’s
theorem [17, Theorem 1.10]; we thank Bernd Sturmfels for alerting us to this paper.

Let c be an interior point of CQ . To prove that c lies in the image of �A , let

‰c WD ec exp.�eA/W XQ! R�:

Lemma 1.7 For every positive number r , the set XA;c.r/ of all x 2 XQ such that
‰c.x/� r is compact and contained in X �

Q
.

Proof Let S be the support of A. Since c is in the interior of CQ , it is not contained
in any proper face. Thus for every s 2 S , there exist ns 2 Z> and qs 2 CQ with
nsc D sC qs , so nsc D sC

P
t2S at t with all at 2 R� . Summing over s 2 S and

dividing by
P

ns , we find that c D
P
fcss W s 2 Sg with each cs > 0. If F is a proper

face of Q and x 2XF , then x.s/D 0 for some s 2 S , hence ec.x/D
Q

x.s/cs D 0.
Thus ‰c vanishes on XQ nX �

Q
. It follows that XA;c.r/ � X �

Q
when r > 0. Since

XA;c.r/ is a closed subset of a Euclidean space, its compactness will follow if we
prove it is bounded. Since XA;c.r/ is contained in X �

Q
, we can let  WD � log‰c ,

and it suffices to prove that for any real number m, the set X �
A;c
.m/ of points of X �

Q

where  <m is bounded. For x 2X �
Q

,

 .x/D eA.x/� log ec.x/D
X

s

�
asx.s/� cs log x.s/

�
D

X
s

 s.x.s//;

where  s.t/ WD ast � cs log t . Since as and cs are both nonnegative, the function  s

is bounded below, and we can find a positive number m0 such that  s.t/� �m0 for
all t and all s . If x 2X �

A;c
.m/ we have, for each s 2 S ,

 s.x.s//D  .x/�
X
s0¤s

 s0.x.s
0//�  .x/CjS jm0 �m00 WDmCjS jm0:

On the other hand, the restriction of  s to Œcs=as;1/ is an increasing function which
tends to 1. Hence for each s , there is a constant ms such that t < ms whenever
 s.t/ < m00 . Then if x 2 X �

A;c
.m/, each x.s/ < ms . This shows that X �

A;c
.m/ is

indeed bounded.

Now choose a point x0 in X �
Q

. Then r WD ‰c.x0/ > 0, and the set XA;c.r=2/

is nonempty and compact. It follows that ‰c has a maximum at some point x of
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XA;c.r=2/. But then in fact ‰c.x/ is the maximum of ‰c on all of X �
Q

. Thus ‰c has a
critical point at x , and hence so does log‰c . So d log‰c.x/D 0. By Proposition 1.3,

d log‰c D d log ec � deA D c ��A;

thus �A.x/D c .

2 Relative rounding

This section is devoted to a precise formulation and proof of Theorem 0.2. We begin
by reviewing the notion and properties of exactness. The main ideas are taken from the
appendix of Illusie, Kato and Nakayama [7].

Definition 2.1 A morphism � W P !Q of integral monoids is
(1) local if ��1.Q�/D P� ,
(2) exact if the diagram

P
� - Q

P gp
?

�gp
- Qgp

?

is Cartesian,
(3) locally exact if for every face G of Q, the localized map

P��1.G/!QG

is exact,
(4) very locally exact if for every face G of Q such that ��1.G/D P� , the map

P !QG

is exact.

Remark 2.2 If P D N, then � is exact if and only if it is local. In general, an exact
morphism is easily seen to be local, so a locally exact morphism is exact if and only
if it is local. Furthermore, if � is exact and F is any face of P , then the induced
map PF !QF is again exact, hence local, and it follows that there is a face G of Q

such that ��1.G/D F . Thus if � is exact, Spec.�/ is surjective. For fine saturated
monoids the converse is also true: if P and Q are fine saturated monoids, then � is
exact if and only if Spec � is surjective [7, A.3.2.1]. Moreover, if P and Q are fine
sharp monoids and � W CP ! CQ is injective, then � is locally exact if and only if the
map on monoid algebras ZŒCP �! ZŒCQ� is flat. One direction follows, for example,
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from Theorem 2.3 below. See Kato [11] for the other direction as well as the relation
between local exactness to Kato’s notion of integrality for morphisms of monoids.

Theorem 2.3 Let P and Q be fine monoids and let � W CP ! CQ be an injective and
local homomorphism of their corresponding real cones. Assume P is sharp. Then the
following conditions are equivalent.

(1) � is locally exact.

(2) � is very locally exact.

(3) For each q 2 CQ ,
Sq WD

�
qC �.C

gp
P
/
�
\CQ

is isomorphic as a CP –set to CP , generated by a unique q0 2 CQ with the
property that ��1hq0i D f0g.

Proof In what follows we regard CP as a subcone of CQ . Observe first that, in any
case, fSq W q 2CQg forms a partition of CQ . We claim that each Sq contains some q0

such that hq0i \CP D f0g. Choose a local homomorphism hW CQ! .R�;C/. Then
h factors through a local homomorphism xhW C xQ! .R�;C/, where xQ WDQ=Q� is
sharp. One verifies immediately that the image of Sq in C xQ is exactly Sxq . Since xQ
is sharp, xh�1Œ0; xh.xq/� is compact, and since Sxq is closed in C xQ , its intersection with
xh�1Œ0; xh.xq/� is also compact. It follows that xh achieves a minimum value on Sxq , say
at xq0; where q0 2 Sq . Suppose that p 2 hq0i\CP , so that there exists some q0 2 CQ

such that q0D q0Cp . Then q0 2 Sq0
D Sq , and h.q0/D h.q0/Ch.p/� h.q0/. Since

h.q0/� h.q0/, it follows that h.p/D 0, and since � and h are local and P is sharp,
it follows that p D 0. Thus hq0i \CP D f0g as desired. Now if (2) holds, the map
CP ! CQ remains exact after localizing by q0 . Since q0 2 Sq , there exist p and
p0 2 CP such that qCp D q0Cp0 . Thus p0�p D q� q0 lies in the localization of
CQ by q0 , and hence p0�p 2CP . It follows that qDp0�pCq0 lies in the CP orbit
of q0 . Since q 2 Sq was arbitrary, we see that q0 generates Sq as a CP –set. Now
if q1 is another element of Sq such that hq1i \CP D f0g, we have q1 D q0Cp and
q0D q1Cp0 for some p;p0 2 CP . Since CQ is integral, this implies that pCp0D 0,
and since P is sharp, it follows that p D p0 D 0 and that q0 D q1 . This proves that
(2) implies (3).

Now suppose that (3) holds. Let G be a face of Q and let F be its intersection
with P . We will prove that .CP /F ! .CQ/G is exact. Suppose that p2�p1 lies in the
localization of CQ by G . Then there exist q 2Q and g 2G such that p2�p1D q�g .
This implies that SgDSq . Condition (3) implies that there exists some q0 2CQ which
generates Sg D Sq as a CP –set. Thus there are p;p0 2 CP such that gD pC q0 and
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q D p0C q0 . Then p2�p1 D p0�p . On the other hand, p 2 hgi �G , so p 2 F , so
indeed p2�p1 2 .CP /F , as required. This proves that (3) implies (1). The remaining
implication is trivial.

The following consequence is a key ingredient in our proof of relative rounding. See
Illusie, Kato and Nakayama [7, A.3.2.2].

Corollary 2.4 Let P and Q be fine monoids and let � W CP ! CQ be a local and
locally exact morphism of the corresponding cones. Assume that P is sharp, and let
CQ;P � CQ denote the union of the set of faces G of CQ such that G \CP D f0g.
Then the map

gW CQ;P �CP ! CQ; .q;p/ 7! qCp

is a homeomorphism, whose inverse we denote by

.�Q;P ; �P /W CQ! CQ;P �CP :

Proof Since � is local and locally exact, it is exact and therefore injective, since P

is sharp. It follows immediately from condition (3) of Theorem 2.3 that the map g

is bijective. It is clear that g is continuous, and we claim it is also proper, hence a
homeomorphism. It will suffice to prove that if B is a subset of CQ;P � CP such
that B0 WD g.B/� CQ is bounded, then B is also bounded. Let G be a face of CQ

which intersects CP trivially, and let hW CQ ! .R�;C/ be a homomorphism such
that h�1.0/ D G . Let BG be the subset of B consisting of those pairs .q;p/ such
that q 2 G , let B0

G
WD g.BG/ and let B00

G
be the image of BG under the projection

CQ;P � CP ! CP . Since B0
G
� B0 is bounded, so is h.B0

G
/. If .q;p/ 2 BG ,

h.p/D h.qCp/ 2 h.B0
G
/, and it follows that h.B00

G
/ is bounded. Since the restriction

of h to CP is local and P is sharp, it follows that B00
G

is also bounded. Repeating this
for each face G of Q with G \CP D 0, we conclude that the projection of B to CP

is bounded. Since we also know that B0 is bounded, it follows that the projection of B

to CQ;P is also bounded. Hence B is bounded.

Our strategy for the proof of Theorem 0.2 will be to use moment maps to compare the
spaces XQ and XP to the corresponding cones CQ and CP and then apply Corollary
2.4. This is not straightforward because the moment map is not functorial. Overcoming
this difficulty is the main content of the rest of this section.

If P is any monoid, let PC WD P nP� denote its maximal ideal. The vertex of XP is
the element of XP defined by

vP .p/ WD

(
0 if p 2 PC;

1 if p 2 P�.
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If � W CP ! CQ is a morphism of cones, let XQ;P WD X�1
�
.Z.PC//, ie, the Zariski

closed subset of XQ defined by the ideal of CQ generated by �.PC/. When P is
sharp, XQ;P D X�1

�
.vP /. Let J be the radical of this ideal. Then XQ;P D Z.J /,

and J is the intersection of the prime ideals of CQ containing CC
P

, ie, the prime
ideals corresponding to the faces G of CQ such that ��1.G/D C �

P
(see the sentence

following Remark 1.1).

Let A be an effective cycle in CQ whose support generates CQ , and let �AW XQ!

CQ be the associated moment map 1.2. We know from Theorem 1.4 that �A is a
homeomorphism compatible with the stratifications by faces. Then its inverse �A enjoys
the same property. Thus �A.XQ;P /DCQ;P �CQ and �A induces a homeomorphism
�A;P W CQ;P !XQ;P . We obtain a map XQ!XQ;P which will allow us to push the
general fibers of X� to the special fiber. Figure 1 illustrates this map when � is the
diagonal embedding N! N˚N and A is the minimal set of generators of N˚N; in
this case �A is the identity map of R� �R� .

Figure 1

Theorem 2.5 Let P and Q be fine monoids, with P sharp, and let � W CP ! CQ be
a local and locally exact morphism of their corresponding real cones. Let A be an
effective generating cycle of CQ and let �A;P be the composite

�A;P W XQ
�A- CQ

�Q;P- CQ;P
�A;P- XQ;P ;

where �Q;P W CQ!CQ;P is the map defined in Corollary 2.4. Then in the commutative
diagram

XQ
.�A;P ;X� /- XQ;P �XP

XP

pr2

?
X� -

the horizontal arrow .�A;P ;X� / is a homeomorphism.
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Remark 2.6 The map �A;P W XQ ! XQ;P has the following property. For each
x 2 XQ , F.x/ is the face of CQ generated by F.�A;P .x// and F.x/ \ CP , and,
consequently, the face generated by F.x/ and CP is the same as the face generated by
F.�A;P .x// and CP . To check this, let x0 WD �A;P .x/, so that �A.x/D �A.x

0/Cp

for some p 2CP . This implies that p and �A.x
0/ belong to F WD h�A.x/i, and hence

that F is the face of CQ generated by �A.x
0/ and F \CP . Now recall that F.x/ is

the face of CQ generated by �A.x/ and similarly for x0 .

Proof of Theorem 2.5 Fix an element q of Q and let �P;qW CP ! XP be the
composite

(3) �P;qW CP
p 7!qC�.p/- CQ

�A- XQ
X�- XP :

Let us note that if F is a face of P , then � induces a map CF ! CQ , and we also
find a map �F;qW CF !XF . The following shows that, with suitable hypotheses, the
maps �P;q and �F;q are compatible.

