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Algebraic and geometric convergence
of discrete representations into PSL2C

IAN BIRINGER

JUAN SOUTO

Anderson and Canary have shown that if the algebraic limit of a sequence of discrete,
faithful representations of a finitely generated group into PSL2C does not contain
parabolics, then it is also the sequence’s geometric limit. We construct examples that
demonstrate the failure of this theorem for certain sequences of unfaithful representa-
tions, and offer a suitable replacement.

1 Introduction

When � is a finitely generated group, let D.�/ be the set of all representations �W �!
PSL2 C with discrete, torsion free and nonelementary image. Here, a discrete subgroup
of PSL2 C is called elementary if it is virtually abelian. The set D.�/ sits naturally in
the variety Hom.�;PSL2 C/ and inherits the topology given by pointwise convergence;
this is called the algebraic topology on D.�/ and a pointwise convergent sequence of
representations is usually called algebraically convergent. The goal of this note is to
investigate the relationship between the algebraic convergence of a sequence .�i/ in
D.�/ and the geometric convergence of the subgroups �i.�/� PSL2 C . Recall that a
sequence of closed subgroups .Gi/ of PSL2 C converges to a subgroup G � PSL2 C
geometrically if it does in the Chabauty topology.

Assume from now on that .�i/ is a sequence in D.�/ converging algebraically to
a representation � 2 D.�/, and that the groups �i.�/ converge geometrically to
a subgroup G of PSL2 C . For convenience, we will often say that �i converges
geometrically to G . While it is clear that �.�/�G , it was Jørgensen [22] who first
realized that the geometric limit may be larger than the algebraic limit. For example,
Thurston [38] constructed an algebraically convergent sequence in D.�1.†g// that
converges geometrically to a subgroup of PSL2 C that is not even finitely generated.
Other examples of this phenomenon, each one dramatic in its own way, were constructed
by Kerckhoff and Thurston [25], Anderson and Canary [2] and Brock [11].
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All these examples are related to the appearance of new parabolic elements in the
algebraic limit; in fact, the following holds:

Theorem 1.1 (Anderson–Canary [3]) Let � be a finitely generated group and assume
that .�i/ is a sequence of faithful representations in D.�/ converging algebraically to
some � 2D.�/. If �.�/ does not contain parabolic elements, then the groups �i.�/

converge geometrically to �.�/.

In [4], Anderson and Canary extended this result to the case where � and �i map the
same elements to parabolics for all i . Evans proved in [20] that the same conclusion
holds under the weaker assumption that if an element of � is sent to a parabolic by �
then it is also parabolic in �i for all i . All these results were obtained in the presence of
certain technical assumptions rendered unnecessary by work of Brock and Souto [14],
and a fortiori by the resolution of the tameness conjecture by Agol [1] and Calegari
and Gabai [15].

Motivated by questions of a different nature, related to the attempt to understand the
structure of closed hyperbolic 3–manifolds whose fundamental group can be generated
by, say, 10 elements, we revisited Theorem 1.1 convinced that it would remain true
after dropping the assumption that the representations �i are faithful. To our surprise,
we found the following examples showing that Theorem 1.1 fails dramatically in this
more general setting.

Example 1 Let � be the fundamental group of a closed surface of genus 3. There
is a sequence of representations .�i/ in D.�/ converging algebraically to a faithful
representation � and geometrically to a subgroup G � PSL2 C , such that

� G does not contain any parabolic elements.
� �.�/ has index 2 in G .

Example 2 Let � be the fundamental group of a compression body with exterior
boundary of genus 4 and connected interior boundary of genus 3. There is a sequence
of representations .�i/ in D.�/ converging algebraically to a faithful representation �
and geometrically to a group G , such that

� G does not contain any parabolic elements.
� �.�/ has infinite index in G .

Example 3 Let � be the fundamental group of a compression body with exterior
boundary of genus 4 and connected interior boundary of genus 3. There is a sequence
of representations .�i/ in D.�/ converging algebraically to a faithful representation �
and geometrically to a group G , such that
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� �.�/ does not contain any parabolic elements.

� G is not finitely generated.

Apart from discussing the examples above, our main goal is to understand the failure of
Theorem 1.1 and see what is still true without the assumption that the representations
are faithful. We prove:

Theorem 1.2 Let � be a finitely generated group and .�i/ a sequence in D.�/. As-
sume that .�i/ is algebraically convergent and converges geometrically to a subgroup G

of PSL2 C . If G does not contain parabolic elements, then G is finitely generated.

Before going further, observe that Example 3 shows that for the conclusion of Theorem
1.2 to hold it does not suffice to assume that the algebraic limit has no parabolics.
Similarly, Example 2 shows that under the assumptions of Theorem 1.2 the algebraic
limit �.�/ can have infinite index in the geometric limit G .

The reader may find it surprising that we mention Example 1 at all; the other two seem
to be much more dramatic. However, Example 1 is the mother of all examples. It also
shows that the following result, due to Anderson, fails in the nonfaithful setting.

Theorem 1.3 (Anderson) Assume that � is a finitely generated group, and that .�i/

is a sequence of faithful representations in D.�/ converging algebraically to some
representation � and geometrically to a subgroup G of PSL2 C . Then there is no
 2G n �.�/ with  k 2 �.�/ for some k � 2. In particular, if the image �.�/ of the
algebraic limit has finite index in the geometric limit G , then �.�/DG .

We mention Theorem 1.3 because its failure is the heart of the failure of Theorem 1.1
for sequences which are not necessarily faithful:

Theorem 1.4 Let � be a finitely generated group and .�i/ a sequence in D.�/.
Assume that .�i/ converges algebraically to a representation � and geometrically to a
subgroup G of PSL2 C . If

� �.�/ does not contain parabolic elements, and

� there is no  2G n �.�/ with  k 2 �.�/ for some k � 2,

then G D �.�/.

The second condition here is used only to ensure that any degenerate ends of H3=�.�/

inject into H3=G . (See Section 2 for definitions.) So, we will actually prove the
following stronger version of Theorem 1.4:
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Theorem 1.5 Let � be a finitely generated group and .�i/ a sequence in D.�/.
Assume that .�i/ converges algebraically to a representation � and geometrically to a
subgroup G of PSL2 C . If

� �.�/ does not contain parabolic elements, and

� every degenerate end of H3=�.�/ has a neighborhood which embeds under the
covering H3=�.�/!H3=G ,

then G D �.�/.

The proofs of Theorems 1.4 and 1.5, like the proofs of all results in this note, are
completely independent of Anderson and Canary’s Theorem 1.1. In fact, combining
Theorem 1.4 with Anderson’s Theorem 1.3 we obtain a new simpler proof of Theorem
1.1, which we will use in constructing Examples 1–3. It should be observed that while
Anderson and Canary [3] and Evans [20] used fairly involved arguments to bypass
the question of tameness, we use here the resolution of the tameness conjecture by
Agol [1] and Calegari and Gabai [15] in a crucial way.

To conclude this fairly long introduction, we describe the paper section by section.
After some preliminaries in Section 2 we construct the examples mentioned above in
Section 3. In Section 4 we prove Theorem 1.4, obtaining a new proof of Theorem
1.1. In Section 5 we obtain a technical result, Proposition 5.1, which asserts that
under some conditions if M ! N is a cover then there is a tower M !M 0! N

where j�.M 0/j< j�.M /j. Proposition 5.1 and Theorem 1.5 are the key ingredients in
the proof of Theorem 1.2 in Section 6: the idea is to show that if H � G is finitely
generated, contains �.�/ and is such that j�.H3=H /j is minimal then G D H and
hence G is finitely generated. In Section 7 we discuss extensions of Theorem 1.2 and
Theorem 1.4 to the case that the algebraic limit has cusps; for instance, this permits us to
recover Evans’ general version of Theorem 1.1. Once this is done, we discuss briefly in
Appendix A to which extent other well-known theorems about faithful representations
remain true if the condition of faithfulness is dropped. See Section 3.
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debt to the referee, who has greatly improved the readability of the paper. The first
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The second author has been partially supported by the NSF grant DMS-0706878 and
the Alfred P Sloan Foundation.
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2 Preliminaries

In this section we recall some well-known facts and definitions about hyperbolic
3–manifolds.

2.1 Hyperbolic manifolds

By a hyperbolic 3–manifold we will mean any Riemannian 3–manifold isometric
to H3=� , where � is a discrete, torsion-free group of isometries of hyperbolic 3–
space. We will usually assume that the elements of � are orientation preserving,
or equivalently that H3=� is orientable. The full group of orientation preserving
isometries of hyperbolic 3–space is written IsomC.H3/, and is often identified with
PSL2 C through its action on the boundary of H3 .

Conjugate subgroups of PSL2 C give isometric quotients of H3 ; in order to remove
this indeterminacy we consider pointed hyperbolic 3–manifolds, ie pairs .M; !/ where
! is an orthonormal frame of some tangent space of M . Choosing once and forever a
fixed frame !H3 of some tangent space of H3 , every quotient manifold H3=� has an
induced framing !H3=� given by the projection of !H3 . Now, if .M; !/ is a pointed
hyperbolic 3–manifold then there is a unique � � PSL2 C such that the manifolds
.M; !/ and .H3=�; !H3=�/ are isometric as pointed manifolds.

Remark It would be more natural to speak of framed hyperbolic 3–manifolds instead
of pointed; however, it is customary to use the given terminology.

2.2 Tameness

We will be mainly interested in hyperbolic 3–manifolds M with finitely generated
fundamental group. Any such manifold is tame by the work of Agol [1] and Calegari
and Gabai [15]:

Tameness Theorem (Agol, Calegari–Gabai) Let M be a hyperbolic 3–manifold
with finitely generated fundamental group. Then M is homeomorphic to the interior of
a compact 3–manifold.

A compact core of a hyperbolic 3–manifold M with finitely generated fundamental
group is a compact submanifold C � M with M n C homeomorphic to @C �R.
Observe that M is homeomorphic to the interior of every such compact core. It
follows from the Tameness Theorem that every such M admits an exhaustion by nested
compact cores. If C �M is a standard compact core, then the ends of M correspond
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naturally to components of M nC . The component UE of M nC corresponding to an
end E is said to be a standard neighborhood of E and the component of @C contained
in the closure of UE is said to face E . We will often denote the component of @C
facing E by @E . Observe that UE is homeomorphic to @E �R.

2.3 Geometry of ends in the absence of cusps

Let M be a hyperbolic 3–manifold with finitely generated fundamental group and
without cusps. An end E of M is convex cocompact if it has a neighborhood in M

disjoint from the convex-core CC.M / of M . Recall that the convex core CC.M / is
the smallest convex submanifold of M whose inclusion is a homotopy equivalence. A
manifold with compact CC.M / is said to be convex cocompact ; equivalently, all ends
of M are convex cocompact.

For every d > 0, the set of points in M within distance d of CC.M / is homeomorphic
to M and has strictly convex C 1 –boundary: that is, hrX �;X i > 0, where r is the
Levi-Civita connection, X is a vector tangent to @Ki and � is the outer normal field
along @Ki .

Smoothing the boundary, we obtain the following well-known fact:

Lemma 2.1 Let M be a hyperbolic 3–manifold with finitely generated fundamental
group. There is an exhaustion of M by a nested sequence of submanifolds Ki such
that

(1) the boundary @Ki is smooth and strictly convex.

(2) every convex cocompact end of M has a neighborhood disjoint of Ki .

(3) the inclusion of Ki into M is a homotopy equivalence.

