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Embedded contact homology and
Seiberg—Witten Floer cohomology IV

CLIFFORD HENRY TAUBES

This is the fourth of five papers that construct an isomorphism between the embedded
contact homology and Seiberg—Witten Floer cohomology of a compact 3—manifold
with a given contact 1—form.

57R17; 57R57

1 Introduction

This is the fourth of a series of five papers whose purpose is to prove that embedded
contact homology as defined by Michael Hutchings for a compact 3—manifold with
contact 1—form is isomorphic to the manifold’s Seiberg—Witten Floer cohomology. As
described in the first paper [8, Section 4] of the series, this isomorphism involves two
maps, one which maps generators of the embedded contact homology chain complex to
generators of the Seiberg—Witten Floer cochain complex, and another which is used to
identify the respective differentials. Let M denote the manifold in question. The first
of these maps assigns a solution on M to a version of the Seiberg—Witten equations
to certain data that is associated to a finite collection of Reeb orbits of the contact
1—form. This map is denoted by ®” in [8, Theorem 4.2]. The second map associates
an instanton solution to the corresponding Seiberg—Witten equations on R x M to
data that is associated to certain collections of pseudoholomorphic curves in R x M .
Theorem 4.3 of [8] denotes the latter map by W” . The maps ®” and W” are constructed
in the second paper [9] of this series. Theorems 4.2 and 4.3 of [8] respectively assert
that ®" and W are surjective maps onto certain image sets. What follows in this paper
proves that such is the case. Theorems 1.1 and 1.2 below make the formal statements
to this effect. Theorem 4.3 of [8] makes additional assertions about instanton solutions
to a certain perturbed version of the Seiberg—Witten equation on R x M . These extra
assertions are first summarized by Proposition 8.1 and then proved.
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l.a The image of the map &’

The statement of Theorem 1.1 requires some background and notation that was intro-
duced in the earlier papers in this series. The summary of this background constitutes
the five part digression that follows.

Part 1 Use a to denote the contact 1-form. The manifold M is oriented using as
volume form a Ada. The oriented 2—plane bundle kernel(a) C TM with its orientation
given by da is denoted by K~1. This bundle K~! will be viewed for the most part as
a complex line bundle over M with its orientation as a complex bundle the same as
that given by da. The first Chern class of K~! in H?(X;Z) is denoted by —c; (K).

The vector field on M that generates the kernel of da and pairs with a so as to equal 1
it called the Reeb vector field and it is denoted as v. Its integral curves are the Reeb
orbits. They are oriented implicitly by v. Fix a homology class I' in H;(M;Z) and
let Z denote the set defined as follows: An element ® € Z consists of a finite set
of pairs of the form (y,m) with y a Reeb orbit and m a positive integer. Require
that distinct pairs from ® have distinct Reeb orbit components, and require that the
Z(y,m)€® my represents the class I'. Given L > 1, use ZL to denote the subset
consisting of those ® € Z which obey Z(y’m) m#t, < L where £, denotes the integral
of the contact 1—-form along y.

Part2 Fix an almost complex structure J: kernel(a) — kernel(a) such that the bilinear
form da(-, J(-)) defines a positive definite inner product on kernel(a). Let ¢ denote
a given Reeb orbit. There is a disk D C C and an embedding ¢: S! x D — M with
the following properties: First,  appears as S'! x {0}. Second,

, .
. K—n(p*a = (1= 2v|z)> — uZ2 — iz)dt + %(zd?—?dz) +0(2%),
Y

2
a1 g—nda —idz NdT—2(vz + pE)dE Adt —2(vE + fiz)dz Adt + O(|z)?),
Y

¢ 3 3 9
ﬁv =+ 2i(vz + ME)E —2i(vZ + ﬁz)a—Z + 0(|z]?).

Here, v and  are respectively real and complex valued functions on S!. Here and in
what follows, the circle S! is implicitly identified with R/(27Z) and t € R/ (27 Z) is
used to denote its affine coordinate. In these coordinates, the vector field d/0z at z =0
pushes forward via ¢ so as to generate the +i eigenspace of J on kernel(a) ® C.
The pair (v, u) are used to define the operator £ on C*°(R; C) given by

i d
(1-2) Lz = %Ez+vz+/ﬁ.
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Let t — x(¢) and ¢t — y(¢) denote the real and imaginary parts of a map ¢ — z(¢) in
the kernel of L. The latter obey

y(t) »(0)

As ¢ varies in [0, 27], the map ¢t — U|; defines a path in SL(2;R) starting at the
identity. The Reeb orbit y is said to be nondegenerate when |trace(U |,,)| > 2 or
| trace(U|,5)| < 2. In the former case, y is said to be hyperbolic, and in the latter
case y is said to be elliptic. In the hyperbolic case, there is a homotopy of the map
Uly: [0,27] — SL(2;R) such that the ¢ = 27 element of each member of this
homotopy has | trace(U |(.))| > 2 and such that the final member is a rotation through
rk radians with k& € Z. The integer k is said to be the rotation number. In the elliptic
case, there is a homotopy of U]|.) such that the = 27 element of each member of
this homotopy is conjugate to U |,, and such that the end member is a rotation by
angle 2R with R € R. The number R is the rotation number of ¥ when y is elliptic.
The mod(2) reduction of k is independent of ¢ as is the mod(Z) reduction of R.

(1-3) (x(t)) =U (X(O)) where U|, € SL(2; R) for each € R.

Fix L > 1. A contact form « is said to be L-nondegenerate when the following three
conditions are met: First, if ©® € Z, then ), ,e@ My # L. Second, if © € zL
and (y,m) € ©, then y is nondegenerate. Third, if ® € ZL and (y,m) € © with y
elliptic, then its rotation number R is such that kR # Z for each k € {1,2,...,m}.
The space of contact forms on M has an open and dense set (in the C°° topology)
that contains only L—nondegenerate contact forms.

Part 3 Let ® € Z. Section 1.b of [9] associates a set €® and a subset €O* to O.
To define these sets, focus first on a given (y,m) € ®. Introduce the vortex moduli
space €, as defined in [9, Section 1.b]. The latter consists of equivalence classes of
pairs (A, ) with 4 being a connection on the product C bundle over C and with «
a section of this bundle, thus a map to C. This pair obeys the equations

o xFy=—i(1—|a|?).

o 5,40{ =0.
(1-4)

e Ju| <1I.

o The function (1 —|«|?) is integrable on C and Je(1— lo|?) = 2mrm.

The equivalence relation that defines €, posits (4, a) ~ (A4 —u~'du, ua) when u
any smooth map from C to U(1).

Asnoted in [9, Section 1.b], this space is the complex manifold, C”, with a nonstandard,
nonflat Kahler metric. The latter defines a symplectic form and thus the Hamiltonian
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dynamical system that is defined using the time dependent Hamiltonian function
1
(1-5) ﬁ=——/(nuﬁ+0ﬁ2+ﬁ£»a—mﬁy
4 Jc

The set €, ) consists of the maps ¢: § I @, that are closed, integral curves of the
Hamiltonian vector field defined by £; thus solutions to the equation

(1-6) S+ Vg =0,

where ¢’ is shorthand for the (1,0) part of c¢x(d/dt), and where V(-0 £ denotes the
(1,0) part of the gradient of 4. What is denoted below by €O is X( m)e0€(y.m):
thus a typical element consists of a set {¢, € €, )} (y,m)eO -

Let ¢: S! — ¢, denote a given map. Associate to ¢ the bundle ¢*T 1,0Cm — St
The pullback of the Riemannian connection on 7T'¢,, defines a Hermitian connection
on S!. The map ¢ is said to be nondegenerate when the operator

(-7 £~ SV + (Ve V0B,

on C®(S; ¢*T; ,0€m) has trivial kernel. The notation here is such that V, denotes the
covariant derivative of the aforementioned Hermitian connection. Also, (Ve vhopn)).
denotes the covariant derivative at ¢ along the vector defined by ¢ in 7'¢,, |, of the vector
field VI:f € C%(&,; Ty ,0€m). The operator in (1-7) is symmetric and elliptic. Its
spectrum is a discrete subset of R with finite multiplicities and no accumulation points.

What is denoted here by €®* consists of the elements in €@ of the form {c} }(, m)eo
with all ¢, being nondegenerate.

Part4 The definition of the Seiberg—Witten cochain complex requires the choice of a
Riemannian metric on M . Such a metric should be chosen so that *da = 2a and such
that |a| = 1. Note that a metric of this sort defines an almost complex structure, J, on
kernel(a) for which the bilinear form da(-, J(-)) is positive definite and symmetric.
Conversely, any such almost complex structure defines a unique metric on M such
that xda = 2a and |a| = 1. This understood, a contact 1-form « and a chosen almost
complex structure J of the sort just described will be used implicitly to define the
metric on M .

Asnoted in [8, Section 3.c], the spinor bundle S for a given Spin(C structure decomposes
as the orthogonal direct sum E @ EK~! where E — M is a complex, Hermitian line
bundle, and where K~! is now viewed as a complex line bundle. These subbundles
are the respective +i and —i eigenbundles for Clifford multiplication by the 1-
form a. The first Chern class of £ can be used to classify the Spin(C structure.
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This understood, choose E so that its first Chern class is Poincaré dual to the homology
class I' € H{(M ; Z) that was used in Part 1.

Let Conn(E) denote the space of smooth, Hermitian connections on E. The Seiberg—
Witten equations used here require the choice of a real number » > 1 and then of
a coclosed 1-form p. The corresponding Seiberg—Witten equations are for a pair
(A,¥) € Conn(E) x C®°(M;S); they read

o By—r(Yley —ia)—i*xdu+ LBy, =0.
1-8

(1-8) Dy =0.

The notation here is as follows: First, B4 denotes the metric Hodge star of the curvature
2—form of A. Second, Ak is a fixed connection on K~! with harmonic curvature
2—form. Third, D4 denotes the Dirac operator on C*°(M;S) as defined using the
metric’s Levi-Civita connection and the connection Ag + 24 on det(S). Finally, if n
and ¢ are any given sections of S, then n'z¢ is the C—valued 1—form whose metric
inner product with a 1—form b is 5T cl(h)¢ with cl(-) here denoting the Clifford
multiplication endomorphism.

The 1-form g that appears in (1-8) is constrained to lie in a certain Banach space of
smooth 1-forms. The latter is denoted by €2 and is described briefly in [8, Section 3.d].
The norm on this space is called the P—norm: it bounds all of the C*¥ norms. In what
follows, w is assumed to come from €2 and have P-norm less than 1.

The group C°°(M ; U(1)) acts on Conn(E) x C*®(M;S) as follows: A given map u
from M to U(1) sends a pair (4, V) to (4 —u"'du,uv). Pairs related in this way
are said to be gauge equivalent. Any given orbit under this action is said to be a gauge
equivalence class. If (A4, y) obeys (1-8), then so does any pair in its gauge equivalence
class. With p fixed and » > 1 given, use M” in what follows to denote the set of
gauge equivalence classes of solutions to (1-8).

Associated to any connection on E' is a certain functional, this denoted in what follows
by E. Its value on a given A € Conn(FE) is

(1-9) E(A)zi/ anxBy.
M
This function is constant on any given gauge equivalence class.

With the stage set, fix L > 1 and assume that the contact form a is L—nondegenerate.
Let ¢ZL denote the set of pairs {€® : © € ZL} and let €ZL* denote the subset
{¢O* : ® € ZL}. Fix a finite subset X C ¢ZL*. Theorem 1.1 of [9] describes the
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following: For all large r and any given p € 2 with P—norm bounded by 1, an
injective map

(1-10) ®": X — M” with image in the set where E < 27 L.

(Theorem 1.1 of [10] has more to say about this map.)

What follows is the promised surjectivity theorem for @’ .

Theorem 1.1 Fix L > 1 and suppose that the contact 1—form a is L —nondegenerate.
Fix an almost complex structure J on the kernel of a so that da(-, J(-)) defines
a metric on the kernel of a. Use this data to define a metric on M . Suppose that
¢zL* = ¢2ZL . Then €¢ZL* is a finite set. Moreover, there exists k > 1 with the
following significance: Fix (1 € Q and r > k so as to define M” and the corresponding
map ®": €ZL — M”. Then the image of ®" is the whole of the E < 2mL part
of M".

This theorem is proved in the upcoming Section 2.

1.b The image of the map ¥"*

The statement of the upcoming theorem about the map W" requires the three part
digression that follows momentarily. This digression reintroduces notation and various
notions from the previous papers in this series.

Part 1 The definition of W assumed that the chosen contact form ¢ was L-nonde-
generate for all L > 1. The set of such forms is denoted by Njs. The definition also
took the almost complex structure from a certain set, J,, of almost complex structures
for T(R x M). Fix J € jJ,. Note that J is unchanged by the constant translations
along the R factor of R x M . It also maps d/ds to v and it maps K, the kernel of a,
to itself. Moreover, da(-, J(-)) is a Riemannian metric on the kernel of «. Thus J
can be used to define a metric for M if it is understood that ¢ has norm 1 and that
da = 2 % a. This is the metric to use in what follows, and to use when defining the
Seiberg—Witten equations in (1-8).

Introduce Z., to denote the subset of those elements in Z that lack pairs of the
form (y,m) with y hyperbolic and m > 1. Fix two elements, ®_, ®1 € Z., and
define M;(O_, ®4) as follows: An element X € M;(O_, ©4) consists of a finite
set of pairs of the form (C,m) where m is a positive integer and where C is a
J —pseudoholomorphic submanifold. These pairs are further constrained as follows:
First, distinct pairs have distinct submanifold components. Second, m = 1 unless
C is R—invariant; thus C is of the form R x y with y C M a Reeb orbit. To state
the third property, let w: R x M — M denote the projection. Here is the third
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property: The formal sum Z(C,m)eZ mm(C) defines a 2—cycle whose boundary is
> (y.m)e® Lmy— > (y.mye@_ My . Finally, this cycle is homologous rel boundary to
the image of a submanifold Z C [0, 1] x M for which a certain integer I(O_, 4, Z)
is defined and equal to 1. This integer /(®_, ®, Z) is described in [8, (2-9)] and the
surrounding discussion in [8, Section 2.c].

Hutchings proves in [2] that M;(®_, ®4) has the structure of a 1-dimensional mani-
fold with a finite set of components. Moreover, each component is a copy of R, this
the orbit of any one of its members under the action of the group R that is induced by
latter’s action on R x M as the constant translations of the R factor.

Part2 Fix r > 1 and a coclosed 1—-form p for use in (1-8). The associated Seiberg—
Witten equations on R x M are equations for a map, 0, from R into the space
Conn(E) x C°(M;S). Write 0 as the map s — (A4, )|s and these equations read

o 2A+By—r(Wity—ia)—ixdu+1By =0.

(1-11) Sy + Dy =0.

A solution ? is said to be an instanton when {0(s)}scr converges as s — —oo and
also as s — oo and both limits are solutions to (1-8).

Associated to any given map 0 = (4, ¥): R — Conn(E) x C*®(M;S) is the elliptic
operator, Dy, on C®(R x M;iT*M & S & iR) that sends a given section (b, 1, ¢p)
to the section with respective i T7*M, S, and iR components

. %b+*db—d¢—2_1/2r1/2(w7k'cn+nTrw),
(1-12)  * 20+ Dan+2"2r2 (b)Y + ¢y),
o 2optwdxb—2"2 20ty —yty).

Here, d denotes the exterior derivative along the M factor of R x M .

Use H to denote the Hilbert space completion of the space of compactly supported
sections over Rx M of iT*M &S @ iR using the norm whose square is defined to be

(1-13) T =[ (IVB]2 + r[b]2).
RxM

where V is the covariant derivative that is defined on sections of i7*M &S ® iR as
follows: View iT*M & iR as i T*(R x M). This done, then V is the Levi-Civita
covariant derivative on the i 7* (R x M) factor. View the connection A as a connection
on the pullback £ — R x M and likewise view A as a connection on K~ —Rx M .
The latter with the Levi-Civita connection define a covariant derivative for S - R x M .
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The associated covariant derivative gives V on the S factor. Meanwhile, use L to
denote the L2 completion of the space of compactly supported sections over R x M of
iT*M &S @iR. If the spinor component of 9 is bounded, then D defines a bounded,
linear map from H to LL. In particular, such is the case when 0 is an instanton.

To say more about this last case, digress momentarily and let ¢ = (A4, ) denote
any given pair in Conn(E) x C*®°(M;S). Associated to ¢ is the symmetric, elliptic
operator £, on C®(M;iT*M & S & iR) that is defined so as to send any given
(b, n, @) to the section whose respective i T*M , S and iR components are

o xdb—dp—2712r12(yTen +pfey),

(1-14) * Dan+2Y2r12(clb)y + ¢y),
o sdxb—2"12p 12Ty —yty).

The latter extends as an unbounded, self-adjoint operator on L2(M;iT*M &S ®iR)
with dense domain L% (M ;iT*M ®S®iR). The element c is said to be nondegenerate
when the kernel of £, is trivial.

Now consider an instanton 0 and the associated operator Dy in (1-13) viewed now as a
bounded, linear map from H to IL.. This map is Fredholm when both the s — —oco and
s — oo limits of 0|s are nondegenerate. In this event, 0 is said to be nondegenerate
when its cokernel is {0}.

Suppose that ¢_ and ¢4 are nondegenerate solutions to (1-8). Let Mj(c—, c4+) denote
the space of instanton solutions to (1-11) with the following properties: First, the
§ — —oo limit of 0 is ¢— and the s — oo limit is gauge equivalent to a configuration
in the gauge orbit of ¢4 . Second, the Fredholm index of ©; is equal to 1.

Part 3 Fix L > 1 and assume the following about the contact 1—form « and the
element J € J,:

e There is no element © € Z with 3, ,hce My = L.

e Suppose that y is a Reeb orbit with £, < L. Then y has a tubular
neighborhood map ¢: S! x D — M as described in Part 2 of Section
l.a such that if y is hyperbolic with rotation number R, then (v, u) =
(34, iee’ ) with & > 0 but very small. Meanwhile, if y is elliptic, then
its rotation number R is irrational. Furthermore,

(i) The pair (v, pn) = (%R, 0).

(ii) The ¢*—pull back of T1O(R x M) is spanned by ds + ia and
(£y/(2m))(dz —iRzdt). Moreover, these two forms are orthogonal
and have norm /2.

(1-15)
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Let ZL = Z., N 2L, and define €ZL, to be the set {€O : ©® € ZL ). Ttis a
consequence of [8, Lemmas 2.1-2.4] that with (1-15) obeyed, then ezl —gzlx =
QﬁZeLch. In this case, QﬁZe];h = Zg;h because if ® € ZeLch, then €® has but a single
element, this the collection {c,: S 1 Cm}(y,myee Where each ¢, if the constant map

to the vortex in €, with a~1(0) = {0}.

With (1-15) understood, use J to define the metric for M . Fix a 1-form u € Q with
P—norm less than 1 for use in [9, (1-8), (1-9) and Theorem 1.1]. Use the latter theorem
to define the large r versions of ®”: Ze];h — M”" . Theorem 1.1 of [10] asserts that
the image of ®” consists solely of nondegenerate solutions to (1-8).

Fix an ordered pair (®_, ®4) from ZeLch and let c— and ¢4 denote solutions to (1-8)
whose gauge equivalence class defines the respective ®” images of ®_ and O.
Theorem 1.2 of [9] defines the map

(1—16) v M](®_,®+)—>M1(C_,C+).

This is an injective and R—equivariant map from M;(®_, ®4) into the space of
instantons with s — —oo limit equal to ¢— and with s — oo limit gauge equivalent
to ¢4 . Theorem 1.2 of [9] asserts that the image of W” consists solely of nondegenerate
instantons, and that it defines an embedding onto its image.

The stage is now set for the promised theorem here about W” .

Theorem 1.2 Fix L > 1 and then a contact 1 —form a € Njs and J € 9, for which
(1-15) holds. There exists k > 1 with the following significance: Use a and J to define
the metric on R. Fix y € Q with P—norm less than 1 and r > « so as to define M" .
Let ®_ and ® 4 denote any two elements in Zelgh, and let c— and ¢4 denote solutions

to (1-8) in the respective gauge equivalence classes ®" (©_) and ®" (©4). Then the
image of the map V" depicted in (1-16) is the whole of M (c—,c4).

Sections 3—7 contain the proof of Theorem 1.2.

Theorem 4.3 of [8] also makes assertions about instanton solutions to a certain perturbed
version of the Seiberg—Witten equations on R x M ; these are the equations in [8, (3-6)].
Of particular concern here are the assertions made by Item (iii) from the first bullet of
[8, Theorem 4.3]. These assertions are proved in Section 8.

1.c Conventions and notation

Notation and various constructions will be freely borrowed from [8; 9; 10], the previous
papers in this series. The reader should be familiar with their content. As in these
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previous papers, it is always the case that ¢y denotes a constant that is greater than 1
and is independent of what ever relevant data is under consideration. The precise value
of ¢ can increase between subsequent appearances.

This paper, as with the previous papers in this series, makes use of a chosen “bump”
function on R; this is a smooth function x: R — [0, 1] that equals 1 on (—oo0, %] and
value 0 on [1—76, 00).

Acknowledgements Much is owed to Michael Hutchings for his many suggestions
for improving the presentation.

This work was supported in part by the National Science Foundation.

2 Proof of Theorem 1.1

The theorem makes two distinct assertions. These are restated next as separate proposi-
tions.

Proposition 2.1 If the contact 1—form a from Ny then the following is true: Any
given L > 1 version of the set ¢ZL is finite if ¢Z1* = ¢ZL .

This proposition is proved in Section 2.b.

Proposition 2.2 Fix a contact 1—form a and almost complex structure as in The-
orem 1.1. Suppose that L. > 1 is such that there are no elements ® € Z with
> (y.myee Mby = L. Suppose also that €ZL* = ¢ 2% and that these sets are finite.
There exists k > 1 with the following significance: Fix j € €2 with P—norm less than 1
and r > Kk so as to define the map ®" with domain ¢Z% . Then ®" (¢ZL) contains
the whole of the E < 2w L part of M" .

This last proposition is proved in Section 2.a.

2.a Proof of Proposition 2.2

The proof uses much the same strategy and constructions as used in the article SW = Gr
from [6] to prove an analogous statement about a map that assigns a solution to a
version of the Seiberg—Witten equations on a compact, symplectic 4—manifold to data
associated to a collection of pseudoholomorphic curves. Even so, the discussion that
follows is meant to be more or less self-contained.
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Assume, to the contrary, that the proposition is false so as to derive a conclusion that is
incompatible with this assumption. To this end, suppose that there exists a sequence

{rnsen = (An, ¥n)tn=1,2,... such that
* ¢, obeys the r = ry version of (1-8).
2-1) e E(Ap) <2nlL.

e The gauge orbit of ¢, is not in the image of ®”.

The eight parts of the following argument explain why the assumptions in (2-1) are not
mutually compatible.

Part 1 The proof that the assumptions in (2-1) are not mutually compatible refers to
somewhat stronger versions of some a priori bounds that are asserted by [7, Lemmas
2.2 and 2.3]. These are summarized by the upcoming lemma. This lemma introduces
a convention that is used ubiquitously throughout this paper and also in [8; 9; 10] by
writing a section of S in terms of the decomposition of S as E @ EK~!. When this
is done, the given section V¥ is written as (&, 8) with @ denoting the part in £ and 8
the part in EK~!. The lemma also introduces a second convention: What is written as
V4 denotes the covariant derivative on the relevant bundle that is defined using 4 and,
if necessary, the metric’s Levi-Civita connection.

Lemma 2.3 There exists a constant k > 1 with the following significance: Fix any
Spin(C structure for M . Then, fix € Q with P—norm less that 1 and r > k. Let
(A,v = («, p)) denote a solution to the corresponding version of (1-8). Then

o o] <14«r7t.
o B2 <kr (1 —|a|?) +Kk2r2.
o |Vyal? <kr(l—|al?) +k2.
o VB =kl —laf?) + 27t
In addition, for each q > 1, there exists a constant k4 € (0, 00) which is independent

of (A,v¥), r and , and is such that

q 1/2v4 2
o |Via|+r1/2|VEB| < kgrd/2.
Note that this lemma makes no apriori assumptions about E(A4).

Proof Lemma 2.3 [7, Lemmas 2.2-2.4] assert the first two items and the final item.
To establish the third and fourth items, differentiate the equation Djw = 0 and copy
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the manipulations done in Section 2e of the article SW = Gr from [6] to find r and
(A4, v) independent, positive constants ¢y, ¢z, and c¢3 such that the function

2-2) b= (IVaal +r|VBI?) + crrlBP —car(1 - o) — 3

obeys

(2-3) tdtan+cy'rh <o0.

It follows as a consequence of the maximum principle that

(2-4) Vaerl? +r|VBI? < cor(1=lel?) + ¢,

where c(’) is independent of both r and (A, V). a

Part 2 It was argued in [7, Section 6.d] that there exists the following: First, a finite
set ® = {(y,m)} of pairs such that y is a Reeb orbit and m is a positive integer.
Moreover, distinct pairs from ® have distinct Reeb orbit components. Second, a
subsequence of {¢, = (An, ¥ = (otn, Bn))}n=1,2,... (hence renumbered consecutively)

geee

by Z(y,m) my.

To elaborate on this, fix § > 0. It was argued in [7, Section 6.d] that if » is large,
then |a,| > 1 —§ at distances greater than § from U(y,m)€® y. Meanwhile, the
behavior a solution near a Reeb orbit from © is as follows: Fix (y,m) € ® and view a
neighborhood of y using the coordinates S! x D used in (1-1). If the index 7 is large,
then o, vanishes on each disk {t} x D with multiplicity m in the sense that «y /||
has degree m on the circles in D about the origin with radius § or greater. Lemmas 6.1
and 6.3 of [7] imply the following: Set r = r,,. There exist at most m disjoint disks
in D of radius at most cor —'/2 that contain the set in {r} x D where |a,| <1—36.
Moreover, any such disk must contain at least one zero of «;,, and oy, /|| has positive
degree about each such disk. These lemmas imply somewhat more: There exists a
set of at most m disjoint disks in D of radius §r~1/2
zero of ay in {¢} x D and such that |ay| > 6/co on the complement of these disks.
Moreover, o, /|oy,| has positive degree on each such disk.

such that each disk contains a

Suppose that o, vanishes at (z,z;) € S' x D with positive degree. Parametrize the
integral curve of v through (z,z;) via [0,27] as the map x — (¢ + x, z¢(x)). It
follows from [7, Lemma 6.5] that «;, has a zero with distance at most cor_l/ 2y from
(t 4+ x,zr(x)) when |x| < 1/cq. It follows from this and the assumed nondegeneracy
of the Reeb orbits that |z;(x)| < cor /2 when n is large. To elaborate, suppose first
that m = 1. Then letting x move from 0 to 27z shows that the integral curve of v
through (¢, z;) comes back to ¢ at a point with distance at most cor~ /2 from z;. Such
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a return is not possible unless |z;| < cor /2 given that y is nondegenerate. Note that
y is nondegenerate because @ € Ny .

In the case m > 1, then z;(27) must have distance at most cor~ /2 from either z;

or from some other positive degree zero of «, in {¢} x D. This is impossible if
|z¢| < cor~ V2% if y is hyperbolic, or if y is m—elliptic. One or the other of these
describes y when a € Ny .

Part 3 Fix an identification over S! x D between the bundle E and the complex line
bundle (S!xD)xC. Set r =ry, and pull back (A, (&, Br)) by the rescahng map r
thatactsas z—r,, ~1/2. Denote this pullback as (Aoxdt+Ax, (ctx, 1y 1/2 Bx)) with A*
at any given ¢t € S a connection on the trivial bundle over the rescaled D, and where
ax and By are sections of this bundle. Fix R > 1 and take n large enough so as to
guarantee that the disk of radius R about the origin in C is in the rescaled version
of D. It follows from (1-8) and from Lemma 2.3 that

o xFy +i(l— |oz*|2) = ¢y,

@3, 04,05 = ¢1,

on this R disk in C. Here, F4, denotes the curvature of A4« on D at the given
t € S'. Meanwhile, |eo| < cor~'/2 and |e;| < cor~'/% when n is large. As noted
in [7, Lemma 6.5], what is written in (2-5) and what is said in Lemma 2.3 have the
following consequence: Fix § > 0 and k € Z. Then there exists Rg > 1 such that if
R > Rg, and if n is sufficiently large, there exits for each ¢ € S a solution (4, )|,
of (1-4) on C whose restriction to where |z| < R has C* distance less than § from
(Ax,0t4)]z.

The middle item in (2-1), the fourth item in (1-4) and this last conclusion imply the

following:

Lemma 2.4 The set © is such that } ,, ,ye@ My < L.

This lemma associates an element © € ZL to a subsequence of {(4,, Vn)in=1,,..

Part4 Fix (y,m) € ©. As noted just prior to Lemma 2.4, there exists for each r € S,
a solution (A4, ®)|; on C to the integer m version of (1-4) that is obtained as a limit
of rescalings of a subsequence of {(Ay, on)}n=1,2.... What follows says something
about the ¢—dependence of (A, @)|;.

geee

Lemma 2.5 There exists a map ¢ = (A,a): S! — &, that obeys (1-6), and there
exists a subsequence of {(An, Yun)}n=1,2,... with the following property: Renumber
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the subsequence consecutively from 1. Fix § > 0, T > 1 and an integer k. If n is
sufficiently large, there exists, for each t € S, a map from the |z| < T part of C to
U(1) such that the (A, V) version of (As — uy 'dus, usxay)|; has Ck distance § or
less from (A, )| on the disk in C where |z| < T .

This lemma assigns to each pair (y,m) € ® amap cy: S! — &, that solves (1-6) and
in doing so, it associates an element x € €OL to a subsequence of {(A,, Vn)in=1,,..-

Proof of Lemma 2.5 Fix 0 € R/277Z = S! and define an isomorphism between
the bundle £ — {0} x D to the product bundle by using A4, to parallel transport a
given section over {0} x 0 along the radial geodesics. Then use parallel transport
by the connection A, along the constant z € D arcs to extend this isomorphism as
one from E over (0 —m,0+ ) x D C S! x D to the product bundle. Let 6 denote
the corresponding product connection. Pull back (A4, (o, B,)) and this product
connection by the rescaling map. Given the choice of product structure, the pullback
of A, has component Ay, = 0. Meanwhile, the connection A, can be written as
0+ %(a*dE— axdz) where ay is a C—valued function given ¢ = 0 by the integral

1
(2-6) a*|z=iz/ xFyq, |5z ds.
0

Likewise, ax and B« are to be viewed as C—valued functions. It follows from (1-8)
that the derivatives of the large n versions of ax and a at points where |z| < T obey

o 271204, =225, By —2i(vz 4+ 2272 (1 |ax]?) +¢2,

2-7 z
@n Dote = =204, B —2i vz + pPZ)d 4,0 +¢3,

with [ep 3] < cor~/2. Note that r'/2|B4| + |V4, B«| < co; this a consequence of
Lemma 2.3. a

Each (A4, v¥y) has its version of (ax, @), this now denoted by (axy, ¢txy,). Given
the last item in Lemma 2.3 and given what just said about the B, terms in (2-7),
this equation implies the following: For any given positive integer k and T > 1,
the sequence {(@«n, 0xn)}n=1,2,... is uniformly Lipschitz as a map from the interval
[—7, 7] into the Banach space of k —times differentiable maps from the disc of radius T
in C to C xC. There is, as a consequence, a convergent subsequence. Taking diagonal
subsequences, finds a convergent subsequence of {(a,, 0txn)}n=1,2,... Whose limit is a

Lipschitz map, (a, @), from the interval [—s, 7] into the Frechet space C*°(C;C xC)
with the three properties that follow.
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Property 1 The limit pair c = (4 =0+ %(ad?—ﬁdz), «) obeys the vortex equations,
(1-4), at each ¢ € [—m, ], and so defines a point in the vortex moduli space &, .

Property 2 The ¢t = 7w version of (A4, «) is gauge equivalent to the ¢ = —m version.
Thus, ¢ defines a Lipschitz map from S! into €,,.

To state the third property, recall that the (1, 0) part of the complexified tangent space
to ¢, at any given element ¢ = (A4, ) is canonically isomorphic to the L? kernel of
the operator ¥, on C°°(C; C @ C) that sends pair (¢, 7) to

(2-8) Oe(q,m) = (3g + 271 2an, 3 4n + 27 2aq).

The third property refers to the function x: R — [0, 1] from [9]; it equals 1 on (—o0, %]
and vanishes on [% 00). Here is the third property:

Property 3 Fix ¢t € [, 7] and let TI|, denote the L?(C;C @ C) orthogonal
projection onto the space of L2 solutions to the (A4,«)|; version of (2-8). For
any given T > 1, use x! to denote the function z — x(7!|z|]) on C. Let A =
—2i(vz + pz2)(2~Y2(1 —|a|?), d4). Then

. 1
(2-9) Ahf)lo ZHt(XT(a, @)r+a—x7 (a, a)l;) = I (x B0l + e,

where |e| < coT L.

Note that (2-9) follows from the fact that the term (2!/ 28, —203,4, B+) in (2-7) can
be written as 193* (0,2B4) where D, is the c¢x = (A, ax) version of the operator in
(2-8) and where 193* denotes the formal, L2 adjoint of ¥, .

What with the second bullet in (2-16), Property 3 implies that ¢ = (A4, @) defines a
map from S! into €, that obeys (1-6).

Part 5 Parts 3 and 4 give an element in ¢ Z% that characterizes a part of the limiting
behavior of a subsequence of the original sequence {(A4, Vx)}n=1,2..... Relabel this
subsequence consecutively from 1. Meanwhile, this element in € 2% consists of the
element ® € ZL and a corresponding set ey N Cm}(y,mee where each ¢,
solves the version of (1-6) defined by . Let (4%, ¥*) denote the result of applying
the constructions in [9, Section 3.a] to the data {(cy,{y = 0)}(,m)ee . This is to say
that (A%, y*) is the J = {(¢y,{y = 0)}(;,m)e@ version of the pair that is defined in
[9, Step 4 of Section 3.a].

What follows describes a gauge transformation of each sufficiently large n version of
(Ay, Yn) that make the latter pair close on the whole of M to the large r versions of
(A*,¢¥*). The following lemma summarizes:
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Lemma 2.6 There exists k > 1 with the following significance: Fix § > 0 and take n
very large. There exists a smooth map u: M — U(1) such that (A, —u='du, uy,)
can be written as (A* + 2'/2rV/2b_y* + ) where (b, n) obey |b| + |n| < k8§ and
IVb| < kr!/2.

Proof of Lemma 2.6 The required gauge transformation is constructed in seven steps.

Step 1 Recall that (A*, ™) is constructed using trivializations of E over the sets
{Uy}(y.myee and over Up = M —J(, myece U, - Here, U,, corresponds to the subset
of points in y’s version of S!x D with |z| < ps«. The pair (4*, ¥*) over Uy is defined
by fixing a trivialization of E over Uy as Uy x C, and then taking ¢* = (I¢,0) and
taking A* to be the product connection A;. Here, 1¢ denotes the section of Uy x C
that assigns each point 1 in C. Meanwhile, the large n versions of (A4, ¥y, = (an, Bn))
are such that || > 1—4§ over Uy. As a consequence, there exists a map ug: Uy — S
such that ugo, = |oy|1c when n is large. What with the second item in Lemma 2.3,
this implies that ugy = ¥™* + no where |no| < 4.

To continue, write A, —uo_lduo = A;+a. Then |Vya|?> = |d|a|? + |«|?|a|>. It
follows from the third item in Lemma 2.3 that |a| < cor!/28; and so by =271/2=1/25
obeys |bg| < co8. Likewise, Lemma 2.3 implies that |Vbo| < kr1/2.

Step 2 Focus attention on a pair (y,m) € ©. The pair (4*, ¢¥*) is given on U, by
what is written in [9, (3-3)]. Fix T > 1 so that the both the large n versions of || and
|¥=%"| are greater than 1 —§ at points with |z| > 1r=1/2T . The trivialization of E
over this part of U, writes a®" = %7 |z /|z|™. Meanwhile, there is a map, u, , that
is defined on this same part of U, such that uy o, = |a,|z™/|z|™. This understood,
the argument given in Step 1 can be repeated to prove that (4, — u;l duy, uyyy) =
(A* +2Y2712p, y* 4 n,) where |by |+ |1, | < co and where |Vb, | <ir!/2.

By virtue of the fact that «, is a section of E, there exists an extension of u, as a
map from the whole of U, to U(1). Fix such an extension and denote it by u,.

Step 3 Suppose that there exists an extension of u#, from the |z| > %r‘l/ 2T part of
U, to the whole of the |z| < %r‘l/zT part of Uy, such that (4, —uydu,,u,yy) can
be written as (A4* + Ao, dt + 21/2;’1/21);, ¥ +ny) with |5+ [0y | < co(8 + 15y )
and |Vb,| < cor'/? when n is large; and with |4y, | < cg and |VAq,| < r'/%cr
where c¢7 depends only on 7" and not n. Given what is said in Steps 1 and 2, an
extension of this sort implies the assertion of Lemma 2.6. The existence of such an
extension is proved in the forthcoming Steps 4—7. An extension of this sort is deemed
to be admissible.
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The notation used in Steps 4—7 comes from the proof of Lemma 2.5. In particular,
the arguments use the r = r, versions of the rescaling map 7, from Part 3 so as to
consider the various n—dependent entities on the product of S! with the disk in C
where |z| = T.

Step 4 Introduce the Lipschitz map (a,«): [-m, 7] — C*°(C;C @ C) that is con-
structed in the proof of Lemma 2.5. Let 6 denote the product connection on the product
bundle over [, 7] x C. The pair (a, «) defines the pair (6 + %(ad?— adz),a) of
connection on the trivial bundle over [—7, 7] x C and section of this bundle. This pair
satisfies the vortex equations on C at each ¢ € [, ] and the induced 1-parameter
family of connection along the C factor of [—r, 7] and section projects to &, as the
map ¢, . Of particular interest here is the existence of a smooth gauge transformation,
u: C — U(1), such that a|;=r = d|t=—x —2u 19y and |t=r = Ud|t=—z. As C is
simply connected, the map u can be written as e” where p: C — iR is a smooth map
with ip|,=o €[0,27).

Introduce x° to denote the function ¢ — x(¢) on [—x, 7]. Let t = e=xP  The pair

(2-100  O+a! %ﬁdt + %((a +247190)dz — (a—2a"'9i)dz) and i
defines a connection on the product bundle over S' x C and section of this bundle.
Although smooth with respect to variations along the C factor of S!xC, the coefficients
of the connection and the section may only be Lipschitz with regards to their variation
along the S factor of S! x C. In any event, the induced 1-parameter family of
connection along the C factor and the section project so as to give a Lipschitz map
¢y: ST —>C.

Step 5 This step defines an (A, ¥,) analog of (2-10). To start, recall from the proof
of Lemma 3.5 that the (A4,, o) version of what is written in (2-5)—(2-7) as (ax, 0tx)
obeys ai|r=rx = t|r=—n — 2y 'Otx and Qx|r=7x = UxQx|r=—7 Where the (Ay, ¥n)
version of uy is a smooth map from the |z| < R portion of C to iR. As this disk
is simply connected, the map u, can be written as e?* where p. is a map from the
|z| < T part of C to iR with the property that i p«|,—¢ € [0,27). Integrating the
top equation in (2-7) finds that |dp«| < co. As a consequence, |p«| < coT . Define

~

Uy = e(1=x")P+  Then the pair

3 1
@-11) 6 +a," aa*dz + 5((% + 20, 104 )dZ — (G — 2005, ' 15 )dz)  and @0

is, respectively, a connection on the product bundle over the |z| < T part of S xC
and section of this same bundle.
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By construction, the pair in the (A, o) version of (2-11) is gauge equivalent to the
pullback of (A,, ;) viathe r =r, version of the rescaling map ?y_ ! In particular, given
the definition of (a,®) as a limit of the integer n versions of (ax,®«), a comparison
of (2-11) and (2-10) finds that these pairs differ where |z| < T by less than ¢yé when
n is large.

Let uy4 denote the map from the |z| < T part of S! x C to U(1) that sends the pair

in (2-11) to the ?y_l pullback of (A, ay); thus u14(Uxax) is the rescaling of «y,.

Step 6 Recall from [9, Section 2.c] that any given map ¢: S! — ¢, can be lifted as
a pair of smooth connection on the product bundle over S' x C and section of this
bundle. In particular, [9, Section 2.c] describes such a lift for ¢, , this written here as

1
(2-12) (9 + Agdt + 5(a/arz— ddz), o/).
This understood, there exists a map u;: S xC — C that is smooth along the C factor,
Lipschitz along the S! factor, and such that
(2-13) d =a+2wn) '(wma) and o = wia.

Write u; = e*ug where uy: S' — U(1) is a smooth map and x is a map from S x C
to iR that is smooth along the C factor and Lipschitz along the S factor and obeys
|x| <coT where |z] < T.

By virtue of what is said in Step 2, the pullback via the r = r, rescaling map ?y_ U of
the pair (4, — u;& duyg, uyooty) to the |z| € [%T, T] part of S! xC can be written as

1
(2-14) («9+A0*dt+ E(a;di—c_z;dz),a;),

where components in (2-14) and their analogs in (2-13) differ by very little when 7 is
large. This is to say that

(2-15) |A0*—A0|+|a;—a’|+|a;—a/| <cod

when 7 is large.

Step 7 Reintroduce u;, from Part 5 and write the effect of u; (1)~ on the ?y_ 1
rescaling of (A4,,ay) as

1
(2-16) (9 + Aguadt + E(a;*df—ﬁ;*dz),a;*).
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Given the less than c¢¢d difference between (2-10) and (2-11), it follows that the
difference between the respective components of (2-16) and (2-14) where |z| < T
obeys

(2-17) |Aowx — Aol ScoR and |l —a| + |af, — | = cod,

when 7 is large.

