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Embedded contact homology and
Seiberg–Witten Floer cohomology III

CLIFFORD HENRY TAUBES

This is the third of five papers that construct an isomorphism between the embedded
contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold
with a given contact 1–form.

57R17; 57R57

1 Introduction

This is the third of five papers whose purpose is to prove that the embedded contact
homology of a compact, oriented 3–dimensional manifold with contact 1–form is
isomorphic to the manifold’s Seiberg–Witten Floer cohomology. This isomorphism
theorem is stated formally in the first paper of this series [13]. As described in Section 4
of [13], this isomorphism is obtained using two maps: The first takes generators of
the embedded contact homology chain complex to generators of the Seiberg–Witten
Floer cochain complex. The second associates an instanton from the Seiberg–Witten
Floer cohomology differential to each pseudoholomorphic curve from the embedded
contact homology differential. The former map is denoted in Theorem 4.2 of [13]
by ˆr and the latter is denoted in Theorem 4.3 of [13] by ‰r . The maps ˆr and ‰r

are constructed in the second paper of this series [14]. This paper establishes certain
additional properties of these maps. In particular, both the embedded contact homology
chain complex and the Seiberg–Witten Floer cochain complex are graded complexes,
and Theorem 1.1 below describes how ˆr affects these respective gradings. Meanwhile,
Theorem 1.2 asserts that the contribution to the embedded contact homology differential
from a given pseudoholomorphic curve is identical to the contribution from its ‰r

image to the Seiberg–Witten Floer cohomology differential.

1.a Relative gradings and the map ˆr

The upcoming Theorem 1.1 summarizes what is proved here about the map ˆr . The
statement of this theorem requires a four part digression to set the stage. This digression
summarizes what is needed from [13; 14] to state Theorem 1.1.
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2722 Clifford Henry Taubes

Part 1 Let M denote the 3–manifold in question and a denote the contact 1–form.
The manifold M is oriented using as volume form a^ da. The contact form a is
implicitly assumed to be from a certain residual set of such forms, this defined in Part 3
of Section 1.a in [14] and denoted by NM .

Use K�1 to denote the oriented 2–plane bundle kernel.a/� TM with its orientation
given by da. The dual bundle, K , will be viewed for the most part as a complex line
bundle over M . The first class of K in H 2.X IZ/ is denoted by c1.K/.

In what follows, v denotes the vector field on M that generates the kernel of da and
pairs with a so as to equal 1. Its closed integral curves are the Reeb orbits. They are
oriented implicitly by v . Fix a homology class � in H1.M IZ/ and let Z denote the
set defined as follows: An element ‚ 2 Z consists of a finite set of pairs of the form
.;m/ with  a Reeb orbit and m a positive integer. Require that distinct elements
from ‚ have distinct Reeb orbit components, and require that the

P
.;m/2‚ m define

the class � . Given L � 1, use ZL to denote the subset consisting of those ‚ withP
.;m/m` �L where ` denotes the integral of the contact 1–form along  . The

assumption that a 2NM guarantees that ZL is a finite set.

Part 2 Let p denote the greatest integer divisor of the �c1.K/ C 2P.�/, where
PW H1.M IZ/!H 2.M IZ/ denotes the Poincaré duality isomorphism. Hutchings [6]
explains how the elements in Z can be given a relative Z=pZ grading. There are six
steps involved.

Step 1 Fix an almost complex structure, J , on kernel.a/ such that da. � ;J. � //

defines a Riemannian metric on kernel.a/. Let ‚ denote a given element from Z and
let .;m/ denote a given pair from ‚. There is a disk D � C and an embedding
'W S1�D!M with the following properties: First,  appears as S1�f0g. Second,

2�

`
' � aD .1� 2�jzj2��xz2

� x�z2/dt C
i

2
.zdxz�xzdz/C � � � ;

2�

`
daD idz ^ dxz� 2.�zC�xz/dxz ^ dt � 2.�xzC x�z/dz ^ dt C � � � ;

`

2�
v D

@

@t
C 2i.�zC�xz/

@

@z
� 2i.�xzC x�z/

@

@xz
C � � � :

(1-1)

Here, � and � are respectively real and complex valued functions on S1 . The unwritten
terms in the top equation are O.jzj3/ and those in the lower two equations are O.jzj2/.
Here and in what follows, the circle S1 is implicitly identified with R=.2�Z/ and
t 2R=.2�Z/ is used to denote its affine coordinate.
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Step 2 The pair .�; �/ are used to define the operator L on C1.RIC/ given by

(1-2) Lz D
i

2

d

dt
zC �zC�xz:

Let t ! x.t/ and t ! y.t/ denote the real and imaginary parts of an element z. � / in
the kernel of L . The latter obey

(1-3)
�

x.t/

y.t/

�
D U

�
x.0/

y.0/

�
where U jt 2 SL.2IR/ for each t 2R:

As t varies in Œ0; 2��, the map t ! U jt defines a path in SL.2IR/ from the identity.
The assumption that a2NM demands that jtrace .U j2�/j> 2 or jtrace .U j2�/j< 2. In
the former case,  is said to be hyperbolic, and in the latter case  is said to be elliptic.
In the hyperbolic case, there is a homotopy of the map U j. � /W Œ0; 2��! SL.2IR/ such
that the t D 2� element of each member of this homotopy has jtrace .U j. � //j � 2 and
such that the final member is a rotation through �k radians with k 2Z. The integer k

is said to be the rotation number. In the elliptic case, there is a homotopy of U j. � /
such that the t D 2� element of each member of this homotopy is conjugate to U j2�
and such that the end member is a rotation by angle 2�R with R 2 R an irrational
number. The number R is the rotation number of  when  is elliptic.

Note that k and R depend on the 1–jet of ' . Even so, the hyperbolic/elliptic distinction
is intrinsic to  . For that matter, so is the mod.2/ reduction of k when  is hyperbolic,
as is the mod.Z/ reduction of R when  is elliptic. The point being that a different
choice of ' can change k by the addition of an even number, and change R by the
addition of an integer.

Step 3 Associate to  and each q 2 f1; 2; : : : ;mg the Conley–Zehnder index; this
defined as follows: It is defined to be qk when  is hyperbolic with rotation number k .
When  is elliptic with rotation number R , the Conley–Zehnder index is equal to 1
plus twice the greatest integer less than qR . In either case, denote the Conley–Zehnder
index by z;q . Note that its definition depends on the 1–jet of ' along  .

Step 4 Now let ‚C and ‚� denote a pair of elements in Z . Given the homology
condition with respect to � , there is an immersed, oriented surface Z �R�M with
the following properties: The jsj � 1 portion of Z is a disjoint union of embedded
cylinders on which s restricts as a function with no critical points. Those cylinders that
sit where s� 1 are labeled in part by the elements in ‚C ; a given pair .;m/ labels
m such cylinders, each very near the large jsj part of R� . To say more, let ' denote
 ’s tubular neighborhood map as described above. Each of these m cylinders sits in
R�'.S1�D/ as the image of the graph over R�S1 of the function that sends .s; t/
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to e�2�sCix 2 C where � > 0 and x 2 R=.2�Z/. However, if C and C 0 are two
such cylinders, then the corresponding points x and x 0 must define distinct points in
the circle. There is an analogous labeling of the cylinders that sit where s��1 with
the elements in ‚� . The only difference in this case is that � is now required to be
negative.

The surface Z has a well defined self-intersection number in .0; 1/�M ; this defined
by intersecting Z with a push-off, Z0 , that is defined near .;m/ in ‚� or in ‚C in
the same fashion as Z . This intersection number is denoted by QZ .

Step 5 The .;m/ be any given element in either ‚� or ‚C . The corresponding
may ' gives K a section on S1 �D , this the C–valued 1–form dz . Define hc1;Zi

to be the Euler number of K as defined by counting algebraically the zeros of a section
of KjZ that is given near any .;m/ in ‚� or ‚C as just described.

Step 6 Introduce now the integer

(1-4)

I.‚�; ‚CIZ/D�hc1;ZiCQZ C

X
.;m/2‚C

X
1�q�m

z;q

�

X
.;m/2‚�

X
1�q�m

z;q:

Hutchings [6] proves that the mod.p/ reduction of I is independent of Z , and the
choices for the tubular neighborhood maps used for each Reeb orbit involved. The
mod.p/ reduction of I.‚�; ‚CIZ/ is defined to be degech.‚�/� degech.‚C/. This
difference defines the relative Z=pZ grading of the embedded contact homology chain
complex. Note that the notation here with ‚� appearing to the left of ‚C as an entry
in I. � ; � IZ/ is opposite to that taken in [6]. The convention here conforms with that
used to define the Seiberg–Witten Floer homology.

Part 3 Let ‚ 2 Z denote a nondegenerate element. Section 1.b in [14] associates
a set C‚ and a subset C‚� to ‚. As explained in the three steps that follow, each
element in C‚� has an associated integer degree.

Step 1 Focus on a given element .;m/ 2‚. Introduce the vortex moduli space Cm

as defined in Section 1.b of [14]. The latter consists of equivalence classes of pairs
.A; ˛/ with A being a connection on the product C bundle over C and with ˛ a
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section of this bundle, thus a C–valued function on C . This pair obeys the equations

(1-5)

� �FA D�i.1� j˛j2/.

� x@A˛ D 0.

� j˛j � 1.

� The function .1� j˛j2/ is integrable on C and
R

C.1� j˛j
2/D 2�m.

The equivalence relation that defines Cm has .A; ˛/� .A�u�1du;u˛/ with u any
smooth map from C to U.1/.

Step 2 As noted in Section 1.b of [14], this space is the complex manifold Cm . It
also comes with a natural, complete Kahler metric; but this is not the flat Kahler
metric unless mD 1. In any event, this metric defines a symplectic form and thus the
Hamiltonian dynamical system that is defined using the time dependent Hamiltonian
function

(1-6) h D
1

4�

Z
C
.2�jzj2C .�xz2

C x�z2//.1� j˛j2/:

The set C.;m/ consists of the maps cW S1! Cm that are closed, integral curves of
the Hamiltonian vector field defined by h ; thus solutions to the equation .i=2/c0C
r.1;0/h jcD 0, where c0 is shorthand for the .1; 0/ part of c�.d=dt/, and where r.1;0/h
denotes the .1; 0/ part of the gradient of h . Let C‚ denote �.;m/2‚C.;m/ . Thus,
any given element in C‚ has the form fc 2 C.;m/g.;m/2‚ .

Let cW S1 ! Cm denote a given map. Associate to c the bundle c�T1;0Cm ! S1 .
The pullback of the Riemannian connection on T Cm defines a Hermitian connection
on S1 . The map c is said to be nondegenerate when the operator

(1-7) �!
i

2
rt�C .r�R

r
1:0h/jc

on C1.S1I c�T1;0Cm/ has trivial kernel. The notation here is such that rt denotes the
covariant derivative of the aforementioned Hermitian connection. Also, .r�R

r1;0h/jc
denotes the covariant derivative at c along the vector defined by � in T Cmjc of the
vector field r1;0h 2C1.CmIT1;0Cm/. The operator in (1-7) is symmetric and elliptic.
The spectrum of this operator is a discrete subset of R with finite multiplicities and no
accumulation points. What is denoted here by C‚� consists of the elements in C‚ of
the form fc g.;m/2‚ with all c being nondegenerate.

Step 3 Fix .;m/2‚ and let c0W S
1!Cm denote the constant map to the symmetric

vortex. The latter is the equivalence class of solution to (1-5) with ˛�1.0/ D 0.
Associate to c0 the operator, R , on C1.S1IT Cmjc0

/ that is defined as follows:
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� If  is elliptic with rotation number R , then R is the version of (1-7) that is
defined using c0 and the function hR given by taking .� D 1

2
R; �D 0/ in (1-6).

� If  is hyperbolic with rotation number k , then R is the version of (1-7) that is
defined using c0 and the function hk given by taking .� D 1

4
k � 1

2
R0; �D 0/

in (1-6), with R0 > 0 an irrational number such that mR0� 1.

Lemma 2.4 in [14] asserts that the operator R has trivial kernel when  is elliptic, and
also trivial kernel when  is hyperbolic and mD 1.

Suppose that cW S1! Cm is nondegenerate in the sense that (1-7) with h now defined
using (1-6) has trivial kernel. Then the spectral flow from the operator R to c’s version
of (1-7) is defined (see, eg Taubes [12]). Use degC.c/ to denote this spectral flow.

Part 4 The definition of the Seiberg–Witten cochain complex requires the choice of a
Riemannian metric on M . Such a metric should be chosen so that �daD 2a and such
that jaj D 1. Such a metric is neither more nor less than an almost complex structure J

on the kernel of a that is compatible with da. Indeed, with J chosen, the metric on
the kernel of a is given by da. � ;J. � //. The rest of the metric is given by declaring
that the Reeb vector field is orthogonal to the kernel of a and has norm 1.

Fix such a metric. As noted in Section 3.c of [13], the spinor bundle S for a given
SpinC structure decomposes as the orthogonal direct sum E˚EK�1 where E!M

is a complex, Hermitian line bundle, and where K is now viewed as a complex line
bundle. These are the respective Ci and �i eigenbundles for the endomorphism given
by Clifford multiplication with the contact 1–form. The first Chern class of E can be
used to classify the SpinC structure. This understood, choose E so that its first Chern
class is Poincaré dual to � .

Let Conn.E/ denote the space of smooth, Hermitian connections on E . The Seiberg–
Witten equations used here require the choice of a real number r � 1 and a coclosed
1–form �. The corresponding Seiberg–Witten equations are for a pair .A;  / 2
Conn.E/�C1.M IS/:

(1-8)
� BA� r. |� � ia/��d�C 1

2
BAK

D 0.

� DA D 0.

The notation here is as follows: First, BA denotes the metric Hodge star of the curvature
2–form of A. Second, AK is a fixed, connection on K�1 with harmonic curvature
2–form. Third, DA denotes the Dirac operator on C1.M IS/ as defined using the
metric’s Levi-Civita connection and the connection AK C 2A on det.S/. Finally, if �
and � are any given sections of S , then �|�� is the C valued 1–form whose metric
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inner product with a 1–form b is �| cl.b/� with cl. � / here denoting the Clifford
multiplication endomorphism.

The group C1.M IU.1// acts on the space of solutions to (1-8) as follows: Suppose
that u is a map from M to U.1/ and cD .A;  / is a solution to (1-8). Then ucD

.A�u�1du;u / is also a solution to (1-8). Solutions related in this manner are said
to be gauge equivalent. With � fixed, and r � 1 given, the space of gauge equivalence
classes of solutions to (1-8) is denoted by Mr in what follows.

The 1–form � that appears in (1-8) is constrained to lie in a certain Banach space of
smooth 1–forms. The latter is denoted by � and is described briefly in Section 3.d
of [13]. The norm on this space is called the P –norm; it bounds all of the C k norms.
In what follows, � is assumed to come from � and have P –norm less than 1.

Associated to any given pair c D .A;  / 2 Conn.E/ ˚ C1.M IS/ is an elliptic,
symmetric operator, Lc , on C1.M I iT �M ˚S˚ iR/ that is defined so as to send a
section .b; �; �/ to the section with respective iT �M , S and iR components

(1-9)

� �db� d� � 2�1=2r1=2. |��C �|� /,

� DA�C 21=2r1=2.cl.b/ C� /,

� �d � b� 2�1=2r1=2.�| � |�/.

The pair cD .A;  / is said to be nondegenerate when the kernel of Lc is trivial.

Fix a pair .AE ;  E/ 2 Conn.E/�C1.M IS/ for which the r D 1 version of (1-9)
has trivial kernel. Use LE to denote the latter operator. Let cD .A;  / 2 Conn.E/�
C1.M IS/ denote a nondegenerate pair as defined by (1-9) for the given value of r .
Then there is a well defined spectral flow from LE to Lc . The degree of c is, by
definition, the mod.p/ reduction of minus this spectral flow. This mod.p/ degree
is gauge invariant; it is denoted in what follows by degSW.c/. Note also that if c,
c0 2 Conn.E/�C1.M IS/ are both nondegenerate, then degSW.c/� degSW.c

0/ does
not depend on the choice for .AE ;  E/. This relative Z=pZ degree gives the relative
grading for the Seiberg–Witten Floer cochain complex.

With the digression now over, reintroduce C‚� from Step 2 in Part 2 above and define
CZ� to be fC‚� W ‚ 2 Zg. Let X � CZ� denote a finite set. Theorem 1.1 of [14]
supplies a constant � � 1 and for all r � � , an injective map ˆr W X!Mr . The
theorem below says more about ˆr .

Theorem 1.1 Fix a finite set X� CZ� . The constant � � 1 from Theorem 1.1 in [14]
can be chosen so that when r � � , then the following is true: Let ˆr W X !Mr
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denote the map from Theorem 1.1 in [14]. If x 2 X, then ˆr .x / is nondegenerate. If
x�; xC 2 X, then

degSW.ˆ
r .xC//� degSW.ˆ

r .x�//
D degech.‚�/� degech.‚C/C

X
c2x�

degC.c/�
X
c2xC

degC.c/:

This theorem is proved in the upcoming Section 2 of this paper.

Theorem 4.2 in [13] refers to a map EW Conn.E/! R. If it is the case that ˆr is
surjective onto the E < 2�L subset of Mr , then Theorem 4.2 in [13] follows directly
using Theorem 1.1 here with Theorem 1.1 and Lemmas 2.1–2.4 from [14].

1.b The map ‰r and the (co)chain complex differentials

The upcoming Theorem 1.2 summarizes what is proved here about the map ‰r that
appears in Theorem 1.2 of [14]. A digression is also needed to set the stage for this
theorem about ‰r . This digression has six parts.

Part 1 The definition of the differential for the embedded contact homology chain
complex requires the choice of an almost complex structure from a certain set, Ja , of
almost complex structures for T .R�M /. This set is described in [7]. Fix J 2 Ja .
Note that J is unchanged by the constant translations along the R factor of R�M . It
also maps @=@s to v and it maps K�1 , the kernel of a, to itself. Moreover, da. � ;J. � //

is a Riemannian metric on the kernel of a.

Use Zech in what follows to denote the subset of elements in Z that lack pairs of
the form .;m/ with  hyperbolic and m > 1. Fix two elements, ‚�; ‚C 2 Zech

and define M1.‚�; ‚C/ as follows: An element † 2M1.‚�; ‚C/ consists of
a finite set of pairs of the form .C;m/ where m is a positive integer and where
C is a J –pseudoholomorphic submanifold. These pairs are further constrained as
follows: First, distinct pairs have distinct submanifold components. Second, mD 1

unless C is R invariant, thus of the form R �  with  � M a Reeb orbit. To
state the third property, let � W R�M!M denote the projection. Here is the third
property: The formal sum

P
.C;m/2† m�.C / defines a 2–cycle whose boundary isP

.;m/2‚C
m �

P
.;m/2‚�

m . Finally, this cycle is homologous rel boundary to
the image of a submanifold Z �R�M of the sort described in Part 2 of Section 1.a
for which I.‚�; ‚C;Z/ is defined and equal to 1. Note that I.‚�; ‚C; � / assigns
the same value to manifolds Z and Z0 if �.Z/� �.Z0/ defines the boundary of a
3–cycle.

Hutchings proves in [6] that M1.‚�; ‚C/ has the structure of a 1–dimensional
manifold with a finite set of components. Moreover, each component is a copy of R,
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this the orbit of any one of its members under the action of the group R that is induced
by latter’s action on R�M as the constant translations of the R factor.

With L> 1 fixed, use ZL
ech to denote the subset of Zech that consists of elements ‚

with
P
.;m/2‚ m` <L.

Part 2 The embedded contact homology chain complex is the free Z module generated
by equivalence classes of pairs of the form .‚; o/ where ‚2Zech and o is an ordering
of the set of pairs in ‚ of the form .; 1/ with  a hyperbolic Reeb orbit with even
rotation number. The equivalence relation has .‚; o/ � .�1/� .‚; o0/ where � is 0
or 1, this the parity of the permutation that takes o to o0 .

Let .‚�; o�/ and .‚C; oC/ denote generators of the embedded contact homology
chain complex. Hutchings observed that the extra data given by o� and oC can be
used to orient each component of M1.‚�; ‚C/. The details of this are provided in
Section 9.5 of [8] and summarized in the upcoming Section 3.b. Here is a brief descrip-
tion of how this comes about: Quillen’s ideas [11] about determinant line bundles for
families of Fredholm line bundles are used, much like in [2], to define what is deemed in
Section 9 of [8] to be a coherent system of orientations for fM1.‚�; ‚C/g‚�;‚C2Zech

Such an orientation for any given M1.‚�; ‚C/ is denoted in what follows by oech .

As an parenthetical remark and for reference in later sections, the relevant operators
for the aforementioned version of Quillen’s construction are generalizations of the
following: Let C �R�M denote an embedded, pseudoholomorphic curve. Then C

has a canonical complex structure, and C ’s normal bundle has a complex structure and,
as a complex line bundle, a canonical holomorphic structure. Let N denote the latter
bundle. Associated to C is an operator DC W C

1.C IN /! C1.C IN ˝T 0;1C / that
is defined so as to send a given section � of N to

(1-10) DC � D x@�C �C �C�C
x�;

where �C is a certain section of T1;0C and �C a section of N 2 ˝ T 0;1C , these
defined by the 1–jet along C of the almost complex structure.

As explained in Section 9.5 of [8], the orientation oech is used to define the differential
for embedded contact homology. What follows briefly summarizes how this is done:
The generator of the R action on M1.‚�; ‚C/ orients any given component. Either
this orientation agrees with the previous one or not. If so, assign the component C1, if
not assign the component �1. Use �ech to denote this sign. Now, write the differential
of the generator .‚C; oC/ as a sum of distinct generators with integer coefficients.
Suppose that the generator .‚�; o�/ appears in this sum. The coefficient that multiplies
.‚�; o�/ is the sum of the versions of �ech that are assigned to the components of
M1.‚�; ‚C/.
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Part 3 Fix r � 1 and a coclosed 1–form � for use in (1-8). The associated Seiberg–
Witten equations on R �M are equations for a map, d, from R into the space
Conn.E/�C1.M IS/. Write d as the map s! .A;  /js and these equations read

(1-11)
�

@
@s

ACBA� r. |� � ia/� i � d�C 1
2
BAK

D 0.

�
@
@s
 CDA D 0.

A solution d is said to be an instanton when fd.s/gs2R converges as s!�1 and
also as s!1, and both limits are solutions to (1-8).

Associated to any given map dD .A;  /W R! Conn.E/�C1.M IS/ is the elliptic
operator, Dd , on C1.R�M I iT �M ˚S˚ iR/ that sends a given section .b; �; �/
to the section with respective iT �M , S , and iR components

(1-12)

�
@
@s

bC�db� d� � 2�1=2r1=2. |��C �|� /,

�
@
@s
�CDA�C 21=2r1=2.cl.b/ C� /,

�
@
@s
�C�d � b� 2�1=2r1=2.�| � |�/.

Here, d denotes the exterior derivative along the M factor of R�M .

Use H to denote the Hilbert space completion of the space of compactly supported
sections over R�M of iT �M ˚S˚ iR using the norm whose square is defined to be

(1-13) kbk2H D

Z
R�M

.jrbj2C r jbj2/;

where r is the covariant derivative that is defined on sections of iT �M ˚S˚ iR as
follows: View iT �M ˚ iR as iT �.R�M /. This done, then r is the Levi-Civita
covariant derivative on the iT �.R�M / factor. View the connection A as a connection
on the pullback E!R�M and likewise view AK as a connection on K�1!R�M .
The latter with the Levi-Civita connection define a covariant derivative for S!R�M .
The associated covariant derivative gives r on the S factor. Meanwhile, use L to
denote the L2 completion of the space of compactly supported sections over R�M

of iT �M ˚S˚ iR.

If the spinor component of d is bounded, then Dd defines a bounded, linear map from
H to L. If d is an instanton, and if both the c�D lims!�1 djs and cCD lims!1 djs
versions of (1-9) have trivial kernel, then Dd in this context is Fredholm. In the latter
case, d is said to be nondegenerate when the cokernel of this Fredholm map is trivial.

Part 4 Suppose that c� and cC are nondegenerate solutions to (1-8). Let M1.c�; cC/

denote the space of instanton solutions to (1-11) with the following properties: First,

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg–Witten Floer cohomology III 2731

the s ! �1 limit of d is c� and the s ! 1 limit is gauge equivalent to cC .
Second, the Fredholm index of Dd is equal to 1. Note that this set depends only on
the gauge equivalence classes of c� and cC in the following sense: Suppose that
u 2 C1.M IU.1//. If d D .A;  / 2 M1.c�; cC/, then ud D .A � u�1du;u / 2

M1.uc�; cC/.

If d 2M1.c�; cC/ is nondegenerate, then d’s component in M1.c�; cC/ is a smooth
1–dimensional manifold with a free R action that is induced by R’s action on R�M as
the group of constant translations along the R factor. As a consequence, all instantons
in d’s component are also nondegenerate. If M1.c�; cC/ contains solely nondegenerate
elements, then it has a finite set of components. All this is explained in the bible on the
subject of Seiberg–Witten Floer homology, Kronheimer and Mrowka [9].

If c 2Mr is nondegenerate, then there are versions of the Seiberg–Witten Floer
cohomology cochain complex whereby c labels a generator. If c� and cC are both
nondegenerate elements in Mr , and if M1.c�; cC/ consists of solely nondegenerate
instantons, then there are versions of the Seiberg–Witten cochain complex where c�
and cC label generators; and where the elements in M1.c�; cC/ are used to compute
the integer that multiplies c� when writing the coboundary of cC in terms of these
generators. This is explained in Chapter 20 of [9]. A very brief summary what is said
there is given next in Parts 5 and 6 of this digression.

Part 5 Let c� and cC for the moment denote a given pair of nondegenerate elements
in Conn.E/ � C1.M IS/. Use P D P.c�; cC/ to denote the space of piecewise
differentiable maps from R to Conn.E/�C1.M IS/ that have s!�1 limit that is
gauge equivalent to c� and s!1 limit that is gauge equivalent to cC . Each d 2P

has its corresponding version of Dd as given in (1-11); but now viewed as a Fredholm
operator mapping H to L. Quillen [11] showed (in a somewhat different context) how
such operators define a real line bundle, det.D/!P. If d 2P is such that either the
kernel or cokernel of Dd is nontrivial, then the fiber of det.D/ at a given d 2P has a
canonical identification with ^max.kernel.Dd//�R .^

max cokernel.Dd//
� .

Introduce ƒ.c�; cC/ to denote the orientation sheaf of det.D/. As explained in
Chapter 20 of [9], this sheaf has the following properties: First, it is suitably gauge
invariant and has gauge invariant orientations. Second there is a canonical isomorphism
between ƒ.c�; cC/� and ƒ.c�; cC/. Third, if c0 2Conn.E/�C1.M IS/ is likewise
nondegenerate, then there exists a canonical composition law isomorphism between
the modules ƒ.c�; c0/˝Z=2Zƒ.c0; cC/ and ƒ.c�; cC/.

These properties have the following consequences: Any given nondegenerate element
c 2 Mr has an associated Z=2Z module, ƒ.c/, such that if c� and cC are any
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two nondegenerate solutions to (1-8), then there is a canonical isomorphism between
the modules ƒ.c�/ ˝Z=2Z ƒ.cC/

� and ƒ.c�; cC/. This understood, a choice of
o.c�/ 2ƒ.c�/ and o.cC/ 2ƒ.cC/ defines a unique element in ƒ.c�; cC/.

Part 6 Let Mr� �Mr denote the subset of nondegenerate elements. A collection
of orientations fo.c�; cC/ 2ƒ.c�; cC/gc�;cC2Mr� is said to be coherent if there exists
a corresponding set of orientations fo.c/ 2ƒ.c/gc2Mr� such that any given o.c�; cC/

is equal to o.c�/o.cC/.

The relevance of this orientation business to the problem at hand stems from the
following fact: Suppose that c� and cC are nondegenerate solutions to (1-8), and
suppose that d2M1.c�; cC/ is also nondegenerate. Then the restriction of ƒ.c�; cC/ to
d’s component of M1.c�; cC/ is canonically isomorphic to the latter’s orientation sheaf.
With this understood, fix orientations fo.c/ 2ƒ.c/gc2Mr� so as to define a collection
of coherent orientations for fƒ.c�; cC/gc�;cC2Mr� . Use these orientations to define
the orientation for the components of fM1.c�; cC/gc�;cC2Mr� with nondegenerate
instantons. This orientation is denoted in what follows by oQ .

Let M �M1.c�; cC/ denote a component with nondegenerate instantons. The generator
of the R action on M also orients M . This orientation is denoted by oR . Now view
c� and cC as generators of the Seiberg–Witten Floer cohomology complex. Then M
contributes C1 to the sum that defines the multiple of c� in the coboundary of cC
when oQ D oR . Otherwise, M contributes �1.

With the digression now over, fix L� 1 and assume the following about the contact
1–form a and the element J 2 Ja :

(1-14)

� There is no element ‚ 2 ZL
ech with

P
.;m/2‚ m` DL.

� Suppose that  is a Reeb orbit with ` < L. Then  has a tubular
neighborhood map 'W S1 �D !M as described in Part 2 of Section
1.a such that if  is hyperbolic with rotation number k , then .�; �/ D
.1

4
k; i"eikt / with " > 0 but very small. Meanwhile, if  is elliptic, then

its rotation number R is irrational. Furthermore,
(i) The pair .�; �/D .1

2
R; 0/.

(ii) The '�–pullback of T 1;0.R � M / is spanned by ds C ia and
.`=2�/.dz� i Rzdt/.