Continuing with the same notation as in Lemma 2.1, convexity implies that there is a
well-defined map �Ki

W M !Ki that takes a point in M to the point in Ki closest to
it. Strict convexity implies that the preimage of a point x 2 @Ki under this projection
is a geodesic ray. It follows that the map

M nKi! @Ki � .0;1/; x 7! .�Ki
.x/; d.x; �Ki

.x//

is a diffeomorphism; in fact, its inverse is the radial coordinate map

@Ki � .0;1/!M nKi ; .x; t/ 7! expx.t�.x//;

where � is the outer unit normal vector-field along @Ki .
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An end E which is not convex cocompact is said to be degenerate. It follows from the
Tameness Theorem and earlier work of Bonahon [8] and Canary [17] that degenerate
ends have very well-behaved geometry. For instance, every degenerate end E has a
neighborhood which is completely contained in the convex core CC.M /. From our
point of view, the most important fact about degenerate ends is the Thurston–Canary [18]
Covering Theorem, of which we state the following weaker version:

Theorem 2.2 (Thurston, Canary [18]) Let M and N be noncompact hyperbolic
3–manifolds, assume that M has finitely generated fundamental group and no cusps,
let � W M !N be a Riemannian cover and let E be a degenerate end of M . Then E
has a standard neighborhood UE such that the restriction

�jUE W UE ! �.UE/

of the covering � to UE is a covering map onto a standard neighborhood of a de-
generate end E 0 of N . More precisely, there is a finite covering � W @E ! @E 0 and
homeomorphisms

�W @E �R! UE ;  W @E 0 �R! �.UE/

with . �1 ı �jUE ı �/.x; t/ D .�.x/; t/. In particular, the covering �jUE has finite
degree.

Combining the Tameness Theorem, Lemma 2.1 and the Covering Theorem (Theorem
2.2) we obtain:

Proposition 2.3 Let M and N be hyperbolic 3–manifolds with infinite volume,
assume that M has finitely generated fundamental group and no cusps, and let � W M!
N be a Riemannian cover. Then M admits an exhaustion by nested standard compact
cores Ci � CiC1 such that the following holds:

(1) If a component S of @Ci faces a convex cocompact end of M then S is smooth
and strictly convex.

(2) If a component S of @Ci faces a degenerate end of M then the restriction
�jS W S ! �.S/ is a finite covering onto an embedded surface in N .

2.4 Conformal boundaries and Ahlfors–Bers theory

As in the previous section, assume that we have a hyperbolic 3–manifold M DH3=�

with finitely generated fundamental group and no cusps.

The limit set of � , written ƒ.�/, is the closure of the set of fixed points in S2
1D @H

3

of hyperbolic elements of � . The complement of ƒ.�/ is the domain of discontinuity
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�.�/D S2
1 nƒ.�/, which is the largest open subset of S2

1 on which � acts properly
discontinuously. The quotient @cM D �.�/=� is called the conformal boundary
of M . In fact, � acts properly discontinuously on H3 [�.�/, and the quotient
M [ @cM is a manifold with boundary having interior M .

The action of � on S2
1 is by Mobius transformations, so @cM inherits a natural

conformal structure. This structure is closely tied with the geometry of M : for instance,
the unique hyperbolic metric on @cM compatible with this conformal structure, called
the Poincaré metric , is similar to the intrinsic metric on @CC.M /. Specifically, the
closest point projection �W M ! CC.M / extends continuously to a map x�W @cM !

@CC.M /, and we have the following theorem of Canary:

Proposition 2.4 (Canary [16]) For every � > 0 there exists K > 0 so that the fol-
lowing holds. Let M be a hyperbolic 3–manifold with finitely generated fundamental
group, such that every component of @cM has injectivity radius at least � in the
Poincaré metric. Then the closest point projection �W @cM ! @CC.M / is K–lipschitz,
where @cM has the Poincaré metric and @CC.M / is considered with the Riemannian
metric induced by its inclusion into M .

The conformal boundary plays an important role in the deformation theory of hyperbolic
3–manifolds; in particular, a convex-cocompact hyperbolic 3–manifold is determined
up to isometry by its topology and conformal boundary. A more precise statement of
this is as follows.

Let M be the interior of a compact hyperbolizable 3–manifold SM in which each
boundary component has negative Euler characteristic. Define CH.M / to be the set
of all convex-cocompact hyperbolic metrics on M , where two metrics are identified
if they differ by an isometry isotopic to the identity map. It follows from Thurston’s
hyperbolization theorem [39] that CH.M / is nonempty, and it inherits a natural complex
structure through its relation to the representation variety Hom.�1.M /;PSL2 C/ (see
Matsuzaki and Taniguchi [28, Section 4.3]). Then we have:

Theorem 2.5 (Ahlfors–Bers Parameterization, see [28]) The map CH.M/!T .@ xM/,
induced from the map taking a convex-cocompact uniformization of M to its conformal
boundary, is a biholomorphic equivalence. Therefore, CH.M / is a complex manifold
of dimension

3

2
j�.@ xM /j D 3j�.M /j:

Here, T .@ SM / is the Teichmüller space of conformal structures on @ SM , where two
conformal structures are identified if there is a conformal map between them that is
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isotopic to the identity. The conformal boundary of a convex-cocompact uniformization
of M is only identified with @ SM up to isotopy, so a point of CH.M / gives a point in
T .@ SM / rather than a specific conformal structure on @ SM .

The space CH.M / is natural with respect to certain coverings. If M 0 is a cover
of M with �1.M

0/ finitely generated, then the Tameness Theorem and Canary’s
Covering Theorem (Theorem 2.2) imply that convex-cocompact metrics on M lift to
convex-cocompact metrics on M 0 . In fact:

Lemma 2.6 If M 0 is a 3–manifold with finitely generated fundamental group and
� WM 0!M is a covering map, there is a holomorphic map

��W CH.M /! CH.M 0/

induced by the map taking a hyperbolic structure on M to its pullback under � .

2.5 Geometric convergence

Recall that a sequence .Gi/ of closed subgroups of PSL2 C converges geometrically
to a subgroup G if it does in the Chabauty topology. More concretely, .Gi/ converges
geometrically to G if G is the subgroup of PSL2 C consisting precisely of those
elements g 2 PSL2 C such that there are gi 2 Gi with gi ! g in PSL2 C . In other
words, G is the accumulation set of the groups Gi .

Most of our arguments are based on an interpretation of geometric convergence in
terms of the quotient manifolds H3=Gi .

Definition A sequence .Mi ; !i/ of pointed hyperbolic 3–manifolds converges ge-
ometrically to a pointed manifold .M1; !1/ if for every compact K � M1 that
contains the origin of !1 , there is a sequence �i W K !Mi of smooth maps with
�i.!1/D!i converging in the C k –topology to an isometric embedding for all k 2N .
We will refer to the maps �i as the almost isometric embeddings provided by geometric
convergence.

Remark Note that although the phrase “converging in the C k –topology to an iso-
metric embedding” is suggestive and pleasing to the ear, it has no meaning. One way
to formalize this would be to say that for each point x 2K , there is an � > 0 and a
sequence of isometric embeddings

ˇi W B.�i.x/; �/!H3

from �–balls around �i.x/ 2Mi so that ˇi ı�i converges to an isometric embedding
of some neighborhood of x 2M1 into H3 .
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Recall that by our convention above, a pointed hyperbolic manifold is a manifold
together with a base frame and that choosing a base frame !H3 of hyperbolic space we
obtain a bijection between the sets of discrete torsion free subgroups of PSL2 C and
of pointed hyperbolic 3–manifolds. Under this identification, the notions of geometric
convergence of groups and manifolds are equivalent (see for instance Benedetti and
Petronio [6] or Kapovich [24]):

Proposition 2.7 Suppose G1;G2; : : : ;G1 are discrete and torsion-free subgroups of
PSL2 C and consider for all i D 1; : : : ;1 the pointed hyperbolic 3–manifold .Mi ; !i/

where Mi DH3=Gi and !i is the projection of the frame !H3 of H3 . The groups Gi

converge geometrically to G1 if and only if the pointed manifolds .Mi ; !i/ converge
geometrically to .M1; !1/.

2.6 Algebraic convergence

Let � be a finitely generated group. Recall that a sequence .�i/ of representations
�i W �! PSL2 C converges algebraically to a representation � if for every  2 � we
have �i. /! �. / in PSL2 C . Jørgensen proved in [23] that if each image �i.�/ is
discrete and nonelementary then the same is true of �.�/. His argument also shows
that torsion cannot suddenly appear in the limit, so we have the following theorem:

Proposition 2.8 Let � be a finitely generated group. Then the subset D.�/ �
Hom.�;PSL2 C/ consisting of (not necessarily faithful) representations with discrete,
torsion free and nonelementary image is closed with respect to the algebraic topology.

When a sequence .�i/ converges both algebraically to a representation � and geo-
metrically to some group G , it is easy to see that �.�/ � G . In other words, the
manifold H3=�.�/ covers the manifold H3=G . In particular, given a compact subset
C �H3=�.�/ we can project it down to H3=G and then map the image to Mi under
the almost isometric embeddings given by geometric convergence. This produces maps
C !Mi DH3=�i.�/ which look more and more like the restriction of a covering
to C .

More generally, assume that H is a finitely generated subgroup of G containing
�.�/. By the Tameness Theorem, the manifold H3=H contains a standard compact
core CH . Composing the restriction to CH of the covering H3=H ! H3=G with
the almost isometric embeddings given by geometric convergence, we obtain for
sufficiently large i maps CH!Mi similar to those described above. Using the induced
homomorphisms H!�1.Mi ; !i/ one can then construct a sequence of representations
�i W H ! PSL2 C converging algebraically to the inclusion of H ,! G ,! PSL2 C .
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The assumption that �.�/�H implies then that �i.H /D �i.�/ for all i . In particular,
(compare with McMullen [31, Lemma 4.4]):

Proposition 2.9 Let � be a finitely generated group, .�i/ a sequence in D.�/ con-
verging algebraically to a representation �1 and geometrically to a group G�PSL2 C .
If H �G is a finitely generated subgroup of G containing �.�/ then for large i there
are representations

�i W H ! PSL2 C with �i.H /D �i.�/

converging to the inclusion H ,! PSL2 C . In particular, the groups �i.H / converge
geometrically to G .

2.7 Roots

Recall that the nontrivial elements in PSL2 C are either hyperbolic, parabolic or elliptic
depending on their dynamical behaviour. Every hyperbolic element  2 PSL2 C
stabilizes a geodesic A in H3 , and if ˛ 2 PSL2 C is a k –th root of  , ie  D ˛k , then
˛ADA. It follows easily that the set of k –th roots of  is finite. A similar argument
applies in the parabolic and elliptic case, so we obtain the following well-known, and
in this paper surprisingly important, fact:

Lemma 2.10 For every k 2 Z and nontrivial element  2 PSL2 C , the set f˛ 2
PSL2 C j ˛k D  g is finite.

Lemma 2.10 has the following immediate consequence:

Corollary 2.11 Let � � � 0 be groups and assume that � 0 contains a torsion-free
subgroup H such that

(1) � and H generate � 0 , and

(2) � \H has finite index in H .

Then for every faithful representation �W � ! PSL2 C , the set of representations
f�0W � 0! PSL2 C j �0j� D �g is finite.

Lemma 2.10 also has the following consequence, which was stated in the introduction.

Theorem 1.3 (Anderson) Assume that � is a finitely generated group and .�i/

is a sequence of faithful representations in D.�/ that converges algebraically to a
representation � and geometrically to a group G . Then there is no  2G n �.�/ with
 k 2 �.�/ for some k � 2. In particular, if the image �.�/ of the algebraic limit has
finite index in the geometric limit G , then �.�/DG .
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Proof Assume there is some g 2G n�.�/ with gk D �.�/ for some �2� and k � 2.
Since g 2G there are i 2 � with limi!1 �i.i/D g . Taking powers we then have

lim
i!1

�i.
k
i /D gk

D �.�/D lim
i!1

�i.�/:

It follows from the Margulis lemma that �i.
k
i /D �i.�/ for sufficiently large i . Since

the representations �i are faithful , this implies that  k
i D � for large i . But the

group � embeds in PSL2 C , by say �7 , so Lemma 2.10 shows that each of its elements
has only finitely many k –th roots. This implies that up to passing to a subsequence
we may assume that i D j for all pairs .i; j /, and hence g belongs to the algebraic
limit. This is a contradiction, so the claim follows.

