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Embedded contact homology and
Seiberg–Witten Floer cohomology IV

CLIFFORD HENRY TAUBES

This is the fourth of five papers that construct an isomorphism between the embedded
contact homology and Seiberg–Witten Floer cohomology of a compact 3–manifold
with a given contact 1–form.

57R17; 57R57

1 Introduction

This is the fourth of a series of five papers whose purpose is to prove that embedded
contact homology as defined by Michael Hutchings for a compact 3–manifold with
contact 1–form is isomorphic to the manifold’s Seiberg–Witten Floer cohomology. As
described in the first paper [8, Section 4] of the series, this isomorphism involves two
maps, one which maps generators of the embedded contact homology chain complex to
generators of the Seiberg–Witten Floer cochain complex, and another which is used to
identify the respective differentials. Let M denote the manifold in question. The first
of these maps assigns a solution on M to a version of the Seiberg–Witten equations
to certain data that is associated to a finite collection of Reeb orbits of the contact
1–form. This map is denoted by ˆr in [8, Theorem 4.2]. The second map associates
an instanton solution to the corresponding Seiberg–Witten equations on R�M to
data that is associated to certain collections of pseudoholomorphic curves in R�M .
Theorem 4.3 of [8] denotes the latter map by ‰r . The maps ˆr and ‰r are constructed
in the second paper [9] of this series. Theorems 4.2 and 4.3 of [8] respectively assert
that ˆr and ‰r are surjective maps onto certain image sets. What follows in this paper
proves that such is the case. Theorems 1.1 and 1.2 below make the formal statements
to this effect. Theorem 4.3 of [8] makes additional assertions about instanton solutions
to a certain perturbed version of the Seiberg–Witten equation on R�M . These extra
assertions are first summarized by Proposition 8.1 and then proved.
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1.a The image of the map ˆr

The statement of Theorem 1.1 requires some background and notation that was intro-
duced in the earlier papers in this series. The summary of this background constitutes
the five part digression that follows.

Part 1 Use a to denote the contact 1–form. The manifold M is oriented using as
volume form a^da. The oriented 2–plane bundle kernel.a/�TM with its orientation
given by da is denoted by K�1 . This bundle K�1 will be viewed for the most part as
a complex line bundle over M with its orientation as a complex bundle the same as
that given by da. The first Chern class of K�1 in H 2.X IZ/ is denoted by �c1.K/.

The vector field on M that generates the kernel of da and pairs with a so as to equal 1
it called the Reeb vector field and it is denoted as v . Its integral curves are the Reeb
orbits. They are oriented implicitly by v . Fix a homology class � in H1.M IZ/ and
let Z denote the set defined as follows: An element ‚ 2 Z consists of a finite set
of pairs of the form .;m/ with  a Reeb orbit and m a positive integer. Require
that distinct pairs from ‚ have distinct Reeb orbit components, and require that theP
.;m/2‚ m represents the class � . Given L � 1, use ZL to denote the subset

consisting of those ‚2Z which obey
P
.;m/m` �L where ` denotes the integral

of the contact 1–form along  .

Part 2 Fix an almost complex structure J W kernel.a/!kernel.a/ such that the bilinear
form da. � ;J. � // defines a positive definite inner product on kernel.a/. Let  denote
a given Reeb orbit. There is a disk D �C and an embedding 'W S1 �D!M with
the following properties: First,  appears as S1 � f0g. Second,

(1-1)

�
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`
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1� 2�jzj2��xz2

� x�z2
�
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`
daD idz^dxz�2.�zC�xz/dxz^dt �2.�xzC x�z/dz^dtCO.jzj2/,
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`
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@t
C 2i.�zC�xz/

@

@z
� 2i.�xzC x�z/

@

@xz
CO.jzj2/.

Here, � and � are respectively real and complex valued functions on S1 . Here and in
what follows, the circle S1 is implicitly identified with R=.2�Z/ and t 2R=.2�Z/ is
used to denote its affine coordinate. In these coordinates, the vector field @=@z at zD 0

pushes forward via ' so as to generate the Ci eigenspace of J on kernel.a/˝C .

The pair .�; �/ are used to define the operator L on C1.RIC/ given by

(1-2) Lz D
i

2

d

dt
zC �zC�xz:
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Let t ! x.t/ and t ! y.t/ denote the real and imaginary parts of a map t ! z.t/ in
the kernel of L . The latter obey

(1-3)
�

x.t/

y.t/

�
D U

�
x.0/

y.0/

�
where U jt 2 SL.2IR/ for each t 2R:

As t varies in Œ0; 2��, the map t ! U jt defines a path in SL.2IR/ starting at the
identity. The Reeb orbit  is said to be nondegenerate when j trace.U j2�/j > 2 or
j trace.U j2�/j < 2. In the former case,  is said to be hyperbolic, and in the latter
case  is said to be elliptic. In the hyperbolic case, there is a homotopy of the map
U j. �/ W Œ0; 2�� ! SL.2IR/ such that the t D 2� element of each member of this
homotopy has j trace.U j. �/ /j � 2 and such that the final member is a rotation through
�k radians with k 2Z. The integer k is said to be the rotation number. In the elliptic
case, there is a homotopy of U j. �/ such that the t D 2� element of each member of
this homotopy is conjugate to U j2� and such that the end member is a rotation by
angle 2�R with R 2R. The number R is the rotation number of  when  is elliptic.
The mod.2/ reduction of k is independent of ' as is the mod.Z/ reduction of R .

Fix L� 1. A contact form a is said to be L–nondegenerate when the following three
conditions are met: First, if ‚ 2 Z , then

P
.;m/2‚ m` ¤ L. Second, if ‚ 2 ZL ,

and .;m/ 2‚, then  is nondegenerate. Third, if ‚ 2 ZL and .;m/ 2‚ with 
elliptic, then its rotation number R is such that kR ¤ Z for each k 2 f1; 2; : : : ;mg.
The space of contact forms on M has an open and dense set (in the C1 topology)
that contains only L–nondegenerate contact forms.

Part 3 Let ‚ 2 Z . Section 1.b of [9] associates a set C‚ and a subset C‚� to ‚.
To define these sets, focus first on a given .;m/ 2 ‚. Introduce the vortex moduli
space Cm as defined in [9, Section 1.b]. The latter consists of equivalence classes of
pairs .A; ˛/ with A being a connection on the product C bundle over C and with ˛
a section of this bundle, thus a map to C . This pair obeys the equations

(1-4)

� �FA D�i.1� j˛j2/.

� x@A˛ D 0.

� j˛j � 1.

� The function .1� j˛j2/ is integrable on C and
R

C.1� j˛j
2/D 2�m.

The equivalence relation that defines Cm posits .A; ˛/ � .A� u�1du;u˛/ when u

any smooth map from C to U.1/.

As noted in [9, Section 1.b], this space is the complex manifold, Cm , with a nonstandard,
nonflat Kahler metric. The latter defines a symplectic form and thus the Hamiltonian
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dynamical system that is defined using the time dependent Hamiltonian function

(1-5) h D
1

4�

Z
C

�
2�jzj2C .�xz2

C x�z2/
�
.1� j˛j2/:

The set C.;m/ consists of the maps cW S1! Cm that are closed, integral curves of the
Hamiltonian vector field defined by h ; thus solutions to the equation

(1-6)
i

2
c0Cr.1;0/h jc D 0;

where c0 is shorthand for the .1; 0/ part of c�.d=dt/, and where r.1;0/h denotes the
.1; 0/ part of the gradient of h . What is denoted below by C‚ is �.;m/2‚C.;m/ ;
thus a typical element consists of a set fc 2 C.;m/g.;m/2‚ .

Let cW S1 ! Cm denote a given map. Associate to c the bundle c�T1;0Cm ! S1 .
The pullback of the Riemannian connection on T Cm defines a Hermitian connection
on S1 . The map c is said to be nondegenerate when the operator

(1-7) �!
i

2
rt�C .r�R

r
1;0h/jc

on C1.S1I c�T1;0Cm/ has trivial kernel. The notation here is such that rt denotes the
covariant derivative of the aforementioned Hermitian connection. Also, .r�R

r1;0h/jc
denotes the covariant derivative at c along the vector defined by � in T Cmjc of the vector
field r1;0h 2 C1.CmIT1;0Cm/. The operator in (1-7) is symmetric and elliptic. Its
spectrum is a discrete subset of R with finite multiplicities and no accumulation points.

What is denoted here by C‚� consists of the elements in C‚ of the form fc g.;m/2‚
with all c being nondegenerate.