Fix a 1–form � 2� with P –norm less than 1 for use in (1-8), (1-9) and Theorem 1.1
in [14]. Use the latter theorem to define the large r versions of the map ˆr W ZL

ech!Mr .
Use the large r version of Theorem 1.2 in [14] to define the map ‰r for any given
ordered pair .‚�; ‚C/ with both elements from ZL

ech . Recall that ‰r is an injective
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and R–equivariant map from M1.‚�; ‚C/ into the space of instantons with s!�1

limit equal to in the gauge equivalence class ˆr .‚�/ and with s!1 limit in the
gauge class ˆr .‚C/.

Theorem 1.2 Fix L � 1 and a pair .a;J / as above that obeys (1-14). There exists
� � 1 with the following significance: Define Mr using r � k and the 1–form � 2�

with P norm bounded by 1. The maps f‰r g.‚�;‚C/2Zech
L from Theorem 1.2 in [14]

can be constructed so that:
� Let ‚� and ‚C denote any two elements in ZL

ech , and use c� and cC to denote
solutions to (1-8) from their respective images in Mr via the map ˆr .
(i) The image via ‰r of M1.‚�; ‚C/ lies in M1.c�; cC/ and it contains only

nondegenerate instantons. In particular, its image consists of a union of
smooth components of M1.c�; cC/.

(ii) The differential of ‰r maps the generator of the R action on M1.‚�; ‚C/

to the generator of the R–action on its image in M1.c�; cC/.

� There is a coherent orientation for the collection fƒ.c�; cC/gc�;cC2Mr� with
the following property: Let .‚�; o�/ and .‚C; oC/ denote any two generators
of Cech

L . Use c� and cC to denote solutions to (1-8) from the respective ˆr

images of ‚� and ‚C in Mr . The pushforward via ‰r of the orientation oech

agrees on its image with that defined by the coherent orientation for ƒ.c�; cC/.

This theorem is proved in Section 3 of what follows.

Given that the map ‰r is surjective onto M1.c�; cC/, then Theorem 4.3 in [13] follows
directly from Theorem 1.2 here and Theorem 1.2 in [14]. The fact that the large r

versions of ‰r are surjective is proved in the final paper of this series [15].

1.c Notation and conventions

The notation used in what follows comes mostly from [14] where the maps ˆr and
‰r are constructed. This said, the reader should be familiar with this reference.

As in [13; 14], it is always the case that c0 denotes a constant that is greater than 1 and
is independent of what ever relevant data is under consideration. The precise value of
c0 can increase between subsequent appearances.

As in [14], it is useful to have chosen a fixed “bump” function on R; this is a chosen
smooth function �W R! Œ0; 1� that equals 1 on .�1; 5

16
� and value 0 on Œ 7

16
;1/.

An index for the notation used in what follows is provided in the last section of the
article, just prior to the references.

Acknowledgements This work was supported in part by the National Science Foun-
dation.
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2 The proof of Theorem 1.1

Fix an element ‚2Z and then a collection fc W S1!Cmg.;m/2‚ where any given c
is a nondegenerate solution to  ’s version of the equation .i=2/c0Cr.1;0/h jcD 0. This
data comprises an element, x 2 C‚� . If r � c0 , then Theorem 1.1 in [13] supplies a
solution, ˆr .x / 2 Conn.E/�C1.M IS/, to (1-8) with the latter defined with some
given choice for � 2� with P –norm bounded by 1. Section 2.a proves that ˆr .x / is
a nondegenerate solution to (1-8).

Let x� and xC denote two given elements in CZ� . Section 2.d proves Theorem 1.1’s
assertion about their relative degree.

2.a Nondegeneracy

Define x as above and introduce c.x /D .A;  / to denote ˆr .x /. This pair is written
as .AJ;  J/C..2r/1=2bJ; �J/ where notation is used is as follows: First, J here denotes
the set f.c ; � /g.;m/2‚ where any given .;m/ 2 ‚ version of � is the section
over S1 of c �T1;0Cm that is described in Lemma 3.10 of [14]. Second, .AJ;  J/ is
described in Section 3.a of [14]. Third, bJ D .bJ; �J; �J/ is what Lemma 3.10 in [14]
denotes as b.�/ for � the point in �.;m/2‚L2

1
.S1I c

�T1;0Cm/ with components
.� /.;m/2‚ . This bJ is a section of the bundle iT �M ˚S˚ iR; it obeys an equation
that has the schematic form

(2-1) Lc‚JbC r1=2b� bD v;

where c‚J denotes .AJ;  J/ and where v is described in Section 3.c of [14]. The
bilinear map .b1; b2/! b1 � b2 has respective iT �M , S and iR components

(2-2)

� �.2
p

2/�1.�1
|��2C �2

|��1/,

� cl.b1/�2C cl.b2/�1C�1�2C�2�1 ,

� �.2
p

2/�1.�1
|�2� �2

|�1/.

The proof that c.x / is nondegenerate is done next in ten steps.

Step 1 This step outlines an argument for the assertion that c.x / is nondegenerate
that makes direct use of the various contraction maps that are defined Section 3 of [14].
Steps 2–10 provide a somewhat longer proof whose presentation is justified by its
derivation of various inequalities that are used in Paper 4 [15] of this series.

To start the short proof, remark that the operator Lc sends any given section f of
iT �M ˚S˚ iR to

(2-3) Lc.x/fD Lc‚JfC 2r1=2bJ � f:
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To prove that c.x / is nondegenerate, it is enough to prove that (2-3) is surjective. Thus,
fix a section h of iT �M ˚ S ˚ iR so as to see if there is a section f that obeys
Lc.x /fD h. Now, fix "2 .�r�100; r100/ Let v"D vC"h. Let � D .� /.;m/2‚ denote
for the moment a given element in �.;m/2‚L2

1
.S1I c�T1;0Cm/ with small norm. Let

J for the moment denote the data set f.c ; � /g.;m/2‚ , and define c‚J D .AJ;  J/

as done in Section 3.a of [14]. Now consider first solving (2-1) with v replaced by v" .

A repeat of what is done in Sections 3.d–3.f of [14] finds a unique element �" 2
�.;m/2‚L2

1
.S1I c�T1;0Cm/ with small norm and a section v" of iT �M˚S˚iR that

obey the v" version of (2-1) and are described by the v" version of Lemma 3.10 in [14].
The contraction mapping construction of b" using the v" versions of Lemmas 3.5–
3.7 in [14] and the contraction mapping construction of �" using the v" versions of
Lemmas 3.8–3.9 of [14] guarantee that both b" and �" vary smoothly with " and give
at "D 0 the data that is used to define ˆr .x /.

Granted this differentiability, note that the derivative at "D 0 of the v" version of (2-1)
can be written as L0f0 D h, where f0 is a certain section of iT �M ˚S˚ iR and L0 is
a certain first order elliptic operator. Note in this regard that it follows that the iT �M

and S components of L0f0 are the same as those of Lc.x/f
0 . This follows from (2-2).

However, it is not necessarily the case that the iR component of L0f0 is that of Lc.x/f
0 .

Let J henceforth denote f.c ; � /g.;m/2‚ with � D �.;m/2‚� now denoting the
element in �.;m/2‚L2

1
.S1I c�T1;0Cm/ that is used to define ˆr .x /. Write f0 D

.b0; �0; �0/. The desired solution to Lc.x/fD h has the form fD .b0�.2r/�1=2du; �0C

u J; �
0/ with u an iR valued function on M . An addition to f0 of this sort does not

change the iT �M ˚S part of Lc.x/f by virtue of the fact that  J obeys the ADAJ

version of the Dirac equation. Meanwhile, there is a unique choice for u that makes
the iR component of Lc.x/f equal to the iR component of h.

Step 2 Fix .;m/ 2 ‚. Introduce from Step 1 in Section 3.a of [14] the open
neighborhood U of  . Step 3 in Section 3.b of [14] introduces a pair of 2–dimensional
complex vectors spaces that it denotes as V0 and V1 . This same part of [14] goes on to
describe an isomorphism over R between iT �M˚S˚iR over U and U�.V0˚V1/.
Let � denote the cut-off function with support on U that is defined in Step 2 of
Section 3.a in [14]. Let p0W S

1 � C ! V1 denote the � D 0 version of what is
introduced in Step 1 of the proof of Lemma 3.10 in [14]. View .0; p0/ as a section
over U of iT �M˚S˚iR. As such,

P
.;m/2‚ � .0; p0/ defines a section over M

of the this same bundle. Write the iT �M ˚S part of this section as .b�; ��/. As it
turns out, the iR part of p0 is zero; this can be verified using the description of p0

that is given below just prior to (2-32).
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Let .A�;  �/ denote the version of .AJ;  J/ that is defined in Section 3.a of [14] using
the data f.c ; � D 0/g. Use L� in what follows to denote the version of (1-9) that is
defined by .A;  /D .A�C 21=2r1=2b�;  

�C ��/. The operator L� is used to prove
that Lc.x/ has trivial kernel.

Step 3 This step is a digression to remind the reader of some of what is said in Section
2.a of [14] about solutions to the vortex equations. To start, recall that the .1; 0/ tangent
space to any given vortex cD .A; ˛/ in Cm is the vector space of square integrable
elements in the kernel of the operator #c on C1.CIC˚C/ that is defined by

(2-4) #c.q; &/D .@qC 2�1=2
x̨&; x@A& C 2�1=2˛q/:

Use kernel.#c/ in what follows to denote this vector space of square integrable elements
in the kernel of #c . The Kahler metric on T1;0Cmjc is ��1 times the L2 metric on
kernel.#c/.

Step 4 To start the story on the operators L� and Lc.x/ , introduce, as done in Step 4
of Section 3.b in [14], the orthogonal projection …0D…�D0 on the Hilbert space LD
L2.M I iT �M ˚S˚ iR/. Use …0 to split LDL?˚…0L where L?D .1�…0/L.

By way of a reminder, an element in …0L can be written as t .�/ where � D

.� /.;m/2‚ 2
L
.;m/L2.S1I c�T1;0Cm/ and where

(2-5) t W
L
.;m/L2.S1I c�T1;0Cm/!…0L

is defined as follows: Step 1 of Section 3.a in [14] uses a small, positive number, �� ,
to define the map ˆr . A particular choice is made in (4-8) of [14]. The homomor-
phism t .�/ has support on the radius �� tubular neighborhoods of the Reeb orbits from
‚. To see what t looks like near such an orbit, fix .;m/ 2‚ and use the associated
coordinate chart in (1-1) to view neighborhood of  as S1 �D � S1 �C . View
iT �M ˚S˚ iR as the restriction of the product bundle .S1 �C/� .V0˚V1/ with
V0 and V1 defined in Step 3 of Section 3.b in [14]. Fix t 2 S1 and an L2.CIC˚C/
orthonormal basis, fek. � /g1�k�m for kernel.#c.t//, this the cD c jt version of (2-4).
In the context of (1-14), c is the constant map to Cm and in which case such a basis
can taken to be independent of t 2 S1 . In any event, write the components of � jt
with respect to this basis as f�;k.t/g1�k�m . Then t .�/ pulls back to S1 �C as the
map to V0˚V1 with V1 component zero and with V0 component at .t; z/ given by

(2-6)
X

1�k�m

r1=2
 �.jzj=��/�;k.t/

1
p
�

ek.r
1=2
 z/:
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Note that the homomorphism t is almost an isometry with respect to the L2 norm
on L and on the space

L
.;m/L2.S1I c�T1;0Cm/. This is because

(2-7) t |.t .�//D � C v.�/ where jv.�/j � c0r�1=2
j� j:

Moreover, if � 2L2
1

, then kv.�/kL2
1
� c0r�1=2k�kL2

1
. Here and below, subscripts L2

and L2
1

indicate the respective norms of sections of bundles over S1 .

Any given f2L is determined by f? 2L? and t |.f /2
L
.;m/2‚ L2.S1I c�T1;0Cm/.

With regard to the latter, let t |.f/ denote the .;m/ component of t |.f/. Then

(2-8) jt |.f/ j � c0r1=2

Z
C
�.��1
� . � //e

�
p

r jzj=c0 jfj:

This implies what (2-7) also implies: The L2 norm of t |.f/ is bounded by c0kfk2 .
Here, the notation uses k � k2 and, below, k � kp to indicate the L2 and Lp>2 norms
for a section of a bundle over M .

Use H now to denote the Hilbert space that is defined as in Step 1 of Section 3.b
in [14]. The norm is given in (3-7) of [14]; it is the same as that depicted in (1-13)
with the integration domain M rather than R�M . As noted in Step 4 of Section 3.b
in [14], the projection …0 maps H to itself. This understood, write H as H?˚…0H
where H? here denotes the L2 orthogonal complement in H to …0H . An element
f 2H is written with respect to this splitting as fD f?C t .�/.

Step 5 This step and the next consider Lc.x/�L� . It is proved momentarily that

k..Lc.x/�L�/f/
?
k2 � c0

�1.r�1=2
kf?kHCk�kL2

1
/:

kt |..Lc.x/�L�/f/kL2 � c0
�1r�1=2.kf?kHCk�kL2

1
/:

(2-9)

To start the proof of (2-9), reintroduce the notation from Section 3.f and Lemma
3.10 of [14] so as to write b.�/D b�� C e� . Now write .AJ;  J/ D .A�;  �/ C

.21=2r1=2b� ; ��/ where .A�;  �/ is the f� D 0g.;m/2‚ analog of .AJ;  J/. Use t�
to denote the sum of .b� ; ��/ and the iT �M ˚S component of b�� � b� . Granted
this notation,

(2-10) .Lc.x/�L�/fD r1=2t� � fC r1=2e� � f:

The inequality in (2-9) is proved by establishing suitable bounds on the norms of the
two terms that appear on the right hand side of (2-10) as applied first to f? and then
to t .�/.

The L2 norm of r1=2e� � f
? is bounded by

(2-11) r1=2
ke�k4kf

?
k4 � c0r1=4

ke�kHkf
?
kH � c0r�3=4

kf?kH:
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Indeed, this follows using Hölder’s inequality with the Sobolev inequality in (3-9)
of [14]. Meanwhile,

(2-12) r1=2
ke� � t .�/k2 � c0rk�kL1ke�k2 � c0r1=2

k�kL2
1
ke�kH � c0r�1=2

k�kL2
1
:

This uses (2-6) to bound jt .�/j by c0r1=2 times the sup norm, k�kL1 , of � . Mean-
while a standard Sobolev inequality asserts that k�k1 � c0k�kL2

1
. These last two

inequalities are consistent with what is claimed in (2-9).

The analysis of r1=2t� � f uses the fact that

jt� j � c0k�kL1
X

.;m/2‚

e�
p

r dist. � ; /=100:

Since the L1 norm is bounded by its L2
1

norm, and as the latter is bounded by c0r�1=2 ,
so jt� j is bounded by c0r�1=2

P
.;m/2‚ e�

p
r dist. � ; /=100 . This understood,

(2-13) r1=2
kt� � f

?
k2 � c0kf

?
k2 � c0r�1=2

kfkH:

By the same token, the L2 norm of r1=2t� �t .�/ is bounded by c0kt .�/k2� c0k�kL2 .
In particular r1=2k.t� � t .�//?k2 � c0k�kL2 .

Note that the bounds given so far prove the first line of (2-9).

Step 6 The L2 norm of r1=2t |.t� � t .�// is bounded by c0k�kL2 . This follows from
the just described L2 bound on r1=2t� � t .�/. As is explained next, the L2 norm is in
fact bounded by c0r�1=2k�kL2

1
.

To see how this comes about, it is necessary digress so as to consider in more detail
the operation � as depicted in (2-2) near any given Reeb orbit. Start the digression
by fixing .;m/ 2 ‚. Write iT �M ˚ S on U as U � .V0˚V1/ as in Step 3 of
Section 3.b in [14]. This done, view a section u of iT �M ˚ S over U as a map,
.u0;u1/, from U to V0˚V1 . Let wD .w0; w1/ denote a second section, also written
as a map to V0˚V1 . In this notation, write

(2-14) .u0;u1/� .w0; w1/D .y0;y1/:

Then

(2-15) jy0j � c0.ju0jjw1jCju1jjw0j/Cr0 and jy1j � c0.ju0jjw0jCju1jjw1j/Cr1;

where jr0;1j � c0jzjjujjwj.

Granted the preceding, now recall that there are two contributions to t� : The first
is what was written above as .b� ; ��/ and the second from the iT �M ˚ S part of
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b�� � b� . Both have support only in fU g.;m/2‚ . Written as a map from U to
V0˚V1 , the contribution to t� from .b� ; ��/ has the form .w0; w1/ where

(2-16) jw0j � c0k�kL2
1
e�
p

r jzj=100 and jw1j � c0k�kL2
1
jzje�

p
r jzj=100:

Indeed, this follows from (2-9) in [14]. Meanwhile the contribution to t� from b�z�b�
appears as .w0; w1/ where

jw0j � c0.r
�1=2
k�kL2

1
jzje�

p
r jzj=100

C r�1/:

jw1j � c0.r
�1=2
k�kL2

1
e�
p

r jzj=100
C r�1/:

(2-17)

Given that the L2
1

norm of � is bounded by c0r�1=2 , these last observations with
(2-15) and (2-16) imply that

(2-18) r1=2
kt |.t� � t .�//kL2 � c0r�1=2

k�kL2
1
:

This last bound plus what was proved earlier about the f? contributions imply the
second line in (2-9).

Step 7 This step derives some fundamental norm inequalities for L�f. To this end,
write fD f?C t .�/. With f written this way, the L? component of L�f and the image
of L�f under t | can be written schematically as

.L�f/
?
D L?f?C}.�/:

t |.L�f/D }
|f?C D�:

(2-19)

Here, L? D .1 �…0/L�.1 �…0/. Meanwhile, D is viewed in what follows as a
linear map from

L
.;m/L2

1
.S1I c�T1;0Cm/ to

L
.;m/L2.S1I c�T1;0Cm/. As such,

it is also diagonal and so written as D D .D /.;m/2‚ . By the same token, } mapsL
.;m/2‚ L2

1
.S1I c�T1;0Cm/ into L? .

What follows addresses the norms of the various terms that appear in (2-19). Start with
kL?fk2 . Given Lemma 3.2 from [14], and given that jb�j � c0r�1=2 , it follows that

(2-20) kL?f?k2 � c�1
0 kf

?
kH:

Meanwhile, (3-13) and (3-14) in [14] and (2-6) imply that

(2-21) k}.�/k2 � c0k�kL2
1
:

As for }|.f?/, the argument used in Step 2 of the proof of Lemma 3.8 in [14] has
what is in essence a cosmetic modification that proves

(2-22) k}|.f?/kL2 � c0r�1=2
kf?kH:
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The next lemma gives the fundamental observation about D .

Lemma 2.1 There exists a constant � � 1 such that if r � � , then the operator D in
(2-19) obeys kD�kL2���1.1��r�1=2/k�kL2

1
for all � 2�.;m/2‚L2

1
.S1; c�T1;0Cm/.

Indeed, fix .;m/ 2 ‚ and write the corresponding components of � and D� as �
and .D�/ . Then up to an overall  –dependent factor,

.D�/ D
i

2
rt� C .r.� /Rr

1;0h/jc C e ;

where e is such that kekL2 � c0r�1=2k�kL2
1

. Here, as in (1-7), rt denotes the
covariant derivative on c�T1;0Cm and .� /R denotes the vector in T Cm defined by � .

This lemma is proved shortly.

Lemma 2.1 with (2-21) and (2-22) imply that

(2-23) kL�fk
2
2 � c0

�1.kf?k2HCk�k
2

L2
1

/:

To see how this comes about, note that (2-22) and Lemma 2.1 imply that

(2-24) kL�fk
2
2 � c�1

0 kL
?f?C}.�/k22C c0

�1
k�k2

L2
1

� c0r�1
kf?k2H:

Meanwhile, the right hand side of (2-24) is no less than

(2-25) "c0
�1
kL?f?k2

2
� "k}.�/k2

2
C c0

�1
k�k2

L2
1

� c0r�1
kf?k2H;

where " can be any given number in .0; 1
4
/. What with (2-20) and (2-21), this last

inequality implies (2-23).

Step 8 This step finish the proof of that Lc.x/ has trivial kernel. To this end, introduce
as notation o to denote Lc.x/�L� . Now observe that

(2-26) kLc.x/fk
2
2 � c�1

0 .k..L�C o/f/?k22Ckt
|..L�C o/f/k2

L2
1

/:

What with the last line in (2-9) and (2-20) and Lemma 2.1, this implies that

(2-27) kLc.x/fk
2
2 � c�1

0 k..L�C o/f/?k22C c0k�k
2

L2
1

� c0r�1
kf?k2H:

Now write .L�f /? as L?f?C}.�/ and use the first line of (2-11) to see from (2-27)
that

(2-28)
kLc.x/fk2

2
� ."c�1

0 kL
?f?k2

2
� "k}.�/k2

2
� "k�k2

L2
1

/

C c0k�k
2

L2
1

� c0r�1
kf?k2H
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for any " 2 .0; 1
8
/. For a suitable "D c�1

0
, this last inequality with (2-20) and (2-21)

prove that

(2-29) kLc.x/fk2
2
� c�1

0 .kf?k2HCk�k
2

L2
1

/:

This with the fact that t is nearly isometric as a map from
L
.;m/2‚ L2.S1I c�T1;0Cm/

to L proves that Lc.x/ has trivial kernel when r � c0 .

Step 9 This step and the next contain:

Proof of Lemma 2.1 In order to identify D� and so prove Lemma 2.1, it is necessary
to return to (3-13) in [14] for it is the latter equation that gives the D part of L� .
Equation (3-13) in [14] has terms designated as r00 and r01 ; and their O.1/, O.jzj@/
and O.jzjx@/ make an O.1/ contribution to D� . This understood, fix .;m/2‚ and so
as to view the .;m/ component of D. � /. A somewhat more detailed analysis rewrites
the contribution to the .A�;  �/ version of (3-13) in [14] from a section f0 D .q; �0/

of V0 as

(2-30)
2

�
2�

`

��
i

2

@

@t
q� .�zC�xz/

@

@z
qC .�xzC x�z/

@

@xz
qC �qC�xq

�
Cr�0

2

�
2�

`

��
i

2
rtA �0� .�zC�xz/@A �0C .�xzC x�z/x@A �0

�
Cr�1;

where jr�0.f0/jC jr�1.f0/j � c0.jzj.jf0jC jrt f0j/Cjzj
2jrf0j/.

Fix t0 2 S1 and then fix an L2.CIC ˚ C/ orthonormal basis, fek. � /g1�k�m for
the kernel.#c.t// for t 2 S1 near t0 . Assume that this basis varies smoothly with t .
Write the .;m/ component of � at points t 2 S1 near t0 in terms of this basis asP

1�k�m �;k.t/ek . Likewise, write
P

1�k�m.D�/;kek for the .;m/ component of
D� . Now use (2-6) and (2-30) to see that the contribution to D from (2-30) is given by
2.2�=` / times

(2-31)
i

2
rt�;k C �

X
1�j�m

�;j
1

�

Z
C
x�k �j C�

X
1�j�m

x�;j
1

�

Z
C
xxk xxj C e;

where the notation is as follows: First, rt denotes the covariant derivative on c�T1;0Cm .
Meanwhile, any given pair �k and xk are the two components of ek . Finally, what is
written as e obeys kekL2 � c0r�1=2k�kL2

1
.

What is written in (2-31) contributes to  ’s component of D� , but it is not the end
of the story because there is still the contribution to L� from .b�; ��/. To see the
contribution from .b�; ��/, recall that .b�; ��/ near  is the iT �M ˚S portion of
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a map to V0˚V1 that is given by .0; p0/ with p;0 described as follows: Rescale
by r

1=2
 so as to write p0.t; z/ as �.t/u.t; r1=2

 z/C�.t/w.t; r
1=2
 z/. Then u and w

obey

#|uC .1�…0/Œz.2
�1=2.1� j˛j2/; @A˛/�D 0;

#|wC .1�…0/Œxz.2
�1=2.1� j˛j2/; @A˛/�D 0;

(2-32)

where the notation is as follows: First, .A; ˛/ here denote the vortex c . Second, # is
the operator from (2-4) as defined by this same symmetric vortex. Second, …0 denotes
the projection onto the kernel of # . In the case when c is the symmetric vortex,

(2-33) uD�.21=2z˛�1@A˛; 0/ and for mD 1; wD�.0;xz x̨�1.1� j˛j2//:

In the general case, it is a consequence of (2-7) in [14] and the top line in (1-5) here
that uD .y; 0/ and wD .0; &/ where y and & obey

(2-34) �@x@yC
1

2
j˛j2y D�2�1=2.1� j˛j2/ and � @Ax@A& C

1

2
& D�@A˛:

The contribution to .D�/ from .b�; ��/ adds to what is written in (2-31) so as to give

(2-35)

.D�/ D
i

2
rt�;k C �

X
1�j�m

�;j
1

�

Z
C
x�k �j

�
1�

1
p

2
y

�

C�
X

1�j�m

x�;j
1

�

Z
C

�
1
p

2
xxk xxj �

1

2
&.xxkx�j C xxjx�k/

�
Ce;

where e again denotes a term that obeys kekL2 � c0r�1=2k�kL2
1

.

Step 10 Granted (2-35), then Lemma 2.1 follows from:

Lemma 2.2 Let � 2R and �2C denote a given pair of numbers. Fix m2 f1; 2; : : : g

and use the pair .�; �/ to define the function h W Cm!R as in (1-6). Fix cD .A; ˛/ 2

Cm and define the functions y and & as in (2-35). Let fek D .xk ; �k/g1�k�m denote
an orthonormal basis for the L2 kernel of the operator #c and thus an orthonormal
basis for T1;0Cmjc . Write a given vector � 2 T1;0Cmjc as � D

P
1�k�m �

kek , and
write .r�R

r1;0h/jc in terms of this basis as
P

1�j�m H kek . Then

H k
D �

X
1�j�m

�j 1

�

Z
C
x�k �j

�
1�

1
p

2
y

�

C�
X

1�j�m

�j 1

�

Z
C

�
1
p

2
xxk xxj �

1

2
&.xxkx�j C xxjx�k/

�
:
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Proof of Lemma 2.2 Extend the orthonormal basis fekD.xk ; �k/g1�k�m for T1;0Cmjc

to a neighborhood of c so as to have vanishing covariant derivative at c. Fix a smooth
function fW C!C with jzjRjfj bounded for some R� 1. Consider for the moment
the section, f, near c of T1;0Cm whose ek component is given by

(2-36)
1
p

2�

Z
C

f xxk :

The covariant derivative of f along ej at c has component along ek equal to

(2-37)
1
p

2�

Z
C
@f uxkj

;

where uxkj
is the L2 solution on C to the equation

(2-38) �@x@uxkj
C

1

2
j˛j2uxkj

D�2�1=2
x�k �j :

Meanwhile, the covariant derivative of f along xej has component along ek equal to

(2-39)
1

2�

Z
C

f˛ xw
kj
;

where wkj is the L2 solution on C to the equation

(2-40) �@Ax@Awkj C
1

2
wkj D�2�1=2.xk �j Cxj �k/:

These formula for the covariant derivative of f follow from (2-7) and (2-10) in [14].

Now write h D h� C h� where

h� D
1

2�

Z
C
�jzj2.1� j˛j2/;

h� D
1

4�

Z
C
.�xz2

C x�z2/.1� j˛j2/:

(2-41)

Consider first rr1;0h� . To this end, use the top line of (2-13) in [14] to write the ek

component of r1;0h� as

(2-42) ��
1
p

2�

Z
C

zxxk :

It then follows from (2-37) that the ej covariant derivative of the latter is equal to

(2-43) ��
1
p

2�

Z
C

uxkj
:
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With the preceding understood, note that integration by parts using (2-38) and the left
hand equation in (2-34) yields the equality

(2-44)
Z

C
.1� j˛j2/uxkj

D

Z
C

yx�k �j :

Meanwhile, integrating both sides of (2-38) over C finds that

(2-45)
Z

C
j˛j2uxkj

D�21=2

Z
C
x�k �j :

These last two equalities imply that

(2-46)
1

�

Z
C
x�k �j .1� 2�1=2y/D�

1
p

2�

Z
C

uxkj
:

As explained momentarily, the covariant derivative of r1;0h� in the direction of xej

has ek component equal to zero. Thus, the term proportional to � in the lemma’s claim
for H k is equal to r�R

.r1;0h�/. To see about the xej derivative of r1;0h� , use (2-39)
to write its ek component as

(2-47) ��
1

2�

Z
C

z˛ xw
kj
:

To make something of this equation, multiply both sides of (2-40) by ��.1=�/xz x̨ and
integrate the result over C . What with the second line in (1-5), integration by parts
finds the left hand side of the resulting equality to be the complex conjugate of the
expression in (2-47). Meanwhile, the right hand side of this same equality is equal to
the integral over C of ��.1=�/xz@.xkxj /. This uses the fact that #cek D 0 and thus
@xk C 2�1=2 x̨�k D 0. Thus, an integration by parts finds (2-47) equal to zero.