Lemma 2.7 Let P and Q be fine monoids and let � W CP ! CQ be an injective
homomorphism of their corresponding cones. Suppose that q 2 CQ is contained in a
face G of CQ such that Ggp\P gp D 0 and such that the map CP ! CQ=G is exact.
Then the map �P;qW CP ! XP in (3) is compatible with the stratifications by faces:
it sends each face CF of CP to the corresponding subset XF of XP , and there is a
commutative diagram

XF

CF

�P;qjCF-

�F;q

-

XP

iF

?

XF

Xi

?
�F;q -

where i W F ! P is the inclusion.

Proof The lower triangle of the diagram commutes by the definitions of �P;q and
�F;q , and the upper triangle will commute as soon as �P;q maps CF to XF . Since
CP ! CQ=G is exact, each face F of CP lifts to a face of CQ=G . Thus there exists
a face G0 of CQ containing G such that G0 \CP D F . Choose a homomorphism
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hW CQ ! .R�;C/ with h�1.0/ D G0 . If p 2 F , then q C p 2 G0 , and so if x WD

�A.qCp/,

0D h.qCp/D
X

s

asx.s/h.s/:

Since as > 0 for all s in the support of A and h.s/ ¤ 0 if s 62 G0 , it follows that
x.s/ D 0 if s 62 G0 . This means that x 2 XG0 � XQ , and hence that �P;q.p/ WD

X� .x/ 2XF �XP .

Before proceeding, let us review some elementary compatibilities about bilinear forms
in our context. Let V be a finite dimensional real vector space, let V _ be its dual, and
let � W V _! V be a linear map. Recall that the associated bilinear form ˇ on V _ is
defined by

ˇ.�;  / WD  .�.�//:

Symmetry of ˇ means that the diagram

V _
� - V

V _

id
?

�_- V _
_

ev
?

commutes. Assume now that ˇ is symmetric and positive definite. Then � is an
isomorphism and the bilinear form on V corresponding to the map ��1W V ! V _ is
just the bilinear form obtained from ˇ by transport of structure using the isomorphism � .
Let us denote this bilinear form (which is also positive definite and symmetric) also
by ˇ . Note that if W is a linear subspace of V , then ˇ restricts to a positive definite
bilinear form on W and hence defines an isomorphism W !W _ . In fact the following
diagram also commutes:

(4)

V _ �
��1

V

W _
?
��
�1jW

W

6

Let F be a face of P . By Lemma 2.7, �P;q induces a map CF !XF �XP , which
we can identify with �F;q , and we just write �q in either case. Note that the map
CqW p 7! qC �.p/ maps CF into the face CG of CQ generated by �.F / and q and
induces a map C o

F
! C o

G
. To simplify the notation, we replace Q by G . If p 2 F ,
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let x WD �q.p/. Then we have commutative diagrams:

(5)

X �Q
�

��1
A C o

Q Lie.X �Q/ �
��1

x Lie.C o
Q/

X �F

X�

?
� �q

C o
F

Cq

6

Lie.X �F /
?

� ��1
x Lie.C o

F /

6

Here the diagram on the right is the derivative of the diagram on the left, and identifies
with diagram (4). Thus d�q at p can be identified with ��1

x .

Lemma 2.8 Let q 2CQ be as in Lemma 2.7 and let F be a face of P . The restriction
of �q to the interior of C o

F
is a homeomorphism onto its image, which is an open subset

of X �
F
�XP .

Proof It follows from diagrams (5) and (4) that if p 2 C o
F

, the derivative of the map
�qW CF !XF at p is the isomorphism VF ! V _

F
corresponding to the restriction of

the bilinear form ˇ�q.p/ on VQ to VF . By the implicit function theorem, the restriction
of �q to C o

F
is an isomorphism locally on C o

F
, and in particular its image is an open

subset of X �
F

.

Let p and p0 be two distinct elements of C o
F

, let v WDp0�p 2VF , and for t 2 Œ0; 1� let
f .t/ WDpCtv . Then f is a continuous map from Œ0; 1� to C o

F
, and its derivative at any

t 2 .0; 1/ is v . The logarithm map induces an isomorphism X �
F
Š Hom.F gp; .R;C//,

and evaluation at v defines a map log.ev/W X �F ! .R;C/. Recall that d log.ev/ is
the invariant differential form corresponding to the element v 2 V Š Lie.X �

F
/_ , and

that the derivative of the map C o
F
!X �

F
is the isomorphism corresponding to ˇ�q

. It
follows that the derivative of the composite log.ev/ ı �q ı f is ˇ�qıf .v; v/. Since ˇ
is everywhere positive definite, this function is increasing. Hence log.ev/.�q.p//¤

log.ev/.�q.p
0//, so �q.p/¤ �q.p

0/, as required.

Lemma 2.9 Let .qn;pn/ be a sequence in CQ �CP . If .qn/ is bounded and .pn/ is
unbounded, then �qn

.pn/ is unbounded.

Proof Choose any norm on VP , and let �n WD jjpnjj. Replacing .qn;pn/ by a
subsequence, we may assume that �n ¤ 0 for all n and that the sequence .�n/ tends
to infinity. Let p0n WD pn=�n . Then p0n is a sequence in the unit ball of VP , and hence
contains a convergent subsequence. Passing to this subsequence, we may assume that
.p0n/ converges to some p0 in the unit ball. Let xn WD �A.qnC pn/. Let S be the
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support of A, let Su be the set of all s 2 S such that xn.s/ is unbounded and let Sb

be its complement. Then .��1
n qn/ approaches zero, and

(6) ��1
n qnCp0n D �

�1
n �A.xn/D

X
s2Su

��1
n asxn.s/sC

X
s2Sb

��1
n asxn.s/s:

The second sum on the right side converges to zero, and it follows that the first sum
converges to p0 . Since p0 ¤ 0, Su is not empty. Choose some s1 2 Su , and let .nk/

be an increasing sequence such that the subsequence .xnk
.s1// tends to infinity. Let

S 0u be the set of all s such that xnk
.s/ is unbounded and let S 0

b
be its complement.

Then equation (6) holds with the subsequence .qnk
;pnk

/ in place of .qn;pn/ and
with Su and Sb replaced by S 0u and S 0

b
. Furthermore s1 2 S 0u � Su . After repeating

this process a finite number of times, we find a subsequence of the original sequence
with the property that S D Su [ Sb , where .xn.s// approaches infinity if s 2 Su

and is bounded if s 2 Sb . Equation (6) still holds, and hence p0 is contained in the
closure of the subcone CSu

of CP spanned by Su . Since Su is finite, this cone is
already closed, and so in fact p0 2 CSu

. Write p0 D
P
fcs0s

0 W s0 2 Sug, where cs0 � 0.
Then xn.p

0/D
Q

xn.s
0/cs0 . Since each sequence .xn.s

0// tends to infinity and at least
one cs0 is positive, .xn.p

0// is unbounded. Since p0 2 CP , it follows that .X� .xn// is
unbounded in XP .

We can now finish the proof of Theorem 2.5. From Theorem 1.4 and Corollary 2.4 we
have homeomorphisms

�AW XQ! CQ and gW CQ;P �CP ! CQ:

Thus it will suffice to show that h WD .�A;P ;X� / ı�
�1
A
ıg is a homeomorphism. This

is the map

hW CQ;P �CP !XQ;P �XP ; .q;p/ 7! .��1
A .q/; �q.p//:

It is clear that h is continuous, and we claim that it is also proper. To see this let K

be a compact subset of XQ;P �XP , let .qn;pn/ be a sequence in h�1.K/, and let
.xn;yn/ WD h.qn;pn/. Since qn D �A.xn/ and .xn/ is contained in a compact set,
.qn/ is bounded. Since .yn/ D .�qn

.pn//, it follows from Lemma 2.9 that .pn/ is
also bounded. Thus h�1.K/ is closed and bounded, hence compact. Next we check
that h is bijective. Since �A is a bijection XQ;P ! CQ;P , it will suffice to prove that
each �q is bijective. We know that �q is compatible with the stratifications of CP and
XP by faces, and from Lemma 2.8 that the restriction of �q to each C o

F
is injective

and has nonempty open image. Since the restriction of �q to C o
F
D ��1

q .X �
F
/ is still

proper, its image is also closed, and hence �q is surjective, as required. Thus h is
continuous, bijective, and proper, hence a homeomorphism.
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Remark 2.10 It is also possible to give a direct proof of the surjectivity of h, as we
did for the moment map in Remark 1.6. It suffices to prove that for each q 2 CQ as
in Lemma 2.7, the map �qW CP !XP is surjective. Let F be a face of P . We shall
prove that the map �qW C

o
F
!X �

F
is surjective. We may as well take F D P . Choose

a generating effective cycle B of CP and recall that the moment map �BW X
�
P
! C o

P

is injective. Thus it suffices to prove that for each c 2C o
P

, there is a point p 2CP such
that �B ı �q.p/D c . We follow the method of Remark 1.6. Consider the function

‰c D ec exp.�eB/W XP ! R�;

where eB WD
P

bpep . This function is nonzero on X �
P

and d log‰c D c��B on X �
P

.
Thus it suffices to show that there is some point x in the image U �q of the restriction
of �q to C o

P
at which d log‰c D 0. We know already that U �q is open in X �

P
, so it

suffices to show that ‰c has a critical point somewhere on U �q . Thus it will suffice
to show that ‰c has a maximum somewhere on U �q , or equivalently, that ‰c ı �q

has a maximum somewhere on C o
P

. For each r > 0, let CB;c.r/ denote the set of
points of CP where ‰c ı �q is at least r , and let XB;c.r/ denote the set of points
of XP where ‰c is at least r . Note that since ‰c vanishes on XP nX �

P
, CB;c.r/ is

contained in C o
P

. Lemma 1.7, applied to P , B , and c , implies that XB;c.r/ is bounded.
Since �q.CB;c.r//�XB;c.r/, Lemma 2.9 implies that CB;c.r/ is also bounded, hence
compact. Choose some p0 2 C o

P
, and let r WD 1=2‰c.�q.p0//. Then ‰c ı �q has a

maximum on CB;c.r/, which will be a maximum of ‰c ı�q on all of C o
P

, as required.

As an offshoot of our technique, we can force the following functoriality for moment
maps:

Proposition 2.11 Let Q be a fine monoid and let � W P !Q be the inclusion of an
exact submonoid. Let S (resp. T ) be a finite set of generators for Q (resp. P ). Then

X� ı�
�1
S ıC� W CP !XP

is a homeomorphism which sends each face CF of CP to the corresponding subset XF

of XP . Hence there is a stratification preserving homeomorphism hS;T W XP ! XP

which makes the following diagram commute:

CQ

��1
S- XQ

CP

C�

6

��1
T- XP

hS;T- XP

X�

-
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Proof The proof of Theorem 2.5 shows that �0 is a homeomorphism when � W P!Q

is the inclusion of an exact submonoid. Then hS;T WD �0 ı�T fits into the diagram
shown.

Proof of Theorem 0.2 The only difficulty is that in Theorem 0.2, the monoid P need
not be sharp. To reduce to Theorem 2.5, let xQ WDQ=Q� and xP WDP=P� and consider
the diagram of finite dimensional vector spaces:

CQ�
- C

gp
Q

- C
gp
xQ

CP�

��
6

- C
gp
P

�gp
6

- C
gp
xP

x�gp6

Note that since � is local, the map x�gp is injective. Choose a splitting C
gp
Q
! CQ�

which maps C
gp
P

to CP� . Note that the corresponding splittings C
gp
xQ
! C

gp
Q

and
C

gp
xP
! C

gp
P

necessarily map C xQ to CQ and C xP to CP , respectively. It follows that
there is a commutative diagram:

(7)

XQ
Š- XQ� �X xQ

XP

X�

?
Š- XP� �X xP

X���Xx�

?

Since CP�!CQ� is an injective map of vector spaces, it admits a splitting, and hence
the map X�� is isomorphic to a projection map. Thus X� will be isomorphic to a
projection if Xx� is. Since � is local, the map x�gp is injective. Then x� is a locally exact
and injective map of sharp cones, and it suffices to apply Theorem 2.5 to x� .

