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Adams operations in smooth K —theory

ULRICH BUNKE

We show that the Adams operation vk ke {—1,0,1,2,...}, in complex K—-theory
lifts to an operation Uk in smooth K —theory. If V — X is a K—oriented vector
bundle with Thom isomorphism Thomy , then there is a characteristic class p* (V) €
K[1/k]°(X) such that W¥ (Thomy (x)) = Thomy (o (V) U W (x)) in K[1/k](X)
for all x € K(X). We lift this class to a K 0(---)[1/ k]-valued characteristic class for
real vector bundles with geometric Spin®—structures.

If 7: E — B is a K—oriented proper submersion, then for all x € K(X) we have
Wk (1 (x)) = m(p*(N) U Wk (x)) in K[1/k](B), where N — E is the stable K—
oriented normal bundle of 7. To a smooth K —orientation 0, of m we associate a
class p*(oy) € I?O(E)[l/k] refining p*(N). Our main theorem states that if B is
compact, then UK (7,(%)) = 7 (5% (0x) UK (%)) in K(B)[1/k] forall X € K(E). We
apply this result to the e—invariant of bundles of framed manifolds and p—invariants
of flat vector bundles.

1 Introduction

The formalism of smooth extensions of generalized cohomology theories is designed
to capture secondary invariants in topology, global analysis and geometry. The first
example was the smooth extension of ordinary cohomology introduced by Cheeger and
Simons [9]. Among other applications it was used to construct secondary characteristic
classes for flat vector bundles.

Motivated by applications in mathematical physics, in particular string theory, smooth
extensions of other generalised cohomology theories, in particular of K —theory, have
been considered for example by Moore and Witten [16], Freed [11; 10] and Szabo
and Valentino [20]. The existence of smooth extensions of generalised cohomology
theories has been shown by Hopkins and Singer [14]. Axioms and uniqueness results
have been discussed by Simons and Sullivan [18] and the author and Schick [7]. In [7]
we have shown that there is, up to unique isomorphism, a unique smooth extension of
complex K-theory.
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2350 Ulrich Bunke

An important tool for the construction of primary and secondary invariants is the
integration or pushforward map for suitably oriented maps. The integration for smooth
extensions of generalised cohomology theories has been discussed by Hopkins and
Singer [14]. The notion of a smooth orientation of a submersion has been formalised
for bordism theories by the author, Schick, Schroder and Wiethaup [8] and by the
author and Schick [6] for complex K —theory.

In general, Riemann—Roch type index theorems are assertions about the compatibility
of natural operations between cohomology theories and the pushforward. In the
prototypical example its states the compatibility of the Chern character

ch: K - HPQ

from K —theory to periodic rational cohomology with the pushforward along a K—
oriented proper submersion 7: E — B between smooth manifolds:

K*(E) HPQ*(E)
(1) ln,K LH!HP@(A\C(TUJT)U...)
K*71(B) —> HPQ"~"(B)
Here n := dim(£) — dim(B) is the dimension of the fibres of 7 and AC(T"JT) €
HPQO(E ) is the Spin®—generalisation of the A—genus (see [6, Definition 3.3]) of the
vertical bundle TV7m :=ker(dm) which has a Spin—structure by the K —orientation.

The maps n, and JTHP Q are the integration maps in the corresponding cohomology
theories!.

The prototypical result for the smooth extensions shown in [6, Theorem 6.19] states,
that if 7 is smoothly K —oriented, then the smooth refinement of the diagram (1)

~

R*(E) HPQ' (E)
2 Lﬁ!K lﬁ{“’@ A€ (0,)U-)

~ ch _—— x—n
K*(B) —= HPQ (B)

commutes, too. Here K and HPQ denote the smooth extens10ns of complex K -theory
and periodic rational cohomology theory, ch: K — HPQ is the smooth lift of the
Chern character, and Ac (on) € HPQO(E ) is the smooth refinement A€ (07) determined
by the smooth K —orientation o, of .

11 the main body of the paper we will omit the superscripts since we only consider integration in
K —theory.
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Adams operations in smooth K —theory 2351

In the present paper instead of the Chern character we consider the Adams operation
Wk K[1/k]*(X) > K[1/k]*(X)
for k € {—1} UN. In this case the Riemann—Roch type theorem states that

K[1/kJ*(E) —%~ K[1/k]*(E)

) i ln{‘ (o (TP )~ Uw)

k
K[1/KJ*~"(B) = K[1/k]*""(B)
commutes, where pX(TVx) € K[1/k]°(E) is an invertible K —theoretic characteristic

class of the Spin°~bundle TV7 (see Section 2) below.

The main results of the present paper are the following three theorems:

Theorem 1.1 (Theorem 3.1) There exists a natural lift of the Adams operation to a
natural transformation WK: K(---)[1/k] — K(---)[1/k] of functors on the category
of compact manifolds.

Theorem 1.2 (Definition 4.6 and Theorem 4.1) If n: E — B is a submersion with

compact E which is smoothly K —oriented by o, then there exists a natural smooth
refinement pK (05 ) € K°(E)[1/k] of the class pX (T?m)~".

For details, in particular for the meaning of the word natural, we refer to the main
body of the present paper. The analog of (2) is given by the third theorem.

Theorem 1.3 (Theorem 5.1) If n: E — B is a smoothly K —oriented proper sub-
mersion over a compact base, then the smooth refinement of (3) commutes:

Tk

K*(E)[1/k]
lﬁ,"(ﬁ"(on)u")

K*(E)[1/k]
@) lfr{(

R*"(B)[1/k] — R*="(B)[1/K]

The Dirac operator model of smooth K-theory [6] provides the link between the
pushforward in smooth K —theory and spectral geometric invariants of families of Dirac
operators. So in principle, the diagram (4) can be interpreted as a relation between
these invariants for different families of Dirac operators. We discuss this aspect in
greater detail in Section 6.
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In [6], we have constructed a version of Adams e—invariant e(r) € KR/Z""1(B)
for families of n—dimensional framed manifolds 7: E — B using only elements of
the formalism of smooth K—theory. As an immediate consequence of (4) we show in
Theorem 6.1 that

KE(@* —1e(n) =0

for sufficiently large L. In the case that B is a point these relations for all kK € NU{—1}
together imply the well-known (in fact optimal) upper bound of the range of the e—
invariant; see Adams [1] and Ravenel [17, Theorem 1.1.13 and comments below].

2 Adams operations

Let Z[1/ k] denote the abelian group obtained from the integers by inverting k € Z\ {0}.
If A is any abelian group, then we write A[l1/k] := A ® Z[1/k]. Let us consider
a cohomology theory E represented by a spectrum E (which de will denote by
the same symbol). Using the Moore space M Z[1/k] we can define the spectrum
E[l/k]:= E A MZ[1]k] which represents the cohomology theory E[1/k]. Since
Z[1/ k] is flat the coefficients of the latter are given by E[1/k]* =~ E* ® Z[1/k]. Note
that we can define another contravariant functor from spaces to Z—graded abelian
groups by E*(X)[1/k] := E*(X)[1/k]. Since Z[1/k] is flat this functor admits
Mayer—Vietoris sequences. But it does not satisfy the wedge axiom. The map M Z —
M Z[1/ k] induces a natural transformation £ — E[1/k] which extends to a natural
transformation E*(---)[1/k] — E[1/k]*(---) preserving Mayer—Vietoris sequences.
If X has the homotopy type of a finite CW—complex, then this map induces an
isomorphism E*(X)[1/k] =~ E[1/k]*(X).