Consider next r�R
.r1;0h�/. The ek component of r1;0h� is equal to

(2-48) ��
1
p

2�

Z
C
xzxxk :

It follows from (2-37) that the ej covariant derivative of the vector field on C depicted
in (2-43) is zero. Meanwhile, the xej derivative of (2-43) can be written as

(2-49) ��
1

2�

Z
C
xz˛ xw

kj
:

To proceed from here, note that integration by parts using (2-40) and the right hand
equation in (2-34) gives the identity

(2-50)
1
p

2�

Z
C
x&.xk �j Cxj �k/D

1

�

Z
C

x@A x̨wkj :
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An integration by parts, and then a second integration by parts with an appeal to the
second bullet in (1-5) finds the right hand side of (2-50) equal to

(2-51)
1

�

Z
C

z x̨@Ax@Awkj :

Now use (2-40) to write this last expression as

(2-52)
1

�

Z
C

z x̨wkj C
1
p

2�

Z
C

z x̨.xk �j Cxj �k/:

To continue, write x̨�k as �
p

2@xk and integrate by parts yet again to see that (2-52)
is equal to

(2-53)
1

�

Z
C

z x̨wkj C
1

�

Z
C

xkxj :

Thus, (2-50) implies that

(2-54) �
1
p

2�

Z
C

z x̨wkj D
1

�

Z
C

�
1
p

2
xkxj � x&

1

2
.xk �j Cxj �k/

�
:

Thus, the term proportional to � in what the lemma asserts is H k is r�R
.r1;0h�/.

2.b The relative degree formula: Part I

Let x� and xC denote a pair of elements from CZ� . The previous section proves
that the large r versions of both c� Dˆ

r .x�/ and cC Dˆ
r .xC/ are nondegenerate

solutions to (1-8). This is to say that the cD c˙ versions of the operator Lc in (1-8)
have trivial kernel. The subsection and the next two prove the formula that Theorem
1.1 asserts for the difference degSW.cC/� degSW.c�/. Assume here and in the next
subsection that both ‚� and ‚C are such that if .;m/ is in either of these sets, then
 has a tubular neighborhood map 'W S1 �D!M with the following properties:

(2-55)

� If  is hyperbolic, then mD 1. Furthermore, .�; �/D .1
4
k; i"eikt / with

k 2 Z and with " > 0 but very small.

� If  is elliptic, then its rotation number R is irrational. Furthermore,
(i) The pair .�; �/D .1

2
R; 0/.

(ii) The '�–pullback of T 1;0.R � M / is spanned by ds C ia and
.`=.2�//.dz� i Rzdt/.

It is a consequence of Lemmas 2.1–2.4 in [14] that x� and xC are as follows: If
.;m/ is in either ‚� or ‚C , then the associated map from S1 to Cm is the constant
map to the symmetric vortex; this the solution to (1-5) with ˛�1.0/D 0 2C .
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Much of the notation that appears in these sections comes from Sections 4–7 of [14].
The discussion in this subsection has eight parts.

Part 1 Fix a smooth, oriented, embedded surface †�R�M with no compact com-
ponents whose projection to M defines a homology between the cycles †.;m/2‚�m

and †.;m/2‚Cm . To be explicit, fix R� 1 as in (4-8) of [14] and require that the
jsj �R portion of † be a disjoint union of embedded cylinders. Each such cylinder
is deemed an end of †. These ends behave as follows: Let .;m/ 2 ‚� . Then
there are precisely m ends of † where s � �1 whose constant s slices converge
as s!�1 to  as a degree 1 braid in a tubular neighborhood of  . Such an end,
E , appears as follows: Extend the coordinate map ' in (2-55) to give coordinates
.w ; t; z/ 2R�S1 �D to a neighborhood of R�  in R�M via the map that sends
any given point .w ; t; z/ to the point .s Dw � 1

2
jzj2; �.t; z//. The end E appears in

these coordinates as the graph of the map from .�1;�R��S1 to D that sends .w ; t/
to z D zE&.t/e

�2�w . Here � is the largest of the negative eigenvalue of  ’s version
of (1-2) on S1 D R=2�Z and &.t/ is the corresponding eigenvector. Meanwhile
zE 2 C � 0 is an m–th root of unity, chosen so that zE ¤ zE 0 when E and E 0 are
distinct ends whose constant s slices limit to  . Each s� 1 end of † has an analogous
description but with � the smallest positive eigenvalue.

With † fixed, introduce U† ! R �M to denote a tubular neighborhood of †’s
intersection with Œ�4R; 4R�. If .;m/ 2‚� , let U� denote the set of points in  ’s
version of R � S1 �D with w < �2R and distance less than 4�� from  . Here,
�� > 0 is the constant that appears in (4-8) of [14]. If .;m/2‚C , use UC to denote
the set of points in  ’s version of R�S1 �D with w > 2R and distance less than
4�� from  .

Part 2 Fix an orthogonal, almost complex structure on a neighborhood of † in R so
that † is pseudoholomorphic. Denote this almost complex structure as J† . Given the
description above for the ends of †, this almost complex structure can be chosen so
that it differs little from the already chosen almost complex structure J where jsj is
large. In particular it can be assumed that jJ �J†j � c0e�jsj=c0 .

Let � W N ! † denote the normal bundle to †. The almost complex structure J†
gives N the structure of a complex line bundle over †. Use � in what follows to
denote both the Hermitian connection on N and also its pullback to ��N !N . Also,
use s to denote the tautological section of ��N . With R fixed, let †R denote the part
of † where jsj � 4R. The metric’s exponential map embeds a fixed radius subbundle
of N j†R

. The latter bundle is denoted in what follows as N1 . This exponential map
is used implicitly in what follows to identify N1 with its image in R�M .
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Because J† is orthogonal, and because † is J† pseudoholomorphic, there is a self
dual section, !† , of

V2
T �.R�M / over ..�1;�R��M /[ .ŒR;1/�M /[U†

whose pullback to † is the induced area form and whose jsj ! 1 limit in either
direction is the form !aD ds^aC�a. Given the convergence of J† to J at large jsj,
no generality is lost by requiring that the limit is approached exponentially fast:

(2-56) lim
jsj!1

j!† �!aj � c0e�jsj=c0 :

This form !† can be chosen so that it appears on N1 as

(2-57) !† D
i

2
r�s^r�xsC�

� vol†CO.jsj2/;

where sW N1! ��N is the tautological section, and where vol† denotes the induced
area 2–form on †.

Extend !† as a self-dual 2–form to the whole of R�M with transversal zero locus,
Z � .�1; 1/�M . The form !† can be modified if necessary so as to insure that Z is
either empty or has two connected components.

To elaborate, there are coordinates near any give component of Z which are such that
!† appears as

(2-58) !† D dt ^uij xidxj
C

1

2
uij xi"jkndxkdxn

CO.jxj2/;

where the notation is as follows: The coordinates are on S1 �B3 where B3 � R3

is a ball centered on the origin; t 2 R=.2�Z/ is an affine coordinate on S1 and
.x1;x2;x3/ are the Euclidean coordinates on R3 . What are denoted by fuij g1�i;j�3

are the entries of a smooth map t!u.t/ from S1 to SL.3IR/. Meanwhile, "ijk is the
completely antisymmetric 3–tensor with "123 D 1. Finally, the summation convention
for repeated indices are used. The map u may or may not be homotopically trivial.
If it is, there is a further change of coordinates that makes u to be the constant map
to the identity matrix. It follows from an observation of Gompf [4] that !† can be
chosen so that each component of Z has a version of u that is homotopically trivial.
This extra requirement can be met only if Z has even number of components, and two
components is always sufficient. Assume such a version of !† and assume that the
coordinates in (2-58) are such that u is the constant map to the identity element.

One more constraint on Z is required: Assume that the projection from R�M to M

sends Z to the complement of
S
.;m/2‚�

 and
S
.;m/2‚C

 0 .
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Part 3 Let T � .�1; 1/ �M denote a tubular neighborhood of Z that is disjoint
from †. Use XZ to denote .R�M /�Z . Modify the Riemannian metric on R�M

so that the resulting metric has the following properties: First, this metric should agree
with the original on .R�M /�T . Second, there is a smaller tubular neighborhood
T 0 � T of each component of Z such that T 0 � .T 0 \ Z/ � XZ is isometric to
the product .D2 � 0/ � S2 where D2 � C is the disk of radius 1 centered at the
origin with the Euclidean metric. Let X denote the Riemannian manifold that is
obtained by first deleting each version of T 0 from R�M and then attaching D2�S2

using the aforementioned isometry to identify the complement in T 0 of T 0\Z with
.D2� 0/�S2 .

The form !† can be chosen so as to have a modification on T that extends to the
whole of X as a self-dual form, this denoted by !X . This form !X has the following
properties: It agrees with !† on X �T D .R�M /�T ; it is self-dual with respect to
the metric on X ; and it appears on each .D� 0/�S2 � T �Z as !X D !D C!S2

where !D is the area form on the disk D and !S2 is the area form on S2 with the
latter viewed as the unit sphere in R3 .

Part 4 An oriented, Riemannian 4–manifold with a SpinC –structure has the C2

bundles of self-dual and anti self-dual spinors. These are associated to the given
SpinC.4/D .SU.2/�SU.2/�S1/=f˙1g lift of the principal SO.4/ frame bundle of
the tangent bundle. They are obtained by composing the defining representation of U.2/

on C2 with the two evident homomorphisms of SpinC.4/ to U.2/D .SU.2/�S1/=f˙g.
These two spinor bundles are described at the beginning of Chapter 1 of [9]. When M

is a 3–dimensional Riemannian manifold, a SpinC structure on M induces one on
R�M . If the latter has its product metric, then the SO.4/ frame bundle of R�M

is isomorphic to the pullback from M of the SO.4/ bundle obtained from the SO.3/
principal frame bundle of M via the standard inclusion homomorphism of SO.3/ in
SO.4/. The latter isomorphism induces a canonical isomorphism from the self-dual
spinor bundle on R�M , and also one from the anti self-dual spinor bundle, to the
pullback of the spinor bundle over M .

Granted the preceding, view the spinor bundle SI as the bundle of self-dual spinors
on the 4–manifold R�M . By restriction, the associated SpinC structure defines an
analogous bundle of self-dual spinors on XZ . The latter is denoted by SI;X . Clifford
multiplication by !X defines a splitting of SI;X on XZ as a direct sum of two complex
line bundles. This splitting is written as

(2-59) SI;X DL˚ .LK�1
X /;

where the convention takes the left most summand to be the Ci j!X j eigenspace of
Clifford multiplication by !X and the right most to be the �i j!X j eigenspace. Note
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that this splitting is very close where jsj �R to the splitting that is defined by Clifford
multiplication by the 1–form a.

Consider now the line bundles KX !XZ and L!XZ . By definition, L restricts to
the jsj � 1 part of X as the trivial bundle and KX restricts as the bundle K . To say
more, note that the bundle KX restricts to any .D2�0/�S2 end in X as the pullback
from S2 of the bundle whose first Chern class is twice the generator of H 2.S2IZ/.
Meanwhile, L restricts to this part of X as the pullback from S2 of the bundle whose
first Chern class generates H 2.S2IZ/. Indeed, this can be seen using (2-58) given
that SI extends over Z . This analysis leads to the conclusion that KX DL2K .

It follows from what was just said that SI;X extends from XZ to X as the bundle of
self-dual spinors for a SpinC bundle on X . Use SIC to denote the bundle L�1˝SI;X .
This splits as IC˚KX

�1 with respect to Clifford multiplication by !X . Use SEC!X

in what follows to denote .EL�1/˝SI;X DE˚EKX
�1 . Both SIC and SEC are

spinor bundles for SpinC structures on X .

Part 5 As noted previously, the bundle L restricts to f˙1g �M as the trivial bun-
dle. Moreover, it has a canonical trivialization here using the section 1C . With this
trivialization understood, it’s first Chern class has a well defined pairing with †. This
pairing is denoted in what follows by k† .

To say more about k† , let �† denote the Euler characteristic of †. Meanwhile,
let deg.N†/ denote the Euler class of the normal bundle of † as defined using the
section whose restriction to any given end is the real part of @=@z . Let �hc1; †i denote
the Euler class of the restriction in X of K to † as defined using a section whose
restriction to any given end is also the real part of @=@z .

Lemma 2.3 The integer k† is equal to �1
2
.hc1; †iC�

†C deg.N†//.

Proof of Lemma 2.3 A section of L is defined as follows: Let  0 denote a unit length
section of SI with the property cl.a/ 0D i 0 . Then .cl.!X /C i

p
2j!X j/ 0 defines

a section of L. The latter vanishes on † at those points where !X D�.ds^aC 1
2
da/.

To see what this means, fix a trivialization of T �M . This then induces a trivialization
of the R3 bundle of self-dual forms on R�M , and thus its restriction to †. Both
.ds^aC 1

2
da/ and !X are nowhere zero, self-dual 2–forms along †. With this bundle

trivialized, both define a map from † to S2 and together they define a map from †

to S2 �S2 with limit on the diagonal as jsj !1. This understood, the image of †
via this map has a well defined intersection number with the antidiagonal in S2 �S2 .
This intersection number is k† .
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To write this intersection number as in the statement of the lemma, again view !X

as a map to S2 , and consider its pullback of the tangent bundle of S2 . A section of
!�

X
TS2 is a self-dual 2–form along † that is orthogonal to !X . Fix such a form

with the following property: On any given end in any .;m/ 2‚� version of U� or
.;m/ 2‚C version of UC , require that the jw j !1 limit equal the real part of
.dwC idt/^dz . Use u to denote such a self-dual 2–form. Then u.b; b0/D 0 if b and
b0 are sections of T†. Thus u defines a homomorphism from T† to the dual of the
normal bundle N !†. This homomorphism on any given end of † maps the vector
field @=@s to the real part of dz . It follows as a consequence that the degree of u as a
section of !X �TS2j† is �.�†C deg.N†// where deg.N†/ denotes the euler class
of the normal bundle of † as defined using any section whose restriction to any given
end is the real part of @=@z . Consider next the pullback via the map .ds ^ aC 1

2
da/

of the tangent bundle to S2 . A section of the latter bundle is, by definition, a section
of the bundle K . Fix a section whose restriction at large jsj at any given end is the
real part of dz.@=@z/. The Euler class of this section is well defined and is equal to
hc1;Ki. The claim about k† follows directly from these observations.

Part 6 Follow the instructions given in Section 5.a of [14] to construct a pair .A�
X
;  �

X
/

of section of Conn.E/ over X and section of SEC over X . Note in this regard that
the spinor  �

X
appears as .˛X ; 0/ with respect to the splitting of SEC that is defined

by Clifford multiplication of !X . Here, ˛X is a section of E that is A�
X

–covariantly
constant on the complement of a neighborhood of †. In particular, A�

X
has zero

curvature and zero holonomy on the Œ0;1/�S1 �S2 part of X .

Each pair .;m/ 2‚� also has its � D 0 version of what is denoted as p� in Part 5
of the proof of Lemma 6.3 in [14]. Introduce the corresponding b� D .0; p�D0/,
this defined a priori as a map from .�1;�R/ � S1 � C to V0 ˚ V1 . Define the
set U� � R�M as in (5-3) of [14] and view b� on the set U� as a section of
iT �M ˚S˚ iR. There is an analogous bC for each pair .;m/ 2‚C .

Let C denote the set of components of †. Define the tubular neighborhood UC for
each C 2 C as in (5-3) of [14]. Each C 2 C has a corresponding section bC as defined
Part 3 of the proof of Lemma 6.3 in [14]. This is viewed as a section over the set UC

of iT �M ˚S˚ iR.

Granted the preceding definitions, introduce

(2-60)

hD
X
C2C

�
�C

Y
E2EC

.1��EC
/bC

�
C

X
E2EC

X
.;m/2‚

�EC
��b�

C

X
E2EC

X
.;m/2‚0

�EC
�CbC;
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where EC denotes the set of ends of C and where �EC
is defined as follows: Let C 2 C

denote the component that contains E . Introduce from Part 2 of Section 4.a in [14] the
normal bundle to C with its exponential map, eC , onto a tubular neighborhood of C .
Introduce from Step 1 of Part 1 in Section 5.a of [14] the disk subbundle N4C ! C in
C ’s normal bundle. Finally, introduce the constants R, �† and RE from (4-8) in [14].
What is denoted by �EC

above is the function on R�M with compact support on
eC .N4C jE / where it is given by the rule �EC

D �.4jsj=�†/�..RE C 3R� jw j/=R/.

View h as a section of iT �X ˚SEC over the whole of X which is nonzero only on
the part of X that is isometric to R�M , thus where T �X splits as T �M ˚R. Write
hD .c; &/. Define AX to be the connection on E over X given by A�

X
C
p

2r1=2c .
Meanwhile, define  X to be the section of SEC over X given by  �

X
C & .

Part 7 Let SE� denote the bundle of anti-self-dual spinors on X that is defined
by the SpinC structure with self-dual spinor bundle SEC . Let ƒ2C ! X denote
the bundle of self-dual 2–forms on X . These bundles appear implicitly in the up-
coming Equation (2-61) which describes an operator DE W C

1.X I iT �X ˚SEC/!

C1.X I iƒ2C˚SE�˚ iR/ that plays a central role in the subsequent parts of the
proof.

To start the definition of DE , fix a Hermitian connection on KX with the follow-
ing properties: First, it restricts to the jsj � 1 part of X as the connection AK

on K that is described in Part 3 of Section 1.a. Second, it restricts to each end of
X �† as the pullback of a connection on the S2 factor of Œ0;1/� S1 � S2 . Use
�AX
W C1.X ISEC/! C1.X ISE�/ to denote the Dirac operator that is defined by

this connection on KX and the connection AX on E . Use dCW C1.X I iT �X /!

C1.X Iƒ2C/ to denote the self-dual projection of the exterior derivative. Meanwhile,
use d�W C1.X I iT �X /!C1.X I iR/ to denote the formal L2 adjoint of the exterior
derivative. The operator DE sends any given section .b; �/ of iT �X ˚SEC to the
section of the bundle iƒ2C˚SE�˚ iR whose respective components are

(2-61)

� dCb � 2�1=2r1=2. X
|��C �|� X /,

� �AX
�C 21=2r1=2 cl.b/ X ,

� d�b � 2�1=2r1=2.�| X � X
|�/.

Lemma 2.4 There exists � > 1 with the following significance: If r � � , then the
operator DE defines a Fredholm operator from L2

1
.X I iT �X ˚SEC/ to the Hilbert

space L2.X I iƒ2C˚SE�˚ iR/.

Proof of Lemma 2.4 The assertion follows from the fact that both the c� Dˆ
r .x�/

and cC Dˆ
r .xC/ versions of (1-9) have trivial kernel.
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Part 8 The following lemma motivates the interest in DE . The lemma uses ind.DE/

to denote its index as a Fredholm operator with to the domain and range spaces that
are described in Lemma 2.4.

Lemma 2.5 The spectral flow from Lc� to LcC is equal to ind.DE/C 2k† .

Proof of Lemma 2.5 The index of DE is insensitive to any change of the connections
and spinors used to define this operator as long as such changes have compact support.
Keep this fact in mind in what follows.

Reintroduce the pair .A�;  �/D .A�C21=2r1=2b�;  
�C��/ as defined in Step 2 of

Section 2.a using the data from the set ‚� . Let .AC;  C/ denote the corresponding
‚C version. Fix R0 � R and deform the pair .AX ;  X / to .A0

X
;  0

X
/ with the

following properties: This pair is equal to .AX ;  X / where s � 1. Where s 2 .2;R0/,
it is equal to .A�;  �/. Finally, it is equal to .AC;  C/ where s � 2R0 . Let D0

E

denote the .A0
X
;  0

X
/ version of (2-61). The operators DE and D0

E
have the same large

jsj limits and so D0
E

is also Fredholm as a linear map from L2
1
.X I iT �X ˚SEC/ to

L2.X I iƒ2C˚SE�˚ iR/. Moreover, its index is the same as that of DE .

Granted the preceding, let D00
E

denote the operator from L2
1
.X I iT �X ˚ SEC/ to

L2.X I iƒ2C˚SE�˚ iR/ that is defined via (2-61) using .A00;  00/ where the latter
is declared equal to .A0

X
;  0

X
/ where s � 2 and equal to .A�;  �/ where s � 2. This

operator is also Fredholm. Take R0 large and a standard Mayer–Vietoris argument
can be used to prove that index.D0

E
/D index.D00

E
/Cf .c�; cC/, where f denotes the

spectral flow from Lc� to LcC .

Meanwhile, the operator D00
E

where s � �R is the same as where s � R. As a
consequence, its index is that of an operator on the compact manifold, Y , that is
obtained by identifying f�Rg �M �X with fCRg �M �X . This understood, the
index of D00

E
can be computed using the Atiyah–Singer Index Theorem. This theorem

finds ind.D00
E
/D�2k† . Thus, ind.DE/D�2k†Cf .c�; cC/. This is what is stated

by the lemma.

2.c The relative degree formula: Part II

This subsection computes the index of DE and completes the proof of the degree
formula in Theorem 1.1 for the case that (2-55) holds for each Reeb orbit  from either
‚� or ‚C . Note that (2-55) is assumed in this subsection. The discussion here has
eight parts.
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Part 1 This part of the proof begins the task of computing ind.DE/. To set notation,
let r denote the covariant derivative on both iT �X ˚SEC and iƒ2C˚SE�˚ iR
as defined using the Riemannian connection from T �X , the connection chosen for
KX and the connection AX for E . Define the Hilbert space HX to denote the space
of L2

1
sections of iT �X ˚SEC with the norm

(2-62) kqkH;X 2 D

Z
X

jrqj2C
1

4
r

Z
X

jqj2:

Meanwhile, use LX to denote the Hilbert space L2.X I iƒ2C˚SE�˚ iR/.

Define the Hilbert space K2
1

as in (5-12)–(5-13) of [14] using the L2
1

norm rather than
the K–norm. Define the map tX W K2

1
!HX by copying the definition in (6-9) of [14]

for its map t . Introduce …X W HX !HX to denote the L2 orthogonal projection onto
the image of t . Use H?

X
to denote .1�…X /HX . Note that tX is a bounded injection

when r � c0 and R� c0 . Mimic what is done in Part 7 of Section 6.a in [14] to define
the space L2 . The analogous version of tX maps L2 injectively into LX . Use …X

also to denote the orthogonal projection on LX with image tX .L2/. Finally, use L?
X

to denote .1�…X /LX . Note that when r � c0 and R� c0 , the map tX W L2! LX

is nearly isometric because

(2-63) .1� c0r��=4/k�kL2 � ktX .�/kL2 � .1C c0r��=4/k�kL2 :

Here, and below k�kL2 denotes the norm on L2 . Meanwhile, � is the positive constant
that is introduced in Section 4.c of [14]. By way of explanation, these inequalities
follow because the various identifications of the bundle iT �X ˚SEC that are used
to define tX are nearly isometric. See Part 6 of Section 6.a in [14] and (5-12)–(5-13)
in [14].

The operator DE is analyzed below by decomposing HX as H?
X
˚ tX .K2

1
/ and LX

as L?˚ tX .L2/. To this end, write f 2HX as f?C tX .�/ with f? 2H?
X

. Then write
the respective L?

X
and L2 components of DEf as

(2-64)
� .1�…X /DEfDD?

E
f?C pX .�/.

� t |
X
.DEf/D pX

0.f?/C�� .

The lemma below says what is needed about D?
E

.

Lemma 2.6 There exists a constant � > 1 with the following significance: Fix r � �

and R � � so as to define DE , H?
X

and L?
X

. Let D?
E

denote the restriction of
.1�…X /DE to H?

X
. Then D?

E
is a bounded, invertible map from H?

X
to L?

X
that
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obeys
��1
kf?kH;X � kD

?
Ef?k2 � �kf

?
kH;X

for all f? 2H?
X

.

Proof of Lemma 2.6 It follows by copying what is said in Parts 3 and 5 of the proof
of Lemma 6.3 in [14] that

(2-65) jhj � c0��e
�
p

r dist. � ;†/=100:

As a consequence, the L2 norm of the contribution to D?
E
f from h is bounded by

(2-66) c0r1=2��kf
?
k2 � c0��kf

?
kH;X :

Let DE� denote the version of DE that is defined by using .A�
X
;  �

X
/ in (2-61). The

latter is what is left of DE with the contribution from h absent. A repeat of the
arguments for Lemma 6.1 in [14] prove the assertion of Lemma 2.6 for D?

E�
. Granted

(2-65), the assertions hold for D?
E

when r � c0 .

Consider next the size of pX .�/ and pX
0.f?/. To bound the latter, remark first that DE

near † has the schematic form given in (6-6) and (6-7) of [14]. What with (4-7)–(4-9)
in [14], these equations imply that

(2-67) kpX .�/k2 � c0r3�
k�kK2

1
:

Here, k � kK2
1

denotes the norm on K2
1

. They also imply that

(2-68) kpX
0.f?/kL2 � c0��kf

?
kH;X � c0r�1=2C3�

kf?kH;X :

The next lemma describes �. This lemma uses the following notation: Given finite
dimensional vector spaces V0 and V1 with injective, linear maps �0W V0!K2

1
and

�1W V1!L2 , the map � defines a linear operator from the K2
1

–orthogonal complement
of �0.V0/ to the L2 –orthogonal complement of �1.V1/ that is obtained by composing
� with the L2 –orthogonal projection. This map is denoted by �? .

Lemma 2.7 There exists � > 1 and finite dimensional vector spaces V0 and V1

with the following significance: Suppose that r � � and R � � . Then the operator
�W K2

1
!L2 is Fredholm and its index is equal to dim.V0/�dim.V1/. Moreover, there

exist injective linear maps �0W V0! K2
1

and �1W V1! L2 such that the associated
map �? is an isomorphism of vector spaces that obeys k�?�kL2 � ��1k�kK2

1
.

The proof of this lemma is given momentarily so assume it is true for now.
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What follows directly are some comments with regard to the substance of this lemma.
To start, note that Lemma 2.7 has two assertions. The first is that � is Fredholm when
r is large. This assertion needs no reference to the vector spaces V0 and V1 . These
two vector spaces involve the second assertion, which is the lower bound for the norm
of �? . There are three key points to observe with regard to this lower bound: First, the
lower bound is r –independent. Second, the domain and range of �? are subspaces
with finite and r –independent codimension. The third point, though not stated by the
lemma, is that V0 , V1 can be described explicitly. This is done in the Part 3 to come.
These descriptions are used to compute the index of �. Meanwhile, Lemma 2.8 in
Part 2 below asserts that the index of � is equal to the index of DE .

Part 2 This part uses some straightforward linear algebra in conjunction with Lemma
2.6 to translate statements about the kernel and cokernel of DE into statements about
the operator �. To start this task, suppose that f 2HX and suppose that DEf D 0.
Write fD f?C tX .�/. Given Lemma 2.6, it follows from (2-64) that f? is determined
by � and can be written as f? D�.D?

E
/�1pX .�/. This understood, then � obeys

(2-69) �E� D�� � pX
0..D?E/

�1pX .�//D 0:

Equation (2-69) identifies the kernel of DE with the kernel of �E . With regard to
�E , note that (2-67) and (2-68) find that

(2-70) kpX
0..D?E/

�1pX .�//k2 � c0r�1=2C6�
k�kK2

1
:

Now consider the cokernel of DE . To this end, fix y2LX . Given � 2L2
1

, the equation
D?

E
.f?C pX .�//D y? is solved by

(2-71) f? D�.D?E/
�1pX .�/C .D

?
E/
�1y?:

It follows that y has nonzero projection to the cokernel of DE if and only if there is
no � 2 L2

1
solving

(2-72) �E� D pX
0..D?E/

�1y?/� t |
X
.y/:

Thus, the map that sends y 2 L to the projection of pX
0.D?

E
/�1y?/� t |

X
.y/ into the

cokernel of �E defines an injection from cokernel.DE/ to cokernel.�E/. Moreover,
given (2-63), this injection is an isomorphism.

The following lemma summarizes:

Lemma 2.8 There exists ��1 with the following significance: Suppose that r �� and
R� � . Then the map �!�.D?

E
/�1pX .�/CtX .�/ and y! pX

0.D?
E
/�1y?/� t |

X
.y/

define respective isomorphism from the kernel of �E to the kernel of DE and from
the cokernel of DE to the cokernel of �E . Thus, the operators DE and �E have the
same Fredholm index. Moreover, the index of the latter is the same as that �.
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Proof of Lemma 2.8 It is necessary only to comment on the last assertion. This
follows from (2-70) when r is large given the assertion in Lemma 2.7 that k�?�kL2 �

c0
�1k�kK2

1
when � is orthogonal to �0.V0/.

Part 3 This part describes the vector spaces V0 and V1 in preparation for the proof
of Lemma 2.7. There is a version for C of the operator DC that is depicted in (1-10).
This operator is Fredholm as a map from L2

1
.C IN / to L2

1
.C IN ˝T 0;1C /. Let V0C

denote the kernel of C ’s version of this operator, and let V1C denote kernel of the
formal L2 adjoint of this operator.

Now fix .;m/2‚� . Define a map c�W R�S1!Cm as follows: Let fE1; : : : ;Em )
denote the set of ends of † that intersect U� . Recall that each such end is a graph of
a function .w ; t/! zE&.t/e

�2�w where � is the largest negative eigenvalue of  ’s
version of (1-2) and &.t/ is a corresponding eigenfunction. The set fzE1

; : : : ; zEm
g

are the m–th roots of unity. The map c� is defined by specifying the R � S1

dependence of the coordinates f�qg1�q�m for Cm that are given in (1-5) of [14]. This
understood, the coordinates �q for q<m are zero and �mD .r

1=2
 &.t/e�2�w/m where

r D .`=.2�//r with ` D
R
 a. This is to say that if c is written as the pair .A; ˛/,

then the zero locus of ˛ at any given .w ; t/ is the point in Symm.C/ whose coordinates
are given by r

1=2
 &.t/e�2�w.zE1

; : : : ; zEm
/.