Theorem 2.5 implies that (with the hypothesis there) all the fibers of the map XQ!XP

are homeomorphic. For each point y of XP , let XQ.y/ denote the fiber of X�
over y . In particular, the “broken” fiber XQ.v/ D XQ;P over the vertex v of XP

is homeomorphic to the fiber XQ.1/ over 1, where 1 is the identity element of the
monoid XP . Explicitly, if y 2 XQ.v/, there is a unique s.y/ 2 XQ.1/ such that
�A;P .s.y//D y , and sW XQ.v/DXQ;P !XQ.1/ is a homeomorphism. Let

�0A;P WD s ı �A;P W XQ!XQ.1/:

We obtain the following reformulation of Theorem 2.5, which is sometimes more
convenient.
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Corollary 2.12 With the hypotheses of Theorem 2.5, there is a continuous map
�0

A;P
W XQ!XQ.1/ with the following properties:

(1) The map .�0
A;P

;X� /W XQ!XQ.1/�XP is a homeomorphism, and the diagram

XQ

.�0
A;P

;X� /- XQ.1/�XP

XP

pr2

?
X� -

is commutative.

(2) For each x 2XQ , F.�0
A;P

.x// is the face of Q generated by F.x/ and P .

Proof Let x be a point in XQ , and let y WD �A;P .x/ and y0 WD �0
A;P

.x/ D s.y/.
Then �A;P .y

0/D y , and it follows from Remark 2.6 that

hF.x/CP i D hF.y/CP i D hF.y0/CP i:

Since y0 2 XQ.1/, F.y0/ already contains P , so F.�0
A;P

.x// is the face generated
by F.x/ and P .

Remark 2.13 Let us attempt to describe the fibers of the map X� in Corollary 2.12.
The fiber XQ.1/ consists of the set of homomorphisms xW CQ! .R�; � / sending CP

to 1, or, equivalently, the set of homomorphisms CQ=CP ! .R�; � /, where CQ=CP

is the image of CQ in the quotient C
gp
Q
=C

gp
P

. Note that this identification XQ.1/Š

XCQ=CP
is compatible with the stratification by faces: if x 2XQ.1/ corresponds to

x0 2XCQ=CP
, then F.x/ is the face of CQ containing CP corresponding naturally to

the face F.x0/ of CQ=CP . We will allow ourselves to identify the faces of CQ=CP

with those faces of CQ containing CP when convenient.

A morphism of monoids or cones � W P !Q is said to be dominating or vertical if
the image Q=P of Q in Cok.�gp/ is a group, or equivalently if the image of P is
not contained in any proper face of Q. If � W CP ! CQ is vertical, then XQ.1/�X �

Q

and in fact XQ.1/ is a smooth submanifold of X �
Q

. Indeed, XQ.1/Š XCQ=CP
and

CQ=CP is a group, so that in fact XCQ=CP
is homeomorphic to a Euclidean space.

More specifically, if x 2XQ we say that X� is vertical at x if the localization of Q

by F.x/CP is a group, or equivalently, if hF.x/CP i DQ. It is clear that the set
X v

Q
of all x at which X� is vertical is an open subset of XQ .

The following result describes the fibers of the submersions arising in Theorem 2.5.
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Proposition 2.14 Let Q and P be fine monoids.

(1) There exist a manifold with boundary .M;B/ and homeomorphisms

.M;M nB/Š .XQ;X
�
Q/Š .CQ;C

o
Q/:

In particular, the boundary B is empty if and only if Q is a group.

(2) Let � W CP ! CQ be an exact, injective, and locally exact morphism of fine
monoids, and let X v

Q
� XQ denote the open subset of points at which X� is

vertical. Then there is a commutative diagram

.XQ;X
v
Q/

Š- .XQ=P ;X
�
Q=P /�XP

XP

pr2

?
X� -

in which the top horizontal arrow is a homeomorphism. In particular, the fibers
of XQ!XP are all topological manifolds with boundary, and the boundary is
empty if and only if � is vertical.

Proof Although statement (1) is well-known, we include a proof for the sake of
completeness. The moment map associated with any effective generating cycle induces
a homeomorphism

.XQ;X
�
Q/Š .CQ;C

o
Q/

so it suffices to prove that .CQ;C
o
Q
/ is homeomorphic to some .M;M nB/. Choose

a splitting CQ Š CQ� �C xQ . Then

.CQ;C
o
Q/Š .CQ� �C xQ;CQ� �C o

xQ
/;

and CQ� is a Euclidean space. Hence it suffices to prove the result when Q is sharp.
Choose an element p of the interior of Q and let P be the submonoid of Q generated
by p . Then P ! Q is exact and locally exact, and the quotient Q=P is a group.
It follows from Corollary 2.4 that the projection mapping CQ ! CQ=P induces a
homeomorphism CQ;P ! CQ=P , and then a homeomorphism CQ=P � CP ! CQ ,
sending CQ=P �C o

P
to C o

Q
. Alternatively one can argue from Corollary 2.12. As we

saw in Remark 2.13, XQ.1/Š XQ=P is homeomorphic to a Euclidean space Rn�1 ,
where n is the dimension of CQ . Thus XQ.1/ �R� is a manifold with boundary
XQ.1/�f0g. Since X�1

�
.R>/DX �

Q
, the homeomorphism of Corollary 2.12 produces

the desired homeomorphism

.XQ;X
�
Q/Š .XQ.1/�R�;XQ.1/�R>/:
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The horizontal arrow in the diagram of statement (2) is the same as that of the diagram
in statement (1) of Corollary 2.12. Statement (2) of this corollary implies that this arrow
maps X v

Q
to X �

Q=P
. Statement (1) of the proposition, applied to the fine monoid Q=P ,

tells us that .XQ=P ;X
�
Q=P

/ is a topological manifold with boundary.

3 Submersivity of log smooth maps

The main result of this section is Theorem 3.5 below. Before stating it, we shall review
the notion of a log analytic space X and its associated topological space Xlog . Let us
begin with a version for toric varieties, which serve as local models for smooth log
analytic spaces.

Let Q be a fine monoid and let AQ denote the set of homomorphisms Q! .C; � /,
ie, the set of complex points of Spec CŒQ�. We endow AQ with its natural structure
of a complex analytic variety, which is the analytic space associated to an affine
toric variety.2 As alluded to in the introduction, there is a natural way to introduce
polar coordinates for such varieties. Recall that XQ WD Hom.Q; .R�; � //, which is
naturally a subset of AQ . Similarly we define TQ WD Hom.Q;S1/ � AQ , where
S1 WD fz 2 C W jzj D 1g. Then TQ acts naturally on AQ by multiplication. If x 2XQ ,
the isotropy subgroup of TQ at x is TQ=F.x/ � TQ . Furthermore, there is a natural
retraction AQ!XQ , sending a point z to the point jzj. The following proposition is
then immediate.

Proposition 3.1 Let
�QW A

log
Q WD TQ �XQ!AQ

be the map induced by the action of TQ on AQ and the inclusion XQ! AQ . Then
�Q is surjective and proper, and for z 2AQ , ��1

Q
.z/Š TQ=F.jzj/ .

We can now state the following local version of Theorem 3.5.

Proposition 3.2 Let � W P ! Q be a locally exact and injective homomorphism of
fine monoids. Then the map Alog

�
W Alog

Q
!Alog

P
is submersive. Its fibers are topological

manifolds with boundary, and the boundary consists of those points of Alog
Q

lying over
points of XQ at which X� is not vertical (see Remark 2.13).

Proof Replacing a monoid P by its saturation does not change Alog
P

, so we may
and shall assume that P and Q are saturated. Let F WD ��1.Q�/. Then F is a face

2Strictly speaking AQ is traditionally called a toric variety only when Q is fine and saturated and
Qgp is torsion free.
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of P and � factors: � D � 0 ı � 00 , where � 00W P ! PF and � 0W PF !Q. Since the
composition of two submersive maps is submersive, it suffices to prove the result for
� 0 and � 00 . The map A� 00 W APF

!AP is an open immersion, and the same is true for
Alog
� 00

, and hence it is certainly submersive. The map � 0W PF !Q is local and locally
exact, hence exact. Thus we are reduced to proving the proposition when � is exact
and locally exact. Since Alog

�
Š T� �X� and the product of two submersions is a

submersion, it will suffice to prove that T� and X� are submersive. Theorem 0.2 says
that X� is a projection mapping, hence submersive.

The proposition will now follow if we prove that T� is submersive. This is almost
immediate. Let P 0 (resp. Q0 ) be the quotient of P (resp. Q) by the torsion subgroup Pt

of P gp (which is contained in P because P is saturated). Then the natural map
TP ! TPt

(resp. TQ! TPt
) makes TP (resp. TQ ) a torsor over TP 0 (resp. TQ0 ).

Thus we are reduced to the case in which P gp is torsion free. Consider the exact
sequence of finitely generated abelian groups

0! P gp
!Qgp

!G! 0;

where G is by definition the quotient of Qgp by the image of P gp . The obstruction �
to splitting this sequence lies in Ext1.G;P gp/, which is a finite group. It follows that
there is natural number n such that n� D 0. This means that the sequence obtained by
pushout

P gp - Qgp - G

P gp

�n

?
- zQgp

?
- G

id

?

splits, and hence that the corresponding map Tz� W T zQgp ! TP gp is a product map. On
the other hand, the square in the diagram

(8)

TG �TP gp
Š- T zQgp

- TQgp

TP gp

Tz�
?

�n-

pr2 -

TP gp

T�

?

is Cartesian, and the bottom arrow is a covering space. It follows that T� is a fiber
bundle, and in particular is submersive.

Finally, let us remark that the fiber of Alog
�

over a point .�;x/ of Alog
P

is just the product
of the fiber of T� over � and the fiber of X� over x . The former is the manifold TG

and the latter is a manifold with boundary as described in Proposition 2.14. This proves
the last statement.
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Remark 3.3 The proof shows that if P !Q is local as well as locally exact then
Alog
�

is a fiber bundle, and if in addition the cokernel of P gp!Qgp is torsion free,
then in fact A� is a trivial fiber bundle, ie, is isomorphic to a projection mapping.

Let us briefly recall the basic definitions in log geometry. For details we refer to
Kato [11] and Illusie, Kato and Nakayama [7].

Definition 3.4 A log structure on an analytic space X is a morphism of sheaves of
monoids

˛W MX ! .OX ; � /

such that the induced map
˛�1.O�X /!O�X

is an isomorphism.

A log analytic space is an analytic space endowed with a log structure ˛ , and a
morphism of log analytic spaces is a morphism which is compatible with the log
structures in the evident sense. A basic example is the following. Let Q be a monoid
and let ˇW Q! .OX ; � / be a morphism of sheaves of monoids. Then one can form
the pushout in the category of sheaves of monoids:

ˇ�1.O�X / - Q

O�X
?

- M

ž

?
˛- OX

ˇ

-

Then ˛ is a log structure on X , and ž is a chart for ˛ . A log structure or space is said
to be coherent (resp. fine) if locally on X it admits charts given by finitely generated
(resp. fine) monoids. In particular, on the analytic space AQ associated to the toric
variety Spec CŒQ� as above, there is a natural map Q!OAQ

, which defines a fine
log structure MQ!OAQ

on AQ . When Q is saturated, Kato’s Theorem [12, 11.6]
implies that MQ can be identified with the sheaf of holomorphic functions on AQ

which become invertible when restricted to A�
Q
WDAQgp .

A morphism f W X!Y of integral log analytic spaces is said to be exact (resp. vertical)
at x 2X , if the map of monoids

f [W MY;f .x/!MX ;x

is exact (resp. vertical) (see Definition 2.1 and Remark 2.13). We say simply that f is
exact (resp. vertical) if it is so at every x . Similarly, f is said to be strict if for every
x 2X , the induced map SMY;f .x/!

SMX ;x is an isomorphism. For the definition of
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a smooth morphism of log spaces, we must refer to Kato’s original article [11]. See
Illusie, Kato and Nakayama [7, 2.2].

Associated to a log analytic space .X; ˛/ is continuous map of topological spaces

�X W Xlog!X

which globalizes the polar coordinate construction for toric varieties described above.
We present here a slight generalization of the original definition of Kato and Nakayama
in [13]; note that our definition does not require the log structure to be coherent.
By definition Xlog is the set of pairs .x; �/, where x is a point of X and � is a
homomorphism of monoids fitting into the commutative diagram

MX ;x
� - S1

O�X ;x

˛x

6

argx

-

where argx.u/ WD u.x/=ju.x/j. The map �X W Xlog ! X sends .x; �/ to x . Corre-
sponding to each section m of MX on an open subset U of X is a function

arg.m/W ��1
X .U /! S1; .x; �/ 7! �.mx/:

We endow Xlog with the weak topology defined by the functions �X and arg.m/ as m

ranges over the local sections of MX . It follows from the fact that S1 is a compact
and divisible group that the map �X is surjective and proper. The fiber of a point x is
a torsor under the group Hom. SMX ;x;S1/.