To complete the construction, note that it follows from (2-15) and (2-17) that the map
u (uy)~! where |z| € [%T, T'] can be written as ¢? where y isan iR Valued function
on this part of S x C that obeys |x’| < co8. Keep this in mind and let x7 denote the
function z — x(|z|/T) on C. Extend the identity map from the |z| € [2T T] part
of S xC to U(l) over the whole of the |z| < T part as eX ™ where |z] € [ T,T]
and as u;(u14)~! over the remainder. Use 144 to denote the resulting map. Rescale
the latter by the r = r, version of 7, and multiply the result with the extension u,,
of u, that was chosen in Step 2. Denote the result by u,,. It follows from (2-17)
that this map from U, to U(1) is admissible in the sense used by Step 3 were it a
smooth map. Note in this regard that the derivative bounds on Step 3’s pair b;, and
Ay follow directly from (2-6) and (2-7) using Lemma 2.3. A smooth map from U,
to U(1) sufficiently close to that just constructed will also be admissible and serve for
the purposes at hand. |

Part 6 Fix § > 0 but small enough to invoke Lemma 2.6 when # is large. Change the
notation now and use (A, ¥,) to denote the result of applying Lemma 2.6’s gauge
transformation to the n—th element in the subsequence from the sequence that appears
in (2-1). Also, use (b, 1) now to denote the pair (b, 7) given by Lemma 2.6. In this
new notation, (A, ¥,) = (4™ + 21/2r1/2b6, V¥ +ng) where |bg| 4 0G| < cod.
Choose a vector ¢ € B with L% norm less than 6 ; use J ={(cy, {)}(y.m)eo to construct
the pair (Ajy, ¥3) as instructed in [9, Section 3.a]. The pair (A, ¥,) can be written
as (A +2/2r l/zb/ V3 +17 ) where (b/ M ) = (by. ng) — tc where t; = (cz. Ge) is
defined by writing (Ad, Vfd) = (4* + (2r)1/2c; ¥* 4 G¢). Note in particular that
[te| <cod. Thus |b2| + |r]§| <co6 also. The next lemma supplies a second, {—dependent
gauge transformation for (A, V).

Lemma 2.7 There exists k > 1 with the following significance: Take § < k! and
¢ € B with L% norm less than § to define (Ay, y3). If n is sufficiently large, there
exists an L% map s = s¢: M — iR such that
o |s| <cob and |ds| < co8/2r1/2.
e The gauge transform of (A,, V¥,) by e® can be written as (A3 + 21/2r1/2b;,
V3 +n¢) where the pair (be,n¢) is of Sobolev class L?, obeys the bottom
equation in [9, (3-5)], and also obeys |b¢| + n¢| < o812,
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Proof of Lemma 2.7 If s is of Sobolev class L%, then (D¢, 1¢) are of Sobolev class
L% automatically. Thus, the issue is that of satisfying both the bottom equation in [9,
(3-5)] and the norm bound. The construction and analysis of the desired function s has
four steps. To simplify the notation, the proof uses (o', ') in lieu of (bé, 77’;).

Step 1 For the moment, let s denote any given map from M to U(1). The gauge
transform of (A4, ¥,) by e° is

©-18) (A, —ds,e’yy) o
= (43 + V212 27 V2712 6y s e+ (e — D)y3).
This has the form (A3 + 21/2,1/2p, Y3 +n) with
(2-19) b=b—2"Y2"124s and n=1n'+( —=1)W3+7).
Thus, (b, n) obeys the bottom equation in [9, (3-5)] if s obeys the equation
(2:20) dtds—r(e™ —e)ys1* —r((e™ = Dn'Myy — (e = Dyln')

=212 2T —r g vy = 0.

A perturbative approach is used in what follows to find a solution to (2-20). To this

end, write e”° —e® = —25 + 3(s) so as to write (2-20) as
(2-21) dVds +2r g *s + R(s) —Bp — By = 0.
where

o R(s) =r3()|Yal2 +r(e® —e ) (V31> = 1¥30])
(2-22) —r((e™ = DnMyy = (e =Dy )

o Py =2"2712a% and B, = r(y Ty —vln).

A contraction mapping argument is used here to find a small normed solution to (2-21).
To this end, note that the operator dTd + 2r|¥r3,|? acting on C®(M ;iR) is invertible.
Given p € M, let x — G(x, p) denote the corresponding Green’s function with pole
at the point p. Note that this function is symmetric in its two entries, smooth on
M — p, and strictly positive. Moreover, it has a pole as x — p that has the form
G(x, p) = (1/(4r))(1/ dist(x, p)) + O(1). With G understood, solution to (2-21) is
a fixed point of a map, T(-) that sends a function s to

(2:23) 1()]x = /M G(x.)(—R() + By +By).

The map T will be viewed as a map from the Banach space L°°(M;iR) to itself.
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Step 2 This contraction mapping strategy requires some bounds for the integrals of
the function x — G(x, p), the function x — |dG|(x, p), and the norm of the two
sided derivative x — |dG d |(x, p). The next lemma states the bounds that are needed
to obtain a fixed point of T. Keep in mind that G(-,-) is symmetric in its two entries
and strictly positive.

Lemma 2.8 There exists k > 0 such that

o [y Glx.)<kr !
o JuldGl(x,-) <kr /2,
e Fix p>0. Then
(a) fdiSt(X,~)>p |dG<€7|(X, ) <k(l+4] 1n(pr1/2)|)
®)  aistx,)>p |[dG|(x,-)dist(x, )~ < k(1 + |In(pr/?)|)

ateach x e M .

Proof of Lemma 2.8 Fix ¢ > 0 and let g(-, p) denote the Green’s function for the
operator d Td 4+ 262r with pole at p € M . This Green function is strictly positive and
it obeys

1 .
. < = L —erdist(x,p)/co
glx.p)=co dist(x, p)e )

224y * ldgl(x,p) =co (1 + er!/2 dist(x, p))e_sﬁdi“(x’p)/c".

dist(x, p)?

o ldgd|(x.p) = co 1+ &2r dist(x, p)?)eeVr distx.p)/eo,

—
dist(x, p)3
In any event, use the Green’s function g to write G as
(2-25) G(x,p)=g(x,p)— /M G(x, )r([yg, > —e*)g(-. p).

Note also that G > 0. This is a consequence of the maximum principle.

To obtain the first item in the lemma, introduce for each (y, m) € © the set U, C U,
where [ j,| < ¢. Given that G > 0, it follows from (2-25) that

@2 Gerpzgwpta Y o[ G
(vmyc® Ure
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Use r~!m to denote the maximum value of the function on M whose value at x is
the integral over M of G(x,-). Integrating (2-26) with respect to p and using the fact
that G is positive gives

(2-27) m < coe 2 + mege'/€0.

If & < 1/cg, then this last equation bounds m by an r—independent constant. This
proves the lemma’s top most inequality.

To obtain the lemma’s second item, differentiate (2-25) with respect to p, and then
integrate result with respect to x. It follows from (2-24), and the lemma’s top most
inequality that the result is bounded by cor~/2. This and the fact that G(-,-) is
symmetric in its entries implies the lemma’s middle inequality.

Part (a) of the lemma’s third bullet follows by differentiating (2-25), once with respect
to x, and once with respect to p. Integrate the result with respect to p, and then use
the lemma’s middle inequality with the second and third items in (2-24) to deduce the
desired bound. Part (b) of the lemma’s third bullet is obtained by first differentiating
(2-25) with respect to x. Then take the norm of both sides, divide by dist(x, p) and
integrate with respect to p. An upper bound by k| In(pr!/2)| for the right hand side
of the resulting expression follows using the second item of the lemma with the first
item in (2-24). O

Step 3 The top inequality in Lemma 2.8 implies that the norm of the contribution to T
from the integral of G(x,-)9R(s)|..) is bounded by co|s|(|s| + [[S]| ;2 + 8) if |s] < 1.
Meanwhile, this same top inequality bounds the contribution to T from the integral
of G(x,-)Byl) by coé. Integrate by parts and then appeal to the middle inequality
of Lemma 2.8 to see that the contribution to T from the integral of G(x,-)Bp|) is
also bounded by ¢¢§. Granted such bounds, it then follows that T maps a ball in
L% (M ;iR) of radius co_1 to itself if § < cgl . A similar analysis proves that T is a
contraction mapping on a radius ¢’ ! ball if § < Co . Thus, T has a unique fixed point
on such a ball, and this fixed point has sup norm bounded by c(6.

Let s now denote the fixed point of the map T in this radius ¢, ! ball. The right hand
side of (2-23) is a C! function (for any s € L.°°) and as a consequence, the fixed point
of the map s is C''. Given that ¢ and (b’,%’) are smooth, the right hand side of (2-23)
can be differentiated to see that T’s fixed point s is C2. Thus, s obeys (2-20). Taking
limits of smooth elements shows that s obeys (2-20) when ¢ is not smooth but of
Sobolev class L%. This understood, and given the right hand side of (2-20) is in L2, it
follows that s is an L% function on M in the general case. Continuing in this “boot
strapping” vein will prove that s is smooth.
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Step 4 Given that |s| < ¢(6, it follows that 1 in (2-29) obeys |n| < c¢od. The desired
bound on || by ¢¢8!/? requires a supremum bound on |ds| by cor!/281/2. To obtain
such a bound, differentiate the right hand side of (2-23). Having done so, use the second
item in Lemma 2.8 to bound the absolute value of the contribution to this derivative
from R(s) and ‘B, by cor'/?8.

Write b’ = by + ¢;. To bound the d Tb(/) part of the contribution from B to |ds|,
fix p € (0,r~1/2), and let x*-*(-) denote the function on M whose value at p is
x(dist(x, p)/p). Write the contribution to ds = dT(s) at x from 2'/271/24%p’ as

(2-28)  (2r)!/? /M dG(x, ) xPd by + (2r)!/? /M dG(x,-)(1— x*P)d by,

To bound the leftmost term in (2-28), integrate by parts so as to remove the derivative
from b’. Then use the second item and Part (a) of the third bullet of Lemma 2.8
to see that the result is bounded by co8r'/2(|In(pr!/?)| + (pr'/?)~1). Use (2-25)
and the fact that [Vbg| < cor 1/2 {0 see that the right most term in (2-28) is bounded
by corp(1 + ,orl/Z). Granted all of this, it follows that the integrals in (2-28) are
bounded by

(2-29) cor (81 +[n(or 1)) +8/(pr'/?) + (or)'12).

This understood, take p = §'/2r~1/2 to bound on the d erf) part of the contribution
from Y, to |ds| by o'/ 2r1/2.

A bound on the d Tc§ part of the contribution from 3 to |ds| is obtained as follows:
The contribution can be written as in (2-28) but with ¢ replacing b . Take p in this
case to equal r~1/2. To bound the c; version of the right most integral in (2-28),
integrate by parts and use the second item and Part (a) of the third bullet of Lemma
2.8 to bound the result by cyr 1725 As explained next, the c¢; version of the leftmost
integral in (2-28) is also bounded by cor'/2§.

The asserted bound on the ¢; version of the leftmost integral in (2-28) exploits the
fact that L% functions on S are Holder continuous with exponent 1/2. This has the
following consequence: If x and x’ are given points in M , then c¢|x — cz|x has norm
bounded by cor!/4 dist(x, x/)1/2||§||L2 at points where |x — x’| < r~1/2_ Keep this
fact in mind. 1

For each k € {0,1,2,...}, set pr = 27%r=1/2 and remark that the function x* can
be written as » ., o1 [lj=o . x X% (1 — x**Pk+1). Thus, the ¢; version of the
leftmost integral in (2-28) is

(2-30) > oen'/? fMdG(x,-)nj:o ..... § X (1= x %Pty dieg.
k=0,1,...

.....
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Note that the k—th summand in (2-30) is supported where the distance dist(x,-) €
[2_" —rp=1/2 p—kp—1/ 2]. Note also that any given coordinate derivative of ¢z on the
ball of radius r!/2 about x is the same as that of (cz — c¢|x). This last point facilitates

the use of the Holder bound for Ct -

Granted the preceding, integrategy parts in the k—th summand and so bound the
latter by the integral of co(|dG d |(x,)| + |d G| (x,.)l dist(x,-)"1) times lce — celx
over the annulus where dist(x, -) € [27K=2,=1/2 2=k;=1/2] Granted what was said
about Holder continuity, it follows using both Parts (a) and (b) of the third bullet of
Lemma 2.8 that the latter integral is no greater than co(1 + k)27%/2||¢|| L2 Since
Zk_o,l (I+k)2™ k/2 i convergent, it follows that (2-30) is bounded by cor1/28 a

Part7 Fix § >0 asin Lemma 2.7 take n very large. Lemma 2.7 assigns to each element
¢ € B with L% norm less than § a gauge transformation of (A, ¥,) with the following
properties: Let J = {(cy, {y)}(y,m)e® - The gauge transform of (A, ¥,) can be written
as (Ay+ 21/2r1/2b;, V3 + n¢) where by = (bg, n¢) obeys the third equation in [9,
(3-5)] and is such that |b¢ |+ |n¢| < cod 172 Introduce the Hilbert space H as described
in [9, Step 1 of Section 3.b]. This is the completion of C®°(M;iT*M & S ®iR)
using the norm that is given by replacing the integration domain R x M in (1-13)
by M. Then by € H since the gauge transformation supplied by Lemma 2.7 is of
Sobolev class L%. Choose § < 1/c¢q so that the projection I1; on H as described in
[9, Section 3.b] is defined when ¢ has L% norm less than §.

Lemma 2.9 There exists k > 1 with the following significance: If § < x and if n is
sufficiently large, then there exists a unique { in I3 with L% norm bounded by § and
such that IT¢b; = 0.

This lemma is proved in Part 8.

This lemma leads directly to a contradiction with the assumptions in (2-1) when n
is large. To see how this comes about, let { now denote the element in B given
by Lemma 2.9. Then by obeys [9, (3-5)] and also [9, (3-16)]. As it is in Hé— it
follows using [9, (3-16)] and [9, Lemma 3.2] that the H-norm of b; obeys |b¢||m <
cor1/2||b§ * bell2 + cor 2. Since bz | < «81/2 | this implies that

(2-31) Io¢ller < co8™ 2l e + cor™"/2,

As a consequence, ||bg[lmr < cor~!/2 if § < ¢y !. This small H-norm implies that bg
is the solution to [9, (3-16)] given in [9, Lemma 3.5]. Suppose that § is also less than
the constant & in [9, Lemma 3.8]. As [9, (3-5)] is obeyed, so is [9, (3-35)]. Thus, ¢
must be the solution to this last equation given by [9, Lemma 3.8]. As a consequence,
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the equivalence class of (A, ¥,) is in the image of the map ®”, which contradicts
what is asserted in (2-1).

Part 8 This part contains the following.

Proof of Lemma 2.9 Let IT denote the { = 0 version of the projection IT¢. The first
point to make here is that IT¢b; = 0 if and only if TT(IT¢bs) =0 when § < co_1 and n
is large. Indeed, this follows readily from what is said in [9, Part 8 of Section 2.a]. Now
let ¢: JC — H denote the ¢ = 0 version of the map that is defined by [10, (2-5)]. This
map ¢ identifies K with the image of TT. Thus, I1b = 0 if and only if £7(b) = 0. Note
in this regard the fact, implied by [10, (2-7)], that ¢ is nearly isometric with respect to
the L2 inner products on K and H.

These first two points have the following consequence: If § < ¢ I and 7 is large,
then the condition IT¢by = 0 holds if and only if tT(Hgbg) = 0. Meanwhile, the
assignment ¢ — tT(H;b;) can be viewed as a map from the radius § ball in B to the
ambient Hilbert space K = EB(y,m)(E@ L%(Sl, c; T1,0Cy,). Write any given (y,m) € ©
component of ¢7(-) as (- )y - It is argued momentarily that the map

(2-32) & =(y)y.meo — (gy + ”)}/zﬁ(nibf)y)(y,m)e@

sends a ball of radius ¢’ ! about the origin in B to itself as a contraction mapping if
§<cy ! and 7 is large. Such being the case, the contraction mapping theorem implies
that this map has a unique fixed point; and this fixed point is the desired point ¢ with
[T¢be = 0.

The six steps that follow explain why the map in (2-32) is a contraction mapping on a

ball of radius ¢, Lif § < Co ! and n is large.

Step 1 Fix { = (§y)(y,m)e0 € B with L% norm less than §, take J ={(cy, ) }(y.m)c0
and write (A3, v3) as (Ag, + (2r1/2)c;,1/fgo +G¢). Set tr = (¢z,G¢). As noted
previously, |t¢| < coé. In any event, it follows from [9, (2-11), (2-12)] and the formula
in [10, (2-5)] for ¢ that any given (y,m) € ® component of tT(t;) obeys

(2-33) /2 (k) = & + 1 (Q)y,

where the L% norm of r(¢), is bounded by co(r~12 + ISy ”L% . By the same token,
if ¢ and ¢ are both vectors in B with L% norm bounded by &, then

(2-34) Ir @y =7 (&), Iz < co(r™ 24+ 8)¢ =l 2.
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Step 2 Define the pair by = (b4, «) as in [10, Step 2 of Section 2.a]. Use this pair to
define the operator £ this given here in [10, (1-14)] as (1-9). Introduce bg asin [9,
Step 2 of the proof of Lemma 3.10]. Define the function ygx = 1 — Z(y’m) co Xy and
set f =bg +t¢ —bx— Xo*bg- This step and the next given bounds for the size of .
The relevance of f to the task at hand is explained in Step 5.

Given that bs obeys

(2-35) Lube + 712 (tg 5 by + (b — by) b)) = r~ 20,

it follows that | obeys

(2-36) Caf + 1 20e % F =17 20p + Loty — Lu (b + x04b).

Write f = f* + £(0) with ITf~ = 0 as in [10, Step 6 of Section 2.a]. This last equation
is used to obtain bounds on the size of {- and the size of 6.

Keep in mind what is said in Steps 2 and 3 of the proof of [9, Lemma 3.10] about the size
of by and b{: The former is bounded by cor —1/2 > (y.m)ed € —Vrdist.¥)/eo and the
latter by cor 1. As [tz] < cod and |bg| < o812, it follows that |f| < co(r—1/2+61/2),
This and [10, (2-8)] imply that

(2-37) £(O)] S co(r™ /2 481/2) N emVrdsCnie,
(y,m)c®
This L° bound on ¢(#) and the L* bound on § imply that [f-]| < co8!/2.

Consider first the (1 —IT) part of (2-36). Write b¢ * f in terms of fJ- and t(0). Given
the bound by ¢¢8'/2 on the L norm of b and given (2-37), what is written in the
top line of [10, (2-19)] together with [10, (2-20)—(2-21)] imply that

1§ 1 < co8 2 (r 2114 12 + 1 £(O)]12)
+eoll6 2+ collr™Pog + Late — La (04 + X040 -

(2-38)

The proof of [9, Lemma 3.10] finds the L? norm of r I/ZU; + Loty — Lo (b + Yox bo)
is bounded by co(r~! 4+ r~1/2|| ;2). Meanwhile, from [9, (3-13), (3-24)] with (1-7)
and [9, (2-11), (2-12)], the L2 norm of Lxte is bounded by co(r=Y2 + (L]l L2)IIC ] 12
Thus, (2-38) implies that 1 :

(2-39) I < o101l 2 + €072 + 7).

Step 3 This step considers the image of (2-35) via the adjoint, ¢, of the map ¢ So as
to obtain an L% bound on 6. It follows from [10, Lemma 2.1] that this has the form

2-40) DO+ r12eT (b x 1) +pT (L) = 7 (77 20p + Loty — Lo (bs + x0xb3)).
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Given [9, (3-37)] and given the L norm bounds on § and t;, this equality implies

||D9||L2ECo(5+r_1/2)(||9||L2+||é°||2 r)

(2-41)
Feoll 1 2o + £t 12 + 1161 (S(bs + 20-0)) 2.

To make something of this last inequality, it is necessary to say something about the
size of the right most two terms in (2-41). In this regard, L? norm of the far right term
is bounded by cor ! This follows from [9, (3-41), (3-13), (3-14)].

To bound the L? norm of tT(r_l/zn; + Lyte), first fix (y, m) € O and use [10, (2-19),
(2-22)] to identify

(2-42) a2 41 (L4te)y = (DO)y +ve,

where ||e]| ;2 < co(r™/2 + ||C||L%)||§‘y||L% Then use [10, Lemma 2.1] to write
i
(2-43) (DLy) = 3 Vily + (Ve VIOR)le, + ¢,

where |[¢|| ;2 < cor_1/2||§y||L%. Meanwhile, use [9, (3-38)] to write

_ i
(2-44) ry/ 281 20), = —(zvtéy + (V;VVI’Oﬁ)lcy) +¢,

where [[¢”| ;2 <co(r™ 12 4 ||§||2 ). Add (2 43) to (2-44) to obtain a bound on the
L? norm of ¢(r—1/ an +£*t;)y by co(r™! 4+~ 1/2||§||22)

Put this last bound into (2-41) and then use [10, Lemma 2.1] to see that
(2-45) 161122 = co(r™" +811E1172).
Step 4 Fix a pair ¢ and ¢’ € B and any given b € H with |b| bounded on M . This

step considers the difference between tT(H;b) and tT(Hg/b). It follows from [9,
(2-11), (2-12)] that this difference obeys

(2-46) |¢7(Mgb), — £ (Mg by)| < cor™/218, = & | b| oo,
I¢7(Meb),, — £ (TTe b)), Il 2
(2-47) 12
<collty =& I3 (r—1/2||b||Loo + (/S . x(|z|/p*)|vtb|2e—ﬁ'2'/”°) )
X

where V, is the covariant derivative along the S! factor of S' x C that is defined
using the connection A4*.
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Step 5 Write f as §= + £(#) as done in Steps 2 and 3. Fix a pair (y,m) € ®. Then
write

a7
= 12t (Mef)y — )21 (Mgte)y + )2 £ (T (0x + x0467)),,.
Now write f = f- + ¢(0) as in Steps 2 and 3. Then (2-48) gives

(2-49) ry/ 2N (Mebe)y = r)/ 21 (1(0))y) — ¢y + e+ ¢,

where ¢ accounts for the difference between H; and I1, and where

(2-50) 112 < o™ 2 +112072).

With regards to e, it follows from (2-39), (2-45) and (2-47) that

@-51) lell 2 = collgll 2 6+ 21E072 +712).

Given [10, (2-7)] and (2-49), what is written in (2-33), (2-50) and (2-51) implies that
the L% norm of the map in (2-32) is bounded by

(2-52) collgl 28+ 218l 2) +cor ™12,

As a consequence, the map in (2-32) sends the ball of radius ¢ 1p=1/4 in B to itself

if § < ¢y and r > co. Granted this, let B4« denote such a ball. Write its radius as
—1/4
er .

Step 6 What follows explains how to prove the assertion that (2-32) is a contraction
on By when ¢, § < cal and r > ¢q. To start, fix a pair ¢, {’ € Bx. Define f as in Step 2
using ¢ and define ' to be the ¢’ analog. Note that u = —§ = by —bgs + tr — to.
Subtract the § and §' versions of (2-36) and write what results as

(2-53) Loutr2(bp + P xu=rY2(te —tg) % F+r 72 (0r —0g) + Lo (te — t20).

Now write u = ut + £(A) and mimic what was done in Steps 2 and 3 to bound the
H norm of ul and the L% norm of A. What with (2-36), (2-37) and (2-47), the
manipulations done in Step 5 can be repeated with only notational changes to establish
the contraction property when ¢, § < ¢, Uand r > ¢y. The details of all of this are
straightforward and omitted. a

2.b Proof of Proposition 2.1

Fix a pair of functions (v, ) on S! with v real and p having values in C. Use the pair
(v, i) to define the function A on the vortex moduli spaces {€,},,,>1. The upcoming
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Proposition 2.11 describes a compactness theorem for solutions to the corresponding
versions of (1-6) and for some related equations. Proposition 2.1 is a special case of
Proposition 2.11.

To set the stage for this proposition, suppose that g: S! x C — R is a smooth function
whose norm grows slower as |z| — oo on C than some power of |z|. The given
function g is used to define the smooth function g: S 1% ¢, —> R as follows: If r € S
and ¢ = (4, @), set

1
2-54 o) =— t,-)(1—|af?).
(2-54 9.9 =5 [ et.)0 = o)
A function of this sort gives a perturbed version of (1-6), this the equation
(2-55) %c’+V(1’°)(/i + ) =0.

The statement of the next proposition uses VC to denote the vector of partial derivatives
on C.

Proposition 2.10 Fix a positive integer, n. If n = 1, assume that (v, i) is nonde-
generate, and if n > 1, assume that (v, u) is either hyperbolic or n—elliptic. Given
K > 1, there exist ¢ > 0 and T > 1 with the following significance: Suppose that
g: S! x C — R is a smooth function with

sup (K +12D?lg] + (K + 12D 719 g | + KT'[VEVEg]) <.

ze
Suppose that ¢: S' — &, is a solution to the version of (2-55) that is defined using the
function g in (2-54) and the function A in (1-5). Write ¢ = (A, «). Then all points in
a~1(0) have distance T or less from the origin in C .

The set of maps ¢: S! — €, that obey (2-55) is given the C> Frechet topology via
its inclusion in the space C®°(S!; ¢,). The following proposition gives a condition
that guarantees the compactness of this space.

Proposition 2.11 Let n, (v, 1) and g be as described in Proposition 2.10. Define g4
as in (2-54) and k as in (1-5). Then the space of solutions of the resulting version of
(2-55) is compact.

Proof of Proposition 2.11 Given Proposition 2.10, it then follows from what is said
in [9, Part 7 of Section 2.a] that there is a compact subset of &, that contains the images
of all maps from S! to ¢, that obey (2-55). As a consequence of (2-55), the derivatives
of all such maps are uniformly bounded. This understood, differentiate (2-55) to see

Geometry & Topology, Volume 14 (2010)



2848 Clifford Henry Taubes

that the second derivatives of all such maps are uniformly bounded. Differentiate again
and continue in this vein to see that the derivatives to any given order are uniformly
bounded. Now apply the Arzela—Ascoli theorem to see that any sequence of maps
from S! to ¢, that all solve (2-55) has a subsequence that converges in any given
k > 1 version of the C¥ topology on the space of maps from S! to €,,. Note that
convergence in the C! topology guarantees that the limit map obeys (2-55). a

The remainder of this subsection contains the following.
Proof of Proposition 2.10 The proof is broken into seven steps.

Step 1 This step states and then proves a lemma about the clustering of # points in C.
Here is the lemma.

Lemma 2.12 Fix a positive integer, n, and fix p>1. Let 3=1{z1, ..., z,} € Sym"(C).
Then there exists R € (p, p*"] and a partition of 3 into nonempty subsets that have
the following property: The diameter of each partition subset is less than R and the
distance between any pair of distinct partition subsets is greater than R?.

Proof of Lemma 2.12 Define an equivalence relation on 3 as follows: Points z and
z' from 3 are equivalent if |z—z'| <p.Let 3 =31, U---U 31p denote the resulting
partition. If the distance between any two of distinct partition subsets from this partition
is greater than p2, then there exists R slightly greater than p that makes the lemma
true. If two distinct partition subsets have distance less than or equal to p?, then define
an equivalence relation on the set {311,...,31,} as follows: Any two partition subsets
are deemed to be equivalent if their distance is less than or equal to p?. The resulting
equivalence classes define a new partition of 3, this written as 3,7 U---U 3, p- Note
that p’ < p. If the distance between any two distinct partition subsets from this new
partition is greater than p*, then stop because there is a choice for R ~ p? that makes
the lemma true. Otherwise, rerun this repartitioning exercise using the partition {3}
in lieu of {3;;} and using p? in lieu of p. Continuing in this vein finds a partition
and value of R ~ p? for 1 < ¢ < 2" that makes the lemma true because the number
partition subsets decreases at each iteration of this step. |

Step 2 Fix p > 1 and let t — ¢(¢) denote a solution to (2-55). Let t — 3(¢) denote
the corresponding map to Sym”(C) given by writing ¢(f) = (A, «) and taking the
zeros of «. Fix #p and let 3(#p) = 31 U---U 3, denote a partition that is supplied by
Lemma 2.12. Thus, there exists R ~ p? for g € {1,...,2"} such that the diameter
of each partition subset is less than R and the separation between any two distinct
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partition subsets is greater than R?. Since the corresponding map ¢ — 3(¢) € Sym”(C)
is continuous, there exists an open neighborhood of 7y with the property that if ¢’ is
in this neighborhood, then 3(¢") also has a partition into p sets, each with diameter
less than %R and with pairwise separation greater than %Rz. These sets are in 1 — 1
correspondence with those defined by 7y and they vary continuously with ¢ when
viewed as maps into the relevant version of Sym”’ (C). Let I denote such an open
neighborhood of 7. Write 3(t) = 31(t) U---U 3,(¢) as ¢ varies I.

Step 3 This step derives a lower bound for the length of / in terms of R. The
following lemma summarizes the story.

Lemma 2.13 Fix (v, ) as described in Proposition 2.10. Given K > 1 and ¢y > 0,
there exists a constant, k > 1, with the following significance: Suppose that g: S! — C
is a smooth function that obeys the bound given by Proposition 2.10 with € < gy . Let ¢
denote a solution to (2-55) as defined using (v, ;) and the function i given by (1-5)
and g by (2-54). Let 3 denote the corresponding map from S! to &, . Suppose that
R > « is such that 3(ty) has a partition whereby each partition subset has diameter
less than R, and whereby the distance between any two distinct partition subsets is
greater than R?. Then, an interval I can be chosen as in Step 2 above so as to contain
[to — k" 'R72, 1o +K_1R_2].

Proof of Lemma 2.13 Take 7 to be the largest interval that contains 7y and has the
desired properties. If ¢’ € 1, then one or both of the following must occur:

e There exists j € {1,..., p} such that 3;(¢') has diameter %R.

(2-56) There exists i # j € {1,..., p} such that dist(3;(¢"), 3;(¢')) = %Rz.
As is explained next, it takes time O(R™') for the first instance to occur. This can
be argued as follows: For each j, use c;. (t) = (Aj,aj) to denote the solution to
(1-4) that is defined by 3;(¢). Thus, cj. (t) = (A’.,ocJ’.) € Sym™(C) with m = m;
depending on j. Each cj.(-) defines a smooth map from / to the m = m; version
of €, Introduce z; () to denote the center of 3;(¢); this given by (1/m;) 2263], )%
Define ¢;(¢) € €y, so that its translate by z; (¢) is ¢t

With the preceding understood, now write ¢(¢) = (A4, ). It then follows from [9, (2-4)]
that = e" [; oz]t. where [re(u)| < co )_;2; e~V21z=2j| Moreover, it follows from
[9, (2-4), (2-5)] that the function A + g that appears in (2-55) can be written as

1 L
@5T) kg =) mi (vl +pF + 5 +2(2) + ) _gi() + .
j J
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where g; is defined as in (2-54) using a function, g; thatobeys |g;| <cg|z|. Meanwhile,
o] + |de| < ek X iz e~V2lzi=zj1, Here, and in what follows, c¢gx depends only on
the constant K and (v, i). The precise value of this constant can increase with each
appearance.

This last point with [9, (2-5), (2-16)] imply that

d
(2-58) ‘Ec,- )| < cx R.

This inequality implies that the first item in (2-56) can arise only if |t’ —ty] <cx R™!.

Turn now to the second item in (2-56). It follows from [9, (2-16) and (2-3)] with (2-57)
that the point path # — z;(t) moves while ¢ € I in accord with an equation that has
the schematic form

id —
(2-59) EEZJ' +vzj + uzj =vj,
where [vj| <eélzj|+ex(1+ D 25 e_ﬁ|zi_zf|). This last observation has the fol-
lowing consequence: If %RZ Slzi—zj| = %Rz, then

d
(2-60) ‘E(z,- —zj)| <cg R*.

This implies that the second item in (2-56) can occur only if |t' —#o| <cx R™2. O

Step 4 Suppose now that Proposition 2.10 is false. If this is the case, there exist K > 1
plus, for each v € {1, 2, ...}, the following:

e A positive number &, .

o A function g = g, on S! x C that obeys the assumptions in Proposition
(2-61) 2.10 with constant € = &y, .

e Amapc’: S I 5 ¢, that solves the version of (2-55) that is defined using
(v, 1) to define A and g, to define 4.

And, this data has two properties. Here is the first: The sequence {e,} is decreasing
with limit zero. To state the second, let 3V(-) denote the map from S' to Sym”(C)
that corresponds to ¢V. Let dy, = sup,cg1 dist(3V|;,0). Here, 0 denotes the point
(0,...,0) € Sym"(C). Granted this terminology, here is the second property: The
sequence {d,} is increasing and unbounded.
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What follows is a consequence of Lemma 2.13. There exists

A positive integer N, a constant co > 0, and a cover of S by N or less
intervals of length at least co R™2.

e There exists a subsequence of {cV} such that on each interval of the cover
and for each index v in the subsequence, the corresponding 3V (-) €
(2-62) Sym”(C) has a partition as 3V = {3V, ... ,3},’} where
(a) 3}’( -) € Sym™ (C) has diameter less than %R.
(b) dist(3Y,3Y) > 3R> when i # j.
(c) The integers p and {m;}1<j<, depend on I but not on the index v.

Pass to the subsequence that is described by (2-62) and renumber the latter starting
from one.

Step 5 Fix an index v and an interval from the cover given in (2-62). Use ¢V in lieu
of ¢ to define the collection of functions {Z}’}l <j<p on this interval. For each j, set
ij =d, lz}’. By virtue of (2-61), the collection {w}’} obeys the equation

id v v —U —1.v

One consequence of this is that the collection {w}’} vary on their interval of definition

with first derivatives that are bounded by an index v independent constant.

For each ¢ on the interval where {w}’} is defined, set

(2-64) puv(t:2) =[1i<j<,(z —w)(©)

The derivatives of the coefficients of g, (¢, z) are uniformly bounded on their interval
of definition. Moreover, if (-, z) and g/ (-, z) come from intervals of the cover
that overlap, then their coefficients for any given power of z differ by no more than
CO R /dv .

mj

Step 6 It follows from what is said in the previous step that there is a subsequence
of the index set with the property that the coefficients of the corresponding sequence
of polynomials {( (-, z)} converge to give continuous and piecewise differentiable
functions on S!. Let p( -, z) denote the resulting degree n polynomial. It follows now
from the definition of {wJ“} that the roots of (z,-) lie in the closed unit disk for each
t € S, and that there exists a nonempty, open set in S where (¢, -) has at least one
nonzero root. Let p(-) denote the function on S whose value at ¢ is the number of
distinct, nonzero roots of g(t,-). Fix ty € S! where p(-) has its maximum. Then
p(+) = p(ty) on some neighborhood of #y. Let I C S! denote the maximal open
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interval in S! that is symmetric about #, and has this property. Write this interval as
(to —a,to +a) with a € (0, r]. When ¢ € I, use {w(?), ..., wp,)(?)} to denote the
distinct, nonzero roots of g(¢,-). Each is a differentiable functions of ¢. Moreover, by
virtue of (2-61), each obeys

id _
(2-65) Eij—i-ij + pw; =0.

Step 7 Standard uniqueness properties for first order, linear equations of the sort
that appear in (2-65) guarantee that none of the collection {w;} can vanish at 7y +a.
Likewise, w; = w; at ty = a only if i = j. This requires that « = 7. Since (-, z)
varies as a continuous function of S, it then follows that the collection {w j(to—m)}
is a permutation of the collection {w; (tp + m)}. This understood, there is a positive
integer p’ < n and a renumbering of the collection {w;} so that

wi(to—7) = wy(to+ ),

(2-66) wa(to — ) = wi (fo + ),

wp/(to —7'[) = wp/_l(lo + T[).

Define w4 to be the 27 p’—periodic function that is defined by concatenating the
collection {w;j }1<j<p at the points {fo —m +2jm};j—o,..,p - Then wy is a nontrivial,
27 p’—periodic element in the kernel of the (v, ;) version of (1-2). However, no such
solutions exist by assumption. a

3 Properties of instantons

This section with Section 4 and Section 5 present some basic properties of instanton
solutions to (1-11). They serve as a resource for the subsequent proof of Theorem 1.2.

The purpose of this section is to summarize some general features of the spinor and
curvature of an instanton solution to any given p € Q and large r versions of (1-11).
The metric is defined by a given contact 1-form a and an almost complex structure J
on the kernel of a. Unless stated to the contrary, the only assumption is that da(-, J(-))
is symmetric and positive definite. It is also assumed in what follows that the 7P—norm
of 1 is bounded by 1. With this bound implicit, all constants that appear in this and
subsequent sections are independent of . (These constants will depend on u to
the extent that they increase from some positive lower bound if the P—norm of u is
allowed to increase.)
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Assume in what follows that 9 = (4, ¥ = (&, B)): R — Conn(E) ® C*°(M;S) is an
instanton solution to (1-11). Note that much of what is done here is very similar to
what is done from Sections 2—4 in the article SW = Gr from [6].

3.a The size of o, B and the curvature: Part 1

The lemma below gives the 4—dimensional version of what is said by the first two
bullets of Lemma 2.3.

Lemma 3.1 There exists « > 1 with the following significance: Suppose that r > k
and that (A, V¥ = («, B)) is an instanton solution to (1-11). Then

o Ja| <14«r7t,

. |,3|2 < Kl’_l(l — |a|2) +x2r2,

Proof of Lemma 3.1 View X =R x M as a four dimensional Riemannian manifold
so as to view the instanton equations as the Seiberg—Witten equations on X . As in
Chapters 2a—2b of the article SW = Gr from [6], the Bochner—Weitzenboch formula
for the R x M Dirac operator d/ds + D4 with (1-11) lead to differential equalities for
w = (1 —|a|?) and |B|? of the following sort:

o ddTdw +r|a)?w—|Via|? +ey =0,

CD o LaalBP +rlaPIBI + r( 4 BB + V4B + e =0,

where |ew| < co(le|? +|VaBI* +|BI?) and |eg] < co(IBI* +|Bllal + Bl Vac]). Here,
V4 denotes the covariant derivative on sections over R x M of the pullbacks of E
and E ® K~!; it is defined by viewing A and the canonical connection on K~! as
connections on the respective pullbacks. As in Chapters 2a—2c of the article SW = Gr
from [6], the maximum principle is used with these inequalities to derive the bounds
asserted by the lemma. The use of the maximum principle in this noncompact setting
requires Lemma 2.3 to guarantee the bounds given by the lemma hold as s — +o0. O

The next lemma speaks to the size of (d/ds)4 and B,4. Note that given Lemma
3.1’s bound on |B|?, the top equation in (1-11) yields the bound |(3/ds)A4 + B4| <
r(1—|a|?) 4 co. The lemma that follows asserts both |(9/ds)A| and | B4| are bounded
by cor given an extra assumption. To state this assumption, suppose for the moment
that ¢ = (A4, ¥) is any given pair in Conn(E) x C*®(M;S). Let £, denote the
corresponding version of (1-14). With this notation understood, an instanton solution
s — 0(s) € Conn(E) x C*®°(M;S) to (1-11) gives the continuous family of operators
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1£o(s) tser - This family of operators has a unique s — —oo limit, and a unique s — 00
limit and so there is a well defined spectral flow for this family, this denoted by f;.

Note in this regard, that the notion of the spectral flow f; is ambiguous if either of the
s — o0 limits has nontrivial kernel. As the results that follow demand only a lower
bound on f;, the phrase “ f > x” for any given x € R is defined in the following way.
Let c— and c4+ denote the respective s — —oo and s — oo limits of 9. Then f > x if
there exist sequences {¢_;};j—1,2,.. and {c4;};i=;12,. . in Conn(E) x C*°(M;S) with
the following three properties: First they converge respectively to ¢c— and ¢4 . Second,
each element defines a version of (1-11) with trivial kernel. To set the stage for the third
requirement, fix, for each index i, a path in Conn(E) x C*°(M;S) of the following
sort: The path starts at ¢—; proceed to c— along a short path to c_, it then follows the
path defined by 0 to ¢4, and it then proceeds to c¢4; via a short path. The notion of
“short” is such that the sequence of paths converges in the C°° topology as i — oo to
the constant path. With such a path chosen, here is the third requirement: The spectral
flow for (1-11) along this path is at least x.

Introduce Fp to denote the minimum of f; and 0 when c¢q(det(S)) is not a torsion
class, and to denote 0 otherwise.

The upcoming lemma reintroduces the function a on Conn(E)xC®° (M ; S) as depicted
in [8, (3-19)]. By way of a reminder, the latter is defined in terms of the function E in
(1-9) and functions ¢s and ¢, on Conn(E) by the formula

(3-2) a= l(cs—rE)+eM+r/ WTDAW.
2 M

In this regard, the value of ¢s at a given connection A is defined as follows: Fix
once and for all a connection Ag on E with harmonic curvature 2—form and write
A= Ag + a4 with a4 a section of i T*M . Then

(3-3) cs(A4) = —/ G4 A*day —2/
M

~ 1
aA/\*(BE—I—— AK)‘
M 2

Meanwhile, ¢, (4) =i [, p A*By.

Let 0: R — Conn(E) x C*°(M;S) denote an instanton solution to (1-11). Introduce
as notation Ay = (limg——co a(0|s) — lims— o0 a(0]5)). Note that A, is gauge invariant.
It is a positive number except in the case when 0 is R—invariant.

Lemma 3.2 Given T > 1, there exists k > 1 with the following significance: Suppose
that r > k and that ® = (A, ) is an instanton solution to (1-11) with either Ay < r>T
orelse Fy > —r2T . Then both |(3/ds)A| and | B4| are bounded by «r .
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The proof of Lemma 3.2 is given momentarily.

Note with regards to the subsequent applications of this lemma that the precise value
chosen for the constant 7" is of no significance. This understood, the proof of Lemma
3.2 and the statements of all subsequent applications in the rest of this article take
T = 1. A different choice for T' changes various constants, but otherwise does not
change the conclusions.