Let h W Cm!R denote  ’s version of (1-6) and introduce the operator

(2-73) �!x@�C .r�R
r

1;0h/jc� ;

a linear map from L2
1
.R � S1I c�

�T1;0Cm/ to L2.R � S1I c�
�T1;0Cm/. As ex-

plained next, the assumptions in (2-55) imply that this operator is Fredholm. To see this,
suppose first that mD 1. Use the function �1 in (1-5) of [14] to identify C1 with C .
Under this identification, the operator in (2-73) acts on the space of C–valued functions
on R�S1 as the operator x@C vC� S. � /. The assumptions in (2-55) imply that this is
Fredholm as a map from L2

1
.R�S1I c�

�T1;0Cm/ to L2.R�S1I c�
�T1;0Cm/.

Consider next the case m � 1. To start, introduce the basis vectors f@=@�qg1�q�m

for T1;0Cm that are dual to the coordinates f�qg1�q�m in (1-5) of [14]. With �

written as
P

1�q�m �q.@=@�q/, the operator in (2-73) acts diagonally to send �q to
x@�qC .q=2/R�q , where R is the rotation number that appears in (2-55). This is because
the relevant version of h lacks the term with � and so the corresponding Hamiltonian
vector field in question is 1

2
R times the generator of the S1 action on Cm .

Introduce next the function w ! �.w /D r
1=2
 e�2�w Note that in this m> 1 case, �

is equal to 1
2
.R� k>R / where k>R is the least integer greater than R . The inner product
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between the c�–pullbacks of the dual basis fd�qg1�q�m is diagonal, and such that

(2-74) hc�
�d�q; c�

�d�qi D c��
2q�2q2

Cmq;

where c� > 0 and where jmqj � c0 is asymptotic as w !�1 to a positive constant.
The diagonal form for the metric follows because the set fzE1

; : : : ; zEm
g are the m–

th roots of unity. With c�
�T1;0Cm identified with R � S1 �Cm using the basis

f@=@�qg1�q�m , write an element in the q–th summand as �.1C �/q�1.@=@�q/. By
(2-74), this element has norm jnqj j�j with c0

�1 � jnqj � c0 where nq has constant
limits as s!˙1. The operator x@C.q=2/R acts on such an element so as to send � to

(2-75) x@�C
1

2

�
qRC .q� 1/�=.1C �/.k>R � R/

�
�:

This operator looks like

(2-76)
� x@C q

2
R for w ��1.

� x@C 1
2
.RC .q� 1/k>R / for w � 1.

Given what is assumed in (2-55), it follows from (2-76) that each q 2 f1; : : : ;mg

version of (2-75) is Fredholm. As a consequence, the operator (2-73) is Fredholm as a
map from L2

1
.R�S1I c�

�T1;0Cm/ to L2.R�S1I c�
�T1;0Cm/. Moreover, its index

is nonnegative and its cokernel is trivial. Indeed, the arguments for this are, but for
notation, identical to those used in [14] for Step 2 of the proof of Lemma 7.5 subsequent
to (7-61) in [14]. Let V0� to denote the kernel of this same version of (2-73).

In the case when .;m/ 2‚C; there is an analog of (2-75) that is obtained by replac-
ing k>R where it appears explicitly and in the definition of � with k<R , this the greatest
integer that is less than R . The resulting analog of (2-76) is such that the top line holds
where w � 1 and the lower line with k<R replacing k>R holds where w ��1. It then
follows from (2-55) that the cC version of (2-73) is Fredholm with trivial cokernel.
Define V0C to be the L2 kernel of the cC version of (2-73).

Granted these definitions, set

V0 D .
L

C2C V0C /˚ .
L
.;m/2‚ V0�/˚ .

L
.;m/2‚0 V0�/:

V1 D
L

C2C V1C :
(2-77)

These are the spaces V0 and V1 in Lemma 2.7.

Part 4 This part constitutes a digression to prepare for the proof of Lemma 2.7. To
start, let DE� again denote the version of DE that is defined using the pair .A�

X
;  �

X
/

in (2-61). The latter is what is left of DE with the contribution from h absent. Recall
that h is defined in (2-60) and that .AX ;  x/ is obtained from .A�

X
;  �

X
/ by adding
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terms from h. What follows describes certain aspects of DE� on each UC and on
each U˙ .

Suppose that C � C denotes a given component. A somewhat more detailed analysis
of DE� on UC writes the contribution to the DE� version of (6-6) in [14] from a
section f0 D .q; �0/ of VC 0 as

(2-78)
� 2

�
x@H
�

q� .��sC��xs/@
V qC .��xsC x��s/x@

�qC ��qC��xq
�
C r�0 .

� 2
�
x@H

A�
X

�0� .��sC��xs/@
V
A�

X

�0C .��xsC x��s/x@
V
A�

X

�0

�
0
C r�1 .

Here, jr�0.f0/jC jr�1.f0/j � c0.jsj.jf0jC jr
H f0j/Cjsj

2jrf0j/ with r the derivative
that is defined by A�

X
and with rH denoting the derivative along horizontal tangent

vectors in the normal bundle to C . In this version of (2-78), the pair .��; ��/ D
.�C ; �C /.

Let .;m/2‚. A more detailed analysis of DE� on U� finds the following: Let f0D
.q; �0/ denote a map to V0 over the part of .�1;�R/�S1�C where jZj��� . Then
the U� analog of (6-6) in [14] for DE� is given up to inconsequential factors of 2�=`

by (2-78) with the identifications sD z , @V D @=@z , and @H
�
D

1
2
.@=@w � i.@=@t//.

Meanwhile what is written as r�0;1 obey jr�1.f0/jCjr�0.f0/j� c0.jzj.jf0jCjr
H f0j/C

jzj2jrf0j/. In this version, .��; ��/ are the pair .�; �/ associated to  . There is an
analogous picture of DE� on UC for .;m/ 2‚0 .

Part 5 This part describes the operator � in preparation for the proof of Lemma
2.7. To start, fix � D ..�c/C2C ; .��/.;m/2‚; .�C/.;m/2‚0/ 2 K2

1
and write the

components of �� as ..�C /C2C ; .��/.;m/2‚; .�C/.;m/2‚0/. Consider �C for
C 2 C first. View �C as a section of C ’s normal bundle, N , and view �C as a section
of N ˝T 0;1C . Use tX .�/ to define f0 in C ’s version of (2-78), in all .;m/ 2‚�
versions for the cases where C \U� ¤∅, and in all .;m/ 2‚C versions for the
cases where C \UC ¤∅. Doing the relevant integrals to compute t |

X
.DE�tX .�//

using (6-6)–(6-7) in [14] finds that the DE� contribution to �C has the form

(2-79) x@�C C �C �C

1

�

Z
C
j�1j

2
C�C

x�C

1

�

Z
C
jx1j

2
C e;

where .x1; �1/ D .2�1=2.1 � j˛j2/; @A˛/ with .A; ˛/ here denoting the symmetric
vortex in C1 . Meanwhile, the L2 norm of e obeys kekL2 � c0r��=4k�kK2

1
Finally,

�C and �C are the respective sections of T 0;1C and N˚2˝T 0;1C that appear in
(1-10). Granted (2-79) and the definition of h, the bounds from Parts 3 and 5 of the
proof of Lemma 6.3 in [14] on the various terms in (2-60) imply that

(2-80) �C .�/D x@�C C �C �C C�C
x�C C e;

where the L2 norm of e on the jsj � 2R part of C is bounded by c0r��=4k�kK2
1

.
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Now fix .;m/ 2 ‚ so as to consider �� . The case considered first is that where
mD 1. Thus, there is one end of † in U . This end is denoted by E . To describe �� ,
it proves convenient to view both ��.�/ and �� as maps from .�1;�R/�S1

to C . This is done using the coordinate �1 from (1-5) of [14]. Use tX .�/ to define
the element f0 D .q; �0/ in the .;m/ version of (2-78) and in the versions that are
defined by the element C 2 C that contains E . Doing the relevant integrals to compute
t |
X

finds that ��.�/ is given by

(2-81) ��.�/D x@��C ���C�x��C e;

where the L2 norm of e on the s � �R part of U� is bounded by c0r��=4k�kK2
1

Indeed, (2-81) follows using Lemma 2.2 and the arguments that lead (2-35). The
following are the only substantive changes: First, u in (2-32) now depends on the
variables w and t for .�1;�R/�S1 . To describe u, recall that E appears as the
graph in .�1;�R/�S1�C of the function .w ; t/! &.t/e�2�w where � and &.t/
are as described in Part 1 of Section 2.b.

Granted the preceding, uD #|
0
.y; 0/ with yD 21=2.z�z�/˛

�1@A˛ and z�j.w ;t/D

r
1=2
 zE e�2�w ; and with .A; ˛/j.w ;t/ denoting the vortex in C1 with ˛�1.0/ D z .

Meanwhile, what is called w in (2-32) is replaced with .0; .xz�/x̨�1.1� j˛j2// with
z� and ˛ just described.

Turn now to the case where m> 1. In this case,

(2-82) ��.�/D x@��C .r.��/Rr
1;0h/jc� C e;

where e has L2 norm bounded by c0r��=4k�kK2
1

. The proof of (2-82) is identical,
but for notation, to the proof of the formula for D� that is given in Lemma 2.1.

There is, of course, an analogous description of �C when .;m/ 2‚0 .

Part 6 This part contains the promised.

Proof of Lemma 2.7 The fact that � is Fredholm with the asserted index follows
from the assertions made about �? . The proof of these assertions borrows much from
Section 7.f in [14]. There are five steps.

Step 1 This step defines the map �0W V0!K2
1

. To start, fix C 2C and �2V0C . Write
the components of �0.�/ as ..�0C 0/C 02C ; .�0�/.;m/2‚; .�0C/.;m/2‚0/ with the
�–dependence of these components implicit in what follows. These components are
defined as follows: First, �0C 0D0 unless C 0DC . Meanwhile, �0C D .1�†E2EC

�0E /�

where EC and �0E are defined in the following manner: First, EC denotes the set of
ends of C . Second, the cut-off function �0E is equal zero on the complement of the
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end E ; and it is equal to �..RE C 3:5R� jw j/=R/ on E . Each .;m/ 2‚C version
of �0� and each .;m/ 2 ‚C version of �0C is determined from �0C via the
homomorphisms in (5-12) in [14].

To continue, fix .;m/ 2 ‚� and suppose that � 2 V0 . The components of �0.�/

are defined in this case as follows: First, �0 0� D 0 unless  D  0 in which case
�0� D �

0
R�
�. Here, w ! �0

R�
.w /D �..2:5RCw /=R/. Meanwhile, each C 2 C

version of �0C is zero unless C intersects U� in which case �0C is determined from
�0� via the homomorphisms in (5-12) of [14]. Finally, each .;m/ 2‚0 version of
�0C is zero. There is an analogous definition of �0.�/ in the case when � is in some
.;m/ 2‚0 version of V0C .

It is an exercise to verify that

(2-83) .1� c0ı/k�kL2
1
� k�0.�/kK2

1
� .1C c0ı/k�kL2

1
;

where ı here and in what follows is short hand for ı D R�1C r�1=c0 . Thus, �0 is
injective when r � c0 and R� c0 . Note in this regard that if C 2 C and if � 2 V0C ,
then

(2-84) j�jC jr�j � c0k�kL2 e�jsj=c0 :

By the same token, if .;m/ 2‚ and � 2 V0� , then

(2-85) j�jC jr�j � c0k�kL2 e�jwC.ln r/=4�jc0 :

In the case .;m/ 2‚C and � 2 VC , there is an analogous inequality, this obtained
from (2-85) by changing w to �w . Meanwhile, it follows from the description of �
in Part 5 that

(2-86) k��0.�/kL2 � c0ık�kL2
1

when � 2 V0 and r � c0 and R� c0 .

Step 2 This step proves that k��kL2 � c0
�1k�kK2

1
when � is K2

1
orthogonal to the

image of �0 provided that r � c0 and R� c0 . To this end, fix � 2K2
1

and decompose
it as

(2-87) � D
X
C2C

�c
C

X
.;m/2�

��C
X

.;m/2� 0

�C

by copying what is done in (7-44) of [14]. The terms here are determined by their
namesake components of � D ..�C /C2C ; .��/.;m/2� ; .�C/.;m/2� 0/. Consider �C .
Since �C 2 K2

1
, it has components �C D ..�C

C 0
/C 02C ; .�

C
�/.;m/2� ; .�

C
C/.;m/2� 0/.

These are as follow: First, �C
C 0
D0 unless C DC 0 . In this case, �C

C
D .1�†E2E�E /�C
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where the product is indexed by the ends in C . Here, �E is defined so as to equal
zero on the complement of E and to equal �..RE C3R�jw j/=R/ on E . Meanwhile,
any given �C

˙ is determined by .�C
C 0
/
C 02C through the homomorphism �˙ given in

(5-12) in [14].

As an element of K2
1

, the term �� from (2-83) has only nonzero components ���
and ��

C
for those C with C \U� ¤∅. In particular, �� 0� D 0 if  0 ¤  , and also

�
�
 0CD0 for all  02„†C . The component ��� is set equal to ���

P
C WC\U¤∅ �

C
� .

Note ��� has support where w < �3R. Meanwhile, a component ��
C

is determined
from �

�
� by the identifications in (5-12) of [14]. Each �C for .;m/ 2‚C has a

similar description.

Given the description of � in Part 5 and given the description of the decomposition in
(2-87), the argument for (7-44) in [14] can be repeated to prove that

(2-88)

k�.�/kL2 � c0
�1

�X
C2C

k�.�C /kL2 C

X
.;m/2‚

k�.��/kL2

C

X
.;m/2‚0

k�.�C/kL2

�
� c0ık�kK2

1

when r � c0 and R� c0 .

It is a consequence of (2-79) that k�.�C /kL2 � c0
�1k�C kK2

1
if �C

C
is L2

1
orthogonal

to the L2 kernel of x@C �C C �C
S. � / when r � R3 and R � c0 . Meanwhile, if

.;m/ 2 ‚� , then k�.��/kL2 � c0
�1k��kK2

1
when �

�
� is L2

1
orthogonal to

the space V0� when r and R obey similar bounds. And, if .;m/ 2 ‚� , then
k�.�C/kL2 � c0

�1k�CkK2
1

if �CC is L2
1

orthogonal to the space V0C given that
r � c0 and R� c0 .

These last assertions with (2-83)–(2-85) and (2-88) imply the desired result: If r � c0

and R � c0 , then k�.�/kL2 � c0
�1k�kK2

1
when � is L2

1
orthogonal to the image

of �0 .

Step 3 The map �1 is defined by mimicking the definition of �0 . Given that (2-84)
holds for � 2 V1C when C 2 C , it follows that

(2-89) .1� c0ı/k�kL2 � k�1.�/kL2 � .1C c0ı/k�kL2 :

Note that there is an approximate inverse to the map �1 . This is a map, q1W L2! V1 ,
that is defined as follows: Decompose any given � 2 L2 as in (2-87). Suppose
that C 2 C and � 2 V1C . The inner product of � with q1.�/ is by definition equal
to the L2 inner product of �C

C
with �. The V1C version of (2-84) implies that

kq1�1.�/� �kL2 � c0ıj�kL2 when r � c0 and R� c0 .
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Step 4 This step verifies the lemma’s assertion about the norm of �?� when r � c0

and R � c0
�1 . To this end, consider first the L2 orthogonal projection of �� onto

�1.V1/. Integration by parts with what is said about � in Part 5 and the V1 analogs of
(2-84)–(2-86) can be used to prove that

(2-90) k.���?/.�//kL2 � c0ık�kK2
1

when r � c0 and R � c0 . What with the final conclusion of Step 2, this last bound
implies that

(2-91) k�?�kL2 � c0
�1
k�kK2

1

when � is K2
1

orthogonal to �0.V0/. Here it is again assumed that r � c0 and R� c0 .
This last conclusion implies that �? is injective.

Step 5 To see that �? is surjective, note first that it follows from (2-91) that �? has
closed range. Thus, �? is not surjective if and only if the L2 orthogonal complement
of its image has positive dimension. Let � denote an element in this orthogonal
complement. Introduce the map q1W L2!V1 from Step 3 and write �D �0C�00 where
�0 is the L2 –orthogonal projection of � into the kernel of q1 . Note that �00 satisfies
k�00kL2 � c0R�2k�kL2 . Indeed, this follows from what is said about q1 in Step 4 and
from the V1 analogs of (2-83)–(2-85). Granted this, it is sufficient to prove that �0 D 0

when R and r are large. To this end, decompose �0 D
P

C2C �
C C

P
.;m/2‚ �

�C

†.;m/2‚0�
C as was done with � in (2-87).

Fix C 2 C and consider the term �C D ..�C
C 0
/C 02C ; .�

C
�/.;m/2‚; .�

C
C/.;m/2‚0/.

Here are two observations that play a key role: First,

(2-92) kq1.�
C /kL2 � c0ık�

0
kL2

when r � c0 and R� c0 . Indeed, this follows because �C
C

is L2 orthogonal to V1C .

Here is the second observation: Because �C
C

is L2 orthogonal to V1C , there exists an
element, �C 2L2

1
.C IN / that is mapped to �C

C
by x@C �C C�C

S. � /. Moreover, �C is
L2 orthogonal to V1C and is such that

(2-93) c0
�1
k�C

C kL2 � k�C kK2
1
� c0k�

C
C kL2 :

Define an element �C D ..�C
C 0
/C 02C ; .�

C
�/.;m/2‚; .�

C
C/.;m/2‚0/ 2K2

1
as follows:

First, �C
C 0
D 0 unless C D C 0 in which case

(2-94) �C
C D .1�†E2EC

�0E /�C :
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Here, as in Step 1, �0E is equal zero on the complement of the end E ; and it is equal
to �..RE C 3:5R� jw j/=R/ on E . Meanwhile, each .;m/ 2‚ version of �C

� and
each .;m/ 2‚0 version of �C

C is determined from �C
C

via the homomorphisms in
(5-12) in [14]. It follows from (2-4)–(2-5) of [14] and from what is said in Part 5 about
� that

(2-95) k��C
� �C

kL2 � c0ık�
C
kL2 :

This is a consequence of the fact that .1��E /D 0 where d�0E ¤ 0. Here, �E is the
cut-off function �..RE C 3R� jw j/=R/ defined just prior to (5-9) in [14].

Now let �C? denote the L2 orthogonal projection of �C to the complement of the
image of �0 . It is a consequence of (2-84), (2-85) and its w !�w analog for when
.;m/2‚C that k�C?��C kL2

1
� c0R�1 when r � c0 and R� c0 . This understood,

it follows from (2-93), (2-96) with (2-5)–(2-6) from [14] that

(2-96) h�?�C?; �0iL2 � c0
�1
k�C
k

2
L2 � c0ık�

0
k

2
L2

when r � c0 and R� c0 .

Fix .;m/ 2‚, consider the term �� in the �0 analog of (2-87). This �� 2 L2
1

had
� component ��� . By virtue of the fact that (2-73) has trivial cokernel, there is �� 2
L2

1
.R�S1I c�T 1;0Cm/ that is mapped to ��� by the operator in (2-73). Note that

(2-93) holds when C is replaced by � in all appearances. Define an element ��2L2
1

as follows: Write its components as ..��
C
/C2C ; .�

�
 0�/. 0;m/2‚; .�

�
 0C/. 0;m/2‚0/. All

components are zero except for ��� and ��
C

for those C 2 C that intersect U� .
The component ��� is set equal to �0

R�
�� where �0

R�
.w / D �..2:5RCw /=R/.

Meanwhile, ��
C

is defined from �
�
� using the homomorphisms in (5-12) of [14]. Let

��? denote the L2 orthogonal projection of �� to the complement of the image
of �0 . An argument much like that used to derive (2-96) finds that

(2-97) h�?��?; �0iL2 � c0
�1
k��k2L2 � c0ık�

0
k

2
L2 ;

when r � c0 and R� c0 . Note that (2-97) uses the fact that �R�D 0 where d�0
R�
¤ 0.

Here, �R� is the cut-off function �..3RCw /=R/ defined just prior to (5-7) in [14].
Each .;m/ 2‚0 has an analogous �C? that obeys the C version of (2-97).

Let � D
X
C2C

�C?
C

X
.;m/2‚

��?C
X

.;m/2‚0

�C?:
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Summing (2-96) and the various versions of (2-97) finds that

(2-98)

h�?�; �0iL2

� c0
�1
�X

C2C

k�C
k

2
L2 C

X
.;m/2‚

k��k2L2 C

X
.;m/2‚

k�Ck2L2

�
�c0ık�

0
k

2
L2

when r � c0 and R� c0 . Given that the left hand side of (2-98) is zero, this inequality
requires that each C 2 C version of �C , each .;m/ 2 ‚ version of �� and each
.;m/ 2 ‚0 version of �C have L2 norm bounded by c0ık�

0kL2 . What with the
triangle inequality, this requires �0 D 0 when r and R are large.

Part 7 It is a consequence of what is said in Lemma 2.7 and Lemma 2.8 that the
index of DE is equal to that of �, and the latter is equal to dim.V0/�dim.V1/. What
follows derives a formula for this number.

To start, fix C 2 C so as to consider the contribution to dim.V0/ � dim.V1/ from
dim.V0C / � dim.V1C /. A formula for this is obtained from Theorem 5.1 of [6].
Summing the results for the various elements in C gives

(2-99)

X
C2C

.dim.V0C /� dim.V1C //

D�

X
.;m/2‚

mz;1C
X

.;m/2‚0

mz;1C�†C 2 deg.N†/;

where the notation is as follows: First, z;1 is the rotation number for  if  is
hyperbolic. If  is elliptic with rotation number R , then z;1 is one plus twice the
greatest integer less than R . Second, �† denotes the Euler characteristic of †. Finally,
deg.N†/ denotes the degree of the normal bundle of † as defined using the section
whose restriction to any given end is the real part of @=@z . It proves useful to invoke
Lemma 2.3 to rid the formula of �† . Doing so writes (2-99) as

(2-100)

X
C2C

.dim.V0C /� dim.V1C //

D�

X
.;m/2‚

mz;1C
X

.;m/2‚0

mz;1� hc1; †iC deg.N†/� 2k†:

Fix .;m/2‚ so as to consider the contribution to dim.V0/�dim.V1/ from dim.V0�/.
As a consequence of what is said in Part 3, this is zero if m D 1. If m > 1, then
dim.V0�/ is the sum of the L2 indices of all of the q 2 f1; : : : ;mg versions of what is
written in (2-75). Fix such an integer q . It is a consequence of (2-76) that the L2 index
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of (2-75) is equal to twice the number of integers n that obey

(2-101) qR < n< qRC .q� 1/.k>R � R/:

To put this in a different light, introduce k>qR for q � 1 to denote the least integer that
is greater than qR . Write nD k>qRC n0 . Then n0 must obey

(2-102) 0� n0 < qk>R � k>qR:

Thus, the index is twice qk>R � k>qR . This understood,

(2-103) dim.V0�/D 2
X

1�q�m

.qk>R � k>qR/:

Meanwhile, the analog of (2-101) for .;m/ 2‚0 leads to

(2-104) dim.V0C/D 2
X

1�q�m

.k<qR � qk<R /;

where k<qR denotes the greatest integer that is less than qR.

Fix .�;m/ in either ‚� or ‚C . If  is elliptic, define z;q for q�1 by z;qD2k<qRC1.
With this notation set, then (2-100), (2-103) and (2-104) sum to give

dim.V0/� dim.V1/D�hc1; †iC deg.N†/� 2k†

�

X
.;m/2‚

X
1�q�m

z;qC
X

.;m/2‚0

X
1�q�m

z;q

C

X
.;m/2‚

m.m� 1/k>R �
X

.;m/2‚0

m.m� 1/k<R :

(2-105)

Part 8 To put the right hand side of (2-105) in recognizable form, note that † is not
a surface that can be used to compute the ‚� and ‚C version of what Hutchings
denotes as I.‚�; ‚C; � /, this the integer given in (1-4). This is because the ends of †
do not approach their limit Reeb orbits in the required fashion. A surface Z for use in
(1-4) can be obtained from † as follows: First, Z D† except where jsj �R. As it
turns out, it is also permissable to take Z D† in any .; 1/ version of either U� or
UC . However, such is not the case for a .;m/ version with m> 1.

What follows describes Z in a given .;m/ 2‚� version of U� when m> 1. Let
E denote an end of † that intersects U� . As constructed, E is the graph of the
function .w ; t/! z.w ; t/ D zE e�Rw ek>R .wCit/ where zE is an m–th root of unity
and R is the rotation number. Now identify R � S1 with C� using the function
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.w ; t/! x D e.wCit/ . Then † intersects U� �C��C as the locus of points .x; z/
where

(2-106) xmk>R e�mRw
� zm

D 0:

The model for Z ’s intersection with the w ��1 part of U� is the locus where

(2-107) xmk>R e�mRw
� zm

D �R�";

with " > 0 but much less than 1. Here again, �R�.w/D �..3RCw /=R/. The latter
is a smooth curve for small ". It has m ends that have the required asymptotics for use
in computing I.‚�; ‚C; � /. Let s denote the section of the normal bundle of Z in
U� that is defined by the normal projection of the vector field @=@z . As can be seen
readily by comparing (2-107) with (2-106), if " is sufficiently small, then this section
has precisely m.m� 1/k>R extra zeros on Z ’s intersection with U� , and each such
zero counts with weight 1.

A similar construction can be made to obtain Z in any .;m/2‚C version of UC . In
this case, the section of Z ’s normal bundle defined by @=@z in UC has m.m� 1/k<R
zeros with each having sign �1.

Granted the preceding observations, it follows that what is denoted by Qz in (1-4) is
given by

(2-108) Qz D deg.N†/C
X

.;m/2‚

m.m� 1/k>R �
X

.;m/2‚0

m.m� l/k<R :

Substitute (2-108) into (2-105). A comparison with (1-4) then finds

(2-109) dim.V0/� dim.V1/D I.‚�; ‚CIZ/� 2k†:

The formula in Theorem 1.1 for degSW.ˆ
r .xC//�degSW.ˆ

r .x�// when (2-55) holds
for each Reeb orbit from either ‚� or ‚C follows from (2-109), Lemma 2.8, what is
said after Lemma 2.7, and Lemma 2.5.

2.d The relative degree formula: Part III

Suppose that ‚� and ‚C are elements in Z , but assume no longer that their Reeb
orbits obey (2-55). Fix x� 2 C‚�� and xC 2 C‚�C . This subsection completes the
proof of Theorem 1.1 by verifying its formula for degSW.ˆ

r .xC//� deg.ˆr .x�//.
This is done in three parts.
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Part 1 To start, take L > †.;m/2‚�m` C †.;m/2‚Cm` and ı > 0 but very
small. Proposition 2.5 in [13] asserts that there is a .ı;L/ approximation to .a;J /. In
particular, pair .ya; yJ / of contact 1–form and almost complex structure in Jya has the
following properties:

(2-110)

� There exists a smoothly parametrized family of pairs f.a� ;J� /g�2Œ0;1� of
contact 1–form and almost complex structure in Ja� such that the � D 0

version is .a;J / and the � D 1 version is .ya; yJ /.

� Suppose that  is a Reeb orbit for a’s Reeb vector field with ` < L.
For each � 2 Œ0; 1�; the loop  is a Reeb orbit for a� ’s Reeb vector field.
Moreover, if  is hyperbolic for a, then  is hyperbolic for a� ; and if
it is elliptic for a, then it is elliptic for a� . In addition, the a and a�
versions of ` are equal. Finally, there is fixed tubular neighborhood
map 'W S1 �D!M for  that pulls back a� as in (1-1) with .�; �/
now functions of � . With respect to this map, the rotation number of 
is independent of � 2 Œ0; 1�.

� Suppose again that  is a Reeb orbit for a’s Reeb vector field with
` < L. Let ' denote the tubular neighborhood map just described.
If  is hyperbolic with rotation number k , then the ya version of the
pair .�; �/ is .1

4
k; i"eikt / with " 2 .0; ı/. If  is elliptic with rotation

number R , then the ya version of .�; �/ is .1
2

R; 0/.

This pair .ya; yJ / is sufficient for what follows when there are no pairs .;m/ in either
‚� or ‚C with  hyperbolic and m> 1. If the latter condition is not satisfied, then
an additional homotopy must be made in a small tubular neighborhood of the Reeb
orbit from any pair of the sort where the latter condition is violated. This said, let 
denote such a hyperbolic Reeb orbit that is paired with m> 1 in either ‚� or ‚C . Let
k denote its rotation number. Fix a small irrational number R0 2 .0; "/ and consider
the homotopy fya�g�2Œ0;1� that replaces the top line in (1-1) with

(2-111)

2�

`
'�ya� D

�
1�

1

2

�1

2
k � �R0

�
jzj2

� .1� �/i".eikt
xz2
� e�iktz2/dt

�
C

i

2
.zdxz�xzdz/;

where jzj � 1
4
", and leaves the top line unchanged where jzj> 1

2
". Such a homotopy

has the following property: The loop  is a Reeb orbit for all ya� . However, it is elliptic
with rotation number 1

2
k � R0 with respect to ya�D1 . Note that the homotopy � ! ya�
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can be constructed so that

(2-112) jr
˝p.ya� � ya/j � c0"

3�p for p 2 f0; 1; 2g:

Each contact form ya� has an associated compatible almost complex structure that
differs from yJ only on the radius " neighborhoods of the hyperbolic Reeb orbits
that are paired either in ‚� or ‚C with an integer greater than 2. A smooth family
f yJ�g�2Œ0;1� of such almost complex structures can be chosen so that .ya1; yJ1/ obeys
the RD 1

2
k � R0 version of (1-14), and so that yJ1 2 Jya1

. One can assume, in addition,
that this family is such that

(2-113) jr
˝p. yJ� � yJ /j � c0"

2�p for p 2 f0; 1; 2g:

Use ‚0� to denote the same set as ‚� , but now viewed as a collection of pairs of
the form .;m/ as defined using the contact form ya�D1 and the almost complex
structure yJ1 . Define ‚0C from ‚ in the same fashion.