Theorem 3.5 Let f W X ! Y be an exact smooth morphism of fine log analytic
spaces. Then flogW Xlog! Ylog is a topological submersion. The fibers are topological
manifolds with boundary, and the boundary consists of the set of points of Xlog lying
over points of X at which f is not vertical.

Proof We make use of the following argument from [7, A.3.3] to reduce to Proposition
3.2. The statement is local on X . Choose a point x of X and let y WD f .x/. It follows
from the smoothness of f that, after replacing X by a neighborhood of x and Y by
a neighborhood of y , there exist charts P !MY and Q!MX and a morphism
� W P !Q with the following properties.
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(1) The monoids P and Q are fine, and � W P !Q is injective.

(2) The maps P ! SMY;y and xQ WDQ=Q�! xMX ;x are isomorphisms.

(3) The diagram

X
i- Y �AP

AQ

- AQ

Y

f 0

?
ˇ-

f -

AP

A�

?

is commutative, its square is Cartesian, and i is a strict open immersion.

Since P is sharp, the vertex vP of AP is the point defined by the maximal ideal PC

of P , and ˇ.y/D vP . Similarly, 
 .i.x// lies in the closed subset of AQ defined by
the ideal QC of Q. Let G be any face of Q such that ��1.G/D 0 and let q WDQnG

be the complementary prime ideal. Then AG ŠZ.q/� A�1
�
.vP /, and A�

G
is dense

in AG . Let Xy WD f
�1.y/, and note that since i.x/ 2 
�1.AG/\ i.Xy/, the latter is

a nonempty open subset of 
�1.AG/ and hence meets 
�1.A�
G
/. It follows that there

is a point x0 in Xy which maps to some point of A�
G

. Since Q!MX is a chart, the
natural map Q!MX ;x0 induces an isomorphism Q=G! SMX ;x0 . Since f is exact,
the map MY;y !MX ;x0 is exact, and it follows that P !Q=G is exact. Since this
was true for an arbitrary face G of Q lying over the trivial face of P , it follows that
� is very locally exact (see Definition 2.1). By Theorem 2.3, � is in fact exact and
locally exact. By Proposition 3.2, Alog

�
is submersive, and hence so is the base changed

map f 0log . Since ilog is an open immersion, flog is also submersive. The statement
about the fibers also follows from Proposition 3.2, and this completes the proof.

Sometimes it is convenient to consider log structures which are not coherent (see for
example Ogus [14; 15] and Gross and Siebert [4]). For example, if MX !OX is a
coherent log structure on X , any sheaf of faces F of MX is again a log structure,
and it is often productive to work with F ! OX even if F is not coherent. When
necessary to clarify with which log structure we are working, we will write .X;F/ or
X.F/ to denote the log space .X;F !OX /, and similarly for M.

The following definitions should be regarded as provisional.

Definition 3.6 Let F !OX be a log structure on a complex analytic space X .

(1) F is relatively coherent if locally on X there exists a coherent log structure
M containing F such that F is locally generated as a sheaf of faces in M by
a finite number of sections of M. (In this case one says that F is relatively
coherent in M.)
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(2) Let Y be a fine log analytic space and let f W X.F/! Y be a morphism of log
analytic spaces. One says that f is relatively smooth if locally on X there exists
a fine log structure M on X in which F is relatively coherent satisfying the
following conditions.

(a) The composed map X.M/!X.F/! Y is smooth.
(b) The stalks of the quotient monoid M=F are free monoids.

Let us remark that in the next theorem, which is so far our main justification for the
above definition, the proof of submersivity will not use the condition (b). Our proof will
show that, assuming only that (a) holds, then flog.F/ is a submersion whose fibers are
locally the product of a manifold with boundary and a space with “toric singularities”;
ie, a space homeomorphic to AM for some fine monoid M . Condition (b) will insure
that this space is also a manifold with boundary.

Theorem 3.7 Let Y be a fine log analytic space, let F!OX be a relatively coherent
log structure on an analytic space X , and let

f .F/W X.F/! Y

be an exact and relatively smooth morphism of log analytic spaces. Then the map
flog.F/W Xlog.F/! Ylog is submersive. Furthermore, the fibers of flog.F/ are mani-
folds with boundary, and the boundary consists of those points lying over points of X

at which f is not vertical.

Proof Since the statement is local on X and Y , we may assume that there exists a fine
log structure M on X in which F is relatively coherent and such that X.M/! Y

is smooth. For each x 2 X , Fx is a face of Mx and hence is an exact submonoid.
By hypothesis, MY;f .x/!Fx is exact, and since the composite of two exact maps is
exact, it follows that MY;f .x/!Mx is exact. Thus the map of log analytic spaces
X.M/! Y is smooth and exact.

Since F is relatively coherent in M, we may assume that F is generated by a finite
number of global sections fi of M. Furthermore we may assume that there exist
charts P !MY and Q!M and a morphism � as in the proof of Theorem 3.5.
We may also assume that each fi lifts to some qi 2Q. Letting G be the face of Q

generated by these qi , we see that F is the sheaf of faces of M generated by the
image of G!M. Let AQ.MQ/ (resp. AQ.F/) denote AQ with the log structure
coming from Q!OAQ

(resp. from the sheaf of faces of MQ generated by G ). Then
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we have the following commutative diagram:

Xlog.M/ - X.M/
a- AQ.MQ/

Xlog.F/

hlog

?
- X.F/

h

?
b- AQ.F/

?

Ylog

flog.F/
?

- Y

f .F/
?

c - AP

?

Here the map a factors through a strict open immersion into the fiber product Y �AP

AQ.MQ/, and the map h is an isomorphism on underlying analytic spaces. It follows
that b also factors through a strict open immersion into Y �AP

AQ.F/. Then the top
arrow in the diagram

Xlog.F/ - Alog
Q .F/

Ylog

?
- Alog

P

?

factors through an open immersion Xlog.F/! Ylog �Alog
P

Alog
Q
.F/. (Here we use a

superscript “log” instead of a subscript for typographical reasons.) Thus we are reduced
to the case when X D AQ , Y D AP , and f ı h is induced by a map P ! G!Q.
As in the proof of Theorem 3.5, it follows from the fact that .X;M/! .Y;MY / is
smooth and exact that the map P !Q is locally exact. Since the statement is also
local on Ylog , we may replace P !Q by the pushout construction as in the proof of
Proposition 3.2. Thus we may assume that the map Qgp!Qgp=P gp admits a splitting
� , which then induces an isomorphism

T� �T� W TQ! TQ=P �TP :

We have a factorization

�MW TQ �XQ ŠXlog.M/
hlog- Xlog.F/

�F- X

in which all maps are proper and surjective. It follows that Xlog.F/ has the quotient
topology induced by hlog . If z 2 X , ��1

M .z/ is a torsor under T SMz
and ��1

F .z/ is
a torsor under TSFz

. Hence if z0 2 ��1
F .z/, h�1

log .z
0/ is a torsor under T SMz=SFz

. Let
us identify Xlog.M/ with Alog

Q
D TQ � XQ . Then if z00 2 ��1

M .z/ corresponds to
.�;x/ 2 TQ �XQ , x D jzj and F.x/ is identified with the set of all q 2 Q which
map to a unit of Mz . Let G.x/ be the face of Q generated by F.x/ and G . Then
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SMz=SFzŠQ=G.x/, and the map TQ�XQ!Xlog.F/ identifies a pair of points .�;x/
and .�0;x0/ if and only if xD x0 and �0��1 2TQ=G.x/�TQ . Since G.x/ contains P ,
TQ=G.x/ can be viewed as a subgroup of TQ=P , and �0��1 lies in TQ=G.x/ if and only
if T� .�

0��1/ lies in TQ=G.x/ and T� .�
0��1/D 1.

We also have a factorization

flog.M/W TQ �XQ ŠXlog.M/
hlog- Xlog.F/

flog.F/- Ylog Š TP �XP :

The fiber of flog.M/ over the point .1; 1/ 2 TP �XP can be identified with TQ=P �

XQ=P . Its image in Xlog.F/ is the fiber of flog.F/ over .1; 1/, and we denote this
image by Alog

Q;P
.F/. Recall the map �0

A;P
W XQ!XQ.1/ŠXQ=P constructed from

an effective generating cycle A for CQ in Corollary 2.12, and consider the following
commutative diagram:

TQ=P �XQ=P
- TQ �XQ

g

Š

- .TQ=P �XQ=P /� .TP �XP /

Alog
Q;P .F/

hQ=P

?
- Alog

Q .F/

hlog

?
- Alog

Q;P .F/�Alog
P

hQ=P��P

?

?
f.1; 1/g - Alog

P

flog.F/
?

pr2
�

Here the homeomorphism g comes from the splitting TQŠ TQ=P �TP induced by �
and the homeomorphism .�0

A;P
;X� /W XQ ŠXQ=P �XP of Corollary 2.12. The map

�P W TP �XP!Alog
P

is the canonical isomorphism, and hQ=P is simply the restriction
of hlog to the subset TQ=P �XQ=P of TQ �XQ . Recall from (2) of Corollary 2.12
that for any x 2XQ

hF.x/CP i D hF.�0A;P .x//CP i D F.�0A;P .x//;

and hence G.x/DG.�0
A;P

.x//. Thus g is compatible with the equivalence relations
defined by hlog and hQ=P ��P . It follows that there is a homeomorphism filling in
the diagram as shown by the dashed arrow. This proves that flog.F/ is a product map,
hence a submersion.

It remains only to describe the fiber Alog
Q;P

.F/. Note that Q=P is still a fine monoid,
but it need not be sharp—its group of units is identified with hP i=P . Let AQ=P .M/

denote the log space defined by Q=P with the coherent log structure defined by Q=P

and let AQ=P .F/ be the relatively coherent log space defined by the sheaf of faces
generated by G=P . Then Alog

Q;P
.F/ can be identified with Alog

Q=P
.F/. It is easy to
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check that the condition (b) is still satisfied by the map AQ=P .F/! pt , so this map
is again relatively smooth. Thus we are reduced to the case in which P D 0.

Suppose first that G D Q� . In this case Alog
Q
.F/ D AQ , and since xQ is free, the

affine toric analytic space AQ is a smooth manifold. If G ¤Q� , choose a finite set
of generators .g1; : : : ;gk/ for the fine submonoid G of Q. Then G is the face of Q

generated by g WD g1Cg2C � � �Cgk . Consider the map � W N!Q sending 1 to g .
This map is injective, local, and locally exact, and the stalks of the quotient M=F are
free. Thus the corresponding map of log analytic spaces zf WD A� W .AQ;F/! AN
is relatively smooth. It follows from what we have proved so far that, after a finite
covering of the base, there is an isomorphism Alog

Q
.F/ŠAlog

N �Alog
Q=N.F/. But now

the image of G in Q=N is contained in the group of units, so by the previous case,
Alog

Q=N.F/ is a manifold. Since Alog
N is a manifold with boundary B WD ��1.0/, it

follows that Alog
Q
.F/ is a topological manifold with boundary zf �1

log .B/. But zf �1
log .B/

is exactly the subset of Alog
Q
.F/ lying over the locus of AQ.F/ where the log structure

is not trivial.

4 Idealized monoids and log spaces

In this section we describe a generalization of our techniques which may prove useful
in analyzing strata of toric varieties and log spaces. The only real subtleties are hidden
in the meanings of definitions, so we attempt to explain these carefully, only sketching
the parts of the arguments that are parallel to the nonidealized version.

By an idealized monoid we mean a pair .M;K/ where M is a (commutative) monoid
and K is an ideal of M . By a face of .M;K/ we mean a face F of M which does
not meet K , or equivalently, such that the corresponding prime ideal contains K .
We write Spec.M;K/ for the set of such prime ideals. If � W .P;J /! .Q;K/ is a
homomorphism of idealized monoids, let PCQ denote the ideal of Q generated by the
image of the maximal ideal PC of P and let K� WD .P

CQ/[K . Then Spec.Q;K� /

is the set of prime ideals of .Q;K/ lying over PC .

