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Circle homeomorphisms and shears

DRAGOMIR ŠARIĆ

We give parameterizations of homeomorphisms, quasisymmetric maps and symmetric
maps of the unit circle in terms of shear coordinates for the Farey tesselation.

1 Introduction

The space Homeo.S1/ of orientation preserving homeomorphisms of the unit circle S1

is a classical topological group which is of interest in various fields of mathematics; see
Ghys [11]. Its subgroup QS.S1/ of quasisymmetric maps of S1 plays a fundamental
role in the Teichmüller theory of Riemann surfaces; see Ahlfors [2], Bers [3] and
Gardiner and Lakic [9]. In fact, the universal Teichmüller space consists of all qua-
sisymmetric maps which fix three distinguished points on S1 namely it is isomorphic
to Möb.S1/nQS.S1/, where Möb.S1/ is the group of (orientation preserving) Möbius
maps which preserve S1 [3]. The subgroup Sym.S1/ of symmetric maps plays a
prominent role in studying Teichmüller spaces of real dynamical systems; see Gardiner
and Sullivan [10], Earle, Gardiner and Lakic [6] and Gardiner and Jiang [8].

The main results in this article are explicit parametrizations of the three spaces
Möb.S1/nHomeo.S1/, Möb.S1/nQS.S1/ and Möb.S1/nSym.S1/ in terms of shear
coordinates for the Farey tesselation of the hyperbolic plane H. To our best knowledge
these are the only known explicit parametrizations of the above spaces. The unit
circle S1 is the boundary at infinity of H.

The shear of a pair .�;�1/ of ideal hyperbolic triangles � and �1 in H with disjoint
interiors and a common boundary side e is the signed hyperbolic distance between the
orthogonal projections of the third vertices of � and �1 onto e (see Thurston [17],
Bonahon [4], Penner [14] or Section 3). The Farey tesselation F is a locally finite
ideal geodesic triangulation of H which is preserved by the hyperbolic reflections in
geodesics of F (see, for example, Penner [15]). Note that the shear of each pair of
adjacent complementary triangles of F is zero. The set of geodesics of F is naturally
partitioned into Farey generations (see [15] or Section 3).
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A homeomorphism hW S1! S1 induces a real-valued function shW F ! R, called
shear function, whose domain is the Farey tesselation F . Each geodesic e 2 F
is the common boundary side of a pair .�;�1/ of complementary triangles of F .
We define sh.e/ to be the shear of the image pair .h.�/; h.�1//. Characterizing
shear functions sW F ! R that arise from homeomorphisms and characterizing shear
functions that arise from quasisymmetric maps of S1 were fairly known problems.
We find both characterizations. (For a punctured surfaces S 0 , the Teichmüller space
T .S 0/ is parameterized using shears on locally finite tesselations by Thurston [17] and
Penner [14]; in the case of a closed surfaces S , Thurston [16] and Bonahon [4] gave a
parameterization of T .S/ using shears on locally infinite tesselations.)

A fan of geodesics in F with tip p 2 S1 consists of all geodesics of F which have
one endpoint p . Each fan in F has a natural ordering as follows. Fix a horocycle C

with center at p whose orientation is such that the corresponding horoball is to the left
of C . If e; e0 are two geodesics with common endpoint p , then we define e < e0 if
the point e\C comes before the point e0\C on C , otherwise e0 < e . The natural
ordering on a fan induces a bijective correspondence of the geodesics of the fan with
the integers Z, and any two such correspondences differ by a translation in Z. For
each fan in F we fix one such correspondence.

Theorem A A shear function sW F ! R is induced by a quasisymmetric map of S1

if and only if there exists M � 1 such that for each fan of geodesics fengn2Z in F and
for all m; k 2 Z, we have

1

M
� esm

1C esmC1 C � � �C esmC1C���CsmCk

1C e�sm�1 C � � �C e�sm�1�����sm�k
�M;

where sn D s.en/.

Moreover, sW F ! R is induced by a symmetric map of S1 if and only if

esm
1C esmC1 C � � �C esmC1C���CsmCk

1C e�sm�1 C � � �C e�sm�1�����sm�k
� 1

as the Farey generations of em�k and emCk go to infinity.

For a fan fengn2Z in F with tip p , we define

s.pIm; k/D esm
1C esmC1 C � � �C esmC1C���CsmCk

1C e�sm�1 C � � �C e�sm�1�����sm�k

for m; k 2Z. Let C be a horoball with center at h.p/ where h is a quasisymmetric map
which induces s . If k � 0, then s.pIm; k/ is the ratio of the length of the horocyclic
arc on C between h.emCkC1/\C and h.em/\C to the length of the horocyclic arc
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on C between h.em�k�1/\C and h.em/\C . If k < 0, then s.pIm; k/ is the ratio
of the length of the horocyclic arc on C between h.emCk�1/\C and h.em/\C to
the length of the horocyclic arc on C between h.em�kC1/\C and h.em/\C . Define

Ms.p/D sup
m;k2Z

s.pIm; k/:

If Ms.p/ <1 then we say that s satisfies Ms.p/–condition at the fan with tip p .
Theorem A states that a shear map sW F ! R induces a quasisymmetric map of S1 if
and only if

(1) Ms D sup
p

Ms.p/ <1

where the supremum is over all fans of F . The Ms.p/–condition is localized in a
fan of geodesics with tip p and the only additional information is that single Ms D

supp Ms.p/ works for all fans simultaneously. In particular, the characterization of
quasisymmetry does not require any information about the relationship between shears
on geodesics of F not belonging to the same fan.

We now give an interpretation of the Teichmüller topology of the universal Teichmüller
space Möb.S1/nQS.S1/ within the framework of Theorem A. Theorem A parametrizes
Möb.S1/nQS.S1/ by the space X of all shear functions sW F ! R which satisfy (1).
We use the quantity s.pIm; k/ to introduce a topology on X such that the parametriza-
tion of Möb.S1/nQS.S1/ by X is a homeomorphism. For s1; s2 2 X define

Ms1;s2
.p/D sup

m;k2Z

�
max

ns1.pIm; k/

s2.pIm; k/
;
s2.pIm; k/

s1.pIm; k/

o�
:

Theorem B Let hn; h 2Möb.S1/nQS.S1/. Then hn! h as n!1 in the Teich-
müller topology if and only if Ms;sn

D supp Ms;sn
.p/! 1 as n!1.

Remark Kahn and Markovic [12] estimated, in terms of shears, the Teichmüller and
Weil–Petersson distances between two finite punctured Riemann surfaces, and their
estimate is independent of the topological complexity of the surfaces. Theorem B
describes the Teichmüller topology on the universal Teichmüller space in terms of
shears.

Characterization of homeomorphisms involves more information than the parametriza-
tion of quasisymmetric homeomorphisms given by Theorem A. A chain of geodesics
in F is a sequence fengn2N of distinct, adjacent geodesics of F .
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Theorem C A shear function sW F ! R is induced by a homeomorphism of S1 if
and only if for each chain fengn2N in F we have

1X
nD1

esn
1
Csn

2
C���Csn

n D1

where sn
i D ˙s.ei/. More precisely if en < enC1 then sn

n D s.en/; otherwise sn
n D

�s.en/. For n> 1 and i < n, sn
i D s.ei/ if either ei < eiC1 and the number of times

we change fans from ei to enC1 is even, or ei > eiC1 and the number of times we
change fans is odd; otherwise sn

i D�s.ei/.