Part 2 Both ‚0� and ‚0C are described by (2-65). According to what is said in
Lemmas 2.1–2.4 in [14], both C‚0�� and C‚0�C contain a single element; these elements
are denoted respectively by x 0� and x 0C .

If r � c0 , there is a corresponding .ya1; yJ1/ versions of ˆr that assign to x 0� and x 0C
solutions to corresponding version of (1-8). Let c0� and c0C denote the solutions to
these respective versions of (1-8). Both c0� and c0C are pairs in Conn.E/�C1.M IS0/
where S0 is the spinor bundle for the metric that is associated to .ya1; yJ1/. Both c0�
and c0C have corresponding versions of the operator Lc as depicted in (1-9); and both
versions have trivial kernel when r is large. As a consequence, there is a corresponding
spectral flow from the c0� version of Lc to the c0C version.

As argued in the previous two subsections the spectral flow from the c0� version of Lc

to the c0C version is equal to degech.x 0C/� degech.x 0�/mod.p/. Note in addition, that
if R0 is sufficiently small, then degech.x 0C/� degech.x 0�/D degech.xC/� degech.x�/.
Indeed, this follows from (1-4) given the definition of the Conley–Zehnder indices in
Step 3 of Part 2 in Section 1.a.

Part 3 Let ‚ and ‚0 now denote either ‚� and ‚0� or ‚C and ‚0C . Use x
and x 0 to denote the corresponding x� and x 0� or xC and x 0C . Now consider the
homotopy from the original pair .a;J / to .ya1; yJ1/ to the original pair. Reparametrize
this homotopy by � 2 Œ0; 1�. Given that ‚ and ‚0 contain the same Reeb orbits
with the same integer partners, such a homotopy can be covered by a corresponding
homotopy that changes the data x to x 0 . Note in this regard that x 0 is such that
each .;m/ version of c is the symmetric vortex in Cm . Let fx�g�2Œ0;1� denote this
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covering homotopy. The constructions in Section 3.a of [14] can be done for each x� .
This with each .;m/ 2‚ version of � D 0, produce a configuration, .A�� ;  �� /,
in Conn.E/�C1.M IS� /. Here, S� is the spinor bundle that is defined using the
metric that is defined by � ’s version of the contact form and almost complex structure.
Each x� has a version of what is denoted in Step 2 of Section 2.a as .b�; ��/, this
denoted here as .b�� ; ��� /. Use L�� to denote the version of (1-9) that is defined by
.A� ;  � / D .A�� C 21=2r1=2b�� ;  

�� C 21=2r1=2��� /. It follows from what is said
in Steps 8 and 9 of Section 2.a as applied to x and to x 0 that the spectral flow of the
family fL��g�2Œ0;1� is the same as that from the cD c.x / version of Lc to the cD c.x0/

version.

To compute the latter spectral flow, remark that there is a version of (2-19) for each
L�� , with corresponding terms }� , L?� and D� . The bounds in (2-20)–(2-22) hold in
each case. Meanwhile, if .;m/ 2‚, then

(2-114) .D��/ D
i

2
rt� C .r.� /Rr

1;0h� /jc� C e ;

where c� is the map from S1! Cm that is defined by x� . Here, kekL2 � c0k�kL2
1

.
The proof is identical to that used to prove the formula for .D�/ given in Lemma 2.1.
What with the L�� versions of (2-20)–(2-22), these formulae for fD�g�2Œ0:1� imply
that the spectral flow for the family fL��g�2Œ0;1� is the sum of the spectral flows for
the various .;m/ 2‚ versions of f.i=2/rt� C .r.� /Rr

1;0h� /jc� g�2Œ0;1� .

This last conclusion with what is said at the end of Part 2 imply the formula asserted
by Theorem 1.1.

3 Proof of Theorem 1.2

This section proves the assertions of Theorem 1.2 about the map ‰r . Section 3.a
proves the assertion that is made by the first bullet. Section 3.b proves the assertion
that is made by the second bullet.

3.a Nondegeneracy

Fix L � 1 and a pair ‚� and ‚C in ZL
ech . Suppose that † obeys the .‚�; ‚C/

versions of the constraints in Section 4.b of [14]. This being the case, the constructions
in Sections 4–7 of [14] produce a family of instanton solutions to (1-11) that are
parametrized by a small radius ball about the origin in the vector space V0 of Proposi-
tion 7.1 in [14]. Let d†W R! Conn.E/�C1.M IS/ denote such an instanton. Use
c� and cC to denote the respective s!�1 and s!1 limits is d† . Let D denote
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the corresponding version of the operator that is depicted in (1-12) The upcoming
Proposition 3.1 describes this operator.

Proposition 3.1 refers to an integer I.‚�; ‚CIZ/. The latter is defined by (1-4)
using for Z a suitable embedded, oriented surface in Œ0; 1��M with the following
property: The respective closures of the projections to M of Z and †.C;m/2†mC

are homologous rel their boundaries. The proposition also refers to a parameter R.
This is the parameter introduced in Section 4.c of [14] and used subsequently in the
construction of the map ‰r .

Proposition 3.1 There exists � > 1 with the following significance: Fix R � �2

and r � � . Then Propositions 6.4, 7.1 and 7.6 of [14] can be invoked to construct an
instanton solution to (1-11) from any element in the radius ��1 ball about the origin in
the vector space V0 . Fix such a point to define the instanton d† and the corresponding
operator D maps L2

1
.R�M I iT �M ˚S˚ iR/ to L2.R�M I iT �M ˚S˚ iR/ as a

Fredholm operator. This operator has trivial cokernel and index equal to I.‚�; ‚CIZ/.

This proposition is proved momentarily.

Proposition 3.1 implies directly what is asserted by the first item of the first bullet in
Theorem 1.2. The second item follows from the first given the fact that ‰r was defined
so as to be equivariant with respect to the respective R actions on M1.‚�; ‚C/ and
on M1.c�; cC/.

Proof of Proposition 3.1 The fact that D is Fredholm follows directly from Theorem
1.1’s assertion that both c� and cC are nondegenerate. If c1.det.S// is torsion, then
the fact that D has the asserted index follows directly from formula given in Theorem
1.1 for the degSW.cC/� degSW.c�/. The computation of its index in the other cases
follows from the arguments given below that establish the dimension of its kernel
and the trivial nature of its cokernel. These arguments constitute Parts 1–6 of what
follows.

Part 1 Reintroduce the pair .A�;  �/ as defined in Section 5.a of [14]. Let B �K ,
V0 and the map q W B! V0 be as described in Proposition 7.1 of [14]. Let � 2 q.B/
denote the element that defines the instanton d† . Introduce � 2 B\ q�1.�/ to denote
the element that is subsequently supplied by that same proposition. Section 5.b of [14]
describes .A� ;  �/. Section 6.d of [14] defines hD h.�/ and Proposition 6.4 of [14]
describes q D q.�/ 2 H?

�
. As noted in Proposition 7.6 of [14], the instanton d† is

obtained from the .�; bD hC q/ version of the pair .A;  / given in (5-19) of [14] by
acting on the latter with a suitable map from R�M to S1 . In any event, agree now
to use .A†;  †/ to denote this same pair .A;  /.

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg–Witten Floer cohomology III 2771

Set X DR�M . With its product metric defining the Hodge star and the notions of self-
and anti-self-duality, define the operator D† by replacing .AX ;  X / by .A†;  †/ in
(2-61). This operator is the gauge transform of the operator D via the map from R�M

that writes the instanton d† as .A†;  †/. Note in this regard that if X DR�M and
the metric is the product metric, then the bundle iT �X ˚SEC whose sections define
the domain space in (2-61), and the bundle iƒ2C˚SE�˚ iR whose sections defines
the range space are both canonically isomorphic to iT �M ˚ S˚ iR, which is the
domain and range space of D. These identifications of domain and range spaces are
implicit in what follows.

The plan for what follows is to compare D† with an operator, D� , that is more
accessible. To define D� , introduce the connection .A� ;  �/ from (5-15) in [14]
and introduce h D h.�/ from Section 6.d and Proposition 6.4 of [14] and write its
components as .bh; �h; �h/. Now define D� by (2-61) using X DR�M and using
for .AX ;  X / the pair .A�C .2r/1=2.�hdsCbh/;  

�C�h/. The comparison between
D† and D� will be made by writing

(3-1) D†fDD� fC r1=2e�q f

where eq is the contribution from q. Note that jeqj � c0jqj. Meanwhile,

(3-2) kqkHCkqk� � c0r1=2.r�1=2C8�
Cj�j/:

These bound on q comes via Propositions 7.1 and 6.4 in [14].

Part 2 It proves useful when discussing (3-1) to introduce the Hilbert space H as
defined in (6-2) of [14]. Introduce K2

1
to denote the Hilbert space that is defined as in

Step 4 of Section 5.b in [14], but with each norm k�kK in (5-13) of [14] replaced by the
corresponding L2

1
norm. (The latter is denoted by k � kK2

1
in what follows.) Use (6-9)

in [14] to define the homomorphism t� W K2
1
!H . This t� is injective when r � c0 .

Define H?
�

as in Part 6 of Section 6.a in [14], this the L2 orthogonal complement
in H of the image of t� . An element f 2H has the L2 –orthogonal decomposition
fD f?C t�.�/ where f? 2H?

�
and where � 2K2

1
.

Use L to denote the space L2.R�M I iT �M ˚S˚ iR/ and define L2 as in Part 7
of Section 6.a in [14]. The formulae in (6-9) of [14] define an injective map, this also
denoted by t� , from L2 to L. Note that the large r versions of t� W L2! L are such
that

(3-3) c0
�1
k�kL2 � kt�.�/k2 � c0k�kL2 :

In any event, both the K2
1

and L2 versions of t� have two properties to keep in mind
for now. To describe them, introduce as in Section 5.a of [14], the symbols „†�
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and „†C to denote the respective sets of distinct Reeb orbits that are approached as
s!�1 and as s!C1 by the constant s slices of †. Thus,  2„†� if and only
if  D E for some negative s��1 end of †. When  2„†� , the symbol E� is
used to denote the set of ends E 2 E with E D  . There is the analogous definition
of EC for each  2„†C .

Here is the first property: The set .
S

C2C UC /[ .
S
2„†�

U�/[ .
S
2„†C

UC/

contains the support of t�.�/. To state the second property, write the element � as
..�C /C2C ; .��/2„†� ; .�C/2„†C/. On any given C 2 C version of UC ,

(3-4) jt�.�/j � c0r1=2e�
p

r dist. � ;†/=100
j�C j:

Meanwhile, on any given version of U� or UC , the analogous inequality holds with
�� or �C replacing �C .

Part 3 This part gives bounds for the L2 norms of the endomorphism r1=2e�q . � / that
appears in (3-1). Consider its norm when acting on a given f? 2H?

�
. The bounds in

(3-2) imply directly that

(3-5) r1=2
ke�q f

?
k2 � c0r1=2

kqkHkf
?
kH � c0.r

�1=2C8�
Cj�j/kf?kH:

Indeed, this follows by first bounding the L2 norm of jqjjfj by the product of their L4

norms, and then bounding the latter using (6-3) in [14].

Consider next the L2 norm of r1=2e�q t�.�/ for � 2L2
1

. To obtain a useful bound, write
� D ..�C /C2C ; .��/2„†� ; .�C/2„†C/. Fix C 2 C . It follows from (3-4) that the
contribution from UC to r1=2ke�q t�.�/k2 is bounded by the square root of

(3-6) c0

Z
C�

S
E2EC

E2R

j�C j
2f;

where f is the function on C � .
S

E2EC
E4R/ given by

(3-7) f . � /D r2

Z
jsj�2�†

e�
p

r jsj=c0 jqj2�4�† :

Here, �† D r�1=2C� is from (4-8) in [14]. Meanwhile, �T for any given T > 0 is
shorthand for the function on the normal bundle N ! C that given by �.jsj=T /. To
bound (3-6), fix any given � 2 .0; 1/ and a disk D� � C � .

S
E2EC

E4R/ of radius � .
As argued momentarily, there exists c0 and ı > c0

�1 such that

(3-8)
Z

D�

f � c0.r
�1C16�

Cj�j2/�ı:
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Granted (3-8), use Lemma 5.4.1 in [14] to conclude that the integral in (3-6) is bounded
by c0.r

�1C16� Cj�j2/k�k2K2
1

. A very similar argument finds the same sort of bound
for the square of the L2 norm over any U� or UC of r1=2ke�q t�.�/k2 . Thus,

(3-9) r1=2
ke�q t�.�/k2 � c0.r

�1=2C8�
Cj�j/k�kK2

1
:

To obtain (3-8), consider first the case when � � r�2 . In this case, Hölder’s inequality
finds that the left hand side of (3-8) is bounded by c0r3=2�kqk2

L4 . This is bounded in
turn by c0.�r/1=2rkqk2H using the Sobolev inequality in (6-3) of [14]. According to
Proposition 7.1 in [14], this is less than the ı D 1=2 version of what is written on the
right hand side of (3-8).

Consider next the case where � > r�2 . This argument here exploits the identity

se�
p

rs=c0 D�c0r�1=2 d

ds

�
se�
p

rs=c0 C c0r�1=2.e�
p

rs=c0 � 1/
�
:

This and integration by parts finds

(3-10)
f � c0r3=2

Z
jsj�2�†

��
e�
p

r jsj=c0 C r�1=2
jsj�1.e�

p
r jsj=c0 � 1/

�
jqkrqj

C r�10e�
p

r jsj=2c0�8�† .1���† /jqj
2

�
:

It then follows using Hölder’s inequality that the integral of f over the disk D�

is bounded by c0rkqkH
� R
��1.D�/

jrqj2
�1=2
C r�8kqkH . This last expression is

bounded courtesy of Lemma 7.3 in [14] by c0.r
�1=2C4� C j�j/2.��=4 C r�8/. In

particular, if � > r�2 , then what was just written is bounded by what is written on the
right hand side of (3-8) if ı � �=4.

Part 4 Write f 2H again as f?C t�.�/ with f? 2H?
�

. Use …� to denote the L2 –
orthogonal projection to the image of t� , either in L or in H . As done in Part 7 of
Section 6.a in [14], introduce L?

�
to denote .1�…�/L, this the L2 orthogonal com-

plement of the kernel of the adjoint, t�
|W L! L2 . When considering the operator D� ,

it proves useful to view it with the help of its projections in L?
�

and via t�
| in L2 . To

this end write

(3-11)
� .1�…�/D� fDD?

�
f?C p.�/.

� t |
�
.D� f/D p0.f?/C�� .

To start the analysis of the terms on the right hand side of (3-11), use the small size of
h.�/ with Lemma 6.1 in [14] to see that

(3-12) kD?� f
?
k2 � c0kf

?
kH:
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This same lemma from [14] also implies that D?
�

is invertible as a map from H?
�

to L?
�

. Meanwhile, (6-6)–(6-7) from [14], the descriptions in the latter’s Section 6.d
of h, and what is said in Lemma 3.10 of [14] imply that

(3-13) kp.�/k2 � c0��.kr�kL2 C r1=2
k�kL2/� c0r3�

k�kK2
1
:

These same parts of [14] also find that

(3-14) kp0.f?/kL2 � c0��kf
?
kH � c0r�1=2C3�

kf?kH:

Note that the factor r3� is absent in both (3-13) and (3-14) when each C 2C component
of � has support on C � .

S
E2EC

E2R/.

The operator � is described in part by the next lemma. The latter refers to the inner
product K2 on K2

1
that is obtained by replacing in (5-13) of [14] each occurrence of

k � kK with the corresponding L2 norm.

Lemma 3.2 There exists � > 1 such that if the constants R and r used to construct
d† obey R � � , r � �2 , and j�j � ��1 then the operator � is Fredholm as a map
from K2

1
to L2 with trivial cokernel and kernel dimension I.‚�; ‚CIZ/. Moreover,

k��kL2 � ��1k�kK2
1

when � is K2 –orthogonal to the kernel of �.

This lemma is proved in Part 6 below.

What with (3-5), (3-9), (3-12)–(3-14) and Lemma 3.2, all of the relevant questions about
D† can be rephrased as questions about �. The following lemma states something
more precise.

Lemma 3.3 There exists � > 1 such that if the constants R and r used to construct d†
obey R�� , r ��2 , and j�j���1 , then D† has trivial cokernel and the composition of
t with L2 –orthogonal projection maps the kernel of � isomorphically onto the kernel
of D† . As a consequence, the index of D† is equal to that of �; thus I.‚�; ‚CIZ/.

The assertions made by Proposition 3.1 are direct corollaries to this last lemma.

Proof of Lemma 3.3 Use (3-5) and (3-12) to conclude that the linear map f? !

D?
†
f? D D?

�
f?C r1=2.1�…�/.e

�
q f
?/ is invertible, with k.D?

†
/�1. � /kH � c0k � k2 .

This understood, it follows that if y 2L and fD f?C t .�/ 2H obeys D†fD y, then

(3-15) f ? D .D?†/
�1.1�…�/.y� r1=2e�q t .�/� p.�//:

Meanwhile, � obeys the equation

(3-16) �.�/C e.�/D t |.y/� p0..D?†/
�1.1�…�/y/;
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where

e.�/D p0
�
.D?†/

�1
�
r1=2.1�…�/.e

�
q t .�//C p.�/

��
C r1=2t |.e�q t .�//:

Note in particular that the operator e obeys

(3-17) ke.�/kL2 � c0.r
�1=2C8�

Cj�j/k�kK2
1
:

Indeed, this follows by first using (3-9) to bound r1=2t |.e�q t .�// and then the following
two additional facts: First, the operator

(3-18) � ! p0
�
.D?†/

�1r1=2.1�…�/.e
�
q t .�//

�
has norm bounded by c0.r

�1=2C8�Cj�j/2 , this because of (3-9), (3-14) and the bound
on the norm of .D?

†
/�1 . Second, the operator

(3-19) � ! p0..D?†/
�1p.�//

has norm bounded by c0r�1=2C3� r3� , this because of (3-13), (3-14) and the bound
on the norm of .D?

†
/�1 .

Given what is asserted by Lemma 3.2, the claims made by Lemma 3.3 follow directly
from (3-16) and (3-17).

Part 5 This part describes the operator � in preparation for the upcoming proof of
Lemma 3.2 To begin, write � 2K2

1
as �D ..�C /C2C ; .��/2„†� , .�C/2„†C/ and

write the component of �.�/ as �.�/ D ..�C /C2C ; .��/2„†� ; .�C/2„†C/.
The three steps that follow supply a description of these components.

Step 1 Suppose that C 2 C is not R–invariant. View �C as a section of C ’s normal
bundle N , and view �C as a section of N ˝T 0;1C . A virtual replay of what is said
in Parts 4 and 5 of Section 2.c that lead to (2-80) finds that �C appears as in (2-80):

(3-20) �C .�/D x@�C C �C �C C�C
x�C C e;

where the L2
1

norm of e on C � .
S

E2EC
E2R/ is bounded by c0.r

��=4Cj�j/k�kK2
1

.

Step 2 Suppose next that C 2 C is an R–invariant cylinder, thus R�  for some
Reeb orbit  . Let m denote the associated positive integer. Use the coordinates in
(1-5) of [14] to identify the tangent space in Cm at the symmetric vortex with Cm .
Use C ’s identification with R�  DR�S1 and C ’s normal bundle identification as
C �C , these as described in Section 4.a of [14], to identify �C and �C as maps from
the jw j � 4R part if R�S1 to Cm . In the case mD 1, the arguments that lead to
(2-80) can be used almost to verbatim prove that �C has the form given in (3-20) with
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the pair .�C ; �C / equal to  ’s pair .�; �/. In the case when m > 1, the arguments
that lead to (2-80) together with those that give the formula for D� in Lemma 2.1
prove that �C has the following form: Let �C q and �C q denote the q–th coordinates
components in Cm of the maps �C and �C . Then

(3-21) �C q D
x@�C qC

q

2
R�C qC e;

where R here denotes the rotation number of  . Meanwhile, e is such that its L2
1

norm
is bounded by c0.r

��=4Cj�j/k�kK2
1

.

Step 3 Consider next �� for a given  2„†� . A very similar description holds
for �C when  2„†C . The f�Cg2„†C descriptions are left to the reader.

Suppose first that the associated integer m� is equal to 1. To describe �� , it
proves convenient to view both ��.�/ and �� as maps to C from .�1;�R/�S1

to C . This is done using the coordinate �1 in (1-5) of [14]. Given the fact that
k�kK � c0r�1=2C8� , a very slight modification of the arguments leading to (2-81)
finds that ��.�/ is given by

(3-22) ��.�/D x@��C ���C�x��C e;

where the L2 norm of e on the s��R part of U� is bounded by c0.r
��=4Cj�j/k�kK2

1
.

Suppose next that m� > 1. The simplest case to analyze here is that when C contains
the cylinder R� and its associated integer is m� . The arguments for the D� formula
in Lemma 2.1 can be re-employed to prove that ��.�/ in this case has the form given
in (3-21) on the q–th summand in Cm .

Assume again that m� > 1 and suppose E� contains an end that is not part of R� .
Reintroduce the notation from Section 5.c of [14] to view c�

�T1;0Cm� over the cylin-
der Ik�S1 for any given k 2f1; : : : ;N�g as c�

k
T1;0Cmk

˚ .
L

E2E��Ek
��.N jE//.

Use this isomorphism to write �� as .�k ; ��.�†k// and �� as .�k ; ��.�†k//.
Then

(3-23) �k D
x@ck
�k C .r�R

r
1;0h/jck

C e;

where h is the �D 1
2

R version of the function h� on Cmk
given in (2-41), and where e

is such that its L2 norm on Ik�S1 is bounded by c0.r
��=4Cj�j/k�kK2

1
. Meanwhile,

if E 2 E��Ek , then E ’s component of �†k is given by (3-21). These assertions can
be proved using, once again, arguments that differ little from those used to derive the for-
mula for D� in Lemma 2.1. The details of all of this offer nothing new and are omitted.

Reintroduce the map ck0W R � S1 ! Cmk
from Section 7.f of [14]. As is noted

there, it follows from Constraint 2 in Section 4.b of [14] that the distance in Cmk
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between ck j.w ;t/ and ck0j.w ;t/ is bounded by c0r��=4 at each .w ; t/ 2 Ik �S1 . As
a consequence, the map êxpck0

from Part 8 in Section 2.a of [14] can be used to
identify the ck0 and ck pullbacks over Ik �S1 of T1;0Cmk

when r � c0 . With this
identification understood, then �k in (3-23) can just as well be written as

(3-24) �k D
x@ck0

�k C .r�kR
r

1;0h/jck0
C e

where e here differs from its namesake in (3-23) but obeys kekL2�c0.r
��=4Cj�j/k�kK2

1
.

Part 6 This part of the subsection consists of the.

Proof of Lemma 3.2 If  2 „†� and m� D 1, set V�;1 D 0. Likewise, set
VC D 0 if  2 „†C and mC D 1. Now suppose that  2 „†� and m� > 1.
If there is just one end of † in U� and the latter is an end of R �  , then set
V�;1 D 0. If such is not the case, introduce the notation from Section 5.c in [14]. If
k 2 f1; : : : ;N�g, use V�;k to denote the kernel of the operator

(3-25) �!x@ck0
�C .r�R

r
1;0h/jck0

when viewed as mapping L2
1
.R�S1I c�

k0
T1;0Cmk

/ to L2.R�S1I c�
k0

T1;0Cmk
/. Note

that Lemma 7.5 in [14] asserts that this operator is Fredholm with trivial cokernel. In
the case when  2„†C , define the analogous vector spaces VC;k .

Define V0 as in (7-43) of [14]. Note in this regard that the kernel of DC is trivial when
C is an R–invariant cylinder. Mimic what is done in Section 7.f of [14] to define the
maps q W K2

1
! V0 and �0W V0 ! K2

1
. With only cosmetic changes, the arguments

from Section 7.f of [14] establish the following when r � c0 and R � c0 : First, q
maps onto V0 and, in addition,

(3-26) kq.�0.�//� �kL2 � c0r�1=c0k�kL2 for all � 2 V0:

Meanwhile, it follows from what is said about � in Part 5 above that

(3-27) k��0.�/kL2 � c0.r
�1=c0 Cj�j/k�kL2 for all � 2 V0:

Finally, the arguments given in Sections 7g and 7h in [14] can be applied with only
notational changes to prove the following: If r � c0 , R� c0 and j�j � c0

�1 , then

(3-28)
� � maps the kernel of q ontoL2 .

� k�.�/kL2 � c0
�1k�kK2

1
if q.�/D 0.

These last points imply that the kernel of � is isomorphic to V0 , that � has trivial
cokernel, and that k�.�/kL2 � c0

�1k�kK2
1

if � is L2 orthogonal to the kernel of �.
In this regard, the isomorphism between V0 and the kernel of � can be taken so
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as to send any given � 2 V0 to �0.�/C �.�/ where �.�/ 2 kernel.q/ obeys k�kK2
1
�

c0.r
�1=c0 Cj�j/k�kL2 .

Granted what just been said, all that remains is to verify that dim.V0/ is equal to
I.‚�; ‚CIZ/. This task is done in the six steps that follow.

Step 1 Suppose that C 2 C is not R–invariant. Introduce DC as depicted in (1-10),
viewed as a Fredholm map from L2

1
.C IN / to L2.C IN ˝T 0;1C /. As DC has trivial

cokernel, the dimension of its kernel is the index of DC . This index can be computed
using the formula from Theorem 5.1 in [6]. What with Lemma 2.3, the result can be
put in the following schematic form:

(3-29)

index.DC /D�
X

2„†�

X
E2EC\E�

zE

C

X
2„†C

†E2EC\ECzE � hc1;C iC deg.NC /;

where the notation is as follows: First, hc1;C i denotes the Euler class of a section
of the bundle KjC with it understood that the section is given on C ’s intersection
with any given U˙ as the restriction of the projection to K of the vector field @

@z

Second, deg.NC / denotes the Euler class of C ’s normal bundle as defined using a
section whose restriction to C ’s intersection with any given U˙ is the projection
to N of this same @=@z Finally, what is written as zE is defined as follows: If the
associated Reeb orbit  is hyperbolic, then zE is the rotation number of  . If the Reeb
orbit  is elliptic, then zE D 2k<

qE R
C1 where qE denotes the integer that is described

in Constraint 3 of Section 4.b in [14], where R is  ’s rotation number, and where k<qR

is the greatest integer that is less than qR .

Step 2 Consider dim.V�;k/ in the case when  2 „†� and k 2 f1; : : : ;N�g.
Assume that E� contains at least one end that is not part of R�  . If such is not
the case, then there is only V�;1 and the latter has dimension zero. Reintroduce the
notation from the proof of Lemma 7.5 in Section 7.i of [14]. This step considers the case
that is discussed in Step 2 of the proof of Lemma 7.5 in [14]. Thus, E� consists of a
single end, and the latter, E , has qE Dm� . In this case, N�D 1 and the space V;1
can be written as a direct sum

L
1�q�qE

Vq where Vq denotes the L2 kernel of the
operator depicted in (7-60) of [14]. It follows from (7-61) of [14] that any function
annihilated by the operator in (7-60) of [14] is a linear combination of those that have
the form .w ; t/! eu.w/Ck.wCit/ where k 2 Z and where the function u. � / obeys

(3-30)
� u.w /!�qRw C o.1/ as w !�1,

� u.w /!�.RC .q� 1/kE=qE /w C o.1/ as w !C1.
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Here, kE is the least integer that is greater than qE R . It follows from (3-30) that the
function eu.w/Ck.wCit/ is square integrable if and only if

(3-31) qR < k < qRC .q� 1/.kE=qE � R/D qkE=qE � .kE=qE � R/:

As is argued next, this inequality is satisfied by at most one integer, k>qR , and such is
the case if and only if k>qR=q < kE=qE .

To prove that the only possible integer that obeys both sides of (3-31) is k>qR , note first
that the left hand inequality requires k � k>qR . On the other hand, the ratio kE=qE is
less than RC1=qE which is less than k>qR=qC1=qE ; thus the right hand side of (3-31)
is strictly less than k>qRC 1. As a consequence, there is at most one integer, namely
k>qR , that obeys both sides of (3-31).

To see only one such integer if and only if k>qR=q < kE=qE , note first that the necessity
of this condition follows directly from the fact that the far right term in (3-31) is negative.
To see that (3-31) holds when k>qR=q<kE=qE , rewrite this inequality as qE k>qR=q<kE .
Thus, kE D qE k>qR=qCp=q for some integer p > 0 and so k>qR D qkE=qE �p=qE .
Meanwhile, kE=qE �R < 1=qE , and so the far right hand term in (3-31) is strictly
greater than �1=qE .

Let nq D 1 if k>qR=q < kE=qE and zero otherwise. It follows from what was just said
that

(3-32) dim.V�;1/D 2
X

1�q�qE

nq:

To put this sum in perspective, let kq� denote the least integer greater than qkE=qE .
Then k>qR � kq�� nq . This understood,

(3-33) dim.V�;1/D�
X

1�q�qE

2k>qRC 2
X

1�q�qE

kq�:

As explained to the author by Noam Elkies, the right most sum in (3-33) is

(3-34) 2
X

1�q<qE

kq� D .qE � 1/.kE C 1/;

this a consequence of the fact that qkE=qE C .qE � q/kE=qE D kE . Granted (3-34),
reintroduce z;q D 2k<qRC 1D 2k>qR � 1 and so write

(3-35) dim.V;1/D�
X

1�q�m�

z;qC zE C kE .qE � 1/:
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Note for a subsequent step that the far right term in (3-35) has the following geometric
interpretation: Let S � C� �C denote the nonsingular curve given in terms of the
coordinates .x D e.wCit/;Z/ as

(3-36) xkE � zqE D 1:

Let s denote the projection of the vector field @=@z onto the normal bundle of S . This
vector field is nonvanishing where jxj � 1 and where jxj � 1. Thus, it has a well
defined Euler class. The latter is equal to kE .qE � 1/.