Definition 4.1 A homomorphism of idealized monoids � W .P;J /! .Q;K/ is exact
if ��1.K/D J and for every face P 0 of .P;J /, the restriction � 0 of � to P 0 is exact.

Note that every exact homomorphism is local—it sends the closed point of Spec.Q;K/
(if there is one) to the closed point of Spec.P;J /. Indeed, if KDQ then Spec.Q;K/
is empty and there is nothing to check, so we may assume that K is a proper ideal.
Then if p 2 P and �.p/ 2Q� , �.p/ 62K so p 62 J , and the same is true for every
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multiple of p . It follows that p does not belong to the radical of J and hence that
there is a face P 0 of .P;J / containing p . Since P 0!Q is exact, it is local, and it
follows that p is a unit of P 0 .

Proposition 4.2 Let � W .P;J /! .Q;K/ be a homomorphism of idealized monoids.
Consider the following conditions:

(1) � W .P;J /! .Q;K/ is exact.

(2) Spec � W Spec.Q;K/! Spec.P;J / is surjective.

Then (1) implies (2), and the converse holds if P and Q are fine and saturated and J

and K are radical ideals.

Proof Suppose (1) holds and F is a face of .P;J /. It is straightforward to verify
that �F W .PF ;JF /! .QF ;KF / is still exact and hence is local, as we saw above.
Furthermore, since J D ��1.K/ does not meet F , KF is a proper ideal of QF . Hence
Q�

F
is a face of .QF ;KF / and its inverse image G in Q is a face of .Q;K/ above F .

This proves the surjectivity of Spec � . Conversely, suppose that (2) holds and that P

and Q are fine and saturated. Let F be a face of .P;J /, and choose a face G of
.Q;K/ lying over F . Every face F 0 of F is a face of .P;J /, so there is a face G0 of
.Q;K/ lying over F 0 . Then G \G0 is a face of G lying over F 0 . This shows that
Spec G! Spec F is surjective. Since F and G are fine and saturated, it follows that
F !G is exact. Since G is a face of Q, G!Q is exact, and it follows that F !Q

is also exact. Now since J is a radical ideal, it is the intersection of all the primes p

of Spec.P;J /, and since each such prime comes from a prime of Q containing K ,
J D ��1.K/.

Definition 4.3 A morphism of idealized monoids � W .P;J /! .Q;K/ is

(1) locally exact if for every face G of .Q;K/, the map .PF ;JF /! .QG ;KG/ is
exact, where F D ��1.G/,

(2) very locally exact if for every face G of .Q;K� /, the map .P;J /! .QG ;KG/

is exact.

Lemma 4.4 Let � W .P;J /! .Q;K/ be a local and very locally exact homomorphism
of fine saturated idealized monoids.

(1) For every face G of Spec.Q;K/, the induced map

F WD ��1.G/!G

is locally exact.

(2) � is locally exact.
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Proof Let G be a face of .Q;K/ and F WD ��1.G/. Let G0 be a face of G with
��1.G0/DP� . Then G0 is a face of .Q;K� / and by assumption .P;J /! .QG0 ;KG0/

is exact. Since F is a face of .P;J /, the composite F !QG0 is exact, and hence
F !GG0 is also exact. Since this is true for every face G0 of G with ��1.G0/D P� ,
F !G is very locally exact. By Theorem 2.3 it is locally exact. This proves (1).

It will suffice to replace J and K by their radicals and to work with the associated
cones. Again let G be a face of .Q;K/ and F WD ��1.G/; we claim that .PF ;JF /!

.QG ;KG/ is exact. First we show that if P 0 is any face of .P;J / containing F ,
then P 0

F
!QG is exact. Suppose that a 2 P 0gp and �.a/ 2QG . Then there exists

some g 2 G with gC �.a/ 2 Q. Since we are working with cones, we can apply
Theorem 2.3 to the locally exact map �F W F !G induced by � . Thus we can write
gD �.f /Cg0 , where g0 is contained in a face G0 of .G;PCG/ and f 2F . Since G

is a face of .Q;K/, in fact G0 is a face of .Q;K� /, and since � is very locally exact,
.P;J /! .QG0 ;KG0/ is exact. In particular, P 0!QG0 is exact. Since �.aCf /2QG0 ,
aCf 2P 0 and hence a 2P 0

F
, as required. Finally, we claim that the inverse image of

KG in PF is JF . Indeed, if �.p�f /D k �g , then we can use the argument above
to write g D g0C �.f 0/, where ��1hg0i D F� . Since .P;J /! .QG0 ;KG0/ is exact,
it follows that p�f 2 JF .

Note that the homomorphism

� W .N;∅/! .N˚N;NC˚NC/; n 7! .n; 0/

satisfies condition (1) but it is not very locally exact.

If .Q;K/ is an idealized monoid, let

CQ.K/ WD
[
fCG WG is a face of .Q;K/g;

and if � W .P;J /! .Q;K/ is a homomorphism of idealized monoids, let

CQ;P .K/ WD
[
fCG WG is a face of .Q;K� /g:

Proposition 4.5 Let � W .P;J /! .Q;K/ be a local and locally exact homomorphism
of fine idealized monoids. Assume that P is sharp. Then the addition map induces a
homeomorphism

� W CQ;P .K/�CP .J /! CQ.K/:

For each pair .F;G/, where F is a face of .P;J / and G a face of .Q;K� /, hF CGi

is a face of .Q;K/, and � induces a homeomorphism

ChFCGi;F �CG! ChFCGi:
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Proof We first check that the addition map sends CQ;P .K/�CP .J / to CQ.K/. If
q 2 CQ;P .K/ there exists a face G of .Q;K� / containing q , and if p 2 CP .J / there
exists a face F of .P;J / containing p . Since �G W .P;J / ! .QG ;KG/ is exact,
Spec.�G/ is surjective, so there exists a face G0 of .Q;K/ containing G such that
��1.G0/DF . Then G0 contains �.p/Cq , and hence �.p/Cq 2CQ.K/, as required.
To see that � is injective, suppose that .qi ;pi/ 2 CQ;P .K/ � CP .J / for i D 1; 2,
and q1C �.p1/ D q2C �.p2/. Let G0 be the face of CQ generated by �.pi/C qi ;
note that �.pi/ and qi belong to G0 . We have seen that G0 is a face of .Q;K/, so
F 0 WD ��1.G0/ is a face of .P;J / and F 0!G0 is locally exact, by Lemma 4.4. Then
it follows from Theorem 2.3 that q1 D q2 and p1 D p2 . For the surjectivity, suppose
that q 2 CQ.K/. Then there is a face G of .Q;K/ containing q , and F WD ��1.G/

is a face of .P;J /. By Lemma 4.4, F ! G is locally exact, and it follows from
Theorem 2.3 that there exist an element q0 of G with ��1hq0i D f0g and an element p

of F such that q0C �.p/D q . Then .q0;p/ 2 CQ;P .K/�CP .J / and �.q0;p/D q

as required. Finally, since CQ.K/ admits a locally closed finite cover by the sets CG

as G ranges over the faces of .Q;K/ and the restriction of ��1 to each of these is
continuous, it follows that ��1 is also continuous. The compatibility expressed in the
last statement is clear.

Now we can prove the analog of the main local rounding result (Theorem 2.5). If
.M;K/ is an idealized monoid, we write XM .K/ for the set of elements x of XM

which annihilate K . Suppose that � W .P;J /! .Q;K/ is as in Proposition 4.5, and let

� WD pr1 ı�
�1
W CQ.K/! CQ;P .K/�CP .J /! CQ;P .K/:

Choose an effective generating cycle A for CQ . Then the associated moment map
�W XQ! CQ induces maps XQ.K/! CQ.K/ and XQ;P .K/! CQ;P .K/, where
XQ;P .K/ WDXQ.K� /. Let �W CQ;P .K/!XQ;P .K/ denote the inverse of the latter,
and let � be the composite

�W XQ.K/
�A- CQ.K/

�- CQ;P .K/
�A;P- XQ;P .K/:

Proposition 4.6 With the notation and hypotheses above, the map

.�;X� /W XQ.K/!XQ;P .K/�XP .J /

is a homeomorphism.

Proof If Q0 is a face of .Q;K/, let P 0 WD ��1.Q0/ and let � 0W P 0 ! Q0 be the
homomorphism induced by � . Then � 0 is locally exact and local, and the restriction
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of A to Q0 is an effective generating cycle for Q0 . The map above then restricts to a
map

.�0;X� 0/W XQ0 !XQ0;P 0 �XP 0 ;

which is a homeomorphism by Theorem 2.5. To see that .�;X� / is injective, let x1

and x2 be two points of XQ.K/ with the same image .y; z/ in XQ;P .K/�XP .J /.
Choose faces Qi of .Q;K/ with xi 2 XQi

and let Pi WD �
�1.Qi/. Since XQi

is
invariant under �, y 2XQi

. It follows that y belongs to XQ1
\XQ2

DXQ0 , where
Q0 WDQ1\Q2 . Similarly, z 2XP 0 , where P 0 WD P1\P2 . Since the map

.�0;X� 0/W XQ0 !XQ0;P 0 �XP 0

is surjective, there is a point x02XQ0 mapping to .y; z/. Since the restriction of .�;X� /
to each XQi

is injective, it follows that x1 D x0 D x2 . This proves the injectivity. To
prove surjectivity, let y be a point of XQ;P .K/ and z a point of XP .J /, and choose a
face G of .Q;K� / with y 2XG and a face F of .P;J / with z 2XF . As we have seen,
there is a face Q0 of .Q;K/ containing FCG . Let P 0 WD��1.Q0/ and let � 0W P 0!Q0

be the map induced by � . Since .y; z/2XQ0;P 0�XP 0 �XQ;P .K/�XP .J /, Theorem
2.5 implies that there is a point of XQ0 �XQ.K/ mapping to .y; z/. The fact that the
now bijective map .�;X� / is a homeomorphism follows from the fact that its restriction
to a finite closed cover is.

If .Q;K/ is an idealized monoid, we let AQ.K/ denote the closed subspace of AQ

defined by the ideal of CŒQ� generated by K . Then we have a proper surjective map

Alog
Q .K/ WDXQ.K/�TQ!AQ.K/;

and we immediately obtain the following analog of Proposition 3.2.

Proposition 4.7 Let � W .P;J /! .Q;K/ be a locally exact and injective homomor-
phism of fine idealized monoids. Then the corresponding map

Alog
� W A

log
Q .K/!Alog

P .J /

is a topological submersion.

An idealized log analytic space is a log analytic space X endowed with a sheaf of
ideals KX in the sheaf of monoids MX such that ˛X .k/D 0 for every local section k

of KX . A morphism f W X ! Y of idealized log spaces is required to be compatible
with the ideals, so that f [ maps f �1KY to KX . The category of idealized log analytic
spaces such that KX is empty is equivalent to the usual category of log analytic spaces.
An idealized log analytic space is fine if MX is fine and the sheaf of ideals KX is
locally generated by a finite set of sections.
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Definition 4.8 A morphism f W X ! Y of fine idealized log analytic spaces is exact
if for every x 2X , the map

f [x W .MY;f .x/;KY;f .x//! .MX ;x;KX ;x/

is exact.

It follows from Proposition 4.2 that if MX and MY are fine and saturated and KX

and KY are radical ideals, then f is exact if and only if for every x 2X , the map

Spec.f [x /W Spec.MX ;x;KX ;x/! Spec.MY;f .x/;KY;f .x//

is surjective.

The following result generalizes Theorem 3.5. We do not give a detailed general
treatment of smoothness for morphisms of idealized log spaces here, just taking as a
definition the existence of local charts as in the course of the proof below.

Theorem 4.9 Let f W X ! Y be a smooth and exact morphism of fine idealized log
analytic spaces. Then flogW Xlog! Ylog is a topological submersion.

Proof We may and shall assume without loss of generality that KX and KY are
radical ideals. The statement is local on X and Y , and the smoothness of f then
implies that, locally on X and Y , there exist a homomorphism of idealized monoids
� W .P;J /! .Q;K/ and a diagram:

X
i- Y �AP .J /AQ.K/ - AQ.K/

Y

f 0

?
-̌

f -

AP .J /

A�

?