The proof of Lemma 3.2 exploits a preliminary lemma that gives a uniform bound for
the L2 norm of By on length 1 subcylinders of R x M .

Lemma 3.3 There exists a constant, k > 1 with the following significance: Suppose

that r > k and that 0 = (A4, ¥) is an instanton solution to (1-11) with either Ay < r?

or Fy > —r?. Let s denote any point in R. Then

2
+|Bal*+r

2
—A4

Josvonlls
[s,s+1]xM

+r|DAw|2) <kr2.
as

alﬁ
as

Proof of Lemma 3.3 The proof has five steps.

Step 1 Introduce the 1-form
(3-4) Bay)=Ba—r(W oy —ia)y—ixdu+ 1By,

The next lemma says something about the L2 norms of (9/ds)A, Ba,y). (0/0s)Y
and D4y . The statement of the lemma uses ¢— = (A—,¥_) and ¢4 = (44, ¥4)
to denote the respective s — —oo and s — +o0 limits in Conn(E) x C*°(M;S) of

(A.9).

Lemma 3.4 Suppose that (A, ) is an instanton solution to some r > 1 version of
(1-11). Let s" > s € R. Then

2

1 0 9 2
2 a5 i Day*)) = —a(d|y).
2 /[s,s’]xM( ds B!+ r( 3Sw +1Day| )) a(@[s) —a(d|s)
Moreover,
1/ (8A2+|% > +2 8wz—i-ID zp|2) a(e—) —a(cy)
— e 12 ey .
2 RxM as (4.9) s A c C+

Proof of Lemma 3.4 Integrate the sum of norm squared of the top equation in (1-11)
with 2r times the norm squared of the lower equation. Integration by parts yields the
lemma’s assertion. i

The next lemma bounds a(c—) —a(cy) in terms of Fp and the respective values on c_
and c4 of the function E in (1-9).
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Lemma 3.5 There exists a constant « > 1 with the following significance: Suppose
that r > x and that (A, ) is an instanton solution to (1-11). Then

a(c2) —a(c4) < —27°Fo + LrE(A4) — LrE(AD)
+aer?? (0 (JE(A0) [ + [E(A)1*) + k.
However, in the case when ¢y (det(S)) is torsion,

a(c—) —a(e) < Lre(dy) — Lre(do) + kr? B (B4 + 1B |E(A0)[*3) + k.

Proof of Lemma 3.5 This follows from [8, Proposition 4.10]. m|

2
+ |DAw|2))

< —27Fy + cor > (Inr)©0.

These last two lemmas imply the following:

(3-3) /]RXM(

Step 2 Assume that either Ay < r? or Fy > —r2. When k € Z, let Iy = [k, k +1].
It is a consequence of Lemma 3.4 and (3-5) that there are at most ¢o(Inr)€® integers
k € Z where

—A

0
o
Ik xM

as

5 12
—A
as

0
+ |‘B(A,1/,)|2 + ZV(‘glﬂ

2

2
+ IDAW)) >r2.
In particular, given any k € Z, there exists T < ¢o(Inr)°° such that

9 2
(3-7) / (‘—A + |DAw|2)) <r?
LarxM \| 05

This last inequality has the following consequence: There exist points s € I;,_7 and
points s € Iy 7 such that

81ﬁ
os

+ |%(A,1/,)|2 + 2r(

2

0
+ |‘B(A,,/,)|2 + 2}’(‘%1#

(3-8) / (1B + 1Dy ) < 2.
{s}xM

Step 3 Fix a connection Ag € Conn(£) with harmonic curvature 2—form. Let A
denote for the moment any given element in Conn(E) and write 4 = Ag +d4. Use
p(d4) in what follows to denote the value on the Poincaré dual of ¢q(det(S)) of the
L?—orthogonal projection of @ into the space of i R—valued harmonic 1—forms on M .
Introduce the Chern—Simon’s function ¢s as defined in (3-3). Then

(3-9) |es(A)| < co|p(@a)| + coll Ball3-
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Now suppose that ¥ € C°(M;S). It follows as a consequence of (3-9) that
(3-10) la(4, )| = co(lp@)| + 1 Ball; + I Ball2 + rl¥ )2l Davll2)-

Step4 Let k and T be as in Step 2. Choose s— € Iy_7 and s4 € Iy, so that
(3-8) holds with s = s_ and with s = s, . There exists a map u: M — S! so that
Als_ —u~'du can be written as A g +a where a is coclosed and such that |p(@)| < co.
Extend @ as a section of i T* M over the cylinder [s—, s4]x M by writing A —u~'du
as Ag + a. With this extension understood, it follows from the top line in (1-11) that

d .
(3-11) ‘d—sp(a)

<cor
at each s € [s—, s4+]. This implies that

(3-12) [p(@lsy )| < cor(Inr)“e.

Step 5 Take s = s— and s’ = s in the first equality of Lemma 3.4. Then use (3-9)
at s = s_ and at s = s4 with (3-10) to see that

0
(3-13) / (
[s—,s4]xM

—A
Asa consequence

s
(3-14) / (‘iA
LexM \| 05

This implies the assertion of Lemma 3.3 because [B(4,y,) |2 > %|BA |2 —cor?. o

2

2
+|DAw|2)) <cor?.

bl
+ |%(A,¢)|2 + 2}’(’%1&

2

2
+ IDAW)) <cor?.

9
2 2 e
+[ B4,y +2r aSI//

Proof of Lemma 3.2 Use (3-1) with the arguments used to prove Lemma 2.5 in the
article SW = Gr from [6] to derive constants z;, z,, z3, and z4 with two salient
features. First, they are (A4, ¥) and r independent. To state the second, introduce the
function

(3-15) go=r(1+r~'z))(1 —|a|*) — zor|B|* + z3.

Also, introduce s to denote |(d/ds)A — By4| and set ¢ = max(s —¢q,0). Here is the
second feature: The function g obeys

(3-16) deq+2r|a|2q524(5+r(1—|a|2)).

Here and until said otherwise, d denotes the exterior derivative for functions on R x M
and d denotes its formal L? adjoint. Thus, d'd is minus the metric Laplacian on
R x M . (The factor 2 that multiplies r|a|? above and in subsequent equations differs
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from the factor multiplying r|«|? in the article SW = Gr from [6]. These differing fac-
tors have no bearing in what follows as they can be reconciled with a redefinition of r.)

Equation (3-16) implies that
(3-17) dldq —z4q = cor(1—la*) +co.

To make something of this, fix p > 0 but less than one fourth the injectivity radius of M .
Fix x € M and let B CRx M denote the ball of radius p with center at B. If p <c¢; L
then the operator d Td —z4 on B with Dirichlet boundary conditions has purely positive
spectrum with smallest eigenvalue greater than ¢ ' Fix p so that such is the case. Let
Go(+, x) denote the Green’s function with pole at x. The maximum principle implies

1
3-18 0<G(-,x)<cpo—— and |dG(-,x)|<co-——.
(3-18) =Gl = dist(-, x)2 dG(-. )l 0dist(- ,x)3
Multiply both sides of (3-17) by x(dist(-,x)/p)Go(-, x) and integrate over B. Inte-
grate by parts and invoke (3-18) to see that

5 2 1/2
(3-19) q(x) < cop? (/ ('—A + |BA|2)) + corp®.
B as
Lemma 3.3 and this inequality imply that s < r(1 + r~'z))|(1 — |«|?)| 4+ cor. In
particular, s < cor; and this gives the claim made by Lemma 3.2. a

3.b The size of «, B and the curvature: Part 2

This part refines the bounds given by Lemmas 3.1 and 3.2. The next lemma speaks
to the size of the covariant derivatives of o and S. This lemma and, unless noted to
the contrary, the subsequent discussions use V4 to denote the covariant derivative of
a section of a bundle over R x M as defined by viewing A4 as a connection on the
pullback of E over R x M. In particular, V4 has a component that differentiates
along the R factor of R x M .

Lemma 3.6 There exists k > 1 with the following significance: Suppose that r > k
and that ® = (A, ¥ = (a, B)) is an instanton solution to (1-11) with A, < r? or
Fp > —r2. Then

o |Vya|® <kr.

© |VaBI> =k.
In addition, for each g > 1, there exists a constant k4 which is such that when r > k
then

o |Via|+r12|VEB| <kqri/?.
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Proof of Lemma 3.6 These claims are local in nature and are proved by rescaling the
Seiberg—Witten equation as written in Gaussian normal coordinates about any given
point. Here and elsewhere in this article, these are coordinates which make the metric
look like the Euclidean metric up to an error that is proportional to the square of the
distance from the point in question. The rescaling writes the Gaussian coordinate
functions {xV},—12,3,4 as xV = r~1/2V  Uniform bounds on the curvatures in the
rescaled coordinates follow from Lemma 3.2. This understood, uniform bounds on the
covariant derivatives of the rescaled sections can be obtained using standard elliptic
regularity techniques. Undoing the rescaling gives the asserted bounds. |

Lemma 3.7 There exists k > 1 with the following significance: Suppose that r > k
and that ® = (A,Y¥ = (a,B)) is an instanton solution to (1-11) with A, < r? or
Fp > —r?. Define the function s — M(S) =r Jis—1.st1pnr (1= |a|?) on R. Suppose
that so € R, that R > 1, and that K > 1 are such that supfs _g_3 5o+ R+21 M(*) = K.

Then 5
—A—B
as 4

at all points where s € [sg — R, 5o + R].

<r(1+x K27 1Y2) (1~ |a)?) +«

Proof of Lemma 3.7 The proof is has four steps.

Step 1 Reintroduce the function ¢ from the proof of Lemma 3.2. It follows from
(3-16) and just stated bound on s that zs > 1 can be chosen independent of (A4, V)
and r so that ¢; = max(q — z5, 0) obeys

(3-20) deql + 2r|oz|2q1 <cor(l— |oz|2).
Write this equation as
(3-21) dYdg, +2rq1 < cor(1—|al?) +2r(1 = |a|*)q;.

Let ye[sg— R— % So+ R+ %] and let g, denote the function x(4|s(-)—y|—1)q;.
Note that g, has support only where |s — y| < % Multiply both sides of (3-21)
by the bump function x(4|s(-) —y|—1) to obtain a differential inequality for g, .
Integrate this inequality using the fact that both s and ¢ are bounded by cor to see

that [|gy L1 = co(1 + X).

Step 2 Let p =¢, ! denote a fixed constant that is much less than M ’s injectivity
radius. Given y €[sg— R— % so+ R+ %], use ¢y to denote now x (o~ ! dist(-, y))q;.
Multiply both sides (3-20) by the function x(p~! dist(-, )) to obtain a differential
inequality for g,. For x € R x M, let G(-,x) now denote the Dirichlet Green’s
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function for the operator dTd on the ball of radius p centered at x. This Green’s
function is also described by (3-18). Use G(-, y) as in the proof of Lemma 3.2 with
the aforementioned differential inequality for g, to bound the norm of ¢, (y) by

(3-22) gy (D] < co(1 + K+ (Kr)'/?).

To elaborate, a factor ¢o(1 + X) comes from the integration over the set of points
where dy(p~!dist(-,y)) # 0 of factors that are products of p~2G(-, y)g, and
o 'dG(y,+)|qy. What with (3-18), these contribute at most p~*co||qy|lz1. The
factor co(%r)/? arises from the integral of G(-, y)r(1 — |a|?). Given d € (0, p),
the latter is bounded by breaking the integrand into the part where dist(-, y) > d and
where dist(-, y) < d. The former contributes at most Xd 2 and the latter at most rd?.
Taking d = K'/2r=1/2 gives the bound by co(%r)!/? of these two contributions.

The various y € [sg— R— %, So+ R+ %] versions of (3-22) together supply the bound

(3-23) 01 < co(1+ K+ (%r)'/?)

at all pointsin [so— R—1,5¢ + R+ 1] x M.

Step3 Let x = cosh(%rl/z(s —50))/ cosh(%rl/z(R + 1)). This function obeys the
equation

on [so — R—1,50 + R+ 1] with value 1 at s = 59 &= R. Note that x < ||¢1]cc ON
[so—R—1,50+R+1];and x <r~ 1% on [sg — R, 50 + R]| x M if r > cy.

To continue, use (3-1) with what is done in the discussion surrounding Equation (2-28)
in Section 2d of the first article SW = Gr in [6] to find constants z5, z¢ that have the
following properties: Both are positive, and v; = (1 — |a|?) 4+ zsr~! — zg| |> obeys

* U zcor_l.
324) * viz(-[a?).
. devl—i—%rvl > 0 where |a|22%.

Set ¢ = r~1/2 and note that v, = vll_s obeys v, > (1—|a|?), and it obeys the equation
(3-25) dVdvy + 1rvy = Lr12(1—|a|?),
where |a|? >

1
5 -
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Step 4 Step 3 implies that ¢» = ¢1 —co(1 +r~V2||g1[lso)r/?(v2 + x) obeys
(3-26) dtdg, +1rg; <0

on the subset U C [sg — R—1,50 + R+ 1] x M where |a|> > % and it is nonpositive
on the boundary of this subset. The maximum principle asserts that g, is negative
onU.

The inequality asserted by the second bullet in Lemma 3.2 for points in U follows
using (3-23), the fact that ¢, <0 in U, and the bound by r~!° on the values of x at
points in [sg — R, 5o + R]. The inequality for points in the complement of U follows
from (3-23) and the fact that (1 — |«|?) is greater than % on this complement. a

3.c The size of o, § and the curvature: Part 3

The bounds given in Lemma 3.7 are used here to further refine the a priori bounds
on «, B and the curvature. The first lemma below states the analog here of what is
asserted by [6, Propositions 2.8 and 4.4 of the article SW = Gr].

Lemma 3.8 Given X > 1, there exists k > 1 with the following significance: Sup-
pose that r > «, and that (A,v = («, B)) is an instanton solution to (1-11) with
either Ay < r? or F, > —r?. Fix a point s € R and R > 2; and suppose that
SUPge[so—R—3,50+ R+3] M(S) = K. Let X« CR x M denote the subset of points where

1 —|a| > «~!. The bounds stated below hold on the domain [so — R, so + R] x M .
o |Vaal> +7|VaB? <ier(1—laf?) +«>.
o r(1—]a|?)+ |Vaal> +r|VaBI? <k (r™! 4 remvrdistC X k)
N |:3|2 < K(V_2 _}_r—le—\/?dist(',X*)/lc).

As in Lemma 3.6, what is written as V4 refers to the covariant derivative over R x M
as defined by viewing A as a connection on the pullback of the bundle £ to R x M .

Proof of Lemma 3.8 What with Lemma 3.7, the manipulations done in Step 2 from
the proof of Proposition 4.4 in the article SW = Gr in [6] can be copied to obtain the
following: There exists an r and (A, ) independent constant z¢ > 1 such that the
function y = |V4a|? 4+ r|V4B|* — z¢ obeys the differential inequality

(3-27) dtdy +2rlel?y < cor(1—|a|*)y +coy

at points in [so — R— 1,50 + R+ 1] x M where 1 —|a]?> < cal . Meanwhile, use (3-1)
with Lemma 3.1 and Lemma 3.6 to obtain an (A, ¥) and r independent constant z;
such that the function w = (1 — |«|?) — z7|B|? obeys

(3-28) —co+y <dTdw+2r|alPw < co(y + ).
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Let s — x(s) again denote the function cosh(%rl/z(s —50))/ cosh(%rl/z(R +1)).
Fix ¢x = 1 and define u = max(y — co(|| ¥ |loo + co)(w + X) — ¢, 0). If cx > ¢y, it
follows from (3-27) with the leftmost inequality in (3-28) that u obeys the differential
inequality

(3-29) dtdu+ Lru=<o

on the domain U C [sg— R— 1,50 + R+ 1] x M where 1 —|a|> < cal and that u is
zero on the boundary of U . This understood, the maximum principle finds ¥ = 0 in
the whole of U. What with Lemma 3.6, this proves the assertion of the first bullet of
the lemma for points in U . Meanwhile, Lemma 3.6 and the fact that w > ¢ ! on the
complement of U imply the assertion of the first bullet on the complement of U .

To obtain the assertion of the second bullet, use (3-27) with the left hand inequality
in (3-28) to see that u’ = max(y + ¢ Yrw —¢o,0) obeys didu’ + g7’ <0in U.
Keeping this in mind, let c¢js > 0 denote a constant that is much less than the injectivity
radius of M . Let x € Xy denote a point with s(x) € [so — R, so + R], and let B C X
denote the ball with center x and radius equal to half of the minimum of c3s and
dist(x, Xx). Use p to denote the radius of the ball B. Let G(-, x) denote the Green’s
function for the operator d td + gz Wwith pole at x. This operator obeys the bounds

1 .
0<G . < —ﬁdlst(~,x)/c0’
=000 =g e

1 .
dG(-, <o p—rdist(-.x)/co
4G (-2l _Codist(-,x)e

(3-30)

Multiply both sides of the inequality d ' du’ + g7’ <0 by x(dist(-,x)/p)G(- x)

and integrate by over B. Given that |u'| < cor, 1ntegrat10n by parts finds that u/|x <
c();/'e_\/7 ﬂ/ co .

This implies what is asserted by the second bullet of the lemma. The third bullet follows
from the second using Lemma 3.1. a

The next lemma refines the bounds given by Lemma 3.7 for the curvature.

Lemma 3.9 Given or X > 1, there exists k > 1 with the following significance:
Suppose that r > «, and that (A, ¥ = («, B)) is an instanton solution to (1-11) with

either Ay < r? or F, > —r?. Fix a point so € R and R > 1; and suppose that
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SuPse[so—R—s,s0+R+3]M(5) = XK. Then

0
. ‘8_A+BA <r(l—la?) +«
s

ad
oA Ba == lof)
ds

at all points in [sg — R, 59 + R} x M .

The proof of this lemma requires a second result, one of great importance in its own
right. This is the analog of the monotonicity formula stated by Proposition 3.1 of the
article SW = Gr in [6].

Lemma 3.10 Given X > 1, there exists k > 1 with the following significance: Take
r >k and let 9 = (A, ¥ = («, B)) be an instanton solution to (1-11) with either
Ay < 1% or Fy > —r?. Fix 59 € R and suppose that supp, 4 ¢ 4y M(+) < K. Given
x€[so—R—1,50+R+1]xM and given a number p € (r—1/2, k=), use M(x, p) to
denote the integral of (1 — |a|?) over the radius p ball in R x M centered at x . Then

o If p; > po arein (r~'/2,k71), then M(x, p1) > k=1 p?/ p2M(x, po).
o M(x,p) <kKp?.
e Suppose that |a| < % at x. If pe (r~Y2 k=), then M(x, p) > k1 p2.

Proof of Lemma 3.10 Lemma 3.7 holds on the ball of radius ¢, I centered at x by
virtue of what is assumed about M( - ). This being the case, the proof of Proposition 3.1
in the article SW = Gr from [6] can be repeated here with only cosmetic changes to
prove the first item. The second follows from the first given the bound on M. The third
follows from the first given that M(x, r~12y > ¢or. To prove the latter assertion, it is
sufficient to note that if |a|(x) < %, then it follows using the first item of Lemma 3.6
that |a| < % in the ball of radius ¢, 1p=1/2 centered at x. O

Proof of Lemma 3.9 The first assertion follows directly from (1-11) using Lemma
3.1. To obtain the second assertion, reintroduce the function ¢g; from Step 1 of the
proof of Lemma 3.7. What is asserted by Lemma 3.9 follows if ¢; can be bounded by
an (A4, vy) and r independent constant at points in [so — R, sg + R] x M . To see that
this is the case, fix a point x in this domain and let B denote a ball of radius p = ¢ !
centered at x, with p chosen to be much less than the injectivity radius of M . Let
z, denote the function with compact support on B given by x(p~! dist(x,-)). Let ¢
denote the function with compact support on B that obeys

(3-31) dldy+ e = dTdzeqy —2(d 2, dgy).

Geometry & Topology, Volume 14 (2010)



2864 Clifford Henry Taubes

Here, (, ) is used to denote the metric inner product. Given that the Dirichlet Green’s
function for dTd + 61—4r in B obeys (3-30), and given that |¢1| < cor'/2(1—|a|?) +co,
it follows that |x|(x) < ¢o. Note that these last three versions of the constant cq
depend on X, as do the subsequent appearances of ¢ in this proof. However, they
are otherwise independent of (A4, ¥) and r. Granted this, it follows from (3-20) that

gx = zxq1 —t obeys
(3-32) dVdqy + 2r|a|*qx < cor in B.
By construction, ¢, = 0 on dB.

Given Lemma 3.10, the proof of Lemma 3.5 of the article SW = Gr in [6] can be copied
almost verbatim to obtain a positive function # on B that obeys the following three
conditions: First, u < ¢q, a constant that depends on %X, but not r. Second, d Tdu>r
at points where |o| < 1/2. Third, |dTdu| < cor on the whole of B. Granted these
conditions, it follows that the function v = ¢x —cu —c¢g is such that d Tdv+2r lae|?v <0
in B. Since v <0 on dB, the maximum principle demands that v <0 in B. What
with u < ¢¢ and p(x) < co this means that ¢1|x < co. a

Together, Lemma 3.8 and Lemma 3.9 assert only that the curvature By is O(1) at
points where || is nearly 1. To say more about this, let Fq = ds A (d/ds)A + *By
where * here denotes the Hodge star along the M factor in R x M . This 2—form Fy
is the associated curvature 2—form that comes by viewing E as a bundle over R x M
and A as a connection on this £ — R x M. Suppose that g: [0,00) — [0,00) is a
smooth, nondecreasing function which obeys p(x) = x for x near 0 and p(1) = 1.
With g chosen, set

(3-33) A=4-3p(laP)|a|?@Vaa —aVa@),

this a connection on E’s pullback over R x M . Here, and as previously, V4 denotes
the covariant on R x M as defined by A. The curvature, F g, of this connection is

(3-34) Fi=(1—p)F4—' Vi@ AVqa.
If the assumptions of Lemma 3.6 hold, then
(3-35) |F] < co (r_l 4 pe—/rdis: ,X*)/K)

at all points with s € [so — R, s¢ + R].

3.d Behavior near R x y when p is elliptic

Suppose that y C M is a Reeb orbit with a tubular neighborhood map of the sort
described in (1-15).
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Lemma 3.11 There exists « > 1 with the following significance: Suppose that r > k,
and that 9 = (A, ¥ = («, B)) is an instanton solution to (1-11) with either A, < r?
or Fp > —r2. Let y denote a Reeb orbit as just described. Then |B| < xr~! and
V48] < kr—1/2 agall points in R x M with distance k1 or less from R x y .

By way of reminder, V4 here also refers to the covariant derivative defined on R x M
by viewing A as a connection on the pullback of E to R x M.

Proof of Lemma 3.11 The key point to note is that J is integrable on a uniform
radius tubular neighborhood of R x y. Let R x U denote this neighborhood.

With this last point in mind, note that the splitting S = E @ EK~! identifies 8 as an
E —valued 2—form on R x M which lies everywhere in the subbundle 7%2(R x M).
Viewed in this way, the lower equation in (1-11) can be written as

(3-36) Ja+ 018 =0.

Here, 5;: CPRXM;T?RxM)RE) > CPRxM; T (Rx M)® E) is
the formal L? adjoint of the composition of first exterior covariant differentiation and
then projection to the 7%-2 summand. As J is integrable, 3> = 0. As a consequence,
(3-36) implies that

(3-37) 94008+ F3?a =0

on Rx U. Here, Fz,z denotes the 7%2(R x M) component of A’s curvature 2—form.
The Bochner—Weitzenboch formula for 5,45; together with Lemma 3.1 and Lemma
3.6 can be used with (3-37) to see that d¥d|B| + 2r|B| < co on R x U . It follows as a
consequence that u = || —cor ! obeys

(3-38) dtdu+2ru<0 onRxU.

Meanwhile, Lemma 3.1 finds |u| < cor~/2 on the boundary of R x U. This last
observation, (3-38) and the fact that the Green’s function for the operator d Td +2r
obeys the bounds given by (3-30) implies that |u| < cor 1/ 2e= VT dist . RxU)/co The
bound |B| < cor~! follows from this.

To obtain the desired bound on |V 4f] at a given point p in R x U, let B denote the
ball of radius r~!/2 centered at p. Use parallel transport via 4 and the Riemannian
connection to view 8 on B as a section of the product bundle B x C. With this view
understood, then (3-37) on B can be written as

(3-39) dtdp+ qo-dB =rqip + e,
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where the coefficients of ¢y and both g; and g, have absolute values bounded by ¢q.
Note also that g is determined solely by the Riemannian metric, and its derivatives to a
fixed order are bounded by ¢q. Let x? denote the function with compact support on B
given by x(r'/2dist(-, p)). Let g(-,-) denote the Green’s function for the operator
(dtd + go - d) on B with Dirichlet boundary conditions. A standard asymptotic
expansion finds

(3-40) gl(pxy| < codist(p,x)™* and |dg|(p.x)| < codist(p,x)”?

at points with dist(p, x) < %r_l/z. Multiply both sides of (3-39) by x?g, and then
integrate the result. The result is an integral expression asserting

(3-41) Bl = f g(x. )0,
B

where ¢ has support where dist(p,-) < %r‘l/ 2. Moreover, |g| is bounded by ¢
because such is the case for both r|f]| and |«|. Differentiate (3-41) now and use (3-40)
with what was just said about |g| to see that |V4f| < cor~1/2. o

4 Instantons and pseudoholomorphic subvarieties: Part I

This proposition below describes the fundamental relationship between instanton solu-
tions to (1-11) and pseudoholomorphic subvarieties in R x M . Here as in Section 3,
these equations are defined by a given pair (a,J) and a given 1-form u € Q with
P—-norm bounded by 1. The only unstated constraint is that da(-, J(-)) is symmetric
and positive definite.

Proposition 4.1 Given § > 0 and K > [, there exists k > 1 with the following
significance: Let I denote either R or a connected, open subset which can be bounded
or not, but of total length at least 26! 4 16. Suppose that r > «, and that 0 = (A, =
(e, B)) is an instanton solution to (1-11) with either Ay < r?
supsey M(s) < K. Let I C I denote a connected set of points with distance at least 7
from any boundary point of I and length 257! .

or Fp > —r?2, and with

e Each pointin I x M where || < 1—3§ has distance xr~1/2

where o is zero.

or less from a point

e There exists a finite set, ¥, whose components are pairs of the form (C, m) where
C is a closed, irreducible pseudoholomorphic subvariety in a neighborhood of
the closure of I x M and where m is a positive integer. Moreover, no two pairs
in ¥ share the same subvariety component. This set is such that
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(a) sup dist(z, a~1(0)) + sup dist ( U C, Z) <3.
zelUc.myes C> zeUc.myesn Cs (C,m)ed
s(z)el s(z)el

(b) Let v denote the restriction to I x M of a 2—form on I x M with ||U] e =1
and ||Vv|loo < 87!, and with support where s € I. Define A from A and
o as in (3-33) using gp(x) = x. Then

3
— vVAF7— Z m/v
2w Jixm cmes €
© > m/daflc.

c

(C,m)ed

<.

Sections 4.a—4.c contain the proof of this proposition. The remaining subsections
contain various related results. Note that the arguments in this section borrow much
from Sections 4-6 from the article SW = Gr in [6]. Note also that what is denoted in
the rest of this section by A is defined by (3-33) using p(x) = x.

4.a Instantons at the length scale r~1/2

This subsection provides the instanton analog what is asserted in Proposition 4.2 of
the article SW = Gr in [6]. This is the analog is stated as Lemma 4.3 in Part 2 of this
subsection; Part 1 sets the stage.

Part 1 Introduce complex coordinates (x;, x,) for C2 = R*. Give C? the standard
metric with Kahler form wo = (i/2)(dx1 AdX1 +dxs AdX,). Use PT: A\> T*C2 —
/\2 T*C? to denote the projection onto the self dual subspace and P~ to denote the
projection onto the anti-self dual subspace.

Of interest here are pairs (A4g, ®g) on C? where A is a unitary connection on the
trivial bundle and « is a section of this bundle; and where:

o 5,40050 =0.

© PTF4y=—(i/2)(1—oo|*)o.

* ool =1.

© |PTFa| S|PYF4l 227121~ Jeol).

(4-1)

Proposition 4.1 in the article SW = Gr from [6] describes the pairs (A, o) that satisfy
these conditions. The following proposition contains some of what is in Proposition 4.1
and some new things as well.
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Proposition 4.2 Suppose that (Ag, o) obeys (4-1).

e If|ag| <1 somewhere, then infe2 |og| = 0. If aJI(O) # &, then this locus is
either all of C? or a complex analytic subvariety of complex dimension 1.

e There exists k > 1 that is independent of (A, ®g) and has the following signifi-
cance: Let X, C C? denote the set of points where 1 — |ag| > k. Then

1 —|ag| + [V4oa0] < e~ distC X /e

e If |ag| < 1 somewhere, and if there exists z > 1 such that the integral of
(1 — |ag|?) over the ball of any given radius R > 1 centered at the origin is
bounded by zR?, then

(a) The locus ™' (0) is a nonempty, complex algebraic subvariety with complex
dimension 1. As such, this locus near any given point is the zero locus of a
holomorphic polynomial.

(b) The order of the latter polynomial has an purely z—dependent upper bound.

(c) Given z, there exists k such that 1 — |ag| + |V4,00]| = e~ distC a1 (0)/k

If, in addition, the integral over C? of |P"‘FA0 |2 — | P~ Fy, |2 is finite, then

(d) This integral is a nonnegative integer multiple of 472.

(e) If the latter integral is zero, then (Ag, otg) is the pullback via a projection
C? — C of a solution on C to the vortex equations in (1-4) and aal (0) isa
union of planes.

e The set of gauge equivalence classes of pairs (Ag, &) that obey (4-1) is sequen-
tially compact with respect to convergence on compact subsets of C? in the C*®

topology.

Proof of Proposition 4.2 The only assertions not contained in Proposition 4.1 of the
article SW = Gr from [6] are the assertion in the first item that the infimum of |ag| is
zero if |ag| < 1 at any point and the bound given in the second item. To prove that
infc2 |ag| = 0, suppose that o is nowhere zero. If so, there is a gauge transformation
that writes og = e* with u a real valued function. The first item in (4-1) is satisfied if
and only if A9 = —0u + du. The second item is obeyed if and only if

(4-2) didu = (1—e).

Here, d denotes the exterior derivative on R* and d denotes its formal L? adjoint.
The condition in the third point of (4-1) requires that u < 0 at some point, and so the
maximum principle has ¥ < 0 everywhere. If u is bounded from below, then there is a
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uniform bound on |Vu|. Indeed, if x € C2, then (4-2) implies that

o I o1
”(x"zn2/<cz(|x—(->|2“ R e

1
i—L ax))
+2”< = (O >)

where xx(-) = x(J]x —(-)|) and where ( , )} denotes Euclidean inner product. Dif-
ferentiate (4-3) to obtain the uniform bound on Vu. Meanwhile, differentiating (4-2)
finds that

(4-4) dTd|Vu| + e**|Vu| <o0.

(4-3)

Given that  is bounded from below, there exists ¢ > 0 such that dTd|Vu|+¢|Vu| <0.
This last inequality can not be satisfied with |Vu| uniformly bounded unless it is
everywhere zero. Indeed, if R > 1, then |Vu| on the ball of radius R must be
less than the solution in this ball to the equation d Tdgr + cgr = 0 with boundary
condition equal to the supremum of |Vu|. This solution at the origin is bounded
Co R™2¢=VeR supcz |Vu|. This last expression converges to zero as R — oo.

The proof of the second item can be proved using arguments that are very much like
those used to prove Lemma 3.8. In fact, the algebraic manipulations in this case
are simple as there are no Riemannian curvature terms to deal with. The details are
straightforward and so omitted. O

Part 2 Suppose that x € R x M and that (A4, ¥ = («, B)) is an instanton solution
to (1-11). Fix complex coordinates centered at x of the following sort: First, the
coordinates are Gaussian normal ones. In addition, there is an identification of R*
with C? that writes the resulting complex coordinate functions as (y1, y2); and these are
such that {dy,,dy,} span THO(R x M)|,. Let p > Co ! be such that these coordinates
are defined on the ball of radius p in C2. Use these coordinates to identify this ball
with its image in R x M . Define the map 7: C2 — C?2 using the rule 7(y) = r~/2y.
The pullback of (4, «) via 7 to the ball of radius r'/2p in C? is denoted in what
follows by (Ax, otx).

Lemmad4.3 Givenz>1, R>1,k€{0,1,...} and ¢ > 0, there exists k > 1 with
the following significance: Suppose that r > k and that (A, V) is an instanton solution
to(1-11). Let x € R x M and suppose that |(3/3s)A — B4| < r(1 —|a|?) + z on the
ball of radius 1 centered at x. Under these conditions, there exists a solution (A, ¢tg)
to (4-1) on C2 such that (A, otx) = (Ag + @, otg + n) where (@, n) has CX norm less
than & on the ball of radius R in C?.
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Proof of Lemma 4.3 The proof is essentially the same as that of Proposition 4.2 in
the article SW = Gr from [6]. O

4.b Proof of bullet 1 of Proposition 4.1

Suppose that the assertion is false. If so, there exists § > 0 and X > 1, and for each
ne{l,2,...},aset {(ry, (An, ¥n)), Xxn} such that the assumptions of Proposition 4.1
hold for the interval I =[-8, 8], and such that |« | < 1—§ ata point x, € [—1, 1]x M,
and with dist(x,, «; 1(0)) > nr~1/2_ No generality is lost by assuming that what is
said by Lemma 4.3 applies to (A4, ¥,) using for x the point x, with the constant
e<n~18. Let {(Agy, Qon)in=1,2,... denote the corresponding sequence of solutions
to (4-1). Use the final item in Proposition 4.2 to find gauge transformations that yield a
new sequence with a convergent subsequence. Let (Ag, &) denote the limit. Note in
particular that |og| is no greater than 1 —§ at the origin. For each R > 1, write the
integral of (1 — |ag|?) over the radius R ball in C? as Kz R?.

Suppose that {Kg}g>1 is bounded. Then Point (a) of the third item in Proposition
4.2 implies that there is nonconstant, holomorphic polynomial /# on C? and a smooth
function u such that ag = ¢“h. Thus, aal(()) = h71(0). Let D C C? denote an
embedded, closed holomorphic disk of radius 1 or less that intersects o, 1(0) at its
center and has boundary disjoint from «~!(0). The winding number of a(0)/ oo (0)]
on the boundary of D is thus positive. The form of convergence that is asserted by
Proposition 4.2 and the final item of Proposition 4.2 implies that each large n version
of apy, is nonzero on the boundary of D and also has positive winding number. As
a consequence, there is a zero of each such section in D. Let d denote the distance
between d’s center and the origin in C2. Then ay, has a zero with distance less than
(d + 1)r=/2 from x,, when n is large. This contradicts the assumptions. Thus, the
sequence {Xg}Rr>1 must be unbounded.

Suppose that the sequence { %X g}g>1 is unbounded. Given the second item in Propo-
sition 4.2, the convergence asserted by Proposition 4.2 has the following additional
consequence: Fix R > 1, and then the integral of any sufficiently large n version of
the function r (1 — |a,|2) over the ball of radius Rr—!/2 centered at x,, will be greater
than %KRRZV_I . This runs afoul of the second bullet of Lemma 3.10 when # is large.

Thus, there is no sequence of the sort that would arise were the first item of Proposition
4.1 false.
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4.c Convergence

This subsection addresses the second bullet of Proposition 4.1. The discussion that
follows has four parts. The fourth part contains the proof of the second bullet of
Proposition 4.1.

Part 1 Suppose that {(74, (An. ¥n))}n=1,2,.. is a sequence of the following sort:
First, the sequence {ry},=1,2,. C [l,00) is increasing and unbounded. Second,
any given (A, Vy) is an instanton solution to the r = r, version of (1-11) that
obeys the assumptions of Proposition 4.1 for I = [—8, 8] and for a given X > 1.
A verbatim repeat of what is said in Sections 5b—5¢ of SW = Gr from [6] finds
a subsequence of {(rn,(An,V¥n))}n=1,2,.. now renumbered consecutively from 1,
a closed set ¥ C [—3,3] x M and a bounded linear functional, m on the space
CO([-3,3]x M; A\* T*([—3, 3] x M)) with the properties listed below:

Property 1 The set X has finite, 2—dimensional Hausdorff measure. Let 3¢ denote
the part of X in [—2,2]x M . If x € X, then the Hausdorff measure of X’s intersection
with the ball of radius p centered at x lies between ¢ 1072 and cp?.

Property 2 The distribution m has support on X. Moreover, m is also closed in the
sense that m(do) = 0 if o is a 1-form with compact support in [—2,2] x M . Finally,
m annihilates sections of /\0’2 T*([—2,2]x M); and it is positive on the forms

4-5) (dS/\a—l—%*a)—l—v

if v is anti-self dual with |v| < 2!/2.

Property 3 Let D C C denote the open unit disk and D denote its closure. Suppose
that ¢ is an orientation preserving embedding of D x D — (—2,2) x M . Assume
in addition that ¢(D x dD)is disjoint from X,. Let v denote a smooth 2—form
on ¢(D x D) that vanishes near ¢(dD x D) and integrates to 1 on any disk of
the form ¢(D,z) with z € D. Then m(v) is an integer. Moreover, m(v) > 1
if ¢(0,-) intersects Xy and maps D in an orientation preserving fashion onto a
pseudoholomorphic disk.

Property 4 The following sequences converge with limit zero: To describe the first
sequence, let o = XN ([—2,2] x M). Here is the n—th element of the first sequence:
(4-6) sup dist(z, cx;l 0)+ sup dist(Xo, 2).

z€Xo zeay 1 (0)

Geometry & Topology, Volume 14 (2010)



2872 Clifford Henry Taubes

Each of the remaining sequences is labeled by a 2—form on [—2, 2] x M with supremum
norm equal to 1 and compact support. Let vdenote such a form. The sequence labeled
by v has n-th element
(4-7) L vAFg, —m(v).

27 J—2,21xM

To say something about the proof that these properties hold, remark that the assumptions
on the sequence imply that Lemmas 3.1, 3.6, 3.8, 3.9 and 3.10 can be invoked on
[—4,4] x M . These lemma with Lemma 3.1 are the key inputs to the arguments used
to prove Lemmas 5.1 and 5.2 in the article SW = Gr from [6]. Indeed, Lemma 3.9
implies the following: Let {(A4,, ¥n)}n=1,2,... denote the original sequence. Then the
sequence of distributions

{v—(i/(2m)) UAFZ4,}n=1,2,..
[—2,2]xM

on CO([—4,4]x M; \* T*([—4, 4] x M)) is bounded. Granted this, then this sequence
of distributions has a weakly convergent subsequence. A convergent subsequence is
chosen and the limit distribution is taken to be m. The conclusions of Lemma 3.10
are used to construct a refined subsequence whose version of the set X is the support
of m. The fact that m is closed is a consequence of the fact that (i/(27))Fj, is a
closed 2—form. The remaining assertions of Property 2 follow in a straightforward
fashion using (3-34) and (3-35) and the bounds given by Lemmas 3.1, 3.6, 3.8 and
3.9. The assertion made in Property 3 about the integer value of m follows using two
facts: First, (i/(27)) F 4, represents the first Chern class of a complex line bundle E'.
Second, this 2—form is nearly zero at any given point in the complement of ¥y when
n is large. The positivity of m(v) when ¢ maps 0 x D onto a pseudoholomorphic
disk follows using Lemma 4.3.

Part 2 The notion of a positive cohomology assignment is introduced in Section 6a
of the article SW = Gr from [6]. The definition refers to the notion of an admissible
map. The analogous definition in the present context requires first the specification
of a closed subset Xy C [-2,2] x M with finite 2—dimensional Hausdorff measure.
With the latter specified, a smooth map o: D — (—1,1) x M is said to be admissible
if it extends as a continuous map to dD and maps the latter to the complement in
(—=1,1) x M of X’s intersection with (—1, 1) x M . The set of admissible maps is
open in C*°(D; (—1,1)x M). A homotopy 4: [0, 1]x D — (—1,1) x M is admissible
if it extends as a continuous map from [0, 1] x d.D into (—1, 1) x M and is such that
h(t,-) is admissible for each ¢ € [0, 1]. A positive cohomology assignment associates
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to each admissible map o and integer, /(o), subject to the following rules:
e [(0) =0 if o(D) is disjoint from .
e If 09 and o; are admissable maps that are homotopic via an admissable
homotopy, then 1(0g) = I(01).
e If ¢ is admissable and if ¢: D — D is a proper, degree k map, then
I(co¢)=FkI(0).

Suppose that o is admissable and that 0~!(Z) is contained in a dis-
joint union | J,, Dy, C D where each D, is the image via an orientation
preserving embedding, 6, of D into D. Then I(0) =), I(c 06,).

(4-8)

e If o is an orientation preserving, pseudoholomorphic embedding whose
image intersects X, then /(o) > 0.

As is explained next, the distribution m from Part 1 can be used to define a positive
cohomology assignment for Part 1’s set . This is done as follows: Suppose first that o
is an admissible embedding that extends as a smooth embedding of D. Then o extends
as an embedding ¢: D x D — (—1,1) x M such that ¢(0,-) = 0. Fix a 2—form «a
with compact support on D and with integral 1 and pull the latter back to D x D via the
projection to the first factor. Push this form forward by ¢. Define (o) = m(v). The
fact that m is closed implies that /(o) has no dependence on either the form v or the
extension ¢ of o. The definition just given can be used to define /(o) in the case when
o immerses D and is such that 0~ 1(Z¢) is contained in a disjoint union of subdisks
on which o is 1 —1. Indeed, define /(-) as above for each such subdisk and take /(o)
to be the sum of the resulting numbers. Granted the preceding, suppose now that o is
any given admissible map. A very small perturbation, oy, of o will be an admissible
immersion of the sort just described. Define /(o) to equal I(og). Since m is closed,
the value of /(o) does not depend on oy if sup,cp dist(c(z),0¢(z)) is sufficiently
small. The first four points in (4-8) follow either directly from the definition, or from
the fact that m is closed. The fact that /() is an integer follows from Property 3 in
Part 1 above, as does the fact that I(o) is positive when 6! (X) # @ and o maps D
onto a pseudoholomorphic disk.