Step 3 This step considers dim.V�;k/ for the case that is discussed in Step 3 of the
proof of Lemma 7.5 in [14]. In this case, there are n> 1 ends in E� , each with the
same integer qE . Again there is just V�;1 . Given what is said there, a virtual repeat
of the arguments just given find that

(3-37) dim.V�;1/D 2
X

1�q<nqE

nq;

where nq is the number of integers that obey (3-31). To say something more about nq ,
remark that (3-31) is obeyed if and only if k satisfies

(3-38) k>qR � k < qkE=qE :

Indeed, necessity of (3-38) for the left hand inequality in (3-31) follows because
there are no integers between qR and k>qR . The necessity of (3-38) for the right hand
inequality in (3-31) follows since �.kE=qE � R/ < 0. The sufficiency of (3-38) for the
left hand inequality in (3-31) follows since qR < k>qR . The sufficiency of (3-38) for the
right hand inequality is argued in Step 2.

It follows from (3-38) that

(3-39) nq D kq� � k>qR;

where kq� denotes the least integer greater than or equal to qkE=qE . This understood,
(3-36) can be rewritten as

(3-40) dim.V�;1/D�
X

1�q�m�

z;q � nqE C 2
X

1�q�nqE

kq� :

The sum on the far right can be evaluated as was (3-34) to find that

(3-41) dim.V;1/D�†1�q�m�z;qC n.2kE � 1/C nkE .nqE � 1/:

Since .2kE � 1/ is equal to zE , what is written in (3-41) is

(3-42) dim.V;1/D�
X

1�q�m�

z;qC
X

E2E�

zE C nkE .nqE � 1/:
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For future reference, note that the right most term in (3-42) also has a geometric
interpretation as the Euler class of a section of the normal bundle of a curve in C��C .
In this case, the curve, S , is the locus of pairs .x; z/ where

(3-43) xnkE � znqE D 1:

Consider again the projection, s, of @=@z to the normal bundle of S . The latter vanishes
at each of the nkE points of S where z D 0 with degree nqE � 1. This understood,
its Euler class is nkE .nqE � 1/.

Step 4 This step corresponds to the case that is considered in Step 4 of the proof of
Lemma 7.5 in [14]. Consider dim.V�;k/. Given (7-71) in [14] and what is said in the
final paragraph of Step 4 of the proof of Lemma 7.5 in [14], the arguments from the
previous two steps can be employed with only notational changes to prove that

(3-44) dim.V�;k/D 2†mk�1<q�mk�1CnqE .kq� � k>qR/;

where kq� denotes the least integer that is greater than or equal to qkE=qE . A variation
of the argument used for (3-34) finds the kq� sum in (3-44) equal to

(3-45) 2nmk�1kE C nkE .nqE � 1/C n.2kE � 1/C nqE :

As a consequence, what is written in (3-44) can be rewritten as

(3-46) dim.V�;k/D�
X

mk�1<q�mk

z;qC
X

E2Ek

zE C nkE .nqE � 1C 2mk�1/:

The right most term in (3-46) has the following geometric interpretation: Let Sk D

S [ S 0 � C� �C denote the reducible curve given as follows: First, S is given in
terms of the coordinates .x; z/ by (3-43). Second, S 0 is the disjoint union of mk�1

disjoint, constant z cylinders, each with z > 0 and jzj � 1. The right most term in
(3-46) is the sum of two terms: The first, nkE .nqE � 1/ is again the Euler class of the
normal bundle of S as defined by the restriction of @=@z The second, 2nkE mk�1 , is
twice the intersection number between S with S 0 .

Step 5 It follows from what has been said in Steps 2–4 that

(3-47)
X

1�k�N�

dim.V�;k/D�
X

1�q�m�

z ;qC
X

E2E�

zE C deg.NZ\U�/;

where the far right term is short hand for the degree of the normal bundle of a certain
surface in U� with degree here defined by the normal projection of the vector field
@=@z . The surface in question, Z \U� , is embedded in U� and has the following
four properties: First, it is agrees with † \ U� where s � �4R� . Second, the
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s ��2R� portion sits where jzj< ��=100. Third, the s ��6R� portion is the union
of m� disjoint, cylindrical ends. Finally, any given end, E , is a graph of the form
.w ; t/! zE e�"w where "> 0 and where zE ¤ 0. This description of the far right term
in (3-47) follows directly from: The geometric interpretations of the far right term in
(3-35) as the degree of the normal bundle of the surface in (3-36); the interpretation of
the far right term in (3-45) as the degree of the normal bundle of the surface in (3-43);
and the interpretation of the far right term in (3-46) as given at the end of Step 4.

Here is an analogous formula for
P

1�k�NC
dim.VC;k/ when .;m/ 2‚C :

(3-48)
X

1�k�NC

dim.VC;k/D
X

1�q�mC

z ;q �
X

E2EC

zE C deg.NZ\U�/:

The derivation of (3-48) is much the same as that of (3-47) and left to the reader. Add
the various versions of (3-47), (3-48) and (3-29) to obtain an expression for dim.V0/.
Given that �hc1; †i D �

P
C2Chc1;C i D �hc1;Zi, the result is identical to what

appears on the right hand side of (1-4). Note that this equivalence of first Chern
class pairings follows from the fact that Z differs from † only on

S
2„†�

U�
and

S
2„†C

UC where the section whose algebraic zero count computes hc1; � i is
nonzero.

3.b Instanton signs

The purpose of this section is to prove the assertion made by the second bullet in
Theorem 1.2. What follows directly sets the stage.

To start, remark that any given version of M1.‚�; ‚C/ has an orientation sheaf,
ƒ.‚�; ‚C/, which is defined using Quillen’s ideas about determinant line bundles.
Definition 9.9 in [8] introduces the notion of a coherent system of orientations for
the collection fƒ.‚�; ‚C/g‚�;‚C2Zech . As explained in Section 9.5 of [8], and
demonstrated below explicitly, a coherent system of orientations is specified by choosing
an orientation for a certain real line that is associated to each hyperbolic Reeb orbit.
A given coherent system of orientations orients any given version of M1.‚�; ‚C/.
This orientation is denoted by oech in Theorem 1.2.

By way of reminder, Part 6 in Section 1.b introduced the 2–element set ƒ.c�; cC/ for
any ordered pair c�; cC 2Mr� . An element in this set canonically orients each compo-
nent of M1.c�; cC/ whose instantons are nondegenerate. As noted in Part 6 of Section
1.b, the set ƒ.c�; cC/ is canonically isomorphic as a Z=2Z module to ƒ.c�/˝Z=2Z

ƒ.cC/
� where any given version of ƒ.c/ is a certain 2–element set viewed as a

nontrivial Z=2Z module. A collection of elements fo.c�; cC/ 2ƒ.c�; cC/gc�;cC2Mr�
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was said to be coherent if there is a corresponding set fo.c/ 2ƒ.c/gc2Mr� such that
any given o.c�; cC/ is o.c�/o.cC/.

The second bullet in Theorem 1.2 asserts that it is possible to choose elements fo.c/ 2
ƒ.c/gc2Mr� so as to guarantee that the orientation of the image of ‰r by the collection
fo.c�/o.cC/ 2ƒ.c�; cC/gc�;cC2Mr� is the same as the pushforward via ‰r of oech .

The proof that follows of this assertion has fourteen parts. The first two parts of the proof
summarize material about determinant line bundles for families of Fredholm operators.
This is relevant by virtue of the fact that the sheafs ƒ.‚�; ‚C/ and ƒ.c�; cC/ are the
orientation sheaves of such line bundles. Parts 3–5 introduce the notions that are used in
Part 6 to define a coherent system of orientations, oech , for fƒ.‚�; ‚C/g‚�;‚C2Zech .
As is seen below, this requires as input a choice of orientation for a line that is associated
to each hyperbolic Reeb orbit. Parts 7-13 use this same data to define an element
o.c�; cC/, for ƒ.c�; cC/ when c� and cC are in the image of some large r version
of ˆr . The proof of the second bullet of the theorem is completed in Part 14 which
explains why the o.c�; cC/ orientation of M1.c�; cC/ agrees on the image of ‰r with
the latter’s pushforward of oech . Part 14 also proves that the set fo.c�; cC/gc�;cC2im.ˆr /

is coherent in the sense defined above.

Part 1 As noted above, the sheaves ƒ.‚�; ‚C/ and ƒ.c�; cC/ are the orientation
sheaves of determinant line bundles. Quillen [11] introduced the notion of determinant
line bundle for a family of Fredholm operators; and what follows gives a brief descrip-
tion. Much of what is said here in the context of embedded contact homology can be
found in Section 9 of Hutchings and Taubes [8] and also in Bourgeois and Mohnke [2].
The corresponding story in the Seiberg–Witten context can be found in Chapter 20
of Kronheimer and Mrowka [9]. (See also Bismut and Freed [1] for more about the
general subject of determinant line bundles.)

To start, let L0 and L1 denote separable Hilbert spaces, let S denote a space, and
suppose that s !�s W L0! L1 denotes a continuous family of bounded, Fredholm
operators parameterized by the points in S . Now let V1!S denote a finite dimensional
vector bundle, and �1W V1! L1 denote an injective map with the following property:
For all s 2 S , the composition of first �1 and then projection to cokernel.�s / is
surjective onto cokernel.�s /. Under this assumption, the spaces V0js D fu 2 L0 W

�s .u/ 2 �1.V1js /g define a vector bundle, V0 , over S . The determinant line bundle
for the family s !�s is the real line bundle with fiber

(3-49) ƒtop.V0js /˝ƒ
top.V1js /

�:

Here, convention takes ƒtop of the zero dimensional bundle to be R. One can show
that this bundle is independent of the choice of V1 and �1 . This line bundle is denoted
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by det.�/. Note that there is an exact sequence

(3-50) 0! kernel.�s /! V0! V1! cokernel.�s /! 0;

where the middle arrow is the map �s with it understood that �1 is used to identify V1

with �1.V1/. Thus, the line det.�/js is canonically isomorphic to

(3-51) ƒtop.kernel.�s /˝ƒ
top.cokernel.�s //

�:

The latter observation is relevant to the case at hand by virtue of the fact that an
orientation for †’s component of the moduli space M1.‚�; ‚C/ is no more nor
less than an orientation for the product of the top exterior powers of operators that
are associated to the components of †. To elaborate, suppose that C � † is not an
R–invariant cylinder. Then the tangent space to C ’s component in M1.‚�; ‚C/ is
canonically isomorphic to the kernel of the operator DC as given in (1-10) but viewed
as a Fredholm operator from L2

1
.C IN / to L2.C IN ˝ T 0;1C /. Suppose next that

C is an R invariant cylinder. Let m denote the associated integer and let Cm! C

denote the associated, m–fold connected cover. For the purposes of this proof, define
DC in this case to be the pullback to Cm of the operator depicted in (1-10). Given
(1-14) and the constraints in Section 4.b of [14], this version of DC is a Fredholm
operator from L2

1
.CmIN / to L2.CmIN / with trivial kernel and cokernel. The point

of all this is that the sheaf ƒ.‚�; ‚C/ at † is canonically isomorphic to the Z=2Z
module of orientations of the line

(3-52) det.
L

C2C DC/:

There is a similar story for the Z=2Z module ƒ.c�; cC/ at d† . The latter is canonically
isomorphic to the Z=2Z module of orientations for the line det.D/ where D is d† ’s
version of the operator that is described in (1-12).

What follows is meant to give some indication of how the argument for the second point
in Theorem 1.2 uses these determinant lines. It is first argued that a coherent orientation
for (3-52) is determined in a suitably canonical fashion from an orientation of a tensor
product of 3 lines, det�˝ det˙˝detC� , where each is the determinant line bundle
for a Fredholm operator. The Fredholm operator that defines det� is a version of Dc

that is determined solely by ‚� . Furthermore, det� is oriented given the following
data: First, a Z=2Z choice for each hyperbolic Reeb orbit with even rotation number
from ‚� . Second, an ordering of these orbits. Meanwhile, the Fredholm operator that
defines detC is a version of Dc that is determined solely by ‚C ; and detC is oriented
given the ‚C analog of this same data. Finally, det˙ has a canonical orientation by
virtue of the fact that the operator that defines this determinant line, yet another version
of DC , has a deformation through Fredholm operators to one that is C -linear.
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To say more about an orientation for the line det.D/, consider first any pair c� and cC of
nondegenerate elements in Conn.E/�C1.M IS/. Let dW R!Conn.E/�C1.M IS/
denote any given smooth map with s!�1 limit equal to c� and with s!1 limit
equal to cC . An element in ƒ.c�; cC/ is determined in a canonical fashion from an
orientation of the determinant line that is associated to d’s version of the operator in
(1-12). As it turns out, one can choose a map d so that this same version of det.D/
can be written in a suitable canonical fashion as Det�˝Det0˝DetC� where each of
Det� , DetC and Det˙ is the determinant line of a Fredholm operator that differs from
(1-12) by a zero–th order term. Moreover, the respective operators that give Det� and
DetC are determined solely by c� and cC . Meanwhile, the operator that gives Det˙
is homotopic through Fredholm operators to a C–linear operator. This gives Det˙ a
canonical orientation which is assumed henceforth.

The fact that an element in any given c� and cC version of ƒ.c�; cC/ is determined
solely by orientations for Det� and DetC underlies the assertion that there are ele-
ments fo.c�; cC/ 2 ƒ.c�; cC/gc;cC2Mr� such that each o.c�; cC/ here has the form
o.c�/o.cC/

� with fo.c/ 2 ƒ.c/gc2Mr� . Indeed this is the case because the module
ƒ.c/ for c 2Mr is isomorphic to ƒ.c; c0/ with c0 any given nondegenerate element
in Conn.E/�C1.M IS/. To say more, define an element in ƒ.c�; c0/ by orienting
the version of det.D/ that is associated to a map dW R! Conn.E/�C1.M IS/ with
s ! �1 limit is c� and with s !1 limit is c0 . As noted above, the associated
version of det.D/ for such a map is canonically isomorphic to Det�˝Det�˙˝Det0
where Det�˙ and Det0 are also determinant lines of Fredholm operators that differ
from (1-12) by something of zero–th order. Moreover, the operator that defines Det0
is determined solely by c0 , and the operator that defines Det�˙ deformable through
Fredholm operators to a C–linear operator. This understood, fixing an orientation for
Det0 gives the element o.c�/. There is an analogous o.cC/. The composition law
ƒ.c�; c0/˝Z=2Zƒ.c0; cC/

� Dƒ.c�; cC/ gives the latter the element o.c�/o.cC/� .

It is important in what follows to note that the element o.c�/o.cC/� is the same as that
determined for ƒ.c�; cC/ by the orientation of Det�˝Det˙˝DetC� given previously.
This is because the lines Det˙ , Det�˙ and the cC analog of Det�˙ are all oriented
by deforming their corresponding operators through Fredholm operators to something
C–linear.

With the preceding understood, let † 2M1.‚�; ‚C/ and take c� and cC to be
respective solutions to (1-8) that determine the gauge equivalence classes of ˆr .‚�/

and ˆr .‚C/. A crucial observation made in what follows is that the associated tensor
product Det�˝Det˙˝DetC can be defined using ‰r to supply the operator whose
determinant line is Det� . Moreover, this version of Det� is canonically isomorphic to
the line det� that is used to define the coherent orientation for †’s version of (3-52). By
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the same token, ‰r supplies a version of DetC that is canonically isomorphic to detC .
Finally, all of this is compatible with the pushforward via ‰r . These observations
have the following sought after consequence: A coherent orientation for M1.‚�; ‚C/

defines an element in ƒ.c�; cC/ which gives the same orientation to det.D/ as does
the pushforward via ‰r . Moreover this element comes from a coherent orientation of
the collection fƒ.c�; cC/gc;cC2Mr� .

Part 2 This part of the proof states a well known gluing principle for first order Fred-
holm differential operators such as DC and Dd . This gluing principle lies behind the
composition law ƒ.‚�; ‚

0/�Z=2Zƒ.‚
0; ‚C/Dƒ.‚�; ‚C/ implied by Lemma 9.6

in [8]; and also the composition law ƒ.c�; c0/�Z=2Zƒ.c0; cC/Dƒ.c�; cC/ that is
stated in Chapter 20.3 of [9]. See also Section 9.6 in [8] or Corollaries 6 and 7 in [2]
in the former case; and see (20-8) and the surrounding discussion in [9] or Mrowka’s
thesis [10] for the latter. In particular, this gluing principle is used momentarily to
write triple product decompositions of both the determinant line bundle in (3-50) and
of det.D/, this in the manner described at the end of Part 1.

What follows states the gluing principle in somewhat greater generality than is necessary.
To set the stage, suppose that Y is a smooth, Riemannian manifold, that P0 and P1

are smooth vector bundles over Y with fiber metrics, and that

(3-53) OW L2
1.Y IP0/!L2.Y IP1/

is a Fredholm, first order differential operator. Let �W N ! Y denote an embedding of
a separating, codimension 1 submanifold. Let LW C1.N I� �P0/! C1.N I� �P1/

denote a first order, unbounded, self-adjoint elliptic differential operator with trivial
kernel. Here, the metric on N is that induced by � . Suppose that " > 0 has been
specified, this a number that is much smaller than the smallest of the absolute values of
the eigenvalues of L.

Suppose that T �2 and that � extends to an isometric embedding �T W Œ�T;T ��N!Y

such that the following is true: Let � W Œ�T;T ��N !N denote the projection. Then
there are bundle isometries from ��

T
P0;1 to ����P0;1 that identify O on the image

of �T with the operator

(3-54)
@

@s
CLC e

on Œ�T;T ��N . Here, e is a first order operator whose coefficients are such that their
derivatives to order 3 are bounded by ".

To continue, define manifolds Y� and YC as follows: The manifold Y� is obtained by
discarding the part of Y that contains the �–image of .1;T ��N and replacing the
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latter with .1;1/�N . Meanwhile, YC is obtained by discarding from Y the part that
contains the �–image of Œ�T;�1/�N and replacing the latter with .�1;�1/�N .
Both P0 and P1 extend in the obvious fashion to Y� and YC . Likewise, the operator O
extends over both Y� and YC so as to map L2

1
.Y˙;P0/ to L2.Y˙;P1/. The latter

operators are denoted by O˙ . Indeed, O� D @=@sCLC�e on the .1;1/�N part
of Y� ; meanwhile OCD@=@sCLC.1��/e on the .�1;�1/�N part of YC . Finally,
define maps ��W C1.Y�;P0;1/! C1.Y;P1/ by sending ��.�/ D ��. Likewise,
define �CW C1.Y�;P0;1/! C1.Y;P1/ by �C.�/D .1��/�.

The lemma that follows states the promised gluing principle. This lemma uses O˙
|

and O| to denote the formal L2 adjoints of the indicated operators.

Lemma 3.4 There exists "� > 0 and T� � 2 with the following significance: If " < "�
and T � T� , then

(a) The operators O˙ define Fredholm maps from L2
1
.Y˙;P0/ to L2.Y˙;P1/,

respectively.

(b) The composition of first ��˚�C and then L2 orthogonal projection onto the
kernel of �| defines a surjection �1W kernel.O�|/˚kernel.O|

C/! kernel.O|/.

(c) The composition of ��˚�C and then L2
1

orthogonal projection onto kernel.�/
is an isomorphism from kernel.O�/˚ kernel.OC/ to V0 D fu 2 L2

1
.Y IP0/ W

Ou 2 Image.�1/g.

(d) In particular, ��˚�C induces and isomorphism of lines

(3-55)
ƒtop.kernel.O�/˚ kernel.OC//˝ƒtop.cokernel.O�/˚ cokernel.OC//�

� det.O/:

A proof is straightforward to come by; indeed, the arguments are much like those that
are used to below to prove Lemma 3.5. See also Lemma 9.6 in [8] which gives a
relevant N D S1 version of (3-55). Various N DM versions have been used since
the early days of gauge theory (see, eg Chapter 7 in [3]). Very much more sophisticated
versions in the Seiberg–Witten context are used in Chapters 17 and 24 of [9].

An NDS1 version of (3-55) gives the composition law ƒ.‚�; ‚
0/�Z=2Zƒ.‚

0; ‚C/D

ƒ.‚�; ‚C/. A version for N D M gives the composition law ƒ.c�; c0/ �Z=2Z

ƒ.c0; cC/Dƒ.c�; cC/ given in Chapter 20 of [9].

Part 3 This part of the proof serves as a digression to introduce some auxiliary
operators that are used in Part 6 to define a canonical orientation for the line in (3-52).

These operators are used to define the lines det� , detC and det˙ that are mentioned
in Part 1.
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To start the digression, fix " 2 .0; 1/ but very small, fix k 2 Z, and define the operator
D0� on C1.R�S1IC/ by declaring it to send any given function � to

(3-56) D0��D
1

2

�
@

@w
C i

@

@t
C

�
1

2
kC ".1��/

��
�C i"�eikt

x�;

where �D �.w /. This operator is Fredholm from L2
1
.R�S1IC/ to L2.R�S1IC/.

A spectral flow calculation can be done to prove that it has index 0 when k is odd and
index 1 when k is even. Moreover, if " is small, its kernel dimension is, respectively, 0

and 1. Indeed, when k is even, the kernel is the real span of .1� i/eeu.w/Cikt=2 where
the function u is an antiderivative of ".1� 2�/. Fix such a small value of ". In the
case when k is even, fix an orientation for the kernel of D0� . If T � 0 is given, use
DT� to denote the operator that is obtained from D0� by translating the latter using
w ! w C T . Thus DT� is obtained from (3-56) by replacing � with the function
�T� D �.w CT /.

Consider next the operator D0C on C1.R�S1IC/ that sends a given function � to

(3-57) D0C�D
1

2

�
@

@w
C i

@

@t
C

1

2
.kC "�/

�
�C i".1��/eikt

x�:

This operator is also Fredholm from L2
1
.R�S1IC/ to L2.R�S1IC/. The operator

D0C has index zero when k is odd and index �1 when k is even. If " > 0 is small, it
has trivial kernel and cokernel when k is odd, and trivial kernel but 1–dimensional
cokernel when k is even. Fix such a small value for ", and then fix an orientation for
the cokernel of D0C when k is even. Given T � 0, define DTC by replacing � in
(3-57) by the function �TC D �.w �T /.

There are yet two more operators that play a roles in what follows. Both map
C1.R�S1IC/ to itself. The first has the form

(3-58) �!D��D
1

2

�
@

@w
C i

@

@t
C

1

2
.kC "/

�
�:

Note that this operator is C–linear. Note as well that it agrees with DT� at points in
R�S1 where �T <w . The second operator of the two operators is denoted by DC ;
and it is defined by replacing " with �" in (3-58). Note that DC is also C–linear, and
that it agrees with DTC where T <w .

Part 4 This part of the proof describes a deformation of certain C 2 C versions of DC .
The particulars are motivated by what is said in Section 9 of [8]. To set the stage,
suppose that  2„†� is a hyperbolic Reeb orbit and let E denote the end of † that
lies in U� . Use C in what follows to denote the component of † that contains E .
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View E as a graph .w ; t/! zE .w ; t/ as in (4-2) of [14], and then identify the normal
bundle to E with C using the projection of @=@z . This done, the operator DC appears
on E as

(3-59) �!DC�D
1

2

�
@

@w
C i

@

@t
C

1

2
k

�
�C i"eikt

x�C e.�/;

where jej � c0.j�jC jr�j/e
�jw j=c0 Here, k is the rotation number of  .

Fix T > 4R and T 0 > 8T ; and consider now the operator on E that sends a function
� to the operator

(3-60) �! �T�DT 0�C .1��T�/DC :

The deformation of DC that is depicted in (3-60) is homotopic to DC through a path
of Fredholm, first order operators. Indeed, such a homotopy parametrized by Œ0; 1� can
be obtained by replacing �T� in (3-60) by ��T� where � 2 Œ0; 1�.

Let  2 „†C denote a hyperbolic Reeb orbit, let E denote the end of † in UC ,
and let C denote the component of † that contains E . There is a deformation of DC

through Fredholm operators that is the analog of (3-60): Replace �T� with .1��TC/

and replace DT 0� with DT 0C .

Given C 2C , use D0
C IT;T

to denote the operator on C that is obtained by replacing DC

by the appropriate version of (3-60) or its positive end counterpart on each end E � C

whose constant s slices limit as jsj !1 to a hyperbolic Reeb orbit. It follows from
what is said above that this operator is homotopic to DC via a path of Fredholm, first
order differential operators acting from L2

1
.C IN / to L2.C IN ˝ T 0;1C /. As just

noted, such a homotopy, parametrized by � 2 Œ0; 1�, is obtained by replacing each
occurrence of �T˙ by ��T˙ .

Fix T > 4R and T 0 > 8T so as to introduce the line

(3-61) det.
L

C2C det.DC IT;T 0//:

Here, as in (3-52), the operator associated to an R–invariant cylinder component C

that comes with weight m > 1 is that defined by the pullback of DC to the m–fold
covering cylinder. Cylinders of this sort have DC IT;T 0 DDC as they are of the form
R�  with  an elliptic Reeb orbit.

Since each version of DC IT;T , is homotopic through Fredholm operators to DC , an
orientation for the line in (3-61) defines one for the line in (3-52); thus it defines a
point in the Z=2Z module ƒ.‚�; ‚C/ at †.
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Part 5 The two operators D˙ are now used to define yet another operator that is
associated to a given component C �†. This operator, DC ˙ , is defined as follows:
First DC ˙ differs from DC only on those ends of C whose constant s slices converge
as jsj !1 to a hyperbolic Reeb orbit. This understood, let E denote an end of C

whose constant s slices converge as s!�1 to a hyperbolic Reeb orbit. Then DC ˙

on E sends a complex-valued function � to

(3-62) DC ˙�D �T�D�C .1��T�/DC :

If E � C is an end whose constant s slices converge as s!1 to a hyperbolic Reeb
orbit, then DC ˙ on E sends � to DC ˙�D .1��TC/DCC�TCDC .

The operator DC ˙ is also Fredholm as a map from L2
1
.C IN / to L2.C IT 0;1C /. Even

so, it is not homotopic to C through Fredholm operators unless C has no ends whose
constant s slices converge as jsj !1 to a hyperbolic Reeb orbit with even rotation
number. Indeed, let nC� denote the number of such ends that lie where s < �1 and
let nCC denote the number that lie where s > 1. Then

(3-63) index.DC ˙/D index.DC /� nC�C nCC:

This operator DC ˙ has the nice property that it is C–linear at large values of jsj. As
a consequence, it is homotopic through a family of Fredholm, first order differential
operators mapping L1

2.C IN / to L2.C IN ˝ T 0;1C / to a C–linear operator. For
example, a homotopy parametrized by Œ0; 1� is obtained by writing DC ˙ as

(3-64) �!DC ˙�D x@�c C �C ˙�c C�C ˙x�c ;

and then taking the � 2 Œ0; 1� operator in the homotopy to be what is obtained by
replacing �C ˙ in (3-64) by .1� �/�C ˙ .

Here is why the existence of such a homotopy is relevant: The determinant line bundle
of a C–linear operator has a canonical orientation, this defined by taking the vector
space V1 in (3-49) to be complex. As a consequence, det.DC ˙/ also has a canonical
orientation. This orientation is deemed the positive orientation.

By the way, the existence of such a homotopy implies that DC ˙ has even index.

Part 6 Let n� denote the number of hyperbolic Reeb orbits with even rotation number
that come from ‚� , and let nC denote the analogous number from ‚C . If T >4R and
T 0�T , then it follows from Lemma 3.4 that det.DC IT;T 0/ is canonically isomorphic to

(3-65) det.
L

C2C DC IT;T 0/Dƒ
top.
L

n�
R/˝ det.

L
C2C DC ˙/˝ƒ

top.
L

nC
R/:
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Here, each factor of R that appears in the first term on the right in (3-65) accounts for the
1–dimensional kernel of one of the n� versions of DT 0� . Likewise, each factor of R
that appears in the far right hand term accounts for the 1–dimensional cokernel of one
of the versions of DT 0C . just noted, det.DC ˙/ has a canonical orientation, and for the
same reason, so does det.

L
C2C DC ˙/. Note in this regard that the ordering of the com-

ponents of † has no bearing on this orientation as each version of DC ˙ has even index.

With the preceding understood, it follows from (3-65) that det.
L

C2C DC IT;T 0/ has
a canonical orientation given two additional choices. Here is the first choice: Each
hyperbolic Reeb orbit with even rotation number has its associated operator D0� . An
orientation is required for the kernel of each such version of D0� . Note that such a
choice induces an orientation on the given Reeb orbit’s version of D0C . Indeed, this
follows from Lemma 3.4 with the following observation: Take T ��1 and define
DT 0 D .1� �/DT� C �DTC . This operator DT 0 is Fredholm and it is homotopic
through Fredholm operators to the C–linear operator D� given in (3-58).

The second choice required is that of an ordering for the respective subsets of „†� and
of „†C that consist of hyperbolic orbits with even rotation number. With such orderings
chosen, the resulting orientation for det.

L
C2C DC IT;T 0/ induces an orientation for

the line in (3-52).