Here again the square is Cartesian and i is a strict open immersion, and furthermore
the ideals KX and KY are generated by K , and J , respectively. If f is exact, one
can conclude as in the proof of Theorem 3.5 that � is very locally exact and hence
locally exact. Then the Theorem follows from Proposition 4.6.

5 Complements and applications

In this section we give some applications of our results to log geometry. Many of
these have already been envisioned, and some also proved. In particular, Usui proved
Theorem 5.1 and its Corollary 5.2 when f is a multigeneralized semistable family
over a polydisk [19]. Later, in [9], Kajiwara and Nakayama suggested Theorems 3.5

Geometry & Topology, Volume 14 (2010)



2226 Chikara Nakayama and Arthur Ogus

and 5.1 and managed to prove Corollary 5.2 in the coherent case without the use of
either of these results.

Theorem 5.1 Let f W X ! Y be a morphism of log analytic spaces, where Y is fine
and X is relatively coherent. Assume that f is proper, separated, exact, and relatively
smooth. Then the map flogW Xlog! Ylog is a topological fiber bundle whose fibers are
oriented manifolds with boundary. That is, locally on Ylog , it is homeomorphic to a
projection mapping Z �Ylog! Ylog , where Z is an oriented manifold with boundary.

Proof Theorem 3.7 tells us that flog is a submersion whose fibers are manifolds
with boundary, and Siebenmann’s [18, Corollary 6.14] asserts that a proper separated
topological submersion whose fiber is stratifiable is in fact a fiber bundle. Since a
manifold with boundary has a 2–step stratification, we can conclude that flog is a fiber
bundle. We will discuss the orientation in Theorem 5.10.

Corollary 5.2 With the hypotheses of Theorem 5.1, let F be a locally constant abelian
sheaf on Xlog . Then for all integers q , Rqflog�.F / is locally constant on Ylog .

Proof This follows easily from Theorem 5.1, as explained in [9, Remark B.2.1].
However it may be of some interest to provide a proof which does not depend on
Siebenmann’s theorem and also does not use a stratification of the fiber. For this we
can appeal to the elementary argument outlined in the appendix and Proposition 5.3
below. This argument also shows that the corollary is true even if condition (2b) of
Definition 3.6 is not satisfied. (See the remark after Definition 3.6.)

Proposition 5.3 Let Y be a fine log analytic space. Then Ylog is locally triangulizable.
In particular, it is locally path connected and semilocally simply connected.

Proof First suppose that Y DAP with its standard log structure. Then YlogDXP�TP .
Here XP and TP are semialgebraic subsets of Rn , and the map XP �TP ! AP is
algebraic. Since semialgebraic sets are triangulizable, as Hironaka showed in [6], the
result is certainly true in this case.

Our general statement is local, so we may assume that there is a fine chart P !MY

for Y . Such a chart defines a strict morphism of log analytic varieties Y !AP , and
hence a Cartesian diagram:

Ylog - Alog
P

Y
?

- AP

?

Since the maps Y !AP and Alog
P
!AP are analytic maps, the fiber product is semi-

analytic subset of a suitable affine space, and hence also locally triangulizable by [6].
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The fiber bundles in Theorem 5.1 can be used to give geometric models of nearby
cycles and monodromy. The following result is a first step in this direction; we expect
more explicit results could be constructed in many situations.

To motivate the discussion, consider the case of a smooth proper morphism of analytic
spaces f �W X �!D� , where D� is the punctured disk. Then f � is a fiber bundle,
typically nontrivial, and one wants to relate the action of the monodromy group �1.D

�/

on the generic fiber to the degeneration of f � . Suppose that f � can be extended
to a relatively smooth proper map of log analytic spaces f W X ! D , where D is
the standard log disk. Then the inclusion D� ! Dlog is a homotopy equivalence,
and the logarithmic model flogW Xlog ! Dlog compactifies f � and remains a fiber
bundle. In fact if P !D is the origin (so that P is a log point), then Plog Š S1 , the
inclusion Plog!Dlog is also a homotopy equivalence, and the restriction of f to the
special fiber X0! P determines the bundle X log

0
! Plog and hence the monodromy

of Xlog!Dlog and of X �!D� . Thus it is sensible to restrict attention to smooth
maps over log points.

In fact we shall work over a general fine saturated log point P . Then Plog is canonically
isomorphic to Hom. SMP ;S1/, and its universal cover zPlog ! Plog is given by the
exponential map

Hom. SMP ;R.1//! Hom. SMP ;S1/:

Thus the log inertia group of P , ie, the fundamental group �1.Plog/, is Aut. zPlog=Plog/

which is canonically identified with Hom. SMP ;Z.1//. Now let f W Y ! P be a
relatively smooth saturated and exact morphism of log analytic spaces. (For the
definition and a discussion of saturated morphisms, we refer to the appendix of [7].)
Then flogW Ylog! Plog is a submersion. Let us consider the Cartesian diagram:

zYlog - Y � zPlog

Ylog

?
- Y �Plog

?

The map  W zYlog!Y � zPlog!Y is called the nearby cycle map. Since f is saturated,
the set Y st where f is strict is dense and open in Y , and the map

 stW Y
st

log! Y st
�Plog

is an isomorphism. Thus the submersion flog is canonically trivialized over the open
set Y st

log .
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Proposition 5.4 Let f W Y ! P be a relatively smooth, saturated, exact, proper, and
separated morphism of log analytic spaces, where P is a log point. Let Z be the fiber
of flog over the origin of Plog , and let Y 0 be any compact subset of Y st . Then there
exists a trivialization zYlog Š Z � zPlog whose restriction to zY 0log WD Y 0 � zPlog agrees
with the canonical trivialization described above.

Proof Identify SM gp
P

with Z> and zPlog with R.1/r . Choose n 2 NC , let B WD

Œ�2n� i; 2n� i �r , and restrict everything to B . Then the fiber bundle zYlog!B can be
trivialized, and we may choose a trivialization ˆW zYlog ŠZ �B . Then Y st becomes
an open subset of Z , and the composite

�W Y st
�B

 �1
st- zYlog -̂ Z �B; .y; t/ 7! .�t .y/; t/

defines a family of open immersions f�t W t 2Bg, where �0 is just the inclusion Y st�Z .
By Siebenmann’s isotopy extension theorem [18, 6.5], there is a homeomorphism
ˆ0W Z �B!Z �B (over B ) whose restriction to zY 0log �B is �jY 0 . Applying [18,
6.5, III] we can extend ˆ0 to sets B with larger and larger n, obtaining the statement
of the proposition.

For each � 2B , the proposition determines an isomorphism ZŠf �1
log .e

� /. In particular
if 
 2 �1.Plog/, one obtains isomorphisms Z Š Y log

1
WD f �1

log .1/, which differ by an
automorphism T
 of Y log

1
. Note that the restriction of T
 to the complement of a

suitable neighborhood of the nonstrict locus is the identity. Thus the monodromy “lives
near the log structure.”

Our next goal is to discuss orientation and duality. First we need some preliminary
remarks. If X is a fine log analytic space, Xlog is in general just a topological
space. However, over the open set X � of X where the log structure is trivial, the
map X �log ! X � is an isomorphism, so X �log inherits a complex analytic structure.
Furthermore, if X=C is smooth (in the log sense), X � is dense in X . If f W X ! Y

and y is a point of Ylog , then the fiber X log
y of flog over y is again just a topological

space. However, the map � W X log
y !X�.y/ is an isomorphism over the strict locus

of f . Thus ��1
X

X st
�.y/

has a complex analytic structure, but this set need not be dense,
even if f is smooth and exact. We will show that in this case there is a larger open
subset of Xlog whose intersection with every fiber is dense and endowed with a natural
complex analytic structure and hence a natural orientation.

Definition 5.5 A morphism � W P !Q of integral monoids is small if

Cok.�gp/W P gp
!Qgp

is a torsion group. A morphism of log spaces f W X ! Y is small if for every x 2X ,
the morphism SM

gp
Y;f .x/

! SM
gp

X ;x
is small.
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Lemma 5.6 Let � W P !Q be a morphism of fine monoids.

(1) If x� W xP ! xQ is small, then � is vertical.

(2) If x� is exact and small, then for every q 2Q, there exist a positive integer n, a
u 2Q� , and a p 2 P such that nq D uC �.p/.

Proof There is an exact sequence

Cok.��/! Cok.�gp/! Cok.x�gp/! 0:

If x� is small, Cok.x�gp/ is a finite group, and hence the image xQ= xP of xQ in Cok.x�gp/

is a finite integral monoid, hence a group. It follows that Q=P is also a group, so that
� is vertical. If x� is exact, so is � . For any q 2Q, there exist a positive integer n, a
unit u of Q, and elements p1;p2 of P such that nqCuD �.p2/� �.p1/. Since �
is exact, it follows that there is some p 2 P such that �.p2/� �.p1/D �.p/.

Proposition 5.7 Let P ! Q be a local and locally exact homomorphism of fine
monoids, with P sharp. Then for every face G of Q, G \ P D f0g if and only if
Ggp\P gp D f0g. Moreover, if G is such a face, the following are equivalent.

(1) G is maximal among all faces of Q such that G \P D f0g.

(2) P !Q=G is small.

(3) The natural map C
gp
G
˚C

gp
P
! C

gp
Q

is an isomorphism.

We shall call a face G satisfying the above conditions cosmall.

Proof Let us first note that when P !Q is injective and locally exact and G is a
face of Q, G \P D f0g if and only if Ggp\P gp D f0g. Indeed, if G \P D f0g and
gi 2G;pi 2P , with g1�g2Dp1�p2 , then since P!QG is exact, p1�p2 belongs
to P and hence also to G , hence is zero. Next note that since P !Q is locally exact,
so is the map P ! Q=G , and since Ggp \P gp D f0g, the map P ! Q0 WD Q=G

is still injective. Corollary 2.4 applies to CP ! CQ0 , and we can conclude that the
summation map CQ0;P �CP ! CQ0 is bijective. Now suppose that (1) holds, let q be
an element of Q, and let q0 be its image in Q0 . Then there exist a face G0 of Q0 such
that G0

gp
\P gpD f0g and elements g0 2 CG0 and p 2 CP such that q0D pCg0 . The

inverse image of G0 in Q is a face G00 of Q such that G00
gp
\P gp D f0g, and hence

G00 D G . Thus g0 D 0. This shows that CP ! CQ=G is surjective, and hence that
P !Q=G is small. Thus (1) implies condition (2), which is clearly equivalent to (3).
Furthermore, if P !Q=G is small and injective, then the faces of Q containing G

correspond bijectively to the faces of P , and in particular G is maximal among those
faces of Q which meet P in f0g.
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Proposition 5.8 Let f W X!Y be an exact and smooth morphism of fine log analytic
spaces.

(1) The set X sm of points x in X where f is small is open and dense in every fiber.

(2) Suppose f is small. Then for each point y of Y , the reduced fiber Xy red
is smooth, and the natural map X log

y ! Xy red is a finite covering space. In
particular, there is a unique complex analytic structure on X log

y such that this
map is complex analytic, and X log

y has a natural orientation.

Proof Statement (1) is local on X , so by the argument at the beginning of the proof
of Theorem 3.5, we may assume that f is given by a local and locally exact morphism
of fine monoids � W P!Q, where P is sharp. We view � as an inclusion. The fiber of
Spec Q! Spec P over PC is the closed subset defined by the ideal J of Q generated
by PC , and consists of those primes p of Q such that p\P D PC . These are the
primes corresponding to the faces G of Q such that G \P D f0g, or, by Proposition
5.7, such that Ggp\P gpDf0g. By Proposition 5.7, the cosmall faces of Q correspond
exactly to the minimal primes of Z.J /. Thus the set of all such primes is dense and
open in Z.J /. Statement (1) follows.