We included this proof because its failure for nonfaithful sequences is at the heart of
the examples presented in Section 3.

2.8 Maximal cusps

Finally, we describe a class of hyperbolic manifolds that we will use as building blocks
in constructing our examples in Section 3. A good reference for this section is Canary,
Culler, Hersonsky and Shalen [5].

Assume that M is a compact, orientable, irreducible and atoroidal 3–manifold with
interior N and no torus boundary components. If N has a geometrically finite hyper-
bolic metric, then there is a collection C of disjoint simple closed curves in @M such
that

N [ @cN ŠM n
[
2C

;

by a homeomorphism whose restriction to N is isotopic to the inclusion N �M .
Here, @cN is the conformal boundary defined in Section 2.4.

The curves in C are determined up to isotopy, and correspond to the rank one cusps
in N . We will say that the collection C has been pinched. Each curve in C is
homotopically nontrivial in M and no two curves in C are freely homotopic in M .
It follows from Thurston’s Hyperbolization Theorem [24; 36] that any collection of
curves on @M satisfying these two topological constraints can be obtained as above
from a hyperbolic structure on N ; it is therefore said that such a collection is pinchable.

One says that a component S � @M is maximally cusped with respect to some
geometrically finite structure on N if the associated collection C contains a pants
decomposition for S . In this case, any component of @CC.N / that faces S is a totally
geodesic hyperbolic thrice-punctured sphere. Given two hyperbolic 3–manifolds with
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maximally cusped ends, we can topologically glue their convex cores together along
these thrice-punctured spheres. Since every homeomorphism between hyperbolic thrice-
punctured spheres can be isotoped to an isometry, after altering the identifications we can
ensure that our gluing produces a hyperbolic 3–manifold. Here is a precise description
of the result of this process.

Lemma 2.12 (Gluing maximal cusps) Let M1 and M2 be compact, orientable 3–
manifolds with interiors Ni that have geometrically finite hyperbolic metrics. Assume
that Si are maximally cusped components of @Mi with pinched pants decompositions
Pi � Si . Then if hW S1 ! S2 is a homeomorphism with h.P1/ D P2 , there is a
hyperbolic 3–manifold N with the following properties:
� N Š .M1 nP1/th .M2 nP2/, so N has a rank 2 cusp corresponding to each

element of P1 (or P2 ).
� N is the union of two subspaces with disjoint interiors, which are isometric to

N1 nE1 and N2 nE2 , where Ei are the components of Ni nCC.Ni/ adjacent
to Si .

3 Examples

In this section we construct the examples mentioned in the introduction. All our
constructions follow the same general strategy. We will describe this here before
starting with the examples in detail.

We first construct a finitely generated group y� and a sequence of (unfaithful) discrete
representations .�i/ in D.y�/ that converges strongly to a faithful representation �1
whose image �1.y�/ has no parabolics. Recall that �i ! �1 strongly if it does so
algebraically and �i.y�/! �1.y�/ geometrically. Next, we find a proper subgroup
� � y� such that

�i.�/D �i.y�/ for all i 2N

and let �i D �i j� . By construction, �i ! �1 D �1j� algebraically and �i.�/!

�1.y�/ geometrically. Since � is a proper subgroup of y� and �1 is faithful, we obtain
that the algebraic limit �1.�/D �1.�/ is a proper subgroup of the geometric limit
�1.y�/.

Example 1 Let � be the fundamental group of a closed orientable surface of genus 3.
There is a sequence of representations .�i/ in D.�/ that converges algebraically to a
faithful representation � and geometrically to a group G such that
� G has no parabolics.
� �.�/ has index 2 in G .
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In the following, we let S be a closed orientable surface of genus g . The group y�
from the strategy above will be �1S , while � will be the fundamental group of a
degree 2 cover of S . The concise statement of the example above is the special case
g D 2, but our argument below works for any closed orientable surface.

To begin with, let H be a handlebody with boundary S . Recall that the Masur domain
OH � PML.S/ is the set of all projective measured laminations on S that intersect
positively with every element of PML.S/ that is a limit of meridians. One calls a
pseudo-Anosov map f W S ! S generic if its attracting lamination � lies in OH . To
see that such maps exist, note that OH is open and nonempty and that the attracting
laminations of pseudo-Anosov maps are dense in PML.S/. The density follows from
the density of simple closed curves, for conjugating any given pseudo-Anosov map by
powers of a Dehn twist produces a sequence of pseudo-Anosov maps whose attracting
laminations limit to the twisting curve in PML.S/.

A sequence of convex-cocompact handlebodies Fix a generic pseudo-Anosov map
f W S ! S with attracting lamination � and repelling lamination x�. Theorem 2.5
implies that the deformation space of convex-cocompact hyperbolic metrics on a
hyperbolizable 3–manifold is parameterized by the Teichmuller space of its boundary.
So, we can produce a sequence of convex-cocompact metrics on H corresponding to
an orbit of f on T .S/. In other words, after fixing a conformal structure X on S ,
we have a sequence of convex-cocompact hyperbolic manifolds .Ni/ and a sequence
of homeomorphisms

hi W .H;S/! .Ni ; @cNi/

such that hi ı f
i W S ! @cNi is conformal with respect to X . Here, @cNi is the

conformal boundary of Ni discussed in Section 2.4.

Good markings By Proposition 2.4 and the fact that the Poincaré metric on @cNi

is constant in moduli space, the nearest point projection �i W @cNi ! @CC.Ni/ is
K–lipschitz for some constant K independent of i . Considering S with its Poincaré
metric, the map

�i WD �i ı hi ıf
i
W S !Ni

is K–lipschitz as well. Since it is �1 –surjective, we may use �i to mark the funda-
mental group of Ni with �1.S/. Specifically, after taking a base point p 2 S , the
surjections .�i/�W �1.S;p/! �1.Ni ; �i.p// determine up to conjugacy a sequence
of representations

�i W �1.S;p/! PSL.2;C/; H3=�i.�1.S;p//DNi :

Geometry & Topology, Volume 14 (2010)



Algebraic and geometric convergence of discrete representations into PSL2C 2445

@CC.N1/

Š �1.S/

�
�
�1.p/

CC.N1/

N1 Š genus g
handlebody

N2 Š genus g
handlebody

N1 Š†g �R

C
C
.N

2
/

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�
�2.p/

†2�Œ0;1�

length
increases
with i

handlebody
� � �

�
�1.p/

Figure 1: A schematic of the convergence Ni !N1

Strong convergence and the limit The goal here is to establish the following propo-
sition.

Proposition 3.1 The sequence .�i/ converges strongly to a representation
�1W �1.S;p/ ! PSL.2;C/ that is faithful and purely loxodromic. Its quotient
N1 D H3=�1.�1.S;p// is homeomorphic to S � R and has no cusps. One of
the ends of N1 is convex-cocompact with conformal boundary X and the other is
degenerate with ending lamination x�.

Here, X is the base conformal structure on S fixed above and x� is the repelling
lamination of f . Recall that an algebraically convergent sequence �i! �1 converges
strongly if in addition the images of .�i/ converge to the image of �1 geometrically.

The resolution of Thurston’s Ending Lamination Conjecture by Minsky [32] and Brock,
Canary and Minsky [13] implies that N1 is uniquely characterized by the description
given in Proposition 3.1. So to prove Proposition 3.1, it suffices to show that every
subsequence of .�i/ has a subsequence that converges strongly to some �1 as described
above.

Start with some subsequence .�ij / of .�i/. Passing to a further subsequence, we may
assume that .�ij / converges algebraically to some

�1W �1.S;p/! PSL.2;C/; where N1 WDH3=�1.�1.S;p//:
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We may also assume that the images converge geometrically:

�ij .�1.S;p//!G � PSL.2;C/; where NG WDH3=G:

If base-frames are chosen for Nij on @CC.Nij /, the resulting pointed manifolds
converge in the Gromov–Hausdorff topology to NG . By the Arzela–Ascoli Theorem,
we can pass to a final subsequence such that the K–lipschitz maps �ij W S ! Nij

converge uniformly to some
�G W S �!NG :

There is a natural covering map � W N1 ! NG that corresponds to the inclusion
�1.�1.S;p//�G , and �G lifts to a map ��W S !N1 inducing the marking given
by �1 .

Claim �1 is an embedding, and its image bounds a neighborhood E0 of a convex-
cocompact end of N1 . Furthermore, E0 Š †g � R and �jE0 W E

0 ! NG is an
embedding.

Proof We will show that the image of �G bounds a convex-cocompact end in NG

homeomorphic to †g �R. It will follow immediately that this end lifts to an end E0

as desired.

Let K �NG be a Gromov–Hausdorff limit of the sequence of convex cores CC.Nij /,
passing to another subsequence as necessary. Note that K is convex and contains
CC.NG/. Its boundary @K is the limit of the boundaries @CC.Nij /, and is therefore
the image of �G . Using convexity, it is then not hard to see that �G is an embedding.
Setting E DNG nK , we obtain a convex-cocompact end of NG . As @E Š†g , the
nearest point retraction gives a homeomorphism NG nK Š†g � .0;1/.

The following claim is the reason our pseudo-Anosov map f W S ! S was chosen to
have attracting lamination � in the Masur domain OH .

Claim �1 is faithful.

Proof An equivalent statement is that the embedding �1W S !N1 is �1 –injective.
So by the Loop Theorem, it suffices to check that �1 is injective on elements of
�1.S;p/ representable by simple loops on S .

Let  � S be a simple closed curve. Then f ij . /! � in PML; since � 2 OH ,
which is an open subset of PML, for large ij we have f ij . / 2 OH as well. In
particular, f ij . / is not compressible in H . It follows that

�ij . /D �ij ı hij ıf
ij . /
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is incompressible in Nij . Therefore �ij . /¤ Id for sufficiently large ij . A standard
application of the Margulis Lemma shows that �1. / ¤ Id as well (see, eg [28,
Theorem 7.1]).

Geometrically, the reason that �1 is faithful is that for large i all compressible curves
on @CC.Ni/ are very long. Since a fixed generating set for �1.S;p/ maps under our
markings to a set of loops on @CC.Ni/ with uniformly bounded length, this implies
that elements of �1.S;p/ representing compressible curves in Ni must for large i be
expressible only with very large words in the generators. So in the limit, there are no
compressible curves.

As �1W �1.S;p/! PSL.2;C/ is faithful, the Tameness Theorem implies that N1Š

S �R. From above, we know that one of the two topological ends of N1 is convex-
cocompact with associated conformal structure X . To analyze the geometry of the
other end, we must first prove the following:

Claim The lamination x� is not realized in N1 . In particular, N1 has a degenerate
end with ending lamination �.

Proof Fix a meridian m. By definition, the curve f �ij .m/ is in the kernel of the
representation �ij for all ij . On the other hand, the sequence .f �ij .m// converges
to x� in PML.S/. This implies that x� is not realized; see for instance Hossein and
Souto [34, Section 4].

Since N1 is homeomorphic to S�R and has a convex-cocompact end and a degenerate
end, we deduce that �1 is purely loxodromic.

Claim �i converges to �1 strongly.

Proof We need to show that the covering � W N1!NG is trivial. There is a neigh-
borhood of the degenerate end of N1 that is completely contained in the convex core
CC.N1/. So, N1 nE0 is the union of CC.N1/ and some compact set. A result of
Thurston [25] and Bonahon [8] implies that the injectivity radius of N1 is bounded
above inside of its convex core, so by extension there is an upper bound K for the
injectivity radius of N1 outside of E0 . Pick a point x 2NG deep enough inside its
convex-cocompact end so that inj.x;NG/ > K . Then no element of N1 nE0 can
project to x . Since � is injective on E0 , j��1.x/j D 1. Therefore � is trivial.