A locally finite ideal triangulation of H with a distinguished oriented geodesic (edge) is
called a tesselation. The space of all tesselations is isomorphic to the space Homeo.S1/

by assigning to a tesselation � a homeomorphism of S1 (called the characteristic
map) which maps the Farey tesselation F to the tesselation � of H such that the
distinguished oriented geodesic of F is mapped onto the distinguished oriented geodesic
of � (see Penner [15]). A decorated tesselation is a tesselation together with an arbitrary
assignment of a horocycle at each vertex of the tesselation (see [15]).

Let C1 and C2 be two horocycles with different centers and let g be the geodesic
whose endpoints are at the centers of C1 and C2 . Then the lambda length �.g/ of g

is defined by
�.g/D e�2ı.C1;C2/

where ı.C1;C2/ is the signed hyperbolic distance between G1 D g\C1 and G2 D

g\C2 . The sign of ı.C1;C2/ is positive if the geodesic arc between G1 and G2 is
outside C1 , otherwise the sign is negative. Two geodesics g and g1 form a wedge
in H if they have a common endpoint. Let C be a horocycle with center at the
common endpoint of the wedge formed by g and g1 . The horocyclic length ˛.g;g1/

of the wedge g;g1 is the length of the arc of C between g and g1 . A decorated
tesselation z� determines an assignment of lambda lengths to the geodesics of the
underlining tesselation � and an assignment of horocyclic lengths to the wedges of � .
This in turn defines an assignment of lambda lengths to the geodesics of the Farey
tesselation F by the pullback with the characteristic map as well as the assignment of
horocyclic lengths to the wedges of F (see Penner [15; 14]).

Two decorated tesselations z�1 and z�2 induce the same lambda lengths on F if and
only if z�1 is the image under an element of Möb.S1/ of z�2 . It is clear that not
every assignment of lambda lengths on the Farey tesselation F will give a decorated
tesselation such that the characteristic map extends to a homeomorphism of S1 . In fact
the underlying tesselation is not in general an ideal triangulation of H. Penner [15] posed
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the problem of determining which lambda lengths will give characteristic maps that are
homeomorphisms or quasisymmetric maps of S1 . Penner and Sullivan [15, Theorem
6.4] showed that if lambda lengths are “pinched”, namely if there is K � 1 such that
1=K � �.e/�K for all e 2F , then the characteristic map is quasisymmetric. We find
necessary and sufficient conditions on the lambda lengths such that the characteristic
maps are homeomorphisms, quasisymmetric or symmetric maps of S1 .

Theorem D A lambda length function �W F !RC induces a homeomorphism of S1

if and only if for each chain of geodesics fengn2N in F we have
1X

nD1

�
��1=2

n �
1=2
n�1
� � ��

.�1/n=2
1

�
˛n D1

where �i D �.ei/ and ˛n is the horocyclic length of the wedge bounded by en

and enC1 .

In the above theorem we used horocyclic length ˛n together with the lambda lengths.
We note that horocyclic lengths are expressed as rational functions of lambda lengths
(see Penner [14; 15, Section 6]). Indeed, if g1;g2;g3 are boundary geodesics of an
ideal hyperbolic triangle with decorations then, from [14], we have

˛.g1;g2/D
2�.g3/

�.g1/�.g2/
:

Thus the series in the above theorem is completely determined in terms of lambda
lengths.

The following theorem gives necessary and sufficient conditions on horocyclic lengths
such that the characteristic maps are quasisymmetric and symmetric. We note that it is
possible to express the same condition in terms of lambda lengths using the formula
above.

Theorem E A lambda length function �W F ! R induces a quasi-symmetric map
of S1 if and only if there exists K � 1 such that for each fan of geodesics fengn2Z
in F and for all m 2 Z and k 2 N we have

1

K
�
˛.em; emC1/C˛.emC1; emC2/C � � �C˛.emCk ; emCkC1/

˛.em; em�1/C˛.em�1; em�2/C � � �C˛.em�k ; em�k�1/
�K:

Moreover, �W F ! R induces a symmetric map of S1 if and only if

˛.em; emC1/C˛.emC1; emC2/C � � �C˛.emCk ; emCkC1/

˛.em; em�1/C˛.em�1; em�2/C � � �C˛.em�k ; em�k�1/
! 1

as the Farey generations of emCk and em�k go to infinity independently of the fan.
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2 Quasisymmetric maps and barycentric extension

In the rest of the paper the hyperbolic plane is identified with the upper half-plane model
H WD fz D xC iyj y > 0g endowed with the metric �.z/D jdzj=y . The boundary at
infinity @1HD yRD R[f1g is naturally identified with the unit circle S1 . Any two
identifications of yR and S1 differ by the postcomposition by a Möbius map of S1 .
We choose 0, 1 and 1 to be the three distinguished points on yR.

Let hW yR! yR be a homeomorphism that fixes 1 and let M � 1. Then hW yR! yR is
said to be M –quasisymmetric if

1

M
�

h.xC t/� h.x/

h.x/� h.x� t/
�M

for all x 2 R and t > 0 (see Ahlfors [2]).

The universal Teichmüller space T .H/ is the set of all quasisymmetric maps of yR that
fix 0, 1 and 1. A sequence hn 2 T .H/ converges to the basepoint id 2 T .H/ in
the Teichmüller topology if hn are Mn –quasisymmetric with Mn! 1 as n!1. A
sequence hn2T .H/ converges to h2T .H/ in the Teichmüller topology if hnıh

�1! id
as n!1 in the above sense.

A quasisymmetric map hW yR! yR extends to a quasiconformal map f W H!H, and
conversely a quasiconformal map f W H!H extends by continuity to a quasisymmetric
map hW yR! yR (see [2]). The extension of hW yR! yR to a quasiconformal map of H
is not unique. Douady and Earle [5] defined a particularly nice extension operator
from quasisymmetric maps of yR into quasiconformal maps of H called the barycentric
extension.

For a homeomorphism hW yR! yR, denote by ex.h/W H!H its barycentric extension
introduced in [5]. We recall several properties of ex.h/ that are obtained by Douady
and Earle [5]. The barycentric extension ex.h/ is a real-analytic diffeomorphism
of H which is quasiconformal if and only if h is quasisymmetric. Moreover, the
extension is conformally natural in the sense that ex.A ı h ıB/D A ı ex.h/ ıB for
all A;B 2 PSL2.R/ and for all homeomorphisms hW yR! yR. In addition, if hn! h

as n!1 pointwise on yR then ex.hn/! ex.h/ as n!1 in the C1–topology on
C1 maps of H. In particular, Beltrami coefficients �.ex.hn// of ex.hn/ converge
uniformly on compact subsets of H to the Beltrami coefficient �.ex.h// of ex.h/.
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Remark 2.1 For our purposes the barycentric extension serves quite well. Kahn and
Markovic [12] constructed another quasiconformal extension in the case when the
quasisymmetric maps are invariant under cofinite Fuchsian group in order to be able to
estimate the norm of the corresponding Beltrami coefficient.

The following lemma is obtained by Markovic [13] (see also Douady and Earle [5] and
Abikoff, Earle and Mitra [1]).

Lemma 2.2 Let hnW yR! yR be a sequence of homeomorphisms which fix 0, 1 and1,
and let �n be Beltrami coefficients of the barycentric extensions ex.hn/ of hn . If there
exists c0 � 1 such that

�� c0 � hn.�1/� �
1

c0

then there exists a neighborhood U of the imaginary unit i 2H and a constant 0< c< 1

such that
k�njU k1 � c < 1

for all n.