Now let † and †0 define distinct components of M1.‚�; ‚C/. It is a consequence
of what is said in Section 9 of [8] that the orientation and †0 versions of (3-52) define
the same element of the Z=2Z module ƒ.‚�; ‚C/; and it follows that this element
comes from a system of coherent orientations as described in Definition 9.9 of [8].
This element in ƒ.‚�; ‚C/ is deemed the positive element. It is the element oech in
Theorem 1.2.

Part 7 Fix †�M1.‚�; ‚C/, and reintroduce the operator D† as defined in Part 1
of Section 3.a. What follows here and in Parts 8–10 use constructions from Section 3.a
to relate the kernel and cokernel of an operator such as D† with certain vector spaces
of sections along the components of †. The general sort of operator that is considered
in what follows is denoted by D†� and this Part 7 gives its definition. The notation
used in this definition and subsequently is the same as that introduced in Section 3.a.

To set the stage, suppose that  is a hyperbolic Reeb orbit from „†� . Fix a pair of
complex functions .v��; ���/W R�S1! C with the following properties: First
v�� is real where w��1 and both are independent of w 2R for w��1. Second,
the latter w –independent pair defines a version of (1-2) with trivial kernel. Fix an
analogous pair, .vC�; �C�/W R�S1!C for each hyperbolic Reeb orbit  2„†C
Such that vC� is real where w � 1, both are independent of w where w � 1, and
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is such that the version of (1-2) defined by the latter w –independent pair has trivial
kernel.

To continue, suppose that C � C is not of the form R�  where  is an elliptic Reeb
orbit. Fix for C a pair .�C�; �C�/ with �C� being a section of T 0;1C and �C� being
section of N 2˝ T 0;1C . Constrain �C� and �C� on the ends of C as follows: If
 2„†˙ is an elliptic Reeb orbit and C \U˙¤∅, then �C�D �C and �C�D�C

on C \U˙ . If  2„†˙ is a hyperbolic Reeb orbit and C \U˙ ¤∅, first identify
C ’s end E in U˙ as a graph via (4-2) in [14] and trivialize E ’s normal bundle using
the orthogonal projection along C of @=@z . This identifies .�C�; �C�/ as a pair of
functions on .�1;�R�� S1 or on ŒR;1/� S1 as the case may be. Granted this
identification require that .�C�; �C�/j.w ;t/ D .v˙�; �˙�/jt C e, where e and its
derivatives to third order are bounded by c0e�2�qE w Here, �qE is the eigenvalue that
appears in E ’s version of (4-2) in [14].

To end the stage setting, reintroduce the operators D and D� as described in Part 1 of
Section 3.a. Use (3-1) to define eq� .

The operator D†� is written as D†� DD��C r1=2eq�. � / where D�� is the first order,
elliptic operator from L2

1
.R�M I iT �M ˚S˚ iR/ to L2.R�M I iT �M ˚S˚ iR/

that is described in the five steps that follow.

Step 1 This step and the next three steps define an operator P�� with respective domain
range spaces L2

1
.R�M I iT �M ˚S ˚ iR/ and L2.R�M I iT �M ˚S ˚ iR/. To

start the definition, take P�� DD� at points with distance �† or greater from †.

Step 2 Recall that C denotes the set of components of †. Fix C 2 C and at points
in UC , write P��D�cPc�C.1��c/D� , where Pc� is obtained from D� by making
two replacements. To describe the first, write D� on UC as in (6-6) and (6-7) of [14]
with the refinement of (6-6) in [14] that is given in (2-78). Now replace C ’s version
of .�; �/ in (2-78) by .�C�; �C�/. To describe the second, recall from Part 1 of
Section 3.a that the pair .A� ;  �/ that defines D� has a contribution from h.�/, this
as described in Section 6.d of [14]. The component C contributes to h.�/ via bC

in (6-36) of [14] with bC given as a section, .0; pC / of Vc0 ˚ VC 1 . Here, pC is
defined by (6-33) of [14]. All this understood, the second replacement that defines
Pc� is obtained by replacing pc in the definition of h.�/ with the solution, pc� , to
�i�

|
C;r

pC�� .1�…
0/vC� D 0 where vC� is defined by using vC� and �C� in the

� D 0 version of (6-32) of [14] instead of vC and �C .

Step 3 The operator P�� is equal to D� in any U˙ when  2„†˙ is an elliptic
Reeb orbit. Note that this is consistent with (3-65) because if  is elliptic, then
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.�C�; �C�/� .�C ; �C / at points in UC \U˙ , and therefore PC� DDC at points
in UC \U˙ .

Step 4 Take  2„†˙ to be a hyperbolic Reeb orbit such that †\U˙ ¤∅. Let E
denote the end of † in U˙ and let C denote the component of † that contains E .
Write P�� in U˙ at distances less than �† from E as P�� D �C .�EP˙� C

.1 � �E /PC�/ C .1 � �C /D� where P˙� is obtained from D� by making two
replacements. These are the analogs of those made in Step 2. To elaborate, write D�
on U˙ as described in Part 4 of Section 6.a of [14] using the relevant version of (6-6)
and (6-7) of [14] with the refinement of (6-6) given by the U˙ version of (2-78).
Then replace  ’s version of .�; �/ in (2-78) by the pair .v˙�; �˙�/. This is the
first replacement. To describe the second, recall from Part 1 of Section 3.a that the
pair .A� ;  �/ that defines D� has a contribution from h.�/ as described in Section 6.d
of [14]. If  2„†� , then it contributes to h.�/ via b� in (6-43) and (6-44) in [14].
If  2„†C , it contributes via the analogous bC using the UC analogs of (6-43)
and (6-44) in [14]. In any event, b˙ is given as a section, .0; p˙/ of V0 ˚ V1 .
Here, p˙ is defined by in Part 5 of Section 6.d in [14]. The second replacement that
defines P˙� is obtained by using .�˙�; �˙�/ instead of  ’s version of .�; �/
when defining p˙ as instructed in Part 5 of Section 6.d in [14].

Step 5 Note that P�� and D� have the same first order symbol. As a consequence,
P�� can be written as rs C L�� , where L�� contains only derivatives along the
M factor in R �M . This understood, set D�� DrsC

1
2
.L��CLt

��
/ where Lt

��

here denotes the formal, L2 –adjoint. Note that D�� D D� when all versions of
.v. � /�; �. � /�/ are equal to the original, unstarred version. This is the case because
D� DrsCL� and L� is symmetric. The fact that L�� is not, in general, symmetric is
a consequence of the definition in Part 3 of Section 6.a in [14] of what is denoted by q

in (2-78).

Here is a key point to keep in mind in what follows: Let C 2 C or  2 U˙ . Then the
corresponding version of (6-6) and (6-7) in [14] with the refinement of (2-78) holds for
D�� with it understood that .�C�; �C�/ is used in lieu of .�C ; �C /, or .v˙�; �˙�/
is to be used in lieu  ’s version of .�; �/, as the case may be.

Part 8 Fix data f.vC�; �C�/gC2C as described above so as to construct the opera-
tor D†� . What follows summarizes some of the salient features of this operator. Note
that it is to be understood below that what is written as DC� when C D R�  has
associated integer m> 1 denotes the pullback of DC to the nontrivial, m–fold cover
of C . The next two lemmas refers to the parameter R that is used in the construction
of ‰r . This parameter is defined in Section 4.c of [14].
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Lemma 3.5 Fix Q � 1. Then there exists � � 1 such that the following is true:
Take r � �2 , R � � ; and suppose that each C 2 C version of .�C�; �C�/ and
each  2 „†˙ version of .v˙; �˙/ has C 3 –norm bounded by Q. The operator
D†�W L

2
1
.R�M I iT �M ˚S ˚ iR/! L2.R�M I iT �M ˚S ˚ iR/ is Fredholm

with index equal to †C2C index.DC�/. In addition, there exists a canonical isomor-
phism det.D†�/� det.

L
C2C DC�/.

The next lemma is a slight refinement to Lemma 3.5.

Lemma 3.6 Suppose either that all C 2 C versions of DC� have trivial cokernel, or
that all have trivial kernel. Then there exists � � 1 with the following significance: If
r � �2 and R � � , then there are isomorphisms kernel.D��/� kernel.

L
C2C DC�/

and cokernel .D†�/� cokernel.
L

C2C DC�/ that are compatible with the determinant
line isomorphism of Lemma 3.5.

Note in particular that Lemma 3.6 is applicable in the case that fDC� D DC gC2C
and so when D†� D D† . In this case, all cokernels are trivial, and there exists
exactly one C 2 C where the kernel of DC is not trivial. In this case, the kernel is
1–dimensional and a nonzero element can be taken to be the generator at † of the
R action on M1.‚�; ‚C/ that is induced by the translations along the R factor of
R�M . The isomorphism takes this element to the element in the kernel of D† that
gives the generator at d† of the corresponding R action on M1.c�; cC/. The fact that
the respective R–action generators are mapped to each other follows from the fact that
the constructions are done in an R–equivariant fashion.

The final result is a corollary to Lemma 3.6 that concerns the R–invariant case. To
set the stage, suppose that ‚� D‚C and that each C 2 C is an R–invariant cylinder.
Assume that the instanton d† is independent of the R factor on R �M . This is
to say that d† D .A;  / is constant map to Conn.E/�C1.M IS/ with .A;  / the
pair that is constructed using the data ‚� D ‚C as instructed in Section 3 of [14].
Finally, assume that each C 2 C version of .�C�; �C�/ is R–invariant. In this case,
the operator D†� is also R–invariant, and it can be written as

(3-66) D†� D
@

@s
CL�;

where L� differs from what is written in (1-9) by a zero–th order endomorphism. The
operator L� is symmetric, and self-adjoint with domain L2

1
.M I iT �M ˚S ˚ iR/.

Corollary 3.7 There exists � � 1 such that if r � � , then the operator L� has trivial
kernel.

The proofs of Lemmas 3.5 and 3.6 are contained in Part 9.
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Part 9 To set the stage for the proofs, suppose that Q � 1 and suppose in what
follows that each C 2 C version of .�C�; �C�/ and each  2 „†� version †˙ of
f.v˙; �˙/ has C 3 –norm bounded by Q.

The operator D�� has a decomposition as in (3-11), this written as

.1�…�/D��fDD?��f
?.‚/C p�.�/;

t|.D� f/D p�0.f?/C���:
(3-67)

The fact that (6-6) and (6-7) of [14] still hold has the following implication: The analysis
that led to (3-12)–(3-13) can be repeated to obtain a constant, cQ > 1, such that

kD��
?f?k2 � cQkf

?
kH;

kp�.�/k2 � cQr3�
k�kK2

1
;

kp�0.f?/kL2 � cQr�1=2C3�
kf?kH;

(3-68)

when R� cQ and r � c2
Q

.

The next lemma says what is needed about �� . The constant R that appears in the
lemma is from Section 4.c of [14].

Lemma 3.8 Fix Q�1 and there exists � >1 with the following significance: Suppose
that each C 2 C version of .�C�; �C�/ and each  2„†˙ version of f.v˙; �˙/ has
C 3 –norm bounded by Q. For each such C 2 C not of the form R� with  an elliptic
Reeb orbit, there exist vector spaces V1C �L2.C IN ˝T 0;1C / and V0C �L2

1
.C IN /

such that

� L2 projection from VC 1 to kernel.DC�/ is surjective.

� L2
1

–orthogonal projection from VC 0 onto the subspace fu2L2
1
.C IN / WDC�u2

V1C g is an isomorphism.

� Let V0D
L

C2C VC 0 and V1D
L

C2C VC 1 . If r � �2 and if R� � , there exist
monomorphisms �1W V1! L2 and �0W V0!K2

1
such that

(a) The projection from �1.V1/ to the cokernel of �� is surjective
(b) The composition of �0 followed by the K2

1
–orthogonal projection to the

vector space f� 2 K2
1
W��� 2 �1.V1/g defines an isomorphism, �0� , that

obeys k�0��0�kK2
1
�

1
4
�R�1k�0kK2

1

(c) Let P W L2 ! L2 denote the L2 projection orthogonal to �1.V1/. Then
kP���kL2 � ��1k�kK2

1
when � is K2 orthogonal to f� 2 K2

1
W ��� 2

�1.V1/g.

This lemma is proved in Part 10. Accept it as true until then.
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The proof of Lemma 3.5 requires, in general, both V0 and V1 to be nontrivial. A
proof of Lemma 3.6 is obtained from the arguments below by taking either V1 D 0

and V0D
L

C2D kernel.DC�/ or else V0D 0 and V1D
L

C2C cokernel.DC�/ as the
case may be.

Proof of Lemma 3.5 The proof has three steps.

Step 1 Fix y 2 L. It follows by virtue of (3-5), (3-11) and (3-67) and (3-68) that a
given fD f?C t .�/ 2H obeys D†�fD y if and only if � obeys an equation that has
the schematic form

(3-69) ��� C e�.�/D t|.y/� p0�..D†�
?/�1.1�…�/y/;

where D?
†�

l? is defined to be D?
��
l?C r1=2.1�…�/.eq � l

?/; and where e� is the
analog of what is denoted by e in (3-16). This e� obeys the following analog of (3-17):

(3-70) ke�.�/kL2 � c0r�1=2C8�
k�kK2

1

It follows from (3-69) that kernel.D†/ is canonically isomorphic to the kernel of
�� C e� and that the cokernel of D† is canonically isomorphic to the cokernel of
��C e� .

Step 2 It follows from the isomorphisms just described that the operator D†� is
Fredholm if and only if �� C e� has finite dimensional kernel and cokernel. This
understood, it is sufficient to prove the following:

(3-71)

� The L2 projection of �1.V1/ to the cokernel of ��C e� is surjective.

� The K2
1

–orthogonal projection of �0.V0/ onto f� 2 K2
1
W .��C e�/� 2

�1.V1/g is an isomorphism.

To prove the first assertion, suppose that u 2 kernel..��C e�/|/ is L2 –orthogonal to
�1.V1/. It follows from Part (c) of the second bullet in Lemma 3.8 that there exists a
unique � 2K2

1
such that � is K2

1
–orthogonal to the space f� 2K2

1
W��� 2 �1.V1/g

and such that P���D u. This understood, it follows that

(3-72) hu;P���iL2 D kuk2L2 :

On the other hand the small size of e� implies that

hu;P���i � c0r�1=2C8�
k�kK2

1
kukL2

and this is compatible with (3-72) only if k�kK2
1
� c0

�1r1=2�8�kukL2 . This lower
bound is not consistent with what is said in Part (c) of the second bullet in Lemma 3.8.
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What follows next explains why the K2
1

–orthogonal projection maps �0.V0/ onto the
vector space f� 2K2

1
W .��Ce�/� 2�1.V1/g is an isomorphism. Suppose that � is K2

1�

orthogonal to �0.V0/ and is such that ��� C e�.�/ 2 �1.V1/. Part (c) of the second
bullet in Lemma 3.8 implies the following: There exists a unique � 2K2

1
such that �

is K2
1�

orthogonal to the vector space f� 2K2
1
W��� 2 �1.V1/g and P���D P��� .

Given the small size of e , it follows that k�kK2
1
� c0r�1=2C8�k�kK2

1
It then follows

that ��.� C�/ 2 �1.V1/ so there exists u 2 V0 such that �0�.u/D � C�. Given the
small size of �, this runs afoul of Part (b) of the second bullet of Lemma 3.8 unless
� D 0.

Step 3 The identification described in Step 1 between the respective kernels of D†�
and �� C e� and between their respective cokernels induces a canonical isomor-
phism between det.D†�/ and det.��C e�/. Meanwhile, the homomorphisms that
are described in (3-71) supply a canonical isomorphism between det.��C e�/ and
ƒtop.V0/˝ƒ

top.V1/. The composition of these two isomorphisms gives the asserted
isomorphisms between det.D†�/ and ƒtop.V0/˝ƒ

top.V1/.

Proof of Lemma 3.6 Suppose first that each C 2 C version of DC� has trivial
cokernel. In this case the first bullet in (3-71) implies that the cokernel of D†� is
trivial and the second bullet gives the lemma’s asserted isomorphism between V0 DL

C2C kernel.DC�/ and kernel of D†� . The other possibility has V0 D 0 and V1 DL
C2C cokernel.DC�/. In this case, the second bullet in (3-71) implies that D†� has

trivial kernel and that the projection of �1 to the cokernel of ��C e� is injective. This
and the first bullet of (3-71) imply that the composition of �1 followed by projection
defines an isomorphism from V1 to the cokernel of D†� . The latter is the isomorphism
asserted by Lemma 3.6.

Part 10 This part of the proof contains:

Proof of Lemma 3.8 There are six steps to the proof.

Step 1 Given that (2-78) holds for DC� using .�C�; �C�/ in lieu of .�C ; �C /, and
using any  2„†˙ version of .v˙�; �˙�/ in lieu of  ’s version of .�; �/ has the
following consequence: What is done in Part 5 of Section 3.a can be repeated to obtain
a description of � that is, but for two changes, given by the relevant versions of (3-20),
(3-21), or by (3-22) and (3-23), or by their  2„†C counterparts. The first change
replaces .�C ; �C / in (3-20) with .�C�; �C�/. The second change replaces .�; �/ in
(3-22) with .v˙�; �˙�/.
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Step 2 Let C denote a component of † that is not an R–invariant cylinder; let 
denote an elliptic Reeb orbit in either „†� or „†C , and suppose that E �C is an end
that sits in U� or UC as the case may be. Since .�C ; �C / and .�C�; �C�/ agree here,
there exists c0 � 1 such that any element u 2 kernel.DC�/ and any u 2 kernel.DC�

|/

must obey

(3-73) jujC jruj � c0e�.jw j�2R/=c0kukL2

on E . Suppose next that  is a hyperbolic Reeb orbit in either „†� or „†C , and
that E is an end of C that lies in U� or UC as the case may be. In this case, any u

from either the kernel of DC� or its cokernel obeys

(3-74) jujC jruj � cQ.1C e.jw j�T 0�2R/=c0/�1
kukL2

on E . Here, cQ depends on the bound, Q, for the C 2 norms of vc� and �c� .
Meanwhile, T 0 is such that each  2 „†� version of f.��; ��/ is constant for
w < �T 0 , and each  2„†C version of f.�C; �C/ is constant for w > T 0 .

Step 3 This step constitutes a digression to state and then prove a key lemma.

Lemma 3.9 Fix Q� 1. There exists � � 1 with the following significance: Suppose
that C � C is not of the form R �  with  and elliptic Reeb orbit. Assume that
.�c�; �c�/ and each  2 „†˙ version of .�˙�;�˙�/ is as described in Part 7
and has C 3 norm bounded by Q. Then there exists a finite dimensional subspace
VC 1 �L2.C IN ˝T 0;1C / with the following properties:

� L2 –orthogonal projection maps V1C onto kernel .DC�
|/.

� Let VC 0 D fu 2 L2
1
.C IN / W DC�u 2 VC 1g. If u 2 L2

1.C IN / and if u is
L2

1
–orthogonal to VC 1 , then kDC�ukL2 � ��1kukL2

1
.

� If u 2 VC 1 or if u 2 VC 0 , then (3-73) and (3-74) hold on the ends of C .

Proof of Lemma 3.9 In what follows, cQ in each appearance denotes a constant that
depends only on C and Q, but not otherwise on the particulars of .�c�; �c�/. As with
c0 , the value of cQ can be assumed to increase between subsequent appearances.

Associate to each elliptic Reeb orbit in „†� the smallest of the absolute values of the
eigenvalues for the operator in (1-2) when acting on functions from R to C that are
2�n periodic for n 2 f1; : : : ;m�g. Associate to each elliptic Reeb orbit in „†C the
analogous positive number. If  2„†� is hyperbolic, associate instead the smallest of
the absolute values of the eigenvalues of the version of (1-2) that is defined using the
pair lims!�1.v��; ���/js in lieu of  ’s version of .�; �/. Associate the analogous
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positive number to each hyperbolic  in „†C ; here, the version of (1-2) is defined
using the pair that is defined by the s!1 limit of .�C�; �C�/js . Each Reeb orbit
now has an associated positive number. Set "0 to equal 1/100 times the smallest of
these positive numbers.

Fix for the moment " 2 .0; "0/ and let U � L2
1
.C IN / denote the set of elements in

L2
1
.C IN / with unit L2 norm and with the property kDC�ukL2 � ". Note that the

Bochner–Weitzenboch formula for the operator DC� implies that kukL2
1
� cQ when

u 2 U .

To say more about the set U , let  denote an elliptic Reeb orbit in either „†� or
„†C and suppose that C \U� ¤∅. Let y� denote the function on C with support
on C \U� or C \UC as the case may be, where it equals �..2R� jw j/=R/. As

(3-75) " > ky�DC�ukL2 � kDC�.y�u/kL2 � c0R�1
kukL2 � "0ky�ukL2 � c0R�1;

it follows that

(3-76)
Z

C

y�juj2 � c0."CR�1/2:

If  2„
˙

is a hyperbolic orbit, then (3-76) holds if y� is defined to be the function
on C with support in C \U˙ where it equals �..T 0C 2R� jw j/=R/.

The existence of an upper bound for the L2
1

norm of any u2U implies that U is weakly
compact in the L2

1
topology. This plus (3-76) implies an additional L2 compactness

property whose description follows. To start, let w denote the function on C that is
obtained by summing all of the  2„†� and  2„†C versions of what is denoted
by y� in (3-76). If u 2 U , then the function .1�w/u has compact support and is such
that

ku� .1�w/ukL2 � cQ."CR�1/

kDC�..1�w/u/kL2 � cQ."CR�1/

k.1�w/ukL2
1
� CQ:

(3-77)

As a consequence, the image of U under the map u! .1�w/u maps U in a bounded
and injective fashion to a set of L2

1
sections of N with compact support where

jsj � .T 0 C 2R/. This image of U under this map is weakly compact in L2
1

and,
by virtue of the Relich lemma, strongly compact in L2 . In particular, there exists a
finite set, yU" �L2

1
.C IN /, with the following property: If u 2 U , then .1�w/u has

L2 –norm less than " from an element in yU" . It then follows from (3-77) that any
u 2 U has L2 distance less than cQ" from an element in yU" . This then implies that
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there exists a finite set, U" � U such that any u 2 U has L2 distance less than ck"

from an element in .1�w/U" .

This last observation implies the following stronger assertion: Any u 2 U has L2
1

distance less than cQ."CR�1/ from some element in .1�w/U" . To see why, first
use the Bochner–Weitzenboch formula for DC� to see that

(3-78) kr.u�u0/kL2 � cQ.kDC�ukL2 CkDC�u
0
kL2 Cku�u0kL2/

for any given pair u and u0 from L2
1
.C IN /; and then use (3-77). Given that

"CR�1 < cQ
�1 , the preceding assertion about the L2

1
distance between points in U

and .1�w/U" has the following corollary:

(3-79)
If u 2L2

1
.C IN / is L2

1
orthogonal to all elements in .1�w/U" , then

kDC�ukL2 � "kukL2
1

.

With the preceding understood, define VC 1 �L2.C IN ˝T 0;1C / to equal the span of
the set fDC�uC x W u 2 .1�w/U" and x 2 kernel.D|

C�
/g. The assertion in Lemma

3.9’s first bullet holds by construction. It follows from (3-79) that a Q–dependent
choice of " can be made so that the assertion of Lemma 3.9’s second bullet also holds
with � depending only on Q. The third bullet of the lemma concerns points in C where
�C� D VC and �C� D �C and so where DC� D DC . As a consequence, the proof
that these assertions hold for w 2 kernel.D|

C�
/ is now standard; see Hofer, Wysocki

and Zehnder [5] or Lemma 2.6 and Section 3 in Hutchings and Taubes [8]. Meanwhile,
the assertion also holds for the elements DC�..1�w/u/ with u 2 U" because the
latter vanishes on the relevant portions of C . The assertion made by the third bullet
for u 2 V0C follows using the arguments used in [5] or those used in Sections 2 and 3
of [8] because an element u 2 V0C obeys DcuD 0 on a neighborhood of the relevant
portions of C .

Step 4 But for one modification, the map �0 is constructed by mimicking what is
done in Step 1 of the proof of Lemma 2.7. To say more, fix C 2 C that is not of the form
R�  with  an elliptic Reeb orbit. Suppose that � 2 V0C . Write the components of
�0.�/ as ..�0C 0/C 02C ; .�0�/2„†C ; .�0C/2„†C/. Set �0C 0 D 0 unless C 0 D C .
Meanwhile, set �0C D†E2EC

.1��0E�/�, where EC again denotes the set of ends of
C , and where �0E� is defined as follows: If  is an elliptic Reeb orbit in either „†� or
„†C , then �0E� has support on E where it equals �..REC3:5R�jw j/=R/. If  is a
hyperbolic Reeb orbit, then �0E� has support on where it equals �..T 0C2:5R�jw j/=R/.
Meanwhile, �0� for  2„†� and �0C for  2„†C are determined by �0C using
(5-12) in [14].

The map �1 is defined in the same manner.
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Step 5 With the maps �0 and �1 so defined, it remains now to establish the assertions
that are made by Lemma 3.8’s third bullet. This is done with the help of the next
lemma. This upcoming lemma reintroduces the L2 –orthogonal projection P onto
the L2 –orthogonal complement of �1.V1/. The constant R in this lemma is from
Section 4.c in [14].

Lemma 3.10 Given Q � 1 and given the assumptions made by Lemma 3.8, there
exists � > 1 such that if r � �2 and R� � , then the following is true:
� Both �0 and �1 are nearly isometric in the sense that

(a) If u 2 V0 , then .1� �R�1/kukL2
1
� k�0.u/kK2

1
� .1C �R/kukL2

1
.

(b) If u 2 V1 , then .1� �R�1/kukL2 � k�0.u/kL2 � .1C �R/kukL2 .

� Let �?� denote the map from the K2
1

–orthogonal complement of �0.V0/ to the
L2 –orthogonal complement of �1.V1/ that is by restricting P�� .
(a) The operator �?� is an isomorphism that obeys k�?� �kL2 � ��1k�kK2

1
.

(b) If u 2 V0 , then kP���0.u/kL2 � �R�1kukL2
1

.

Proof of Lemma 3.10 The arguments for Lemma 3.10 are essentially identical to
those used to prove Lemma 2.7. Here is the only substantive change: Use the bounds
provided by Lemma 3.9 on the elements in V0 in V1 in lieu of those asserted by (2-84)
and (2-85). One perhaps nonobvious, but essentially cosmetic change must also be
made: Suppose that  is a hyperbolic Reeb orbit in either „†� or „†C . Let E
denote the end of † that lies in U� or UC as the case may be. The function �E
should be replaced by the function �E� which is defined so as to have support on E ,
and on E it is set equal to �..T 0C 2R� jw j/=R/.

Step 6 To see that the projection of �1.V1/ to the cokernel of �� is surjective, fix
� 2 L2 with nontrivial projection to the cokernel of �� . According to what is said by
Lemma 3.10, there exists � 2K2

1
that is K2

1
–orthogonal to �0.V0/ and is such that

(3-80) ��� D �� �
0

with �0 2 �1.V1/. So �0 2 �1.V1/ and � project to the same element in cokernel.��/.

Now consider the assertion made by Part (b) of the third bullet in Lemma 3.8. To this
end, suppose that � 2 K2

1
is mapped by �� to �1.V1/. Suppose in addition that �

is K2
1

–orthogonal to �0.V0/. Then � is in the domain of �?� , and since �?� �D 0,
Lemma 3.8 requires that �D 0. This implies that the K2

1
orthogonal projection maps

�0.V0/ onto the space f� 2K2
1
W��� 2 �1.V1/g. To complete the proof of Part (b),

suppose that u 2 V0 .

According to Lemma 3.10, there exists a unique � in the K2
1

–orthogonal complement
of �0.V0/ such that P���D P���0.u/. This implies that x D �0.u/C� is in the

Geometry & Topology, Volume 14 (2010)



2802 Clifford Henry Taubes

space f� 2K2
1
W��� 2 �1.V1/g. Lemma 3.10 asserts that k�kK2

1
� c0R�1k�0.u/kK2

1

Since �0�.u/ is no further from u than x , it follows that k�0�.u/ � �0.u/kK2
1
�

c0R�1k�0.u/kK2
1

also.

To prove Part (c), suppose that � is K2
1

orthogonal to f� 2K2
1
W��� 2�1.V1/g, and write

�D�0.u/C�
? with �? being K2

1
orthogonal to �0.V0/. Part (b) of the lemma requires

that k�0.u/kK2
1
� c0R�1k�kK2

1
This understood, k�?kK2

1
�

1
2
k�kK2

1
when R� c0 .

Meanwhile, what is said by Lemma 3.10 finds that k�?kK2
1
� c0k�

?�?kL2 and, what
with the small size of u, this is less than c0.kP��kL2 CR�1k�kK2

1
/. Putting all of

these inequalities together gives what is claimed by Part (c) of the third bullet.

Part 11 To start, take T > 4R and T 0 � T . Suppose that C 2 C is not of the
form R �  with  an elliptic Reeb orbit. Part 4 describes a Fredholm operator
DC IT;T , and a 1–parameter family of first order, Fredholm differential operators from
L2

1
.C IN / to L2.C IN / that begins with DC and ends with DC IT;T ;. Each member

of this family differs from DC by an R–linear, compactly supported endomorphism.
Parametrize this family by Œ0; 1� and use DC� to denote the � 2 Œ0; 1� member of the
family. Given that r and R are sufficiently large, then each � 2 Œ0; 1� version of the set
fDC�gC2C leads to a Fredholm operator, D†� , mapping L2

1
.R�M I iT �M˚S˚iR/

to L2.R�M I iT �M ˚ S˚ iR/. This operator is described in Part 7. Meanwhile,
Lemma 3.5 describes a canonical isomorphism

(3-81) det.D†�/� det.
L

C2C DC�/:

Here, as in Lemma 3.5, the notation is such that when C D R�  with associated
integer m> 1, then DC� is independent of the chosen parameter in Œ0; 1�; and refers
not to DC , but to the latter’s pullback to the m–fold covering cylinder. Use D†IT;T ,
to denote the end-member, D†�D1 , of this family. Given (3-81) and (3-65), there is a
canonical isomorphism

(3-82) Det.D†IT;T 0/�ƒtop.
L

n�R/˝ det.
L

C2C DC ˙/˝ƒ
top.
L

nCR/:

An orientation for the line det.D†IT;T 0/ determines an orientation for det.D†/ since
the two operators in question are the end points of a path of Fredholm operators.