Replace Q by QG , so that P ! xQ is small. Then if q 2QC , there is an n 2Z> such
that nq 2 J . It follows that the radical of J is QC , and hence that the reduced fiber
of AQ!AP is AQ� , which is smooth. Furthermore, the splitting CQ Š C xQ �CQ�

makes it clear that XQ;P Š XQ� . Moreover, Q� \ P gp D f0g, so we have exact
sequences

0!Q�!Qgp=P gp
! xQgp=P gp

! 0

0! T xQ=P ! TQ=P ! TQ� ! 0;

and the map TQ=P ! TQ� is a covering space. Thus the fiber of Alog
Q
! Alog

P
is

XQ� �TQ=P , which maps to Xy red D AQ� Š XQ� �TQ� in the evident way. This
proves (2), at least locally on X . But we already know that � W Xlog! X is proper,
and it follows that X log

y !Xy red is a covering space.

Remark 5.9 Suppose in the situation of Proposition 5.8 that the log structure F!OX

is only relatively coherent and that f is exact and relatively smooth. Then we can find
an open subset U of X which is dense in every fiber and such that FjU is coherent and
U!Y is small. To prove this we may replace X by an open subset on which F!OX

is relatively coherent in a log structure M!OX . Furthermore we may assume that
X.M/!Y admits a chart subordinate to an exact and locally exact morphism P!Q

as in the proof of Theorem 3.7. Then the small locus of X.M/! Y satisfies the
desired conditions. Indeed, this locus is open and dense in every fiber. Furthermore, if
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X.M/! Y is small at a point x of X , then it is vertical, so Fx DMx . The set U

may not be unique, so we call it a coherent small locus of f .

We are now ready for a discussion of orientation and Poincaré–Verdier duality. We shall
use the formulation in the textbook [10] of Kashiwara and Schapira. We assume from
now on that all our spaces are Hausdorff. Let f W X ! Y be an exact and relatively
smooth morphism of log analytic spaces, where Y is fine and X is relatively coherent.
It follows from Theorem 3.7 that the fiber dimension of flogW Xlog! Ylog is a locally
constant function on Xlog , whose values are always even. Let us denote this dimension
by 2dX=Y .

Theorem 5.10 Let f W X ! Y be an exact and relatively smooth morphism of log
analytic spaces, where Y is fine and X is relatively coherent. Let j W X v!X be the
inclusion of the vertical locus of f and let f v WD f ı j .

(1) The functor
Rflog!W D

C.Xlog/!DC.Ylog/

admits a right adjoint Rf !
log , and for any G 2DC.Ylog/,

Rf !
logG Š f �1

log G˝Rf !
logZ:

(2) There is a canonical isomorphism

Rf !
logZŠ j log

! .ZX v
log
Œ2dX=Y �/

uniquely determined by the fact that its restriction to each of the fibers of a
coherent small locus of flog (see Remark 5.9) is the canonical one described in
Proposition 5.8. Consequently, for any G

Rf !
logG Š j log

! f v
�1

log GŒ2dX=Y �:

(3) Let F be an object of DC.Xlog/ and G be an object of DC.Ylog/. Then there
is a natural isomorphism

RHom.Rflog!F;G/ŠRflog�RHom.F; j log
! f v

�1

log GŒ2dX=Y �/:

In particular, if f is proper and dX=Y is a constant d ,

Hom.Rqflog�Q;Q/ŠR2d�qf vlog!Q:

Proof The existence of the adjoint Rf !
log follows from the fact that Rflog! has finite

cohomological dimension, as explained by Kashiwara and Schapira [10, 3.1.5]. This
finiteness follows in turn from the fact that the fibers of flog are manifolds with
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boundary; see Iversen [8, III Section 9]. The formula for Rf !
log in (1) follows from the

fact that f is a topological submersion; see Kashiwara and Schapira [10, 3.3.2] and
Verdier [21, 5.1]. Statement (3) follows immediately from Verdier duality [10, 3.1.10]
and (2), which is the main difficulty.

We prepare for the proof of (2) with the following lemma.

Lemma 5.11 Consider a Cartesian square

X 0
j - X

Y 0

f 0

?
i - Y

f

?

of locally compact Hausdorff spaces. Assume that Rf! has finite cohomological
dimension, so that Rf ! exists [10, 3.1.5].

(1) Rf 0
!

has finite cohomological dimension, and there is a natural map

j�1
ıRf !

!Rf 0 ! ı i�1:

(2) This map is an isomorphism if f is a topological submersion and Y and Y 0 are
locally connected.

(3) If Y is locally connected and f is a topological submersion whose fibers are
manifolds of dimension n, then Rf !.ZY / is locally isomorphic to ZX Œn�, and
its formation commutes with base change.

Proof Statement (1) is from Kashiwara and Schapira [10, 3.1.9]. Statement (2) is a
local problem so we may assume that f is a projection mapping Y �Z!Y . Then the
square in the lemma becomes identified with the left square of the following diagram:

Y 0 �Z
j- Y �Z

q - Z

Y 0

f 0

?
i - Y

f

?
p - pt

g

?

Let q0 WD q ı j and p0 WD p ı i . Then there is a commutative diagram

j�1q�1.Rg!Z/ j�1.a/- j�1.Rf !Z/

q0�1Rg!.Z/

Š

?
a0 - Rf 0

!
.Z/

b

?
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in which a is the base change map for the square on the right, a0 is the base change
map for the outer rectangle, and b is the base change map for the square on the
left. Thus we are reduced to proving that a and a0 are isomorphisms. It suffices to
treat a, corresponding to the case of the square on the right. This statement (under
a different hypothesis) is asserted without proof in Verdier [21, Section 5]. To prove
it in our situation, let K�

Z
be the Godement resolution of the constant sheaf ZZ

on Z . This is a complex of Z–soft and flat sheaves, and hence for any open set V

of Z , Rg!.Z/.V /D Hom.g!.K
�
V
/;Z/. On the other hand, q�1.K�

Z
/ is an f –soft

and flat resolution of ZY �Z , and hence if U is an open set in Y , Rf !.Z/.U �V /D

Hom.f!.q
�1K�

Z
/U�V ;Z/. If V D Z and U D Y , the proper base change theorem

says that the natural map p�1g!.K
�
Z
/! f!.q

�1K�
Z
/ is an isomorphism. Here K� WD

g!.K
�
Z
/ is a complex of abelian groups, and so p�1g!.K

�
Z
/ is a constant complex of

sheaves on Y . If U is any connected open subset of Y , p�1g!.K
�
Z
/.U /DK� , and

since Y is locally connected, it follows that, if Y is also connected,

HomY .p
�1g!.K

�
Z /;Z/D Hom.K�;Z/D �.Z;Rg!.Z//:

In other words, the natural map

�.Z;Rg!.Z//! �.Y �Z;Rf !.Z//

is an isomorphism if Y is connected. Now if z 2 Z and y 2 Y and we take the
limit over all connected neighborhoods of y and all neighborhoods of z , we see
that the stalk of the base change map q�1Rg!.Z/!Rf !.Z/ is an isomorphism, as
required. Statement (3) follows from (2) and the fact that Rf !.Z/D ZŒn� when f is
the projection from Rn to a point.

In the situation of (3) of Lemma 5.11, the sheaf o.f / WDH�n.Rf !.Z// is called the
relative orientation sheaf of the morphism f . In particular, if f is the projection
from a smooth manifold M to a point, o.f / is the usual orientation sheaf of M . By
part (2) of Lemma 5.11, if f is a topological submersion whose fibers are manifolds,
then, at least over a locally connected base, the restriction of o.f / to a fiber is just the
orientation sheaf of the fiber. We conclude from this the following fact, which is surely
well-known.

Corollary 5.12 Let f W X ! Y be a smooth morphism of complex analytic spaces, of
relative dimension d . Then the relative orientation sheaf o.f / is constant, and admits
a unique trivialization whose restriction to the fibers is the canonical orientation coming
from its structure as a complex manifold.

Let us return to the situation of the theorem. Our goal is to prove that o.flog/ is constant.
Let us first consider the case when f is given by a morphism of monoids � W P !Q.

Geometry & Topology, Volume 14 (2010)



2234 Chikara Nakayama and Arthur Ogus

Note that without loss of generality we may work everywhere with saturated monoids,
since saturating a log space X does not change Xlog .

Lemma 5.13 Let � W P !Q be a homomorphism of fine saturated monoids. Assume
that P is sharp and Q is torsion free and that � is local and locally exact. Let MQ

denote the usual log structure on AQ , let F �MQ denote the sheaf of faces generated
by P , and assume that the stalks of MQ=F are free. Then the relative orientation
sheaf o.Alog

�
.F// is constant. In fact there is a unique global generator of o.Alog

�
.F//

whose restriction to each of the fibers of a small locus of Alog
Q
.F/!Alog

P
induces the

orientation coming from the complex analytic structure constructed in Proposition 5.8.

Proof Choose a positive integer n, and consider the diagram

Q
� - zQ

P

�

6

nP- P

z�

6

where zQ is the pushout in the category of saturated monoids. By Theorem (A.3.4) and
Tsuji’s theorem (A.4.2) of [7], there exists a choice of n such that the morphism z� is
saturated. It follows then that the map P gp! zQgp admits a section [7, A.4.1].

Let X.M/ (resp. zX.M// denote AQ (resp. A zQ) with the log structure MQ (resp. M zQ
)

and let Y be AP with the log structure coming from P ! AP . Let zF denote
the sheaf of faces in M zQ

generated by P and let X.F/ (resp. zX .F/) denote AQ

(resp. A zQ ) with the log structure F (resp. zF ). Let �W Y ! Y (resp. f W X.F/! Y ,
zf W zX .F/!Y ) be the map induced by AnP

(resp. A� , Az� ). Let X sm denote the open
subset of X where X.M/! Y is small. Recall from Remark 5.9 that X sm.F/! Y

is also small and that F DM on X sm . Then we have the following commutative
diagrams:

zXlog.F/
� - Xlog.F/ zX sm

log.F/
� - X sm

log.F/

Ylog

zflog

?
� - Ylog

flog

?
Ylog

zf sm
log

?
� - Ylog

f sm
log

?

The map zXlog.M/ ! Xlog.M/ is proper and surjective, by [9, 5.1, 5.1.1], and it
follows that the same is true for the map � in the first diagram above. Since zf sm is
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saturated and small, it is strict [7, A.4.1], and it follows that the diagram

zX sm
log.F/ - zX sm.F/

Ylog

zf sm
log

?
- Y

zf sm

?

is Cartesian. Since zf sm is strict and smooth, it is a smooth map of complex analytic
varieties without the log structures. By Corollary 5.12, its relative orientation sheaf
o. zf sm/ is constant and admits a unique trivialization z
 sm compatible with the orienta-
tions of the fibers coming from their complex analytic structures. By base change, z
 sm

induces a trivialization of o. zf sm
log / with the same property and which we denote by the

same symbol.

As we saw in the proof of Theorem 3.7, the choice of an effective generating cycle
for C zQ defines a homeomorphism

zXlog.F/Š Ylog �Alog
zQ;P

.F/Š Ylog �A zQ=P

sending zflog to the projection mapping, where A zQ=P is a complex manifold. It follows
from Lemma 5.11 that o. zflog/ is constant, that is, isomorphic to the constant sheaf Z
on zXlog.F/. (Warning: as far as we know, the isomorphism given by the complex
structure may depend on the choice of the effective generating cycle.) Consider the
open subset

zf �1
log .Y

�/D zX �log.F/ŠA zQP

of zXlog.F/. Then zQ�
P
DhP igp , and since zQ is saturated, the torsion subgroup of zQgp ,

and in particular of hP igp , is contained in zQ� . Since Ylog is connected, the connected
components of zXlog.F/ are identified with those of A zQ=P and hence with the torsion
subgroup of zQ=P . Since P ! zQ is a saturated morphism, [7, A.4.1] implies that
zQgp=P gp is torsion free. Thus the connected components of zXlog.F/ and of zX �log.F/

are both identified with the torsion subgroup of zQ, and hence the natural map

H 0. zXlog.F/;Z/!H 0. zX �log.F/;Z/

is an isomorphism. On the other hand, zX �log.F/ is contained in zX sm
log.F/, so we have

a natural global section z
 sm of the (constant) sheaf o. zflog/ on zX �log.F/. Thus by the
isomorphism above, this global section extends uniquely to a global section z
 of o. zf /

on all of zXlog.F/.