Proof We note that the angle distance with respect to i 2 H between all pairs of
consecutive points in f1;�1; 0; 1g� yR is bounded below by a constant less than � and
bounded above by � . Then [13, Lemma 3.6] directly implies the desired conclusion.

3 Farey tesselation and the shear map

Let �0 be ideal geodesic triangle in H with vertices 0, 1 and 1. Let � be the group
generated by hyperbolic reflections in the sides of �0 . The Farey tesselation F is an
ideal triangulation of H which is the � –orbit of the boundary sides of �0 . In other
words, each geodesic in F is obtained by applying finitely many inversions in boundary
geodesics of �0 to a boundary geodesic of �0 (see, for example, [15]). The set of
endpoints of the geodesics in F (vertices of F ) is yQDQ[f1g.

We define Farey generation of geodesics in F as follows. A boundary geodesic of �0

has Farey generation 0. If a geodesic of F is obtained by n reflections of a geodesic
of generation 0 (where n is the smallest such number) then its Farey generation is n.

Let .�1; �2/ be a pair of ideal geodesic triangles in H with disjoint interiors and a
common boundary side. Let A 2 PSL2.R/ be the unique Möbius map that sends �1

onto the triangle with vertices �1, 0 and 1, and that sends the common boundary
side of .�1; �2/ onto the geodesic with vertices 0 and 1. Then A.�2/ has vertices
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0, er and 1 for some r 2 R. The shear of the pair of triangles .�1; �2/ is by
definition equal to r . Alternatively, the shear of a pair .�1; �2/ of adjacent triangles
is the signed distance of the projections onto common boundary side e of vertices of
�1 and �2 opposite e , where e is oriented to the left as seen from �1 . Note that the
shear of .�1; �2/ is equal to the shear of .�2; �1/. For example, any two adjacent
triangles in the complement of the Farey tesselation F have shear 0.

Let hW yR! yR be a homeomorphism. Every geodesic of H has exactly two distinct
ideal endpoints on yR and, conversely every two points on yR determine a geodesic
in H. Thus, the space G of (oriented) geodesics in H is identified with the set of
pairs of distinct points in yR. Therefore, the homeomorphism hW yR! yR extends to
a homeomorphism hW G! G of the space of geodesics G . In particular, h.F/ is an
ideal triangulation of H whose complementary triangles are h.�.�0//.

Definition 3.1 Let hW yR! yR be a homeomorphism. A geodesic e 2 F is on the
boundary of exactly two complementary triangles �1; �2 . Then we assign to e 2 F
the shear of the pair .h.�1/; h.�2// of triangles in h.�.�0//. This determines a
function

shW F ! R
which is called the shear function of h.

If we are given a shear between two adjacent triangles and the position of one of
the triangles, the other triangle is uniquely determined. More generally, a pair of
adjacent triangles with an assigned shear is determined up to a Möbius map because
any ideal hyperbolic triangle can be mapped onto any other ideal hyperbolic triangle
by a Möbius map.

If hW yR! yR fixes 0, 1 and 1, then it is uniquely determined by the shear function
shW F ! R. Given a shear function sW F ! R there exists a unique injective (de-
veloping) map hs from the vertices yQ � yR of the Farey tesselation F into yR such
that hs fixes 0, 1 and 1. The map hs realizes the shear function s and it is called
characteristic map of s (see [15] or the next section for its definition).

4 Homeomorphisms and shears

We characterize shear functions sW F ! R whose characteristic maps continuously
extend to homeomorphisms of yR. An arbitrary function sW F!R induces a piecewise
Möbius cocycle map HsW H! H as follows. Recall that �0 is the ideal geodesic
triangle with vertices 0, 1 and 1, and define Hsj�0

D id. Consider any other comple-
mentary triangle � 2 �.�0/ of F . Let l be the geodesic arc connecting the center of
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�0 to the center of �. Let fe1; e2; : : : ; eng be geodesics of F which intersect l in the
given order such that e1 is a boundary side of �0 and en is a boundary side of �. We
orient ei to the left as seen from �0 . Then we set Hsj�DT

s.e1/
e1

ıT s.e2/
e2

ı � � � ıT s.en/
en

,
where T s.ei /

ei
is the hyperbolic translation with the oriented axis ei and the signed

translation length s.ei/. The map Hs is not well-defined on the edges F since each
edge e is on the boundary of exactly two complementary triangles �1

e and �2
e . We

choose Hsje to be either Hsj�1
e

or Hsj�2
e

. The cocycle map Hs preserves separation
properties of the triples of geodesics in F . Therefore, Hs extends to a monotone map
hsW
yQ! yR which is called characteristic map of sW F ! R (see Penner [15]).

Proposition 4.1 With the above notation, the characteristic map hsW
yQ! yR extends

by continuity to a homeomorphism of yR if and only if HsW H!H is surjective.

Proof Since hsW
yQ ! yR is order preserving on a dense subset yQ of yR � S1 , it

follows that if hs can be extended to a continuous map on yR then the extension is a
homeomorphism.

If HsW H!H is not onto, then there exists a maximal half-plane P not contained in
Hs.H/. It follows that the image hs.yQ/ does not intersect the interior of the interval
on yR which is the boundary at infinity of P . Therefore, the map hsW

yQ! yR cannot
be extended to a homeomorphism of yR.

Assume that HsW H! H is onto. Let x 2 yR n yQ. We need to show that hs extends
to x . Let Pi be a decreasing sequence of half-planes with boundary sides ei 2 F
that accumulate at x , namely

T
i Pi D x . Since Hs is order preserving on triples

of geodesics in F , it follows that Hs.Pi/ is a decreasing sequence of half-planes.
If
T

i Hs.Pi/ ¤ ∅ then Hs.H/ ¤ H, namely Hs.H/ \ .
T

i Hs.Pi// D ∅. ThusT
i Hs.Pi/ D ∅ and

T
i Hs.Pi/ is a single point y 2 yR. Then hs extends to x by

continuity such that hs.x/D y .

Proof of Theorem C Using the above proposition we determine which shear maps
induce homeomorphisms of yR. Assume that HsW H!H is not onto. Then there exists
a maximal half-plane P of H which is not in the image of Hs . Let l be the boundary
geodesic of the half-plane P . Then there exists a chain fengn2N of geodesics in F such
that Hs.en/! l as n!1. There are two possibilities for the sequence en . Either
all en ’s share a common endpoint x 2 yQ� yR for n� n0 namely the subchain en , for
n � n0 , is a part of a single fan, or en ’s accumulate to a point x 2 yR n yQ (which is
equivalent to saying that no infinite subsequence of en ’s shares a common endpoint ie
no tail of en ’s is a part of a single fan). In both cases the existence of the half-plane P

is equivalent to the statement that hs does not extend to a continuous map at x 2 yR.
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Assume that we are in the first case. By precomposition with an element of PSL2.Z/,
we can assume that x D1. In addition, we can assume that Hs fixes 0, 1 and 1 by
postcomposing with an element of PSL2.R/. Then l has one endpoint x D1 and
the other endpoint xy 2 R with either xy > 1 or xy < 0. If xy > 1, then

(2) xy D 1C

1X
nD1

es.e1/C���Cs.en/;

where ei 2 F is a geodesic with endpoints i and 1 for i 2 N. If xy < 0 then

(3) xy D�

�1X
nD0

e�s.e0/�����s.en/;

where ei 2 F is a geodesic with endpoints i and 1 for i 2 Z� [ f0g. Since ei ’s
belong to a single fan, the number of times we change fans from ei to enC1 is zero.
Thus sn

i D s.ei/ for i > 0 and sn
i D�s.ei/ for i � 0. Therefore, hs is continuous at

x 2 yR if and only if the series in (2) and the series in (3) diverge.