This finishes the proof of Proposition 3.1.
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Restricting the markings Finally, we show that we can restrict our representations
.�i/ to a subgroup of �1.S;p/ to create a sequence with the properties desired for our
example.

Claim After passing to a subsequence, there exists an index 2 subgroup � ��1.S;p/

such that for each i > 0,

.�i/�j� W �! �1.Ni ; �i.p//

is a surjection.

Proof The proof consists of two simple observations. First, if M is a handlebody
then there is an index 2 subgroup � � �1.@M / that surjects onto �1.M /. One
can take, for example, the kernel of the map taking an element of �1.@M / to its
mod–2 intersection number with any longitude in a standard meridian-longitude basis
for H1.@M /. Therefore, we can construct for each i an index 2 subgroup �i with
.�i/�W �i ! �1.Ni ; �i.p// a surjection. Since there are only finitely many index 2

subgroups of �1.S;p/, we can pass to a subsequence so that a single � � �1.S;p/

works for all i .

Consider now the sequence of representations �i j� W �!PSL.2;C/. The claim implies
that �i.�/D �i.�1.S;p//, so

�i.�/! �1.�1.S;p//

geometrically. Now �i! �1 algebraically, so �i j� ! �1j� . Therefore, since �1 is
faithful, �1.�/ has index 2 in �1.�1.S;p//. We have therefore provided a sequence
of representations converging algebraically to a faithful representation whose image
is an index 2 subgroup of the geometric limit, and so that the geometric limit has no
parabolics. This concludes our example.

An alternate method The difficult part of the example above is constructing a se-
quence of hyperbolic 3–manifolds .Ni/, each homeomorphic to the interior of a
genus g handlebody, that converges geometrically to a hyperbolic 3–manifold N1
homeomorphic to †g �R. Such a sequence can be assembled differently by working
backwards from the limit.

Fix a hyperbolic 3–manifold N1Š†g�R with no cusps, one degenerate end and one
convex-cocompact end. Such manifolds exist, for instance, by [30, Theorem 3.7]. If we
use that construction then a theorem of McMullen [29] shows that N1 is an algebraic
limit of one-sided maximal cusps. (In fact this is true no matter how N1 is constructed,
but that relies on the recent resolution of the Density Conjecture for surface groups [13]).
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Figure 2: Producing long handlebodies by gluing maximal cusps

This means that there is a sequence of marked hyperbolic 3–manifolds Mi Š†g �R
converging algebraically to N1 , where each Mi has one convex cocompact end and
one maximally cusped end.

As N1 has no cusps, Theorem 1.1 implies that there are base points pi 2Mi so that
.Mi ;pi/! .N1;p1/ geometrically. Furthermore, pi can be chosen to lie on the
component of @CC.Mi/ facing the convex-cocompact end of Mi . Note that since the
thrice-punctured sphere components of @CC.Mi/ disappear in the geometric limit,
their distances to pi grow without bound.

Passing to a subsequence, we may assume that the pinched pants decompositions on
the maximally cusped ends of Mi all have the same topological type. In other words,
we may choose a pants decomposition P �†g and homeomorphisms

Mi [ @cMi Š .†g � Œ0; 1�/ n .P � f0g/

for all i . Pick an identification of †g with the boundary of a genus g handlebody H

so that P is a pinchable collection of curves on @H ; the latter condition can be
ensured, for instance, by composing any fixed identification with a high power of a
pseudo-Anosov homeomorphism of @H whose attracting lamination lies in the Masur
domain. This allows us to endow H with a geometrically finite hyperbolic metric in
which P has been pinched. Then both @CC.H / and the bottom boundary components
of CC.Mi/ are identified with †g n P , so we may use Lemma 2.12 to glue them
together. This produces a sequence of hyperbolic 3–manifolds N 0i equipped with
isometric embeddings of CC.H / and the subset Ki � Mi that is the union of the
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convex core of Mi and its convex-cocompact end; we will denote the inclusion of the
latter by �i W Ki!N 0i . Since the frontier of Ki in Mi consists of the thrice-punctured
sphere components of @CC.Mi/, its distance to the base point pi 2Mi tends to infinity
with i . The same holds for the distances from �i.pi/ to the frontier of �i.Ki/�N 0i .
Therefore, the sequence of based manifolds .N 0i ; �i.pi// converges geometrically to
the same limit, .N1;p1/, as our original sequence.

Observe that N 0i is homeomorphic to the manifold obtained from H by pushing
P � @H into the interior of H and then drilling it out. The curves in P correspond to
rank 2 cusps of N 0i , so we may choose .x;y/–coordinates for the Dehn filling space
of each cusp so that .1; 0/ corresponds to filling a curve that is contractible in H and
.0; 1/ represents filling a curve homotopic into P . Then the manifold N 0i;n obtained
from .1; n/–Dehn filling each cusp of N 0i is homeomorphic to H (compare with [25,
Section 3]). If n is large, an extension of Thurston’s Dehn filling theorem due to
Bonahon and Otal [9] and Comar [19] implies that N 0i;n admits a unique hyperbolic
structure with the same conformal boundary as N 0i . Furthermore, there are base
points pi;n 2N 0i;n such that .N 0i;n;pi;n/! .N 0i ; �i.pi// geometrically. An appropriate
sequence .ni/ can then be chosen so that .N 0i;ni

;pi;ni
/ converges geometrically to

.N1;p1/. Setting Ni DN 0i;ni
and qi D pi;ni

finishes our work.

Example 2 Let � Š �1.†3/ ?Z be the fundamental group of a compression body
with exterior boundary of genus 4 and connected interior boundary of genus 3. There
is a sequence .�i/ in D.�/ converging algebraically to � and geometrically to G such
that

� G does not contain any parabolic elements.

� �.�/ has infinite index in G .

In the following, y� Š �1.†2/ ?Z will be the fundamental group of a compression
body with genus 3 exterior boundary and genus 2 interior boundary. The group � will
be the subgroup generated by the fundamental group of a double cover of the interior
boundary and a loop going around the remaining handle.

The representations here are constructed from those in the previous example by using
Klein–Maskit combination:

The Combination Theorem (See [28].) Let G1 and G2 be two discrete and torsion
free subgroups of PSL2 C . Suppose that there exist fundamental domains Di ��.Gi/

for Gi , each containing the exterior of the other. Then G D hG1;G2i is discrete,
torsion free and is isomorphic to G1 ?G2 . Moreover, if the groups Gi do not contain
parabolics then the same is true for G .
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Figure 3: The geometric convergence Ni !N1

Let us recall the players from Example 1. For clarity, we will append apostrophes
to all letters that represent objects from the first example. So, .�0i/ is a sequence
of representations in D.�1.†2// converging strongly to a faithful representation �01
without parabolics, and � 0��1.†2/ is an index 2 subgroup with �i.�

0/D�i.�1.†2//

for all i . For convenience, set G0i D �i.�1.†2// and G01 D �1.�1.†2//.

Our previous analysis implies that the convex cores of H3=G0i converge to the convex
core of H3=G01 in the Gromov–Hausdorff topology, so the limit sets ƒ.G0i/ converge
to ƒ.G01/ in the Hausdorff topology. Since the domains of discontinuity �.G0i/

and �.G01/ are all connected and nonempty, it follows that there are fundamental
domains Di for G0i Õ�.G0i/ converging in the Hausdorff topology to a fundamental
domain D1 for G01Õ�.G01/.

Pick some loxodromic element ˛2PSL.2;C/ with fixed points contained in the interior
of D1 (which is connected). Moreover, assume that its translation distance is large
enough so that there is a fundamental set for �.h˛i/ whose complement is entirely
contained within D1 . After discarding a finite number of terms, its complement will
also be contained in Di for all i . We now construct new representations

�i W
y� �! PSL.2;C/; where y� WD �1.†2/ ?Z

from �0i by sending 12Z to ˛ ..If Gi�PSL.2;C/ is the image of �i , the Klein–Maskit
combination theorem implies that Gi DG0i ? h˛i and is discrete, torsion free and has
no parabolics. The same statements apply when i D1, showing that �1 is faithful
with image

G1 DG01 ? h˛i :
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The manifolds NiDH3=Gi ; iD1; 2; : : : are all convex-cocompact and homeomorphic
to the interior of a genus 3 handlebody. The manifold N1DH3=G1 is homeomorphic
to a compression body with genus 3 exterior boundary and connected, genus 2 interior
boundary.

It follows, for instance, from the argument in [3, Prop 10.2] that �i ! �1 strongly.
Consider the subgroup

� WD � 0 ?Z� �1.†2/ ?ZDW y�:

Then �i j� converges algebraically to �1j� . Since �0i.�
0/D �0i.�1.†2// for all i 2N ,

we also have that
�i.�/D �i.y�/ for all i 2N:

So �i.�/ converges geometrically to �1.y�/DG1 . As �1 is faithful and Œy� W ��D1,
it follows that �1.�/ has infinite index in �1.y�/ D G1 . Therefore �i W � !

PSL.2;C/ is a sequence of representations for which the algebraic limit has infinite
index in the geometric limit. As mentioned above, the geometric limit G1 has no
parabolics. Since H3=�1.�/ is homeomorphic to a compression body with exterior
boundary of genus 4 and connected interior boundary of genus 3, we have provided
the desired example.

Example 3 Let � be the fundamental group of a compression body with exterior
boundary of genus 4 and connected interior boundary of genus 3. There is a sequence
.�i/ in D.�/ converging algebraically to a representation � and geometrically to a
group G such that

� �.�/ does not contain any parabolic elements.

� G is infinitely generated.

In [38], Thurston exhibited a sequence of representations of a closed surface group into
PSL.2;C/ converging geometrically to a group that is not finitely generated. However,
the algebraic limit of these representations contains parabolic elements. The idea here
is to attach pieces of the handlebodies in Example 2 to the manifolds in his sequence
so that the parabolics are hidden outside the algebraic limit.

To facilitate such a combination, we must build a variant of Example 2 in which each of
the handlebodies in the sequence is maximally cusped. Let M be a compression body
with genus 3 exterior boundary SE and connected, genus 2 interior boundary SI .
Assume that PE � SE is a pants decomposition consisting of curves in the Masur
domain of M .
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Claim There is a sequence of maximally cusped pointed hyperbolic 3–manifolds .Ni/,
each homeomorphic to the interior of a genus 3 handlebody, that converges geometri-
cally to a hyperbolic 3–manifold N1 homeomorphic to the interior of M in which
PE has been pinched. Moreover, the subsets CC.Ni/ � Ni converge to CC.N1/
geometrically.

Proof The sequence .Ni/ will be constructed in two steps. First, we will produce
a sequence of hyperbolic 3–manifolds Mi homeomorphic to the interior of M in
which both ends are maximally cusped. The sequence will converge geometrically
to the manifold N1 referenced in the statement of the claim. We will then use the
same gluing trick exploited in Example 1 to cap off the interior ends of each Mi

without changing the sequence’s geometric limit, thus producing the desired sequence
of handlebodies .Ni/.

Fix pants decompositions PE and PI for the boundary components of M , and assume
that every curve in PE lies in the Masur domain of M . If we choose a pseudo-Anosov
diffeomorphism f W SI ! SI , then for each i we have a new pants decompositions
f i.PI / for SI . It is not hard to check that for each i , PE [ f

i.PI / is a pinchable
collection of curves on @M (see Section 2.8). So, there is a sequence of marked
hyperbolic 3–manifolds Mi 2 AH.M / in which PE [ f

i.PI / have been pinched.
Note that in fact Mi lies in the deformation space AH.M;PE/ of hyperbolic structures
on the interior of M in which the curves of PE represent parabolics. Since PE consists
of curves lying in the Masur domain, the pared manifold .M;PE/ has incompressible
and acylindrical boundary. It follows from a theorem of Thurston [39, Theorem 7.1]
that AH.M;PE/ is compact. So after passing to a subsequence, we may assume that
.Mi/ converges algebraically to some N1 2 AH.M;PE/.