In the present paper we want to apply this construction to the cohomology theory K
called complex K —theory. In order to avoid to provide the details of the construction
of a smooth extension of K[1/k] we simply tensorize the smooth extension of K by
Z[1/ k). This dictates the same choice on the topological side and forces us to restrict
to manifolds which have the homotopy type of finite CW—complexes, eg compact
manifolds.

Solet k € Z\NU{—1} and let K denote the generalized cohomology theory complex
K —theory. By the discussion above, for a finite CW—complex X we have

o) K[1/kT*(X) = K*(X)[1/k] .

By the Landweber formalism [15] complex K —theory is associated to the multiplicative
formal group law
(x,y)>x+y+bxy
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over the ring K* = Z[b, b~ '] generated by the Bott element b with deg(h) = 2. The
cohomology theory K[1/k] is then given by the same law considered over K[1/k]* =
Z[1/k][b,b1]. The diagram

x—kx, b—k~1b

Z[1/ Kb, b~ 1Ix] Z[1/ k)b, b= lx]

T lI"}I-SGL ,]

201/ Kb, b~ )~ Z[1 /K. 5]

gives a morphism \IJIF‘GL of formal group laws over the morphism of rings VL (;
induces the Adams operation Wk which is a multiplicative cohomology operation of
the generalised cohomology theory K[1/k].

It is the stable version of the classical Adams operation
wk: K0 — K°

which is already defined before inverting k. If L — X is a one-dimensional complex
vector bundle over a finite CW—complex X and [L]€ K°(X) denotes the corresponding
K —theory class, then we have

(6) k(L)) = [L]
in K°(X).

The Bott periodicity isomorphism Bott: K[1/k]*(X) = K[1/k]**2(X) is given by
multiplication with the Bott element b € K? so that the following diagram commutes
forall n e Z:

KT/ KF () 2 KUK ()
(N L Bott” l Bott”
K[/ 20(0) 25 K[1/KJ#2(X)
The Adams operations satisfy
(8) Wk o gl = gkl
(here we invert k and /).
We define the multiplicative cohomology operation \IJI;I: HPQ* — HPQ™* on the

periodic rational cohomology HPQ*(X) := H*(X: K¢)) such that \I/’fq (x) = x for
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x€ H*(X;Q) and \IIII; (b) = k~1b. Periodic rational cohomology is the natural target
of the Chern character ch: K* — HPQ®, and we have

9) chow* = Wk och .

A real n—dimensional vector bundle V — X with a Spin‘—structure is K—oriented.
We have a Thom isomorphism

Thomy: K[1/k]*(X) — K[1/k]**"(Thom(V)) ,

where K [1/k](Thom(V)) denotes the reduced K[1/k]-theory of the Thom space
of V. There exists a unique invertible characteristic class

P (V) e K[1/K°(X)
(called the cannibalistic class in [1]) such that
(10)  WK(Thom(x)) = Thom(o* (V) U W*(x)), Vxe K[1/k]*(X).

A K —orientation of a proper submersion 77: E — B is determined by a Spin®—structure
of the vertical bundle TVw =ker(dn). If w is K—oriented, then we have an integration
map

m: K[1/k]"(E) — K[1/k]*™"(B)
where n = dim(£) — dim(B) is the dimension of the fibres. The compatibility of the
Adams operations and the integration is expressed by the identity

(11) Uk (m(x) = m(eK (TPm) U ek (x)),  Vax e K[1/K]*(E) .

It is an immediate consequence of the usual construction of m and (10).

3 The lift of the Adams operations

We consider the smooth extension (I? ,R.1,a, [) of complex K-theory [6; 7] on the
category of compact manifolds. We restrict to compact manifolds since we will fre-
quently use the isomorphism (5). In order to avoid this restriction one could alternatively
start with a smooth extension of K[1/k].

In the present paper it is useful to keep track of degrees properly. So for the domain
of a and the target of R we will take the periodic differential forms QP*(M) :=
Q*(M, Kg) with K := K*®R, and the corresponding cohomology is the periodic de
Rham cohomology HPur(M, K) = HP*(M'). We define the natural transformation
\Iflg‘zz QP*(M) — QP*(M) of ring-valued functors such that \Iflg‘2 (w) =w for w €
Q*(M), and \Dg (b) = k~'b. Tt induces a corresponding transformation \Illf{ on the
periodic cohomology.
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Theorem 3.1 There exists a unique natural transformation

W K1/ k] = K[/ K]
of set-valued functors on the category of compact manifolds such that
(12) ToVUk=wkor, RoUk=wkoR,

and the following diagram commutes:

KOS x M)[1/k] v KOS x M)[1/k]
(3) lf Lf
K= (M)[1/k] K=1(M)[1/K]

The transformation U¥ preserves the ring structure and satisfies

(14) Tk o @l = k!

2355

Proof We first show that there is a unique natural transformation of set-valued functors

vk KO KO

which satisfies (12). We then show that this transformation preserves the ring structure
and satisfies (14). Finally we extend Uk (o all degrees using Bott periodicity and (13).

The space Ky := Z x BU represents the homotopy type of the classifying space of
the functor K°. We choose by [7, Proposition 2.1] a sequence of compact manifolds

(Ki)i=o together with maps
xi: Ki > Ko, «ki: Ki > Kipq
such that
(1) K; is homotopy equivalent to an i —dimensional CW—complex,
(2) «i: Ki = Kj41 is an embedding of a closed submanifold,
3) xi: Ki = K is i —connected,

(4) Xi+1 OKj = Xj.

Let u € K°(Kg) be the universal class represented by the identity map Ko — K.
By [7, Proposition 2.6] we can further choose a sequence u; € K 0 (KCi) such that
I(i1;) = x]u and «}#l; 1 = u; forall i > 0. By [7, Lemma 3.8] for k > 2i +2 we

have H2 (K, R) =0 forall j <i.
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The requirements I(wk(u,)) = Wk (I(@1;)) € K°(K;) and R(wk(u,)) = \IJ’S?Z (R(uy))
fix a class wk(u,) € KO(IC,) uniquely up to elements of the form a(«) for o €
FZ'HP™Y(K;), where

(15) FZHP'(X) = @ b= H2H (X R) € HP~(X) .
2j+1=1

Let M be a compact manifold. In the following we construct a map Pk KO (M) —
K%(M). Let y € K%(M) be given. Then we choose i > dim(M) and f: M — K;
such that 1(y) = f*x}(u). We further choose p € QP~1(M) such that

(16) $= f*a;i +a(p) .
We define
(17) V() = fryk @) + a(@k o) .

By a direct calculation we verify that (12) holds true:

1@ @) =¥ (). REG) = V4RO -
Lemma 3.2 The right-hand side of (17) does not depend on the choices.>

Proof If o’ is a second choice for p in (16), then p'—p=ch(x) in QP (M)/im(d)
for some x € K~'(M). But then WX o(p)— Wk o(p) = ];I(ch(x)) = ch(Wk(x)). This
implies a(\If p) = a(\IJ o).

Since we take i sufficiently large it follows that f*y¥(@;) is independent of the choice
of the actual element ¥* (ii;).

We further can increase i to i + 1 by replacing f by «; o f without changing the
right-hand side of (17).