Assume now that we are in the second case. Namely, the chain fengn2N does not have
a subsequence which shares a common endpoint and en ’s accumulate at x 2 yR n yQ. In
other words, no tail of en ’s is in a single fan. The part of H bounded by en and enC1

is called a hyperbolic wedge.

Given a hyperbolic wedge, there is a unique foliation of the wedge by horocyclic arcs
which lie on horocycles with centers at the common endpoint of the two boundary
geodesics of the wedge. Consider the wedges whose boundaries are the adjacent
geodesics in the chain hs.en/ and foliate each wedge by horocyclic arcs as above. Fix a
point P1 2 hs.e1/ and denote by l.P1/ the leaf of the horocyclic foliation of the union
of wedges that starts at P1 . Let Wn be the hyperbolic wedge bounded by hs.en/ and
hs.enC1/. We choose P1 such that the length of l.P1/\W1 is es1

1 , where s1
1
D s.e1/

if e1 < e2 , otherwise s1
1
D�s.e1/ (see Figure 1).

Proposition 4.2 Under the above notation, the map hs continuously extends to x 2
yR n yQ if and only if the leaf l.P1/ is of infinite length.

Proof Note that hs extends by continuity to x 2 yR if and only if hs.en/ do not
accumulate in H.

Assume that hs extends continuously to x 2 yR. Then hs.en/ do not accumulate in H.
Therefore, the arc l.P1/ accumulates at @H and it is necessarily of infinite length.
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p1 p2
p3 p4

p5

p6

: : :

W1

W2

W3

W4

W5

hs.e1/

hs.e2/

hs.e3/
hs.e4/

hs.e5/

l.P1/

Figure 1: The leaf l.P1/ of the foliation of
S

n Wn by horocyclic arcs

It remains to show that if l.P1/ is of infinite length then hs extends to x 2 yR by
continuity. Assume on the contrary that hs does not extend to x 2 yR. This implies that
hs.en/ accumulate at a geodesic g �H. We need to show that l.P1/ has finite length.

Let a be the geodesic arc which connects hs.e1/ with g and that is orthogonal to both
hs.e1/ and g . All the geodesics of the sequence hs.en/ for n� 2 lie between hs.e1/

and g , and they intersect a. The angle of the intersection between hs.en/ and a is
necessarily bounded away from 0. We show that the length of l.P1/ is comparable to
the length of a which finishes the proof.

Consider a hyperbolic wedge Wn bounded with hs.en/ and hs.enC1/. Let anDa\Wn ,
and let P 0n D a \ hs.en/. Then P 0n and P 0

nC1
are the endpoints of an . Let Pn D

l.P1/\hs.en/ and let P 00n be the endpoint of the horocyclic arc in the wedge Wn whose
initial point is P 0n (see Figure 2). Let dn be the geodesic arc with endpoints Pn and P 0n ,
and let d 0n be the geodesic arc with endpoints P 0n and P 00n . Consider the hyperbolic
triangle with vertices P 0n , P 0

nC1
and P 00n . Since the angle at P 00n is bounded away from 0

(by the uniform bound on the length of each an ), it follows from the hyperbolic sine
formula that there exists C > 0 such that jd 0nj�C �janj, where jd 0nj; janj are the lengths
of d 0n; an , respectively. In addition, jdnC1j D jdnjC jP

00
n P 0

nC1
j � jdnjC jd

0
njC janj �

jdnjC .C C 1/janj follows by the definition of l.P1/.
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pn�1
pn

pnC1

p0
n�1

p0
nC1

p0n
p00n

l.P1/

hs.en�1/
hs.en/

hs.enC1/

Wn

Figure 2: The points Pn , P 0n and P 00n

The above two estimates show jdnj� jd1jC.CC1/
P

n2N janj� jd1jC.CC1/jaj<1.
This implies that l.P1/ stays a bounded distance from a. Thus the length of l.P1/\Wn

and the length an are comparable to a multiplicative constant. Therefore l.P1/ has
finite length which is a contradiction.

To find a necessary and sufficient condition on a shear function sW F!R such that hs

has continuous extension to x , we compute the length of the above leaf l.P1/ in terms
of the shear function sW F!R. Let ln be the length of the horocyclic arc l.P1/\Wn in
the wedge Wn between hs.en/ and hs.enC1/. If en , enC1 and enC2 share a common
endpoint, then an elementary hyperbolic geometry and the definition of Hs show that
the length of l.P1/\WnC1 in the wedge WnC1 bounded by Hs.enC1/ and Hs.enC2/

is lnes.enC1/ if enC1 < enC2 , and the length is lne�s.enC1/ if enC2 < enC1 . If en ,
enC1 and enC2 do not share a common endpoint, then the length of l.P1/\WnC1 in
the wedge WnC1 between Hs.enC1/ and Hs.enC2/ is l�1

n es.enC1/ if enC1 < enC2 ,
and the length is l�1

n e�s.enC1/ if enC1> enC2 . Recall that P1 2 hs.e1/ is chosen such
that l1 D es1

1 .

We show that
ln D esn

1
Csn

2
C���Csn

n

by induction which finishes the proof. Assume that

ln D esn
1
Csn

2
C���Csn

n
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and we need to show that

lnC1 D es
nC1
1
Cs

nC1
2
C���Cs

nC1
nC1 :

We consider four possibilities and argue each separately. Assume first that en , enC1

and enC2 share a common endpoint and that enC1 < enC2 . Then

lnC1 D lnes.enC1/ D esn
1
C���Csn

nCs
nC1
nC1 :

Since there is no additional change of fans from enC1 to enC2 , we have sn
i D snC1

i

for i D 1; 2; : : : ; n. This proves the formula in this case. The second case is when en ,
enC1 and enC2 share a common endpoint and enC2 < enC1 . Then we have

lnC1 D lne�s.enC1/ D lnes
nC1
nC1

by the definition of snC1
nC1

. The desired formula follows as in the previous case. In the
third case we assume that en , enC1 and enC2 do not share a common endpoint and
that enC1 < enC2 . Then

lnC1 D l�1
n es.enC1/ D e�sn

1
�����sn

nCs
nC1
nC1 :

Since we have one additional change of fan from enC1 to enC2 , we get that snC1
i D�sn

i

for i D 1; 2; : : : ; n. This proves the formula in the third case. Finally, we assume that
en , enC1 and enC2 do not share a common endpoint and that enC2 < enC1 . Then

lnC1 D l�1
n e�s.enC1/ D e�sn

1
�����sn

nCs
nC1
nC1 :

As in the previous case this gives the desired formula. Therefore the series
1X

nD1

esn
1
C���Csn

n

is the length of l.P1/ and the proof of Theorem C is completed.

5 Quasisymmetric maps and shears

In this section we characterize shear maps which give rise to quasisymmetric maps
of yR. This is the main result of the paper and, to our best knowledge, it gives the only
known parametrization of the universal Teichmüller space T .H/.

Proof of the first part of Theorem A We prove that the first condition in the theorem
is necessary for sW F ! R to be a shear map of a quasisymmetric map hW yR! yR.