Part3 Let 9 denote a finite set whose typical element is a pair (C, m) of the following
sort: First, C is the restriction to [—1, 1] x M of a closed, irreducible, oriented 2—
dimensional subvariety of some open neighborhood in R x M of [—1, 1] x M with
nonempty intersection with (—1, 1) x M . Second, m is a positive integer. Assume, in
addition that no two pairs from ¥ share the same subvariety.

Suppose that U(C,m)ez? C = 3. Each admissible map has a well defined intersection
number with each subvariety from ¢ . If ¢ is an admissible map, and (C,m) € ¥,
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use /¢ (o) to denote the intersection number of o with C. Define /(o) to equal
Z(C,m)e@ mlc (o). The latter obeys the top four positive cohomology assignment
axioms in (4-8). It obeys the final axiom if and only if each subvariety from ¢ is pseudo-
holomorphic. A positive cohomology assignment of this sort is said to be carried by .

The next lemma asserts that a positive cohomology assignment for X is necessarily
of the sort just described. This is the analog here of Proposition 6.1 in the article
SW = Gr from [6].

Lemma 4.4 Let I(-) denote a positive cohomology assignment as described in Part 2.
This positive cohomology assignment is carried by a finite set ¥ whose typical element
is a pair (C,m) where C is a closed, irreducible, pseudoholomorphic subvariety in a
neighborhood of [—1, 1] x M and where m is a positive integer.

Proof of Lemma 4.4 The proof of Proposition 6.1 in the article SW = Gr from [6]
is essentially local in nature, and so can be exported for use in the present context.
To elaborate on this, agree first to extend the definition of an admissible map so as to
allow maps from D into (—2,2) x M . Thus, a map in this context is admissible if it
extends to d.D so as to map the latter to the complement of ¢ in (—2,2) x M . Mimic
what is done in Part 2 above to define a positive cohomology assignment on the set of
admissible maps from D into (—2, 2) x M . This done, the arguments in Sections 6b—6e
of the article SW = Gr from [6] can be applied to prove the lemma. Note that the
proof establishes that the subvarieties from the pairs in ¢ live in (—2,2) x M . a

Part 4 This part contains the following.

Proof of bullet 2 of Proposition 4.1 Suppose I, §, K and I are such that the propo-
sition were false. There would then be a sequence {(7y, (An. Yn = (@n, Bn)))}n=12....
where {rn}n=1,2,.. is a sequence in [1, 00) that is increasing without bound and where
any given (A, ¥,) is an instanton solution to (1-11) that obeys the assumptions of the
proposition but not the conclusions.

What follows can be arranged by passing to a diagonal subsequence of the original
sequence {(74, (An. ¥n))}n=1,2,... and then renumbering this subsequence consecu-
tively from 1. Fix s¢ € %Z N I. Then translate each (A, ¥,) along the R factor
of R x M by —s¢ and apply the arguments in Part 1 to the result. The result is a
set ¥ = X5, C[-2,2]x M, its subset } o, C[—1,1]x M and a distribution 1 ;
these obeying Properties 1-4 of Part 1. As noted in Part 2 of Section 4.c, they define a
positive cohomology assignment. According to Lemma 4.4, this positive cohomology
assignment is carried by a set © = i}, of the sort that is described at the outset of
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Part 3. Translate the subvariety components of this set along the R factor of R x M
so that the origin goes to sy and so that all subvariety components from the pairs that
comprise U, sit in a neighborhood of [sg — 1,50 + 1] x M .

Let 19;(; denote the subset of pairs in }5, whose subvariety component has nonempty
intersection with [0, 1] x M, and let ¢;; C ¥, denote the subset of pairs whose
subvariety component has nonempty intersection with [—1, 0] x M . The convergence
of the sequences that are described in Property 4 of Part 1 imply that the s — s¢ translate
of 19;5 must agree with the s — s¢ + % translate of z?s_o +1/2° This is to say that the
subvarieties and associated integers match up. As a consequence, there exists a set, ¥,
of pairs whose typical element has the form (C, m) with C a closed, irreducible, pseu-
doholomorphic subvariety of a neighborhood I x M in R x M, and with m a positive
integer. Note that this set ¢ must be finite because Property 4 in Part 1 implies an s¢—
independent bound on both the integer component of any pair from oy, and the area of
the intersection with (—1, 1) x M of the subvariety component of any pair from ¥, .

It follows from the manner of convergence that is described in Property 4 of Part 1 that

(4-9) lim ( sup dist(z, o, 1 (0)) + sup dist( U C, 2)) =0.
"0\ zeU e myes Cs zeUc.myes C> (C,m)ed
s(z)el s(z)el
In particular, Assertion (a) of the second item of Proposition 4.1 holds if 7 is sufficiently
large. To obtain Assertion (b) of the second item, note that there exists a finite set, $2g,
of compactly supported 2—forms on R x M such that any 2—form v where s € I and
with both ||Uleo <1 and ||V |leo < 87! has distance %5 in the C° metric topology

from some form in 25. Given that Q2 is a finite set, (4-7) implies that

i
— vAF4, — m/u
271'/I><M Z C

(C.m)ev

(4-10) <L
=38

for all v € Q25 when # is large. Thus, Assertion (b) of the second item in Proposition
4.1 also holds when n is large.

To obtain Assertion (c), note first that the form da is nonnegative on the tangent planes to
any pseudoholomorphic subvariety. This understood, if (C,m) € ¥, then the integral of
da over C is finite if there is a §—independent upper bound to its integral over the |s| <
§~1 part of C. Such a finite upper bound follows using the Assertion (b) of the second
item with v = x(|s|—8~'+1)da. Note in particular that the integral of the wedge of this
form with /7, can be bounded by an n—independent multiple of X by first integrating
by parts and then applying (4-10) and Lemma 3.9 to the resulting expression. a
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4.d Multiple limits

Fix 6 > 0, X > 1 and an unbounded set I C R for use in Proposition 4.1. Fix r > 1
and an instanton solution, ? = (4, ¥ = («, B)), to (1-11) that obeys the hypothesis
of Proposition 4.1. As will now be explained, the instanton 0 can well determine via
Proposition 4.1 a number of very distinct sets of the sort denoted in Proposition 4.1
by . To say more, first translate 0 along the R factor of R x M so that the following
is true: There exist an unbounded set of consecutive integers, A, such that 0 € A
and such that if k € A, then I =[—6"!—8+ 2k§™1, 67! +8+ 2k6']isin I and
the union, | Jzcp Ik, is all of 7. There exists such a translation by virtue of the fact
that I is noncompact. Proposition 4.1 supplies a set ¢ = ¥; for each interval I} .
Note that each subvariety from a pair in any given ¥ is defined on the whole of
R x M . Even so, the points in a1 (0) are guaranteed to have distance § or less from
Zk =Ucmyes, C onlyif s € Iy = [-6~1 + %k5_1,5_1 + %kS_l]. Of course, the
points in X that sit where s € I N I 41 have distance § or less from those in X4,
and vice-versa; but there is no apriori guarantee that such is the case for all s € R. If
such were the case for all s € R, then one could see about taking ¥y = ¥4 ;. This
then begs the following question:

Can the collection {¥}rca from Proposition 4.1 be defined so as
to have a finite number of elements? If so, can such a set be chosen
whose size is apriori bounded in a §—independent fashion?

The next proposition asserts that the set {; }xca can be chosen so as to have a finite
number of distinct elements; a number with bound determined solely by %X .

Proposition 4.5 Given X > 1, suppose that each Reeb orbit with length at most
(1/(27)) K is nondegenerate. There exists k > 1, and given § > 0, there exists
ks > 1 which, with «, has the following significance: Suppose that r > kg, and
that 9 = (A, ¥ = («, B)) is an instanton solution to (1-11) with either A, < r? or
Fo > —r2. Let I C R denote a connected subset of length at least 26~ 4 16 such that
supseg M(s) < K. Let I C I denote the set of points with distance at least 7 from any
boundary point of I. Then

e Each pointin I x M here |a| < 1 —§ has distance kr~'/? or less from a point
where o is zero.

o There exists
(a) A positive integer N < k and a cover of I as | J;<; <y Ix by connected
open sets of length at least 26!, These are such that I N Iy, = @ if
|k —k'| > 1. In addition, if |k —k’| = 1, then I}, N I}, has length between

1 ¢o—1 1 ¢—1
ms and aé .
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(b) Foreachk €{1,2,..., N}, aset 9 whose typical element is a pair (C, m)
where m is a positive integer and where C C I x M is a pseudoholomorphic
subvariety defined on a neighborhood of I, x M . These elements of ¥ are
constrained so that no two pair share the same subvariety component; and so

that
Z m / da <«k.
Ccmed, 7€
In addition, the collection {9 }x—1,.. N is such that
(1) sup dist(z, "1 (0)) +  sup dist( U C, z) <$.
zeUcmen, € z€a"1(0), (C.m)ed
s(z)ely s(z)ely

(2) Letk €{l,...,N}, let I' C I} denote an interval of length 1, and let v
denote the restriction to I’ x M of a 2—form on 1 x M with ||v||eo = 1 and
[VUlloo <8~ !. Then

i
— vAFZ— m/v
277/;’XM Z C

(C.m)ed

<.

e Suppose that 1 is unbounded from above. Fix E4 < X and assume with regards
to the Reeb orbits only that all with length at most (1/(27))E4 are nonde-
generate. Assume in addition that limg— o0 E(0|s) < E4. Then the preceding
conclusions hold with the constant k depending on X and E, and with kg
depending on the latter and on §. Moreover, if I = R and all Reeb orbit of length
at most (1/(27))E+ are nondegenerate, then limg_,_ oo E(0|s) < E4 + 6.

Proof of Proposition 4.5 The argument for the first bullet is the same as that given
for the analogous point of Proposition 4.1. The proof of second bullet has four parts.
Part 5 of what follows proves the third bullet. |

Part1 This part and Part 2 of the proof supply conditions that force a pseudoholomor-
phic subvariety to lie everywhere close to a Reeb orbit. The following lemma refers to
a constant, £, which is the smallest of the lengths of the Reeb orbits.

Lemma 4.6 Given A\’ > 1 and ¢ > 0, there exists kg > 1 with the following signifi-
cance: Suppose C is a closed, irreducible, pseudoholomorphic subvariety in a neighbor-
hood of [~4, 4]x M such that both [¢ da <i;" and [ _3 31 pr) 45 Aa@ < N Then
each point of C|g for |s| <1 has distance along M no greater than ¢ from some Reeb
orbit, y, of length less than A\_ + ¢. Moreover, there is a positive integer m < E;ll N
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such that if v is a smooth 2—form on [—1, 1]x M with ||[U]leo = 1 and || VU |leo <& !,

then

v| <e.

/ Vv—m
CN(I-1,11xM) [~1,1]xy

Proof of Lemma 4.6 This is proved by invoking Lemma 4.4 as follows: Suppose that
there is no such «,. There would then exist a sequence {C }x—1,2,... that obeyed the
hypothesis of the lemma with k, replaced by k~!, but not the conclusions. Given the
assumptions, it follows that the subvarieties that define this sequence have uniformly
bounded area where they intersect [—3, 3] x M . As a consequence, there is a subse-
quence (hence renumbered consecutively from 1) whose intersection with some neigh-
borhood of [—2,2] x M converges pointwise to a set, 3¢, with finite 2—dimensional
Hausdorff measure. The subsequence can, and should be chosen so that the sequence of
distributions {v — ka Ulk=1,2,... on the space CO(-2,2]x M; /\2([—2, 2] x M))
has a weakly convergent subsequence to a distribution. Denote the latter by m. The pair
consisting of 3¢ and m defines a positive cohomology assignment. Lemma 4.4 asserts
that this cohomology assignment is carried by a finite set ¥ whose typical element
is a pair (C,m) where C is a closed, irreducible, pseudoholomorphic subvariety that
is defined in some neighborhood of [—1, 1] x M and where m is a positive integer.
Because of the manner of convergence that defines m, the 2—form da must integrate to
zero on the subvariety component of each pair from ¢. Since da is nonnegative on the
tangent space of each such component, it follows that da is zero on each component,
and so each component is [—2, 2] x y with ¥ a Reeb orbit. The manner of convergence
that defines m implies that the length of each Reeb orbit involved is bounded by A(.
Use © to denote the set of pairs (y,m) that arise from . Given the manner of
convergence of {Cp},—1,2,.. to Xg, all points of each large n version of C, at any
point s € [—1, 1] distance less than ¢ from a fixed Reeb orbit from 6, and vice versa.
Furthermore, the integral of a fixed 2—form v over the s € [—1, 1] part of each large n
version of C, will differ by less than ¢ from Z(%m)e(@ m. As this conclusion conflicts
with the assumptions about the sequence {Cy},=1,2,..., the lemma must be true. O

This last lemma has the following corollary:

Corollary 4.7 Suppose that A\l > 1 has been given and that each Reeb orbit of
length N or less is nondegenerate. Given ¢ > 0, there exists k, > 1 with the following
significance: Let T C R denote an interval of length at least 4, and suppose that C is a
closed, irreducible, pseudoholomorphic subvariety in a neighborhood of I x M with the
property that fCﬂ(I’xM) da <k, and fCﬁ(I’xM) ds Aa < N\ for all intervals I’ C 1
of length 1. Let I C I denote the subset with distance at least 3 from any boundary
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point of 1. Then there exists a finite set ® consisting of pairs (y,m) with y a Reeb
orbit and m a positive integer. This set is such that no two pair share the same Reeb
orbit. In addition,

° Z(y,m)e@) mg)’ = N

e Each point of C|g for |s| < 1 has distance along M no greater than ¢ from
U¢.myee v - Conversely, each point in | J(,, e ¥ has distance no greater than
¢ from Cl|y.

o Ifv isasmooth 2—form on I x M with ||U|lec = 1 and ||VU||co <&~ '. Then

/ v — Z m v
CNUIxM) (y,m)€® Ixy

<e.

Proof of Corollary 4.7 This follows directly from Lemma 4.6 given the nondegener-
acy assumption. Indeed, the latter implies that the Reeb orbits with length less than
2 AL in M are finite in number and so any two are separated by some minimal distance.
Take ¢ much less than this distance and invoke Lemma 4.6. |

Part 2 The next lemma supplies a somewhat different condition that forces a pseudo-
holomorphic subvariety to be everywhere close to a Reeb orbit.

Lemma 4.8 Suppose that A > 1 has been given and that each Reeb orbit of length N
or less is nondegenerate. There exists k > 1, and given ¢ > 0, there exists R, > 16 with
the following significance: Let I C R denote an interval of length at least 2R, and sup-
pose that C is a closed, irreducible, pseudoholomorphic subvariety in a neighborhood
of I x M with the property that [ pr) da < k! and Jeaarxar ds na = N for
all intervals I’ C T of length 1. Let I C I denote the subset with distance at least R,
from any boundary point of 1. There exists a finite set ® consisting of pairs (y, m)
with y a Reeb orbit and m a positive integer. This set is such that no two pair share the
same Reeb orbit. In addition,

* Lmeo mly =N

e FEach point of C|g for s € I has distance along M no greater than ¢ from
Uq.myee v- Conversely, each point in J, ,myee ¥ has no greater than e
from C|.

e If I’ C I is an interval of length 1 and v is a smooth 2—form on I’ with
lvlloo =1 and [[Vv|leo < &7, then

m [ v
I’'xy

Jern
CN’xM)

<e.

(y,m)e®
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Proof of Lemma 4.8 Fix 6 > 0, but very much less than the distance between any two
distinct Reeb orbits with length less than A(. Let I* C I denote the set of points with
distance at least 4 from each boundary point. Let ¥ = kg denote the constant provided
by Corollary 4.7. Suppose that C denotes a subvariety that obeys the assumptions of
Corollary 4.7 with § used in lieu of ¢, and let ®¢ denote the set of pairs of Reeb orbit
and positive integer that Corollary 4.7 provides. Note that the collection of such sets is
finite since the Reeb orbits with length at most 9\ are nondegenerate. Let A, denote
this set.

Now suppose that ¢ < § and that there is no R, as claimed by the lemma. Given
that A, is finite, there exists ® € Ag, a sequence {l;}r—; >, . of intervals of
length 32k, and a sequence {C }x—12,.. Where any given Cy is a closed, irreducible,
pseudoholomorphic subvariety from a neighborhood of I x M with the property that
fcm(l/xM) da < k5! and with me(I/xM) ds Ana < N for each interval I’ C I of

length 1. Moreover, one or both of the following is true:

e There is a point in each C; N (I x M) with distance k or more
from a boundary point of I} x M and with distance ¢ or greater from
U(y,m)e@) I X y. Or, there is a point in this union with distance k or
(4-11) more from a boundary point, and with distance ¢ or more from C.

e There is an interval [ ,’{ C I with length 1 and distance k or more from a
boundary point of [ and a smooth 2—form vy on I; with |Juglleo =1
and || Vug|leo < &7 ! that violates the inequality asserted in the lemma.

Suppose first that the top item in (4-11) is obeyed. By translating I and Cj along
the R factor of R x M, one can arrange that such a point sits where s = 0. Assume
that this is the case. Taking limits, as in the proof of Lemma 4.6, finds a subsequence
(to be renumbered consecutively from 1) that converges pointwise on bounded do-
mains inside R x M to a pseudoholomorphic subvariety, Cx C R x M with the
following properties: Each point of Cyx has distance § or less from [ J (.myce RX V.
But, there exists a point on Cyx where s = 0 with distance greater than & from
U(y,m)e@ R x y or vice-versa. Given that each Reeb orbit from © is isolated, it
follows that lim)g— 0 (SUp,ec,, dist(z, U(y,m)e@ y)) = 0. But this is not possible
since integration by parts finds the integral of da over Cyx to be zero under these
assumptions.

Suppose next that the bottom item in (4-11) is obeyed but not the top. Translate each
I and Cj along the R factor of R x M so that I, = [0,1]. Use Cj to denote
now the translated version of the original. By virtue of the Arzela—Ascoli theorem,
there is a subsequence of {Cg jx—1,2,... (hence renumbered consecutively from 1) with
the following property: Let {vg}x=1,2,... now denote the corresponding sequence
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of translated 2—forms. This sequence has a subsequence that converges strongly in
C%(0,1]x M; /\2([0, 1] x M) to a form ve, with sup—norm 1. The latter is Lipschitz
with Lipschitz constant e~!. Meanwhile, the arguments given for Lemma 4.6 can be
used to prove that the sequence of distributions {v — kaﬂ ([0.1]%M) v} has a subse-
quence that converges weakly to the distribution given by v — Z(y’m) m f[O,l]Xy v
where m is a positive integer. But this sort of convergence is not possible given the
properties of Ugg.

Thus, neither of the possibilities in (4-11) are allowed, so the lemma must be true. O
Part 3 Return to the context of Proposition 4.5 and its set I. The first point to make
is that if r > ¢o and [s/,s" + 1] € I, then

i

— / dsnanFj
2w [s/,s’+1]xM

This follows from Lemmas 3.1, 3.8 and Lemma 3.9. Meanwhile, what with (3-34) and
(3-35), it follows from an integration by parts that

(4-12) =c XK.

(4-13) ’ danFi=<coX

27 Jrxm
if I’ C 1 is any given closed subset and r > ¢q. Keep these inequalities in mind in
what follows.

Lemma 4.9 Given X > 1, suppose that each Reeb orbit with length (1/(27)) X
or less is nondegenerate. Given also ¢ > 0, there exists k > 1 with the following
significance: Suppose that r > k and that (A, ¥ = («, B)) is an instanton solution to
(1-11) with either Ay <12 or Fy > —r?. Let I C R denote a connected subset of length
at least 16 with M(s) < K on . Let Z denote the set of k C Z with [k, k 4+ 1] €1
and with (i/(2m)) f[k,k+1]xM danFj7>c¢. Let I' CT—(Ugeslk,k + 1]) denote
any given component. Then —&? < (i /(27)) JpxppdanFg.

Proof of Lemma 4.9 Suppose that § > 0 has been given, and that s € I’ is a point
with distance at least ! 4 8 from any boundary point of I’. Invoke Proposition 4.1
using in lieu of T the interval Iy = [s —8~! — 8,5 + 81 + 8]. Given that r is greater
than some §—dependent constant, this proposition supplies an I version of its set 9,
this denoted by . Thus, the typical element in ¥ is a pair (C, m) with m a positive
integer and C a closed, pseudoholomorphic subvariety that is defined in a neighborhood
of [s =871, s+871]. Let I"” C[s—6"!, 5+ 6!] denote a length 1 subcylinder. Then
the integral of da over C’s intersection with I” x M is less than & 4+ §. Let k > 1 be
as described in Lemma 4.8 and assume now that & + § is less than «~!. Fix &’ > 0
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and let R,, denote the constant from Lemma 4.8. Suppose that §~! > 2R,/. Lemma
4.8 asserts that the each point of C in the set [s —§~! 4+ Ry, s + 87! — Ry} x M has
distance ¢’ or less from R x y where y is a Reeb orbit with length no greater than K.
As a consequence, each point of o~ !(0) with distance at least R, + 16 from any
boundary point of I’ has distance &’ or less from some R x y .

To continue fix s € I’ with distance at least R,/ + 16 from any boundary point of I”.
The integral of (i/(27))a A F 4 over the portion of {s} x M with distance 2¢’ or less
from y can be written using the coordinates that are used in (1-15) as

¢
(4-14) i f Fj| |dt+e,
47 teS1 lz|<2¢&’ t

where |e| < ¢o%Ke’. This bound on ¢ follows using the Lemmas 3.1, 3.6, 3.8 with
Lemma 3.9. Meanwhile, it follows from Proposition 4.1 and (3-35) that the integral
term in (4-14) is equal to mf,, + ¢’ where |¢/| < cor™!/2.

Granted what just said, it follows using an integration by parts that the integral of
(i/(2m))da A F 7 over the portion of I’ x M with distance at least R,/ + 16 from any
boundary point of I’ is no less than —co (K&’ + r—1/2).

A lower bound for the integral over the rest of I’ x M is obtained as follows: Note
first that Lemmas 3.1, 3.6, 3.8 and 3.9 imply that

(4-15) —egr < danF7
2w Jisyxm

at each point s € R. Note as well, that the bottom equation in (1-11) implies that
i

(4-16) 2—da/\VAOt/\VA&Z—CO|VAﬂ|2.
T

Given the bound in (4-15), it follows that the integral of (i/(27))da A F 4 over the
remaining portion of I’ x M is no less than coRer L.

Thus, the integral over I’ x M is no less than —co(Ke' + Ryr™1 + r_l/z) if r is
greater than some ¢’ dependent constant. This understood, choose &’ < %Co_ TK—1e2,
Granted what was said above, the desired bound for the integral of (i/(27))da A F 3
follows if r is greater than some purely e—dependent constant. a

Part4 With ¢ > 0 fixed and much less than 1, take r large enough so as to invoke
Lemma 4.9. Let Z = 7, be as described in Lemma 4.9. Fix R > 1 and consider the
integral on the left hand side of (4-13) for I’ = [-R, R] x M . Let N denote the
number of integers k € Z with [k, k 4+ 1] C [~ R, R]. The contribution to the [-R, R]
version of the left hand side of (4-13) from the cylinders [k, k + 1] C [~ R, R] with
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k € I, sums to at least Nge. Meanwhile, Lemma 4.9 implies that the contribution
from the rest of [~ R, R]x M is no less than —(Ng + 1)2. This understood, it follows
from (4-13) that Ng < co%Ke~ 1. As this last bound is independent of R, there are at
most this many integers in Z,. Let N, denote the number of elements in Z,.

Fix L > ™! and for each s € I with distance at least L + 7 from any boundary point
of I,let I =[s— L,s+ L]. Given L, Proposition 4.1 can be invoked if r >k, > 1
where k. depends only on X, f and L. In particular, Proposition 4.1 supplies its
set = 5. Suppose that s has distance at least L + 1 from Z,. If ¢ < ¢ I and
if L = 4Rgs where Rg is defined from Lemma 4.9, then Lemma 4.9 can be used
to replace any s € I; version of ¥; with a collection ¥; whose typical element is a
pair (R x y,m) with y a Reeb orbit of length less than X and with m a positive
integer such Z(m’y) m{,, . This replacement of J5 with 9 has the following cost: The
conclusions of Proposition 4.1 hold using ¢ only on [s —3Rg,s + 3Rg].

Let I’ C I denote the set of points with distance less than 6 Rg from Z.. This set is a
disjoint union of at most N, intervals whose total length is at most 6 Rg N.. Given that
¢ is fixed already in a §—independent fashion, Proposition 4.1 can be applied to each
such interval if » > Ké > 1 to supply for each a set ¥. This understood, the conclusions
of Proposition 4.5 are satisfied using some N’ < N, versions of © to deal with the
components of I’, while using for T — 1’ at most N’ 4 1 versions of sets ¢ whose
constituent pairs have subvariety component R x .

Part 5 The assumption is that I has the form [sqg, 0c0) or (—o0, 00). To prove the
assertion made by the third bullet about I, fix ¢ > 0 and very small. Let Z denote the
subset of k € Z N1 with (i/(2m)) f[k,k+1]><M da N F4 > ¢. Note that Z is bounded.
Let A denote the set of components of I — (| ¢z[k. k + 1]) with length at least 16.
This is a finite set because the s — £00 limits of 0 are solutions to (1-8). Let N denote
the number of elements in A. Order the set A as {I),..., 1 ]’\,} with the ordering given
by the value of the supremum of s. Thus, / I/\, is unbounded from above. With the
preceding understood, the remainder of the proof is broken into four steps.

Step 1 Let sy— denote the minimum point in 7y, or —oo if I, = R. Fix §o > 0 but
small. Apply Proposition 4.1 to the intervals in I of length 2§ I+ 16 with a point
from 7 ]’\, Then apply Lemma 4.6 to all subintervals in / I/V of length 1. Given the
conclusions of Proposition 4.1, there exists ro that depends only on §y and is such
that if » > ro, then Lemma 4.6 assigns to any such subinterval a collection of pairs of
Reeb orbit and positive integer weight. Given that the Reeb orbits of length £ or
less are nondegenerate, the conclusions of Lemma 4.6 applied to overlapping length 1
intervals starting at any given, sufficiently large value of s and then working towards
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smaller values leads to the following conclusion when dg < ¢ land e < Co I and r is
large: There exists a finite set ® consisting of pairs (y, m) with y a Reeb orbit and m
a positive integer. This set is such that no two distinct pairs share the same Reeb orbit.
Furthermore, Z(y,m)e@ mt, < (1/(2m))E4 and the assertions of the two bullets of
Proposition 4.1 hold using the given value of dq for the whole of I = I, for large r
with the set ¢ = {(R X y,m)}(.m)eo -

Step2 If N=1andso [ I/V = I, then nothing more need be said. Assume that this
is not the case. Apply Proposition 4.1 to overlapping subintervals of length 25 116
in 7 with a point from 7}, . Then apply Lemma 4.6 to overlapping subintervals of
length 1. These assign to each such subinterval a finite collection of pairs of Reeb
orbit and positive integer if 8o, & < ¢ Uand r > ry. To elaborate, let I denote a given
such length 1 interval and let ® denote the assigned collection. The conclusions of
Proposition 4.1 hold for the I = 1, with constant § equal to 8o when r > rg, and with

O ={R xy,m)}y.meo-

Let S(y—1)+ denote the maximal point of 7} _, and let Sy_ denote the £nini—
mal point of [ ]’\, Let ®" denote the collection of Reeb orbits assigned to I_ =
[ﬁ( N-1)+ — L.s(v—1)+]. Let Sy_ denote the minimal point in [ I/V and introduce
I+ to denote [Sy—, Sy— + 1]. Let o denote the piecewise differentiable function
on R that is zero for s < s(ny_1)4+ — 1, equals s —s(y_1)+ on I_ is equal to 1 on
[S(N—1)+>SN—], equals s;y— +1—5 on f+ and is zero for s > sy_ + 1. Integrate the
4—form (i/(2m))do Ana A Fq on R x M and integrate by parts using (4-15) to see
that

: ds/\a/\F,Z—l— dsrnanFz>—cy(e+do)

4-17) — | R
2 TixM 27 Ji_xMm

when r > ¢q. Granted this, granted the conclusions of Step 1, and granted what is said
by Proposition 4.1, it then follows that }_(,, ,)e@ Mfy < (1/(27))E4 if do and & are

less than ¢y L

With the preceding understood, it then follows using the argument from Step 1 for
Iy, _, that each subinterval of length I in Iy, _, is assigned this same collection ®" by
Lemma 4.6. As a consequence, the two bullets of Proposition 4.1 hold for » > ry with
§ =89, with I = I},_,, and with the set & = {(R x y,m)}.m)co’ -

Step 3 Repeat Step 2 first with the roles of the pair (Iy,,l),_,) played by the
pair (I,_,.Iy_,), and then by (I,_,.I},_5), and so on to draw the following
conclusion: For any k € {1,..., N}, there is a finite set ®; of pairs (y,m) of

Reeb orbit and positive integer such that no two pair share the same Reeb orbit,
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such that ", e, MEy = (1/(27))E+, and such that the two bullets of Proposi-
tion 4.1 hold for r > rg, with § = §y, with I being the whole of 1 ,’C with the set

0 =0, ={Rxy,m}p.meo,-

Granted the preceding, it follows that Lemma 4.9 can be invoked when r > ry with
each [ ]’c used instead of I and with E4 used instead of K. Doing so leads to the
conclusion that the integer NV is bounded apriori given X .

Step 4 Given the conclusions of this last step, then the arguments in Part 4 can be used
with only cosmetic changes to prove that the assertions of the first two bullets of Propo-
sition 4.5 hold with the assumption that all Reeb orbits of length less than (1/(27))E+
are nondegenerate. Meanwhile, the assertion that limg— o0 E(0]s) < E4+ + & follows
from the 1 { version of Step 3 using Item (2)(b) of the second bullet of Proposition 4.5.

4.e Local structure

This subsection says something about how the points in &' (0) vary when this locus is
very near a pseudoholomorphic subvariety. The results are summarized in Lemma 4.10
below. The latter is the analog here of Lemma 5.4 in the article SW = Gr from [6].

The lemma refers to a connected component, C, of the |s| < 2 part of a pseudoholo-
morphic submanifold that is defined on some neighborhood of [—-2,2]x M in R x M.
Assume in what follows that {11} are regular values of s on C. To further set the
stage for the lemma, let 7: N — C denote C’s normal bundle. There exists p; > 0
and an exponential map as described in [9, Section 4.a] on the radius p; disk bundle in
N that embeds this disk bundle. Introduce N to denote the radius p; disk bundle and
use ec: N1 — R x M to denote the exponential map. Note that ec embeds each fiber
disk of N as a pseudoholomorphic disk and that its differential is an isometry along C'.
Use N{ and N/’ to denote the respective radius % p1 and radius % o1 subbundle in Nj.

To continue with the stage setting, suppose that p C C is any given point. If D C C
is an embedded disk centered at p, use parallel transport by the Hermitian connection
to identify N|p as D x N|,.

Here is one final piece of notation: If (A, v) is an instanton, use S in what follows to
denote the |s| < 1 part of the intersection between o1 (0) and ec (N;).

Lemma 4.10 Fix C is as described above. Given ¢ > 0 and X > 1, there exists
k > 1 such that the following is true: Suppose that r > k, and that 0 = (A, ¢ =
(o, B)) is an instanton solution to (1-11) with either Ay < r? or Fy > —r?, and with
Supge[—g,5)M(s) < K. Assume that the intersection of a~1(0) with ec(N;) lies
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ec(N/). Let m > 1 denote the integral of (i/(27))F 4 on any fiber disk of N{. Let §
denote the greater of the numbers r~'/? and SUPecn(—1,1]xM) dist(z, ). Assume
that § <k~ !. Let p € C denote a point where |s| <1 and let D C C denote the disk
of radius & centered at p. There exists a set of m or fewer points A C Ni|, such that
if z € D, then each point in S Nec (N1|;) has distance at least €6 from ec (A|;).

Proof of Lemma 4.10 The proof is essentially identical but for one small aspect
to the proof of Lemma 5.4 in the article SW = Gr from [6]. To explain the dif-
ference, start as in the proof of Lemma 5.4 in this same SW = Gr article by as-
suming the lemma is false so as to derive nonsense. There then exist sequences
{rns (Ans Yu)) tn=1,2,... {8ntn=1,2,... and { pn} CCN([—1, 1]x M) with the following
properties: First, the sequence {ry},=1,2,.. C[l,00) is increasing and unbounded and
the sequence {8, },=1,2,... C (0, % po) is decreasing with limit zero. Second, any given
(rn, (Ap, ¥ = (an, Bn)) obeys the assumptions of the lemma with § = §,, but is such
that there is no set of m or fewer points in Nj|p, that makes the conclusions of the
lemma hold. Third, the sequence {p,},=1,2,... converges.

To proceed from here, fix complex Gaussian coordinates centered at p, of the sort that
is described in Part 2 of Section 4.a, but chosen so that the coordinates, x = (xg, X1),
are such that the plane x; = 0 is tangent to C at z, and the plane xo = 0 is tangent
to ec(N1) at p,. Let px > 0 be such that the coordinates are defined for |x| < px.
There are two cases to consider. In the first case is that where {Snrnl/ 2},1:1,2,“. has
a bounded and thus convergent subsequence. In this case, pull (A4,, V) back to the
radius r,}/ 2 p« ball in C? by the map x — r,} /2. If there is no bounded subsequence
of {8nr,}/2}n=1,2,_", pull (A4,,¥p) back to the radius 8, ! p« ball in C? by the map
x — 8,x. In either case, view the result as a pair (A,s, ¥,s) of connection on the
trivial C bundle and spinor on a ball of radius p, in C2. In either case, the sequence

{Pn}n=1,2.... is unbounded.

As argued in the proof of Lemma 5.4 in the article SW = Gr from [6], there is
a complex algebraic subvariety ¥ C C? and a subsequence of {(A4,, Yn)in=1,,..
(hence renumbered consecutively from 1) with the following properties: First, 2 has
intersection number no greater than m with any complex line that is not contained
in ¥. Second, the sequence

(4-18) lim lim | sup dist(x,ozn_(g1 0)+ sup (2,x)
R—=00 M0 xex z€a; (0)
Ix|=R Ix\nsﬁR

converges with limit zero. Third, every point in ¥ has distance 1 or less from the
x1 = 0 plane unless the sequence {py},=1,2,.. converges to a point where |s| =1. In
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the latter case, there exists a unit length complex number o, and every point in ¥ has
distance 1 or less from the x; = 0 plane where real (o0xg) > 0. (The latter case does
not arise in the case studied in SW = Gr.)

The only algebraic subvarieties that obey the third property are disjoint unions of at
most m parallel planes with x; = constant. However, if X is of the latter sort, then
the manner of convergence implies that the conclusions of the lemma are not violated
when 7 is large. a

S Instantons and pseudoholomorphic subvarieties: Part 11

Fix again a pair (a,J) and then u so as to define (1-11)). Here as before, © has
P—norm bounded by 1. The upcoming Proposition 5.1 states the first results from
this section. The main result in this subsection is Proposition 5.5 in Section 5.e, this a
stronger version of Proposition 5.1.

Proposition 5.1 says the same thing as the [ = R version of Proposition 4.5 but for
one very important difference: Proposition 4.5°s requirement that supger M(S) < X is
replaced by a condition on the s — oo limit of the instanton: E4 =limg_ o0 E(A[s) < XK.
Here, E is the function on Conn(E) that is depicted in (1-9). Recall that when 0 is a
given instanton, then f; denotes the spectral flow from its s — —oo limit to its s — 0o
limit.

Proposition 5.1 Fix (A4, J) as above. Given X > 1 and E4 < X, there exists k > 1,
and given § > 0, there exists kg > 1 which, with k, has the following significance:
Suppose that r > kg, and that 0 = (A, ¥ = («, B)) is an instanton solution to (1-11). If
c1(det(S)) is a torsion class, assume Ay < Kr or fy > —k~'r2. If ¢ (det(S)) is not
a torsion class, assume that Ay < Kr or that f > —Xr. In either case, assume that
limg— o0 E(A|s) < E4 and require that all Reeb orbits with length at most (1/(27))E+
are nondegenerate.

e Let c— = limg—_oo(A,¥)|s. Then c— is a solution to (1-11) with E(c—) <
Et+ +36.

e Each point in R x M where |o| < 1—8 has distance at most kr /2

from where
a=0.
e Moreover, there exists
(a) A positive integer N < « and a cover of R as | J; << Ix by connected
open sets of length at least 26!, These are such that I N Iy, = @ if
|k —k'| > 1. In addition, if |k —k’| = 1, then I}, N I}, has length between

1 ¢o—1 1 ¢—1
ms and aé .
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(b) Foreachk €{1,2,..., N}, aset 9 whose typical element is a pair (C, m)
where m is a positive integer and where C C R x M is a pseudoholomorphic
subvariety defined in a neighborhood of I, x M . These elements of ¥ are
constrained so that

cmev, °C
In addition, these sets {¥ }x—1,. n are such that
(1) sup dist(z, "1 (0)) +  sup dist( U C, z) <3$.
z€Ucmen, € zea~1(0), (C.m)edy
s(z)ely s(z)ely

(2) Letk €{l,...,N}, let I' C I, denote an interval of length 1, and let v
denote the restriction to I’ x M of a 2—form on R x M with ||v] e = 1
and |Vv||eo <87!. Then

i
L N m/ v
2 /I’XM Z C

(C,m)ed

<.

Proof of Proposition 5.1 This follows from Proposition 4.5 given an r —independent,
bound on the function M. The Sections 5.a—5.d explain how the required bound is
obtained. i

S.a The functions M and E

Let 0 =(4,v): R — Conn(E) x C*®°(M;S) denote an instanton solution to (1-11).
Introduce E(s) to denote E(A|s) and introduce

s+1
(5-1) E(s) = / E(x) dx.
N
This section explains how bounds on E give bounds on M.

To start this task, use the top equation in (1-11) with an integration by parts to see that
d

(5-2) —E = —2E + 2L,
ds

where

(5-3) L(S)zr/ (1—|cx|2—|—|,8|2)+/ a/\*(/j,—l—lBAK).
{s}xM M 2
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Integrate (5-2) to see that

(5-4) E(s) =e %S /s e?*L(x) dx.

—0o0

It follows from Lemma 3.1 that L(s) > —c¢; and thus (5-4) implies the bound
(5-5) co S EB(s) < e (E(s +1) + co).

Now define L(s) to be |, SSH L(x)dx. It then follows from (5-4) and (5-5) that
(5-6)  E(s) =co+coE(s+1) and L(s) = coE(s) + coE(s + 2) + ¢o.

Note in particular that a bound on E supplies a bound on L. Meanwhile, it is a
consequence of Lemma 3.1 that [M—L| < ¢¢. Thus, a bound on E gives a bound on M.

Granted all of this, the next two lemmas supply a bound on E and hence a bound on M.

These lemmas again use E4 to denote the s — oo limit of E(A4]s).

Lemma 5.2 Assume that ¢1(det(S)) is torsion. Given K > 1, there exists k > 1 with
the following significance: Suppose that r > k and that 0 = (A, ) is an instanton
solution to (1-11) with Ay < Kr or f > —«k~1r2. Assume that E4+ < K. Then
supseg E(s) <k K + 2.

Lemma 5.3 Assume that cq(det(S)) is not torsion. Given K > 1, there is a constant
k > 1 with the following significance: Suppose that r > k and that 0 = (A, V) is
an instanton solution to (1-11) with Ay < Kr or fy = —Kr and Ex < K. Then

supser E(5) <« K.
The remaining subsections supply the proofs of these last two lemmas.

5.b Preliminaries

Given s € R, let a(s) = a(d|s) denote the value of (3-2) on ?|s. Bounds on a(s) are
obtained here in terms of E(s), L(s) and

(5-7) 0(s) = / (1B > + 71 Dav[?).
{s}xM

Here, B is defined in (3-4). The bounds for the various terms in a(s) are obtained
sequentially moving from right (easy) to left (hard).

The right most term in (3-2) is bounded using Holder’s inequality:

/M I
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The next term in line is bounded by using (3-4) to write B4 in terms of 254 ) and a
remainder. What with Lemma 3.1, an application of Holder’s inequality to the resulting
expression finds

(5-9) el < co +co(L+0"?).

The term —%VE is left as is, and so all that remains is to bound %cs. Suppose that
u: M — U(1) is a given smooth map, and write A —u~'du = Ag +a. Let ¢s5,(s) =
¢s(A,). Introduce @+ to denote the L? orthogonal projection of @ onto the subspace
of iR—valued coclosed 1—forms on M that are L? orthogonal to the space of iR
valued harmonic 1-forms on M . Then

(5-10) f?m*da:/ at Axdat.
M M

The operator *d on C°°(M;iT*M) is invertible on the coclosed 1-forms that
are L2 orthogonal to the harmonic 1—forms. Let TT+ denote the L?—orthogonal
projection onto the latter space. Use hy and /iy to denote the respective elements in
[ILC®(M;iT*M) that obey xdhy = HL%(A,,/,) and xdhy = rI1+ (v Ty —ia).
Thus,

(5-11) at =hw+hp +ip.
It follows from Lemma 3.1 that
(5-12) hr| < co(r3 L1232 +1).

The proof of this is essentially identical to the proof of the third bullet of [8, Proposition
4.10]. Meanwhile, the L? norm of hg on M is bounded by co0'/2. All of this being
the case, it follows using (5-10) that

(5-13) ‘/ anxda| < co(1+0+r23L*/3).
M

The term @ —a~ contributes to ¢s only via the right most term in (3-3). The latter is

proportional to the value on the Poincaré dual of ¢; (det(S)) of the cohomology class
defined by the L? orthogonal projection of @ onto the space of harmonic 1-forms,
thus to p(a).