We claim that z
 descends to a trivialization 
 of o.flog/. The restriction of z
 to zX �

descends to X � , since f �W X �!Y � is a smooth map of smooth complex manifolds. It
follows that the two pullbacks of z
 to zXlog.F/�Xlog.F/ zXlog.F/ agree on zX ��X �

zX � ,
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and since this set is dense, they agree everywhere. Since � is a finite surjective map,
proper descent (see for example [1, 4.1.6]) implies that z
 descends to a trivialization 

of o.flog/ on Xlog.F/, as required. Since z
 sm is compatible with the complex analytic
structure of the fibers of f sm

log , the same is true of 
 sm .

Now we prove (2) of Theorem 5.10 with the assumption that f is vertical. Since in
this case flog is a submersion whose fibers are manifolds, o.flog/ is defined and locally
isomorphic to Z. Locally on X , f admits a chart, and hence by Lemma 5.13, X

admits an open covering on which there exist isomorphisms as in (2). Since the small
locus is dense in every fiber, these local isomorphisms agree, and hence patch to a
unique isomorphism on all of Xlog .

For the general case, let X v be the vertical locus of f , and recall from Theorem
3.7 that the pair .Xlog;X

v
log/ is locally isomorphic to Ylog � .M;M �/ where M is

a manifold with boundary M nM � . Then the vertical case gives an isomorphism
ZŒ2dX=Y �Š j�1

log Rf !
log.Z/ and hence a map

jlog!ZŒ2dX=Y �!Rf !
log.Z/:

Since both sides commute with base change, it is enough to check that this map is an
isomorphism along the fibers. Then the result follows from the standard computation of
the dualizing complex of a manifold with boundary; see Iversen [8, V, Example 2.9].

Corollary 5.14 With the hypotheses of Theorem 5.10, the fibers of flog are orientable
manifolds with boundary.

6 Appendix: Local constancy of sheaves

The purpose of this appendix is to give an elementary proof, based on the introductory
discussion of vanishing cycles in SGA 7 [5, Exposé 1], of the following basic result.

Theorem 6.1 Let f W X ! S be a proper separated submersion and let F be a locally
constant sheaf of abelian groups on X . Assume that S is locally path connected
and semilocally simply connected (see for example the textbook of Greenberg [3,
II, Section 6]). Then for each q 2 Z, Rqf�F is locally constant on S .

Proof First we shall prove this when S is the unit interval. This case relies on the
following criterion.
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Proposition 6.2 Let F be a sheaf of abelian groups on the unit interval I . For s; t

with 0 � s < t � 1, let J WD Œs; t �, let FJ be the restriction of F to J , and let
j W Œs; t/! Œs; t � and j 0W .s; t �! Œs; t � be the inclusions. Suppose that for every such s

and t , the maps

(1) FJ ! j�j
�FJ ,

(2) FJ ! j 0�j
0�FJ

are isomorphisms. Then F is constant.

Proof Suppose that the maps (1) are all isomorphisms. We claim first that for every
t 0 > t > s , the map F.Œs; t 0// ! F.Œs; t// is injective. Suppose f is a section of
F.Œs; t 0// which vanishes on Œs; t/. Let T be the set of all t 00 such that f vanishes on
Œs; t 00/. Evidently t 2 T . Let b be the supremum of T . For every b0 < b , there is some
t 00 2 T such that t 00 > b0 . Then f vanishes on Œs; t 00/ and hence also on Œs; b0/. Since
the set of all Œs; b0/ with b0 < b covers Œs; b/, it follows that b 2 T . Say b < t 0 . Let
J WD Œs; b�, and observe that since FJ ! j�j

�FJ is an isomorphism, f also vanishes
on Œs; b�, and hence in some neighborhood of b . This contradicts the fact that b is
an upper bound for T . Hence b D t 0 , proving the injectivity. Next we claim that for
every t � s the map F.Œs; 1�/! F.Œs; t �/ is surjective. Suppose f is a section of F

over Œs; t �. We may assume t < 1. Hence there exist some t 0 > t and f 0 2 F.Œs; t 0//

such that f 0 extends f . We know f 0 is unique by the injectivity proved above. Let
T be the set of all t 0 for which there exists such an f 0 on Œs; t 0/ and let b be the
supremum of T . Then for each b0 < b , there is some t 0 > b0 in T . Hence there is
a (unique) f 0 on Œs; t 0/ extending f . The set of all Œs; t 0/ covers Œs; b/ and by the
uniqueness these f 0 patch to an extension of f to Œs; b/. Thus b 2T . The fact that (1)
is an isomorphism then implies that f 0 extends to Œs; b�. If b D 1 we are done, and
otherwise we find a contradiction.

We have checked that for every s < t , the map F.Œs; 1�/! F.Œs; t �/ is bijective. If
in addition the maps in (2) are all isomorphisms, a similar argument proves that the
map F.Œ0; 1�/! F.Œs; 1�/ is bijective. Then for every s < t , it follows that the maps
F.Œ0; 1�/! F.Œs; t �/! F..s; t// are bijective, and hence that F is constant.

Lemma 6.3 Let f W X ! I be a topological submersion, and let F be a locally
constant abelian sheaf on X . Let X 0 WD f �1Œ0; 1/ and let kW X 0!X be the inclusion.
Then the natural map F !Rk�k

�F is an isomorphism in DC.X /. Hence for every
q 2 Z, the natural map

Rqf�F !Rq.f ı k/�.k
�F /

is an isomorphism.
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Proof Let Z be the complement of X 0 in X . It suffices to show that the cohomology
sheaves Hq

Z
.X;F / are all zero. This is a local condition on X , so we may assume

that F is constant and that X D Y �J , where J WD .r; 1� for some r < 1. We claim
that the map

H q.Y �J;F /!H q.Y �J 0;F /

is an isomorphism, where J 0 WD .r; 1/. Choose r 0 2 J . Then the map sending J (resp.
J 0 ) to r 0 , followed by the inclusion of fr 0g in J (resp. J 0 ) is homotopic to the identity.
It follows that the inclusion of Y �J 0 in Y �J is a homotopy isomorphism. Hence it
induces an isomorphism on cohomology, by Kashiwara and Schapira [10, 2.7.5].

Lemma 6.4 Theorem 6.1 is true if S D I .

Proof We prove by induction on q that Fq WD Rqf�F is constant on I . Assume
this is true for q0 < q . Let j W I 0 WD Œ0; 1/! I be the inclusion, let X 0 WD f �1.I 0/,
and let f 0W X 0! I 0 be the map induced by f . We have a commutative diagram:

Rqf�F - Rq.f ı k/�k
�F ŠRq.j ıf 0/�k

�F

j�j
�Rqf�F

?
- j�R

qf 0�k
�F

?

The top horizontal arrow is an isomorphism by the previous lemma. The horizontal
arrow on the bottom is trivially an isomorphism. The vertical arrow on the right is the
edge homomorphism associated with the spectral sequence with E

p;q0

2
DRpj�R

q0f 0�F .
The induction hypothesis implies that Rq0f 0�F is constant on I 0 if q0 < q and hence
that E

p;q0

2
D 0 for q0 < q and p > 0. This implies that the right vertical arrow is an

isomorphism. It follows that the left vertical arrow is also an isomorphism.

Now if 0� s< t � 1, let J WD Œs; t � and let i W J! I be the inclusion. Let fJ W XJ !J

be the pullback of f to J and let FJ be the pullback of F to XJ . By the proper
base change theorem, the natural map i�Fq!RqfJ �FJ is an isomorphism for
all q . The above argument applies equally to fJ , and it follows that the natural map
Fq

J
WD i�Fq ! j�j

�.Fq
J
/ is an isomorphism, as in Proposition 6.2. The statement

for j 0 is proved similarly. Then it follows from Proposition 6.2 that Fq is constant.

Lemma 6.5 Let S be a locally path connected and semilocally simply connected
space, and let F be an abelian sheaf on S . Assume that for every path 
 W I ! S , the
pullback 
 �F is constant. Then F is locally constant.
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Proof First we prove this when S D I�I . We show first that if U is a path connected
subset of S and x 2 U , the map F.U /! Fx is injective. Indeed, if f is an element
of the kernel and y 2 U , there is a path 
 in U from x to y , and 
 �F is constant. It
follows that the germ of f at y also vanishes, and since this is true for every y , f
vanishes.

Next we prove that the map F.S/! Fx is bijective, where x WD .0; 0/. Choose
g 2Fx . Since the restriction of F to I �0 is constant, g extends uniquely to a section
of F on I � 0. Let T be the set of all t such that g extends to a section of F on
I � Œ0; t �, and let b be the supremum of T . We claim that b 2 T . If b D 0 this is
certainly true. If b > 0, then for every b0 < b , there is a unique section of F on
I � Œ0; b0/ extending g , and these patch to a section f on I � Œ0; b/. For each a 2 I ,
the restriction of F to a� Œ0; b� is constant, so there is a unique section fa of F on
a� Œ0; b� which agrees with f on a� Œ0; b/. Then there exist an open box U around
.a; b/ and a section fU of F on U whose germ at .a; b/ agrees with the germ of
fa at .a; b/. That is, for some b0 < b , fU and fa agree on a� .b0; b�. Then V :=
U \ I � Œ0; b/ is path connected, and the germs of fU and f agree at the points of V

on a� .b0; b/. By the injectivity proved above, this implies that they agree on all of V

and hence patch to a global section on I � Œ0; b/[U . Doing this for each a, we find
a section of F on I � Œ0; b� whose germ at x is g . This shows that b 2 T . If b < 1

we see from the compactness of I � Œ0; b� that f extends to an open neighborhood
of I � Œ0; b� in I � I [10, 2.5.2]. But this would contradict the fact that b is an upper
bound for T . Thus b D 1, and we are done.

It now follows easily that F is constant. Indeed, if x0 is another point of S , there is
a path 
 W I ! S joining x and x0 , and since 
 �.F/ is constant, it follows that the
natural map F.S/! Fx0 is also an isomorphism. This implies that F is constant.

Now suppose that S is connected, simply connected and locally path connected. Given
any two points x and y in S , there is a path 
 from x to y , and hence a map �y;x

from Fx ! Fy . Since S is simply connected, any two paths are homotopic, and
by the argument above, this isomorphism is independent of the choice of path. It
follows that if z is a third point of S , �z;y�y;x D �z;x . Note that if f is a section
of F over some connected open subset U of S and x and y belong to U , then
�y;x.fx/D fy . Choose some s 2 S . We claim that for each open subset U of S and
each f 2 Fs , there is a unique g 2 F.U / such that gu D �u;s.f / for all u 2 U . The
uniqueness is clear. For the existence, consider pairs .U 0;g0/ where U 0 is an open
subset of U and g0 2 F.U 0/ is such that g0u0 D �u0;s.f / for every u0 2 U 0 . Order
the set of such pairs as usual, and suppose that .V; h/ is maximal (by the sheaf axiom
such a pair exists). Say u 2 U , and choose a connected open neighborhood U 0 of u

and a g0 2 F.U 0/ such that g0u D �u;s.f /. If u0 is any point of U 0 , it follows that
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g0u0 D �u0;u.g
0
u/D �u0;u�u;s.f /D �u0;s.f /. In particular, if u0 2 U 0\V , g0u0 D hu0 .

This implies that the restriction of g0 to U 0 \ V agrees with the restriction of h to
U 0 \ V . Then h extends to U 0 [ V , so by maximality U 0 � V . Hence V D U .
Thus we have constructed, for every open U in S , a map �U W Fs! F.U / such that
�U .f /uD �u;s.f / for all u 2U . It is clear that the maps Fs!F.U / are compatible
with restriction, and hence define a map from the constant sheaf Fs to the sheaf F . It
follows from our assumption that this map is an isomorphism on stalks. Hence it is an
isomorphism and F is constant.

Now we prove the general case. Since S is locally path connected, its connected
components are open and locally path connected, and it is enough to prove the result for
each connected component. Since S is semilocally simply connected, it has a universal
cover zS! S . By the previous case, the pullback of F to zS is constant. Since zS! S

is a covering space, it follows that F is locally constant.

Now we can finish the proof of Theorem 6.1. Let 
 W I ! S be a path. Then f
 WD
X �S I ! I is a proper separated submersion, and by Lemma 6.4, the cohomology
sheaves Rqf
 �F are constant. By the proper base change theorem, Rqf
 �F Š 


�Fq .
Thus the result follows from Lemma 6.5.
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[21] J-L Verdier, Dualité dans la cohomologie des espaces localement compacts, from:
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