Part 4 The definition of the Seiberg–Witten cochain complex requires the choice of a
Riemannian metric on M . Such a metric should be chosen so that �daD 2a and such
that jaj D 1. Note that a metric of this sort defines an almost complex structure, J , on
kernel.a/ for which the bilinear form da. � ;J. � // is positive definite and symmetric.
Conversely, any such almost complex structure defines a unique metric on M such
that �daD 2a and jaj D 1. This understood, a contact 1–form a and a chosen almost
complex structure J of the sort just described will be used implicitly to define the
metric on M .

As noted in [8, Section 3.c], the spinor bundle S for a given SpinC structure decomposes
as the orthogonal direct sum E˚EK�1 where E!M is a complex, Hermitian line
bundle, and where K�1 is now viewed as a complex line bundle. These subbundles
are the respective Ci and �i eigenbundles for Clifford multiplication by the 1–
form a. The first Chern class of E can be used to classify the SpinC structure.
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This understood, choose E so that its first Chern class is Poincaré dual to the homology
class � 2H1.M IZ/ that was used in Part 1.

Let Conn.E/ denote the space of smooth, Hermitian connections on E . The Seiberg–
Witten equations used here require the choice of a real number r � 1 and then of
a coclosed 1–form �. The corresponding Seiberg–Witten equations are for a pair
.A;  / 2 Conn.E/�C1.M IS/; they read

(1-8)
� BA� r. |� � ia/� i � d�C 1

2
BAK

D 0.

� DA D 0.

The notation here is as follows: First, BA denotes the metric Hodge star of the curvature
2–form of A. Second, AK is a fixed connection on K�1 with harmonic curvature
2–form. Third, DA denotes the Dirac operator on C1.M IS/ as defined using the
metric’s Levi-Civita connection and the connection AK C 2A on det.S/. Finally, if �
and � are any given sections of S , then �|�� is the C–valued 1–form whose metric
inner product with a 1–form b is �| cl.b/� with cl. � / here denoting the Clifford
multiplication endomorphism.

The 1–form � that appears in (1-8) is constrained to lie in a certain Banach space of
smooth 1–forms. The latter is denoted by � and is described briefly in [8, Section 3.d].
The norm on this space is called the P –norm: it bounds all of the C k norms. In what
follows, � is assumed to come from � and have P –norm less than 1.

The group C1.M IU.1// acts on Conn.E/�C1.M IS/ as follows: A given map u

from M to U.1/ sends a pair .A;  / to .A�u�1du;u /. Pairs related in this way
are said to be gauge equivalent. Any given orbit under this action is said to be a gauge
equivalence class. If .A;  / obeys (1-8), then so does any pair in its gauge equivalence
class. With � fixed and r � 1 given, use Mr in what follows to denote the set of
gauge equivalence classes of solutions to (1-8).

Associated to any connection on E is a certain functional, this denoted in what follows
by E . Its value on a given A 2 Conn.E/ is

(1-9) E.A/D i

Z
M

a^�BA:

This function is constant on any given gauge equivalence class.

With the stage set, fix L� 1 and assume that the contact form a is L–nondegenerate.
Let CZL denote the set of pairs fC‚ W ‚ 2 ZLg and let CZL� denote the subset
fC‚� W ‚ 2 ZLg. Fix a finite subset X � CZL� . Theorem 1.1 of [9] describes the
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following: For all large r and any given � 2 � with P –norm bounded by 1, an
injective map

(1-10) ˆr
W X!Mr with image in the set where E < 2�L:

(Theorem 1.1 of [10] has more to say about this map.)

What follows is the promised surjectivity theorem for ˆr .

Theorem 1.1 Fix L� 1 and suppose that the contact 1–form a is L–nondegenerate.
Fix an almost complex structure J on the kernel of a so that da. � ;J. � // defines
a metric on the kernel of a. Use this data to define a metric on M . Suppose that
CZL� D CZL . Then CZL� is a finite set. Moreover, there exists � � 1 with the
following significance: Fix �2� and r � � so as to define Mr and the corresponding
map ˆr W CZL !Mr . Then the image of ˆr is the whole of the E < 2�L part
of Mr .

This theorem is proved in the upcoming Section 2.

1.b The image of the map ‰r

The statement of the upcoming theorem about the map ‰r requires the three part
digression that follows momentarily. This digression reintroduces notation and various
notions from the previous papers in this series.

Part 1 The definition of ‰r assumed that the chosen contact form a was L–nonde-
generate for all L� 1. The set of such forms is denoted by NM . The definition also
took the almost complex structure from a certain set, Ja , of almost complex structures
for T .R�M /. Fix J 2 Ja . Note that J is unchanged by the constant translations
along the R factor of R�M . It also maps @=@s to v and it maps K , the kernel of a,
to itself. Moreover, da. � ;J. � // is a Riemannian metric on the kernel of a. Thus J

can be used to define a metric for M if it is understood that a has norm 1 and that
daD 2 � a. This is the metric to use in what follows, and to use when defining the
Seiberg–Witten equations in (1-8).

Introduce Zech to denote the subset of those elements in Z that lack pairs of the
form .;m/ with  hyperbolic and m > 1. Fix two elements, ‚�; ‚C 2 Zech and
define M1.‚�; ‚C/ as follows: An element † 2M1.‚�; ‚C/ consists of a finite
set of pairs of the form .C;m/ where m is a positive integer and where C is a
J –pseudoholomorphic submanifold. These pairs are further constrained as follows:
First, distinct pairs have distinct submanifold components. Second, m D 1 unless
C is R–invariant; thus C is of the form R�  with  �M a Reeb orbit. To state
the third property, let � W R �M ! M denote the projection. Here is the third
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property: The formal sum
P
.C;m/2† m�.C / defines a 2–cycle whose boundary isP

.;m/2‚C
m �

P
.;m/2‚�

m . Finally, this cycle is homologous rel boundary to
the image of a submanifold Z � Œ0; 1��M for which a certain integer I.‚�; ‚C;Z/

is defined and equal to 1. This integer I.‚�; ‚C;Z/ is described in [8, (2-9)] and the
surrounding discussion in [8, Section 2.c].

Hutchings proves in [2] that M1.‚�; ‚C/ has the structure of a 1–dimensional mani-
fold with a finite set of components. Moreover, each component is a copy of R, this
the orbit of any one of its members under the action of the group R that is induced by
latter’s action on R�M as the constant translations of the R factor.

Part 2 Fix r � 1 and a coclosed 1–form � for use in (1-8). The associated Seiberg–
Witten equations on R �M are equations for a map, d, from R into the space
Conn.E/�C1.M IS/. Write d as the map s! .A;  /js and these equations read

(1-11)
�

@
@s

ACBA� r. |� � ia/� i � d�C 1
2
BAK

D 0.

�
@
@s
 CDA D 0.

A solution d is said to be an instanton when fd.s/gs2R converges as s!�1 and
also as s!1 and both limits are solutions to (1-8).

Associated to any given map dD .A;  /W R! Conn.E/�C1.M IS/ is the elliptic
operator, Dd , on C1.R�M I iT �M ˚S˚ iR/ that sends a given section .b; �; �/
to the section with respective iT �M;S , and iR components

(1-12)

�
@
@s

bC�db� d� � 2�1=2r1=2. |��C �|� /,

�
@
@s
�CDA�C 21=2r1=2.cl.b/ C� /,

�
@
@s
�C�d � b� 2�1=2r1=2.�| � |�/.

Here, d denotes the exterior derivative along the M factor of R�M .

Use H to denote the Hilbert space completion of the space of compactly supported
sections over R�M of iT �M ˚S˚ iR using the norm whose square is defined to be

(1-13) kbkH2 D

Z
R�M

�
jrbj2C r jbj2

�
;

where r is the covariant derivative that is defined on sections of iT �M ˚S˚ iR as
follows: View iT �M ˚ iR as iT �.R�M /. This done, then r is the Levi-Civita
covariant derivative on the iT �.R�M / factor. View the connection A as a connection
on the pullback E!R�M and likewise view AK as a connection on K�1!R�M .
The latter with the Levi-Civita connection define a covariant derivative for S!R�M .
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The associated covariant derivative gives r on the S factor. Meanwhile, use L to
denote the L2 completion of the space of compactly supported sections over R�M of
iT �M ˚S˚iR. If the spinor component of d is bounded, then Dd defines a bounded,
linear map from H to L. In particular, such is the case when d is an instanton.