Consider a fan of F with tip p 2 yQ. Let A 2 PSL2.Z/ be such that A.p/ D 1.
Let B 2 PSL2.R/ be such that B.h.p// D1. Then B ı h ıA�1 fixes 1 and the
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corresponding shear function is s ıA�1 . Moreover, if h is M1 –quasisymmetric then
B ıh ıA�1 is M –quasisymmetric, where M is a function of M1 and is independent
of A and B . Therefore, we can study properties of a shear function on a single fan
of F with tip p by studying properties on the fan of F with tip 1.

Consider an M –quasisymmetric map h of yR which fixes 1 and let sW F!R be the
induced shear function. Then h satisfies

(4)
1

M
�

h.nC k/� h.n/

h.n/� h.n� k/
�M

for all n; k 2 Z with k ¤ 0. This is the M –quasisymmetric condition taken at special
symmetric triples in Z� R. We can further normalize h by postcomposing with an
affine map such that it fixes n, nC 1 and 1. The values at Z of such a normalized h

are uniquely determined by shears on the fan of F with tip 1 by the definition of the
characteristic map.

Let en be the geodesic with endpoints n and1, and let snD s.en/ for the convenience
of notation. The condition (4) is equivalent to

(5)
1

M
�

1C esnC1 C � � �C esnC1CsnC2C���CsnCk�1

e�sn C e�sn�sn�1 C � � �C e�sn�sn�1�����sn�kC1
�M:

The condition (5) is equivalent to the first condition in Theorem A and this establishes
the necessity of the first condition in Theorem A.

We assume that a shear function sW F ! R satisfies property (5) at each fan of F and
show that characteristic map hsW

yQ! yR extends to a quasisymmetric map of yR.

We first show that hsW
yQ! yR extends to a homeomorphism of yR. Since hs is a strictly

monotone map of yQ into yR, it is enough to show that hs.yQ/ is dense in yR. Assume
on the contrary that yR n hs.yQ/ contains an interval I . Assume that I is a maximal
such interval and let l be the geodesic in H with endpoints equal to the endpoints of I .
There are two possibilities to consider. Either hs.yQ/ contains exactly one endpoint
of I or both endpoints of I do not lie in hs.yQ/.

In the former case, the interval I has an endpoint hs.p/ for some p 2 yQ. This implies
that the image of the fan at p under hs accumulates to the geodesic l 2H. Let C be
a horocycle based at p . Fix a single geodesic in the fan at hs.p/. Then the sum of
lengths of consecutive arcs of C cut out by the geodesics in the fan at hs.p/ which
accumulate to l starting from the fixed geodesic in the fan is finite. This implies that
there exists a sequence of 2n consecutive arcs on C such that the ratio of the length of
left n consecutive arcs to the length of the right n consecutive arcs is converging to 1.
Consequently, the condition (5) fails at the fan with tip p which is a contradiction.
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In the later case, there is a sequence en 2 F such that hs.en/ converges to l and that
no hs.en/ shares an endpoint with l . Moreover, we can assume that fengn2N is a chain
of geodesics in F . We exhibit a sequence of pairs of adjacent triangles in h.F/ with
shears converging to 0 or to 1 which again contradicts condition (5). Let en0

be such
that hs.en0

/ is close to l . Then en0C1 shares an endpoint with en0
. Let en0Ck be the

geodesic in the chain fengn2N with largest index which shares an endpoint with en0
.

Then en0CkC1 does not share an endpoint with en0Ck�1 (see Figure 3). We consider
the two adjacent triangles in the complement of F with common boundary edge
en0Ck . The image of the two triangles under hs has sides hs.en0Ck�1/, hs.en0Ck/

and hs.en0CkC1/ close to the geodesic l . This implies that the other two sides are
small in the Euclidean sense. Thus the shear is very large or very small which is a
contradiction with condition (5). We proved that hs extends to a homeomorphism
of yR.

hs.en0
/

hs.en0C1/

hs.en0CkC1/

hs.en0Ck/

l

: : :

: : :

Figure 3: The accumulation to l

It remains to show that hsW yR! yR is a quasisymmetric map. Let Fs D ex.hs/ be
the barycentric extension of hs (see Douady and Earle [5] for the definition). Then
FsW H!H is a real analytic diffeomorphism of H. The map hs is quasisymmetric
if and only if Fs is quasiconformal. Let �Fs

D x@Fs=@Fs be the Beltrami coefficient
of Fs .

Assume on the contrary that Fs is not quasiconformal. Then there exists a sequence
zn 2H such that j�Fs

.zn/j! 1 as n!1. Since Fs is a real analytic diffeomorphism
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(see [5]), it follows that zn leaves every compact subset of H. There are two possibilities
for zn . Either there exist a horoball D with center at 1 and a subsequence znk

of zn

such that znk
lies outside the PSL2.Z/ orbit of D , or sequence zn enters the PSL2.Z/

orbit of every horoball with center at 1.

Suppose that we are in the former case. For simplicity, denote the subsequence
znk

by zn again. Let �n be triangle in the complement of F which contains zn .
Let An 2 PSL2.Z/ be such that An.�n/ D �0 . Let Bn 2 PSL2.R/ be such that
Bn ı hs ı A�1

n fixes 0, 1 and 1. By the conformal naturality of the barycentric
extension, we have that

ex.Bn ı hs ıA�1
n /D Bn ıFs ıA�1

n D Fn:

Let z0n DAn.zn/ 2�0 . Then z0n belongs to a compact subset of H and j�Fn
.z0n/j D

j�Fs
.zn/j. Condition (5) implies that individual shears are bounded by 1=M from

below and by M from above. This implies that the sequence of shear maps s ıA�1
n

corresponding to homeomorphisms Bn ı hs ıA�1
n has a convergent subsequence in

the sense that for each edge e 2F the sequence of real numbers s ıA�1
nk
.e/ converges

as k!1. The limiting map s1W F ! R satisfies property (5) in each fan with the
constant M because each s ıA�1

n does. By the normalization of Bn ı hs ıA�1
n , we

get that Bnk
ı hs ıA�1

nk
pointwise converges to a homeomorphism hs1 of yR with

shear map s1 . By the continuity of the barycentric extension, we get that j�Fnk
j

converges to j�ex.hs1 /
j uniformly on compact subsets of H. This implies that for a

compact subset K of H there exists a< 1 such that j�Fnk
j � a on K . On the other

hand, we have that j�Fnk
.znk

/j ! 1 as k!1 which gives a contradiction.

Suppose that we are in the later case. Namely, j�Fs
.zn/j ! 1 as n!1 with zn

entering the PSL2.Z/ orbit of every horoball based at 1. Let �n be a complementary
triangle of F which contains zn . Let An 2 PSL2.Z/ be such that An.�n/D�0 and
that An.zn/D z0n!1 as n!1. Let Bn2PSL2.R/ be such that Bn ı hs ıA�1

n Dhn

fixes 0, 1 and 1. Then hn satisfies property (5) with the same constant M as does h.
By the conformal naturality of the barycentric extension, j�Fs

.zn/jD j�ex.hn/.z
0
n/j!1

as n!1. Let �n D Im.z0n/ and let �0n be such that yhn.x/D .1=�
0
n/hn.�nx/ fixes 1.

It is clear that yhn fixes 0 and 1 as well. Let wn D .1=�n/z
0
n . Then wn ! i and

j�ex.yhn/.wn/j D j�ex.hn/.z
0
n/j D j�Fs

.zn/j ! 1 as n!1. We need the following
lemma in order to finish the proof.