Let ay(s) = a(4 —u~'du,u). Putting all that was just said together gives

(5-14) au(s) < co(1+L 472012 4 04+ r2B3IL1*3) +inp@) — LrE.
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Since ay(s) — a,(s’) is independent of u, it follows from Lemma 3.4 that the function
s — ay(s) is a nonincreasing function on R. As a consequence, (5-14) finds the bound

(5-15) FE < —2a(ucy) + co(r + L+ 0+ r2/3 |L|4/3) +inp(a).
Here, ucy is used to denote the gauge transform by u of the configuration ¢4 .

To exploit this, introduce O(s) to denote fSSH 0(x)dx. The measure of the subset

in [s,s + 1] where 0 > 80 is no greater than %. By the same token, the measure of

the subset in [s,s + 1] where L > 8L is no greater than % Thus, there exist points

s’ €[s,s + 1] where both 0 < 80 and L < 8L. Take such a point in (5-15) to see that
(5-16) rE(s’) < —2a(ucy) 4+ co(r + L+ 0+ r23L*3) +inp(@ly).

Now use the right hand inequality in (5-4) to see that E(x) < ¢oE(s’) + ¢o for all
x € [s —1,s]. This understood, (5-6) and (5-16) give

rE(s —1) = —coa(uct) + co(r +0(s))
G-17) +eor? sup [E()[* +¢o sup [p@).

xZs [s,5+1]
Finally, use the second equality in Lemma 3.4 to bound O(s) and so find that
rE(s — 1) < —coa(ucs) + co(r +a(c—) —a(c4))
+eor?? sup [E)[* +¢o sup [p@)l.

xX=s [s,s4+1]

(5-18)

5.c Proof of Lemma 5.2

Since E < ¢g + ¢or in any event, it is sufficient to consider the case where E4 < er
for a suitable & > ¢’ ! This understood, suppose that & > 0 has been fixed and assume
in what follows the bound E4 < er.

Given that ¢y (det(S)) is a torsion class, the term with p(@) is absent in (5-18) and
a(uct) = a(c4+). To bound —a(c4) in (5-18), use the fact that |a(c4) + %rE+| is
equal to |%cs(c+) + ¢y |, and so it follows from (5-19) that |a(cy)| < corE4.

To continue, consider the term a(c—) — a(c4). This is Ay, and so this difference is
bounded by default by Xr if the apriori assumption on A; is satisfied. As explained
next, a bound on this difference by co Xr also follows if fy > —cy 172 To see why,
use the bound on |a(c1)| in the preceding paragraph. If a(c—) < 0, it can be discarded
from (5-18). Suppose that a(c—) > 0. This condition requires that ¢s(c_) > rE(c—)—cg.
However, according to [8, Proposition 4.10], if ¢q(det(S)) is torsion, then

(5-19) co(r?3E|*3 + o) = |es,
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for any solution to (1-8). Applied to c¢—, this inequality together with the condition
that c¢s(c—) > rE(c—) — ¢o leads to the following dichotomy: Fix ¢ > ¢g. Either
E(c—) <cr~!, in which case ¢s(c—) < co when r is large, and thus a(c_) < cg; or else
E(c_) >cr~!. In the latter case, (5-19) together with the condition ¢s > rE—c, requires
that cs(c—) > ¢ 172 if ¢ > ¢o. However, this is not possible if & < Co I given the
bound f; > —Cq 142 Indeed, with [7, Proposition 5.1], the condition c¢s(c—) > ¢y 1,2
requires that the spectral flow function on ¢_ be greater than ¢ 132 Meanwhile, (5-19)
applied to ¢y implies that |cs(c4)| < coe*/3r? because E4 < er. This understood, [7,
Proposition 5.1] bounds the absolute value of the spectral flow function on ¢4 from
below by —coe*/3r2. Thus, the spectral flow fs would be less than —c’ 172 were

e <cy'. Hence, if ¢ <cj! and E4 <er, then a(c—) < cor?/3.
Granted the preceding, (5-18) implies that
(5-20) B(s —1) < co(1+ K) + cor /3 sup [E(x)|*/7.

xX=s

Given T > 1, use st to denote the largest value of s € R where E(s —1) > X+ T.
Take s = s in (5-20) to see that

(5-21) T <co+coXK +cor~3T43.

Given that E4 < er, it follows from (5-21) that there exist (A4, ¥) and r—independent
constants zo = 1 and zy = 1 with the following property: If ¢ < ¢, ! then

(5-22) I'=zp+21X

can not be a solution to (5-21). This last observation implies Lemma 5.2°s claim.

5.d Proof of Lemma 5.3

The argument for this lemma has three parts.

Part1 Consider the version of (5-18) that arises when the map u: M — S 1 is chosen
as follows: Write ¢4 = (A4, ¥). Take u so that Ay —u~'du = Ag + a4 where
a4 is coclosed and where the L2 norm of its projection into the space of harmonic
1-forms is bounded by 100. Such a choice for u is always available. Granted this
choice, it follows using [7, Lemma 2.4, (4-2)] that

(5-23) !a(uc+) + %rEJr! = |%c5 + eM} <c¢o+ corE+.

If the assumption on A, is obeyed, replace a(c—) —a(c4+) in (5-18) by Kr. If this as-
sumption is not obeyed, introduce the function a/'=a—272f on Conn(E)xC®(M;S).
This function is constant on the C°°(M;U(1)) orbits in Conn(E) x C®(M;S),
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although only defined at those pairs where (1-14) has trivial kernel. Such is the case
for ¢c_ and ¢4 . Moreover,

(5-24) af(c_) — af(c+) =a(c_)—a(cy) + 272 fo.

This is used in (5-18) to replace a(c—) —a(c+) by af (c2) —af (cy) + co Kr if the
assumption on A, is not obeyed. To continue in this case, discard a’ (c_) if the latter is
nonpositive. As argued next, it is always the case a/ (c_) < ¢ when f, > —%r and r
is large. To see why, suppose that a/ (c_) > 0. This requires that cs/ (¢_) > rE(c_)—c
with ¢s/ denoting c¢s — 472 f . Meanwhile [8, Proposition 4.10] asserts that

(5-25) les” | < eo(r?/3| E|*3 (1nr)%0 + 1)

for any solution to (1-8).

Fix ¢ > ¢y and there is the following dichotomy: Either E(c—) < cr~ ! in which case

(5-25) finds |c5f(c_)| <¢¢ and thus af(c_) <cp;orelse E(c_)>cr~ 1. If ¢ > ¢p, this
with (5-25) and the lower bound cs/ (c_) > rE(c_) — o requires E(c_) > cor (Inr) =<0 ;
and therefore the upper bound |cs/ | > ¢or2(Inr) <0 . But, this violates [7, Proposition
5.1] which finds the apriori bound |cs/ | < ¢or3'/16. To summarize, a/ (¢c_) < ¢¢ in
the case fy > —%r. Meanwhile, (5-25) applied to ¢y bounds |cs/ (¢c4)| and thus
|a/ (c4)| by co + coE+-.

Granted all of the above, it follows directly from (5-18) that

(5-26)  E(s—1) <co+coK +cor 3 sup [E()[*3 +cor™' sup [|p@)].

XxX=s [s,s+1]

To exploit (5-26), fix T' > 1, and introduce s7 to denote the largest value of s € R
where E(s — 1) > K+ T'. Take s = s7 in (5-26) to see that

(5-27) T <co+coK+cor 3T 3 4 cor™' sup  |p(@)|.
[sT,s7+1]

Suppose that |p(a)| for s € s7 + 1 is bounded by ﬁc&lr(K + T'). If such is the
case, then (5-27) implies that

(5-28) T <co(l4+ K+ r71314/3),

this an equation with no solution with 7" > 2¢o(1 + X) but less than ¢, Iy . Thus, a
bound on |p(a)| for s € [s7, s7 + 1] by a very small multiple of (%X + 7)) leads to
the desired bound on supcg E(s). As explained in what follows, [p(a)| has, in fact,
an r —independent upper bound.
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Part 2 Introduce for each s € R the function
(5-29) M(s) = r/ (1—a?).
{s}xM

Thus, the integral of M(-) on any given interval [s, s + 1] is the function M(s). Itis a
consequence of what is written in the first item of Lemma 3.1 that M(-) > —c¢q.

Write A = Afg + a as before and introduce

(5-30) af =a—L(ja? + x(a)) " (@Vix —aV4@).

The connection AF = Ag +aF is flat where |o| > % for here o/|r| is AF —covariantly
constant. Suppose that 0 C M and ¢’ are embedded, oriented, homologous loops.
Suppose in addition that s > s’ are points in R and that X C [s,s’] x M is a closed
immersed surface with respective boundaries {s} x o and {s'} x ¢’. Then

(5-31) / aF—/ af =0
{s}xo {s}xo’

unless X enters the region where |o| < %

In what follows, ¢ > 1 denotes a constant that depends on 7' and X, but not on r
and not on 0 = (4, ). This understood, fix r > ¢ where cr > 1 is large enough
to invoke Lemmas 3.1, 3.6, 3.8, 3.9 and 3.10 on the domain [s + 8, s’ — 8] x M using
100(X + T) in lieu of K. Assume M(-) <100(X + T) on [s + 8,5 — 8]. Suppose
that d > cor~'/4 and that each point of ¥ has distance at least d from where |or| < %
This being the case, it follows using Lemma 3.8 and Lemma 3.9 that 2% can be written
on both o and o’ as

(5-32) af =b+q,

where |b| < (c7 M(s) + c7)d ™2 and where q is the projection of @ onto the space of
harmonic 1-forms. Given the bound on |b|, what is written in (5-31) implies that

[
{s}xo {s}xao’

where £ = max{length (o), length (¢”)}. If the homology class of ¢ and ¢’ is Poincaré
dual to ¢q(det(S)), then (5-33) implies that

(5-34) Ip@@ls) —p(@ls)| < er ((M(s) +M(s") + e ) d 2.

Given the top line in (1-11), use of Lemma 3.1 and Lemma 3.9 finds that

(5-33) < cr ((M(s) + M(s")) + 7 )ed 2,

(5-35) ilﬂ(a) <cr +crM(s).
ds
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Suppose that s — s/ > 3 and that ¥ intersects [s',s" + 1] x M as [s',s" + 1] x o’
and has the analogous product structure in [s — 1, 5] x M . Granted (5-35) and this
product structure, then both appearances of M(-) in (5-34) can be replaced by M(-).
In particular, if s’ is greater than sz, then the fact that |[L — M| < ¢ together with (5-6)
and the M version of (5-34) imply that

(5-36) Ip(@ls) —p(@ls)| <er(l+ K+ T)ed 2.

Keep in mind that this holds if there is an immersed surface X C [s,s’] x M with
distance d > cor—1/* from a~1(0), and ¥ is [/,s’ + 1] x o’ and [s — 1,s] x o at
distances 1 or less from the boundaries of [s,s'] x M .

Part 3 This part starts with a lemma that is well known to the pseudoholomorphic
curve experts. It is a corollary of Lemma 4.8.

Lemma 5.4 Suppose that A\l > 1 has been given and that each Reeb orbit of length at
most N\ is nondegenerate. Given also § > 0, there is a constant k > 1 with the following
significance: Suppose that C C R x M is a pseudoholomorphic subvariety with both
Jo da = N and supger Jon(ris.st1xan 95 A @ < N Then there is a set I C R with
at most k components and total length k~' or less, and such that if s € R —1, then each
point of C|g has distance é or less from a Reeb orbit in M with length at most N\_.

Keep this lemma in mind.

Fix ¢ > 0. With T fixed, there exists K7 > 1 such that if » > k7 ¢, then Proposition
4.5 can be invoked using X + 7 in lieu of X, using ¢ in lieu of §, and using for I the
set [s7 + 16, 00). The proposition supplies a constant N7 and some N < N intervals
{1k }k=1....n and corresponding sets {J }x—1,. . n. Granted what is said about these
sets in Proposition 4.5, and granted Lemma 5.4, there exist N7, LT > 1 and there
exists a closed set I’ C [s7 + 16, 00) composed of N < N7, disjoint intervals of
length at most L7 such that the following is true: If s € [sy 4 16, 00) is notin I’,
then each point of a~!(0)|; has distance & or less from a Reeb orbit with length at
most (1/(27))E+.

Given the preceding, fix a smooth embedded loop in M whose points have distance at
least 4¢ from each Reeb orbit with length at most (1/(27))E4 . Choose this loop so
that its homology class is Poincaré dual to c¢; (det(S)). Knowing that the Reeb orbits
are nondegenerate, there exists e > 0 with the following significance: If ¢ < e,
then there exists such a loop with length bounded by a T'—dependent constant, £7 .
This understood, take ¢ = e7 and fix such a loop, o, as just described. Now consider
(5-35) with d = e, with [s,s’] C [s7 + 16,00) — I’ and with ¥ = [s,s’] x 0. This
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version of (5-35) bounds the total change in p(a) on any such [s, s’]. In particular,
it implies that the total change in p(@) over any component of [s7 + 16, 00) — I is
bounded by c7 (K + T)ETs;z . Note that there are no more than Nt .+ 1 components
of [s7 + 16, 00) —I’. Meanwhile, what with (5-34), the total change in p(a) over any
component of I" and over [s7, s7 + 16] is at most c7 Lt (K + T). As there are at
most N7, + 1 such components, the total change in p(a) between any s € [s, 00)
and oo is at most

(5-37) cr(K+ T)NreLrelrer’.

Granted (5-37), then (5-27) leads to (5-28) if r is sufficiently large, and thus a uniform
bound on T by ¢y X.

5.e More about limits

The proposition that follows strengthens Proposition 5.1 as it asserts that all curves
in each k € {1,..., N} version of ¥} are defined on the whole of R x M. As in
Proposition 5.1, the pair (a, J) consist of a contact 1-form on M and a compatible
almost complex structure on the kernel of a. The latter with a given choice of p with
P—norm less than 1 are used to define (1-11).

Proposition 5.5 Fix (a, J) as above. Given K > 1 and E4 < KX, there exists k > 1,
and given § > 0, there exists kg > 1 which, with «, has the following significance:
Suppose that r > kg, and that 0 = (A, ¥ = («, B)) is an instanton solution to (1-11).
If ¢ (det(S)) is a torsion class, assume Ay < Kr or fy > —k~1r2. If cq(det(S)) is
not a torsion class, assume that Ay < Kr or that fy > —%Kr. In either case, assume
that E4 = limg_, o0 E(A4|s) < K and that all Reeb orbits of length no greater than
(1/(27))E4+ are nondegenerate.

e Let c— = limg—_co(A,¥)|s. Then c— is a solution to (1-11) with E(¢c=) <
E4 + J.

e Each pointin R x M where |«| < 1—8 has distance at most kr~'/2 from where
a=0.

e Moreover, there exists

(a) A positive integer N < « and a cover of R as | J; << Ix by connected
open sets of length at least 26!, These are such that I N Iy, = @ if
|k —k’| > 1. In addition, if |k —k'| = 1, then I} N I}, has length between

1 ¢o—1 1 ¢—1
ms and aé .
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(b) Foreachk €{1,2,..., N}, aset 9 whose typical element is a pair (C, m)
where m is a positive integer and where C C R x M is a pseudoholomorphic
subvariety. These elements of ¥, are constrained so that

Z m/da</c.

cmev, €
In addition, these sets {¥ }x—1,. n are such that
(1) sup dist(z, "1 (0)) +  sup dist( U C, Z) <3$.
zeUc.myes,, C zea~1(0), (C,m)edy,
s(z)ely s(z)elx

(2) Letk €{l,...,N}, let I' C I denote an interval of length 1, and let v
denote the restriction to I’ x M of a 2—form on R x M with ||U||co = 1
and |Vv||eo <87 !. Then

i
— vVAF7— m/v
27T/;><M Z C

(C,m)ed

<.

Proof of Proposition 5.5 Start with the assertion that each curve in each k €
{1,..., N}. If this is not true, there would exist an unbounded sequence {ry},=12....
and a corresponding sequence of instantons {9, },=1,2,... to the corresponding r = r;
version of (1-11) that obeyed the assumptions with fixed X and §, but such that this
particular assertion was false. In any event, the conclusions of Proposition 5.1 hold
for n sufficiently large. Since Proposition 5.1°s integer N is uniformly bounded,
a subsequence (hence renumbered consecutively from 1) can be chosen so that all
members have the same integer N . By passing to another subsequence, one can assume
that there exists an integer k € {1,..., N} and a sequence {Ux ,}n=1,2,... Where any
given index n element comes from some index j version of one of Proposition 5.1’s
sets ¥ . Moreover, each such ¥ ,, contains a pair whose J-holomorphic curve is not
the restriction to some neighborhood of I x M of a J-holomorphic subvariety that
obeys the Proposition 5.5°s requirements. Finally, there is no replacement of ¥ ,, by a
corresponding set that does obey Proposition 5.5’°s requirements. This last conclusion
is seen below to generate nonsense.

The n—independent bound on the integral of da over the constituent curves in any
given ¥ , implies that the sequence {{¥ ,}1<k<N}n=1,2,... has a subsequence hence
renumbered consecutively that converges to what is often called a “broken trajectory”
of J-holomorphic subvarieties. This broken trajectory consists of a finite, ordered
collection {¥ }x—1,2,... N, of sets with the following properties: The typical element
in each set is a pair (C,m) where C C R x M is a pseudoholomorphic subvariety
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and where m is a positive integer. As usual, no two pairs from any given ¥ share
the same subvariety. Moreover, at least one pair from ¥ has a subvariety that is not
R—invariant. There are also constraints on the s — £ o0 limits of the pairs from ¥y .

To say more about these constraints, note that the s — —oo limit of the pairs from ¥,
defines a set, ®;_, whose typical element is a pair (y,m) with y a Reeb orbit and
m a positive integer. In this regard, (y,m) appears if y is an s — —oo limit of the
constant s slices of X = U(C,m’)eﬁk C. What follows describes how m is obtained.
Let &£,_ denote the ends of X; whose constant s slices converge as s — —o0 to y.
Then m is a sum of positive integers with the sum indexed by the ends in &£,_. In
particular, an end ‘E contributes to this sum the product m«m’ where m’ is the integer
component of the pair from ¥, that contains £ and where m¢ is the degree of the
projection from any constant s << —1 slice of E to y. The s — oo limit of the pairs
from ¥ define an analogous set, this denoted by ®y . With this notation in hand, the
pairs {Uy }x=1,... N are such that Oy _ = O_; 4 for k > 1.

The convergence of {{0x »fk=1,.. Nin=1,2,.. 10 {Dkjx=1,2,. ~ is such that the fol-
lowing is true: Let Iy , denote the index n version of Proposition 5.5’s interval Iy .
The set of integers {1,..., N’} is partitioned into N subsets. These are denoted by
{Ax}1<k<n- The sequence {Jk ,}n=1,2,... determines the collection {¥y: : k" € Ag}.
For each n, the interval Iy , is written as a union of consecutive intervals that are
indexed by the elements in A . Each subinterval can be assumed to have length greater
than N. Let k' € Ax and let Iy , C I , denote the corresponding subinterval. Let
Gk - Rx M — R x M denote the constant translation along the R factor that puts
the midpoint of Iy, , at the origin.

. Z m Cdaznli)n;o Z m/cm,d!nda.

(C,m)edy (C,m)eDs
° Z m / v = Iim Z m ¢k’,n * U,
n—>o0
Ccmyed, °C Cmyedvy; MK

where v denotes a 2—form on R x M with compact support.

(5-38) o Let U CRx M denote a compact set. Then

(@) lim sup dist(z, U ¢k,,n(C))=0.

n—>o00
z€Ucmen,, (€NU) (C.m)EDs

(b) nll)m sup dist (z, U C) =0.

OOZEU(C,m)Gz?kﬂ (@17 n(C)NT) (C,m)ed,s
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This convergence follows using the arguments in [6, Section 6], or by using the results
about convergence of J-holomorphic curves on symplectizations as can be found in
Bourgeois et al [1]. Granted (5-38), replace each n € {1,2,...} version of ¥y , by
the version of {¥;, : k" € A} that is obtained by translating the subvarieties from
any given v, by the translation along the R factor of R x M that is given by ¢]:,1 "
It follows from (5-38) that this replacement for ¥ , obeys all of Proposition 5.5’s
requirements. |

6 Proof of Theorem 1.2

The proof begins by assuming the theorem is false so as to generate some nonsense. In
particular, were it false, then there exists a sequence {(r4, (An, ¥n))}n=1,2,... such that

e The sequence {ry},=1,2,... C[l,00) is increasing and unbounded.

e Any given 0, = (A, ¥y) is a solution to the r = r, version of (1-11) in

(6-1) My (=, ).

e 0, is not in the image of W”.

The remaining subsections generate some nonsense from this assumption by proving
that these conditions are not mutually consistent.

6.a Finding ¢ € ;(0_,0,)

An element, ¥, in M;(©_, ©®4) can be viewed as a finite set whose typical element has
the form (C,m) with C C R x M an embedded, pseudoholomorphic subvariety and
with m a positive integer which is equal to 1 if C is not R—invariant. The subvariety
components of different pairs from ¢ are distinct and disjoint. In addition, there is
precisely one such component that is not R—invariant.

Lemma 6.1 There an element ¢ € M;(®_, © ), a subsequence of {(An.Vn)}n=12,...
(hence renumbered consecutively from 1) and a corresponding sequence of constant
translations along the R factor of R x M , all with the following property: For each n,
write the translated version of Y, as a pair (o, Br). The sequence with n—th element

sup dist(z,an_l(O))—i- sup dist( U C,z)
(C,m)ed

zeUc.myes C zea; 1(0)

converges with limit zero. In addition, if I C R is an interval of length 1 and v is a
2—form on R x M with ||v||eco = 1 and support on I x M , then the sequence whose
n—th element is (i /(210)) [rypr VA FA—2_(c.myes M [ v also converges with limit
zero.
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Proof of Lemma 6.1 The proof has two parts.

Part1 Proposition 5.5 can be brought to bear with if # is sufficiently large. By passing
to a subsequence and renumbering the latter consecutively from 1, the proposition can
be applied using r, and (A4, ¥,) with § = 1/n. Each sufficiently large n application
of this proposition produces a collection {¥ , }x=1,... n,, of some Ny pairs as described
in (b) of the second item of the proposition. Note in this regard that N, has an n—
independent upper bound. By virtue of what is said in (b) of the second item of the
proposition, the subsequence can be winnowed further so that N,, = N is independent of
n, and so that the sequence {{0x ,}x=1,.. N}n=1,2,. hasasubsequence that converges
to a broken trajectory between ®_ and ®4 where the convergence is as described in
the proof of Proposition 5.5 and (5-38). The manner of convergence is of the sort that
is described in the proof of Proposition 5.1 and (5-38). This broken trajectory consists
of an ordered collection {¥x}x—1,,. N’ as described in the proof of Proposition
5.5: First, the typical element in each set is a pair (C,m) where C C R x M is a
pseudoholomorphic subvariety and where m is a positive integer. As usual, no two
pairs from any given ¥, share the same subvariety. Moreover, at least one pair from 9
has a subvariety that is not R—invariant. There are also the constraints on the s — F00
limits of the pairs from ¥, using the notation from the proof of Proposition 5.5, these
are

(6-2) ©_=0_, Op_=04_ 4 fork>1 and Oy, =0O,.

Part2 Suppose that ¢ (det(S)) is torsion: Given that the embedded contact homology
index /(®_,®4+) =1 and given that J, comes from J,, what is said in Hutchings [2,
Lemma 9.5] (see also Hutchings and Sullivan [4, Corollary 11.5] and Hutchings [3,
Theorem 5.1]) prove that N = 1 and that ¢ = ¢; € M;(O_, ®4). To elaborate, any
given Uy € {0y }1<p'<n’ defines a relative class in Hy (M ; O _, ©f ) as described in
[8, Section 2.c]. Let [Z}] denote this class. Hutchings uses [Z}] to define via [8, (2-9)]
the integer /(®k_, O+, Zy). This is the embedded contact homology index of .
By virtue of (6-2), > i <x<n’ (O, Ops, Zy) is equal to 1. If N’ > 1, then there
must exist at least on element {0 };<x<n- whose embedded-contact homology index
is nonpositive. As such element must contain a pair with a non—R —invariant subvariety,
[2, Lemma 9.5] proves that this is not possible given that J is in the set J,. Given
that N’ =1 and given that the one element is in M (©_, ®_), the conclusions of the
lemma follow from Proposition 5.5 using what is said in (5-38) about convergence.

Suppose that ¢q(det(S)) is not torsion. Each k € {I,..., N’} has its associated
embedded contact homology index I(®_, O, Zi) as in the previous case. Given
(6-2) the collection {Zy }1<x<p- defines a class [Z] € H,(M,®_, ®) and thus the
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integer 1(®_, 04, 7). As argued momentarily, this integer is equal to 1. Given
that 1(®_,04, Z) = 1, the arguments from the previous case can be applied to
prove that N = 1 and that ¥ = ¢; € M;(O_, ;). What follows explains why
1(O_,04,72)=1.

To start the explanation, fix a surface ¥ C R x M as described in [10, Part 1 of Sec-
tion 2.b] whose projection to M defines the class [Z]. Let c— = (A—, ¥— = (a—, B-))
and ¢4 = (A4, ¥4+ = (a4, B+)) denote the respective s — —oo and s — oo limits of
a given large n version of (A, ¥,). The fact that X defines the class Z implies (via
Alexander duality) that the normal bundle of ¥ extends over R x M as the bundle E
and, given a tubular neighborhood of X, there is a pair, (4, «), of connection on E
and section of £ with the following properties: First, & vanishes transversally and its
zero locus is . Second, « is A—covariantly constant on the complement of the given
tubular neighborhood of X.

Use X as in [10, Section 2.c] to define the integer ky and the corresponding opera-
tor ® g. Granted what was said in the preceding paragraph, [10, Lemma 2.5] finds that
the index of the 0 = (A, Yy,) version of (1-12) is equal to index (D g) +2kx, and thus
the latter is equal to 1. Meanwhile, [10, Lemmas 2.7 and 2.8] with [10, (2-109)] assert
that the index of ® g is equal to 1(®_, ®4, Z) —2ky . These last two conclusions
imply the desired result: /(®_,04,72)=1. a

Lemma 6.1 has the refinement that follows.

Lemma 6.2 The sequence of translations for Lemma 6.2 can be chosen so that the
following is also true: Fix 6+« > 0 and then there exists ny such that if n > n.,

sup  dist(z,a;1(0)) + sup dist( U C, Z) <8ary V2,
zelUc.myes z€a; 1 (0) (C.m)ed

The proof of Lemma 6.2 is deferred to Section 7. Accept it for now.

6.b The distance between (A,, ¥,) and (A*, ¥ *)

For each n, let 0, = (Ay, ¥ = (n, Bn)) now denote the translate along the R factor
of R x M of the original n—th sequence element using the n—th translation from the
sequence of translations that is described by Lemma 6.1 and Lemma 6.2. With n
specified, use (A*, ¥*) in what follows to denote the r = r, version of the pair that is
constructed in [9, Section 5.a].
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Lemma 6.3 There exists k >0 and, given § > 0, there exists ng > 1; and these are such
that the following is true: If n > n, then there exists a smooth map u =u,: RxM — S
such that (A, —u~'du, uy,) = (A* + 2r)2b  y* + ') with |b'| + || < and
|Vb'| < ©rl/2,

The remainder of this subsection contains the following.

Proof of Lemma 6.3 The following simplified notation is used: When » is given,
then (A4, ¥) is used in what follows to denote any given version of (A, V). Also,
tUc}c,myed - tUy-}yegs_» {Uy+}yegs, and Up are used to denote the r = ry
versions of the sets that are described in [9, (5-3)]. O

The argument that follows has five parts.

Part 1 Fix n and trivialize E over Uy as Uy x C as done in Step 2 of Part 1 of [9,
Section 6.a]. It is a consequence of Proposition 5.1, Lemma 3.8, the first bullet of
Lemmas 3.7, 3.8 and 6.2 that |a| > 1 —cor ™! on Uy if n > ¢. Granted that such is
the case, there is a gauge transformation uo: Uy — S such that ugo = |o|1c where
¢ is the trivializing section of E. Thus,

(6-3) luoer — 1c| < cor™.

Let A7 denote the connection on £ — Uy that makes 1¢ covariantly constant and
write A = Ay + (2r)'/2bg. Given that Lemma 3.8 finds |Vqa| < cor~'/? and Lemma
3.6 finds |Vfloe| < cor, it follows that

(6-4) |bo| < cor~ ' and |[Vbg| < corl/z.

Part 2 Given (C,m) € ¥, use m: N — C to denote the normal bundle to C, and
let Ny C N denote the disk bundle that is described in [9, Section 4.a]. Reintroduce
ec: N1 = R x M , this the exponential map from [9, Section 4.a].

Fix (C,m) € ¥ and a point p € C. Then fix complex Gaussian coordinates centered
at p of the sort that is described in Part 2 of Section 4.a, but chosen so that the
coordinates, x = (xg, X1), are such that the plane x; = 0 is tangent to C at p and
the plane xo = 0 is tangent to ec (No|p). Let px > 0 be such that the coordinates are
defined for |x| < p«. Rescale by the map x — r~1/2x and let (Anps Yup = (ctnp, Bup))
denote the resulting pair of connection and spinor defined now on the radius r 1/ 2 py
ball in C2. The zeros of anp have distance § or less from the x; = 0 plane. Let
(Ao, ) denote what is given for large n by Lemma 4.3. Since « 1(0) is a complex
algebraic subvariety of C? and since its zeros all have distance § or less from the
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x1 = 0 plane, so o 1(0) must be a disjoint union of some m or less planes, all of
the form x; = constant. This implies that (Ag, &g) is the pullback via the projection
x — x; from C? to C of a vortex in €.

Granted the preceding, Lemma 6.2 and Lemma 4.3 have the following consequence:
Given a positive integer k and real numbers ¢ > 0 and 7 > 1, the restriction of
all sufficiently large n versions of (App,np) to the radius 7' ball in C2 has Ck
distance ¢ or less to some gauge transformation of the pullback via x — x; of the
symmetric vortex in ;.

Given k, ¢ and T, the preceding conclusions do not yet hold for all points in
U(c.myep € with a bound on 7 that is independent of the chosen point. The next
lemma makes such a statement. To set the stage, suppose that a positive integer
n and a real number « > 1 have been specified. Given (C,m) € ¢ and a point
p € C, let A denote the set of triples that have the form (g, (C’,m’)) such that
(C'.m’) € ¥ and g € C' N ec(Ny|p) has distance kry 12 or less from p. Set

Mue(P) = D (g (C'myen) ™ -

Lemma 6.4 Given a positive integer k and real numbers ¢ >0 and R > 1, there exists
k > 1 with the following significance: Suppose that n > k and that p € U(C,m)ez? C.
Define the pair (Ayp,anp) as in described above. This pair has C k distance ¢ on the
ball of radius R in C? to a gauge transformation of the pull back of a vortex in ot (p)
via the projection x — (xg,x1) of C? to C.

Proof of Lemma 6.4 Remark first that there is an upper bound to the size of m,.(p)
that is independent of ¢ and p. Let m, denote the latter. Now, let (A4, o) denote a
pair of connection on the trivial bundle over the radius 7" ball in C? and section over
this ball. Suppose that m’ < m, and that (A4, «) has C k distance less than %8 from
the pullback of a vortex, (Ag, ag) € Cp via the projection x — x; from C? to C.
Suppose, in addition that m < m’ and that m’ —m zeros of «g have distance 7’ > 1
or more from the origin in C2. Use what is said [9, Part 4 in Section 2.a] to draw the
following conclusion: Given k, e and T, there exists Ty such that if 7’/ > T, then
any such (A4, «) will have CK distance less than & on the ball of radius 7" from the
pullback of vortex in &, .

Granted this, assume that the lemma is false so as to obtain a contradiction. If the
lemma is false, there are k, e and 7" and a sequence {pn}n=1,2,.. C U(C,m)ez? C with
the following property: There are infinitely many integers n € {1, 2, ...} such that the
p = pn version of (Ayp, anp) has C k distance greater than ¢ on the ball of radius T in
C? from any gauge transformation of the pull back of any vortex from Cope (pn) With
¢ = T%. Pass to a subsequence with this property and renumber consecutively from 1.
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Even so, there exists m € {1, ..., m} and a subsequence of {(Ap,Anp)}n=1,2,... such
that my.(pn) = m, and such that a gauge transformation of each (A4, ayp) makes
the resulting sequence converge on compact subsets of C2 to a solution, (Ao, &),
to (4-1). Moreover, there exists z > 1 such that the integral of (1 —|ag|?) over any
given T’ > 1 ball centered on the origin in C? is bounded by z7'?. As a consequence,
oy 1(0) is a complex algebraic subvariety in C2. Each component of this subvariety
has bounded distance from the plane x; = 0, and so the locus & 1(0) is a disjoint
union of planes on which x; is constant. Thus, (Ag, &g) is the pullback of a vortex in
some €, for m’ € {m, ..., my} via the projection x — x; from C? to C.

With the preceding understood, each sufficiently large n version of (Ayp, anp) will
have C¥ distance %8 or less on the ball of radius 7" in C? from some gauge transform
of (Ag,a®p). What with the conclusions of the first paragraph of the proof, this implies
that (Ayp.anp) has distance & or less on the ball of radius 7" in C 2 from a gauge
transform of the pullback via the map x — x; of a vortex in &,. This violates the

assumptions and so proves the lemma. a

Part 3 Consider a given element (C,m) € ¥ so as to discuss (A4, «) on Uc. To this
end, use Lemma 6.4 to conclude that there exists a map, ¢, from the part of Uc with
distance %Tr_l/ 2 or less from C to S! with certain desirable properties. To state the
latter, write (4 —iicdig', dcy) = (A* + (2r)2bcy, ¥* +nc1) where (A%, 9*)
is described on U¢ in [9, Step 2 of Part 2 in Section 5.a]. According to what is said in
Lemma 6.4, the gauge transformation u¢; can be chosen so that

(6-5) lber |+ Inci| + 72| Vbey| < co(e + R7Y)

at points in Uc with distance %Tr_l/ 2 or less from C if n > ¢o. To construct ¢,
cover C — (Uge Be E4R) by disks of radius Tr~!/2 5o that the concentric disks of
radius % Tr='/2 are disjoint. This being the case, at most ¢ such disks can overlap.
As a consequence, there is a partition of unity for this cover such that if D is any given
disk in the cover, then the norm of the derivative of the partition function with value 1 at
D’s center is bounded by ¢o7~'r!/2 and the norm of its second derivative is bounded
by coT~2r. According to Lemma 6.4, there is a map, ucp, from the ball of radius
Tr~'/2 centered at the origin in D to S! such that (4 — uElDduCD, ucpy) can be
written as a pair (4* + (2r)/2b, y* + 1) where b and n obey (6-5)if n > ¢q. As a
consequence, the partition of unity can be used to patch these gauge transformations
together where disks overlap to give the map ¢ .

Note that (6-5) implies that Zica differs from 5™ /|s|™ by co(e + T~!) at points on
where |s| € [% T 1/2, % Tr_l/z]. According to what is said in Lemma 3.8, |a| >
1 —coe~T/¢ on the rest of Uc. This then allows for an extension of #i¢ from the

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg—Witten Floer cohomology IV 2905

|s| < % Tr~! part of Uc to the whole of U so as to give amap uc: Uc — S! with the
following properties: First, uca = |a|s"/|s|™ at points where |s| > %Tr_l/ 2 To state
the second, write ucy = ¥* 4+ n¢ and write and A —ucduc™" as A* + (2r)'/2bc .
Then

(6-6) Incl+1bcl <cole+T71) and |Vbe| < cor!/?

if n > ¢o. Note in this regard that the bound on |Vb¢| at points where |s| > % Tr—!/2
follows from the ¢ = 2 version of the third bullet of Lemma 3.6.

Given that s /|s|™ is the transition function between the respective trivializations
of E over Uc and over Uy, and given that uca = |a|s™/|s|™ and uoa = |a|1c on
Uc N Uy, it follows that the pair (i, uc) define a smooth map from Uy U Uc to S'.

Part4 Fix y € Ex_ so as to discuss (4,a) on U,_. Write U, _ as (—00, —R] x
S1 x C with coordinates (w,t,z) as described in [9, (4-1)]. Fix (C,m) € ¢ with
CNU,_ # @; and let p denote a point in C N U,_. The exponential map ec
gives a diffeomorphism between the restriction of N; to a neighborhood of p and a
neighborhood of p in U, — that has certain special properties. To elaborate, write the
coordinates (w, 1) € (—oo, —R]x S! of the point p as (wp,1,). A neighborhood of p
in C has coordinates (w, ) that are defined on a neighborhood of the origin in R?
and such that C near p is parametrized by (w,7) - (w = wp + w, t =t, +1, z =
ze(wp + w, tp + 7)) with zz(-) given by the version of the map in (4-2) for the end
E C C that contains p. As noted in Property 4 and (4-4) of Section 4.a, there is a
trivialization of C’s normal bundle on a neighborhood of z so that with 1 denoting
the fiber coordinate for the normal bundle, then ec sends the coordinates (z, 7, n) to
the point

(wz Wp + W+ s, t =1ty +1+1,
6-7) A 0\
z=zg(wp + w,tp +f)+(1+tz)(g) 7))

in Uy,—. Here, vy, t; and t; are as described in [9, (4-4)]. It then follows that the
inverse diffeomorphism pulls back 7 and dn as

2

i 6, \? 9 9 ,
* (egc)*dn= . dz — 5@ dw — &Z'E dt ) +¢,

where [¢| < co|z|*|n] and [¢'| < co(In||z| +|z[?).

0\ 1/2
-(@5m=(l) (c—zp)+e
6-8)
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Granted (6-7) and (6-8), it then follows from Lemma 6.4 together with [9, (2-4)] that
there is a map, #, from the ball of radius 3 Tryl/ % in U, centered at p to S! with
the following property: Introduce (A4*, ¥*) from [9, (5-8)]. Then (A —u~'du, uyr)

can be written in this ball as (4* + (2r)'/2b, ¥* + 1) where
(6-9) [l +16]+r12|Vb] < co(e +r7>)
if n > Co.

Denote by U/, _ the portion of U, — where the distance to U(C,m)eﬂ C is smaller than
%Tr;l. Granted (6-9), an argument like the one used in Part 3 invoking [9, (2-4)]
gives amap it,—: U, — S such that (A—ut,, Ldity—. i1y—y) = (4* + 2r)'2b,_y,
Y¥* 4+ 1n,—1) where the pair (b,_, n,—) also obeys (6-9) with the addition to the right
hand side of ¢o 7.

Let U}/,/ denote the subset of Uy,— where the distance to | J(c ;)ep C is no greater
than L Try 1/2 . Given [9, (2-4)] and given Lemma 3.8 and the final item of Lemma
3.6, 1t follows that it,,— can be extended from U)_ to the whole of U, so to give
a map, uy—, to S! with the following propertles First, (A —u 1duy_ uy—\) =
(A* + (2r)Y/2by_, y* +1,—) where

(6-10) Iny—| + |by—| <cole +T71) and |Vbh,_| <cor!/2.

Second, the map u,,— and the map u¢ from Part 2 define a smooth map from Uy U U,,—
to S1. Third, if (C,m) € ¥, then the map u, _ and the map uc from Part 3 define a
smooth map from Uc UU,— to S'. The construction of such an extension of i,
is straightforward and so the details are omitted except for the reminder to take into
account the nontrivial transition functions on Uy N U, — and on U, N Uc that are
used in [9, Section 5.a] for the description of (A%, ¥*).

As might be imagined, there is a map #,, 4 from any y € Ex version of U, 4 with
the analogous properties.

Part 5 As noted, the maps {uo, {uc}(c,m)es  (Uy—}yess_: tUy+}yegs, | patch to-
gether so as to define a single map smooth, u: R x M — S'. This being the case,
write the pair (4 — u~'du, uy) as (A* + (2r)/2b’, y* + ') and it follows from
(6-3), (6-4), (6-6) with the various y € E,— and y € B4 versions of (6-10) that the
bound claimed by Lemma 6.3 holds if n > ¢g.

6.c Equation (5-20) of [9]

Reintroduce the space I« as defined at the end of [9, Step 4 in Section 5.a]. Section 5.a
of [9] assigns to any given element & € Ky apair (A€, ¥€) of connection on E — Rx M
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and section over R x M of §. A formula for this pair is given by [9, (5-15)]. Write
this pair (4%, ¥¥) as (4%, ¢*) + ¢ where € is viewed as a section over R x M of
IT*"RxM)®S.

Fix some large n, and introduce from Lemma 6.3 the gauge transformation u, so as
to write

(A Y) = (An — ) dun, unPn = (A* + 2r) V20 y* +77)
with |6'| 4 || < § and |VH'|<cokr!/?. With & € Ky given, write
(A, 9) = (A5, ¥5) + ()2 (¢ ds+b%), ).

This is to say that ((2r)"/2(¢€ds + b€), n¥) = ((2r)'/2b", ') — . To make the con-
nection with what is done in [9, Sections 5.d and 6], note that (bS , ns, ¢E ) obeys the
top two equations in [9, (5-20)]. By way of reminder, the three equations in [9, (5-20)]
assert that a section b = (b, n,¢) over Rx M of iT*M &S & iR obeys

. %b + xdpb—dpydp — 2—1/2r1/2(w€7‘m + TITTIPE) _ 2—1/2,,1/2777“”7
= —2_1/21"_1/2(%A‘5 + B e _r(w‘é’r”ﬁé —ia)— (i xdp + %BAK))-
©-11) ¢ (Vg)sn+ Dygen+2'2r 2 (b)Y + ¢y + 212 (el(b)n + pn)
— _vswé _ DASwS‘
o Lt wdyxb—27121 20ty —ytiy) —o.