To say more about this last case, digress momentarily and let c D .A;  / denote
any given pair in Conn.E/�C1.M IS/. Associated to c is the symmetric, elliptic
operator Lc on C1.M I iT �M ˚ S˚ iR/ that is defined so as to send any given
.b; �; �/ to the section whose respective iT �M , S and iR components are

(1-14)

� �db� d� � 2�1=2r1=2. |��C �|� /,

� DA�C 21=2r1=2.cl.b/ C� /,

� �d � b� 2�1=2r1=2.�| � |�/.

The latter extends as an unbounded, self-adjoint operator on L2.M I iT �M ˚S˚ iR/
with dense domain L2

1
.M I iT �M˚S˚iR/. The element c is said to be nondegenerate

when the kernel of Lc is trivial.

Now consider an instanton d and the associated operator Dd in (1-13) viewed now as a
bounded, linear map from H to L. This map is Fredholm when both the s!�1 and
s!1 limits of djs are nondegenerate. In this event, d is said to be nondegenerate
when its cokernel is f0g.

Suppose that c� and cC are nondegenerate solutions to (1-8). Let M1.c�; cC/ denote
the space of instanton solutions to (1-11) with the following properties: First, the
s!�1 limit of d is c� and the s!1 limit is gauge equivalent to a configuration
in the gauge orbit of cC . Second, the Fredholm index of Dd is equal to 1.

Part 3 Fix L � 1 and assume the following about the contact 1–form a and the
element J 2 Ja :

(1-15)

� There is no element ‚ 2 Z with
P
.;m/2‚ m` DL.

� Suppose that  is a Reeb orbit with ` < L. Then  has a tubular
neighborhood map 'W S1 �D !M as described in Part 2 of Section
1.a such that if  is hyperbolic with rotation number R , then .�; �/ D�

1
4
k; i"eikt

�
with " > 0 but very small. Meanwhile, if  is elliptic, then

its rotation number R is irrational. Furthermore,
(i) The pair .�; �/D

�
1
2

R; 0
�
.

(ii) The '�–pull back of T 1;0.R �M / is spanned by ds C ia and
.`=.2�//.dz� i Rzdt/. Moreover, these two forms are orthogonal
and have norm

p
2.
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Let ZL
ech D Zech \ ZL , and define CZL

ech to be the set fC‚ W ‚ 2 ZL
echg. It is a

consequence of [8, Lemmas 2.1–2.4] that with (1-15) obeyed, then CZL D CZL� D

CZL
ech . In this case, CZL

ech D ZL
ech because if ‚ 2 ZL

ech , then C‚ has but a single
element, this the collection fc W S1! Cmg.;m/2‚ where each c if the constant map
to the vortex in Cm with ˛�1.0/D f0g.

With (1-15) understood, use J to define the metric for M . Fix a 1–form � 2� with
P –norm less than 1 for use in [9, (1-8), (1-9) and Theorem 1.1]. Use the latter theorem
to define the large r versions of ˆr W ZL

ech!Mr . Theorem 1.1 of [10] asserts that
the image of ˆr consists solely of nondegenerate solutions to (1-8).

Fix an ordered pair .‚�; ‚C/ from ZL
ech and let c� and cC denote solutions to (1-8)

whose gauge equivalence class defines the respective ˆr images of ‚� and ‚C .
Theorem 1.2 of [9] defines the map

(1-16) ‰r
W M1.‚�; ‚C/!M1.c�; cC/:

This is an injective and R–equivariant map from M1.‚�; ‚C/ into the space of
instantons with s!�1 limit equal to c� and with s!1 limit gauge equivalent
to cC . Theorem 1.2 of [9] asserts that the image of ‰r consists solely of nondegenerate
instantons, and that it defines an embedding onto its image.

The stage is now set for the promised theorem here about ‰r .

Theorem 1.2 Fix L � 1 and then a contact 1–form a 2NM and J 2 Ja for which
(1-15) holds. There exists � � 1 with the following significance: Use a and J to define
the metric on R. Fix � 2� with P –norm less than 1 and r � � so as to define Mr .
Let ‚� and ‚C denote any two elements in ZL

ech , and let c� and cC denote solutions
to (1-8) in the respective gauge equivalence classes ˆr .‚�/ and ˆr .‚C/. Then the
image of the map ‰r depicted in (1-16) is the whole of M1.c�; cC/.

Sections 3–7 contain the proof of Theorem 1.2.

Theorem 4.3 of [8] also makes assertions about instanton solutions to a certain perturbed
version of the Seiberg–Witten equations on R�M ; these are the equations in [8, (3-6)].
Of particular concern here are the assertions made by Item (iii) from the first bullet of
[8, Theorem 4.3]. These assertions are proved in Section 8.

1.c Conventions and notation

Notation and various constructions will be freely borrowed from [8; 9; 10], the previous
papers in this series. The reader should be familiar with their content. As in these
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previous papers, it is always the case that c0 denotes a constant that is greater than 1
and is independent of what ever relevant data is under consideration. The precise value
of c0 can increase between subsequent appearances.

This paper, as with the previous papers in this series, makes use of a chosen “bump”
function on R; this is a smooth function �W R! Œ0; 1� that equals 1 on .�1; 5

16
� and

value 0 on Œ 7
16
;1/.

Acknowledgements Much is owed to Michael Hutchings for his many suggestions
for improving the presentation.

This work was supported in part by the National Science Foundation.

2 Proof of Theorem 1.1

The theorem makes two distinct assertions. These are restated next as separate proposi-
tions.

Proposition 2.1 If the contact 1–form a from NM then the following is true: Any
given L� 1 version of the set CZL is finite if CZL� D CZL .

This proposition is proved in Section 2.b.

Proposition 2.2 Fix a contact 1–form a and almost complex structure as in The-
orem 1.1. Suppose that L � 1 is such that there are no elements ‚ 2 Z withP
.;m/2‚ m` DL. Suppose also that CZL� D CZL and that these sets are finite.

There exists � � 1 with the following significance: Fix �2� with P –norm less than 1
and r � � so as to define the map ˆr with domain CZL . Then ˆr .CZL/ contains
the whole of the E < 2�L part of Mr .

This last proposition is proved in Section 2.a.

2.a Proof of Proposition 2.2

The proof uses much the same strategy and constructions as used in the article SWD Gr
from [6] to prove an analogous statement about a map that assigns a solution to a
version of the Seiberg–Witten equations on a compact, symplectic 4–manifold to data
associated to a collection of pseudoholomorphic curves. Even so, the discussion that
follows is meant to be more or less self-contained.
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Assume, to the contrary, that the proposition is false so as to derive a conclusion that is
incompatible with this assumption. To this end, suppose that there exists a sequence
frn; cn D .An;  n/gnD1;2;::: such that

(2-1)

� cn obeys the r D rn version of (1-8).

� E.An/ < 2�L.

� The gauge orbit of cn is not in the image of ˆr .

The eight parts of the following argument explain why the assumptions in (2-1) are not
mutually compatible.

Part 1 The proof that the assumptions in (2-1) are not mutually compatible refers to
somewhat stronger versions of some a priori bounds that are asserted by [7, Lemmas
2.2 and 2.3]. These are summarized by the upcoming lemma. This lemma introduces
a convention that is used ubiquitously throughout this paper and also in [8; 9; 10] by
writing a section of S in terms of the decomposition of S as E˚EK�1 . When this
is done, the given section  is written as .˛; ˇ/ with ˛ denoting the part in E and ˇ
the part in EK�1 . The lemma also introduces a second convention: What is written as
rA denotes the covariant derivative on the relevant bundle that is defined using A and,
if necessary, the metric’s Levi-Civita connection.

Lemma 2.3 There exists a constant � > 1 with the following significance: Fix any
SpinC structure for M . Then, fix � 2 � with P –norm less that 1 and r � � . Let
.A;  D .˛; ˇ// denote a solution to the corresponding version of (1-8). Then

� j˛j � 1C �r�1 .

� jˇj2 � �r�1.1� j˛j2/C �2r�2 .

� jrA˛j
2 � �r.1� j˛j2/C �2 .

� jrAˇj
2 � �.1� j˛j2/C �2r�1 .

In addition, for each q � 1, there exists a constant �q 2 .0;1/ which is independent
of .A;  /, r and �, and is such that

� jr
q
A
˛jC r1=2jr

q
A
ˇj � �qrq=2 .

Note that this lemma makes no apriori assumptions about E.A/.