Lemma 5.1 Under the above normalization, there exists a constant c0 > 1 such that
1=c0 � �

yhn.�1/� c0 .

Proof Let kn 2 N be such that kn � �n � knC 1. Then hn.kn/ � hn.�n/ D �
0
n �

hn.knC 1/. By property (5), we have that hn.knC 1/� hn.kn/ �M hn.kn/. This
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implies that

(6) hn.knC 1/� .M C 1/hn.kn/� .M C 1/�0n:

By applying property (5) to hn at points �.kn C 1/, 0 and kn C 1, we get that
.1=M /hn.kn C 1/ � �hn.�kn � 1/ � M hn.kn C 1/. Similarly, .1=M /hn.kn/ �

�hn.�kn/�M hn.kn/. These two inequalities imply that

�M hn.knC 1/� hn.�kn� 1/� hn.��n/� hn.�kn/� �
1

M
hn.kn/:

From (6), we get

hn.kn/�
1

M C 1
hn.knC 1/�

1

M C 1
�0n:

The above two inequalities and (6) give that

�M.M C 1/�0n � hn.��n/� �
1

M.M C 1/
�0n

which implies

�M.M C 1/�
1

�0n
hn.��n/D yhn.�1/� �

1

M.M C 1/
:

Take c0 DM.M C 1/ and the above becomes 1=c0 � �
yhn.�1/� c0 .

We finish the proof using the above lemma. Note that yhn fixes 0, 1 and 1, and
yhn.�1/ is bounded away from 0 and1 by the above lemma. Then Lemma 2.2 implies
that j�yhn

j � c < 1 in a neighborhood of i 2H and for all n 2N (see also [13, Lemma
3.6], [1], [5]). On the other hand, the assumption on wn and conformal naturality of
barycentric extension implies that j�yhn

.wn/j ! 1 as n!1 which is a contradiction.
This finishes the proof of the first statement in Theorem A.

Proof of the second part of Theorem A Consider a fan of geodesics fengn2N of F
with tip p 2 yQ. Let an 2

yQ be the endpoint of en that is different from p . Then
.ak ; am; an;p/ are in the cyclic order of yR if k <m< n. The triple ak ; am; an is said
to be fan-symmetric if m� k D n�m. The point am is said to be the midpoint of the
triple.

Let ak ; am; an 2
yQ be a fan-symmetric triple for the fan with tip p 2 yQ, where am is

the mid-point of the triple. This implies that

cr.p; ak ; am; an/D
.am�p/.an� ak/

.an�p/.am� ak/
D 2:
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The Farey generation of a triple .ek ; em; en/ of geodesics with m� k D n�m is the
minimum of the Farey generations of ek and en . Let hW yR! yR be a symmetric map
which fixes 0, 1 and 1. If the generation of a triple ek ; em; en is large, it follows that
the points ak , p and an are close in the angle metric of yR with respect to i 2H. The
barycentric extension ex.h/DF of h has Beltrami coefficient close to zero in a definite
Euclidean neighborhood in H of the triple .ak ;p; an/ (see [7]). A length-area argument
implies that cr.h.p/; h.ak/; h.am/; h.an// is close to 2 (see, for example, [10]). After
postcomposing h by A 2 PSL2.R/ such that A ıh.am/D1, this is equivalent to the
fact that the ratio

jA ı h.p/�A ı h.ak/j

jA ı h.an/�A ı h.p/j

is close to 1. Let sW F!R be the shear map of h and let si D s.ei/. Then for a given
� > 0, there exists k D k.�/ 2 N such that on any fan-symmetric triple of generation
at least k the shear map sW F ! R satisfies

(7)
1

1C �
�

1C esmC1 C � � �C esmC1CsmC2C���Csn

e�sm C e�sm�sm�1 C � � �C e�sm�sm�1�����sk
� 1C �:

Thus we established the necessity of the second condition in Theorem A.

We show that the second condition in Theorem A is also sufficient for a map to
be symmetric. For any k 2 N, there are only finitely many geodesics in F whose
generation is at most k . Together with (7), this implies that the shear function sW F!R
is bounded and that s.e/ converges to 0 as the generation of e converges to 1, where
the speed of convergence depends only on the generation of e 2 F . The characteristic
map hs of the shear map s with property (7) extends to a homeomorphism of yR. The
proof follows the same lines as in the proof of the first part of Theorem A and we omit
it here.

It remains to show that hs is a symmetric map. We consider the barycentric extension
ex.hs/D Fs of hs . It is enough to show that Fs is an asymptotically conformal map
of H (see [7]).

Assume on the contrary that there exists a sequence zn 2H which leaves every compact
subset of H such that j�Fs

.zn/j� c>0. Let �n be the ideal triangle in the complement
of F which contains zn . Let An 2 PSL2.Z/ be such that An.�n/D�0 , where �0

is the triangle in F with vertices 0, 1 and 1. Let Bn 2 PSL2.R/ be such that
hn D Bn ı hs ıA�1

n fixes 0, 1 and 1. Let z0n D An.zn/ 2 �0 and let Fn D ex.hn/

be the barycentric extension of hn .

Assume first that a subsequence of z0n stays in a compact part of �0 , and for simplicity
we denote the subsequence by z0n again. This implies that the sequence of �n ’s
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contains infinitely many pairwise different triangles because zn leave any compact
subset of H. In particular, the minimum of the generations of the boundary geodesics of
�n converges to infinity as n!1. Consequently, shear maps s ıA�1

n converge to the
zero map which implies that hn converges pointwise on yR to the identity. On the other
hand, j�Fn

.z0n/j � c > 0 by conformal naturality of the barycentric extension. This is
a contradiction with the continuity properties of the barycentric extension (see [5] or
Section 2).

In the other case, we assume that z0n!1 inside �0 as n!1. Let �n;1 D ŒIm.z0n/�
be the greatest integer less than or equal to Im.z0n/. Clearly �n;1!1 as n!1. Let
�0

n;1
D hn.�n;1/. Define .1=�0

n;1
/hn.�n;1x/D zhn;1.x/ and note that zhn;1.x/ fixes 0,

1 and 1.

We show that limn!1
zhn;1.k/D k for all k 2 Z except possibly one integer k D k0 .

A basic observation is that for at most one integer k0 2 Z we have that the Farey
generation of e�n;1k0

is bounded as n!1. Indeed, if the Farey generation of e�n;1k0

is bounded then for k ¤ k0 we have j�n;1k0 � �n;1kj ! 1 as n!1 (because
�n;1!1 as n!1.) Thus, in the fan fen;1

k
gk2Z with the tip .hn/

�1.1/ there is
�n;1jk � k0j geodesics separating e�n;1k and e�n;1k0

. Since the Farey generation of
e�n;1k0

is bounded it follows that the Farey generation of e�n;1k is unbounded.