In this equation, dps refers to the exterior derivative along the M factorin R x M . An
additional gauge transformation must be done to (A, ) so as to obtain a new version
of (b%, nt, ¢f) that obeys all three equations in (6-11), and thus all of [9, Property 1 of
Section 5.d].

Lemma 6.5 Given § > 0, there exists k > 1 with the following significance: Suppose
that n > k and that £ € Ky with ||€]|eo < k1. There exists a continuous, locally L%
map u =up: Rx M — S such that (A —u~ du, uy,) = (A5 + 2r)'/2b, & +1)
where b(§) = (b, n) is a locally L% section of iT*(R x M) & S whose components
obeys (6-11)when viewed as a section of iT*M & S & iR. Moreover, the spinor
component, 1, has norm less than §; and if s € R, then

/ 16(8)] < k6.
[s,s+1]xM

Finally, u is a smooth map if £ is a smooth element in /Cy. .
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A slightly stronger assumption is required so as to obtain a uniform bound on all
components of b€ . This assumption is stated in the next lemma. This next lemma plays
no role in the subsequent arguments.

Lemma 6.6 Suppose that v € (0, 1) has been given. Then there is a constant, kx > 1,
and, given §, a constant k for use in Lemma 6.5 such that the following is true: Let
o denote the constant from [9, Section 4.c], and suppose that o < k; ' vx. Assume in
addition that n and & are as described in Lemma 6.5, and that & is Holder continuous
with exponent vy and corresponding Holder norm bounded by «; 'r 172§ . Then b(£)
from Lemma 6.5 obeys |b| < §. In particular, if z > 1, if n is sufficiently large and if
Il = z. then [b(§)] < 4.

Proof of Lemma 6.5 and Lemma 6.6 Given that (A4, ¥) is an instanton, all three
items of (6-11) hold if the gauge transformation is chosen so that b = (b, 17, ¢) obeys
the third item of (6-11). Given what is said about |b’| + || by [9, Lemma 6.3 and
Lemma 2.6], the desired bounds on |b| are guaranteed if » is large, and if ||£] oo and
lu—1| and r~'/2|du| are all suitably small. The five steps that follow explain how to
find such a gauge transformation. |

Step 1 The approach is much like that used Part 6 of Section 2.a. To say more, write
the map u as u = ¢* with s a map from R x M to iR. The desired triple (b, 7, ¢) is
determined by s and (b€, 7€, ¢%) via
d
6-12) b=0bE—(2r) V2dpps, ¢ =¢f - (2r)_1/2a—5, n=e Yt -yl +enf.
N
Equation (6-11) is obeyed if s obeys an equation having the schematic form
(6-13) dTds+2r|y*|s + R(s) —Pp — Py =0,

where the notation is as follows: First d' denotes the formal L2 adjoint of the exterior
derivative on R x M . Second,

o Rs)=r(e ™ —e* +29)[YEP +r(e —e ) (Y512 — [y*?)
—r (e = DyFTys — (e = Dy sTif),

(6-14) 3
. mb=(2r)‘/2(—$¢f+di4b5) and Py =ri(n®TyE —yTnf).

Note in particular that |R(s)| < cor|s|(|75] + |1€]lco + |5])-
With regards to the size of (b€, n, ¢¢), remark that
(6-15) |05 . ¢5) < co (161 + 1 |+ 1§ lloo +171/2).
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As a consequence, if & > 0 is given apriori, then the norm of (b%, n%, $¥) can assumed
to be less than ¢ if ||£]joo < co_le and if » is large. This understood, fix ¢ > 0 and
assume that n and & are such that |(b%, 7, ¢f)| <e.

A solution to (6-13) is found by writing the latter as the equation for the fixed point of
a mapping from C®(R x M ;iR) to itself. The map has the form s — T(s) where

(6-16) nmxzéjwmxoemm+a%+%y

where G(x, p) denotes the Green’s function for the operator d¥d +2r|y*|? on R x M
with pole at the point p. It follows from the second item of the upcoming Lemma
6.7 that a fixed point of T in C O(R X M ;iR) is, in fact, a smooth function when &
is smooth. In this case, the equation T(s) = s can be differentiated twice to see that
(6-13) is obeyed. In the case, when £ is not smooth, a fixed point of (6-16) is none the
less a locally L% function that obeys (6-13). This follows using standard properties of
the Laplacian on R x M . Indeed, the fixed point s is bounded and so it is a locally L2,
weak solution to the equation dds = —r|y*|%s + &, where & = —0(s) + Pp + Py,
is a locally L? function on R x M .

Step 2 This step constitutes a digression to consider integrals such as the one on the
right hand side of (6-16). The following lemma says what is needed for now.

Lemma 6.7 There exists a constant k¥ > 1 with the following significance: Take r > k
and let G denote the Green’s function for the operator d'd + r. Suppose that f is a
smooth, bounded section of i T*(R x M) and m is a bounded, iR valued function.
Let x denote the iR valued function on R x M that obeys

do= [ Gt o).
RxM

Then [x] =« (]| f lloo + 172l o) -

The proof of this lemma requires the following analog of Lemma 2.8:

Lemma 6.8 There exists « > 0 such that
o Jram G(x.4) <kr L,
o Jroar 1dGI(x, ) <kr=12.

e Fix p> 0. Then -
(a) fdist(x,-)>p |dG d |(x’ ) = K(l + | ln(prl/z)D’
(b) fdist(X,')>,0 |dG|(x. ) dist(x,) ™ k(1 +] ln(P”I/z)D,

ateach x e M .
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Proof of Lemma 6.8 The proof is much like that of Lemma 2.8. To start, fix € > 0
and let g(-, p) denote the Green’s function for dd + 2e2r with pole at p € R x M |
The latter is strictly positive and it obeys

e—aﬁdist(x,p)/co )

. < -

6-17) * ldgl(x,p) =co (1+er'/2dist(x, p))e e V7 disitr.p)ieo,

dist(x, p)3

. |dg<67|(x, p) <co 1 + &2r dist(x, p)z)e_g‘/;di‘“(x’p)/c‘).

1
dist(x, p)* (
Use the Green’s function g to write

6-18)  Glx.p)=g(x.p)— foM G ([0 —e)g(-. p).

The Green’s function G is also positive, this a consequence of the maximum principle.
It is also the case that G(x, p) = G(p, x).

Fix T > 1 and integrate G(-, p) over the region where |s —s(p)| < T. View the
result as a function of p € R x M and write its supremum as »~!m. Note that this
function has constant limits as |s(p)| — o0, so m is well defined. Given that G > 0,
it follows from (6-18) using the first item in (6-17) that

(6-19) m<coe >+ mr sup / g(-,p).

PERXM J|Y'|<e
What with (6-17), this last equation implies that m obeys (2-27). This understood, it
follows that if & < ¢, then m < coe~2 which is independent of 7'.

To obtain what is claimed by the second item in Lemma 6.8, again fix 7" >> 1. Differen-
tiate (6-18) with respect to p. Take the absolute value of both sides and integrate with
respect to x. Use the middle inequality in (6-17), the first assertion of the lemma and
the fact that G(x, p) = G(p, x) to see that the |s —s(p)| < T portion of the integral
in the second assertion of the lemma is bounded by cor ™12 As this is independent
of T, the result follows.

To obtain Part (a) of the third assertion, fix 7" >> 1. Differentiate (6-18) with respect
to both x and p; then use the results of the lemma’s second assertion with the second
and third items of (6-17) to obtain a bound by c¢o|In(pr!/2)| on the contribution to the
integral in question from the |s —s(p)| < T part of R x M . As this is also independent
of T, the result then follows. To obtain Part (b), first differentiate (6-18) with respect
to x. Then take the norm of both sides, divide by dist(x, p) and integrate with respect
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to p. Anupper bound by « [In(pr!/2)| for the right hand side of the resulting expression
follows using the second item of the lemma with the first item in (6-17). O

Proof of Lemma 6.7 The bound on x follows by using the first and second items of
Lemma 6.8 after an integration by parts to take the derivative off of f* and replace it
with a derivative from the right on G. a

Step 3 Given Lemma 6.7, minor notational modifications to the argument given in
Step 3 of the proof of Lemma 2.7 proves the following: There exists co > 2 with the
following significance: Set |(b%, nf, ¢f)| =¢. If e < co_1 , then the map T obeys

o |T(s) < cg'ls|+ coe if |s| <yt

(6-20) IT(s) = T(s")| < ¢g'|s— | if both |s| and |s'| are less than ¢!

This then implies that if & < ¢’ ! then T has a unique fixed point on the ball of radius
Co Uin CO(R x M ;iR); and this fixed point has sup norm bounded by ¢. Let s denote
this fixed point.

Step4 Suppose now that v, € (0, 1) has been specified and that & is Holder continuous
with exponent vs. A bound on |d s| by can be obtained by copying almost verbatim the
arguments used in Step 4 of the proof of Lemma 2.7. There are but two salient changes
and one additional observation. Here is are the changes: First, any given appeal to
Lemma 2.8 is replaced by the appeal to the corresponding part of Lemma 6.8. To state
the second, recall that the proof of Lemma 2.7 used the fact that L% functions on the
circle are Holder continuous with exponent % Appeal to this fact is replaced by the
assumption Holder continuity assumption on &.

What follows is the important new observation: What is written as tg comes very close
to obeying the third equation in (6-11) in that the derivatives of & that arise in the
te contribution to 33, appear with a factor bounded by cqp«. This being the case, a
close look at the analysis of the terms in the R x M version of (2-30) finds that the
k—th such term is bounded by cor'/227kV=/0 p, r~V*||£|| co.v . The sequence of such
bounds is again summable, and its sum is bounded by r'/2¢quy ! pyr™? l€]|co.v . The
claim made by the lemma follows from this bound.

Step 5 Given the constant § in Lemma 6.5, it follows from Steps 2-3 that s exists.
What is said in these steps also imply the following: If the expression on the right hand
side of (6-15) is bounded by 60_18_4, then |s| is bounded by §2 if § < cal. It then
follows that the spinor component of b is bounded by §if § <c¢j ! and n is large.
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With b as written in (6-12), a bound on its L2 norm over [s, s 4+ 1] x M follows from
a bound on the L2 norm of r~/2d s over this same cylinder. To obtain such a bound,
set m to denote the function on x(|s(-)—s|—1) on R x M . Multiply both sides of
(6-13) by r~!ms, and then integrate the result over R x M . Integrate by parts so as
to equate the integral of r ~!msdTds with the integral of the function —rm|ds|* —
r1 %(d Tdm)|s|?. The resulting equation equates the integral of r~'m|d s|? with an
integral over [s — 1,5 + 2] x M whose integrand is bounded by c¢¢d. Since m is a
nonnegative function and equal to 1 on [s, s + 1] x M, this last equality leads directly
to the L2 bound asserted by Lemma 6.5.

The assertions made by Lemma 6.6 follow directly from what is said in Step 4.

6.d Choosing &

To summarize what has been done so far, suppose that § > 0 has been chosen. As
demonstrated in the preceding, there exists ¥ > 1 such that if £ € ICy with ||€]leo <!,
then the following is true: Define h(£) as instructed in [9, Section 6.d]; and then

introduce q = b(£) — h(£). This section ¢ obeys

o Dq=r"12(v- Uh)—r 2qxq—2r'/2pxq.

e The L? norm of q on any given cylinder of the form [s,s 4+ 1] x M is
bounded by §.

e The spinor component of ¢ is bounded by 4.

(6-21)

Here, the notation is that used in [9, Section 6]. The bounds on the L2 norm of q and
on its spinor component follow from Lemma 6.5 and what is said about §(§) in [9
Section 6.d].

Reintroduce from [9, Part 6 in Section 7.a] the projection Il in order to defined the
subspace IH[L = (1 —ITg)H. Likewise introduce the homomorphism t: £ — IL as
defined in [9 (6-9)] and its adjoint, tg Since Hé‘ is the kernel in H of t; any element
f € H can be written uniquely as f- + te(0). Of interest here is the decomposition of
q in this manner as q- + te(0).

Lemma 6.9 There exists k > 1 with the following significance: Suppose that § is
positive but less than k~! and that n > k. Then there exists £ € Ky with ||£]eo < 8

such that TIg(b(§) —h(§)) = 0.
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The rest of this subsection is occupied with the following.
Proof of Lemma 6.9 The proof has nine steps.

Step 1 This part says something about the size of tg (+) for any given £ € ICy. To this
end, fix (C,m) € ¢ and a point p € C — (U‘EEEC E, r) and suppose that § is a section
of iT*(Rx M) @S that is defined near p. It then follows using [9, (6-57)] that

(6-22) (Dl < coll + £]1o0) le xclfir 2o,

Here, n: N — C denotes C’s normal bundle and s denotes the canonical section
over N of 7* N . Similar integrals bound the other components of t;r (f)-

Step 2 Suppose that £ € [Cy is any given element. It then follows from the definition
given in [9, Section 6.d] of h(&) and from [9, Lemma 3.10] that te (b(S)) has || - |lco
norm bounded by ¢o(]|€]|oo 4+ 1)r~3/4. Indeed, such is the case because any given b
from [9, (6-54)] has vanishing Vo component, and because any given by, 4 from [9,
(6-43)—(6-44)] has vanishing Vy component.

To analyze the tg image of b(&), write the pair (A%, ¥€) as (4%, 1/f*)+((2r)1/21:5, Ge)
with (¢g, G¢) here viewed as a section of i T*(R x M) @ S. Likewise, view the i T* M
and /R components of b(§) as giving a section of i T*(R x M) and use the pair
(b',n') of Lemma 6.3 and the iR valued function s = s(¢) from the proof of Lemma
6.5 to write b(§) = (b, n) with

(6-23) b=b"—¢ —r Y245 and n=e'y —e'ce+ (efF — Dy

Given § > 0, Lemma 6.3 asserts that |b'| + |/| < § when n is large. Meanwhile,
e +[6el = collélloo-

Step 3 Equation (6-8) finds that |s| < ¢o(§ + ||£]co). Lemma 6.6 can be used to
bound |ds| given a suitable bound for ||&||xc. However less is needed in what follows;
only a bound for the | - [|¢ norm of tg((—r_l/zds, (e —1)y¥*)) when & € Ki. The
following lemma is used to obtain what is needed. The lemma augments the assertions
made by Lemma 6.7.

Lemma 6.10 The constant « that appears in Lemma 6.7 can be chosen so that the
following additional conclusion holds: Let & € Ky. Set f = (—r~"/2d x, xy*) and
then
. IItg(f)lloo < krT V22 g o) (1 f oo + Imlloo) -
e If, in addition, £ € K, then
161 () = £, (Dlloo < cor™211E =& lloo (/oo + 1mlloo)
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Proof of Lemma 6.10 A preliminary digression is needed for some relevant back-
ground. To start this digression, return to the context in [9, Section 2] of the vortex
equation on C. For the purposes at hand, let x denote a bounded function on C.
Let ¢ = (A4, «) denote a solution to (1-4), and introduce the corresponding version,
., of the operator depicted in (2-8). Then A = (—2!/29x,ax) can be written as
193 (2'/2%,0). As a consequence, A is L? orthogonal to the kernel of . Note that the
integral of the inner product between A and an element in the kernel of ¥, converges
uniformly by virtue of [9, (2-2)] and the fact that |x| is bounded.

To explore the consequences of this last observation, consider first (C,m) € ¥ and a
point p € C —(Uzeg. E2r)- Suppose that C 1s either not R—invariant, or that its
associated integer is 1. Then C’s component of te (f) at p can be written as

(6-24) (] (Me = /N XCOeq, te

lp

where the notation is as follows: First, 6, g,r 18 as defined in [9, (6-57)] and N |p is the
fiber at p of C’s normal bundle. Second, £¢ has components (r=Y 2qgo(d X)), ge1(x))
where ggo(dx) is a linear combination of the R x M components of dx whose
coefficients are bounded by (cq|s|+ ||€|loc) and have derivatives with norm bounded by
co(1+7"/2|]00) . Meanwhile, |ge; (x)| < co(|s| +[|€loo)|x|. Finally, the coefficients
of (geo — g¢1)(d x) and ggq(x)— g1 () enjoy similar bounds but for the replacement
of [|Elloo with [[§ —&"[leo-

Consider now the proof of the first assertion. Given the bound on |x| already noted, it
follows using [9, (2-2)] that the contribution to (6-24) from the gg;(x) part of £ is

bounded by cor™ "2 (™2 + [|&]lo0) 1./ lloo + 172l 0)

To consider the contribution to the integral in (6-24) from ggo(d %), it proves useful to
write G(x,-) as in (6-18) for the case ¢ = 1. This done, define x, by the rule

(6-25) Xglx :/ g(x,-)(rl/szf—l-rm).
RxM

By the second items of (6-17) and Lemma 6.8, the contribution to £ from g¢o(d(x—xg))
is bounded in absolute value by cor = /2(r=12 4 ||E]loo) (I £ lloo + 71 ]l00)-

Split the contribution to £ from ggo(d xg) into two parts by splitting xg as Xg1 + Xg2,
where x4 is defined by using )((r_l/2 dist(x,-))g(x,+) in (6-25) rather than g(x,-).
The contribution to (6-24) from d x¢ is analyzed with the help of the third item in (6-17).
The result finds this contribution bounded by cor Y2 (r =124 ||€loo) (|| / loo+ 17|00 -

The integral that is used to define C’s component at p of tg (G 2q$0(d Xg2),0)) is

analyzed as follows: First, the derivatives of xg, that appear in g¢o(d xg2) that are in
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directions along the fiber of N |, are transferred to yc ggo (P1£=0,r) using integration
by parts. This done, then the second item in (6-17) can be used to see that the resulting
expression is bounded by cor =2 (r ™12 + [|Eloo) (| f lloo + 72 0)-

The derivatives of g, which appear in g¢o(d xg2) and are transversal to the fiber
of N at p are analyzed by exploiting the fact that the integral that defines xg; is
confined to regions where dist(x,-) < r~12 In particular, the standard small distance
approximations for g(x,-) can be employed when r is large to write such a derivative
— a component of (VHg)(x,-) — as a sum (3/9z;)g + g’ where the notation is as
follows: First, z = zy + iz is a complex Gaussian coordinate along the fiber of
N|p. Meanwhile, both g and g’ have the following properties: They are bounded by
co dist(x,-)™2 and their derivatives from the right are bounded in absolute value by
co(dist(x, )3 + r~ 12 dist(x,-)72).

These bounds are used to evaluate the integral of xc81g=0, ge0(d x¢2) along the fiber of
N |p as follows: First, integrate by parts along the fiber of Np 50 as to transfer the 9/0z;
derivative on g to a derivative along the fiber of x¢ qgo (01£=0,r). Having done this,
the just mentioned bounds on the derivatives of g and g’ can be used in a straightforward
way to bound the ggo(d xg) contribution by cor Y202 1 1€ lloo) (L f llso + N1l 00) -

Except for cosmetic changes, the analysis given can be employed so as to bound the
other components of tg (f) by what is claimed in the first item of the lemma. A very
similar sort of argument proves the claim made by the second item of the lemma. These
are left to the reader. a

Step 4 The & = 0 version of q is smooth; this follows from (6-21) using standard
elliptic regularity theorems. More to the point, because the L2 norm of q on cylinders
of the form [s,s + 1] x M has an s—independent upper bound, there exists an r—
dependent constant z such that the following is true: If p € R x M and p € (0, 1],
then

(6-26) / (IVal* +al?) = zp*.
dist(p,-)<p

Now write the £ = 0 version of q as g + ,(6). It follows from what was just said
about g that each component of 8 is also smooth; and it follows from (6-26) that
|61« is finite. In addition, what is said in Step 2 and what is said by Lemma 6.10
imply that ||0]|eo < cor~'/28 when n is large.

Write 6 = r~1/200): thus A is an element in Ky with [|[A©Q o < ¢o8 if 7 is
large. Assume that such is the case. This A(?) is the zero’th element of a sequence
{)L(k)}k=0’1’__. whose limit is the desired element £. The sequence is constructed
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inductively along the following lines: Suppose that A%) € K, for some k > 0 and
that ||A%)| s is such as to invoke Lemma 6.5. Assume as well that A% is smooth.
Use £ = A% to define (4%, y€). This done, introduce the £ = A% version of
q = b(£) —h(&). Then q(A%) is smooth, and the same argument that led to (6-26) in
the case k = 0 gives the analogous inequality for q(kk ) with perhaps a different z.
Keeping this in mind, decompose q(A¥K) = g+ + te=y00(0). Then 6 is smooth, and
what with the q(A¥) version of (6-26), it follows that [|6]x, is finite. Write this new
version of 6 is written as r—1/2(A*+1 — 1)) "thus giving the next element in the
sequence; provided that enough can be said about the size of [AK+TD — 1 ®)| .

Step 5 To set up what is needed to construct the whole sequence {)\(k)}k=0,1,___ and
say something about its properties, suppose that & and & are in K. It follows directly
from the definitions of ¢ and (cg, Gg) using [9, (2-9), (2-11), (2-12)] that

(6-27) (e, o)) =2 E +o),
where

(6-28) lelloo = colr™"2+57 + £ ]l00) 1€ llo-
By the same token, if &, & and & + & are in Ky, then

(6-29) i, e (e ce)) =t ((ce. ce)) =72,

where this new version of ¢ also obeys (6-28).

To continue, fix £ and & as above, and use s and s” to denote the functions that appear
in their respective versions of (6-23). It follows from Lemma 6.7 that

(6-30) s = 5"l = colls —&lloo

when n is large. In addition, if f is set equal to (—r~/2ds, (e* — 1)y¥*) and [ is
defined analogously using s’, it follows from Lemmas 6.7 and 6.10 that

(6-31) 1) =1}, (oo < co8l1E —&'llco-

when 7 is large.

Step 6 Suppose now that A%) is as described in Step 4. Then (6-23) with (6-27)—(6-31)
imply that
(6-32) IAEED =28 oo < c08[12 P oo

if it is the case that [|A%)||o < co8 and n is sufficiently large. This has the following
consequence: If § < ¢ U and if # is sufficiently large, then the sequence {)L(k)}k=0,1,__,

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg—Witten Floer cohomology IV 2917

can be constructed as described in Step 4. Moreover, (6-32) implies that this sequence
converges in the C° topology. This is the topology that is defined by replacing each
version of || - ||k in [9, (5-13)] with the norm || - ||cc -

Let £ denote this limit. Let ||-||x, denote the norm on /C, from [9, Step 4 in Section 5.a].
If ||&| k. is finite, it then follows from the construction that b(§) —H(£) is in Hé‘ This
understood, the claim made by Lemma 6.9 follows with a proof that ||&] x, is finite.

Step 7 To prove that ||&||x, < oo, it is useful to introduce an equivalent norm and
prove that the latter is finite on £. To this end, return for the moment to the context and
notation of [9, (2-27)]. Fix ¢ € (0, 1) and then define a new norm, denoted || - ||x,¢, on
C*®(C;c*V1,0€Em) by declaring

(-33) P

peC,p<e dist(-,p)<p
Replace |- || in [9, (5-13)] with || - ||k, to define the norm || ||x,e, on Ksmootn - Note
that || - ||k, gives a norm on Kgmoom that is equivalent to || - ||x.

The proof of convergence of {A(k) }k=0,1,2,... with respect to the norm ||- ||k, , requires
first some remarks about #(cg, Gg). What is needed concerns the respective terms in
(6-27) and (6-29) that are denoted by e¢. Here is what is needed about e¢:

(6-34) lellce < cotr™2F57 4 €00 1€ 1.6 + collEllic.e I oo,

where c¢q is independent of €. As with (6-29), this inequality follow readily from the
definitions of # and (¢, Gg) using [9, (2-9), (2-11), (2-12)].

The convergence of {1 Yk=0,1,2,... With respect to the norm || - ||, would follow
directly from (6-27), (6-29) and (6-34) but for the contribution of the £ = 1% version
of t(—r="2ds, (e* — 1)(¥* + G¢)) to the definition of A*+1. The next lemma
supplies a fundamental bound for the L2 norms of ds and Vds that is used to control
the contribution from this term. Here is the motivation for this lemma: If £ € K, and
if x is any given iR valued function on R x M, then bounds on the K-norm of
te (—r~Y2dx, (eX = 1) (¥* + Ge)) follow immediately from bounds on the L? norms
of dx and Vdx on balls in R x M of varying radii.

Lemma 6.11 There exists a constant k > 0 with the following significance: Fix n > k
and set r = r,. Suppose that ¢ € (0,7 '] and that p € (0, ¢]. Let £ and £’ denote two
elements in K« and let s and s" denote the respective solutions to (6-13) given by the
small normed fixed point of (6-16). Then

/d, o) (1Vd(s =P +1d(s—s)7) < cor ™V (I1E =& 11% + 16 —&l1%.)-
ist(p,)<p
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This lemma is proved in Step 9.

To use this lemma to prove that £ € K, when # is large, set ¢ = r~!. Given Lemma
6.11, it follows from (6-23), (6-27)—(6-29), and (6-34) that

(6-35) [|AETD A B <eo(rT 44 8) (AR —AETD | g 4 AT —AETD ).

If n is large, iteration of this inequality shows that the sequence {A®) Yk=0.1,... 1s a

Cauchy sequence with respect to the norm || - [|x,s. As such it converges, and so its
limit, &, has ||£]/x,e < 0co. Thus, § € K« when n is large.

Step 8 The proof of Lemma 6.11 requires an auxiliary lemma whose statement and
proof occupy this Step 8. Here is the required lemma.

Lemma 6.12 The constant k in Lemma 6.7 and Lemma 6.10 can be chosen so that the
following additional conclusion holds: Let p and p’ be any two points in R x M and let
A denote r'/2 dist(p, p'). Then |x(p) — x(p")| <k A +[In(A) ) f lloo + 17 ]l00) -

Proof of Lemma 6.12 The contribution to x from rm has bounded derivative as
can be seen using the second item of Lemma 6.8. In particular, this item of Lemma
6.8 gives a bound of the norm of this derivative by ¢or'/2|m|cs. Thus, this part
contributes at most coA||m |0 to |x(p) — x(p")|. To see about the contribution from
dt f, write G as in (6-18) using & = 1. This done, write the contribution from d% f
as xg + (x — xg) where xg is defined by (6-25). It then follows using the second
item of Lemma 6.10 and the second item of (6-17) that the function x — xg has
bounded derivative with norm bounded by cor!/2|| f|lco. Thus, x — Xg contributes
at most coA|| flleo to |x(p) — x(p’)]. Consider now the contribution from xg. It
proves convenient to write xg once again as Xg1 + Xg2 Where x5 is defined by using
x (/7 dist(x,-))g(x,-) in (6-35) rather than g(x,-). Integrate by parts to remove
the derivative from f and then appeal to the third and fourth items of (6-17) to see
that x4 has bounded derivative with norm bounded by cor'?|| floo. Thus, Xg1
contributes at most coA| f|loo to |x(p) — x(p’)|. As for x42, integrate by parts to
put the derivatives from f onto g. If dist(p, p’) > ¢ 1p=1/2 use the second item
in (6-17) to bound |xg2(p)| and |xg2(p")| both by ¢ol| f[lco 50 as to conclude that

12g2(P) — xg2(P))| = coll [loo = coAll [ loo- o

To consider the case where dist(p, p’) < ¢y 1p=1/2 'introduce Gaussian normal coor-

dinates centered on the point midway between p and p’ so as to identify p, p’ and
the domain of integration as subsets of R*. Granted this identification, use the third
item in (6-17) to bound |g(p, y) — g(p’, )| by codist(p, p')|y|~*; and use this to
bound the contribution to |x(p) — x’(p’)| from the portion of the integration domain
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where |y| > 4dist(p, p’). Meanwhile, use the second item in (6-17) to bound the
integration over the rest of the integration domain by c¢q dist(p, p’). The bound using
dist(p, p')|y|~* supplies a term bounded by coA(1 + [ In(A))]| oo -

Step 9 This step contains the following.

Proof of Lemma 6.11 To start the derivation of the needed estimates, fix two elements
& and &’ in KCy. By virtue of (6-13), the difference s — s’ obeys an equation that can
be written schematically as

(6-36) did(s—s)y+2rly*P(s—s) =R

Here, £ is the difference between the respective & and &’ versions of what is denoted
in (6-13) by =R+ Bp + By .

Fix p € (0, r_l/z) and p e Rx M. Let x, denote the function on R x M given by
x(p~1dist(-, p)). Multiply both sides of (6-36) by —x,(s—s) and then integrate the

result. What with (6-14), a suitable integration by parts and Holder’s inequality finds
that

/d( = = core (I =1 + 1 1)
ist(p,)<p

+00/0_2/ sV~ G-
dist(p,-)<p

where s — s’ denotes the average value of s — s’ over the radius p ball centered at p.
Use (6-30) to bound ||s — s||c by ¢ollé —&'[|oc and use Lemma 6.12 to bound the
integral on the right in (6-37) by ¢ ||€ —&||2,rp® (1 + | In(or 1/2))2). Here is the result:

(6-37)

(6-38) / 1d(s — ) < corp* (1 + [ In(or /) ) 1 — €)%
dist(p,-)<p/4

To continue, set & € (0, 7/2) and suppose now that p € (0, ¢]. It then follows from
(6-14) that

(6-39) fR IR = cortp =1+ orp 0 )=
X

Granted (6-39), multiply both sides of (6-36) by x, and then integrate the squares of
the results. An integration by parts finds that

/ 1oIVd(s— 2 < cor?o & — &' 12 + cor® o D) |E— €13
X

(6-40)
+cop? / |d(s—s")|%.
dist(p,-)<p/4
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What with (6-38), this gives
|Vd(s—s")|* < co(rp2(1 + | ln(pr1/2)|2)

ro oV (r ) (1€ — €115 + 115 — €113 )

Take ¢ = r~! and take p € (0, €]. The resulting versions of (6-38) and (6-41) imply
what is claimed by the lemma. a

(6-41) /dist(p,~)fp/4

This completes the proof of Lemma 6.9. |

6. A bound for ||& ||«

The purpose of this section is to prove that ||&||x is finite and small. The results are
summarized by the following.

Lemma 6.13 The constant k in Lemma 6.9 can be chosen so that the following
additional conclusion holds: The norm | - [|x2 is finite on § and |§||x2 < «&.Thus,
& € K. Moreover, ||&]|x < k6.

Recall that the norm | - [|x2 is defined by replacing each occurrence of || - || in [9,
(5-13)] by the norm given by the top line in [9, (2-27)].

Granted Lemma 6.13, the proof of Theorem 1.2 is completed as follows.

Proof of Theorem 1.2 If n is large and so § small, it is a consequence of Lemma 6.13
that £ obeys the assumptions that are made by [9, Proposition 6.4]. This understood,
(6-21) and Lemma 6.9 imply that q = q(§) — h(&) as described above is precisely the
element in H that is assigned to & by [9, Proposition 6.4]. As a consequence, £ is
given by [9, Proposition 7.1] if 7 is large and so § is small. Indeed, [9, Proposition
7.1] asserts that there is unique, small normed solution to [9, (7-1)] with any given
small normed value for ¢(-). Let A = ¢(§). For each x € [0, 1], [9, Proposition
7.1] finds a solution to &y to (7-1) with ¢(§x) = xA. This gives a continuous path in
(Ayn, ¥n)’s component of M (c—, c4) that connects the pair (4, ¥,) to a point in
the image of W". Because W' maps any given component of M;(©_,O4) onto a
component of M (c—, ¢ ), this implies that (A4, ¥y) is in the image of W". However,
this conclusion contradicts the assumption made at the outset. This contradiction proves
Theorem 1.2. a
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Proof of Lemma 6.13 Reintroduce the constant R, given in [9, (4-8)]. Fix T >
100 R4 so as to define the bump function, m, on R x M . This function is to equal
1 where |s| < T and to vanish where |s| > T + r2. Also, |dm| < cor~2. To be
precise, m is defined to equal x(r~2(|s| — 7)) where the |s| > T and where the
distance to any Reeb orbit from either Ex_ or Ex  is greater than 100p,. To define
m where s < —T and where the distance to y € Ex_ is less than 100p4, introduce the
coordinates (w,t,z) as in [9, (4-1)]. This done, set m on the domain in question to be
X(r_z(Zy/(Zn))|w+ x(1/2)|z)?| - T') where x = (1 — x(|z]/(16px)). Use the same
formula for m at points where both s > 7" and the distance to any given y € Ex 4 less
than 100p0x.

Introduce &7 to denote the element in K whose C € C entries are those of &, and
whose respective y € Ex_ and y € E x4 entries are given in terms of the coordinates
in [9, (4-1)] by X((ﬁy/(Zn))r_2|w| — T)éyi. The first four parts of what follows
prove [[&7 k2 <cod. This implies, by taking 7" — oo, that £ € K and that [|£]|x2 < ¢od.
Part 5 of what follows uses this last bound to prove that ||£|x < co§. o

Part1 Set qr = mq. Note that q7 € Hg- because 7" > R. What with the top line of
(6-21), this q7 obeys the equation

—1/2

6-42)  Dqr = —r2m'qra—r2qraxqr —2r20 % qr +r 72 m(v — vy),

where m’ is the endomorphism of iT*R & S @ iR that is defined by applying the
principle symbol of © to the 1-form dm. This equation is used to derive the upper
bound

(6-43) larlm < cor ™ /2~ V289 4 lgr 1 c2).

Such an upper bound follows from what is said in [9, Lemma 6.1] given suitable bounds
for the L2 norms of the various terms that appear on the right hand side of (6-42). The
desired bounds are derived in the next paragraph.

Given what is said in the second item of (6-21), it follows that the L? norm of the term
r~2m’q is bounded by cor~'§. To say something about the norm of rl/zq * (T, use
the fact that bilinear operator (- ) * (-) involves the spinor component of at least one
of its entries to see that the L? norm of this term is no greater than cod|q7||m.
Given what is said about h in [9, Lemma 6.3], it follows that the L? norm of
r1/2h % qr is less than ¢o8|qr||m when n is large. The arguments that are used
to prove the third item in [9, Lemma 6.3] bound the L2 norm of r~/2m(v — vy) by
cor V228 TS - |ler||k2).
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Part 2 Because T > R, the term —r~!s/q that appears in (6-42) is in the subspace
]Lj; = (1 —TIIg)LL. This understood, (6-42) requires that

(6-44) g (m(v—vy)) = rl/zl'lg(@qT +r Y 2qxqp + 212 % qr)-

A bound on the IC% norm of & will be derived using (6-44). This task requires the
derivation of bounds on the L? norms of the terms that appear on the right hand side
of this equation.

The easiest of the terms to consider are r [1g(q*qr) and r[g(h*q7). Indeed, because
(+)*(-) involves the spinor component of at least one of its entries, it follows that the L2
norm of g (q*q7) is bounded by cor 12811q7 g ; thus by cod(r—1/2F80 || & l[xc2)-
Meanwhile, it follows from the second item of [9, Lemma 6.3] that the L2 norm of
rIg(h *qr) is bounded by cor=1/16(r=1/2+80 4 1€ llxc2).

It follows from [9, (6-6), (6-7)] that the L2 norm of P/ 2Hg©qT obeys

6-45) 2| TeDarlz < colllérli +r~ YWY + coper|larllm,

where the notation is as follows: What is denoted as VV is given by

fN,, £(ar)

with K (qr) being a linear function of the components of g7 with support on the
part of the fiber of N at p where the distance to p is bounded by p«. Moreover,
this linear function £ obeys |K| + r=1/2|VV K| < ¢orl/2e~rdist-.D)/co with =
denoting U(C’m)eﬁ C and VY denotes differentiation along the fiber of N . By way
of explanation, the term with WV is the analog here of the contribution to [9, (6-66)]
of what is called A4; in [9, (6-67)]. Meanwhile, the term ¢ p*rl/ 2||CIT||]1241 in (6-45)
corresponds to r1/2 times what is denoted in [9, (6-67)] by A4,. As is explained in
Part 3, W < cor—'82. Granted this, it then follows from (6-45) and what is said in the
preceding paragraph that the L2 norm of the right hand side of (6-44) is bounded by

(6-47) cod(r ™' 2H8 p|lg7||k2)

2

(6-46) W= sup sup
(C.m)ed peC

’

when 7 is large.

Part 3 To see why W < cor 182, consider first the contribution from h(£). This sec-
tion of iT*M @ S has a part whose absolute value is less than co(r—! +
F1/2=/r dist(-,B)/ €0), and a second part that is the product of a function with support
where |s| > Ry and something invariant with respect to translations on the R factor of
R x M with || - || norm bounded by cor~! on any given constant s slice of R x M .
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The bounded part contributes at most r~2 to V. The other part has support far out on
the ends of the curves in C. This part comes from what is denoted in [9, (6-30)] by b_
and b ; it corresponds to what is denoted by ¢ in [9, Lemma 3.10]. Given that each
end of each C from a pair in ¢ is transversal to the constant s slices of R x M, it
follows using the fact that L% functions restrict to hyperplanes as L2 functions that
the integral of either the b— or by version of |e; |2 over what is the normal bundle
fiber N |, is bounded by a uniform multiple of [[e; ”ﬁ]l As this is bounded by cor 2,

it follows that the contribution to W from h(£) is bounded by cor 2.

Turn now to the contribution to W from b(£). As can be seen in (6-12), all but the
contribution of r~1/2d s to b(&) is bounded by ¢o8. As a consequence, all but r~1/2d s
contribute at most a factor cor~ 182 to Y. A bound by cor 182 on the contribution to
W from r~/2d s follows as an immediate consequence of the upcoming Lemma 6.14.

Lemma 6.14 augments the assertions that are made by Lemmas 6.7, 6.10 and 6.12.
To set the notation used by the lemma, suppose that D C C is a disk centered at the
origin and that ¢: D — R x M is a smooth embedding. Suppose that w is a section
of p*T(R x M) and a is a 1-form on R x M . Then (a, w) is used to denote the
function on D that is obtained by viewing w as a section along ¢(D) of T(R x M)
and then pairing the latter at any given point in D with the 1-form a.

Lemma 6.14 Fix a constant ¢ > 1 and the constant « that appears in Lemmas 6.7, 6.10
and 6.12 can be chosen so that the following additional conclusion hold: Let D C C
denote the disk of radius k~! centered at the origin. Suppose that ¢: D — R x M is
an embedding that is isometric at the origin in D and whose second derivatives are
bounded by c. Let o denote a smooth section of ¢* T (R x M) with compact support
in the concentric disk of with half D ’s radius. Then

/D (dx. o)

Proof of Lemma 6.14 The arguments are much the same as those used in the proof
of the first item of Lemma 6.10. In short, write the Green’s function G as in (6-18)
for the case € = 1 and define xg as in (6-25). Given the second items in (6-17) and
Lemma 6.8, the contribution to the integral of (d x, o) from d(x — xg) is bounded by

<k (If oo + lImlloo) /D(IVOI +7r'/2ol).

(6-48) co(1f oo + Imlloo)r 72 /D 0.

Meanwhile, the contribution from (d x¢, 0) is bounded by writing x again as xg1+xg2-
The contribution from (dxg1.0) is also bounded by (6-48) as can be seen using
the second and third items in (6-17). The contribution of {dx¢1, 0) is bounded by
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co(l flloo + lIm]lco) times the L! norm of Vgq. To see this, integrate by parts to
move derivatives of x along ¢(D) onto o and then use the second item in (6-17).
To handle the term with a derivative of x that is transverse to D, use the standard
short distance expansion of g(x,-) to write any such derivative of g as (d/dz;)g+ g,
where z = z; + iz, a complex Gaussian coordinate along ¢(D), and where g and g’
are both bounded by cq dist(x,-)~2 and have derivatives from the right bounded in
absolute value by co(dist(x,- )~ + r~1/2dist(x, -)72). a

Part 4 This part of the proof begins with a description of the left hand side of (6-44).
In this regard, much can be borrowed from what is done in [9, Section 7.d]. To this end,
write ITg(b —vp) as 0 = ((Oc)(c,myes» (Oy—)yess_): (Oy+)yegs,). The various
components of 6 are described by [9, (7-30), (7-31), (7-34)].

Let 7; denote the linear map from /C to £ that is defined in [9, Part 2 of Section 7.e].
By virtue of what was said above about ITg (b —vyp), it follows from (6-44) and (6-47)
that £7 obeys an equation of the form

(6-49) Ty (¢7) + e1(E7) = eor,

where ¢; obeys [le1(§7)lz2 = codl|ér [ x2 and e obeys |leorr2 = cor
elaborate, the terms 77 (§7) + ¢ (§7) account for the difference between the £7 version
of TI(.) (v —vy) and the version that is defined by replacing & with 0 € KC.

—1/2480 g

Let C € C denote the one element that is not R—invariant, and use V{ to denote the
1—dimensional vector L? kernel of D¢ with D¢ defined as in [9, (4-5)]. A linear
map ¢: K — Vj is described in [9, Section 7.f]. According to [9, Proposition 7.2],
the operator 7; maps the kernel of ¢ surjectively onto £. As is explained in the next
paragraph, &7 can be written as 74« + A7 where g(§74) = 0 and where

(6-50) Izl <cod and |7 (Ar)llc < cobrV/e0.

Granted this decomposition, it follows from (a) and (b) of the second item of [9,
Proposition 7.2] that |7« (k2 < co(r~1/2+80 4 §p=1/¢0) These bounds on 74 and
hr imply what is claimed by Lemma 6.13.