We claim that the only parabolic loops in N1 are those that are freely homotopic
into PE . The end of N1 facing SE is maximally cusped by PE , so there is no room
for additional cusps there. It therefore suffices to show that the end facing SI has no
cusps. Work of Thurston, Bonahon and Brock, implies that there is a continuous map

lengthW AH.M /�ML.SI /!R

that extends the function that assigns to an element N 2 AH.M / and a simple closed
curve  2 SI the shortest length of a curve in N homotopic to  (see [10]). Since
lengthMi

.f i.PI //D 0 for all i , in the limit we have lengthM1
.�/D 0, where � is

the attracting lamination of f . This implies that � cannot be geodesically realized by a
pleated surface in N1 homotopic to SI . Let yN1 be the cover of N1 corresponding
to �1.SI /. The end of N1 facing SI lifts homeomorphically to an end E of yN1 .
The other end of yN1 has no cusps and is therefore convex-cocompact by the Tameness
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Theorem and Thurston’s Covering Theorem (Theorem 2.2). Since � is filling and
unrealizable in yN1 , the argument in [28, Theorem 6.34] then shows that E is degenerate
with ending lamination �. In particular, E has no cusps. Projecting down, the same is
true for the end of N1 facing SI .

This shows that the convergence Mi!N1 is type preserving, so Theorem 1.1 implies
that the convergence is strong. So, base frames for Mi can be chosen so that the
sequence converges geometrically to N1 . The rest of the argument follows that given
at the end of Example 1. Fix a genus 2 handlebody H and choose a hyperbolic metric
on its interior in which a pants decomposition P �@H with the same topological type as
PI �SI has been pinched. We can then create for each i a hyperbolic 3–manifold N 0i
by removing from Mi the component of Mi nCC.Mi/ facing SI and gluing CC.H /

in its place. As in Example 1, the sequence .N 0i / converges geometrically to N1 .
Performing an appropriate Dehn filling on each N 0i yields a sequence of hyperbolic
3–manifolds .Ni/, each homeomorphic to the interior of a genus 3 handlebody, that
also converges geometrically to N1 .

We must show that CC.Ni/! CC.N1/ geometrically. First, every component of
@CC.N1/ is contained in a geometric limit of some sequence of components of
@CC.Ni/. These are all thrice-punctured spheres, however, so in fact we have that for
large i there are components of @CC.Ni/ that closely approximate each component of
@CC.N1/. However, @CC.Ni/ and @CC.N1/ both have 4 components, so for large i

they must almost coincide. From this, it is easy to check that CC.Ni/! CC.N1/
geometrically.

Fix a geometrically finite hyperbolic structure on †3 � R in which both ends are
maximally cusped, and let C be its convex core. Then there are pants decompositions
PC;� �†3 so that

C Š .†3 � Œ�1;C1�/ n .P� � f�1g[PC � fC1g/;

and we label the components of @C as positive and negative accordingly, so that
@C D @CC [ @�C . Let E be the union of all components of the complement of C

that face its positive boundary components. Assume that the pairs .†3;PC;�/ and
.SE ;PE/ have the same topological type, and that every curve in PC intersects some
curve in P� .

We now glue these pieces to the manifolds Ni and N1 from the previous Lemma. To
begin with, let

N 01 D CC.N1/th C tg C tg � � � :

Here, the gluing maps hW @CC.N1/! @�C and gW @�C ! @CC can be any isome-
tries that extend to maps .SE ;PE/! .†3;P�/ and .†3;PC/! .†3;P�/. This
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Figure 4: The construction of the manifold N �i

ensures that N 01 is constructed as in Lemma 2.12. Note that the inclusion map
CC.N1/!N 01 is �1 –injective.

Next, for large i geometric convergence and the gluing map h determine an identifica-
tion hi W @CC.Ni/! @�C . Define

N 0i D CC.Ni/thi
C tg � � � tg C„ ƒ‚ …

i times

tidE:

Recall that CC.Ni/ ! CC.N1/ geometrically. From this it follows that if N 0i is
given the base frame of Ni produced in the previous Lemma, then .N 0i / converges
geometrically to N 01 .

As in Example 1, performing .1; n/–Dehn filling on each of the cusps in N 0i produces,
for large n, a new hyperbolic manifold N 0i;n homeomorphic to the interior of a genus 3

handlebody. Also, an appropriate diagonal sequence N �i DN 0i;ni
can be chosen to

converge geometrically to N 01 . In summary, we have proven the following claim.

Claim There is a sequence of convex-cocompact pointed hyperbolic 3–manifolds N �i ,
each homeomorphic to the interior of a genus 3 handlebody, that converges geometri-
cally to a hyperbolic 3–manifold N 01 with infinitely generated fundamental group.

We now obtain the sequence of representations advertised in the statement of this
example by marking the manifolds N �i appropriately. Recall that the fundamental
group of the compression body M splits as a free product

�1.M /D �1.SI / ? h˛i Š �1.†2/ ?Z;

for some element ˛ 2 �1.M /. The inclusion map M Š CC.N1/! N 01 is �1 –
injective, so it determines an embedding

�1W �1.†2/ ?Z �! �1.N
0
1/:
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Then �1 identifies a finite generating set for �1.†2/ ?Z with a finite set of loops in
N 01 . For large i , geometric convergence provides an almost isometric embedding of
these loops into N �i ; therefore, there are induced homomorphisms

�i W �1.†2/ ?Z �! �1.N
�
i /:

In fact, �i is surjective, and therefore is a marking of �1.N
�
i /.

The sequence of marked hyperbolic manifolds .N �i ; �i/ converges algebraically to
the cover of N 01 corresponding to the image of �1 , and converges geometrically
to N 01 (as noted above). Note that �1.N

0
1/ is not finitely generated. We are not

quite done, however, because the algebraic limit here has cusps. To hide the cusps, we
will use the finite index trick exploited in Example 1, but for this to work the pants
decomposition PE used above must be chosen more carefully.

Claim There is a pants decomposition PE � SE consisting of curves f1; : : : ; ng

in the Masur domain with the property that no power of any i is conjugate into any
subgroup of �1.M / of the form � 0 ? h˛i, where � 0 < �1.SI ;p/ has index 2.

Deferring the proof for a moment, pick as in Example 1 and Example 2 an index 2

subgroup � 0 � �1.†2/ so that the restriction of

�i W �1.†2/ ?Z �! PSL.2;C/

to the subgroup � D � 0 ?Z surjects onto each �1.N
�
i /. If in constructing .N �i /, the

pants decomposition PE is chosen as indicated in the above claim, there will be no
parabolics in the algebraic limit of .�i j�/. However, since this is still a sequence of
markings for N �i , the geometric limit will be N 01 , which has infinitely generated
fundamental group. This finishes the example.

Proof of Claim Although the claim is purely topological, the proof we give uses
3–dimensional hyperbolic geometry. It would be nice to give a more straightforward
proof; also, it is possible that the second part of the conclusion is satisfied by any pants
decomposition of curves in the Masur domain.

To begin, construct by some means a hyperbolic manifold N homeomorphic to the
interior of M that has no cusps and in which both ends are degenerate. One way to
produce N is as follows. First, find a hyperbolic manifold homeomorphic to †3 �R
that has one degenerate end and one maximally cusped end. This can be done using
an argument similar to the construction of N1 above. We can then glue its convex
core to the convex core of N1 as in Lemma 2.12 and fill the resulting cusps to create
a totally degenerate hyperbolic manifold N homeomorphic to the interior of M . See
Bonahon and Otal [9] for information on Dehn filling geometrically infinite manifolds.
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Fix an index 2 subgroup � 0��1.SI ;p/, and let N� 0 be the cover of N corresponding
to � 0? h˛i. Then N� 0 has a degenerate end homeomorphic to †3� Œ0;1/ that double
covers the genus 2 end of N . Adjoining a loop in N� 0 representing ˛ to a level surface
of this end and thickening produces a compact core for N� 0 homeomorphic to the
interior of a compression body with genus 4 exterior boundary and connected, genus 3

interior boundary. The Tameness Theorem of Agol [1] and Calegari and Gabai [15]
implies that N� 0 is itself homeomorphic to the interior of such a compression body,
and a theorem of Canary [17] implies that its genus 4 end, yE , is either degenerate
or convex-cocompact. It cannot be that both ends of N� 0 are degenerate, for then
Canary’s Covering Theorem (Theorem 2.2) would imply that � 0 ? h˛i is finite index in
�1.N /. Therefore, yE is convex-cocompact.

Since the genus 3 end, E , of N is degenerate, it has an ending lamination � � SE .
Canary has shown that � lies in the Masur domain of M (see [17] for a proof of
this and the uniqueness of �). Choose a pants decomposition PE � SE consisting
of curves that lie close to � in PML.SE/. The Masur domain of M is an open
subset of PML.SE/, so we may assume that each curve in PE lies inside of it.
Furthermore, their geodesic representatives in N lie very deep inside of E . As yE is
convex-cocompact, the convex core of N� 0 covers a subset of N that has bounded
intersection with E . So, we may assume that the geodesic representatives of curves in
PE do not intersect its image. If some power of a curve in PE were conjugate into
� 0 ? h˛i, then its geodesic representative in N would lift to a closed geodesic in N� 0 .
Every closed geodesic in N� 0 is contained in its convex core, so this is impossible.

This last paragraph shows that as long as the curves in PE are chosen within a small
neighborhood around the ending lamination �, then no powers of them are conjugate
into subgroup of �1.M / of the form � 0 ? h˛i, where � 0 is a fixed index 2 subgroup
of �1.SI /. However, there are only finitely many index 2 subgroups of �1.SI /, so it
follows that if we choose PE from the intersection of all such neighborhoods we can
ensure that no power of any of its curves is conjugate into any such � 0 ? h˛i.

4 Proofs of Theorems 1.4 and 1.5

Before beginning the bulk of the proof, we will present a technical lemma whose proof
requires a bit of differential geometry. Afterwards, Theorems 1.4 and 1.5 will follow
from purely topological arguments.

Recall from Proposition 2.3 that a hyperbolic 3–manifold M with finitely generated
fundamental group and no cusps contains a compact core C �M for which each
component of @C facing a convex-cocompact end of M is smooth and strictly convex.
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For convenience, let Scc be the union of those components of @C facing convex
cocompact ends and Ecc the union of the adjacent components of M nC . Then Ecc

is homeomorphic to Scc � .0;1/ via “radial coordinates”:

RW Scc � .0;1/!Ecc; R.x; t/D expx.t�.x//;

where � is the outer unit-normal vector field along Scc .

If f W C !N is a smooth immersion into some complete hyperbolic 3–manifold N ,
it has a natural radial extension xf W C [Ecc!N . Namely, there is a radial coordinate
map along the image of Scc :

Rf W Scc � .0;1/!N; Rf .x; t/D expf .x/.t�f .x//;

where �f .x/ is the unit vector in TNf .x/ orthogonal to dfx.TSx/ that points away
from f .C /, and one can then define

xf .p/D

(
Rf ıR�1.p/ p 2Ecc;

f .p/ p 2 C:

Observe that xf is continuous, and differentiable everywhere but on Scc .