Proof Lemma 2.3 [7, Lemmas 2.2–2.4] assert the first two items and the final item.
To establish the third and fourth items, differentiate the equation D2

A
 D 0 and copy
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the manipulations done in Section 2e of the article SW) Gr from [6] to find r and
.A;  / independent, positive constants c1 , c2 , and c3 such that the function

(2-2) hD
�
jrA˛j

2
C r jrˇj2

�
C c1r2

jˇj2� c2r.1� j˛j2/� c3

obeys

(2-3) 1
2
d|dhC c�1

0 rh� 0:

It follows as a consequence of the maximum principle that

(2-4) jrA˛j
2
C r jrˇj2 � c0r.1� j˛j2/C c00;

where c0
0

is independent of both r and .A;  /.

Part 2 It was argued in [7, Section 6.d] that there exists the following: First, a finite
set ‚ D f.;m/g of pairs such that  is a Reeb orbit and m is a positive integer.
Moreover, distinct pairs from ‚ have distinct Reeb orbit components. Second, a
subsequence of fcnD .An;  nD .˛n; ˇn//gnD1;2;::: (hence renumbered consecutively)
such that f˛�1

n .0/gnD1;2;::: converges in a technical sense to the current represented
by
P
.;m/m .

To elaborate on this, fix ı > 0. It was argued in [7, Section 6.d] that if n is large,
then j˛nj > 1 � ı at distances greater than ı from

S
.;m/2‚  . Meanwhile, the

behavior a solution near a Reeb orbit from ‚ is as follows: Fix .;m/ 2‚ and view a
neighborhood of  using the coordinates S1�D used in (1-1). If the index n is large,
then ˛n vanishes on each disk ftg �D with multiplicity m in the sense that ˛n=j˛j

has degree m on the circles in D about the origin with radius ı or greater. Lemmas 6.1
and 6.3 of [7] imply the following: Set r D rn . There exist at most m disjoint disks
in D of radius at most c0r�1=2 that contain the set in ftg �D where j˛nj < 1� ı .
Moreover, any such disk must contain at least one zero of ˛n , and ˛n=j˛nj has positive
degree about each such disk. These lemmas imply somewhat more: There exists a
set of at most m disjoint disks in D of radius ır�1=2 such that each disk contains a
zero of ˛n in ftg �D and such that j˛nj � ı=c0 on the complement of these disks.
Moreover, ˛n=j˛nj has positive degree on each such disk.

Suppose that ˛n vanishes at .t; zt / 2 S1 �D with positive degree. Parametrize the
integral curve of v through .t; zt / via Œ0; 2�� as the map x ! .t C x; zt .x//. It
follows from [7, Lemma 6.5] that ˛n has a zero with distance at most c0r�1=2x from
.t Cx; zr .x// when jxj � 1=c0 . It follows from this and the assumed nondegeneracy
of the Reeb orbits that jzt .x/j � c0r�1=2 when n is large. To elaborate, suppose first
that m D 1. Then letting x move from 0 to 2� shows that the integral curve of v
through .t; zt / comes back to t at a point with distance at most c0r�1=2 from zt . Such
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a return is not possible unless jzt j � c0r�1=2 given that  is nondegenerate. Note that
 is nondegenerate because a 2NM .

In the case m > 1, then zt .2�/ must have distance at most c0r�1=2 from either zt

or from some other positive degree zero of ˛n in ftg � D . This is impossible if
jzt j < c0r�1=2 if  is hyperbolic, or if  is m–elliptic. One or the other of these
describes  when a 2NM .

Part 3 Fix an identification over S1�D between the bundle E and the complex line
bundle .S1�D/�C . Set rD rn and pull back .An; .˛n; ˇn// by the rescaling map yr�1



that acts as z! r
�1=2
 z . Denote this pullback as .A0�dtCA�; .˛�; r

�1=2
 ˇ�// with A�

at any given t 2 S1 a connection on the trivial bundle over the rescaled D , and where
˛� and ˇ� are sections of this bundle. Fix R � 1 and take n large enough so as to
guarantee that the disk of radius R about the origin in C is in the rescaled version
of D . It follows from (1-8) and from Lemma 2.3 that

(2-5)
� �FA� C i.1� j˛�j

2/D e0 ,

� x@A�˛� D e1 ,

on this R disk in C . Here, FA� denotes the curvature of A� on D at the given
t 2 S1 . Meanwhile, je0j � c0r�1=2 and je1j � c0r�1=2 when n is large. As noted
in [7, Lemma 6.5], what is written in (2-5) and what is said in Lemma 2.3 have the
following consequence: Fix ı > 0 and k 2 Z. Then there exists Rı � 1 such that if
R�Rı , and if n is sufficiently large, there exits for each t 2 S1 a solution .A; ˛/jt
of (1-4) on C whose restriction to where jzj �R has C k distance less than ı from
.A�; ˛�/jt .

The middle item in (2-1), the fourth item in (1-4) and this last conclusion imply the
following:

Lemma 2.4 The set ‚ is such that
P
.;m/2‚ m` �L.

This lemma associates an element ‚ 2 ZL to a subsequence of f.An;  n/gnD1;2;::: .

Part 4 Fix .;m/2‚. As noted just prior to Lemma 2.4, there exists for each t 2S1 ,
a solution .A; ˛/jt on C to the integer m version of (1-4) that is obtained as a limit
of rescalings of a subsequence of f.An; ˛n/gnD1;2;::: . What follows says something
about the t –dependence of .A; ˛/jt .

Lemma 2.5 There exists a map c D .A; ˛/W S1 ! Cm that obeys (1-6), and there
exists a subsequence of f.An;  n/gnD1;2;::: with the following property: Renumber
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the subsequence consecutively from 1. Fix ı > 0, T � 1 and an integer k . If n is
sufficiently large, there exists, for each t 2 S1 , a map from the jzj � T part of C to
U.1/ such that the .An;  n/ version of .A��u�1

� du�;u�˛�/jt has C k distance ı or
less from .A; ˛/jt on the disk in C where jzj � T .

This lemma assigns to each pair .;m/ 2‚ a map c W S
1! Cm that solves (1-6) and

in doing so, it associates an element x 2 C‚L to a subsequence of f.An;  n/gnD1;2;::: .

Proof of Lemma 2.5 Fix 0 2 R=2�Z D S1 and define an isomorphism between
the bundle E ! f0g �D to the product bundle by using An to parallel transport a
given section over f0g � 0 along the radial geodesics. Then use parallel transport
by the connection An along the constant z 2 D arcs to extend this isomorphism as
one from E over .0��; 0C�/�D � S1 �D to the product bundle. Let � denote
the corresponding product connection. Pull back .An; .˛n; ˇn// and this product
connection by the rescaling map. Given the choice of product structure, the pullback
of An has component A0� D 0. Meanwhile, the connection A� can be written as
� C 1

2
.a�dxz�xa�dz/ where a� is a C–valued function given t D 0 by the integral

(2-6) a�jz D iz

Z 1

0

�FA� jszs ds:

Likewise, ˛� and ˇ� are to be viewed as C–valued functions. It follows from (1-8)
that the derivatives of the large n versions of a� and ˛� at points where jzj � T obey

(2-7)
� 2�1=2 @

@t
a� D 21=2 x̨�ˇ�� 2i.�zC�xz/2�1=2.1� j˛�j

2/C e2 ,

�
@
@t
˛� D�2@A�ˇ�� 2i.�zC�xz/@A�˛�C e3 ,

with je2;3j � c0r�1=2 . Note that r1=2jˇ�j C jrA�ˇ�j � c0 ; this a consequence of
Lemma 2.3.

Each .An;  n/ has its version of .a�; ˛�/, this now denoted by .a�n; ˛�n/. Given
the last item in Lemma 2.3 and given what just said about the ˇ� terms in (2-7),
this equation implies the following: For any given positive integer k and T � 1,
the sequence f.a�n; ˛�n/gnD1;2;::: is uniformly Lipschitz as a map from the interval
Œ��; �� into the Banach space of k –times differentiable maps from the disc of radius T

in C to C�C . There is, as a consequence, a convergent subsequence. Taking diagonal
subsequences, finds a convergent subsequence of f.an; ˛�n/gnD1;2;::: whose limit is a
Lipschitz map, .a; ˛/, from the interval Œ��; �� into the Frechet space C1.CIC�C/
with the three properties that follow.
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Property 1 The limit pair cD .AD �C 1
2
.adxz�xadz/; ˛/ obeys the vortex equations,

(1-4), at each t 2 Œ��; ��, and so defines a point in the vortex moduli space Cm .