To obtain A, reintroduce the linear map ¢*: Vo — K that is defined at the end of
[9, Section 7.f]. Let C again denote the one surface from a pair in ¢ that is not R—
invariant. Fix an element o € Vy = kernel(D¢) with L2 norm 1. Then A7 = rg*(0)
where r = (q(é7),0)2(q9* (0). o);1 Here, (, ) denotes the L? inner product on the
space of square integrable sections of C’s normal bundle. Note in this regard that
(99* (0), 0), differs from 1 by at most cor /€0 The asserted bounds on the norms
of Ar and 7; (A7) follow directly from what is said about g*(0) in the paragraph
following [9, (7-49)].
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Part 5 Granted that £ € /C, it satisfies the 7" — oo version of what is written in (6-49),
this the equation 77 (£) + ¢1(§) = ¢y. It is a consequence of [9, (7-30), (7-31) and
(7-34)] that |le; (&) |lxc < cob||€]lxc. Given what is said in (6-49) about A7, it follows
from (c) of the second item in [9, Proposition 7.2] that ||&]/x < ¢o(6 + || eo]|z). Thus,
the desired bound on |||/, follows from a bound on |leg||z by co(r='/* + 8||€| ).
Such a bound is derived in the three steps that follow.

Step 1 Define the norm || - ||« as in [9, (6-51)]. The derivation of the desired ||| 2
bound requires the bound

(6-51) lqll« < cor ™2 (8 + [|£]lx)-

This bound follows from [9, Lemma 6.5] with the top equation in (6-21) playing the
role played by [9, (6-55)]. Note that the assumptions for [9, Lemma 6.5] hold when n
is large by virtue of the following facts: First, (6-43) implies that q is in H and that

(6-52) lallm < cor™1/2s.

Meanwhile, it follows from what is said in the preceding parts of the proof that the
square of the L2 norm of u= r_l/z(n—n;,) is bounded by my, = cor~!82. In addition,
what is said in [9, Section 7.d] implies that the u = r~1/2(v— vp) version of the integral
on the right hand side of [9, (6-56)] is bounded by my = cor 1 (r—1/2+89 4 |I&]1x)2.

Step 2 Return to the notation used in [9, Section 7.b] and Part 2 of the digression
that follows [9, Lemma 6.5]. In particular, fix p € (0, 1) and let D, denote a disk of
radius p as described in Part 2 of this same digression. If D, is in some (C,m) € ¢
version of C — (Ugzeg « E2R), use g« to denote the component egc . By the same
token, if D, is in some U, _ version of (—oo, —R] X S, orin some Uy + version of
[R,00) x S, use ey to denote the corresponding component of ¢ .

Step 3 The L? norm of eox over D, has a contribution from the £ = 0 version of
I (b—vy) and a contribution from each termin r 1/2H$(©q +r12q%q 4+ 2r1/2hxq).
It is a direct consequence of [9, (7-30), (7-31) and (7-34)] that the contribution from
the £ = 0 version of Il (b — by) is no greater than cor~1/2t80

Turn now to the contribution from r!/ ZHECDq. As noted in [9, Step 2 of Section
7.b], the square of the L2 norm of the relevant component of [Mg®q over D, is at
most co(A; + A) with the latter defined in [9, (6-67)]. [9, (6-68)] bounds 4; by
mp, = T2 g 2)2 . As [|]1x3 < cod, this finds Ay < cor ™! [IE]IR07

A bound on 4, for the case p > p1/27v 4g given in [9, (6-69)] using this same my, .
This bound finds the p > r~1/27? version of 4, to be less than cor ~3/252p?. A bound
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on the p < r~1/2 versions of 4, by cor3/2(8 + ||&x)? is obtained by invoking [9,
Lemma 7.4] using the version of [9, (6-55)] that is given by the top line in (6-21). Note in
this regard that ||q||« in this case is given in (6-51) and m4 = cor =  (r ~1/2+89 || £||)2.

Consider next the contributions from r ITg (h*q) and r I1¢(q*q) to the square of the L?
norm of eyy« over D,. To this end, the arguments used in [9, Step 3 of Section 7.b] can
be applied with but minor notational changes to bound these contributions. To elaborate,
[9, (7-6)] implies that r g (h * q) contributes cor~/8(r=1/2+89 1 ||£]1)pV or less
to the L2 norm of ey over D,. Meanwhile, [9, (7-12)] with the bound [|§[[x2 =< ¢o6
implies that the contribution of 7 ITg(g * g) to the L? norm of egs over D, can be no
greater than co8(r~ /2139 4 ||&|I)pV.

Taken together, these bounds imply that ||eg||z < co(r~/* + §||&|Ix) as claimed.

7 Proof of Lemma 6.2

The arguments for Lemma 6.2 are much like those in Sections 5b—5d of the article
SW = Gr in [6]. Note in this regard that the author found a gap in the proof of the
latter’s Lemma 5.5 while writing this subsection. What follows has a replacement
lemma that is used with the subsequent arguments from the article SW = Gr in [6] to
prove Lemma 6.2. This replacement lemma can be used as well in the article SW = Gr
of [6] in lieu of the latter’s Lemma 5.5.

The proof of Lemma 6.2 starts by assuming that the lemma is false and then proceeds
to derive nonsense from this assumption. To begin this derivation, introduce

Sn:r,:/z sup dist( U C,Z)
(7_1) ZEO{,TI(O) (C’m)eﬂ

8;, — },nl/2 sup diSt(Z, 05;1 (0))
zGU(C,m)eﬂ c

If the lemma is false, then there is a subsequence of {(rn, (An, ¥n))}n=1,2,..., hence
relabeled consecutively from 1, such that either {6,},=12,... is bounded away from
zero, or {8, }y=12,... is bounded away from zero. As is explained in Section 7.a, it is
always the case the any sufficiently large n version of &), is no greater than c(6,. Thus,
the convergence of the former sequence implies the convergence of the latter. This
understood, assume that there exists 8o > 0 such that §, > 8¢ for all n. Sections 7.b-7.e
derive the desired nonsense from this assumption.
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7.a &, versus d,

What follows explains why &), < ¢¢8, for n large. If (C,m) € ¥ andlet n: N — C
denote as usual C’s normal bundle. Fix § > 0 and let Ng — C denote the radius §
subdisk bundle. Lemma 6.1 guarantees that all sufficiently large n versions of «,, 1(0)
intersect ec(Ns|;) for each z € C. Furthermore, no point in o, !(0) lies outside

U(C,m)ez‘} ec(Nys).

Fix (C,m) € ¥ and T > R so that the |s| > T part of C is far out on each end of C.
If n is large, and z € C lies where |s| < T, then dist(z, a; 1 (0)) < Snr,,_l/z. Indeed,
this is due to the following fact: If 7" > 1 is given, then U(C,m)eﬁ ec embeds the
|s| =T portion of any sufficiently small § version of | J(c m)es Vs Now fix an end
E C C. Given n, use ‘E, C E to denote the set of points where z is the only point
of Nip|; with distance 168,1r,,_1/2 or less whose image via ec lies in U(cr myesC'.
It follows from [9, (4-2)] that ‘E,, is path connected and contains |s| = T part of E.

This implies that dist(z, o, 1 (0)) < 87y 172 also.

To continue, fix y € Ex_ and reintroduce the notation used in [9, Section 5.c]. The
simplest case to consider is that where U, contains just a single end, E, from
U(C,m) eg C . If this end comes from a pair (C, 1), then what is said above implies that
every point z € E has distance 8,1, 2 ot less from o, 1(0) when 7 is large. Suppose
that this end comes from (C,m) with m > 1, or that U, _ contains a second end. To
treat this case reintroduce from [9, Section 5.c] the partition {£;, ..., En} of the ends
of U(c,myep C that lie in Uy,—. The simplest case now to consider is that where there
is but one partition subset, £1. In fact, this case gives the crux of the argument that
works in general. To start the story for the N =1 case, let A < 0 denote the eigenvalue
Ag, that appears in each E € £, version of [9, (4-2)]. Note that there exists co > 1
with the following properties:

e If £C &, thenthe w > 17! ln(8nrn—1/2) + ¢o part of E contains .

(7-2) e If £C& and z € E has w(z) <A~} 1n(8,,r,,_1/2) + ¢g, then all points
in the constant w = w(z) slice Uy— N (Uc myep C) have distance at
most 60168nrn_1/2 or less from z.

Granted this, it follows that all points in U,,— N (|J (c.myes C) have distance no greater
—-1/2 -1 ’
than codyry from o, " (0).

In the case when there is more than one partition subset, the argument just given proves
that all points in |z ey E have distance no greater than codury, 2 from a, 1(0).
Granted that the desired conclusion holds for the ends in £, this argument can now
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be reapplied with only notational changes to prove that the desired conclusion holds
also for the ends in £x—_1. It then works for the ends in £x—,, and so on.

7.b Integrals of the curvature

This subsection begins the proof proper of Lemma 6.2. The starting point is a sequence
{rn. (An, ¥u)}n=1,2,... for which {8,},=12,.. does not converge to zero. Thus, there
exists &g > 0 such that §, > §¢ for all n. The constant ¢ that appear below henceforth
depends implicitly on min(1, 8g).

The substantive part of the proof is the upcoming Lemma 7.1 which concerns certain
integrals of the curvature 2—form. To set the stage for the lemma, suppose that C
comes either from a pair in ¢, or that C = R x y with y ineither Ex_ or Ex .

Recall that Ny C N is a subbundle of radius ¢ 1 whose fibers disks are embedded by
the exponential map ec from [9, Section 4.a]. Let D C C for the moment denote a
given disk radius ¢, 1 then ec will embed N;|p. Let D’ C D denote the concentric
disk with half D’s radius and use ec to identify N;|ps with its image in R x M .
Granted this identification, then there exists an orthogonal basis for 71°(R x M)
of the following sort: Use s to denote the tautological section over N of 7*N and
let & denote the Hermitian connection pulled up to 7* N . The basis is denoted by
{Kko. 1} where kg is a section of 7*T*C with norm +/2 that restricts to C as a
section of T1:°C . Meanwhile, k| = Vys +¢ where ¢ vanishes along C, and to order
5|2, it is a section of 7*T'C. In addition |¢| differs from 1 by at most cg|s|?> and
|Vg¢| < cols|. This constant is chosen so as to give k1 norm ~/2 also. Finally, the
pullback of ds Aa + %da to each fiber disk in Nq|ps differs from that of (i/2)x; Ak
by no more than co|s|?.

Fix n large and use (A, «) to denote (A, ¥,). Define the connection A asin (3-33)
using an increasing function x — p(x) with g = x near x =0 and with p(1) = 1. Fix
adisk D C C as above, write the curvature of F 4 on Np|p’ using the basis {kg, {x1} as

(1-3) F4= fokoAKo+ fiki ARy + firko Aki— fyKo AR1+ foko AR — [—Ko AKT.

Lemmas 3.1, 3.6, 3.8 and 3.9 with (3-35) put constraints on the coefficients that appear
here as they require that

o IXPAFIPSfo+Xyf+xT = —co(ry,! +e_“/7diSt(X*")/00) for any
(7-4) unit vector (x, y) € C2.
o 1l S com Py eV o),

Given p € C and p> 0, use D, in what follows to denote the disk of radius o centered
at p. Assume in all cases that p is such that the exponential map ec embeds Ni|p,,
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Now suppose that 3 > 0 is less than the radius of the fiber disks in N;. (Such an upper
bound is also assumed implicitly below.) Use N, C N; in what follows to denote
the radius z subbundle. With z given, introduce y . to denote the function y(|s|/z)
on N;. Define the set Xy C R x M to be the region where || < 1—«x"1, with k as
given by Lemma 3.8.

Lemma 7.1 Given ¢ > 0 and k € {0, 1, ...}, there exists a constant k > 1 with the
following significance: Fix C and p € C. Take n > k and fix p € (8nrn_1/2,/c_2),
then z € (kp, k1), and then po € [88,,r,,_1/2, z]. Assume that o= (0) N N|p,, does
not contain points with |s| € [%,00, z]. In what follows, A = 0 if p(|a|?) =1 at all

points with |s| > %z; otherwise A = 1.

f Yals e VA Eele < iep? (o Yer
7=1(Dp)

/ Xz|5|k|F2|§K,o2p’<‘>(1_|_A(Z/p<>)krn—1>
n=1(Dp)

/ Xelsl1f] < kpPr 20k (1 4+ A2/ o) ).
7~ 1(Dy)

1/2
/ Xz|5|k(|fo| + (p—°) If—l)
7~1(Dy) P

<kp*pls (po/p+ Ae V) (14 A(z/po)ery ).

The following is a parenthetical remark with regards to the A = 0 case: Lemma 3.7
and Lemma 3.8 say that given 6 > 0, there exists an n—independent constant kg such
that |o| > 1 — 3§ where |s| > (%8,1 +Kk§)ry 2 This understood, there will be choices
for g and z for which the condition on gp(|a|?) follows from the earlier constraint
that |s| < % p¢ on the zero locus of o.

As noted in the introduction to this section, there is a gap in the proof of Lemma 5.5
from the article SW = Gr in [6]. The argument that follows proving Lemma 7.1 can be
used to prove the following: In the context of what is assumed for Lemma 5.5 in the
article SW = Gr from [6], the assertions of Lemma 7.1 hold with A =0 and p(x) = x.
The latter result can be used in lieu of Lemma 5.5 for the parts in this SW = Gr article
that refer to its Lemma 5.5.

Proof of Lemma 7.1 The proof has two steps.

Step 1 This step proves the first item. To start, fix x € (r_l/ 2. z) and then fix a
maximal set, A, of points in the portion of a~1(0) that lies in N, /2|p, with the
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following property: Any two distinct points from A, have distance at least x apart.
According to Lemma 3.10, the integral of 7 (1—|a|?) over the ball of radius 4x centered
at any given point in A, can be no greater than cg x2. Note that =1 (0) N N, /2lp, is
covered by the union of these balls of radius 4x and center in A . If x < cop, then
this set can have at most ¢ ,02 x~2 elements when 7 is large if z < ¢ ! This follows
from Lemma 6.1. To elaborate, note that if z < ¢!, then U’ myes € intersects
N_/2|p,, onlyin Dy, unless D, is far out on an end of (J ¢/ ey C'- In the latter
case, each component of the intersection is the image of a nearly parallel section over
D;,, of N;. By the same token, if x > p, then there are at most ¢o elements in A, .
Now let U, denote the union of the intersections of the balls of radius x centered at
the points of A, with N;[p, .

Consider first the case when k = 0. The integral is no greater than the sum, indexed by
the integers ¢ €[1, cor /2 2], of the contributions from U,/ Jr—Ug-1)/ 7. Here, Uy =
@ . To bound this sum, remark that the factor e~ v7 distX«.)/¢ jgless than e~ V7*/cco
on Ng|p, — Uy. Granted this, any given radius qr_l/2 ball with center in Ag/ /7
contributes at most e 9/¢€0 times the volume of its intersection with N, |p, - Given what
was said about the maximum number of such balls, it follows that the left hand side
of (7-3) can never be greater than cq Zq=0,1,2,... e=9/cco(p2 [ (qr=12)2(qr=1/2)4,
which is less than cop® —cr~!.

Consider next the case when k > 0. If ¢//r < 16p¢, then the contribution from a
ball with center in Ay, /7 is at most ¢ p’ée_q/ €0 times the volume of its intersection
with N;|p,. If ¢//r > 16p,,, then the contribution is at most co(q/ Jr)kea/cco
times the volume of its intersection with N,|p , - These contributions sum to less than
co(,0]<‘> + k2 21

Step 2 What with (3-35) and (7-4), the second and third items of the lemma follow
directly from the first item of the lemma.

To prove the fourth item, note first that y, = 1 on the support of F7 if p(|a|?) =1
where |s| > %z. Now, let xP denote the function on C that assigns to u € C
the value of x(4distc(p,u)/p). Here, distc(-,-) denotes the distance as measured
on C. Use pullback via the map 7 to view x? as a function on 7~1(C). The
integral of x| fo| over w~1(D,) is less than that of P x| f| over 7! (D3p). To
bound the latter integral, note that the x = 0 version of (7-4) finds fy = | fo| —
co(r, 14 e V/Tndist(Xs,)/ €0). This understood, it follows from the first item of the
lemma that up to an error that is at most cg0> pg(l + A(z/ p<>)k )r,; !, the integral over

JT_l(sz) of xP|s|¥| fo| is no greater than the integral of x? f; over n_l(sz).
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This is, up to a factor,

(7-5) / XDXz|5|k(F2/\K1/\l71)-
”_I(sz’)

To bound (7-5), note that k1 Ak can be written as im(d({ﬁk“El)) + o0, where |o] <
co|s| and where im(-) designates the imaginary part of the indicated C—valued form.
It follows from (3-34), Lemma 3.8, and the second item of the lemma that the absolute

value of the contribution of o to (7-5) is less than co,02,01<‘>+1 (1+ A(z/,oo)k“rn_l).
To analyze the im(d(¢s*T 1)) contribution to the integral in (7-5), integrate by parts

to see that this contribution is no greater than

(7-6) €o

/ @dxP xo+ xPdxs) A Fanim@sk Ry,
”_I(DZQ)

The contribution of the part of the integrand in (7-6) with d . is no greater than
(7-7) cop PG A (™Y 1 (2/ po)ery ).

Indeed, this follows from (3-35), Lemma 3.8 and the second item of Lemma 7.1.
Meanwhile, the contribution to (7-6) from d x? is no greater than

(7-8) cop™! / xels T (L] + 1 £4).
ﬂil(DZp)

It follows from the second item in the lemma that what is written here is no greater
than ¢op?(pop™ )Pl (1+ A(z/po)ery ).

What was said in the preceding paragraphs directly implies the asserted bound for | fo|’s
contribution to the integral in the fourth item of the lemma. To derive the bound asserted
for the | /_| contribution, use the first item in (7-4) with x = —(p¢/ o)V2 f_/| f-| and
with y =1 to bound (,0<>/,0)1/2|f_| by

co(| fol + (oo / p)| fi] 4 1yt 4 e/ distX )y, O

7.c Special sections of N

To set the stage for the lemma, suppose that C comes either from a pair in 9, or
that C = R x y with y in either Ex_ or Ex. The purpose of this subsection is to
construct some special sections of powers of the normal bundle over parts of C.

To set the notation, first introduce w¢ to denote the induced volume form on C. The
upcoming definition also requires a choice of p € (0, ¢ 1). With p given, each p € C
is assigned the function x?(-) = x(dist(p,-)/p). The definition also requires the
specification of numbers z > 0 and p¢ > 0.

Geometry & Topology, Volume 14 (2010)



2932 Clifford Henry Taubes

Fix an increasing function g: [0, 00) — [0, 00) such that gp(x) = x near 0 and such
that (1) = 1. In what follows, it is sufficient to consider only two versions of g, the
first being g1 (x) = x and the second g, (x) = xx(x) + 1 — x(x). Given an index n,
use A to denote the (Ap, ¥ry) version of (3-33) as defined using the function gp. Note
that A is flat where || > % when p = g,.

Assign to each integer k > 0 the section, og = 0(,)x of N ®k using the rule
i

7-9 0 :_z_kfpsk—F“/\*.

(7-9) klp=p"pg K (G Fa ) arec

Note that the appearance of the function x, in (7-9) is superfluous in the case o = g,
if |o|? > % at the points where |s| > %z. This is because F7 =0 where x, <1.

The next lemma says the first things about oz . The statement of this lemma refers
to the coefficients (v¢, (c) that appear in [9, (4-5)]. It also refers to an integer .
When C comes from ¢, the latter is the integer that pairs with C. If C = R x y with
y € Ex_ orwith y € Exy, then m =m,_ or m =m,, 4, respectively. Note uc =0
in all cases when m > 1.

Lemma 7.2 Given a positive integer k, there exists a constant k > 1 with the fol-

lowing significance: Suppose that n > k. Fix p € [Snrn_l/z, k~2),z > kp, and then

po € [85,,r,,_1/2, z]. Suppose that D, C C is an embedded disk such that N,|p,,
contains no points in a~'(0) with |s| € [%PO’ z]. Define oy = o(,)k at points in D,
using the formula in (7-9).

ol < (14 (2/po)ry ")
Took] < k(1 + (2/po) (! + 2~ Te=Vnelxy).
Moreover,

e Inthe case k = 1, write 5901 +vcoy + pnco; =e.
(a) If poy < p, then

lel <k ((po/0)" > + (/o) /227 eV K 4 (po) TV i 2) (14 (2/ o) ry ).

(b) If Dy, lies in an end of C and if A is defined using p(-) with p(|a|?) =1
where

ls| = 2 on Nalp,, . then oy < i and |¢] < ic(p+ (0o /p) /> + (o) 1y ).

e Suppose that m > 1 and that A using ©(-) with p(|a|?) =1 where |s| > %z
on N;|p,,. Take k € {1,...,m}. Then |ox| < « and [dgog + kvcoy| <
k(0 +(po) ' ).
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Proof of Lemma 7.2 The proof has four steps.

Step 1 The fact that |og| < co(1 + (z/po)krn_l) follows from Lemma 7.1. To see
about the asserted bound for |59 0|, use parallel transport by 6 from the center point
of D, to define a product structure for N over the disk D,,. Writing N here as
D5, x C identifies the section s of 7* N — N with the complex coordinate z € C.
This done, then oy can be viewed as the C—valued function:

i

7-10 =
(7-10) oklp =

p_ngk/ xPxF12% dz AdZ Ao,
(CXsz

where f; is the dz A dz component of F7. Note that if p(x) = xx(x) + 1 — x(x),
then the assumption |a|? > % at the points where |s| > %z implies that the function

Xz in (7-9) is 1 on the support of | F7].

Now fix a complex, Gaussian coordinate for C centered at p; this a complex function
u such that u|, = 0, and du spans T19C near p with |du| = /2 at p. Granted
(7-10), act on o by d/du. The result, after an integration by parts and an appeal to
Lemma 7.1 can be seen to differ by at most copo(1 + (z/po)kr_l) from

n

1 d

(7-11) ——p_ngk[ 1P x| =F1 (l—l—g)zk dzndzANdundu.
4 CxDs, ou

Here, g = g(u) is defined by writing w¢c = %(1 + g)du A du. To proceed from here,

use the fact that F 7 is closed to write

d . 0= J—

(7-12) gt =tz

where f is the du A dz component of 7 and f— is the du A dZ component. Insert
this into (7-11) and integrate by parts again. It follows from (3-34) and Lemma 7.1 that
the contribution from f_ to (7-11) is no greater than ¢ z e Vrelk (z/ ,0<>)k . However,
in the case where m > 1 or C = R x y with y an elliptic Reeb orbit, the contribution
from ¥_ to (7-11) is zero as can be seen after integrating by parts. Meanwhile, an
integration by parts finds that the contribution from . is

1 _
(7-13) ——kp—ngkf x? x5+ (1+ )%V dz ANdZ Adu A da.
47 Cx

D>,

To finish the story, note that {4 can be written in terms of the coefficients in (7-3) as

(7-14) fr=fr+tgifitg—t+fotg—f+gofo+E(FA).

where |g| < co|z|? and |g1]+ |g—+] + |g——| + [go| = colz[. This being the case,
the claimed bound for |dgoy| follows from (7-14) using the second and third items

Lemma 7.1.

Geometry & Topology, Volume 14 (2010)



2934 Clifford Henry Taubes

Step 2 To obtain Assertion (a) of the first bullet of the lemma, substitute the left hand
side of (7-14) for f+ in (7-13). What with the first item of Lemma 7.1, the argument
that leads from Equation (5.32) in the article SW = Gr from [6] to Equation (5.33)
in this same article can be invoked to see that the gy f; term gives the v¢c and uc
terms with an error of size at most cope (1 + (2/p¢)?r; '). Use the third item of
Lemma 7.1 to bound the f4 contribution by co(,oorl/z)_1 1+ (z/,o<>)rn_1). Use the
fourth item of Lemma 7.1 to bound the f_ and f contributions by co((po¢/ 0)V/? +

(p/po) 2™V 1+ (2/ pe)ry V).

Step 3 To obtain Assertion (b) of the first bullet, note first that the bound on |0 |
comes directly from Lemma 7.1. To bound |e|, note that the function x, that appears in
(7-10) is equal to 1 on the support of F 7. This understood, it follows using Lemma 7.1
that (d/0u)o; differs from (7-11) by no more than cop. Substitute (7-12) into (7-11).
Because x. = 1, there is no contribution from the f_ term. Furthermore integration
by parts finds (7-11) to be equal on the nose to (7-13). Use (7-14) with Lemma 7.1 to
see that the fj term contributes the vc and pc terms to the expression for e plus an
error that is no greater than ¢ p¢,. Meanwhile, Lemma 7.1 finds that the contribution
from the f_ and f; terms are bounded in absolute value by co(p¢/p). Finally, the
contribution from the f4 term is no greater than cg pglrn_ 1. To see why, use (3-34) to
see that

(7-15) fr=r(1—p)ap — (04000410 — 041 @D 400t),

where {940,941} denote the respective covariant derivatives for any given connection
A along the vector fields that are dual to the basis {kg, k1 }. Given that the top equation
in (1-11) equates the 5A0 and 5A1 derivatives of o with derivatives of f, the claimed
bound on the integral of x?| f4| follows from (7-16) using Lemma 3.11 and the first
item of Lemma 7.1.

Step 4 This step derives the refined bounds for the case m > 1 that is asserted by
the lemma’s second bullet. The bound on |og| follows directly from Lemma 7.1. To
bound |e|, first introduce u, = w),+it, to denote the coordinates of the point p e Rxy
as written using the coordinates from [9, Property 5 in Section 4.a]. The function
x¥(+) in (7-10) is equal to x(|up — (+)|/p). The form wc in (7-10) is (i/2)du Adu.
As a consequence, the function g that appears in (7-11) is zero and the g = 0 version
of (7-11) is exactly 5ok. Meanwhile, x, is equal to 1 on the support of F7. This,
understood, use (7-12) and then integrate by parts to see that 90 , 1is given by (7-13)
with g =0 and x,=1.
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To continue, remark that ¢ in this case is equal to ko = (£, /(27))(1 + 12|~V 2du.
Meanwhile,

¢ 1
(7-16) «; =2—y(1+|z|2)1/2(1+2|z|2)_1/2(dz—ERz(a’u—dL_t)—i-z(l+|Z|2)_1du).
v

As a consequence, the term that is denoted by g; in (7-14) contributes the factor
kve = %kR to the left hand side of what is written in the second bullet of the lemma
with an error that is no greater than c¢g ,oé. Meanwhile, both g__ and g_4 are zero in
(7-14). Furthermore, what is written as g can also be taken to be zero. This understood,
it only remains to account for the f4 contribution to e. The latter is no greater than
co,oglr_l . This follows using [8, (3-18)], (7-15), Lemma 3.11 and the first item of
Lemma 7.1. a

Lemma 7.2 leads to the following corollary.

Lemma 7.3 Take (C,m) asin Lemma 7.2. Given a positive integer k and vy € (0, 1),
there is a constant k > 1 with the following significance: Suppose that I € R is an
interval of length at least three and let I} C I denote the subset with distance at least 1
from any boundary point of I . Define oy at points in C N (I; x M) by the formula in
(7-9) using the data and under the assumptions in one of the next two bullets.

e Fixn >k, fix p€ [(Snrn_l/z,/c_z) and pg € [88nrn_1/2,lc_2], and set z =
max{p¢, r,,_l/z(lnrn)z}. Assume that N;|cnxm) contains no points from
a~1(0) with |s| € [%po,z].

o IfC is accom;)anied by an integer m > 1, fix n >k, and fix p € [8,,r,1_1/2, Kk=2),
po € [88,,r,,_1 2 k2], and z > p¢ - Assume that o(la|>) =1 on N:lcnuxm)
where |s| > %z.

In either case, oy is Holder continuous with exponent vy on C N (I; x M) and it
has Holder norm no greater than k. Moreover, if x € (0,1) and D, CC NIy x M)
is an embedded disk of radius x, then the L% norm of oy on Dy is bounded by
kx(1+|Inx].

Proof of Lemma 7.3 This follows from Lemma 7.2’s bound on |ox | and |dgoy | using
standard properties of the d —bar operator and its Green’s function. a

The final lemma in this subsection describes circumstances that guarantee a uniformly
positive lower bound for the absolute value of at least one of Lemma 7.2’s sections
{9k }k=1,2,...- To set the stage, suppose that C is as described in Lemma 7.2. Given
p € C, suppose that a large index 7 has been chosen; and suppose that p and z are
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as described in Lemma 7.2. Now assume that o has no zeros on N,|p,, at any point
with |s| € [%z, z]. If such is the case, then the connection

1
(7-17) A’:A—E(Xz—(l—Xz)|a|_2)(&VAa—aVA&)

is well defined on E’s restriction to N;|p,, - Note in particular that A’ is flat and
afa|™! is A’ covariantly constant where |s| > 3 z As a consequence, the integral of
(i/(2m)) F4 over any fiber disk of N;|p,, is a ﬁxed integer. The latter is denoted by
m in the upcoming lemma. Of course, if C comes as the pair (C,m) € ¥, then m =m
when Dy, is the sole component of (Ucr myep C') N Nzlp,, -

Lemma 7.4 Given ¢, € (0,1) and x > 1, there is a constant k > 1 with the following
significance: Suppose (C,m) are asin Lemma 7.2. Take n>«k and p €[x8u1y 1/2 ik
Given p € C, construct oy on D, foreach k € k € {1,...,m} using the data and

under the assumptions in one of the next two bullets.

* Take p as above, p¢ € [85nrn_1/2,/<_2] and set z = max{p, r,,_l/z(lnrn)z}.

Assume that N,|cn(1xm) contains no points from a~1(0) with |s| € [%,00, z].

e If C is accompanied by an integer m > 1, take p as above, p¢, €[88,1, 1/2, K2,

and then z > p¢,. Assume that p(al?)=1o0n N, |cnrxm) where |s| > iz.

In either case, assume that there exists z € N,|, with a(z) =0 and |s| > exp¢ . Then
there exists k € {1,...,m} such that |oy|,| >k~ !.

Proof of Lemma 7.4 The following fact is justified momentarily: With p, z and p
given, there exists x > 1 independent of 7 such that if n > «, then

(7-18) 02 fN X (271 FA) AT*wc = npim + e,

where n, is defined by the rule 7, = p 2 f(C x?. Meanwhile, ¢ = 0 if the second
bullet in the lemma holds, and |¢| < coe V%0 otherwise. Hold on to (7-18).

To continue, use parallel transport from p along the radial geodesics in D3, to give
a product structure to N|p,,. Fix ¢ € (0, %) but much less than ex. Suppose first
that {8, },=1,2,... diverges. Use Lemma 4.10 to find, for any sufficiently large n, a
set A C N,|p of at most m points with the following properties: First, each point in

a~1(0)N N, z|D,, has distance e28urn 12 or less from D;, x A. Second, the distance
between any two distinct points in A is greater than £6,r, /2 Bach point in any
sufficiently large n version of A has an associated, positive integer multiplicity, this
being the degree of «/|«| on a circle of radius %8 in N;|, about the given point. These
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integers sum to 771. When u € A, use m, to denote its associated integer. It then
follows using (3-35) and Lemmas 3.8 and 7.1 that

(7-19) P 0g"

/ xPMyen(s —u)™ FZ Ako AKo| < coe
N,

when 7 is large. Given the assumptions of the lemma, there is at least one point in
,0;1 A with norm greater &, . This fact with (7-18) and (7-19) implies what is asserted
by the lemma. In the case when {3, },—12,... converges, Lemma 4.10 and Proposition
4.2 give A and also (7-19) when 7 is large. As before, (7-18) and (7-19) imply the
lemma’s assertion.

The fact that (7-18) holds with ¢ = 0 when the second bullet of the lemma is assumed
follows from two facts: First, 4 = A’ where |s| > %z on N;|p,, . Moreover, both are
flat here, and both are such that «/|«| is covariantly constant. In the case where the
first bullet of the lemma is assumed, then the A’ version of (7-18) holds with ¢ = 0.
Meanwhile, it follows from (3-35), Lemma 3.8 and the first item in Lemma 7.1 that

the A and A’ versions of (7-18) differ by no more than coe_*/ﬁz/ k. m|

7.d Convergence on domains where |s| is bounded

The lemmas from the preceding section are used here to say something about the points
in o, 1(0) where the distance to U(c.myes C is a sizable fraction of Snr,,_l/z.

Lemma 7.5 Given ¢4 > 0 and T > R, there exists k > 0 such that if n > «, then

sup dist( U C,x) < 8*8,1;’”_1/2.
x€a; 1 (0), (C.m)ed
Is(z2)|=T

The remainder of this subsection is occupied with the following.

Proof of Lemma 7.5 Suppose for the sake of argument that this lemma is false. If so,
there exists 7> R and &4 > 0 and a subsequence (hence renumbered consecutively
from 1) of {(¥n, (An, ¥n))}n=1,2,... such that the following is true: For each n, there
is a point x, where «, = 0 and with |s(x,)| < T such that dist(U(C,m)a, C,zp) >
ExOnly 172 'Nonsense will now be derived from this assumption. To this end, distinguish
now two cases. In the first case, {§,},=1,2,... is bounded. In this case, no generality is
lost by assuming that this sequence converges to some 8o > 0 and that |8, —8o| < Z8,
for all n. This is called the convergent case in what follows. In the second case,
{8ntn=1,2,... is unbounded. In this case no generality is lost by assuming that the

sequence is increasing. This case is called the divergent case. The derivation of the
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desired nonsense has two parts, these depending on whether the sequence {3, },=12,...
is divergent or convergent. a

Part 1 Suppose here that {6,},—=1 2, . is divergent. For each n, fix an increasing,
unbounded sequence {x;}n=1,2,.. C [8, 00) but such that the sequence {xgénrn_l/z}
converges to zero. One additional growth constraint on {xy},=1,2,... is given momen-
tarily. For any given such sequence {x},=1,2,..., there exists an increasing, unbounded
sequence {75 },=1,2,... C{R, oo} such that the following is true: For each n, let z = z,
denote the maximum of the numbers x28,7, 12 and (Inrp)%r, /2 Then the map

X(c,myepec embeds the |s| < T} part of X(c m)esp N .

Given n, set p = p, = 7(,,5,,;’,,_1/2, set z =z, = max{?(,%énrn_l/z, (lnrn)zr,,_l/z} and
set po = Pon = 85nr,,_1/2. Fix (C,m) € ¢. If C is not R—invariant (and so m = 1),
use (7-10) to define the section 01 = 0(,); using the function x — g(x) = x to define A
from (A, ¥y). If C is R—invariantand k € {1, ..., m} use (7-10) to define ox = 0,k
using the function x — p(x) = xx(x) + 1 — x(x) to define A from (Ap, V). The
following is a consequence of Lemma 7.2 and Lemma 7.3: Given T’ > R, there
exists n’ such that the sequence {0(,) }n>n’, is uniformly Holder continuous for any
given exponent v € (0, 1) on the |s| < T portion of C. Moreover, it has bounded L%
norm on this part of C. Furthermore, for each 7 and k, the section o; = 0(,)x obeys

e if m =1, then 5901 +vcoy 4+ pucoy =e,

7-20 =
( ) e if m > 1, then dgoy +kvcoy =e,

where, in each case, ¢ = e(,) obeys |e| <1/T".

Granted this last fact, it follows that the sequence {0(;)x }n=1,2,... has a subsequence
that converges strongly on compact subsets of C in the L% topology and in any given
v € (0, 1) Holder topology to a bounded section of N ®k that obeys the ¢ = 0 version
of (7-20). Use oj. to denote this section.

Now comes the promised extra constraint on the sequence {x5}1,2,.... By assumption,
there exists e« > 0, a subsequence of {(rn, (Ay, ¥n))}n=1,2,... (hence renumbered
consecutively from 1) and (C, m) € ¥ with the following property: For each 7, there
is a point, yy,, in the |s| < T, — 1 part of the z = z, version of N, where o, = 0 and
with distance at least 40,7, 2 from C. This understood, it follows from Lemma
7.4 that there exists an increasing, unbounded sequence {Xo,}n=1,2,.. such that if
Xn < Xon then there is an integer k € {1, ..., m} such that |o(,)k| > ¢ > 0 at the point
7 (yn) € C. Here ¢ depends on &4 but neither on # nor y,. Assume that this growth
constraint holds.

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg—Witten Floer cohomology IV 2939

Suppose that there exists, for each n, such a point y, € C as above and that these
are such that |s(y,)| is bounded. Then there is a subsequence of {7 (y;)}n=1,2,... that
converges in C to a point p € C, and this point is such that og|, # 0. Thus, ox
is a nontrivial, bounded solution to the ¢ = 0 version of (7-20) on the whole of C.
This conclusion is nonsense because the assumptions in [9, Section 4.b] prohibit such
solutions.

Part 2 This part argues the case for Lemma 7.5 when {8,},=12,.. converges. Let
8o > 0 denote the limit in what follows. Choose an increasing, unbounded sequence
{xxn} asin Part 1. Use p = p, = 7(,,8,,1’,,_1/2 with z = z, = ;’,1_1/2(1nrn)2 and po =
Pon = 88,,;’,,_1 % to construct for each (C,m) € 9, for each k € {1,...,m}, and a
section 0,k of N ®k  Here again, use for p the function x — p(x) = x when C
is not R—invariant, but use the function p(x) = x x(x) 4+ 1 — x(x) otherwise. It is a
consequence of Lemmas 7.2, 7.3 and 7.4 that the sequence {0,k jx=1,2,.. converges
on compact subsets of C to a section oz of N ®k  This section is a priori bounded and
uniformly Holder continuous on C for any given Holder exponent in (0, 1). Moreover,
if {xn}n=1,2,... does not grow too fast, then there is a point p € C where o; # 0. As
is explained momentarily, the section o also obeys the ¢ = 0 version of (7-20). Given
that it is bounded on C, this conclusion is also nonsense.

If C is R—invariant, then the fact that ¢ = 0 follows from the bound given in the final
assertion of Lemma 7.2 because the latter finds the integer »n version of the right hand
. —-1/2
side of (7-20) bounded by K(,Oén + 8oty / ).
Granted the preceding, it remains only to discuss the case that C is not R—invariant.
Here, m = 1 so k = 1. It follows from what is said in Steps 1 and 2 of the proof of
Lemma 7.1 that the section 0 will obey the ¢ = 0 version of (7-20) if the following is
true: Let ¢(,) denote the integer n version of

(7-21) ,0_2,051 / x? fidz ANdZ Adu A di.
(CXsz

Then limy—o0 SUP|g|<7,—1 [€(n)| = 0. The proof that this happens is given momentarily.
What follows directly a digression for two observations The digression makes no
assumptions about the integer m or k € {1,...,m}.

Observation 1 The observation here is summarized in the upcoming Lemma 7.6. To
set the stage, note that the sections {o0y,...,0,,} that are obtained as limits of the m
sequences {{0(y)k fn=1,2,...} 1<k<m define a section over C of the vortex bundle €y, .
Let ¢ denote this section. This section ¢ is uniformly Holder continuous on C for
any exponent v € (0,1). It also has finite L% norm on any compact subset of C.
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Moreover, given ¢ > 0 and 7’ > R, there is a smooth section ¢, 7 of €y ,, and a
section, & 1/, of (¢, 7/)*V1,0€N,m with the following properties: First, [|&; 7/ ]|co < €
and ¢ bounds both the L% norm of & 77 over the |s| < T’ part of C and the Ky
norm of & 7/ as defined in [9, (2-27)] with C replaced by its |s| < 7" part. Finally,

€= eXpCS/,T/ (Eé‘/,T/) .

Fix n large, and let p = xn5nrn_1/2 as before. Let p € C and let D, C D de-
note the embedded disk of radius p centered at p. Assume that n is large and so
the z=ry, 1/ 2(lnr,,)2 version of N;|p,, has no intersections with «,; 1(0) where
|s| € [%z, 2z]. Use parallel transport via the connection 6 along the radial geodesics
from p to write the bundle N over D;, as D, x C. This done, lift ¢ as a pair
0+ %(aldf—ﬁldz), a') where a! and o' are complex valued functions on D,,xC
such that the pair (4 = %(a1 dz —a'dz),al) obeys the vortex equations (1-4) on each
fiber C. Use (a”,a”) to denote the pullback of (a', ') by the map from D5, xC to
itself that sends (u, z) to (u, rnl/zz).

The lemma that follows is an analog of sorts to Lemma 6.3. This lemma reintroduces
{040, 041 }; these being the respective covariant derivatives for any given connection A
along the vector fields that are dual to the basis {kg,k;} for T%1(R x M)|n.

Lemma 7.6 There exists an increasing, unbounded sequence {Xon}n=1,2,..., such that
if each x, < xon for each n, then the following is true: Fix ¢ >0, T’ > R and then n

sufficiently large. Fix p € C where |s| < T’. There is a smooth map u,: Dy, x C —
1

U(1) such that (A — u, 'duy, unaty) can be written on the |z| < &~ rn_l/z portion of
D,, xC as

Ay, —un_ldun =0+ %r,}/z(a’dﬂ—?zrdu) +c¢ and wa, =a’ +cp,
where [l + > (|VoGul + eal) <.

Proof of Lemma 7.6 This follows as a direct consequence of Lemmas 4.3 and 4.10. O

Observation 2 Fix &> 0 and use r in what follows to denote r,, ; and use (4, («, B)) to
denote (A, —1u, Ydu,, (lL_nOtn, uyBn)) Where 1, is given by Lemma 7.6. The integer N
version of the function f4 that appears in (7-21) has the form given in (7-16).

To say something about the size of the contributions to (7-21) from the three terms in
(7-16), note first that

o 04,000 < coerl/z(e—ﬁlzch +r7)
(7-22) o [dq0| < co(eV7IEVe0 4= T)
* Bl SC()I"_I/Z(e_\/ﬂZVCO +r_1)
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on the |z| < %z part of Dy, x C. Indeed, the first item follows from Lemma 7.6 and
Lemma 3.8. The second item follows from Lemma 3.8 because the Dirac equation
writes the d —bar derivatives of « in terms of the derivatives of 8. The third item also
quotes from Lemma 3.8.