In the situations where we will find radial extensions useful, the map f will be very
close in the C 2 topology to a Riemannian immersion. In particular, the (strict) convexity
of the surface Scc will persist in the image. This implies a convenient regularity in the
radial extension:

Lemma 4.1 If f W C !N is a smooth immersion with f .Scc/ convex, there exists
some L> 0 so that for all p 2Ecc and v 2 TMp ,

1

L
�
kd xfp.v/k

kvk
�L:

The following global statement comes from applying Lemma 4.1 and a compactness
argument on C .

Corollary 4.2 (Radial extensions are locally bilipschitz) If f W C !N is a smooth
immersion with f .Scc/ convex, there exists some L > 0 so that every p 2 C [Ecc

has a neighborhood on which f is L–bilipschitz.

Proof of Lemma 4.1 Consider a component E�Ecc , and let S �Scc be the adjacent
component of @C . Here, xf is the composition Rf ı .R/

�1 of radial coordinate maps,

Geometry & Topology, Volume 14 (2010)



Algebraic and geometric convergence of discrete representations into PSL2C 2459

so to prove the Lemma it suffices to find a constant L so that for all .x; t/2S�.0;1/

and v 2 TSx �R,

(4-1)
1

L
�
k.dRf /.x;t/.v/k

kdR.x;t/.v/k
�L:

Since the ratio is one when v is contained in the R factor, from now on we will assume
v 2 TSx .

We first estimate kdR.x;t/.v/k. Given x 2 S and v 2 TSx , let g.s/ be a curve in S

with g.0/D x and g0.0/D v , and consider the geodesic variation

s.t/ WDR.g.s/; t/D expg.s/.t�.g.s///:

The corresponding Jacobi field Jx;v.t/D
d
ds

R.g.s/; t/jsD0 along the geodesic 0.t/

then satisfies Jx;v.t/D dR.x;t/.v/.

The Jacobi-field Jx;v.t/ is determined by its initial conditions

Jx;v.0/D dR.x;0/.v/;

r

dt
Jx;v.t/jtD0 D

r

dt

d

ds
expg.s/

�
t�.g.s//

�ˇ̌
tD0

and

D
r

ds

d

dt
expg.s/

�
t�.g.s//

�ˇ̌
tD0

D
r

ds
�.g.s//DrdR.x;0/.v/�

Therefore, we have

Jx;v.t/D cosh.t/E1.t/C sinh.t/E2.t/;

where E1.t/ and E2.t/ are the parallel vector fields along 0 with E1.0/DdR.x;0/.v/

and E2.0/DrdR.x;0/.v/� . That the right-hand side satisfies the Jacobi equation follows
quickly from the fact that E1.t/ and E2.t/ are both orthogonal to  0

0
.t/.

The triangle inequality, together with the fact that the vector fields E1 and E2 have
constant length, shows that

kJx;v.t/k � cosh.t/.kdR.x;0/.v/kCkrdR.x;0/.v/�k/:

On the other hand we have

kJx;v.t/k
2
D cosh.t/2kdR.x;0/.v/k

2
C sinh.t/2krdR.x;0/.v/�k

2

C2 cosh.t/ sinh.t/hdR.x;0/v;rdR.x;0/.v/�i:
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By convexity of Scc , the last term in the sum is positive. A little bit of algebra and the
fact that Jx;v.t/D dR.x;t/.v/ yields

(4-2)
sinh.t/

2
�

kdR.x;t/.v/k

kdR.x;0/.v/kCkrdR.x;0/.v/�k
� cosh.t/:

Since f .Scc/ is convex, a similar computation shows

(4-3)
sinh.t/

2
�

kd.Rf /.f .x/;t/.v/k

kd.Rf /.f .x/;t/.v/kCkrd.Rf /.f .x/;t/v�f k
� cosh.t/:

By compactness the ratio between the denominators in (4-2) and (4-3) is uniformly
bounded from above and below. In other words, there is some positive constant c with

(4-4)
sinh.t/

2c cosh.t/
�
kd.Rf /.f .x/;t/.v/k

kdR.x;t/.v/k
�

2c cosh.t/
sinh.t/

for all .x; t/ 2 S � .0;1/ and v 2 TxS . If t is constrained away from zero then the
lower and upper bounds in (4-4) are bounded by positive numbers from below and
above respectively. When t D 0 both dR.x;t/ and d.Rf /.x;t/ have maximal rank, so
constant positive bounds arise from a compactness argument. This yields (4-1) and
concludes the proof of the Lemma.

We are now ready to prove the main result of this section.

Theorem 1.5 Let � be a finitely generated group and .�i/ a sequence in D.�/.
Assume that .�i/ converges algebraically to a representation � and geometrically to a
subgroup G of PSL2 C . If

� �.�/ does not contain parabolic elements, and
� every degenerate end of H3=�.�/ has a neighborhood which embeds under the

covering H3=�.�/!H3=G ,

then G D �.�/.

Proof Before going further, set MADH3=�.�/, MGDH3=G and MiDH3=�i.�/

for i D 1; 2; : : : , choose a base frame !H3 for hyperbolic space H3 and let !i , !A

and !G be the corresponding base frames of Mi , MA and MG respectively. By
Proposition 2.7, the pointed manifolds .Mi ; !i/ converge geometrically to .MG ; !G/.
We may assume that MG is noncompact, for otherwise Mostow’s Rigidity Theorem
implies that the sequence .Mi/ must be eventually stable, so certainly G D �.�/.

We claim MG has infinite volume. If not, it has finite volume and .Mi/ is obtained by
performing Dehn filling on MG with larger and larger coefficients [6, Theorem E.2.4].
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Then there must be parabolics in the algebraic limit �.�/. For otherwise, combining
a result of Canary [17] with the Tameness Theorem of Agol [1] and Calegari and
Gabai [15] implies that MADH3=�.�/ is either convex-cocompact, or has a degenerate
end. The first case is impossible by Marden’s Stability Theorem [27] and the second
violates Canary’s Covering Theorem (Theorem 2.2).

There is a covering map � W MA!MG induced by the inclusion �.�/�G , and our
goal is to show that this is a homeomorphism. Recall that Proposition 2.3 provides an
exhaustion of MA by compact cores C �MA such that

(1) if a component S of @C faces a convex cocompact end of MA then S is smooth
and strictly convex.

(2) if a component S of @C faces a degenerate end of MA then the restriction
�jS W S! �.S/ is an embedding. (Proposition 2.3 only gives that �jS is finite-
to-one, but the second assumption in the statement of the theorem implies that
we may take �jS to be an embedding.)

Fixing a compact core C0 �MA , we may also assume that all C are large enough to
contain C0 and satisfy the following property:

(3) �.C0/\�.S/D∅ for any component S � @C facing a degenerate end of MA .

Then to prove that � is a homeomorphism, it clearly suffices to show that �jC is
injective for all such compact cores C �MA .

Fix a compact core C �MA as described above. For sufficiently large i , the geo-
metric convergence .Mi ; !i/! .MG ; !G/ supplies an almost isometric embedding
�i W �.C / ,!Mi ; so for large i , we have a map

fi W C !Mi ; fi D �i ı .�jC /

that behaves much like the restriction of a nearly Riemannian covering map. In fact,
fi is �1 –surjective. For if S � � is a finite generating set then C contains loops
based at !A representing the elements of �.S/; fi then maps these loops to loops
in Mi representing �i.S/, which generate �1.Mi/Š �i.�/. We aim to show that fi

is actually an embedding, as the same will then be true for �jC .

We first consider the case where MA is convex-cocompact, as the proof is particularly
simple. In this case, every component of @C is strictly convex and faces a convex-
cocompact end of MA , so fi radially extends (as in the beginning of the section) to a
globally defined map

xfi W MA!Mi :
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Figure 5: Extending fi D �i ı� to a cover of Mi

We claim that this is a covering map for i� 0. To see this, note that when i is large, fi

is C 2 –close to a local isometry, so the strict convexity of @C persists after applying fi .
Therefore Corollary 4.2 applies to show that xfi is (uniformly) locally bilipschitz. It is
well-known that any locally isometric map between complete Riemannian manifolds
is a covering map, and in fact the same proof applies to locally bilipschitz maps. So,
xfi W MA!Mi is a covering map. However, fi is �1 –surjective, so its extension xfi is
a �1 –surjective covering map, and therefore a homeomorphism. This shows that fi is
injective, and in particular �jC is as well.

In the general case, the argument needs modification because one cannot radially
extend fi into the degenerate ends of MA . To deal with this, we will alter the
problematic parts of MA so that an extension of fi is obvious.

Claim If S � @C faces a degenerate end of MA , then the restriction of fi to S is an
embedding with image a separating surface in Mi .

Proof The map fi jS D�i ı�jS is a composition of embeddings, so it is an embedding
itself. Property .3/ above implies that every component S � fi.S/ is disjoint from
fi.C0/. However, the argument given to show that fi jC is �1 –surjective also applies to
fi jC0

, so every loop in Mi is homotopic into fi.C0/ and therefore has trivial algebraic
intersection with S . Therefore S is separating.

For each such S , let PS
i be the closure of the component of Mi n fi.S/ that does

not contain fi.C0/. Then if Ecc is the union of the components of MA nC that are
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neighborhoods of convex cocompact ends, one can construct a new 3–manifold

M 0
A D b.C [Eccb/tfi

�[
S

PS
i

�
by gluing each PS

i to C [Ecc along S . The map fi extends naturally to a continuous
map xfi W M

0
A
!Mi ; the extension into Ecc is radial and on PS

i we use the natural
inclusion into Mi . It is easy to see that xfi is a �1 –surjective covering map, so the
proof ends the same way it did in the previous case and MA DM 0

A
.

As in the introduction, Theorem 1.5 has the following more aesthetic consequence.

Theorem 1.4 Let � be a finitely generated group and .�i/ a sequence in D.�/. As-
sume that .�i/ converges algebraically to a representation � 2D.�/ and geometrically
to a subgroup G of PSL2 C . If

� �.�/ does not contain parabolic elements, and

� there is no  2G n �.�/ with  k 2 �.�/ for some k � 2,

then G D �.�/.

Proof As in the previous proof, it suffices to assume that MA D H3=�.�/ and
MG DH3=G both have infinite volume. Canary’s Covering Theorem (Theorem 2.2)
then implies that every degenerate end E of MA has a neighborhood that finitely covers
a neighborhood of a degenerate end E 0 of MG . More precisely, there are neighbor-
hoods UE and UE 0 of E and E 0 , a finite covering � W @E! @E 0 , and homeomorphisms

�W @E �R! UE ;  W @E 0 �R! �.UE/

with . �1 ı�jUE ı�/.x; t/D .�.x/; t/.

We claim that since there is no  2G n�.�/ with  k 2 �.�/, each of these coverings
must be injective. For otherwise, one could find a path  W Œ0; 1�!UE with  .0/¤ .1/
but �. .0//D �. .1//. Then � ı  represents an element  2G n �.�/. Moreover,
since the covering �jUE is finite-to-one, we must have  k 2 �.�/ for some k � 2.

Therefore, every degenerate end of MA has a neighborhood that embeds in MG . So,
Theorem 1.5 applies.

Before concluding this section, observe that Theorem 1.4 together with Theorem 1.3
imply Theorem 1.1 of Anderson and Canary mentioned in the introduction.
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5 Attaching roots

In this section we prove:

Proposition 5.1 Let M and N be hyperbolic 3–manifolds with infinite volume and
let � W M ! N be a covering. Assume that N has no cusps, that �1.M / is finitely
generated and that M has a degenerate end which does not embed under the covering � .
Then there is a hyperbolic 3–manifold M 0 with finitely generated fundamental group,
with

j�.M 0/j< j�.M /j

and coverings � 0W M !M 0 and � 00W M 0!N with � D � 00 ı � 0 .

Note that since M and M 0 are not closed, the ratio of �.M / and �.M 0/ is not
necessarily the degree of the covering M !M 0 .