Finally, any two choices of f become homotopic after increasing i sufficiently many
times. Therefore let f” be another choice for f in (16) and H: [0, 1] x M — K; be
a homotopy from f to f’. We choose p € QP~1([0,1] x M) such that pryy =
H*#i; +a(p). In (16) we can then take p = pj(oyxpr and p’ := Pj¢13xar - and by the

2 At the moment we consider the existence of a transformation WX . We must show that our construction
of WK is well-defined. It follows from the next Lemma 3.3 that U¥ is independent of the choice of the
approximation (KC;); of Kg.
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homotopy formula (see [7, (1)]) we have

a(p’—p+/ H*R(ﬁk)) —0,
[0,1]x M/ M

that is, o —p+ / H*R(#iy) = ch(x)
[0,1]xM/ M

for some x € K~1(M).
We evaluate the difference of the right-hand sides of (17) for the two choices and get
SR @) + a(WE (o)~ Y @) — a(Pg (p)
= a( /[ et RH* Y (@) + W5 (o) — Vg (p))

=a(\p§g(/ H*R(ﬁk)+p’—p))
[0,11xM/ M

= a(ch(¥*(x)))
=0 ,

where we use the homotopy formula in the first equality. a

We now have constructed for each manifold M a map of sets k. KO (M) — K° (M)
satisfying (12).

Lemma 3.3 WX js a natural transformation of set-valued functors on the category of
compact manifolds. It is the unique natural transformation satisfying (12).

Proof Let g: M’ — M be a smooth map of compact manifolds. If we take in addition
i >dim(M"), then we can start the construction with g*y = f’#i; +a(g*p), the analog
of (16), where f’:= f og. With this choice we have

Uk (g*9) = (fog)* v (a) +a(¥Eg* ) = g* (f*y* (@) +a(¥E (p) = g* V* (D) .

We now show uniqueness. If W"*: K° — KO is another natural transformation satis-
fying (12), then for i > dim(M) and f: M — K; we have

(18) Wk (i) = k@) = k) = Bt
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For p € QP (M) we consider the class  := f*I; +a(p) and X := pr}, f*ul; +
a(tpry,p) € K ([0, 1]x M), where ¢ is the coordinate of [0, 1]. The homotopy formula
gives

®h%fy—®h%fﬁa>=a(/’ R@%k@»)
[0

XM/ M)

=a(/‘ wgu«f»)
[0,1]x M/ M]
= Uk () — Tk (f* i) .
In view of (18) we get UK/(3) = Wk (3). O

Lemma 3.4 Uk: K0 — K is a natural transformation of ring-valued functors and
satisfies (14).

Proof We first consider the additive structure. Let
BE.7):= VG + ) - V@) - V() .

Since WX is compatible with 7 and R we immediately see that B takes values the

subfunctor HP~! /im(ch) C K°. Furthermore, since by the explicit formula (17) we

have WX (3 + a(p)) = UK () + WK (a(p)), it follows that B factorises over a natural

transformation
B: K°x K° — HP™! /im(ch) .

The same argument as for [7, Theorem 3.6] shows that such a transformation vanishes.
This shows that WK preserves the additive structure.

In order to show that WX is multiplicative we argue similarly. We consider
ER®,9):=0FEuUp) - k@) urky).

We again see that E factors over a transformation

E: K°x K° — HP™! /im(ch)
which necessarily vanishes.
For the relation W/ o UK = Wk we argue similarly using

CR):=W oUkR) - Uk ().
We again see that C factors over a natural transformation
C: K° — HP™!/im(ch)

which necessarily vanishes. |
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Lemma 3.5 There exists a unique natural transformation Uk K=1 - K~ such that
(13) commutes. It further satisfies (12) and (14), and for Z € K°(M) and 5 € K1 (M)
we have

(19) VU ) = k@) U Tk (D).
Proof We choose ¢ € K!(S!) such that Je=1and R(@) is rotation invariant. Note
that € is unique up to addition of elements a(c), where ¢ € HP®(S'). For X € K~1(M)
by (13) we are forced to define

Tk (%) = / Tr@Ex3) .

This gives a natural transformation such that (13) commutes. In particular, it is indepen-
dent of the choice of ¢. The relations (12), (14) and (19) follow by direct calculations.
O

By the relations (12) and (7) we are forced to extend the transformation Tk 1o all
degrees by Bott periodicity, ie such that

kfn’\k

K*(M)[1/k] K*(M)[1/k)
(20) lBottn lBOﬁn
R[] 2 =211 /K]
commutes. The relation (14) holds true automatically.

In order to finish the proof we must show that U¥ is multiplicative. Let £, € K*(M).
Then we can write X = b'X|, § = b"J,, where X1, J; have degrees in {0, —1}. In
this way by (20) we reduce the problem to the multiplicativity of Uk in degree zero
and (19). This finishes the proof of Theorem 3.1. O

An alternative way to construct the lift of the Adams operations would be to use the
model [8, Theorem 2.5]

K(M):= MU (M) Qpu~ K*,
together with [8, Corollary 2.8].

The following example shows that the lift of the Adams operations to smooth K-
theory act on the classes of geometric line bundles in the expected way lifting (6). Let
L:= (L, hL, VL) be a hermitian line bundle with connection over M . It gives rise to a
geometric family £ (see [8, 2.1.4]) and a smooth K —theory class [L]:=[L, 0] e K° (M)
in the model of smooth K —theory (compare [8, Lemma 2.16]).
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Proposition 3.6 We have Pk (IL]) = [L*].

Proof We first consider the canonical bundle U — CP”. Equipped with geometry
we get the geometric bundle U = (U, #Y, VY) and the class [U] € K°(CP"). Note
that by a direct calculation

1Pk (U)) = I(UF]),  RFF[U) = R(UF)) .

Since HP~!(CP") = 0 the class Pk ([U]) is uniquely determined by its curvature and
its underlying topological K—theory class. This implies

1) Uk ([U) = [UF].

In the general case there exists n >0 and f: M — CP” such that L =~ f*U. We
consider the bundle K := pr}"VIL — [0, 1] x M with a geometry K, which coincides
with f*U on {0} x M and with L on {1} x M . From the homotopy formula [7, (1)]
we get

BH(L) - £ F o) = [ RO (K))
[0,11xM/M
_ k
B a(/[O,I]XM/M R([K ]))
= [L¥]—- f*[U*].
In view of (21) this implies the assertion. O

Let (Iﬁ@ , R, I,a, [) denote the smooth extension of the periodic rational cohomology
theory. In [6] we have constructed a lift of the Chern character to a natural transformation

ch: K > HPQ
of ring-valued functors. We let \TJ];I m RN 1715@ i denote the obvious lift of ‘-IJIIEI
which multiplies " by k7.

Proposition 3.7 We have ch o Wk = Wk o ch.

Proof We first consider the even case. The difference
D :=choWk — Wk och
factors over a natural transformation

D: K° - HP™'/HPQ™! .
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Using that K¢ is an even space similar arguments as in the proof of Lemma 3.4 show
that D = 0. The odd case follows from the compatibility of the Adams operations and
the Chern character with integration. |

Let M be a compact connected manifold with base point * € M . We consider the
multiplicative subgroups

U:={xeK'M)[1/k]| xp. =1}, U:={%eK°(M1/K]| X =1}

of KO(M)[1/k] and KO(M)[1/k].

Lemma 3.8 The maps

are surjective.

Proof We first consider the topological case. Let F2"K®(M)[1/k] < KO(M)[1/k]
denote the 2n—th step of the Atiyah—Hirzebruch filtration which is finite. The Atiyah—
Hirzebruch filtration is compatible with the multiplication in the sense that

F2K(M)[1/ kU FP™K(M)[1/k] € F2" T2 K(M)[1/k].

Let x € U. Then we find inductively approximations z € U such that wk (z)—x €
F2KO[1/k](M) as follows. The first approximation is z = 1. Then WK(1) —x €
F2KO(M)[1/k]. Assume that W (z) —x =: d € F?""2KO(M)[1/k]. Then we take

2=z (1/k")d .

Then WK((1/k™)d) —d € F?"K°[1/k](M) and therefore Wk(z') — x = Wk(z) —
(1/k™)Wk(d) —x € FAPKO(M)[1/ k).