Assume that the Farey generations of e�n;1k go to infinity as n!1 for all k 2Znfk0g.
We consider three cases: k0 D 0, k0 < 0 and k0 > 0. If k0 D 0 then zhn;1.�1/!�1

as n!1 because condition (7) gives

zhn;1.1/� zhn;1.0/

zhn;1.0/� zhn;1.�1/
! 1

as n!1, and zhn;1.1/D1, zhn;1.0/D0. By a similar use of symmetric triple .�1; 1; 3/

we obtain that zhn;1.3/! 3 as n!1 because zhn;1.1/D 1 and zhn;1.�1/!�1 as
n!1. Then we use .1; 2; 3/ to obtain zhn;1.2/! 2 as n!1. Next we use triples
.2; 3; 4/; .3; 4; 5/; : : : in a similar procedure to obtain that zhn;1.k/! k as n!1 for
all k 2N. After that, use the triples .�k; 0; k/ for k 2N to conclude that yhn;1.k/! k

as n!1 for all k 2 Z. (We used the fact that if .x;y; z/ is a symmetric triple in Z
such that the Farey generations of e

n;1
x and e

n;1
z go to infinity as n!1 and if zhn;1

converges to the identity on any two of the points of the triple .x;y; z/, then zhn;1

converges to the identity on the third point of the triple.) If k0 < 0 then we use .0; 1; 2/
to conclude that zhn;1.2/! 2 as n! 1. Further we use .1; 2; 3/; .2; 3; 4/; : : : to
conclude that zhn;1.k/! k as n!1 for all k 2 N. Then we use triples .k; 0;�k/

for all k < 0 and k ¤ k0 to conclude that zhn;1.k/! k as n!1 for all k 2Znfk0g.
The proof for k0 > 0 is similar.
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Let �n;r be the greatest integer multiple of 2r�1 which is less than or equal to Im.z0n/
for fixed r 2 N. Clearly �n;r ! 1 as n ! 1. Let �0n;r D hn.�n;r /. Define
.1=�0n;r /hn.�n;r x/D zhn;r .x/ and note that zhn;r .x/ fixes 0, 1 and 1. We claim that
limn!1

zhn;r .k=2
i/ D k=2i for all k 2 Z n fk0g and i D 0; : : : ; r � 1, where k0 is

fixed. The proof is by finite induction on i . The case i D 0 is proved in the above
paragraph. Assume that the statement is true for i and we need to prove that it is true
for i C 1. The inductive hypothesis says that limn!1

zhn;r .k=2
i/D k=2i for k 2 Z

because �n;r .k=2
i/ 2 Z for each n 2 N. Since each k=2iC1 , for k 2 Z odd, is in the

middle of .k � 1/=2iC1 and .kC 1/=2iC1 on which the convergence holds and since
�n;r .k=2

iC1/2Z, it follows similar to the above that limn!1
zhn;r .k=2

iC1/Dk=2iC1 .
We note that among all k=2r for k 2Z there is at most one k0=2

r such that we cannot
conclude that yhn;1.k0=2

r /! k0=2
r as n!1. This finishes the induction.

We use the Cantor diagonalization process to obtain a contradiction. The set D D

fk=2r�1 W r 2N; k 2 Zg is a dense subset of yR. We put D into a sequence fbmg such
that if bmD k=2r�1 for minimal r 2N then m� r . Fix m 2N. Then there exists nm

such that jzhnm;m.bi/� bi j < 1=m for i D 1; 2; : : : ;m and jz0m=�nm;m� i j < 1=m.
This implies that zhnm;m converges pointwise to the identity on yR. On the other
hand, the Beltrami coefficient of ex.zhnm;m/ at z0m=�nm;m is bounded away from 0 by
conformal naturality of the barycentric extension. This is a contradiction. Therefore hs

is symmetric which finishes the proof of Theorem A.

6 The topology on X

Let X be the space of all shear functions sW F!R which satisfy condition (5) on each
fan of geodesics in F with the same constant. Theorem A implies that the universal
Teichmüller space T .H/ is parameterized by the space X . We turn our attention to
finding a topology on X which would make the map T .H/! X a homeomorphism.

Consider a shear function s 2 X and a fan of geodesics fengn2Z of F with tip p .
For a given horocycle C with center p , we denote by s.pIm; k/ the quotient of the
length of arc of C between hs.emCkC1/ and hs.em/ to the length of the arc of C

between hs.em/ and hs.em�k�1/, for m; k 2 Z and k � 0. Recall that s.pIm; k/ is
the expression in the middle of (5) described in a coordinate independent fashion.

Let M.s/� 1 be the supremum of s.pIm; k/ over all p 2 yQ, m; k 2Z. If M.s/<1,
then we say that sW F!R satisfies M.s/–condition at the fan with tip p . For example,
the shear map sid of the basepoint id 2 T .H/ is assigning 0 to each edge of F and
M.sid/D 1.
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More generally, let s1; s2 2X . Define M.s1; s2/ to be the supremum of the maximum
of s1.pIm; k/=s2.pIm; k/ and s2.pIm; k/=s1.pIm; k/ over all p 2 yQ and m; k 2Z.
Note that M.s1; s2/DM.s2; s1/ and that M.s1; sid/DM.s1/.

Let hnW yR!yR be a sequence of quasisymmetric maps which fix 0, 1 and1, and which
converge to the identity in the Teichmüller topology in T .H/. Then we immediately
obtain that M.shn

/! 1 as n!1 from the quasisymmetric condition.

Proof of Theorem B Recall that hn! id in the Teichmüller topology if and only if

sup
cr.hn.a/; hn.b/; hn.c/; hn.d//

cr.a; b; c; d/
! 1

as n!1, where the cross-ratio is

cr.a; b; c; d/D
.c � a/.d � b/

.d � a/.c � b/

and the supremum is over all quadruples .a; b; c; d/2 .yR/4 with the cross-ratio between
1C 1=M and 1CM for some M > 1. By the definition, hn ! h as n!1 in
the Teichmüller topology if and only if hn ı h�1! id in the Teichmüller topology.
A quadruple of points in yQ with cross-ratio 2 where one point is the tip of the fan
such that the other three points are endpoints of geodesics in the fan is fan-symmetric
(see the proof of Theorem A for equivalent definition). The cross-ratio of the image
under h of a fan-symmetric quadruple is bounded away from 1 and 1 because h is
quasisymmetric. The above characterization of the Teichmüller topology when applied
to hn ı h�1! id at the images under h of all fan-symmetric quadruples gives that
M.shn

; sh/! 1 as n!1. This proves the necessity of the condition.

Given h; hn2T .H/ such that M.shn
; sh/!1 as n!1, we need to show that hn!h

as n!1 . Assume on the contrary that hn does not converge to h in the Teichmüller
topology. Let F D ex.h/ and Fn D ex.hn/ be the barycentric extensions of h and hn ,
respectively. The assumption implies that there exists c > 0 and a sequence zn 2 H
such that j�F .zn/��Fn

.zn/j � c . There are two possibilities for the sequence zn .
Either there exists a horoball C with center 1 and a subsequence znk

such that znk

is disjoint from the PSL2.Z/ orbit of C , or for any horoball C with center 1 only
finitely many zn ’s lie outside the PSL2.Z/ orbit of C .

Assume we are in the former case. For the convenience of notation, replace znk

with zn . Let An 2PSL2.Z/ be such that An.�n/D�0 , where �n is a complementary
triangle of F which contains zn . Then An.zn/ lies in a compact subset of H. Let
Bn;B

�
n 2PSL2.R/ be such that BnıhıA

�1
n and B�n ıhnıA

�1
n fix 0, 1 and1. Since

M.shn
; sh/! 1 as n!1, we get that Bn ı h ıA�1

n and B�n ı hn ıA�1
n pointwise

Geometry & Topology, Volume 14 (2010)



2426 Dragomir Šarić

converge to the same quasisymmetric map. Therefore the Beltrami coefficients of their
corresponding barycentric extensions converge uniformly on compact subsets of H to
the same Beltrami coefficient (see [5]). This contradicts j�F .zn/��Fn

.zn/j � c .