What is written on the right hand side of (3-82) is a tensor product of three lines. What
follows here describes a decomposition of D†IT;T 0 , in terms of three operators on
C1.R�M I iT �M ˚S˚ iR/, with each accounting for one of the lines on the right
hand side of (3-82). These operators are denoted as D� , D†˙ , and DC .

What follows provides a quick definition of these operators. Given x 2 R, use �x

to denote the action on C1.R�M I iT �M ˚S˚ iR/ of pullback via the map that
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sends .s; � / to .s�x; � /. Thus, .�xf/js D fjs�x . This understood, set

D� D lim
T 0!1

�T 0D†IT;T 0��T 0 ;

D†˙ D lim
T 0!1

D†IT;T 0 ;

DC D lim
T 0!1

��T 0D†IT;T 0�T 0 :

(3-83)

There is another way to define these operators. Start with D� . Define †� to be the
collection fR�  g.;m/2‚� where any R�  has weight equal to the integer m that
is associated to  as a member of ‚� . Let c� denote the solution to (1-8) that is
constructed from ‚� via ˆr . Thus, c� D lims!�1 d† . Introduce the operator

(3-84) D†� D
@

@s
CLc� ;

where Lc is the operator that is depicted in (1-9). To continue, let  denote a hyperbolic
Reeb orbit in „†� and let C DR�  . Associated to C is the operator

(3-85) DC D
1

2

�
@

@w
C i

@

@t
C

1

2
k

�
�C i"eikt

x�;

where k is the rotation number of  . Define DC� to be the operator D0� that is
depicted in (3-56). Use the collection fDC�gC2C as instructed in Part 7 to define the
operator D†�� . The latter is D� .

There is an analogous definition of DC , this using the data from ‚C and the operator
D0C that is depicted in (3-57). Meanwhile, the operator D†˙ is obtained from D†
using the constructions in Part 7 with any given C 2 C version of DC� set equal to the
operator DC ˙ that is described in Part 5.

Lemma 3.11 There exists �>1 such that if r��2 and R�� , then the following is true:
Each of the operators D� , DC and D†˙ maps the space L2

1
.R�M I iT �M˚S˚iR/

to L2.R�M I iT �M ˚ S ˚ iR/ as a Fredholm operator. In this regard, the opera-
tor D� has index �n� and trivial kernel; the operator DC hast index nC and trivial
cokernel; and the operator D†˙ has index 1�n�CnC . Moreover, there are canonical
isomorphisms

det.D�/�ƒtop.
L

n�
R/;

det.DC/�ƒtop.
L

nC
R/;

det.D†0/� det.
L

C2C DC ˙/;

det.D†IT;T 0/� det.D�/˝ det.D†˙/˝ det.DC/;

with the following property: The isomorphism in (3-82) is identical to that obtained by
composing this last isomorphism with the preceding three.
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Proof of Lemma 3.11 The assertions that D� , DC , and D†˙ are Fredholm follow
from Lemma 3.5. The assertion about the index, kernel and cokernel of D� , DC ,
follow from Lemma 3.6. This lemma supplies the canonical isomorphism betweenL

n�R and the kernel of D� . Here, each copy of R corresponds to the kernel of a
copy of (3-58)’s operator D� ; one such copy for each hyperbolic Reeb orbit in „†�
with even rotation number. Likewise, Lemma 3.6 supplies the canonical isomorphism
between its cokernel and

L
nC

R. In this case, each copy of R is associated to a
hyperbolic Reeb orbit in „†C with trivial rotation number. The assertion about the
index of D†˙ can be proved by using Lemma 3.4 given that the T 0 > 8R� version of
the operator D†;T 0;T is very nearly s–invariant where jsj 2 Œ3

4
T 0;T 0�.

The assertion about det.D†IT;T 0/ also follows by taking T 0 large and invoking Lemma
3.4. The compatibility of the isomorphisms in Lemma 3.11 and that in (3-82) is a
consequence of two facts: First, both isomorphisms invoke Lemma 3.4. Second, the
isomorphisms that appear in Lemma 3.4 are defined using cut-off functions that have
no substantive affect on the various constructions that are used in Parts 9 and 10. The
details of justification are straightforward and omitted.

Part 12 This part focuses on the operator D†˙ . To start, suppose that C 2 C is not of
the form R� where  is an elliptic Reeb orbit. As the corresponding operator DC ˙

is C–linear at large jsj on C , it follows that there is a deformation of DC ˙ through
Fredholm operators to a C–linear operator. In particular, choose such a deformation,
parametrized by Œ0; 1�, whose � 2 Œ0; 1� element is defined by replacing �C ˙ in (3-63)
with .1� �/�C ˙ . Let DC ˙� denote the resulting � 2 Œ0; 1� operator.

The constructions in Part 7 can now be applied using each � 2 Œ0; 1� version of the
fDC� DDC ˙�gC2C to define a 1–parameter family fD†� DD†˙�g�2Œ0;1� of Fred-
holm operators mapping L2

1
.R�M I iT �M˚S˚iR/ to L2.R�M I iT �M˚S˚ iR/.

There is of course, a canonical isomorphism between det.D†˙/ and any � 2 Œ0; 1�
version det.D†˙� /. Meanwhile, Lemma 3.5 provides the canonical isomorphisms

(3-86) det.D†˙� /� det.
L

C2C DC ˙� /:

As noted at the end of Part 5, the line det.
L

C2C DC ˙1/ has its positive orientation
because each DC ˙1 is complex. This orientation induces a canonical orientation on
det.D†˙1/.

Now suppose †0 is a second element in M1.‚�; ‚C/. There is a corresponding opera-
tor D†0˙1 and the two operators D†˙1 and D†0˙1 have the same s!�1 limit and
they have the same s!1 limit. Since they have the same index, there is a 1–parameter
family of first order, Fredholm operators that maps L2

1
.R�M I iT �M ˚S˚ iR/ to
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L2.R �M I iT �M ˚ S˚ iR/ with one end member D†˙1 and the other D†0˙1 .
Such a homotopy can be used to compare the canonical orientations of det.D†˙1/

with that for det.D†0˙1/.

Lemma 3.12 Let † and †0 denote two elements in M1.‚�; ‚C/. Then the canoni-
cal orientations of det.D†˙1/ and det.D†0˙1/ agree.

This lemma is proved in the upcoming Part 13.

Assume for the moment that Lemma 3.12 is true. Let † and †0 denote two elements
in M1.‚�; ‚C/. Their respective components are oriented by respective orientations
for the † and †0 versions of (3-52). The latter are oriented by the respective versions
of (3-65). In this regard, both versions of the line det.

L
C2C DC ˙/ are oriented by the

canonical orientations for the respective † and †0 versions of det.
L

C2C DC ˙1/. As
noted at the end of Part 6, the respective orientations of the † and †0 components of
M1.‚�; ‚C/ define the same section, oech , of the orientation sheaf ƒ.‚�; ‚C/, this
coming from a system of coherent orientations. These orientations also serve to orient
the components of the instantons d† and d† , via the D†� DD† versions of Lemma
3.5. It follows from Lemmas 3.12 and 3.11 that these orientations of the instanton
moduli spaces define one and the same section of the orientation sheaf ƒ.c�; cC/. The
latter is denoted by o.c�; cC/.

Part 13 This part of the proof contains:

Proof of Lemma 3.12 The vector bundle T �M ˚ R can be viewed as a rank 2,
complex vector bundle as follows: First, view T �M˚R as T �.R�M / by identifying
the R factor in the former with the span of ds in the latter. Then, use the almost
complex structure J to view T �.R�M / as a complex vector bundle. As S is given
as a complex vector bundle, so the bundle iT �M ˚ S ˚ iR can be viewed as a
complex vector bundle. The principle symbol of any D. � / is C–linear with respect
to this complex vector bundle structure. Moreover, the operator D†˙1 is very nearly
C–linear. To make this precise, introduce the operator D†˙˙ that is defined so as to
take a section f of iT �M ˚S˚ iR to

(3-87) D†˙˙fD
1

2
.D†˙1f� iD†˙1.i f//:

Here, i D
p
�1. By construction, the operator D†00 is C–linear and it differs from

D†01 by a zero–th order endomorphism.

Lemma 3.13 There exists �>1 such that when r ��2 and R�� , the operator D†˙˙

is Fredholm from L2
1
.R�M I iT �M ˚ S˚ iR/ to L2.R�M I iT �M ˚ S˚ iR/.

Moreover, it is homotopic through first order, Fredholm differential operators to D†˙1 .
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This lemma is proved momentarily.

To continue, note that as D†˙˙ is a C–linear operator, the line det.D†˙˙/ has a
canonical positive orientation. The latter induces via Lemma 3.13’s homotopy an
orientation for the line det.D†˙1/.

Lemma 3.14 There exists � >1 such that when r ��2 and R�� , then the orientation
on det.D†˙1/ that is induced from the positive orientation of det.D†˙˙/ is the same
as that induced from the positive orientation on det.

L
C2C DC ˙1/ via Lemma 3.5.

This lemma is also proved momentarily.

To complete the proof of Lemma 3.12, introduce the †0 version of (3-87), this denoted
by D†0˙˙ . The latter is also C–linear. Of course, the conclusions of Lemmas 3.13
and 3.14 apply to D†0˙˙ and D†0˙1 also. Meanwhile, D†˙˙ and D†0˙˙ are
C–linear Fredholm operators with the same domain and range Hilbert spaces, with
the same index and with the same principle symbols. In addition, their respective
s!�1 limits agree as do their respective s!1 limits. As a consequence, they are
homotopic through such C–linear, first order, Fredholm operators. This being the case,
it follows from Lemma 3.14 that the respective positive orientations of det.D†˙˙/

and det.D†0˙˙/ are identified by any such homotopy. This fact with Lemma 3.14
implies Lemma 3.12.

Proofs of Lemmas 3.13 and 3.14 Write D†˙1DD�˙1Cr1=2eq �. � /. The operator
D�˙1 has its version of (3-67), (3-68) and Lemma 3.8 with D�� D D�˙1 , with
p� D p˙1 and p0� D p0

˙1
, and with �� D�˙1 . It is important to note with regard to

Lemma 3.8 that each C 2 C version of V0C and V1C can be taken to be a complex
vector space. As noted, this is because each version of DC ˙1 is C–linear. By the way,
no generality lost by assuming that at most one of V0C and V1C is nontrivial for any
given C . As done in Lemma 3.8, set V0 D

L
C2C V0C and set V1 D

L
C2C V1C .

Now fix � 2 Œ0; 1� so as to consider

(3-88) yDD

�
1�

1

2
�

�
D�˙1�

1

2
� iD�˙1.i � /DD�˙1C �.D�˙˙�D�˙1/:

Thus, the � D 0 version is D�˙1 and the � D 1 version is D�˙˙ . The (3-67) analog
for D is written schematically as

.1�…�/DfD .D�˙1/
?f?C p�.�/C rf?;

t|.D� f/D p�0.f?/C�˙1� C r0�:
(3-89)
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By virtue of (3-68), the terms p� and p�0 obey

(3-90) kp�.�/k2 � c0r3�
k�k‖2

1
and kp�0.f?/kL2 � c0r�1=2C3�

kf?kH:

Meanwhile, what are written as r and r0 obey

(3-91) krf?k2 � c0kf
?
k2 and kr0�k2 � c0r�1=2C8�

k�k2:

With regard to these last bounds, the r bound follows from the fact that D†˙˙�D†˙1

is a zero–th order operator. The r0 bound is a consequence of the fact that �01 is
nearly C–linear; this because each C 2 C and  2„†˙ version of (2-78) for D†˙1

has �� D 0.

It follows from the bound on r and the first bullet in (3-68) that D?
†˙1
Cr is invertible as

a map from H?
�

to L?
�

with inverse whose norm is bounded by c0 . As a consequence,
Step 1 of the proof of Lemma 3.5 can be repeated with only notational changes to prove
the following two assertions: The kernel of yD is canonically isomorphic to the kernel
of �˙1C e�C r0 ; and the cokernel of yD is canonically isomorphic to the cokernel
of �˙1C e�C r0 . Here, e� obeys the same bound as does e� D e˙1 in (3-70). As a
consequence, there is a canonical isomorphism

(3-92) det.D/� det.�˙1C e�C r0/:

Given the small norm for e� and for r0 when r is large, Step 2 in the proof of Lemma
3.5 can be repeated with only notational changes to see that yD is Fredholm when r and
R are large. This gives Lemma 3.13. By the same token, Step 3 in the proof of Lemma
3.5 can be repeated to obtain a canonical isomorphism between det.�˙1Ce�Cr0/ and
.ƒtopV0/˝ .ƒ

topV1/
� . This with (3-92) implies what is asserted by Lemma 3.14.

Part 14 This part completes the proof of the second bullet in Theorem 1.2. There are
two claims to address. The first is the claim that o.c�; cC/ gives the same orientation on
the ‰r image as does the pushforward of oech . This follows directly from Lemma 3.6.

The second issue is the claim the collection fo.c�; cC/gc�;cC2image.ˆr / has the form
fo.c�; cC/ D o.c�/o.cC/�gc�;cC2image.ˆr / with any given o.c/ an element in ƒ.c/.
This claim is verified in the three steps that follow.

Step 1 The Z=2Z module ƒ.c/ has the form ƒ.c; c0/ where c0 can be any fixed,
element in Conn.E/�C1.M IS/ whose version of (1-9) has trivial kernel. Choose
c0 D .A0;  0/ with  0 D .˛0; ˇ0 D 0/. Write T �M ˚R as T �.R�M / and use J

to view the latter as the underlying real bundle of a complex C2 –bundle, V !M .
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This done, view Lc0
as symmetric operator, R–linear operator on C1.M IV ˚S/.

Mimic what is done in (3-87) to define the C–linear operator

(3-93) L0˙ D
1

2

�
Lc0
� iLc0

.i. � //
�
:

This operator is symmetric and C–linear. Moreover, it differs from L0 by a zero–th
order endomorphism of V . If .A0; ˛0/ is suitably generic, then L0 has trivial kernel.
Assume that such is the case.

Now introduce Dc0
D @=@sCLc0

and D0˙ D @=@sCL0˙ . View both as operators
that map L2

1
.R�M IV ˚S/ to L2.R�M IV ˚S/. Both are Fredholm operators.

Define

(3-94) D0� D .1��/D0C�D0˙:

This operator is identical to Dc0
where s� 1 and it is identical to D0˙ where s��1.

The operator D0� is also a Fredholm operator. This understood, fix once and for all an
orientation for its determinant line.

For T � 0, define D0�T by replacing � in (3-95) by �.. � /�T /.

Step 2 Let c2Conn.E/�C1.M IS/ denote a solution to (1-8) that gives an element
in the image of ˆr . Choose a smooth map dW R! Conn.E/� C1.M IS/ that is
equal to c for s � �1 and equal to c0 for s � 1. Let Dd denote the corresponding
version of (1-12). An element in ƒ.c; c0/ is specified by an orientation of det.Dd/.

To obtain such an orientation, fix T � 1 and define the operator Dd;T as follows: For
�1� s � 1, this operator is Dd . For s > 1 where Dd DDc0

, write

(3-95) Dd;T D �2Dc0
C .1��2/D0�T

and where s < �1 where Dd agrees with Dc D @=@sCLc , set

(3-96) Dd;T D .1���2/DcC��2..1���T /D�C��T Dc/

where D is defined as in Part 11 using c for what is denoted there by c� . Note that
the latter has the form as depicted in (3-66).

Denote by Dd˙ the operator that is defined as follows: For �1� s � 1, it is the same
as Dd˙ . For s < �1, it is

(3-97) .1���2/DcC��2..1���T /D�C��T Dc/:

For s > 1, the operator Dd˙ is

(3-98) Dd˙ D ��2Dc0
C .1���2/D0˙:

The operator Dd˙ is obtained by taking T !1 in the definition of Dd;T .
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Step 3 It follows from Lemma 3.4 that there is a canonical isomorphism

(3-99) det.Dı/D det..1��/D�C�Dc/˝ det.Dd˙/˝ det.D0�/:

An orientation for det.D0�/ has already been selected. As will now be explained,
the line det.Dd˙/ has a canonical orientation. Indeed, such is the case because it is
homotopic through a path of Fredholm operators to one that is C–linear. A homotopy
of this sort exists because Dd˙ was constructed so as to be C–linear where jsj � 1.
Granted what was just said, it follows that det.Dd/ is oriented by a choosing an
orientation for the determinant line bundle of .1 � �/D� C �Dc . It follows from
Lemmas 3.5 and 3.6 that an orientation for the latter is obtained from an orientation of
det.D�/.

Write c’s image in Mr as ˆr .‚/. Note that the first bullet of Lemma 3.11 has the
following consequence: The line det.D�/ is oriented by the following data: First, an
orientation for the kernel of the various versions of the operator D0� in (3-56) that are
associated to the hyperbolic Reeb orbits with even rotation number that appear in ‚.

Second, an ordering of this same set of Reeb orbits.

Given what just been said, the claim

(3-100) fo.c�; cC/gc�;cC2image.ˆr / D fo.c�/o.cC/
�
gc�;cC2image.ˆr /

follows jointly from (3-99) and the final two assertions of Lemma 3.11.

Index to the notation

a: the contact 1–form Part 1 of Section 1.a
K�1: the kernel of a, oriented by �da Part 1 of Section 1.a
c1.K/: the first Chern class of K Part 1 of Section 1.a
v: the Reeb vector field Part 1 of Section 1.a
Reeb orbit: a closed integral curve of v, typically
denoted by 

Part 1 of Section 1.a

�: a class in H1.M IZ/ Part 1 of Section 1.a
‚: a finite set of pairs .;m/ with  a Reeb
orbit and m a positive integer

Part 1 of Section 1.a

Z: a set of ‚’s as above satisfying particular
constraints

Part 1 of Section 1.a

` : when  is a Reeb orbit, the integral of a

along 
Part 1 of Section 1.a
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ZL: a subset of Z with a length bound given
by L on the Reeb orbits.

Part 1 of Section 1.a

.�; �/ defined for a given Reeb orbit Equation (1-1)
L: a differential operator associated to a Reeb
orbit

Equation (1-2)

elliptic, hyperbolic Step 2 of Part 2 in Section 1.a
rotation number R: the rotation number for an
elliptic Reeb orbit

Step 2 of Part 2 in Section 1.a

Conley–Zehnder index Step 3 of Part 2 in Section 1.a
I.‚�; ‚C;Z/ Equation (1-4)
degech.‚/ Step 6 of Part 2 in Section 1.a
Cm: the vortex moduli space Step 1 of Part 3 in Section 1.a
the vortex equations Equation (1-5)
h Equation (1-6)
C.;m/ Step 1 of Part 3 in Section 1.a
nondegenerate map from S1 to Cm Step 2 of Part 3 in Section 1.a
C‚, C‚� Step 2 of Part 3 of Section 1.a
symmetric vortex Step 3 of Part 3 in Section 1.a
R Step 3 of Part 3 of Section 1.a
degC.c/ Step 3 of Part 3 of Section 1.a
the Riemannian metric Part 4 of Section 1.a
S: the bundle of spinors for a SpinC–structure Part 4 of Section 1.a
Conn.E/: the Hermitian connections on E Part 4 of Section 1.a
�: a chosen 1–form with bounded derivatives
of all orders

Part 4 of Section 1.a

AK : a chosen Hermitian connection on K�1 Part 4 of Section 1.a
BA: the metric Hodge dual of the curvature of
a connection A

Part 4 of Section 1.a

 : a section of S Part 4 of Section 1.a
DA: the Dirac operator Part 4 of Section 1.a
 |� Part 4 of Section 1.a
cl. � /: the Clifford multiplication map Part 4 of Section 1.a
Mr : the space of equivalence classes of solu-
tions to (1-8)

Part 4 of Section 1.a

Lc Equation (1-9)
nondegenerate solution to (1-8) Part 4 of Section 1.a
degSW.c/ Part 4 of Section 1.a
CZ� the paragraph prior to Theorem

1.1 in Section 1.a
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Ja: a certain set of almost complex structures Part 1 of Section 1.b
Zech: a particular subset of Z Part 1 of Section 1.b
ZL

ech: a particular subset of Zech Part 1 of Section 1.b
M1.‚�; ‚C/ Part 1 of Section 1.b
oech Part 2 of Section 1.b
DC Equation (1-10)
.�C ; �C / Part 2 of Section 1.b
instanton Part 3 of Section 1.b
Dd Equation (1-12)
H in Section 2 Step 4 of Section 2.a, Step 1 of

Section 3.b in [14]
H in Section 3 Part 2 of Section 3.a, Part 1 of

Section 6.a in [14]
k � kH in Section 2 Step 4 of Section 2.a, (3-7)

in [14]
k � kH in Section 3 Equation (1-13), (6-2) in [14]
nondegenerate instanton Part 3 of Section 1.b
M1.c�; cC/ Part 4 of Section 1.b
P.c�; cC/ Part 5 of Section 1.b
orientation sheaf in the Seiberg–Witten context Part 5 of Section 1.b
orientation sheaf in the embedded contact ho-
mology context

Section 3.b

ƒ.c�; cC/ Part 5 of Section 1.b
ƒ.c/ Part 5 of Section 1.b
Mr� Part 6 of Section 1.b
coherent orientations in the Seiberg–Witten con-
text

Part 6 of Section 1.b

coherent system of orientations in the embedded
contact homology context

Section 3.b

�: a cut-off function chosen for eternity Section 1.c
c0: a constant that is greater than 1 and is in-
dependent of what ever relevant data is under
consideration. The precise value of c0 can in-
crease between subsequent appearances
.AJ;  J/ Section 2.a, Section 3.a of [14]
.bJ; �J; �J/ Section 2.a, Lemma 3.10 of [14]
� Section 2.a, Lemma 3.10 of [14]
b.�/ Section 2.a, Lemma 3.10 of [14]
c‚J

, .AJ;  J/ Section 2.a
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v Equation (2-1), Section 3.c
of [14]

b1 � b2 Equation (2-2)
U Step 2 of Section 2.a, Step 1 in

Section 3.a of [14]
V0, V1 Step 2 of Section 2.a, Step 3 in

Section 3.b of [14]
� Step 2 of Section 2.a, Step 2 of

Section 3.a of [14]
p;0 Step 2 of Section 2.a, Step 3 in

Section 3b of [14]
.b�; ��/ Step 2 of Section 2.a
.A�;  �/ Step 2 of Section 2.a
L� Step 2 of Section 2.a
#c Equation (2-4), Equation (2-6)

of [14]
…0, …� in the context of Equation (1-1) Step 4 of Section 2.a, Step 4 of

Section 3.b in [14]
L in Section 2 Step 4 of Section 2.a, Step 1 of

Section 3.b in [14]
L in Section 3 Part 2 of Section 3.a, Part 1 of

Section 6.a in [14]
L? Step 4 of Section 2.a, Step 4 of

Section 3.b in [14]
t in the context of Theorem 1.1 Equations (2-5) and (2-6)
�� Step 4 of Section 2.a, Step 1 of

Section 3.a plus (4-8) in [14]
H? in the context of Theorem 1.1 Step 4 of Section 2.a
b�� Step 5 of Section 2.a, Lemma

3.10 of [14]
e� Step 5 of Section 2.a, Lemma

3.10 of [14]
.b� ; ��/ Step 5 of Section 2.a
t� Step 5 of Section 2.a
L? Equation (2-19), Step 7 of Sec-

tion 2.a
}, }| Equation (2-19), Step 7 of Sec-

tion 2.a
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D, D Equation (2-19), Step 7 of Sec-
tion 2.a

h� , h� Equation (2-41)
w : the function s� 1

2
jzj2 on R�C Part 1 of Section 2.b

R: a large positive constant Part 1 of Section 2.b, Equation
(4-8) in [14]

zE Part 1 of Section 2.b
&.t/ Part 1 of Section 2.b
U† Part 1 of Section 2.b
U� , UC in Section 2 Part 1 of Section 2.b
U� , UC in Section 3 Part 2 of Section 3.a, Equation

(5-3) in [14]
N in the context of Theorem 1.1: the normal
bundle to †

Part 2 of Section 2.b

†R: the jsj � 4R part of † Part 2 of Section 2.b
N1: a fixed radius subbundle of N Part 2 of Section 2.b
!† Part 2 of Section 2.b, Equation

(2-57), Equation (2-58)
!a D ds ^ aC�a Part 2 of Section 2.b
s: the tautological section of ��N Part 2 of Section 2.b
Z: the zero locus of !† Part 2 of Section 2.b
T : a tubular neighborhood of Z Part 3 of Section 2.b
XZ Part 3 of Section 2.b
X Part 3 of Section 2.b
!X Part 3 of Section 2.b
self-dual and anti self-dual spinor bundles Part 4 of Section 2.b
SI , SI;X Part 4 of Section 2.b
Kx , L Equation (2-60)
SIC, SEC Part 4 of Section 2.b
�†: the Euler characteristic of † Part 5 of Section 2.b
k† Part 5 of Section 2.b
deg.N†/ Part 5 of Section 2.b
.A�x;  

�
x/ Part 6 of Section 2.b

b� ; bC Part 6 of Section 2.b
C: the set of components of † Part 6 of Section 2.b
UC in Section 2 Part 6 of Section 2.b, Equation

(5-3) of [14]
UC in Section 3 Part 2 of Section 3.a, Equation

(5-3) of [14]
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bC Part 6 of Section 2.b, Part 3 of
the proof of Lemma 6.3 in [14]

h Equation (2-60)
Ec : the set of ends of C Part 6 of Section 2.b
eC : an exponential map on C ’s normal bundle Part 6 of Section 2.b, Part 2 of

Section 4.a in [14]
�† Part 6 of Section 2.b, Equation

(4-8) of [14]
RE Part 6 of Section 2.b, Equation

(4-8) of [14]
�EC

Part 6 of Section 2.b
.Ax;  x/ Part 6 of Section 2.b
SE� : an anti-self-dual spinor bundle Part 7 of Section 2.b
ƒ2C: the bundle of self-dual 2–forms Part 7 of Section 2.b
�AX

Part 7 of Section 2.b, Equation
(2-61)

DE Part 7 of Section 2.b
.A�;  �/, .AC;  C/ Part 8 of Section 2.b
HX , H?

X
Part 1 of Section 2.c

k � kH;X Equation (2-62)
K2

1
in Section 2 Part 1 of Section 2.c

K2
1

in Section 3 Part 2 of Section 3.a, Step 4 of
Section 5.b of [14]

tX Part 1 of Section 2.c
…X Part 1 of Section 2.c
LX , L?

X
Part 1 of Section 2.c

L2 in Section 2 Part 1 of Section 2.c
L2 in Section 3 Part 2 of Section 3.a, Part 7 of

Section 6.a in [14]
� : a small positive constant Part 1 of Section 2.c, Section 4.c

of [14]
pX , p0

X
Equation (2-64)

� in Section 2 Equation (2-64)
� in Section 3 Equation (3-11)
�E Equation (2-69)
r : This is .`=2�/r . Part 3 of Section 2.c
f�qg1�q�m: complex coordinates for Cm Part 3 of Section 2.c, Equation

(1-5) of [14]
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�.w/ Part 3 of Section 2.c
k>

R
, k<

R
Part 3 of Section 2.c

DE� Part 4 of Section 2.c
.A� ;  �/ Part 1 of Section 3.a, Equation

(5-15) in [14]
h.�/ Part 1 of Section 3.a, Section 6.d

of [14]
q.�/ Part 1 of Section 3.a, Proposition

6.4 of [14]
d† Part 1 of Section 3.a
.A†;  †/ Part 1 of Section 3.a
D† Part 1 of Section 3.a
D� Part 1 of Section 3.a
eq Equation (3-1)
k � kK2

1
Part 2 of Section 3.a

t� Part 2 of Section 3.a, Equation
(6-9) in [14]

H?
�

Part 2 of Section 3.a
„†�, „†C Part 2 of Section 3.a, Section 5.a

of [14]
E4R, E2R Step 2 of Part 1 of Section 5.a

in [14]
…� Part 4 of Section 3.a
L?
�

Part 4 of Section 3.a
p, p0 Equation (3-11)
ƒ.‚�; ‚C/ Section 3.b and (3-52)
det.�/ for a family, �, of Fredholm operators Equation (3-7)
D0� Equation (3-56)
D0C Equation (3-57)
DT˙ Part 3 of Section 3.b
D˙ Part 3 of Section 3.b, Equation

(3-58)
DC IT;T 0 Part 4 of Section 3.b
DC ˙ Part 5 of Section 3.b
nC˙ Part 5 of Section 3.b
.�C ˙, �C ˙/ Part 5 of Section 3.b, Equation

(3-64)
n˙ Part 6 of Section 3.b
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DT 0 Part 6 of Section 3.b
D†� Part 7 of Section 3.b
D�� Part 7 of Section 3.b
DC� Part 8 of Section 3.b
p, p0� Equation (3-67)
�� Equation (3-67)
D†IT;T 0 Part 11 of Section 3.b
D˙, D†˙ Part 11 of Section 3.b, Equation

(3-83)
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