Continuing with the notation above, by Proposition 2.3 the manifold M has a standard
compact core C with the property that if a component S of @C faces a degenerate end
of M then the restriction of � to S is a covering onto an embedded surface in N . The
assumption that M has a degenerate end which does not embed under the covering �
implies that there is actually a component S0 of @C such that

� jS0
W S0! �.S0/

is a nontrivial covering. Observe that by the Covering Theorem (Theorem 2.2) the
embedded surface �.S0/�N faces a degenerate end of N .

Choosing a base point � 2 S0 , we set

� D �1.M;�/ and H D �1.�.S0/; �.�//:

The desired manifold M 0 will be the cover of N corresponding to the subgroup

� 0 D h��.�/;H i � �1.N; �.�//:

By construction, �1.M
0/ Š � 0 is finitely generated and there are covering maps

� 0W M !M 0 and � 00W M 0 ! N with � D � 00 ı � 0 , so it remains only to prove that
j�.M 0/j< j�.M /j.

For our purposes, the most useful way to interpret the Euler characteristic will be
through its relation to the dimension of the deformation spaces CH.M / and CH.M 0/

of convex-cocompact hyperbolic structures on M and M 0 (see Section 2.4). Observe
that since M and M 0 have finitely generated fundamental group and no cusps, they are
homeomorphic by the Tameness Theorem to the interiors of compact hyperbolizable 3–
manifolds SM and SM 0 whose boundary components have negative Euler characteristic.
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It follows from Section 2.4 that CH.M / and CH.M 0/ are complex manifolds of C–
dimensions 3j�.M /j and 3j�.M /j, respectively, and that there is a holomorphic map

.� 0/�W CH.M 0/! CH.M /

defined by lifting hyperbolic structures using � 0W M !M 0 . We will prove:

Claim .� 0/� has discrete fibers and is not open.

Since any holomorphic map with discrete fibers is open unless the dimension of the
domain is smaller than the dimension of the image, we deduce from the claim that

3j�.M 0/j D dimC CH.M 0/ < dimC CH.M /D 3j�.M /j:

So j�.M 0/j< j�.M /j and hence Proposition 5.1 will follow once we prove the claim.

The first part of the claim is almost immediate. If � 0�W �! � 0 is the inclusion induced
by the covering � 0W M !M 0 and H < � 0 is as above, then by construction
� H is torsion-free.
� � 0 is generated by � 0�.�/ and H .
� � 0�.�/\H has finite index in H .

It follows from Corollary 2.11 that a faithful representation � ! PSL2 C has only
finitely many extensions to � 0 . Therefore, hyperbolic structures on M 0 that map
under .� 0/� to the same element of CH.M / have only finitely many options for
holonomy representations, up to conjugacy. However, the elements of CH.M 0/ with
holonomy in any fixed conjugacy class form a discrete subset of CH.M 0/ [28, page 154],
so .� 0/� must have discrete fibers.

To show that it is not open, we use the Ahlfors–Bers parameterization to produce from
.� 0/� a holomorphic map

ˇW T .@ SM 0/Š CH.M 0/
.� 0/� // CH.M /Š T .@ SM /:

The Teichmuller spaces of @ SM 0 and @ SM split as products of the Teichmuller spaces of
their connected components; let S � @ SM be the component adjacent to the degenerate
end that the surface S0 faces. The Covering Theorem (Theorem 2.2) implies that � 0

extends to a nontrivial cover x� W S ! S 0 onto some connected component S 0 � @ SM 0 .
With respect to the decompositions

T .@ SM /D T .S/� T .@ SM nS/; T .@ SM 0/D T .S 0/� T .@ SM 0
nS 0/

the map ˇ can be written as

ˇ.�1; �2/D .x�
��1; y̌.�1; �2//
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where x��W T .S 0/ ! T .S/ is the map induced by the covering x� W S ! S 0 . This
covering is nontrivial, so the image of x�� has positive codimension and hence the same
holds for the image of ˇ . Therefore ˇ is not open, implying the same for .� 0/� .

Remark A purely homological computation yields that under the same assumptions
as in Proposition 5.1 we have b1.M

0/ < b1.M / where b1. � / is the first Betti number
with R–coefficients. However, this homological argument does not seem to work in
the relative case that we will discuss in Section 7. This is why we choose to work with
Euler characteristics and deformation spaces instead.

6 Proof of Theorem 1.2

Recall the statement of Theorem 1.2:

Theorem 1.2 Let � be a finitely generated group and .�i/ a sequence in D.�/. As-
sume that .�i/ is algebraically convergent and converges geometrically to a subgroup G

of PSL2 C . If G does not contain parabolic elements, then G is finitely generated.

If the hyperbolic 3–manifold H3=G is compact then G is obviously finitely generated.
Assume from now on that this is not the case; since G does not contain parabolic
elements, this assumption implies that H3=G has infinite volume.

Among all finitely generated subgroups of G which contain �.�/, choose H such that
the Euler characteristic of the associated hyperbolic 3–manifold H3=H has minimal
absolute value. Since H � G we have a covering H3=H !H3=G . By minimality,
we obtain from Proposition 5.1 that every degenerate end of H3=H embeds under this
cover.

On the other hand, the assumption that H contains �.�/ implies, by Proposition 2.9,
that there is a sequence of representations �i W H ! PSL2 C converging algebraically
to the inclusion of H in G such that the groups �i.H / converge geometrically to G .
Theorem 1.5 implies now that H D G . In particular, G is finitely generated. This
concludes the proof of Theorem 1.2.

7 Parabolics

It is a well established fact that most theorems in the deformation theory of Kleinian
groups that hold in the absence of parabolics hold also, in some probably weaker
form, in the presence of parabolics. It is also well known that proofs in the case with
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parabolics are much more cumbersome and technical but follow the same arguments
as the proofs in the purely hyperbolic case. For the sake of clarity and transparency
of exposition, we decided to prove Theorem 1.2 only in the absence of parabolics.
We state now the general results and discuss what changes have to be made in the
arguments given above.

Throughout this section we assume that the reader is familiar with basic geometric
facts about hyperbolic manifolds with cusps [28].

As mentioned in the introduction, Evans [20] obtained the following extension of
Theorem 1.1.

Theorem 7.1 (Evans [20]) Assume � is a finitely generated group and that .�i/

is a sequence of faithful representations in D.�/ converging algebraically to some
representation � . If the convergence �i ! � is weakly type preserving, then �i

converges geometrically to �.�/.

An algebraically convergent sequence �i ! � is weakly type preserving if for every
 2 � such that �. / is parabolic, there is some i 2N such that �i. / is parabolic
for all i � i .

Theorem 1.4 can be extended to this setting as follows:

Theorem 7.2 Let � be a finitely generated group, and .�i/ a sequence in D.�/
converging algebraically to a representation � and geometrically to a subgroup G of
PSL2 C . If

� the convergence �i! � is weakly type preserving, and
� there is no  2G n �.�/ with  k 2 �.�/ for some k � 2,

then G D �.�/.

As before, we will actually prove a stronger statement.

Theorem 7.3 Let � be a finitely generated group, and .�i/ a sequence in D.�/
converging algebraically to a representation � and geometrically to a subgroup G of
PSL2 C . If

� the convergence �i! � is weakly type preserving, and
� every degenerate NP–end of H3=�.�/ has a neighborhood that embeds under

the covering H3=�.�/!H3=G ,

then G D �.�/.
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Recall that an NP–end of a hyperbolic 3–manifold M is an end of the manifold
obtained from M by removing neighborhoods of all of its cusps. The full statement of
Canary’s Covering Theorem [18] shows that if a covering M !N of infinite volume
hyperbolic 3–manifolds is not one-to-one on some degenerate NP–end, then there is
some  2G n�.�/ with  k 2 �.�/ for some k � 2. One can see [28] for more details
on the Covering Theorem and NP–ends.

Proof Let Mi DH3=�i.�/, MADH3=�.�/, MG DH3=G and let � W MA!MG

be the covering induced by the inclusion �.�/�G . We first recall the basic idea of
the proof in the case without cusps. First, there are arbitrarily large compact cores
C of MA such that the components of @C facing convex cocompact ends of MA

are strictly convex. Using our second hypothesis above, we can also arrange that
the components of these cores facing degenerate ends embed under the covering
� W MA!MG . Composing the restriction �jC with the almost isometric embeddings
�.C /!Mi supplied by geometric convergence, we obtain maps fi W C !Mi such
that

(1) if a component S of @C faces a degenerate end of MA then fi jS is an embedding
for all large i .

(2) if S � @C faces a convex cocompact end then fi jS is a convex immersion.

We then construct for large i a 3–manifold Ni containing C and a covering xfi W Ni!

Mi with xfi jC D fi . This covering is �1 –surjective and hence a diffeomorphism, so
in particular C embeds under the covering � W MA!MG . Since C can be chosen to
be arbitrarily large, this proves that the covering � is trivial and hence G D �.�/.

If there are parabolics in the algebraic limit, the ends of MA are more complicated and
refinements of the tools above are needed. The natural replacement of the compact
core C is a submanifold C �MA with the following properties:

(1) If a component S of @C faces a degenerate NP–end of MA then S embeds
under the covering MA!MG .

(2) If S faces a geometrically finite NP–end then S is strictly convex,

(3) The complement in C of the �–cuspidal part M cusp<�
A

of MA is a standard
compact core, where � is the Margulis constant.

The construction of such a submanifold is the same as that used to produce the compact
cores above: one takes a large metric neighborhood of the convex core CC.MA/ and
deletes standard neighborhoods of the degenerate NP–ends of MA . In this case, how-
ever, the resulting manifold C will contain parts of the cusps of MA , and will therefore
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be noncompact. This is a problem, since �.C /�MG will also be noncompact and
the almost isometric embeddings from MG to Mi provided by geometric convergence
are only defined on compact sets. However, we still can use the almost isometric
embeddings to produce locally bilipschitz maps fi W C nM cusp<�

A
!Mi ; and we will

show that if the convergence �i ! � is weakly type preserving then these can be
extended to locally bilipschitz maps

yfi W C !Mi

converging uniformly on compact sets to the restriction �jC . The proof of Theorem
7.2 is then word-by-word the same as the proof of Theorem 1.4 with the maps yfi

playing the role of fi .

It remains to construct yfi . Consider the maps

fi W C nM cusp<�
A !Mi

described above, and let � be a small positive constant. If i is large then fi is locally
.1C�/–bilipschitz; combined with the fact that the convergence �i! � is weakly type
preserving and MA has finitely many cusps, this implies that fi sends loops homotopic
into the cusps of MA to parabolic loops in Mi with nearly the same length. It follows
that C \@M cusp<�

A
is mapped under fi into a small neighborhood of @M cusp<�

i . After
a small perturbation, we can then arrange that

(1) fi.C \ @M
cusp<�

A
/� @M cusp<�

i .

(2) Dfi sends vectors orthogonal to @M cusp<�
A

to vectors orthogonal to @M cusp<�
i .

Brock and Bromberg [12, Lemma 6.16] show how to accomplish such a perturbation
with a bit of finesse; in particular, their argument shows that we can still assume that
fi is locally bilipschitz.

Recall that C was constructed by removing standard neighborhoods of the degenerate
NP–ends of MA from its convex core. These neighborhoods can be chosen so that their
intersections with M cusp<�

A
are foliated by geodesic rays orthogonal to @M cusp<�

A
; the

intersection C \M cusp<�
A

then enjoys the same property. Combining this with (1) and
(2) above allows us to extend fi to a locally bilipschitz map yfi W C !Mi as follows:
define yfi to coincide with fi on C nM cusp<�

A
and map geodesic rays in C \M cusp<�

A

orthogonal to @M cusp<�
A

isometrically to geodesic rays orthogonal to @M cusp<�
i . A

quick computation in the upper half space model for H3 verifies that the extension yfi

is also locally .1C�/–bilipschitz. It follows that yfi ! �jC uniformly on compact
subsets.
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Observe that as in the case without parabolics, we can replace the second hypothe-
sis of Theorem 7.2 with the condition that every degenerate NP–end of MA has a
neighborhood that embeds in MG .