We now consider the smooth case. Let £ € U. Then I (X) € U. We thus can choose
z € U such that WK (z) = I(X). Let Z be a smooth lift. Then UK (2) — % = a(w) for
some w € QP~1(M). We define 2’ := E—a((\Pé‘Z)_l(w)). Then UK (Z)=%. O

4 The characteristic class p*

A Spin€—structure (P, ¢) on a real n—dimensional vector bundle ¥V — M is a pair of a
Spin‘—principal bundle P — M together with an isomorphism ¢: P Xgpin¢(n) R" =V,
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where Spin€(n) acts on R” via the natural projection Spin€(n) — SO(n). A Spin‘—
vector bundle is K —oriented. Let Thomy: K[1/k]*(M) — IZ[I/k]*"‘” (Thom(V)) de-
note the Thom isomorphism. Then there is a characteristic class p* (V) € K[1/k]°(M)
of Spin®—vector bundles uniquely characterised by the relation

U* (Thomy (x)) = Thomy (0¥ (V) U WX (x)), Vx e K[1/k]*(M)

(see [1]). We consider the characteristic class KC(V) € HP°(M) of Spin®—bundles. A
definition is given in [6, Definition 3.3]. In the present paper we modify this definition
by inserting suitable powers of the Bott element b € K* in order to shift all homogenous
components to degree zero. The K —theoretic characteristic class pk has the following
properties:

() PV ew) = ()upw).

) pFM xR") =1.

(3) pk(V) is aunitin K[1/k]°(M).

@) ch(p*(V)) = Wi (A (V) /A(V).
A geometric Spin‘—structure on a vector bundle V — M is a triple V = (P, ¢, V),
where (P, ¢) is a Spin®—structure on V and V is a connection on P. By Chern—Weil

theory we can define a closed differential form A (V) € QP°(M) which represents
the cohomology class A¢(V); see [6, Definition 3.3].

There is a natural definition of the sum V@& W of two geometric Spin®—vector bundles.
We consider the contravariant functor

VectP™ ; smooth compact manifolds —> semigroups
which associates to a compact smooth manifold M the semigroup VectSPin® (M) of
geometric Spin¢ vector bundles.
Theorem 4.1 There exists a unique natural transformation of set-valued functors

2% VeetSPn® — RO(..)[1/k]

such that
Wk (AC(W)) .
(23) R(PFW) =—2""2  We Vect™™ (M) .
Ac(W)
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It in addition satisfies
@) FWeW) =W uFW). W W € Veet™ (M),
(25)  p*(W) isaunitin K°(M)[1/K], W € VeetSin” (M),

Proof Let us fix n € Ng. We first construct ,5" on the subfunctor VectSPin‘ n of

n—dimensional geometric Spin®—vector bundles. Note that the classifying space

BSpin®(n) of Spin®(n) is a simply connected rationally even space. Using [7, Propo-

sition 2.1] we choose a sequence of compact manifolds (5;);>o together with maps
xi: Bi = BSpin°(n) , «i: Bi — Bjyq

such that

(1) B; is homotopy equivalent to an i —dimensional CW—complex,
(2) «ki: B;i — B;4+1 is an embedding of a closed submanifold,
(3) xj: B;i — BSpin®(n) is i —connected,

4) Xjy10Kki =X;.

Let &, — BSpin®(n) be the universal n—dimensional Spin¢ vector bundle. Let E; :=
x&n. Note that ' E; 1 = E;. Since «;: B; — Bjy is an embedding of a closed
submanifold we can inductively choose geometric refinements E; € VectSPin, (B;)
such that k*E; | = E;. For each i we choose a class 7k (E;) € KO(B;)[1/k] such
that N
WE (A°(E)))

ACE)
This element is uniquely determined up to elements in a(F='HP~!(B;)); see (15).

IG*(E) = pF(Ei) . R(FF(E)) =

Let now M be a compact manifold and W € VectSpi"cn(M ). Then we choose i € N
such that i > dim(M) and there exists f: M — I3; and an isomorphism f*E; =~ W.
We are forced to define oK (f*E;) = f*7*(E;). This class is independent of the choice
of 7*(E;).

We now consider the bundle V = pr}'{lW — [0, 1] x M. We choose a geometry
V € VectSPn, ([0, 1] x M) which coincides on {0} x M with f*E;, and on {1} x M
with W. By the homotopy formula we are forced to define

(W) = pF(f*E)) +a(/ R(ﬁ"(V)))
[0,11xM/ M

N Wk (A¢(V))
= 7k (E; —evr V)
ST l)+a(/[0,l]xM/M KC(V) )

(26)
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By a straightforward calculation we verify that (22) and (23) hold true.
Lemma 4.2 ﬁk: VectSPin®, KO (--+)[1/ k] is a well-defined natural transformation.

Proof If we choose a second geometry V' € VectSpi“cn([O, 1] x M) interpolating
between W and f™*E;, then the difference

/ whAev)) / Wk (A€ (V"))
0.1xM/M  AS(V) 0,11xM/M  A¢(V')

is exact. This follows by Stokes’ theorem from the fact, that the geometries V and V’
can again be connected by geometric bundle over [0, 1] x M . We conclude that 5% (W)
does not depend on the choice of V.

If we increase i by one and set f’ := k; o f, then we get f"*E;;; =~ f*E;,
[*FR(E;) = f*F%(B;41), and therefore the same result for oK (W).

Any two choices of maps f: M — BB; become homotopic after increasing i sufficiently
many times. If f and f’ are homotopic by a homotopy H: [0, 1] x M — B;, then
we apply the construction for pry, W and H. In this way we get a class ok (pry, W).

Note that o
v (A (W)
R(Ak( W) =prt, 2~ 77
P Pryy ) =p M Ac(W)

has no dt—component, where ¢ is the coordinate of [0, 1]. It thus follows from the
homotopy formula that

AR (W) = 3% (e W)iyxr = 85 (0ry W coyxnr = X (W) .

Finally we verify that p: VectSPn®, — K° (---)[1/k] is a natural transformation. Let
g: M’ — M be a smooth map. Then in the definition of 5*(g*W) we can take
Sf'i=fog and V' := (idjg,1] X g)*V. With these choices we have

g W) =" W) . 0
Lemma 4.3 The relation (24) holds true.
Proof We consider the transformation
B: Vect3P™ , x VectSPin, — KO(- <)1) k]
given by BW. W) :=p*(Wa W) — K (W)u kW) .
We must show that B = 0. By construction we have

RoB=0, IoB=0.
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Therefore B takes values in the homotopy invariant subfunctor
HP™! () /im(ch)[1/k] € RO-)[1/K].

Since it is homotopy invariant it is clear that B(W,W’) € HP~!(M)/im(ch)[1/k]
only depends on the underlying topological Spin®-~bundles W and W’ over M . There
exists j > dim(M) such that can find maps f, f': M — Bj such that W =~ f*E;
and W' = f"*E;. Weset F:= fx f', V :=pr{E;, and V' := pr;E;, where
pry: Bj x Bj — Bj, k = 1,2 are the projections. Then we get

BW,W'y=B(F*V,F*V'y=F*B(V,V’).
Now B(V,V') € FZ/HP~Y(B; x B;)/im(ch)[1/ k], and therefore F*B(V,V’) = 0.
This shows that B(W, W') = 0. O
Lemma 4.4 For W € VectSP™ (M) the class pK (W) € K O(M)[1/ k] is a unit.
Proof We write p¥(W) = 1 4 (5K (W) — 1). It suffices to show that p¥(W) —1 is
nilpotent. First of all, since
R(ﬁk (W)) = 1 + higher order forms
we see that R(p% (W) — 1) is nilpotent. Similarly, the restriction of
1(*W)—1) = p* (W) -1

to a point vanishes. Therefore ,ok(W) — 1 belongs to a lower step of the Atiyah—
Hirzebruch filtration of K°(M)[1/k] and is therefore nilpotent.