Property 2 The t D � version of .A; ˛/ is gauge equivalent to the t D�� version.
Thus, c defines a Lipschitz map from S1 into Cm .

To state the third property, recall that the .1; 0/ part of the complexified tangent space
to Cm at any given element cD .A; ˛/ is canonically isomorphic to the L2 kernel of
the operator #c on C1.CIC˚C/ that sends pair .q; �/ to

(2-8) #c.q; �/D
�
@qC 2�1=2

x̨�; x@A�C 2�1=2˛q
�
:

The third property refers to the function �W R! Œ0; 1� from [9]; it equals 1 on .�1; 5
16
�

and vanishes on Œ 7
16
;1/. Here is the third property:

Property 3 Fix t 2 Œ��; �� and let …jt denote the L2.CIC ˚ C/ orthogonal
projection onto the space of L2 solutions to the .A; ˛/jt version of (2-8). For
any given T � 1, use �T to denote the function z ! �.T �1jzj/ on C . Let � D
�2i.�zC�xz/.2�1=2.1� j˛j2/; @A˛/. Then

(2-9) lim
�!0

1

�
…t

�
�T .a; ˛/jtC���T .a; ˛/jt

�
D…t .�

R�jt /C e;

where jej � c0T �1 .

Note that (2-9) follows from the fact that the term .21=2 x̨ˇ�;�2@A�ˇ�/ in (2-7) can
be written as #|

c�.0; 2ˇ�/ where #c� is the c� D .A�; ˛�/ version of the operator in
(2-8) and where #|

c� denotes the formal, L2 adjoint of #c� .

What with the second bullet in (2-16), Property 3 implies that c D .A; ˛/ defines a
map from S1 into Cm that obeys (1-6).

Part 5 Parts 3 and 4 give an element in CZL that characterizes a part of the limiting
behavior of a subsequence of the original sequence f.An;  n/gnD1;2;::: . Relabel this
subsequence consecutively from 1. Meanwhile, this element in CZL consists of the
element ‚ 2 ZL and a corresponding set fc W S1 ! Cmg.;m/2‚ where each c
solves the version of (1-6) defined by  . Let .A�;  �/ denote the result of applying
the constructions in [9, Section 3.a] to the data f.c ; � D 0/g.;m/2‚ . This is to say
that .A�;  �/ is the JD f.c ; � D 0/g.;m/2‚ version of the pair that is defined in
[9, Step 4 of Section 3.a].

What follows describes a gauge transformation of each sufficiently large n version of
.An;  n/ that make the latter pair close on the whole of M to the large r versions of
.A�;  �/. The following lemma summarizes:
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Lemma 2.6 There exists � > 1 with the following significance: Fix ı > 0 and take n

very large. There exists a smooth map uW M ! U.1/ such that .An � u�1du;u n/

can be written as .A� C 21=2r1=2b;  � C �/ where .b; �/ obey jbj C j�j � �ı and
jrbj � �r1=2 .

Proof of Lemma 2.6 The required gauge transformation is constructed in seven steps.

Step 1 Recall that .A�;  �/ is constructed using trivializations of E over the sets
fU g.;m/2‚ and over U0 DM �

S
.;m/2‚ U 0 . Here, U 0 corresponds to the subset

of points in  ’s version of S1�D with jzj��� . The pair .A�;  �/ over U0 is defined
by fixing a trivialization of E over U0 as U0 �C , and then taking  � D .1C; 0/ and
taking A� to be the product connection AI . Here, 1C denotes the section of U0 �C
that assigns each point 1 in C . Meanwhile, the large n versions of .An;  nD .˛n; ˇn//

are such that j˛nj � 1�ı over U0 . As a consequence, there exists a map u0W U0!S1

such that u0˛n D j˛nj1C when n is large. What with the second item in Lemma 2.3,
this implies that u0 D  

�C �0 where j�0j � ı .

To continue, write An�u�1
0

du0 DAI Cya. Then jrA˛j
2 D jd j˛k2Cj˛j2jyaj2 . It

follows from the third item in Lemma 2.3 that jyaj � c0r1=2ı ; and so b0D 2�1=2r�1=2ya

obeys jb0j � c0ı . Likewise, Lemma 2.3 implies that jrb0j � �r1=2 .

Step 2 Focus attention on a pair .;m/ 2‚. The pair .A�;  �/ is given on U by
what is written in [9, (3-3)]. Fix T � 1 so that the both the large n versions of j˛nj and
j˛�D0;r j are greater than 1� ı at points with jzj � 1

8
r�1=2T . The trivialization of E

over this part of U writes ˛0;r D j˛0;r jzm=jzjm . Meanwhile, there is a map, u , that
is defined on this same part of U such that u˛n D j˛njz

m=jzjm . This understood,
the argument given in Step 1 can be repeated to prove that .An�u�1

 du ;u n/D

.A�C 21=2r1=2b ;  
�C � / where jb jC j� j � c0ı and where jrb j � �r1=2 .

By virtue of the fact that ˛n is a section of E , there exists an extension of u as a
map from the whole of U to U.1/. Fix such an extension and denote it by u0 .

Step 3 Suppose that there exists an extension of u from the jzj � 1
2
r�1=2T part of

U to the whole of the jzj � 1
2
r�1=2T part of U such that .An�udu ;u n/ can

be written as .A�CA0d� C 21=2r1=2b0 ;  
�C � / with jb0 jC j� j � c0.ıCj� j/

and jrb0 j � c0r1=2 when n is large; and with jA0 j � cR and jrA0 j � r1=2cT

where cT depends only on T and not n. Given what is said in Steps 1 and 2, an
extension of this sort implies the assertion of Lemma 2.6. The existence of such an
extension is proved in the forthcoming Steps 4–7. An extension of this sort is deemed
to be admissible.
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The notation used in Steps 4–7 comes from the proof of Lemma 2.5. In particular,
the arguments use the r D rn versions of the rescaling map yr from Part 3 so as to
consider the various n–dependent entities on the product of S1 with the disk in C
where jzj � T .

Step 4 Introduce the Lipschitz map .a; ˛/W Œ��; ��! C1.CIC˚C/ that is con-
structed in the proof of Lemma 2.5. Let � denote the product connection on the product
bundle over Œ��; ���C . The pair .a; ˛/ defines the pair .� C 1

2
.adxz �xadz/; ˛/ of

connection on the trivial bundle over Œ��; ���C and section of this bundle. This pair
satisfies the vortex equations on C at each t 2 Œ��; �� and the induced 1–parameter
family of connection along the C factor of Œ��; �� and section projects to Cm as the
map c . Of particular interest here is the existence of a smooth gauge transformation,
uW C!U.1/, such that ajtD� D ajtD�� �2u�1x@u and ˛jtD� D u˛jtD�� . As C is
simply connected, the map u can be written as ep where pW C! iR is a smooth map
with ipjzD0 2 Œ0; 2�/.

Introduce �0 to denote the function t! �.t/ on Œ��; ��. Let yuD e.1��
0/p . The pair

(2-10) � C yu�1 @

@t
yudt C

1

2

�
.aC 2yu�1x@yu/dxz� .xa � 2yu�1@yu/dz

�
and yu˛

defines a connection on the product bundle over S1 �C and section of this bundle.
Although smooth with respect to variations along the C factor of S1�C , the coefficients
of the connection and the section may only be Lipschitz with regards to their variation
along the S1 factor of S1 �C . In any event, the induced 1–parameter family of
connection along the C factor and the section project so as to give a Lipschitz map
c W S

1!C .

Step 5 This step defines an .An;  n/ analog of (2-10). To start, recall from the proof
of Lemma 3.5 that the .An; ˛n/ version of what is written in (2-5)–(2-7) as .a�; ˛�/
obeys a�jtD� D a�jtD�� � 2u�1

�
x@u� and ˛�jtD� D u�˛�jtD�� where the .An;  n/

version of u� is a smooth map from the jzj � R portion of C to iR. As this disk
is simply connected, the map u� can be written as ep� where p� is a map from the
jzj � T part of C to iR with the property that ip�jzD0 2 Œ0; 2�/. Integrating the
top equation in (2-7) finds that jdp�j � c0 . As a consequence, jp�j � c0T . Define
yu� D e.1��

0/p� . Then the pair

(2-11) �Cyu�1
�

@

@t
yu�dtC

1

2

�
.a�C2yu�1

� @yu�/dxz� .xa��2yu�1
� @yu�/dz

�
and yu�˛�

is, respectively, a connection on the product bundle over the jzj � T part of S1 �C
and section of this same bundle.
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By construction, the pair in the .An; ˛n/ version of (2-11) is gauge equivalent to the
pullback of .An; ˛n/ via the rD rn version of the rescaling map yr�1

 In particular, given
the definition of .a; ˛/ as a limit of the integer n versions of .a�; ˛�/, a comparison
of (2-11) and (2-10) finds that these pairs differ where jzj � T by less than c0ı when
n is large.