A version of Proposition 5.1 that applies to manifolds with cusps is also readily
established:

Proposition 7.4 Let M and N be hyperbolic 3–manifolds with infinite volume and
let � W M ! N be a covering. Assume that �1.M / is finitely generated and that M

has a degenerate NP–end that does not embed under the covering � . Then there is a
hyperbolic 3–manifold M 0 with finitely generated fundamental group, with

3j�.M 0/j � #fcusps in M 0
g< 3j�.M /j � #fcusps in M g

and coverings � 0W M !M 0 and � 00W M 0!N with � D � 00 ı � 0 .

The proof is the same as that of Proposition 5.1, except that instead of considering
the deformation space CH.M / of convex-cocompact hyperbolic structures on M one
uses geometrically finite metrics whose parabolic loci coincide with that of the original
hyperbolic structure on M . The space of such metrics, up to isometries isotopic to the
identity map, is by [24, Theorem 8.44] a complex manifold of C–dimension

�3�.M /� #fcusps in M g � 0:

After these observations the proof of Proposition 7.4 is the same as the proof of
Proposition 5.1.

Having provided versions of Theorem 1.4 and Proposition 5.1 that apply to representa-
tions with parabolics, we are almost ready to discuss the general form of Theorem 1.2.
Before doing so, we need a definition:

Definition Assume that a sequence of subgroups .Gi/ of PSL2 C converges geomet-
rically to a subgroup G . We say that the convergence Gi!G is geometrically weakly
type preserving if for every g 2 G parabolic there is a sequence .gi/ with gi 2 Gi

converging to g and with gi parabolic for all but finitely many i .

In the terminology of [14], a geometrically convergent sequence of subgroups converges
in a geometrically weakly type preserving manner if and only if the associated sequence
of pointed manifolds has uniform length decay.
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The general version of Theorem 1.2 reads now:

Theorem 7.5 Let � be a finitely generated group and .�i/ a sequence in D.�/ that
converges algebraically to a representation � and geometrically to a subgroup G of
PSL2 C . If the convergence �i !G is geometrically weakly type-preserving, then G

is finitely generated.

Proof As in the proof of Theorem 1.2, we choose a finitely generated subgroup H �G

containing �.�/ and minimizing the quantity

3j�.H3=H /j � 2 #fcusps in H3=H g � 0:

We claim that G D H . By Proposition 2.9, there are for large i representations
�i W H! PSL2 C with �i.H /D �i.�i/ converging algebraically to the inclusion of H

in G . In particular, G is the geometric limit of the groups �i.H /. The assumption that
the convergence �i.H /D �i.�/!G is geometrically weakly type-preserving implies
that the algebraic convergence of �i to the inclusion of H into G is (algebraically)
weakly type preserving. In particular we deduce from Theorem 7.3 that either G DH

or some degenerate NP–end of H3=H has no neighborhood that embeds under the
cover H3=H !H3=G . The second possibility is ruled out by the choice of H and
Proposition 7.4, so G DH and therefore is finitely generated.

Appendix A Some assorted results

As mentioned in the introduction, we discuss here to which extent some other results
concerning faithful representations remain true if the condition of faithfulness is relaxed.

Definition A sequence .�i/ of representations is eventually faithful if for all  2�nf1g
there is some i such that  … Ker.�i/ for all i � i .

Many algebraically convergent sequences determine an eventually faithful sequence.
The following well-known lemma formalizes this; its proof is a simple application of
the Jørgensen inequality.

Lemma A.1 Let .�i/ be a sequence of representations in D.�/ that converges alge-
braically to a representation � . Then given any  2 � , we have that  2 ker � if and
only if there exists i0 2N such that  2 ker �i for all i � i0 .

Therefore, if ker � is finitely normally generated then for large i the representations �i

factor through �= ker.�/; the resulting sequence of representations of �= ker.�/ will
be eventually faithful.
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Proof One direction of the implication is clear. For the other direction, we assume
that  2 ker � and try to prove that  2 ker �i for large i .

As D.�/ is closed the representation � is nonelementary, so there are two elements
˛1; ˛2 2 � such that �.˛1/ and �.˛2/ are isometries of H3 of hyperbolic type and
have distinct axis. Since

�i. / �! �. /D Id;

we have for sufficiently large i that each of the two pairs f�i. /; �i.˛k/g violates the
Jørgensen inequality (see [28, Theorem 2.17]). Therefore, both groups h�i. /; �i.˛k/i,
k D 1; 2, are abelian. But since �i.˛1/ and �i.˛2/ have different axes the only way
that both of these groups can be abelian is if �i. / is elliptic or trivial. This is a
contradiction, since it is nontrivial by assumption and cannot be elliptic since �i is
discrete and torsion-free.

We assume from now on that .�i/ is an eventually faithful sequence of representations
in D.�/. If S � � is a finite generating set, then each representation �i determines a
convex function

d�i
W H3

!R; d�i
.x/D

X
2S

dH3.x; �i. /x/:

Conjugating our representations by PSL2 C if necessary, we may assume that some
base point 0 2H3 is the unique minimum of each d�i

. In this case we say that the
sequence .�i/ consists of normalized representations and we set d�i

D d�i
.0/. It is

well-known that the sequence .�i/ contains an algebraically convergent subsequence if

lim inf d�i
<1:

Otherwise, the sequence of actions of � via �i on the scaled hyperbolic spaces
.1=d�i

/H3 contains a subsequence which converges in the equivariant Gromov–
Hausdorff topology to a nontrivial action � Õ T on some real tree T . Recall that an
action on a tree is called trivial if it has global fixed points. Morgan and Shalen [33],
Paulin [37] and Bestvina [7] proved that if the representations �i are faithful the action
� Õ T is small , meaning that the stabilizers of nondegenerate segments in T are
virtually abelian. Their arguments still apply if the sequence is only eventually faithful;
see Hossein and Souto [34]:

Theorem A.2 Every eventually faithful sequence of normalized representations in
D.�/ has a subsequence that either converges algebraically in D.�/ or converges in
the Gromov–Hausdorff topology to a nontrivial small action �ÕT on a R–tree T .
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It is a theorem of Morgan and Shalen [33] that if the fundamental group of a compact,
irreducible and atoroidal 3–manifold M admits a nontrivial small action on a real
tree, then either @M is compressible or there are essential properly embedded annuli
in .M; @M /. Combining this fact with Theorem A.2 we obtain the following result,
essentially due to Thurston:

Corollary A.3 Assume that � is the fundamental group of a compact 3–manifold
with incompressible and acylindrical boundary. Then every eventually faithful sequence
of normalized representations in D.�/ contains a convergent subsequence.

Many other results, for instance Thurston’s double limit theorem [35] or the results
in [26], ensuring the existence of convergent subsequences of sequences of faithful
representations can be reduced to the nonexistence of certain actions of groups on trees;
variants of all these results still hold for eventually faithful sequences. It may be there-
fore surprising that some convergence results for sequences of faithful representations
completely fail in our more general setting.

In [39], Thurston proved a generalization of Corollary A.3 to the case that � is the
fundamental group of a compact 3–manifold M with incompressible boundary. More
precisely, the so-called only-windows-break theorem asserts that whenever .�i/ is a
sequence of faithful representations of � D �1.M / and N �M is a component of
the complement of the characteristic manifold, then the sequence .�i j�1.N // has, up
to conjugacy, a convergent subsequence. Leaving the interested reader to consult [21]
for information about the characteristic manifold, we limit ourselves to the following
concrete example.

Let H be a handlebody of genus 2 and  � @H a simple closed curve on the boundary
of H such that @H n is incompressible and acylindrical; for instance,  can be taken
in the Masur domain of H [26]. We consider the manifold N obtained by doubling H

along N . /, where N . / is a regular neighborhood of  in @H . The choice of 
ensures that N has incompressible boundary and that there is a unique (up to isotopy)
properly embedded essential annulus A�N , the annulus along which we have glued.
The annulus A cuts N open into two copies H1 and H2 of H .

In this example, Thurston’s only-windows-break theorem asserts:

Theorem A.4 (Thurston) Let N be as above and .�i/ a sequence of discrete and
faithful representations of �1.N / into PSL2 C . Then the sequence of restrictions

�i j�1.H1/W �1.H1/! PSL2 C

has a subsequence that converges up to conjugacy in PSL2 C .
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We claim that there is an eventually faithful sequence of discrete representations of
�1.N / for which the claim of Theorem A.4 fails.

By construction, the manifold N is the double of H along N . /. Let

� W N !H

be the map given by “folding” along N . /. Identifying H with H1 , one of the two
pieces of N , we choose a base point p 2N . / and hence we have a homomorphism

��W �1.N;p/! �1.H;p/:

We consider also the Dehn-twist

ıW N !N

along the annulus A.

Claim The sequence �� ı ın
�W �1.N;p/! �1.H;p/ is eventually faithful.

It is worth observing that this claim is really a statement about a “twist” automorphism
of any amalgamation of a free group with itself over some nontrivial cyclic subgroup.

Proof The fundamental group �1.N;p/ is isomorphic to the amalgamation
�1.H1;p/?h i�1.H2;p/; where with an abuse of notation we regard  as an element
of both �1.H1;p/ and �1.H2;p/. The folding map ��W �1.N;p/! �1.H;p/ is
the unique map from the amalgamation to �1.H;p/ that restricts to the canonical
identifications �1.Hi ;p/! �1.H;p/.

Fix a free basis for �1.H /. There are then associated free bases for �1.H1;p/ and
�1.H2;p/, and after a conjugation any element of �1.N;p/ can be written as

w D a1b1a2b2 � � � akbk ;

where a1; : : : ; ak and b1; : : : ; bk are reduced words in the generators of �1.H1;p/

and �1.H2;p/, respectively, and all are nontrivial except possibly a1 . Regarding  as
a cyclically reduced word in the generators of �1.H;p/, we can ensure by choosing
k to be minimal that none of the words a2; : : : ; ak ; b1; : : : ; bk correspond to elements
of �1.H;p/ that are powers of  . Then the n–fold twist of w has the following
expression:

ın
�.w/D a1.

nb1
�n/a2.

nb2
�n/ � � � an.

nbn
�n/:

After applying the folding map �� , this becomes

�� ı ı
n
�.w/D a01.

nb01
�n/a02.

nb02
�n/ � � � a0n.

nb0n
�n/;
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where a0
1
; b0

1
; : : : ; a0

k
; b0

k
are the images of a1; b1; : : : ; ak ; bk under the identifications

�1.Hi ;p/! �1.H;p/. However, as none of b0
1
; a0

2
; b0

2
; : : : ; a0

k
; b0

k
are powers of

the cyclically reduced word  , there is only a bounded amount of cancellation when
reducing the word above. Therefore, if n is large then �� ı ın

�.w/ is nontrivial.

Remark Essentially we are saying that �1.N;p/ is fully residually free. This fact
holds for every group obtained by doubling a free group along a cyclic subgroup.

Since H is a handlebody, �1.H;p/ is a free group. Hence, we can choose some
sequence of faithful representations .�n/ 2D.�1.H;p// which cannot be conjugated
to obtain convergent subsequences. By construction, ��ıın

� is the identity on �1.H;p/

for all n. So setting

�n D �n ı �� ı ı
n
�W �1.N;p/ �! PSL.2;C/;

we obtain an eventually faithful sequence of representations which does not contain
any subsequence whose restriction to �1.H;p/ converges up to conjugacy.

Theorem A.5 The only-windows-break theorem fails for eventually faithful sequences
of representations.

An alternative statement of Theorem A.5 could be that when one is not absolutely
faithful more than the windows can get broken.
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