We conclude that for some large / € N

(p* (W) — 1) € HP™" (M) /im(ch)[1/ ] .
But then (5K (W) —1)2/ = 0. o
This finishes the proof of Theorem 4.1. a
In view of the homomorphism Spin(n) — Spin®(n) a Spin—structure on V naturally
induces a Spin®—structure. We define the notion of a geometric Spin—bundle in a
similar manner as the notion of a geometric Spin®-bundle. Notice that a geometric

Spin-bundle w gives rise to a geometric Spin®—bundle W. We have A€ W)= X(VVV),
and this form is invariant under \1151 .

Lemma4.5 IfWisa geometric Spin—bundle, then p~'(W) = 1.
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Proof If W is an n—dimensional geometric Spin—bundle on a compact manifold,
then there exist another geometric Spin—bundle E on a manifold B which has no
real cohomology in odd degree below dim(M ) + 1, and a map f: M — B such that
f*E =~ W. In fact, for B we can take some approximation of a finite skeleton of
BSpin(n). We let E denote the geometric Spin®—bundle induced by E.

A spin bundle W has a KO-orientation®. Its KO—theory Thom class induces the
K —theory Thom class via the natural transformation (complexification) KO — K.
Therefore the K —theory Thom class of W is fixed by complex conjugation W1,
Hence, if the Spin®—structure of W comes from a Spin—structure, then we have
p Y (W)=0.

We conclude that
' B) -1 =p (E)—1=0.

Furthermore, as argued above, A (E) is fixed by ¥~! so we have R(p~'(E)—1) =0.
It follows that ' (E) — 1 € FZdm(M)+1p=1(B) /im(ch) by the assumption on the
odd-degree cohomology of B. Therefore p~1(f *E) = 1. We now consider a geometrlc
Spin—bundle V over [O 1] x M which connects W and f*E. Since A(V) A€ V)
is invariant under L115 we have R(p~1(V)) = 1. If we use these observations in (26)
we get p-L(W) =1. O

Let us now consider a submersion 7: £ — B from a compact manifold £E. We
assume that the vertical bundle 7V7 := ker(d ) has a Spin®—structure. It induces a
K —orientation of 7. Recall that a smooth K —orientation o [6, Definition 3.5] of f is
represented by a tuple (gT T Thz, V., 0), where gT°7 is a vertical metric, 7" is a
horizontal distribution, V is a Spin‘ —extension of the Levi-Civita connection VI'7
on TV (induced by g7"7 and T"x), and o € QP~(E)/im(d) (here we again use
the modified definition based on the insertion powers of the Bott element in order to
shift all forms to degree —1). The curvature of the K —orientation is defined by

R(0):=A°(V)—do ,

where we write A (6) instead of A° (TVB). The smooth K —orientation in particular
induces a geometric Spin¢—structure T8 on TVx

We consider the bundle 7 = id x 7: [0, 1] x £ — [0, 1] x B and choose a represen-
tative of a smooth K —orientation o which interpolates from (g7"™, 7", ¥V, 0) to
T’ Thz ¥, 0).

3 KO denotes real K —theory.
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Definition 4.6 We define

Wk (R(0))

~k ~ v p—1
0):= T8 +a(/
prlo):=pH(T) [0,1xe/E  R(0)

) e KY°E)[1/k].

Note that two tuples (g7"7, T"7,V, o) and (g7"™, T"'7, V', 6') represent the same
smooth K —orientation if the underlying Spin®—structures are isomorphic and
o' —o =A°V, V).

Here A° (6’ , 6) is the transgression form defined in [6, Definition 3.4] (again shifted
to degree —1).

Proposition 4.7 The class ﬁk (0) is independent of the choice of the representative
of o.

Proof We choose a representative of a smooth K —orientation o of [0,1] x E —
[0, 1] x B which interpolates from (g7, T/, v/, o’) to (g7"", Thx, v, o). Fur-
thermore we let o' be the smooth K —orientation of [0, 1] x E — [0, 1] x B obtained
by concatenating 0 with 0. With these choices we get

~k Ve, (R(0))
Y —_ sk = s
P (0)—p"(0) a(/[o,ux / G )

In order to go further we adopt a very special choice for o :

a(1):=prio’ +/ AS(V) .
[0,f/]xE/E
Indeed, o(l)=pryo’ + AV, V) = pryo .

Then we have do = dt A iatgc(ﬁ) + 60 with iy, 60 = 0. It follows that iy, R(0) = 0

and therefore =
W (R(o
/ ToRO) _ 0. m
[0,1xe/E  R(0)

We now consider an iterated bundle

. R
14 q
W——FE—8B
of compact manifolds. We assume that 7V p and TVq are equipped with Spin®—
structures. We choose smooth K —orientations o, and o lifting these Spin—structures.
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Then there is an induced Spin®—structure on 7%r = TV p & p*TVq and a smooth
orientation o, = 04 © 0, (see [6, Definition 3.21]).

Proposition 4.8 We have 5% (0, 0 04) = p¥(0,) U p* 5% (q).

Proof We consider the difference
A(op,0q) = ﬁk(oq ©0p) — ﬁk(Op) U P*,ak(‘]) .
We first check by a direct calculation that
I(A(0p,04)) =0, R(A(0p,04)) =0.

It follows that A(op,04) € HP~!(W)/im(ch). Since two choices of smooth K-
orientations refining a fixed underlying topological K —orientation can be connected
by a path it follows by homotopy invariance that A(op,04) only depends on the
topological Spin‘—structures of 7V p and T"¢. Let us now recall the construction
of o,. We take o) := (gT'P, Thp VTP 0) and 0q 1= (¢T", 7h¢,VT"4,0). Then
for A > 0 we get an induced metric g{vr = 22gT"r g p*gzwq and splitting T"r .
és explained in [g, 3.3.1] we also get an induced connection V}T °7 which has a limit
Vadia .= lim, .o VI The composition of the smooth K —orientations is represented
by (see [8, Definition 3.21])

ogoop=(g; " Thr, V' —Ac(Via §T'r)) .

In [8, (20)] we have observed that Vadia — §T"p g ﬁ*VTvq under the decomposition
T'r = T'p & p*T"q of vector bundles with geometric Spin‘—structures. We have by
Definition 4.6 and Proposition 4.7 that

p*(0g00p) = P*(T'1) ™ +a(T (1))
= (Tpa p*T'q) ™" +a(T'(L)
= (M) Up (T +a(T' (V)
= p*(0p) U p* ¥ (0g) +a(T'(V)) |
where the forms T(A) and T’(1) depend on the difference of V24 and 6{ 7 and

vanish as A — 0. We now take the limit A — 0 and get

7" (0g 0 0p) = p*(0p) U p* " (04) - O

Geometry & Topology, Volume 14 (2010)



Adams operations in smooth K —theory 2369

We now consider a cartesian diagram

g

F——FE
q LP
f
A——B.

A smooth K—orientation 0, of p induces a smooth K —orientation o4 of ¢.
Lemma 4.9 In this situation we have

~k ~k

0" (0g) = g*p" (0p) .