Assume we are in the later case. Let An 2 PSL2.Z/ and Bn;B
�
n 2 PSL2.R/ be as

above. Let h0nDBnıhıA
�1
n and h�nDB�n ıhnıA

�1
n . In addition, we may assume that

An.zn/!1 as n!1. To find a contradiction in this case, we use the idea from the
proof of the last part of Theorem A. Denote by �n;r the largest integer multiple of 2r�1

which is less than or equal to Im.zn/. Let �0n;r D h0n.�n;r / and ��n;r D h�n.�n;r /. Then

zh0n;r .x/D .1=�
0
n;r /h

0
n.�n;r x/ and zh�n;r .x/D .1=�

�
n;r /h

�
n.�n;r x/

fix 0, 1 and 1. For each r 2 N, the sequences zh0n;r .x/ and zh�n;r .x/ have conver-
gent subsequences (in the pointwise sense) whose limits h1

r and h2
r agree on the set

fk=2r�1 W k 2Zg because M.shn
; sh/! 1 as n!1. The values of maps h1

r and h2
r

on fk=2r�1 W k 2 Zg depend only on the shears of h0n and h�n on the fan with tip 1.
Using the Cantor diagonalization process, we find sequences

fzh0nm;m
.x/gm and fzh�nm;m

.x/gm

whose pointwise limits h1 and h2 satisfy h1D h2 and z0m=�nm;m! i 2H as m!1.
This again gives a contradiction with j�F .zm/��Fm

.zm/j � c by conformal naturality
of the barycentric extension.

7 Decorated tesselations and lambda lengths

A tesselation � of H is a locally finite ideal geodesic triangulation of H with a
distinguished oriented geodesic. A decorated tesselation z� is a tesselation � of H
together with an assignment of a horocycle to each vertex of � whose center is that
vertex (see [15]).

Let � be a tesselation with a distinguished oriented edge e D .xi ;xt /, where xi is the
initial point and xt is the terminal point of e . Recall that F is the Farey tesselation
and let .�1; 1/ be a distinguished oriented geodesic of F . Denote by �0 the set of
vertices of � . Recall that yQ� yR is the set of vertices of F . There exists a unique map
h� W yQ! �0 such that h� .xi/D �1, h� .xt /D 1 and that if x;y;x 2 yQ are vertices
of a complementary triangle of F then h� .x/; h� .y/; h� .z/ 2 �

0 are the vertices of a
complementary triangle of � (see [15]). We call h� the characteristic map of � . It is
clear that h� W yQ! yR extends by continuity to a homeomorphism of yR because yQ; �0

are dense in yR and h� is monotone on yQ.
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Given a decorated tesselation z� together with a distinguished oriented geodesic e 2 � ,
Penner [14] assigns to each geodesic f 2 F a positive number as follows. Let C1

and C2 be horocycles of the decoration z� based at the endpoints of h� .f /2 � . Let ı.f /
be a signed hyperbolic distance between M1 D h� .f /\C1 and M2 D h� .f /\C2 ,
where the sign is positive if the arc of h� .f / between M1 and M2 is outside C1

and C2 , otherwise the sign is negative (see [14]). The lambda length of f 2 F is
given by

�.f /D e�2ı.f /:

This introduces the lambda length function �W F!RC for any decorated tesselation z�
(see Penner [15]). Let e; e0 2 � be adjacent geodesics. Then h� W F! � maps adjacent
edges f; f 0 2 F onto e; e0 , respectively. We define horocyclic length ˛.f; f 0/ to be
the length of the arc of the horocycle from z� with center the common endpoint of e

and e0 that lies inside the hyperbolic wedge with boundary sides e; e0 .

Given a map �W F!RC there exists a monotone map h�W yQ! yR, called the character-
istic map of �, and a decoration (ie choice of horocycles) on h�.yQ/ such that the lambda
length of h�.f / with respect to the decoration is equal to �.f /. The characteristic map
h�W yQ! yR does not always extend to a homeomorphism similar to the case of shears.
It is a fundamental question in this theory to give necessary and sufficient condition on
the map �W F!R such that h� extends by continuity to a homeomorphism or perhaps
to a quasisymmetric map. Penner and Sullivan [15, Theorem 6.4] gave a sufficient
condition on the lambda lengths to induce a quasisymmetric map as follows. A lambda
length function �W F ! R is said to be pinched if there exists K > 1 such that

1

K
� �.f /�K;

for all f 2 F . Penner and Sullivan showed that if �W F ! R is pinched then the
characteristic map h� extends to a quasisymmetric map of yR [15, Theorem 6.4].

In Theorem E we give a necessary and sufficient condition such that h� is a quasisym-
metric (as well as a symmetric) map of yR.

Proof of Theorem E Let � D h�.F/ be the ideal geodesic triangulation (tesselation)
corresponding to the lambda lengths � and let z� be the decorated tesselation corre-
sponding to � (see Penner [15] for the construction). Let sW F ! R be shear function
corresponding to h� and let fengn2Z be a fan of geodesics in F with tip p . Then we
have

s.pIm; k/D
˛.em; emC1/C˛.emC1; emC2/C � � �C˛.emCk ; emCkC1/

˛.em; em�1/C˛.em�1; em�2/C � � �C˛.em�k ; em�k�1/
:

Theorem E immediately follows from Theorem A.
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In Theorem D, we find a necessary and sufficient condition such that h� extends to
a homeomorphism of yR. The criteria follows from the proof of Theorem C and it is
obtained by calculating the length of l.P1/ in terms of horocyclic and lambda lengths.
Since the horocyclic lengths are expressed in terms of the lambda lengths, the formula
can be written only in terms of the lambda lengths although we do not do this.

Proof of Theorem D Let �W F!RC be a lambda length function and let h�W yQ! yR
be the corresponding characteristic map. Denote by � the image tesselation h�.F/
and by z� the decoration which realizes the lambda lengths �.

Let fengn2N be an arbitrary chain in F . Denote by �n D �.en/ the lambda length
of en . Then �n D e�2ın , where ın is the signed hyperbolic distance between the
horocycles of z� with centers at the endpoints of en . Thus ��1=2

n D eın . Let Wn be
the wedge with boundary sides h�.en/ and h�.enC1/ and let Cn be the horocycle of
the decoration z� with center at the common endpoint of h�.en/ and h�.enC1/. Let
˛n be the horocyclic length for the wedge with boundaries en and enC1 namely the
length of Cn\Wn . Let ln be the length of l.P1/\Wn , where P1 is chosen such that
l1 D �

�1=2
1

˛1 D eı1˛1 .

We need to show that

ln D .�
�1=2
n �

1=2
n�1
� � ��

.�1/n=2
1

/˛n:

Elementary hyperbolic considerations shows that ln D edn˛n where dn is the signed
distance from l.P1/ \Wn to the horocycle Cn such that dn > 0 if l.P1/ \Wn is
outside Cn and dn < 0 otherwise. Thus it remains to show that

edn D ��1=2
n �

1=2
n�1
� � ��

.�1/n=2
1

:

We finish the argument by induction on n. By our choice of P1 , we immediately have

ed1 D eı1 D �
�1=2
1

:

Assume that n> 1 and that

edn D ��1=2
n �

1=2
n�1
� � ��

.�1/n=2
1

:

We calculate ednC1 . Since dn is the signed distance from l.P1/\Wn to Cn , it follows
that the signed distance of l.P1/\Hs.enC1/ to Cn is dn . Since ınC1 is the signed
distance between Cn and CnC1 , it follows that dnC1 D ınC1 � dn . This gives the
desired formula.
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