Let u1� denote the map from the jzj � T part of S1 �C to U.1/ that sends the pair
in (2-11) to the yr�1

 pullback of .An; ˛n/; thus u1�.yu�˛�/ is the rescaling of ˛n .

Step 6 Recall from [9, Section 2.c] that any given map cW S1! Cm can be lifted as
a pair of smooth connection on the product bundle over S1 �C and section of this
bundle. In particular, [9, Section 2.c] describes such a lift for c , this written here as

(2-12)
�
� CA0dt C

1

2
.a 0dxz�xa 0dz/; ˛0

�
:

This understood, there exists a map u1W S
1�C!C that is smooth along the C factor,

Lipschitz along the S1 factor, and such that

(2-13) a0 D aC 2.u1yu/
�1x@.u1yu/ and ˛0 D u1yu˛:

Write u1D exu0 where u0W S
1!U.1/ is a smooth map and x is a map from S1�C

to iR that is smooth along the C factor and Lipschitz along the S1 factor and obeys
jxj � c0T where jzj � T .

By virtue of what is said in Step 2, the pullback via the r D rn rescaling map yr�1
 of

the pair .An�u�1
0

du0;u0˛n/ to the jzj 2 Œ1
8
T;T � part of S1�C can be written as

(2-14)
�
� CA0�dt C

1

2
.a 0�dxz�xa

0
�dz/; ˛0�

�
;

where components in (2-14) and their analogs in (2-13) differ by very little when n is
large. This is to say that

(2-15) jA0��A0jC ja 0�� a 0jC j˛0��˛
0
j � c0ı

when n is large.

Step 7 Reintroduce u1� from Part 5 and write the effect of u1.u1�/
�1 on the yr�1



rescaling of .An; ˛n/ as

(2-16)
�
� CA0��dt C

1

2
.a 0��dxz�xa

0
��dz/; ˛0��

�
:
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Given the less than c0ı difference between (2-10) and (2-11), it follows that the
difference between the respective components of (2-16) and (2-14) where jzj � T

obeys

(2-17) jA0���A0j � c0R and ja 0��� a 0jC j˛0���˛
0
j � c0ı;

when n is large.

To complete the construction, note that it follows from (2-15) and (2-17) that the map
u1.u1�/

�1 where jzj 2 Œ1
8
T;T � can be written as ey where y is an iR valued function

on this part of S1 �C that obeys jx0j � c0ı . Keep this in mind and let �T denote the
function z! �.jzj=T / on C . Extend the identity map from the jzj 2 Œ1

2
T;T � part

of S1 �C to U.1/ over the whole of the jzj < T part as e�
Ty where jzj 2 Œ1

8
T;T �

and as u1.u1�/
�1 over the remainder. Use u�� to denote the resulting map. Rescale

the latter by the r D rn version of yr and multiply the result with the extension u0

of u that was chosen in Step 2. Denote the result by u . It follows from (2-17)
that this map from U to U.1/ is admissible in the sense used by Step 3 were it a
smooth map. Note in this regard that the derivative bounds on Step 3’s pair b0 and
A0 follow directly from (2-6) and (2-7) using Lemma 2.3. A smooth map from U
to U.1/ sufficiently close to that just constructed will also be admissible and serve for
the purposes at hand.

Part 6 Fix ı > 0 but small enough to invoke Lemma 2.6 when n is large. Change the
notation now and use .An;  n/ to denote the result of applying Lemma 2.6’s gauge
transformation to the n–th element in the subsequence from the sequence that appears
in (2-1). Also, use .b0

0
; �0

0
/ now to denote the pair .b; �/ given by Lemma 2.6. In this

new notation, .An;  n/D .A
�C 21=2r1=2b0

0
;  �C �0

0
/ where jb0

0
jC j�0

0
j � c0ı .

Choose a vector �2B with L2
1

norm less than ı ; use JDf.c ; � /g.;m/2‚ to construct
the pair .AJ;  J/ as instructed in [9, Section 3.a]. The pair .An;  n/ can be written
as .AJC 21=2r1=2b0

�
;  JC �

0
�
/ where .b0

�
; �0
�
/D .b0

0
; �0

0
/� t� where t� D .c� ; &�/ is

defined by writing .AJ;  J/ D .A
� C .2r/1=2c� ;  � C &�/. Note in particular that

jt� j�c0ı . Thus jb0
�
jC j�0

�
j�c0ı also. The next lemma supplies a second, �–dependent

gauge transformation for .An;  n/.

Lemma 2.7 There exists � � 1 with the following significance: Take ı < ��1 and
� 2 B with L2

1
norm less than ı to define .AJ;  J/. If n is sufficiently large, there

exists an L2
2

map s D s� W M ! iR such that
� js j � c0ı and jds j � c0ı

1=2r1=2 .
� The gauge transform of .An;  n/ by es can be written as .AJC 21=2r1=2b� ;

 JC ��/ where the pair .b� ; ��/ is of Sobolev class L2
1

, obeys the bottom
equation in [9, (3-5)], and also obeys jb� jC j�� j � c0ı

1=2 .
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Proof of Lemma 2.7 If s is of Sobolev class L2
2

, then .b� ; ��/ are of Sobolev class
L2

1
automatically. Thus, the issue is that of satisfying both the bottom equation in [9,

(3-5)] and the norm bound. The construction and analysis of the desired function s has
four steps. To simplify the notation, the proof uses .b0; �0/ in lieu of .b0

�
; �0
�
/.

Step 1 For the moment, let s denote any given map from M to U.1/. The gauge
transform of .An;  n/ by es is

(2-18)
.An� ds ; es n/

D
�
AJC 21=2r1=2.b0� 2�1=2r�1=2ds/;  JC es�0C .es

� 1/ J

�
:

This has the form .AJC 21=2r1=2b;  JC �/ with

(2-19) b D b0� 2�1=2r�1=2ds and �D �0C .es
� 1/. JC �

0/:

Thus, .b; �/ obeys the bottom equation in [9, (3-5)] if s obeys the equation

(2-20)
d|ds � r.e�s

� es /j Jj
2
� r
�
.e�s
� 1/�0| J� .e

s
� 1/ 

|
J�
0
�

�21=2r1=2d|b0� r.�0| J� 
|
J�
0/D 0:

A perturbative approach is used in what follows to find a solution to (2-20). To this
end, write e�s � es D�2s C z.s/ so as to write (2-20) as

(2-21) d|ds C 2r j J0
j
2s CR.s/�Pb �P� D 0;

where

(2-22)

� R.s/D rz.s/j Jj
2C r.es � e�s /.j Jj

2� j J0
j2/

�r
�
.e�s � 1/�0| J� .e

s � 1/ 
|
J�
0
�

� Pb D 21=2r1=2d|b0 and P� D r.�0| J� 
|
J�
0/.

A contraction mapping argument is used here to find a small normed solution to (2-21).
To this end, note that the operator d|dC2r j J0

j2 acting on C1.M I iR/ is invertible.
Given p 2M , let x!G.x;p/ denote the corresponding Green’s function with pole
at the point p . Note that this function is symmetric in its two entries, smooth on
M � p , and strictly positive. Moreover, it has a pole as x ! p that has the form
G.x;p/D .1=.4�//.1= dist.x;p//CO.1/. With G understood, solution to (2-21) is
a fixed point of a map, T. � / that sends a function s to

(2-23) T.s/jx D
Z

M

G.x; � /
�
�R.s/CPbCP�

�
:

The map T will be viewed as a map from the Banach space L1.M I iR/ to itself.
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Step 2 This contraction mapping strategy requires some bounds for the integrals of
the function x ! G.x;p/, the function x ! jdGj.x;p/, and the norm of the two
sided derivative x! jdG

 �
d j.x;p/. The next lemma states the bounds that are needed

to obtain a fixed point of T . Keep in mind that G. � ; � / is symmetric in its two entries
and strictly positive.

Lemma 2.8 There exists � > 0 such that

�
R

M G.x; � /� �r�1 .

�
R

M jdGj.x; � /� �r�1=2 .