Proof The geometric Spin®—structure on 7'V¢ induced by o, is T'q = g*T"p. If
we choose 04 := (id[o,1] X £)*0, in the construction of ok (0g), then we immediately
get p¥(04) = g*p*(0p) from Definition 4.6. O

Consider a submersion 7: £ — B from a compact manifold £. In [6, 5.11] we
have observed that a stable framing of 7Vx provides a canonical K —orientation. Let
us assume that 7?7 @ RV is framed, where RV g := E x RY denotes the trivial
N —dimensional real vector bundle over £ . The associated smooth K —orientation is

on 1= (g7'™ Thy, 977 XC(gTvn o VR—NE, gT"n@ME,frame)) ’
= N . L .
where VT "7ORZ g frame j¢ the connection induced by the framing.

Proposition 4.10 If o, is induced by a stable framing of T, then p*(0,) = 1.

Proof We have by the homotopy formula

_ Wk (A°(V))
27 KB =1+ ([ ‘l—_)
@D prh) ¢ [0,1]xE/E  A°(V)

where V is a family of Spin®—connections interpolating from

ﬁT“nGBME,frame to ﬁTvn ® 6&\75 )
Let & be a form on [0, 1] x E interpolating from
§C(§T"n @ g]ME, gTvneaME,frame)

to zero. This family induces a smooth K —orientation o on [0, 1] x E — [0,1] x B
which interpolates from o5 to (g7 7, T"x, VT 0). Then we have

wg(R<5)>) .

28 ~k n_zf\kTvB—l_ (/ YA
(28) p (o) =p" (T'B)"" —a oug/E R
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Furthermore, we have

1§C(6T0n ® 6@5’ ﬁTUTr@ME,frame) — / 86(6) )
[0,11XxE/E

As in the proof of Proposition 4.7 we can choose

G(1) = / A¢(V)
[t,11XE/E

5o that d5 (1) = —dt Nig, A°(V) + dAS(FT"" @ VRYE T k)
= —dt N ig,A°(V) = A°(Vjinxp) + A (VT'™) .

We get R(@) = priyAS(VT'™) —d5 = A°(V) .

In combination with (27) and (28) this implies ,Zik (on) =1. O

5 The index theorem

Let m: E — B be a proper submersion over a compact base B with fibre dimension
n:=dim(E) — dim(B). We assume that 7 is topologically K —oriented by the datum
of a Spin®—structure on 7?7 . Let 0 be a smooth K-orientation of 7 which refines
this topological K —orientation. Then we have the pushforward

7 K*(E) —> K*™(B)

(see [6, Definition 3.18]). The following theorem refines the identity (11) to the smooth
case.

Theorem 5.1 In K* " (B)[1/k] we have the identity
(29) VE@(R) = m(PF ) U WK (R)),  ¥Yx e K*(E)[1/k].

Proof We begin with a lemma.

Lemma 5.2 The equality (29) holds true after applying I or R. Moreover it holds
true if X = a(a) fora € QP*"1(E).

Proof The proof goes by straightforward calculations. |
We now consider the difference of the left- and right-hand sides of (29):

Ar(R) == WF @ (%) — 215" (0) UTK (R)) € K*(B)[1/K] .
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By Lemma 5.2 we know that Ro Ay =0and I oA, = 0. It follows that
Ax(R) € HP* "1 (B)/im(ch)[1/k] .

Moreover, since it vanishes on classes of the form X = a(«), it factors over a homo-
morphism
Ar: K*(E) — HP* "~ Y(B)/im(ch)[1/k] .

Lemma 5.3 Assume that p: F — B is a smoothly K —oriented zero bordism of the
smoothly K —oriented bundle 7: E — B, and that y € K!(F)[1/k]. Then we have

A7r(y|E) =0.

Proof We let 0, denote a smooth K —orientation of p with a product structure near
the boundary which restricts to a smooth K —orientation o of 7. We further choose a
smooth lift € K!(F). We let X := Y| and x := I(X) = y|g. Then we calculate
using the bordism formula [6, Proposition 5.18]

Ar(x) = UK (7 () — 215" (0) U TF (%))
o (a( / R(op) A R(?))) —a( / R(0p) A R (0p)) A R(@k(f)))
F/B F/B

—a (q;g ( / R(0p) A R()?)) - / WE (R(0p)) A lIfé‘z(R(f)))
F/B F/B

Lemma 5.4 The homomorphism A, only depends on the underlying topological
K —orientation of the bundle n: E — B.

Proof Let og and 0; be two smooth K —orientations with the same underlying topo-
logical K —orientations which gives rise to Ay o and Ay ;. Then we choose a smooth
K —orientation 0, on p:=mwoprg: F:=[0,1]x E — B which restricts to 0; on the
endpoints of the interval. We apply Lemma 5.3 to the class y = pr;x in order to see
that Ay o(x) = Aq1(x). O

The homomorphism A has the following naturality property. Let
E’ 4. E
AP
BB

be cartesian with a compact manifold B’ and the topological K —orientation of 7" be
induced by that of .
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Lemma 5.5 Wehave Ay oG*=g*o A .

Proof This follows from the naturality of Uk, G* K (0x) = p*(05/) (Lemma 4.9)
and w0 G* = g* o (see [6, Lemma 3.20]). O

The following proposition is the nontrivial heart of the proof of Theorem 5.1.
Proposition 5.6 If dim(E)=n=2m—1 and B = *, then A; = 0.

Proof Let E be a closed Spin®-—manifold of dimension 2m — 1 together with a class
x € K°(E) which we view as a homotopy class of maps E — Zx BU . The pair (E, x)
represents a Spin€—bordism class [E, x] € SZSpm " (Z x BU). The integral cohomology
of Z x BU is concentrated in even degrees, and the odd part of QSP‘“ is a torsion 2—
group. Using the Atiyah—Hirzebruch spectral sequence we see that QSP“‘ (Z x BU)
is a torsion 2—group. Hence there exists / € N of the form / =2 such that I[E,x]=0.
Thus there exists a 2m—dimensional Spin°—manifold W with boundary 0W =~ [E
together with an extension y: W — Z x BU of the map 0W — Z x BU induced
by x. More precisely, the boundary of dW decomposes as dW = |_|f=1 d; W, and we
can choose identifications of Spin®—manifolds w;: E = 9; W such that x = y o w;
foralli =1,...,/. We choose a Z/27Z—graded vector bundle Y — W such that its
K —theory class satisfies [Y'] = y. We further define X := w{Y such that [X] = x.
After stabilisation of Y, if necessary, we can assume that there are isomorphisms

w)Y = X forall i =1,...,1. These choices constitute a Spm —7./ | Z.—manifold W
in the sense of [12] and [13] together with a Z//7Z-bundle Y over W.

We consider R 2 C. Let £ be a primitive /—th root of unity. We fix r > 0 so small
that the discs B(£?,r) are pairwise disjoint. We let R2 ;= R2 \ Ul —oint B(L,r).
In order to define the structure of a Z//Z-manifold R2 we fix the identifications
vi: ST > 9;R? = OB(E',r) as v;(u) = £ 4+ urg’. Let R? be the quotient of R?2
obtained by identifying the boundary components with S! using the maps v; .

As shown in [12] we have K° (R?)2=7Z/1Z. Let us describe this isomorphism explicitly.
We choose R > 4 and consider the decomposition R? 2 (R? \ int B(0, R)) U S(0,R)
B(0, R)NR2. We define line bundles L,, on R? using a clutching function S(0, R) =
S — U(1) of degree m. In greater detail, we define L,, := ((R?\ int B(0, R)) x
C U B(0, R) NR? x C)/~, where the gluing is given by (u/,z) ~ (u, (u/R)"z) if
u' € S(0, R)N(R?\int B(0, R)), u € S(0, R)N (B(0, R)NR?), u = u’ as points in
R2=C.