With the digression now over, return to the proof that the kK = 1 version of ¢ is zero.
To start, note that (7-15), (7-22) and Lemma 7.6 imply the following: The integral in
(7-21) can be written as

(7-23) P_ZPSI/(CxD X2 xe(r(1= o [*)ar B + 04r1@" 0471 B)
i xdz ANdZ ANdu Ndu + v,

where [t| < coe. Note that the derivation of (7-23) invokes the Dirac equation to write
9400 as —0 4 B. To say something about the integral in (7-23), integrate by parts now
to take the derivative d4r; off of @ and put it on d4r1 8. Doing so adds a term with
a derivative of x, thus a term with norm bounded by r~! when # is large. Now
commute these two derivatives on 8 and integrate by parts to leave just one derivative,
941, 0n B. The result of all of these manipulations is an integral whose integrand has
a factor with a derivative on y,. As a consequence, the resulting integral has norm
bounded by ! when 7 is large. This then proves that legny1] < coe when n is large.

7.e On the ends of C

The next lemma gives the large |s| analog of what is asserted by Lemma 7.5. These
lemmas together imply the following: Fix e, > 0 and all sufficiently large n ver-
sions of §, are less than &46,. This is, of course, impossible. This nonsense proves
Lemma 6.2.

Lemma 7.7 Given €x >0 and T > R, there exists k > 0 such that if n > «, then

sup dist( U C, Z) < 8*8nrn_1/2.
z€a, ' (0), (C.m)ed
Is(z)|=T

Proof of Lemma 7.7 Each Reeb orbit in either Ex_ or E x4 has a tubular neighbor-
hood map as described in [9, (4-1)] with coordinates (w, ¢, z) for R x § 1w D. The
latter map is used implicitly in what follows.

If Lemma 7.7 is false, then there exists €+ > 0, a Reeb orbit y € Ex_ or Ex4+ and a
subsequence of {(r, (An, ¥n))}n=1,2,... (hence renumbered consecutively) with the
following property: Fix 7> R. Suppose that y € Ex_. If n is sufficiently large, there
is a point in y’s version of (—oo, —2T]x S x D where a;, = 0 and with distance
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at least s*énr,,_l/z from U(C,m)e, C.If y € Exy4, then the same conclusion holds
except that the point in question lies in y’s version of [2T, 00) x S! x D. Assume in
what follows that y € Ex_ so as to derive some nonsense. But for some cosmetic
changes, the same argument will derive nonsense in the case where y € Ex4 . This
understood, the latter case is not discussed further. The derivation of nonsense for the
case y € Ey_ presented in next in three parts.

Part 1 This part considers the case when y is such that m,_ = 1. In particular, this
part deals with the case when y is hyperbolic. Given 7' > R and then n sufficiently
large, Lemma 7.5 say that there are no points in a, ' (0) N ([—27, —T]x S! x D) with
distance greater than 46,7, /2 from C. Even so, there is a point y, € «,, Loyn
([—o0, —2T) x S! x D) such that dist(y,, C) > 8*5,,7‘”_1/2. It follows from Lemma
7.5 that the sequence {s(yx)}n=1,2,... has no convergent subsequence.

Construct from (A4, V) the section o0(,); as described in Lemma 7.2. Note that
0(n)1 is defined on the whole of the end £ of C in (—o0,—T7]x S1 x D Trivialize
the normal bundle to C on E by the vector field d/0dz to view 0(;); as a map from
(—00,—T]x S' to C. Let dmy1: (=00, =T — w(yn)] X S! — C denote the map
sending u = w + it t0 0(y)1 |lu+w, -

The resulting sequence {d()1jn=1,2,... has a subsequence that converges on compact
subsets of R x S! in the Holder topology with any given exponent in (0,1) to a
map q; from R x S! to C that has uniformly bounded L% norm on the cylinders
{[n.n+ 2] x S'},ez, is uniformly Holder continuous for any given exponent in (0, 1),
and is nonzero at some point on {0} x S'. Moreover, the argument given in Parts 1
and 2 of the proof of Lemma 7.5 can be employed with no changes to see that q; obeys
59q1 +vq; 4+ ©q; = 0 on the whole of R x S!. However, this is impossible as there
are no nontrivial, uniformly bounded solutions to this equation.

Part 2 Suppose now that 7, > 1. To keep notation to a minimum, assume in what
follows that £, = 2. This assumption has no bearing on the arguments and can be
eliminated at the cost of inserting a factor of ¢, /(2m) or its inverse in many of the
subsequent equations.

Introduce from [9, Section 5.c] the partition {&1,...,En} of the ends of U(C’m)eﬁ C
that lie in Uy, —. The argument that follows is simplest in the case when there is but
one of these sets, thus N = 1. In this regard, the algebra is somewhat simpler when
there is also just one end in £;. The reader might find the going easier by assuming
that such is the case at first reading. In any event, the rest of this Part 2 considers the
case when N = 1. The argument for this case has three steps.

Note that m is used as shorthand for m,,_ in these steps.
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Step 1 Suppose for the moment that the ends in £; are not part of R x y. (Note that
&1 has but a single end if it has any from R x y.) Each E € £; has an associated
multiplicity, gz € Z. These are the same for all ends in &;. Introduce, as in [9,
(4-1)], the local coordinate u = w + it with (w,t) the coordinates of R x S'. It
follows from [9, (4-2)] that any given end ‘£ from &£; appears in the w < wy <
—1 portion of R x S! x D as a g—sheeted graph over (—oo, wp] x S! with sheets
parameterized (locally) as the graph of a multivalued function ¥ — zz(u). Here,
ze(u) = gge_Rw+k'£”/qf(1 +tg) where ¢z € C —0 and kg € Z is relatively prime
to gz and obeys (k¢ —1)/qz <R < k&/qx. Meanwhile |tg| < ﬁe"w‘/“’. This
function zz(-) also obeys the equation (d/0u)zz + Rzgz = 0. Let 3z(u) C C denote
the set of g values of z¢(u). As a final remark, note that the collection {G£}zeg, is
such that ¢z /gz can not be a g« —th root of unity unless E = E’.

If a counterexample to the assertion made by Lemma 6.2 is to appear here, then there is
an infinite subsequence of {(rn, (An, ¥n))}n=1,2,... with the following property: There
exists (up = wy +ity, zy) € (—00, —wp] X S1x D where «, = 0 and such that

(7-24) |20 — 2| = ex8ur, /2 forall 2’ € 35(uy) and all £ € .
Here are two cases to consider with regards to (7-24):

e There exists ¢ > 0 and a subsequence of {(rn,(An, ¥n)in=12,..
with a corresponding (uy,z,) € o, 1(0) such that (7-24) holds with

 Fixany ¢ > 0. If n is sufficiently large, then any point (i, z,) € ;; 1 (0)
that obeys (7-24) is such that ge(Rtke/qr)un - 8,,r,,_1/2

If E is part of an R—invariant cylinder, and if E is to provide a counterexample to the

assertion made by Lemma 6.2, then there is a subsequence of {(rn, (An, ¥n))}n=1,2

where (7-24) holds with zz(-) = 0.

seee

Step 2 Assume that either the first item in (7-25) holds, or else ‘E is part of an
R—invariant cylinder and so (7-24) holds with z¢ = 0. Pass to a refined subse-
quence for which the corresponding sequence {3,},=1,,... either converges, or is
increasing and unbounded. Relabel the subsequence in question consecutively from 1.
Such a subsequence can and should be chosen so that after this relabeling, both
e(TRFkz/ar)wn < =4 and w, < —n. Require in addition that the associated sequence
{(5nrn_1/2)_1e(_R+kf/‘Jf)“’" tn=1,2,... converges. Note that the first item in (7-25)
guarantees that this is a bounded sequence.

For each n, construct sections {0, }1<k<m as described by Lemma 7.2 and (7-9)
using for C the w € [wy, — (1/(50¢%)) In(n), wy, + (1/(50¢?)) In(n)] portion of the
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cylinder R x y. To elaborate, the construction is done using the following data:
The connection A is defined from (A, ¥n) using the function g given by the
rule p(x) = xx(x) +1— x(x). Take p = p, = 1008,1rn_1/2 and take z = z, =
100n8nrn_1/2. Finally, take po = pon = 168nrn—1/2. The vector field d/0dz trivializes
the normal bundle to C here, and this understood, view each o,)x as a C—valued
function. For each n and k € {1,...,m}, define the function (), with domain

[(1/(50¢%)) In(n), (1/(50¢%)) In(n)]x S' C Rx S by setting q(uyk lu = 0y |utww, -

As is explained next, there exists ks > 50 m? which guarantees the following when n
is large:

* *

1 1 1 1
(7-26) |on|* > 3 atall (u,z) e [wn——ln(n), wn+—ln(n):|xSlxD, |z| > Zzn.
K K

To see why this is true, note first that z must have distance 23,1, 12 o1 less from a
point z/ € 35 (u). Such a point z’ obeys |z/| < copeRTkz/4E)% and this is less
than con'/2e(RTke/Dwn if 3 i such that w < co_1 In(n) for a suitable choice
of ¢o. By virtue of what is assumed by the first item in (7-25), the latter is less

_ ~1/2 — .
than coe™'n'/28,r, / ,and so |z| <n~/4z, when n is large.

What with (7-26), the final bullet of Lemma 7.2 can be invoked to see that
= 1
(7-27) la@mk| < co(1 + e_(_ka/qf)w)k and  dq(mk + Equ(n)k = ¢n,

where {[¢(y)|}n=1,2,... has limit zero. As in the proof of Lemma 7.3, these bounds imply
that each k € {1,...,m} version of {q(,)kjn=1,2,... has a subsequence that converges
on compact subsets of R x y in any given Holder norm to a function, ¢y, that obeys

— 1
(7-28) || < co(1 + e CRFRe/an=)* ang Jg + SkRa; = 0.

These subsequences can and should be chosen so as to guarantee that {qx }1<x<m
enjoys one additional property. To

elaborate, let /2 denote the number of ends in £;. Thus, m = hq¢. Also, let ¢ denote
the limit of the {(168nr,,_1/2)_le(_R+kf/‘1’E)w" }n=1,,.... Here is the extra property:

Either qx # 0 for some k 7 0 mod(g«),
(7-29) or there exists x € {1,...,h}
such that qx—xg, [u 7 quf(zfegl ggqf)e_x(q’ERw"”kf”).

To see why this is true, recall z¢ (1) = cge R Theu/az (1 fvz) with |vg| < ﬁe"“"/c(’ .
With this in mind, note that the first item in (7-25) finds e~%nl/c0 o(=Rtkz/qr)wn <
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n_45nrn_1/2 when 7 is large. This and (7-24) imply that |z, —z/| > %8*8,1}"”_1/2 for
any z’ € D that has the form ncge R tHkzun/dz with £ e E; and with n? = 1. This
guarantees the existence of subsequences whose limits obey (7-29).

To see what (7-28) and (7-29) imply, remark that a solution to the right hand equation
in (7-28) is a linear combination of functions that have the form e kRwHjU for some
Jj € Z. A function of this sort obeys the left hand inequality in (7-28) if and only if
R < j/k < kzqgz. (It follows from [2, Lemma 6.11] that no such j exists unless k is
divisible by g, but this fact is not needed for what follows.) The other possibility has
k =xqz and j = xkg for some x € {1,...,h}. Thus, qxq, = cxe X@rrwtkeu) for
some Gx € C. Thus, in each case, qj is a finite polynomial.

Introduce the two u—dependent polynomials

o PM)|u=A"4+3 1 <k<m Uk (u)rm=*k.

(7-30) T()()\.) = A" 4 Zlfxﬁh cXdz (ZEEEI Q;Qz)e—x(quw-i-kgu))\m—xqg.
These two polynomials differ. In particular, the following is a consequence of what
was said in the preceding paragraph about the possibilities for {qz ()} 1<k <m:

Given A > 0, there exists wa such that if u has real part greater than
(7-31) wA , then P(A)|, has a root with distance greater than A from each
root of Py(X).

Indeed, (7-31) follows from what [10, Part 6 of Section 3.a] says for the proof of [10,
Lemma 3.2], and from what is said in [9, Section 7.i] for the proof of [9, Lemma 7.5].

Given that each sequence {q)k fn=1,2,... converges pointwise on bounded domains
to qx, what is said by (7-31) requires the following for all large #n: There exists points
(u,z) € @, 1(0) such that |z —Z| > 16A5nrn_1/2 for all z/ € 3¢(u) and all £ € &;
when A > ¢g. Of course, this is nonsense because any such (u, z) must have distance
Onln /2 o1 less from some point in some end E € &;.

Step 3 This step considers the case where the second item in (7-25) holds. To start, fix
a subsequence of {(74, (An, ¥n))}n=1,2,... and renumber consecutively from 1 so that
{8ntn=1,2,... is either unbounded or converges. This sequence can and should be chosen
so that the following is also true: If (7-24) holds for any given (uy, z,) € o, 1(0), then
eCRtkz/a)wn o ong p=1/2

Fix an increasing, unbounded sequence {x;}n=1,2.... C [8,00) but such that the se-
quence {x,%c?,,rn_ 1/ 2} converges to zero. Choose x, < n. One additional upper bound
on the growth of the sequence {xy},=1,2,... arises below. Set p, = 7(,,8nrn_1/2 and set
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Zp = Nn28,1y /2 This choice for {Zn}n=1,2,... guarantees the existence of a constant
¢ > 1 with the following property:

Let X, denote the w € [wy, — (1/¢) In(n), wy + (1/¢) In(n)] part of
(7-32) Uzegl E. If n is large, then the exponential map embeds the radius
2z, disk bundle in Ni|yx,, .
With p, and z, understood, set p¢, = 168,71, 1/ 2,
Fix n large, set p = pu, z =z, and p¢ = Py, and then mimic what is done when k = 1
in Parts 1 and 2 of the proof of Lemma 7.5 to construct over X, a section, 0(,); , of the

normal bundle N . However, use now the function g given by gp(x) = xx(x)+1—x(x)
to define 4.

Use the product structure on N[5, given by the vector field d/0z to view 0(,); as a
complex function on each component of X,,. Fix such a component, and use the local pa-
rameterization of any given E € &1 as the graph of zz(-) to view 0(,); on the given com-
ponent as a C—valued function on [wy,—(1/c) In(n), wy+(1/c) In(n)|x (R/2rgsZ)).
With this view understood, define q,); by the rule q¢)1lu = 0(m)1lutw, - Thus, gk
is defined on the domain [—(1/¢) In(n), (1/¢) In(n)] x (R/(2rq£Z)).

It follows from Assertion (b) of the first bullet in Lemma 7.2 that the sequence {q(y)1}
is uniformly bounded. Moreover, the sequence {5q(,,)1 + %Ro(n)l}n=1,2,... converges
uniformly to zero uniformly also. Lemma 7.4 implies that the sequence {q(;)1}n=1,2,...
has uniformly bounded Holder norm for any given exponent in (0, 1). As a consequence
of all of this, there is a subsequence of {q(y)1 jn=1,2,... that converges in any such Holder
topology on compact subsets of R x (R/(2wg£Z)) to a bounded function, q;, that
obeys the equation 5q1 + %qu =0. Moreover, Lemma 7.4 implies that the subsequence
can be chosen so that ¢; % 0 at some point on the w = 0 circle. However, this is
nonsense because the operator 9+ %R has trivial bounded kernel.

Part 3 This part considers the case when there are two or more sets in the partition
{€1,...,&x}. To set the stage, suppose that £ € £; U--- U Ex is not R—invariant.
Reintroduce the notation 3z(u) for the set of gz points in E’s intersection with
{u} x D. As before, each point is one of the g¢ values of a multivalued function,
z£(u), that has the form zg (1) = cpe R¥thzt/az (] 4 vy) where ¢z € C — {0} and
lvz| < coe™1%/€0 . All ends in any given &, have equal versions of kz and ¢. These
are denoted in what follows by k; and gj. The following is also true: If £ and E’
are distinct elements of any given &, then ¢z /gz is not a ¢p—th root of unity. If £ is
part of R x y, then £y = {‘E}. In this case set 3« (u) = {0}. Take gz for such an end
to be the integer that accompanies R x y as an element in @, and take k¢ = co.
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The argument now proceeds in an inductive fashion. To set up the induction, first set
Eo=9. Given b € {1,..., N}, say that Property b is satisfied when the following is
true:
Given g4 > 0, there exists 7, such that if n > ny and if (u, z) € (—o0, —wp] X
S1 x D lies where a;, = 0, then one of the following is true:

(7-33) * There exists 2" € Ugzegyu-ug, dz) with |2/ —z| < 8*5,,7'”_1/2.
o z—Z|> Snrn_l/z forall z/ € Ufeelu---u&, 3z(u)
and |z| < exeCRTkb/a0)w

The b = 0 version of Property b makes no constraints and so is tautologically satisfied.
The plan for what follows is to assume Property b — 1 for a given b € {1,..., N}
and then prove that Property b holds as well. The proof that Property b — 1 implies
Property b is given in the three steps that follow. Note that if Property N holds, then
no counterexample to the claims in Lemma 6.2 can occur on an end £ C (¢ myes C
whose constant s slices converge pointwise to y as § — —00.

Step 1 Assume, to the contrary, that Property b — 1 holds but not Property b. This
requires the existence of some &4 > 0 and a subsequence of {(r,, (An, ¥n))}n=12,...
with the following: For each subsequence index 7, there is a point (1, = wy +ity, zn)
where o, is zero, and which obeys the following:

e There is no point z' € Uzeg,u.ug, I (Un) With |2/ —z,| < 8*8nr,,_1/2.

(7-34) o Either |z,| > sif/(;R"‘kb/qb)w", or there exists z’ € | Jgeg, 3z(un) with
|zn — 2| < Sprn 7.

Note that if b > 1, then Property b — 1 requires, in addition:

—-1/2
o |z, —Z/| > burp 2 forall 2’ € UzeElu-nuEb_l SZ(un).

(7-35) o Given & > 0, then |z,| < gpe"Rtko—1/9-Dwn for all n sufficiently
large.

Various scales are involved here, these being |zj|, 8,7y /2 and then the various
je{l,..., N} versions of e("R*ki/a))%n What follows describes three consequences
of (7-34) and (7-35) that say something about the relative sizes of these scales. Here is
the first consequence: If b > 1, the first item in (7-34) and the second item in (7-35)
have the following consequence:

Given g > 0, then Snr,,_l/z < gpeRYko—1/a-D)%n for all n suffi-

(7-36) .
ciently large.
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Indeed, the first point in (7-34) requires that |z,| + coe "Rt 0/a)#n pe larger than

8*(3,1}",,_1/2, and so the second point in (7-35) gives (7-36).

Here is the second consequence: If b > 2, the inequality in (7-30) is consistent with
the assumptions about {3, },=1,2,... only if

rn—1/2+1/c0 < ¢Rtkp—2/qp—2)wn

(7-37)

when 7 is large. Indeed, were the opposite inequality to hold for a large c¢g, then
eRtko—1/ap—1)wn gnd hence 8,,1’,1_1/2 would be less than r, ~1/2=1/eo,

Here is the final consequence: What with the definition of &, the first item in (7-35)
implies the following:

(7-38) There exists z' € Uzeg, u..ugy Such that [z, — 2| < Sy /2

This is true whether b =1 or b > 1.

The subsequent discussion considers separately two possibilities that correspond to the
dichotomy that is depicted in (7-25). These are as follows:

e There exists ¢ > 0 and a subsequence of {(rn,(An.V¥n))}n=12,..
with a corresponding (uy,zy) € o, '(0) such that (7-34) holds with

(7—39) 86( R+kp/qp)wn < 8 1/2‘

e Fix any ¢ > 0. If 7 is sufficiently large, then any point (u,, z,) € &, ' (0)
that obeys (7-34) is such that ceRYkp/ap)wn - Onln

To derive nonsense in either case, pass to a subsequence of {(r4, (An, ¥n))n=1,2
(hence renumbered consecutively from 1) where (7-32) holds and where {6,},=1.2,...
either converges or else increases with no upper bound. What with (7-33), the subse-
quence can and should be chosen when b > 1 so that §, rn_l/z <n4e(Rtkp—1/qp—1)wn
Additional conditions on this subsequence will be imposed below.

seee

Step 2 This step derives nonsense when the top item in (7-39) is relevant. In this
case, no generality is lost by assuming that the top item holds for a given ¢ and for all
indices 7, and that the sequence {(166,, 1/2) Lo (=rtkp/qp)wn Yn=1,2,... converges.

Let m = Zfesbu-nusN g« and construct for each n and foreach k € {1,...,m},a C-

valued function o)k on [w,—(1/(50 m?)) In(n), wy+(1/(50 m?)) In(n)]x S! as done

in Lemma 7.2 using the following data: Take C to be the [w), — (1/(50 m?)) In(n),
+ (1/(50m?))In(n)] x S portion of R x y. Meanwhile, define A using the

functlon g given by p(x) = xx(x) + 1 — x(x). Finally, take p = p, = 1008,7, 1/2,
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take z = z, = n5nrn_1/2, and take pg, to be 165,,}’,,_1/2. Define the function g,k
on [wy — (1/(50m?)) In(n), wy 4 (1/(50m?)) In(n)] x S* by dguklu = 0(uyk lu+awn -

The next lemma plays a principal role in what follows.

Lemma 7.8 There exists ks« > 50 m> with the following significance: Take n > k.
Then all points (u,z) € a;; 1(0) with u € [wy — (1/kx) In(n), wy + (1/kcx) In(n)] x S*
and with |z| < z, obey

|z < K>|<(5nl’n_1/2 + eCRtko/ap)wy

Moreover, |a,|? > % at all points (u,z) with u as above and with z such that |z| €
[%zn, Zn).

Proof of Lemma 7.8 Suppose that ¢ > 1 and that u € [w, —In(n), w, + (1/¢) In(n)] x
S! and that z € D are such that a(u,z) = 0 and |z| < 100z = 100n5,,r,,_1/2. Given
that ¢ > ¢g, and given the fact that Snrn_l/z <p~4eCRYko—1/q—1Dwn  thig implies that

(7-40) |z—2'| = 28, /% forall 2/ € Useg, uoug,_, 321

when 7 is large. Thus, there exists 2’ € Uzeg, u..ugy d£() such that |z —z'| <
—1/2 e
Onry '~ . This implies that

2| < 8ury M2 4 coe TR Y ko lan)w

To obtain the final assertion of the lemma, remark that this last bound is less than
Snr,,_l/z + n'/2eCRtko/a0)wn if ¢ > ¢, If n is large, this upper bound requires that

lz| <n V45, ml
Let k4« be as given in Lemma 7.8. Here is a first consequence of Lemma 7.8. If
u € [—(1/kx)In(n), (1/k4) In(n)] x S, then

(7-41) |Gkl < co(1 4 eTRFRp/mIwNE

Indeed, this follows from the second bullet of Lemma 7.1. What follows is a second
consequence of Lemma 7.8. This one follows with the help of the second bullet in
Lemma 7.2. If u € [—(1/k+) In(n), (1/k+) In(n)] x S, then

(7-42) 5q(n)k + %kRQ(n)k = ¢(n),
where {|e(;)|}n=1,2,... is a sequence with limit zero.

It follows from (7-41) and (7-42), just as in the proof of Lemma 7.3, that each k €
{1....,q} version of the sequence {q(u)k}n=1,2,... has a subsequence that converges
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uniformly on compact subsets of R x S in the Holder topology for any given exponent
in (0, 1). Denote the limit by qj . This limit obeys

(7-43) ] < co(1 + e~ CRHR2/DNE and gk + LhRquk = 0.

Write ¢ = hqyp + my where my, € {0, ...,qp — 1}, and let ¢ denote the limit of the
sequence
{(166nrn—1/2)—le(—R+kl/ql)Wn }n=1’2,

As explained next, these ¢ different subsequences can be chosen so as to ensure that
(7-29) holds. To see why this must be true, note first that the assumption in the first
item of (7-39) requires that

(7-44) (S 12y Rk 1) < (Ly1/eo

if &' > b. These assumptions have the following additional implication: Recall that
any given end ‘E is the graph of a multivalued function

u— zg(u) = cre RYThEU A (1 4o,

Then |tg| is also bounded above by co(%)l/ €0, These bounds with (7-34) guarantee
the existence of subsequences with limits {qy };<k<4 that obey (7-29).

Just as in Step 2 of Part 2, the fact that (7-29) holds leads to nonsense. Indeed, define
the u—dependent polynomials, monic degree m polynomials P(A) and Py(A) using
the following analog of (7-30):

o PAM)|u=A"+ lekSm qk(u))‘m_ka
T e 200 =" B 2oz 9 (Lipee, G37%)e @t hnymova,
where /& here is the number of ends that comprise £,. What is asserted by (7-31)
holds here for the same reason that it holds in Step 2 of Part 2. As in Step 2 of
Part 2, the assertion in (7-31) and the fact that the sequences {{q)k fn=1,2,...} 1<k<m
converge pointwise on bounded domains to {qx};<x<, demands, for all large n, a
point (u,z) € o, 1 (0) such that

|z—z2| > 16A5nrn_1/2 for all ' € Usges,u-uey )
when A > ¢qy. Of course, this is nonsense because any (u,z) € ;! (0) must have

distance Snrn_l/z or less from UZG&U"USN Ee&.

Step 3 This step derives nonsense when the second item in (7-39) is assumed. The
derivation of nonsense for this case is very nearly the same as that done in Step 3
of Part 2. To say a bit more, remark first that no generality is lost by choosing the
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subsequence of {(rn, (An, ¥n))}n=1,2,... and then renumbering consecutively from 1
so that if (7-34) holds for any given (uy, z,) € ;; 1 (0), then

e RTkp/ap)wn > en(gnrn—l/Z‘

Granted this last condition, the second bullet in (7-34) and (7-38) demand a point
'€ Ufeeb 3¢ (up) such that |z, —z'| < 8nr,,_1/2.

Fix an increasing, unbounded sequence {x,},=1,2,... C [8,00) but such that the se-
quence {x28nryn 1 2} converges to zero. Choose i, < n. One additional upper bound
on the growth of the sequence {xy}n=1,2,... arises below. Set p, = x,8urn 172 and set
2z =n28p1y /2 This choice for {Zn}n=1,2,... guarantees the existence of a constant

¢ > 1 with the following property:

Let ¥, denote the w € [w, — (1/¢) In(n), w, + (1/c¢) In(n)] part of
(7-46) Uze g, E- If n is large, then the exponential map embeds the radius
2z, disk bundle in N;|yx,.

With p, and z, understood, set p¢, = 168,71, 12 Now repeat verbatim what is said
in the final three paragraphs of Step 3 in Part 2 to obtain nonsense. a

8 Perturbations of (1-11)

This last section proves the assertions that are made by Item (iii) from the first bullet of
[8, Theorem 4.3]. The first subsection below reviews some of the notation and restates
the claim as Proposition 8.1. The second subsection gives a proof.

8.a Perturbations

As noted in [8, Sections 1.c, 1.d], it is often necessary to modify (1-11) so as to
guarantee that all instanton solutions with nondegenerate s — F=oo limits are suitably
nondegenerate in their own right. An allowed perturbation is defined by the choice
of a gauge invariant function on Conn(E) x C*°(M;S). Such a function must come
from a certain Banach space of smooth functions. This space is described in the
aforementioned subsections of [8]. It is denoted in [8] and here by P. Let p denote a
given element in P. The resulting version of (1-8) can be viewed as the equations that
define the critical points of the function a+ p on Conn(E) x C*°(M;S) with a given
by (3-2). The resulting perturbed version of (1-8) is written schematically as

o By—r(Yley —ia)—i*xdu+T|(ay)+ 3Bag =0.

(8-1)
o Dy —6|(A,¢) =0.
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The corresponding version of (1-11) has the form
o 2A+Ba—r(Wiey —ia)—ixdu—F|(4,y)+ 1Bag =0.

(8-2)
DY+ Dgy — S|4y =0.

A solution to (8-2) is said to be an instanton if its s — £ oo limits are solutions to (8-1).

There is a corresponding version of the symmetric operator that is depicted in (1-14),
this given in [8, (3-7)]. There is, likewise, a corresponding version of the operator
in (1-12), this depicted by [8, (3-9)]. A solution to (8-1) is said to be nondegenerate
when the latter’s version of [8, (3-7)]. Let ? denote an instanton solution to (8-2) with
nondegenerate s — oo limits. Then 0’s version of [8, (3-9)] defines a Fredholm
operator in a suitable sense. The instanton ? is said to be nondegenerate when the
latter operator has trivial cokernel.

Section 3.b introduced the notion of the spectral flow, f;, along an instanton solution
to (1-11) with nondegenerate s — +oo limits. This notion is well defined for the
instanton solutions to (8-2) with nondegenerate s — oo limits if it is understood that
the term spectral flow in this context refers to the following family of operators: Let
0 denote the given instanton. The corresponding family of operators is parametrized
by R. The s € R member is the version of the operator that is defined in [8, (3-7)]
using the connection and spinor from ;.

Given a pair of nondegenerate solutions ¢_, ¢4 to (8-1), use M ,(c—,c4) to denote
the space of instanton solutions to (8-2) with s — —oo equal to ¢—, with s — o0
limit gauge equivalent to ¢, and with spectral flow function f, = 1. If all instantons
in M ,(c—,c4) are nondegenerate, then the latter space is a smooth manifold of
dimension 1 with a free R action that is induced by the constant translations along the
R factor of R x M.

The upcoming Proposition 8.1 restates Item (iii) from the first bullet of [8, Theorem 4.2].
This proposition refers to a pair (a, J), of contact form in N3s and almost complex
structure from J,. Given L > 1, this pair is assumed to obey (1-15). The set Z, éh is
defined by (a, J). The proposition specifies a constant «; it is implicit that Theorem
1.1 and Theorem 1.2 can be invoked using L and (a, J) when r > k.

Proposition 8.1 Fix L > 1 and a pair (a, J) just described. There exists k > 1 with
the following significance: Define the space M" using the pair (a, J), a 1 -form p € Q
with P —norm bounded by 1, and r > k. Let ®_ and ®4 denote any two elements in
Z eLCh. Use ¢_ and c4 to denote solutions to (1-8) whose gauge equivalences classes are

the respective images in M” of ®_ and ®4 via Theorem 4.2’s map ®" . Let p € P
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denote a sufficiently small element that vanishes to second order on the image of ®” .
Define M ,(¢c—,c4) as above. There exists an R —equivariant diffeomorphism from
Ml (®—7 ®+) to Ml ,p(c—» C+) .

8.b Proof of Proposition 8.1

The proof has four parts.

Part1 Let rz > 1 be such that Items (i) and (ii) of the first bullet in [8, Theorem 4.3 ]
holds for » > rr and fix r > rp. If p is sufficiently small, perturbation theory finds an
R—equivariant embedding E,: Mj(¢c—, ¢4) — M ,(c—, c¢4) onto a union of smooth
components of MM, ,. This map varies with p in a suitably smooth manner, and is such
that B is the identity. In particular, if 0 € M;(c—, c4) and {pg }x=1,2.... is a sequence
in P that converges to zero, then the corresponding sequence {E,, (9)} converges to ?
in the topologies that are considered in Chapter 16 of [5]. For example, this sequence
converges to zero in any given n > 0 version of C” topology on maps from R to the
space Conn(E) x C*°(M;S). Granted the preceding, Proposition 8.1 follows if it is
the case that E, is surjective when ever p has suitably small norm. The parts that
follow prove that this is the case by deriving a contradiction if it is not.

geen

Part 2 Assume that there exists an increasing, unbounded sequence {r;};—1,2,.. C
[rL,00) and a corresponding sequence {p;  }x=1,2,.. C P that converges to zero with
the following property: Fix any given index pair (i, k) and there is an instanton, ; f,
in the p = p; x version of M; ,(c—, c4) thatis not in the image of the corresponding
version of Ej.

To derive nonsense from this assumption fix i and let r = r;. The lemma that follows
plays a key role in the subsequent argument.

Lemma 8.2 There exists k > 1 such that if r = r; > K, then the following is true: For
each k €{1,2, ...} write the s — oo limit of 0; j as u; ¢4 . Then a(c—)—a(u; gc4) <
2nLr.

Proof of Lemma 8.2 Consider first the case when ¢ (det(S)) is a torsion class. If this
is so, then a(u; xc+) = a(c4+). Meanwhile, both ¢ and ¢ define gauge equivalence
classes in the image of ®”. As such, both have E < 2z L. It follows from this and
(5-19) that both are such that |a| < wLr if r is large. Thus, a(c—) —a(u; gxc4) <2nLr
if r is large.

Suppose instead that ¢ (det(S)) is not a torsion class. It follows from the fourth bullet
in (8-3) that |a(c—) —a(u; xc4)| < laf (c_) — af(ul,kc+)| +27%. Meanwhile, as ¢_
and u; g ¢4 are such that E <27 L, it follows from (5-25) both are such that |af | <mLr
when r is large. These last two inequalities prove the claim. a
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Part 3 Given Lemma 8.2, it follows from the analysis in Chapters 16—19 of [5] that
there is a subsequence of this sequence (hence renumbered consecutively from 1) that
converges to what is called a broken trajectory. A broken trajectory in this case consists
of a finite, ordered set of instanton solutions to (1-11). Let N = N; denote the number
of elements in this set, and use {0/ };< j<n to denote the set itself with the dependence
on the index i understood. To say more about this set, use ci to denote the s — oo
limit of d/ and use ¢/ to denote the s — —oo limit 9/ . Then

. ci=ci_1 foreach j €{2,..., N}.
o l=c_ andcﬁ = ucy for some u € C®(M; S1)).
a(cl) > a(ci) foreach j € {l,...,N}.

* Yi<j<n o =1

(8-3)

Note that {9; s }x=1,2,... must stay uniformly far in any given C” norm from any
instanton solution to (1-11) from Mj (¢c—, ¢ ) for if not, then any given large k version
would be in the image of the corresponding version of E,. This last fact about
{9ik}1,2,... implies that N; > 1. A proof that N; =1 for sufficiently large i generates
the desired nonsense.

Part 4 It follows from the first bullet in (8-3) that any given sufficiently large index i
version of the sequence {a(c/)};< j<n is such that

(8-4) a(c=) = a(cl) > > a(c) = a(ucy).

This chain of inequalities implies that a(c/ ) — a(ci) <2mLr; foreach je{l,...,N}
when the index i is large. This is to say that each ? € {9/ };< j<nN version of what
is denoted in Proposition 5.1 by A; is bounded by 27 Lr;. It follows from this using
Proposition 5.5 that each ¢/ is such that E(¢/) is bounded by 2L when r = r; > cg.
Thus, each is in the image of ®”. Proposition 5.5 implies even more: There is a
broken J-holomorphic trajectory of the sort described in the proof of Lemma 6.1
that interpolates between ®_ and ®4. Denote the constituents as {J }1<x<n’. An
argument that differs little from that used in Part 2 of the proof of Lemma 6.1 proves
that their embedded contact homology indices must add to 1. This being the case, if
N = N; > 1, then at least one of the broken J—-holomorphic trajectories must contain
an element ¢ that has nonpositive embedded contact homology index. As each contains
a non—R—invariant subvariety, this event is not possible given the assumed genericity
of the pair (a, J).
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Index to the notation
¢r
wr

a: the contact 1-form

I': aclassin H{(M;Z)

k~!: the kernel of a oriented by —da

¢1(k): the first Chern class of k&

v: the Reeb vector field

Reeb orbit: aclosed integral curve of v, typically
denoted by y

O®: a finite set of pairs (y,m) with y a Reeb
orbit and m a positive integer

Z: a set of ®’s as above satisfying particular
constraints

{,: when y is a Reeb orbit, the integral of a
along y

ZL: a subset of Z with a length bound given
by L on the Reeb orbits

J: the given almost complex structure

y: a Reeb orbit, aka a closed integral curve of v

(v, 1)

L: a differential operator associated to a Reeb
orbit

nondegenerate

elliptic, hyperbolic

rotation number

R: the rotation number for an elliptic Reeb orbit
L-—nondegenerate

¢ vortex moduli space

h

V1.0 4

nondegenerate in the context of a map ¢: S' —
Cm

(JC)

ce*
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Equation (1-10), Theorem 4.2

of [8]

Equation (1-16), Theorem 4.3

of [8]

Part 1 of Section 1.a
Part 1 of Section 1.a
Part 1 of Section 1.a
Part 1 of Section 1.a
Part 1 of Section 1.a
Part 1 of Section 1.a

Part 1 of Section 1.a

Part 1 of Section 1.a

Part 1 of Section 1.a

Part 1 of Section 1.a

Part 2 of Section 1.a

defined for a given Reeb orbit in

Equation (1-1)
Equation (1-2)

Part 2 of Section 1.a
Part 2 of Section 1.a
Part 2 of Section 1.a
Part 2 of Section 1.a
Part 2 of Section 1.a
Part 3 of Section 1.a
Equation (1-5)

Part 3 of Section 1.a
Part 3 of Section 1.a

Part 3 of Section 1.a
Part 3 of Section 1.a
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metric on TM

S: spinor bundle

Conn(E)
By
ylry
Dy

I

Ag

cl(-): Clifford multiplication map

Q

P

P—-norm

M}"

E(4)

ezl

Q:ZL*

Num

Ja

Zech

M (O—,04)
1(0_,04,7)

0
instanton
Do

H

L

I~ Il

Clifford Henry Taubes

Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Part 4 of Section 1.a
Equation (1-9)

Part 4 of Section 1.a
Part 4 of Section 1.a
Part 1 of Section 1.b
Part 1 of Section 1.b
Part 1 of Section 1.b
Part 1 of Section 1.b

Part 1 of Section 1.b and Equa-
tion (2-9) of [8], Section 2.c

of [8]
a solution to (1-11)
Part 2 of Section 1.b

the operator in Equation (1-12)

Part 2 of Section 1.b
Part 2 of Section 1.b
Equation (1-13)

£ the operator in Equation (1-14)
nondegenerate in the context of a solution to Part 2 of Section 1.b

Equation (1-8)

nondegenerate in the context of a solution to Part 2 of Section 1.b

Equation (1-11)

M (¢c—, c4+): an instanton moduli space Part 2 of Section 1.b
zL Part 3 of Section 1.b
ZeLC;‘ Part 3 of Section 1.b
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Co a constant that is greater than 1
and is independent of what ever
relevant data is under consider-
ation. The precise value of ¢g
can increase between subsequent
appearances.

x: a smooth function from R to [0, 1] that

equals 1 on (—o0, %] and value 0 on [%, 00)

o, B: respective E and EK~! components of a Part 1 of Section 2.a

spinor ¥

V4 Part 1 of Section 2.a

Ve Equation (2-8)

Iy, Property 3 in Part 4 of Section
2.a

ry Part 3 of Section 2.a

193* Part 4 of Section 2.a

(A*,¢™*) in the context of the proof of Part5 of Section 2.a
Theorem 1.1

{(cy. $y) b ym)e® Part 5 of Section 2.a, Step 4 in
Section 3.a of [9]

Uy }(y,mye® and Uy Step 1 of Part 5 of Section 2.a

admissible extension Step 3 of Part 5 of Section 2.a

0: product connection Step 4 of Part 5 of Section 2.a

J=1(cy. 5y} m)e® Section 3.a of [9]

wiw=1-—|«|? Section 3.a

fo: spectral flow along the path d Section 3.a

Fp Section 3

a Equation (3-2)

] Equation (3-3)

ey Section 3.a

A Section 3

IR Equation (3-4)

() Step 3 in the proof of Lemma 3.5
in Section 3.a

M(-) Lemma 3.7 in Section 3.b

X Lemma 3.8 in Section 3.c

A Equation (3-33)

Fj Equation (3-34)
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N: the normal bundle to a submanifold Section 4.e

Ni: a small radius disk subbundle of N Section 4.e, Section 4.a of [9]
ec: a certain exponential map defined on N, Section 4.e, Section 4.a of [9]
Et introduction to Section 5, Propo-

sition 5.1

E Section 5.a

L Section 5.a

L Section 5.a

0 Section 5.b

o Section 5.b

M Section 5.d

broken trajectory Section 5.e

tUc}c,myed - Uy—tyegs_» {Uy+}yeEs Section 6.b, Equation (5-3) of [9]
Uo
(A*, ¥*) in the context of the proof of Theorem Part 3 of Section 6.b, Part 2 of

1.2 Section 5.a of [9]

s: the tautological section of 7* N — N Part 3 of Section 6.b

‘E: typically an end of a J-holomorphic curve Part 4 of Section 6.b

Kx Section 6.c, Step 4 in Section 5.a
of [9]

(4%, y%) Section 6.c, Equation (5-15) in
Section 5.a of [9]

(b, 1t 9%) Section 6.c

b(§) Lemma 6.5

t Section 6.c

dpy Section 6.c

D Equation (6-21), Section 6 of [9]

(-)=(-) Equation (6-21), Section 6 of [9]

h(&) Section 6.d and Section 6.d of [9]

q) Section 6.d

ITg Section 6.d, Part 6 in Section 7.a
of [9]

ng HEL = (1-MgH Section 6.d

L Section 6.d, Section 7.a of [9]

te: a homomorphism from L to L Section 6.d, Equation (6-9) of [9]

tg Section 6.d

(cg.Ge) Equation (6-23)

Ore,r Equations (6-24), (6-57) of [9]
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193 Equation (6-24)

-l Step 6 in the proof of Lemma 6.9,
(5-13) of [9]

- Nl Step 6 in the proof of Lemma 6.9,
Step 4 of Section 5.a of [9]

I llc.e Step 7 in the proof of Lemma 6.9

Il - llxc2 Section 6.e

0=W0c)c,myes(Oy—)yees_), (0y+)yery,) Part 4 of the proof of Lemma

6.13, Equations (7-30), (7-31)
and (7-34) of [9]

Jos 1, J+5 - Equation (7-3)

Ok
qe

ZE
ke

3z

Equation (7-9)

Step 1 of Part 2 in the proof of
Lemma 7.7

Step 1 of Part 2 in the proof of
Lemma 7.7, (4-1) of [9]

Step 1 of Part 2 in the proof of
Lemma 7.7

Step 1 of Part 2 in the proof of
Lemma 7.7
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