� Fix � > 0. Then

(a)
R

dist.x;� />� jdG
 �
d j.x; � /� �.1Cj ln.�r1=2/j/

(b)
R

dist.x;� />� jdGj.x; � / dist.x; � /�1 � �.1Cj ln.�r1=2/j/

at each x 2M .

Proof of Lemma 2.8 Fix " > 0 and let g. � ;p/ denote the Green’s function for the
operator d|d C 2"2r with pole at p 2M . This Green function is strictly positive and
it obeys

(2-24)

� g.x;p/� c0

1

dist.x;p/
e�"
p

r dist.x;p/=c0 .

� jdgj.x;p/� c0

1

dist.x;p/2
�
1C "r1=2 dist.x;p/

�
e�"
p

r dist.x;p/=c0 .

� jdg
 �
d j.x;p/� c0

1

dist.x;p/3
�
1C "2r dist.x;p/2

�
e�"
p

r dist.x;p/=c0 .

In any event, use the Green’s function g to write G as

(2-25) G.x;p/D g.x;p/�

Z
M

G.x; � /r.j J0
j
2
� "2

�
g. � ;p/:

Note also that G > 0. This is a consequence of the maximum principle.

To obtain the first item in the lemma, introduce for each .;m/ 2‚ the set U;" �U
where j J0

j � ". Given that G > 0, it follows from (2-25) that

(2-26) G.x;p/� g.x;p/C c0

X
.;m/2‚

r

Z
U;"

G.x; � /g. � ;p/:
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Use r�1m to denote the maximum value of the function on M whose value at x is
the integral over M of G.x; � /. Integrating (2-26) with respect to p and using the fact
that G is positive gives

(2-27) m� c0"
�2
Cmc0"

1=c0 :

If " < 1=c0 , then this last equation bounds m by an r –independent constant. This
proves the lemma’s top most inequality.

To obtain the lemma’s second item, differentiate (2-25) with respect to p , and then
integrate result with respect to x . It follows from (2-24), and the lemma’s top most
inequality that the result is bounded by c0r�1=2 . This and the fact that G. � ; � / is
symmetric in its entries implies the lemma’s middle inequality.

Part (a) of the lemma’s third bullet follows by differentiating (2-25), once with respect
to x , and once with respect to p . Integrate the result with respect to p , and then use
the lemma’s middle inequality with the second and third items in (2-24) to deduce the
desired bound. Part (b) of the lemma’s third bullet is obtained by first differentiating
(2-25) with respect to x . Then take the norm of both sides, divide by dist.x;p/ and
integrate with respect to p . An upper bound by �j ln.�r1=2/j for the right hand side
of the resulting expression follows using the second item of the lemma with the first
item in (2-24).

Step 3 The top inequality in Lemma 2.8 implies that the norm of the contribution to T

from the integral of G.x; � /R.s/j. �/ is bounded by c0js j.js j C k�kL2
1
C ı/ if js j � 1.

Meanwhile, this same top inequality bounds the contribution to T from the integral
of G.x; � /P�j. �/ by c0ı . Integrate by parts and then appeal to the middle inequality
of Lemma 2.8 to see that the contribution to T from the integral of G.x; � /Pbj. �/ is
also bounded by c0ı . Granted such bounds, it then follows that T maps a ball in
L1.M I iR/ of radius c�1

0
to itself if ı < c�1

0
. A similar analysis proves that T is a

contraction mapping on a radius c�1
0

ball if ı < c�1
0

. Thus, T has a unique fixed point
on such a ball, and this fixed point has sup norm bounded by c0ı .

Let s now denote the fixed point of the map T in this radius c�1
0

ball. The right hand
side of (2-23) is a C 1 function (for any s 2L1 ) and as a consequence, the fixed point
of the map s is C 1 . Given that � and .b0; �0/ are smooth, the right hand side of (2-23)
can be differentiated to see that T’s fixed point s is C 2 . Thus, s obeys (2-20). Taking
limits of smooth elements shows that s obeys (2-20) when � is not smooth but of
Sobolev class L2

2
. This understood, and given the right hand side of (2-20) is in L2 , it

follows that s is an L2
2

function on M in the general case. Continuing in this “boot
strapping” vein will prove that s is smooth.
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Step 4 Given that js j � c0ı , it follows that � in (2-29) obeys j�j � c0ı . The desired
bound on jbj by c0ı

1=2 requires a supremum bound on jds j by c0r1=2ı1=2 . To obtain
such a bound, differentiate the right hand side of (2-23). Having done so, use the second
item in Lemma 2.8 to bound the absolute value of the contribution to this derivative
from R.s/ and P� by c0r1=2ı .

Write b0 D b0
0
C c� . To bound the d|b0

0
part of the contribution from Pb to jds j,

fix � 2 .0; r�1=2/, and let �x;�. � / denote the function on M whose value at p is
�.dist.x;p/=�/. Write the contribution to ds D d T.s/ at x from 21=2r1=2d|b0 as

(2-28) .2r/1=2
Z

M

dG.x; � /�x;�d|b00C .2r/1=2
Z

M

dG.x; � /.1��x;�/d|b00:

To bound the leftmost term in (2-28), integrate by parts so as to remove the derivative
from b0 . Then use the second item and Part (a) of the third bullet of Lemma 2.8
to see that the result is bounded by c0ır

1=2.j ln.�r1=2/j C .�r1=2/�1/. Use (2-25)
and the fact that jrb0

0
j � c0r1=2 to see that the right most term in (2-28) is bounded

by c0r�.1C �r1=2/. Granted all of this, it follows that the integrals in (2-28) are
bounded by

(2-29) c0r1=2
�
ı.1Cj ln.�r1=2/j/C ı=.�r1=2/C .�r/1=2

�
:

This understood, take � D ı1=2r�1=2 to bound on the d|b0
0

part of the contribution
from Pb to jds j by c0ı

1=2r1=2 .

A bound on the d|c� part of the contribution from Pb to jds j is obtained as follows:
The contribution can be written as in (2-28) but with c� replacing b0

0
. Take � in this

case to equal r�1=2 . To bound the c� version of the right most integral in (2-28),
integrate by parts and use the second item and Part (a) of the third bullet of Lemma
2.8 to bound the result by c0r1=2ı . As explained next, the c� version of the leftmost
integral in (2-28) is also bounded by c0r1=2ı .

The asserted bound on the c� version of the leftmost integral in (2-28) exploits the
fact that L2

1
functions on S1 are Holder continuous with exponent 1=2. This has the

following consequence: If x and x0 are given points in M , then c� jx� c� jx0 has norm
bounded by c0r1=4 dist.x;x0/1=2k�kL2

1
at points where jx � x0j � r�1=2 . Keep this

fact in mind.

For each k 2 f0; 1; 2; : : :g, set �k D 2�kr�1=2 and remark that the function �x;� can
be written as

P
nD0;1;:::

Q
jD0;:::;k �

x;�j .1� �x;�kC1/. Thus, the c� version of the
leftmost integral in (2-28) is

(2-30)
X

kD0;1;:::

.2r/1=2
Z

M

dG.x; � /
Q

jD0;:::;k �
x;�j .1��x;�kC1/ d|c� :
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Note that the k –th summand in (2-30) is supported where the distance dist.x; � / 2
Œ2�k�r r�1=2; 2�kr�1=2�. Note also that any given coordinate derivative of c� on the
ball of radius r1=2 about x is the same as that of .c� � c� jx/. This last point facilitates
the use of the Holder bound for c� .

Granted the preceding, integrate by parts in the k –th summand and so bound the
latter by the integral of c0.jdG

 �
d j.x;� /jC jdGj.x;� /j dist.x; � /�1/ times jc� � c� jx

over the annulus where dist.x; � / 2 Œ2�k�2r�1=2; 2�kr�1=2�. Granted what was said
about Holder continuity, it follows using both Parts (a) and (b) of the third bullet of
Lemma 2.8 that the latter integral is no greater than c0.1C k/2�k=2k�kL2

1
. SinceP

kD0;1;:::.1Ck/2�k=2 is convergent, it follows that (2-30) is bounded by c0r1=2ı .