If m is divisible by /, then the clutching function extends to B(0, R)NR? and therefore
defines the trivial line bundle. The element [m] € Z/[Z =~ K°(R?) is represented by

Geometry & Topology, Volume 14 (2010)



Adams operations in smooth K —theory 2373

Ly, — Lo. With this description it is easy to see how the Adams operation Wk acts
on K°(R?). Indeed, WK ([L,, — Lo]) = [L%, — LK] = [Ly,n, — Lo]. Note that by Bott
periodicity K272 (R?) == Z /17, too. Therefore on K22 (R?) == Z/I7Z the action
of the Adams operation vk is given by multiplication by k¢ .

We now recall the definition of the topological Z/[!Z—index given by [13].

We choose collars ¢;: [0,1) x £ — W. Then we define the map of Z/!Z-manifolds
p: W — R? as follows. On the i —th collar we require that

[0,1]x E —2~ 3y

lprl lbf
Yi

[0, 1] R2

commutes, where y;: [0, 1]— R? is given by y;(¢) := (1—1)(1—r)&’ . The complement
of the union of collars is mapped to the origin 0 € R2.

Let furthermore i: W — V be an embedding of the manifold W into a real vector
space V. Then we consider the embedding of Z //7Z-manifolds i x p: W — V xR2,
We can choose a 7./ 1Z—normal bundle N — W and extend the embedding to an open
embedding I: N >V xR2 Welet N - W be the quotient obtained by identifying
the boundary components to one. We get an induced map I: N — V xR2. The bundle
N — W has an induced Spin®—structure and therefore has a Thom isomorphism
Thom ;. The topological index indtZ/ Z. KO(W)—> 17 /17 is given by

(30) lndZ/lZ K*(W) K*+d1m(N)(N)

excision K*+d1m(N)(V % RZ) K* dim(W) (RZ)
We now choose a smooth K —orientation og of the K—oriented map w: E — * and a
geometry X on X. We extend this orientation to an orientation oy of the W — x.
Similarly we extend the geometry X to a geometry Y of Y. In this way we get
geometric manifolds W and & such that 0WW = [E€ (see [5, Definition 2.1.30]). We let
€ ® X denote the geometric manifold obtained from £ by twisting the Dirac bundle
of £ with X. Since ind(£ ® X) = 0 (eg since /(£ ® X) is zero bordant) we can choose
a taming (£ ® X);. It gives a boundary taming (W ® Y)p,. The class

ind?/"2(DOW ®Y)) := [indW @ Y)p,] € Z/ I Z

is the analytic Z/[Z—-index. We refer to [5, Definitions 2.1.44, 2.1.47] for the definition
of a taming or boundary taming and the corresponding index theory.
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The index theorem of [12; 13] states that
(31) indZ/"Z(D(W ®Y)) = ind?/ 2 (3)

where ¥ € KO(W) is represented by the map 7 VI_/_—> Zx BU induced by y, and on the
right-hand side we use the identification K*~2"(R?) = Z /17 given above. We apply
the APS—index theorem for boundary tamed manifolds [5, Theorem 2.2.18] and get

(32) indW®Y)p =QWRY)—In((€E ®X),) ,

where the first term is the usual local contribution and the second term is the boundary
correction.

We now choose a finite formal sum Q:=)_, aqQq of geometric bundles Qq — W with
coefficients aq € Z[1/k] which represents o~ (0g) € I?O(W)[l / k]. This is possible;
see eg [19]). More precisely, if Q4 denotes the geometric family induced by Qy,
then we assume that ), aq[Qq, 0] = % (o). In the following we will suppress this
sum decomposition. The pullback R := ¢} Q represents oK (oE) € KO (E). Indeed
we can choose the geometry of Q s\ych thatvwe have isomorphisms ¢fQ = ¢} Q.
In this way we get a Z//Z-bundle Q over W . Its underlying topological Z/!7Z—
bundle represents pX(N). From the construction of the topological index (30) and the
calculation of the action of the Adams operation on K2—2m (R?) given above (note
that indtZ/ Iz (y) € K 2=2m(R2)) we have the following identities:

Wk ind?/ 1% (3) = ind?/ "2 (pF (N) U ),
Wk ind?/ 12 (5) = k™ ind?/ 2 (3) .
We let [X] € KO (E) denote the smooth K—theory class induced by the geometric

bundle X. The following calculation uses the explicit cycle level description of the
pushforward in smooth K —theory [6, (17)] and the relations [6, Definition 2.10]. We get

Ax (x) = U5 (X)) — 21 (p* (o) U[X])
=TUH([E®X,0) - [E®XQR,0))
= Uk (2. n((E ® X)) —[2. n((E ® X ®R),)]
=a(k"n((E®X);) —n(E®XQR);)) .
In R/Z we have by (32) the identity
[K"n((€ ®X)) —n(E® X®R)/)Ir/z
=[k"I'TQWRY)-IT'QWeY® Q)lr/z
+ 17 indZ/ "2 (DWW R Y ® Q) — k™ indZ/ "2 (D(W ® Y)) ,

Geometry & Topology, Volume 14 (2010)



Adams operations in smooth K —theory 2375

where we interpret Z /7 C R/Z via multiplication by /~!. We now observe that
K"QOWRY)=QWRYRQ)
and that in R/Z[1/ k] we have by (31) the identity

™1~ indZ/'Z(DOW @ Y)) — 7' indZ/ "2 (DIW @ Y ® Q)R /z[1 /4]
= [I7 k™ indZ/ "2 () — 17" indZ/ P2 (o5 (N) U DR 211 /4]
=0.

This implies that in R/Z[1/ k] we have
[K"n((E ®@X)) —n(E®@XQR))Ir/z[1/k] =0

and hence A, (x) =0. a

Lemma 5.7 Let n := dim(E) —dim(B) be even and x € K°(E). Then

A (x)=0e€ HP™""1(B)/im(ch)[1/k] .

Proof For x € K°(E) we have
Ax(x) € HP7""'(B)/im(ch)[1/k] € K5/ (B)[1/k] = KR/Z ™"~ (B)[1/ k]

(see [7, Theorem 5.5] for the last isomorphism). We use the universal coefficient
formula [21]

KR/Z7"1(B)[1/k] = Hom(K_,—1 (B). R/Z)[1/k] .
In order to show that A, (x) = 0 it therefore suffices to show that
(u, Ax(x)) =0€R/Z[1/k]

for all K-homology classes u € K_,_1(B). We now use the geometric picture
of K-homology [3; 4]. Given u € K_,_1(B) there exists a k—dimensional Spin®—
manifold Z (where k is odd) together with amap f: Z — B such that u = b7 f,([Z]).
Here [Z] € K. (Z) is the K-homology orientation of Z given by the Spin—structure
and j ;= (—n—1—4k)/2. Let g: M — * be the projection. Then we have for
ze€ KR/Z™""1(B)

(u,z) =qi(b™’ f*2) e KR/Z° =R/ Z .
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We consider the following diagram:

g
W ——
D
Z

Ud<=|—D1

g
r
_ lq
N
*

We choose smooth K —orientations o4 and 0 on ¢ and 7 lifting the topological ones.
Furthermore we choose a smooth lift X of x. We equip p with the induced smooth
K —orientation o,. By Lemma 3.8 there exists a class Z € KO (Z)[1/k] such that
QK @) =pr (0g)~!. Then we calculate using Proposition 5.6 at the marked equalities,
omitting the powers of the Bott element b/ in order to increase readability, and using
the projection formula [6, Proposition 4.5]

(U, A (x))
= q(f*Ax(x))
=G4 ( f*Ax (%))
= qg(gp (g*X)) (by Lemma 5.5)
=3 ((®) - p1(F* (0,) UTF (2)))
= 417" (0g) U ¥ (0g) ™' U TF (H(%))
—P1(p* P (0g) U p* P (0g) ' U ¥ (0p) U T¥ (R)))
= 317" (0g) UF* @) U WK (51(R)) — pr(p*B¥ (0g) U p* WF (2) U ¥ (0p) U TH (2)))
= 31(p" (0g) UK CU p1(2)) — 10 pr(p* ¥ (0) U p* (0p) U WK (p*2UR))
= VF@EUAR)) G0 i () UTK (p*2UR)
= UK R(p*2UR) —A(P* (0r) UTF (p*2UR))

!
=0. O

Lemma 5.8 Let n := dim(E) —dim(B) be odd and x € K~ (E). Then

Az (x)=0eHP " Y(B)/im(ch)[1/k].

Proof We consider the bundle ¢ = w oprg: S! x E — B with even-dimensional
fibres and the class y = e xx € K°(S! x E), where e € K!(S!) = Z is the generator.
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We choose smooth lifts € and X of e and x. Furthermore we choose a smooth K—
orientation o) lifting the underlying topological K —orientation, and we let o, be such
that [ = prg ;. Then we have pr (e x X) =X, Uk(@)=¢,and pr"Eﬁk(oﬂ) = *(0q).

Applying Lemma 5.7 to Ag(e x x) we get

Ar(x) = WF (7 (X)) — 215" (0x) U TF ()
= UF @@ x %) —qi(pri ¥ (0x) UE U pry Uk (%))
= Ag(e xx)

=0.

Lemma 5.9 Letn :=dim(E)—dim(B) be even and x € K~!(E). Then

Ar(x) =0 HP ™" 1(B)/im(ch)[1/k] .
Proof We consider the diagram

pr
SIxE——=E

q:=idxnl jn
Prp

S!'xB—=B.

We claim that e X pryAy(x) =ex Ay(prgx) .

Indeed, after choosing smooth orientations and smooth lifts we calculate using ,5" (0g) =
pr*Eﬁk(op) (Lemma 4.9), WK(@) = &, the equality & x U(y) = WX(& x 7), and
qi1(e x y) = e x m(p) (a special case of the projection formula [6, Proposition 4.5])

e x Ag(prigx) = & x (WK (7 (R)) — 71(5" (0x) U TF(2)))
= UK @ x #(%)) — 1@ x (7" (o) U T*(2)))
= UK (G2 x %)) — §u(p" (0g) U TF (@ x %))
= Ay(e xx)
=0,

where the last equality holds by Lemma 5.7.

Lemma 5.10 Let n := dim(E) —dim(B) be odd and x € K°(E). Then

A (x)=0e€ HP™""Y(B)/im(ch)[1/k] .
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Proof Let ¢ := moprg: S! x E — B. This bundle has even-dimensional fibres.
We calculate (again after choosing smooth lifts X and € of x and e and smooth
K —orientations oy, oy, refining the underlying topological ones)

Ar(x) = UK (7 (%)) — 21(5" (0x) U TF ()
= UFG@Ex %)) — 1@ x p* (o) U VK (R))
= @@ x %) —q1(p" (09 UTF @ x R))
=A4(exx)=0. a

The collection of the Lemmas 5.7, 5.8, 5.9 and 5.10 gives Theorem 5.1. a

6 Applications

Let m: E — B be a proper submersion over a compact base with fibre-dimension 7
together with a stable framing of 7'V . In this situation we have the canonical smooth
K —orientation o, and the class e(x) := m(1) € K (B); see [6, 5.11]. This class is
actually flat and therefore belongs to I?ﬂ_a’t’ (B) = KR/Z™"~1(B). It is an invariant of
the bordism class of bundles with stably framed vertical bundles.

Theorem 6.1 The e—invariant satisfies
(U* —De(r)=0e KR/Z™"Y(B)[1/k].
Proof Since p¥(0;) = 1 by Proposition 4.10 using Theorem 5.1 we get
We(r) = TE(@(1) = (" (0x)) = (D) = () - o

In the special case that B = % and n =2m — 1 is odd, e(7) € KR/Z™" ' =R/Z is
the e—invariant of Adams of the framed bordism class [E] € QI represented by E,
or equivalently of the element in the stable stem n;f >~ Qff corresponding to [E] via
the Pontrjagin—Thom construction. Originally, the e—invariant has been introduced in
order to detect elements in the image of the j—homomorphism j: w41 (BO) — nf .
The order of the image of j —homomorphism is known (see [1] and the other papers in

that series) and conforms with the following special case of Theorem 6.1.

Corollary 6.2 If 7: E — x is the projection from a compact stably framed manifold
to the point and dim(E) = 2m — 1, then for every k € {—1} UN there exists L € N
such that

KE(k™ —1)e(m) =0.

Proof Indeed 0 = (UK — 1)e(r) = (k™ — 1)e(r) € R/Z[1/k]. 0
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The determination of the order of the image of the j —homomorphism in the work of
Adams also uses Adams operations, namely in order to characterise the kernel of ;.
The proof of the upper bound of the order of the e—invariant Corollary 6.2 employs
the Adams operations in different manner.

Let us now discuss some application to higher p—invariants. Let w: E — B be a proper
submersion over a compact base B which is K —oriented by a Spin—structure on the
vertical bundle TVs. We fix a base point of E, choose a character x: w1 (E, x) —
7/kZ, and we let H := (H, h™, VH) be the corresponding geometric line bundle.
It represents a class [H] € KO (E). Since H¥ is trivial we have the relation [H]F = 1
in K° (E). We choose a smooth K —orientation 0, which refines the topological one.
The higher p—invariant is then defined by

p(x) == m(H]) -7 (1) .
Note that R(p(x)) =0 so that p(x) € K (B) = KR/Z""1(B), and it is independent
of the choice of o, . Therefore p() is a differential-topological invariant of the K-
oriented bundle 7.

Proposition 6.3 We have the relation @k(p(x)) =0e KR/Z"1(B)[1/k].

Proof We calculate

W (@ (1) — P (@ (H]) = 71(7° (0x)) — 21" (0x) L V¥ ([H])
=0e KR/Z"1(B)[1/k]

since Wk (H]) = [H]* = 1 by Proposition 3.6. |
If M is apoint and dim(E) =2m—1, then p(x) € KR/Z 2™ (%) =R /Z . Furthermore
K (p(x) = k™ p(x).-

Corollary 6.4 There exists L € N such that

kKXp(x) =0eR/Z .

This can also be verified independently from the present formalism as we will indicate
now. We consider the Spin®-bordism group Qipinc (BZ/kZ) of the classifying space
BZ7./kZ of the group Z/kZ. . The character x determines a map by: E — BZ/kZ.

The pair (E, by) of a closed Spin®-manifold and a map to BZ/kZ represents a class
[E,bx] € Q5P (BZ/kZ). The element p([E,by]) := p(x) € R/Z only depends

m
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on the class [E, bx] and vanishes if by is homotopic to the constant map. In this way
we define a homomorphism

p: QN (BZ/kZ) - R/Z,

where Q3PN (BZ/k1Z) C Q3P (BZ/kZ) denotes the reduced Spin®—bordism group
of BZ/kZ (see [2] for a related construction). Note that Hy(BZ/kZ;Z[1/k]) =~
H,(x; Z[1/ k]). This implies that

QP (BZ/kZ)[1/k] =0

via the Atiyah—Hirzebruch spectral sequence for Qipi“c (BZ/k1Z), and therefore gives
Corollary 6.4.
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