Part 7 Fix ı>0 as in Lemma 2.7 take n very large. Lemma 2.7 assigns to each element
� 2B with L2

1
norm less than ı a gauge transformation of .An;  n/ with the following

properties: Let JDf.c ; � /g.;m/2‚ . The gauge transform of .An;  n/ can be written
as .AJC 21=2r1=2b� ;  JC ��/ where b� D .b� ; ��/ obeys the third equation in [9,
(3-5)] and is such that jb� jCj�� j � c0ı

1=2 . Introduce the Hilbert space H as described
in [9, Step 1 of Section 3.b]. This is the completion of C1.M I iT �M ˚ S˚ iR/
using the norm that is given by replacing the integration domain R �M in (1-13)
by M . Then b� 2 H since the gauge transformation supplied by Lemma 2.7 is of
Sobolev class L2

2
. Choose ı < 1=c0 so that the projection …� on H as described in

[9, Section 3.b] is defined when � has L2
1

norm less than ı .

Lemma 2.9 There exists � > 1 with the following significance: If ı < � and if n is
sufficiently large, then there exists a unique � in B with L2

1
norm bounded by ı and

such that …�b� D 0.

This lemma is proved in Part 8.

This lemma leads directly to a contradiction with the assumptions in (2-1) when n

is large. To see how this comes about, let � now denote the element in B given
by Lemma 2.9. Then b� obeys [9, (3-5)] and also [9, (3-16)]. As it is in H?

�
, it

follows using [9, (3-16)] and [9, Lemma 3.2] that the H–norm of b� obeys kb�kH �
c0r1=2kb� � b�k2C c0r�1=2 . Since jb� j � �ı1=2 , this implies that

(2-31) kb�kH � c0ı
1=2
kb�kHC c0r�1=2:

As a consequence, kb�kH � c0r�1=2 if ı < c�1
0

. This small H–norm implies that b�
is the solution to [9, (3-16)] given in [9, Lemma 3.5]. Suppose that ı is also less than
the constant "1 in [9, Lemma 3.8]. As [9, (3-5)] is obeyed, so is [9, (3-35)]. Thus, �
must be the solution to this last equation given by [9, Lemma 3.8]. As a consequence,
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the equivalence class of .An;  n/ is in the image of the map ˆr , which contradicts
what is asserted in (2-1).

Part 8 This part contains the following.

Proof of Lemma 2.9 Let … denote the � D 0 version of the projection …� . The first
point to make here is that …�b� D 0 if and only if ….…�b�/D 0 when ı < c�1

0
and n

is large. Indeed, this follows readily from what is said in [9, Part 8 of Section 2.a]. Now
let t W K!H denote the � D 0 version of the map that is defined by [10, (2-5)]. This
map t identifies K with the image of …. Thus, …bD 0 if and only if t |.b/D 0. Note
in this regard the fact, implied by [10, (2-7)], that t is nearly isometric with respect to
the L2 inner products on K and H .

These first two points have the following consequence: If ı < c�1
0

and n is large,
then the condition …�b� D 0 holds if and only if t |.…�b�/ D 0. Meanwhile, the
assignment �! t |.…�b�/ can be viewed as a map from the radius ı ball in B to the
ambient Hilbert space KD

L
.;m/2‚ L2

1
.S1; c�T1;0Cm/. Write any given .;m/2‚

component of t |. � / as t |. � / . It is argued momentarily that the map

(2-32) � D .� /.;m/2‚!
�
� C r1=2

 t |.…�b�/
�
.;m/2‚

sends a ball of radius c�1
0

about the origin in B to itself as a contraction mapping if
ı < c�1

0
and n is large. Such being the case, the contraction mapping theorem implies

that this map has a unique fixed point; and this fixed point is the desired point � with
…�b� D 0.

The six steps that follow explain why the map in (2-32) is a contraction mapping on a
ball of radius c�1

0
if ı < c�1

0
and n is large.

Step 1 Fix �D .� /.;m/2‚ 2B with L2
1

norm less than ı , take JDf.c ; � /g.;m/2‚
and write .AJ;  J/ as .AJ0

C .2r1=2/c� ;  J0
C &�/. Set t� D .c� ; &�/. As noted

previously, jt� j � c0ı . In any event, it follows from [9, (2-11), (2-12)] and the formula
in [10, (2-5)] for t that any given .;m/ 2‚ component of t |.t�/ obeys

(2-33) r1=2
 t |.t�/D � C r.�/ ;

where the L2
1

norm of r.�/ is bounded by c0.r
�1=2C ı/k�kL2

1
. By the same token,

if � and �0 are both vectors in B with L2
1

norm bounded by ı , then

(2-34) kr.�/ � r
�
�0
�

kL2

1
� c0.r

�1=2
C ı/k� � �0kL2

1
:
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Step 2 Define the pair b�D .b�; ��/ as in [10, Step 2 of Section 2.a]. Use this pair to
define the operator L� ; this given here in [10, (1-14)] as (1-9). Introduce b0

0
as in [9,

Step 2 of the proof of Lemma 3.10]. Define the function �0� D 1�
P
.;m/2‚ � and

set fD b� C t� � b� � �0�b
0
0

. This step and the next given bounds for the size of f.
The relevance of f to the task at hand is explained in Step 5.

Given that b� obeys

(2-35) L�b� C r1=2
�
t� � b� C .b� � b�/� b�

�
D r�1=2v� ;

it follows that f obeys

(2-36) L�fC r1=2b� � fD r�1=2v� CL�t� �L�.b�C�0�b
0
0/:

Write fD f?C t .�/ with …f?D 0 as in [10, Step 6 of Section 2.a]. This last equation
is used to obtain bounds on the size of f? and the size of � .

Keep in mind what is said in Steps 2 and 3 of the proof of [9, Lemma 3.10] about the size
of b� and b0

0
: The former is bounded by c0r�1=2

P
.;m/2‚ e�

p
r dist. � ; /=c0 and the

latter by c0r�1 . As jt� j � c0ı and jb� j � c0ı
1=2 , it follows that jfj � c0.r

�1=2Cı1=2/.
This and [10, (2-8)] imply that

(2-37) jt .�/j � c0.r
�1=2
C ı1=2/

X
.;m/2‚

e�
p

r dist. � ; /=c0 :

This L1 bound on t .�/ and the L1 bound on f imply that jf?j � c0ı
1=2 .

Consider first the .1�…/ part of (2-36). Write b� � f in terms of f? and t .�/. Given
the bound by c0ı

1=2 on the L1 norm of b� and given (2-37), what is written in the
top line of [10, (2-19)] together with [10, (2-20)–(2-21)] imply that

(2-38)
kf?kH � c0ı

1=2
�
r1=2
kf?k2Ckt .�/k2

�
Cc0k�kL2

1
C c0kr

�1=2v� CL�t� �L�.b�C�0�b
0
0/k2:

The proof of [9, Lemma 3.10] finds the L2 norm of r�1=2v�CL�t��L�.b�C�0�b
0
0
/

is bounded by c0.r
�1C r�1=2k�kL2

1
/. Meanwhile, from [9, (3-13), (3-24)] with (1-7)

and [9, (2-11), (2-12)], the L2 norm of L�t� is bounded by c0.r
�1=2Ck�kL2

1
/k�kL2

1
.

Thus, (2-38) implies that

(2-39) kf?kH � c0

�
k�kL2

1
Ck�k2

L2
1

C r�1
�
:

Step 3 This step considers the image of (2-35) via the adjoint, t | , of the map t so as
to obtain an L2

1
bound on � . It follows from [10, Lemma 2.1] that this has the form

(2-40) D� C r1=2t |.b� � f/C p|.f?/D t |
�
r�1=2v� CL�t� �L�.b�C�0�b

0
0/
�
:
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Given [9, (3-37)] and given the L1 norm bounds on f and t� , this equality implies

(2-41)
kD�kL2 � c0.ıC r�1=2/

�
k�kL2

1
Ck�k2

L2
1

C r�1
�

Cc0kt |
�
r�1=2v� CL�t�

�
kL2 Ckt |

�
L�.b�C�0�b

0
0/
�
kL2 :

To make something of this last inequality, it is necessary to say something about the
size of the right most two terms in (2-41). In this regard, L2 norm of the far right term
is bounded by c0r�1 This follows from [9, (3-41), (3-13), (3-14)].

To bound the L2 norm of t |.r�1=2v�CL�t�/, first fix .;m/2‚ and use [10, (2-19),
(2-22)] to identify

(2-42) r1=2
 t |.L�t�/ D .D�/ C e;

where kekL2 � c0.r
�1=2Ck�kL2

1
/k�kL2

1
. Then use [10, Lemma 2.1] to write

(2-43) .D� /D
i

2
rt� C .r�r

1;0h/jc C e0;

where ke0kL2 � c0r�1=2k�kL2
1

. Meanwhile, use [9, (3-38)] to write

(2-44) r1=2
 t |.r�1=2v�/ D�

�
i

2
rt� C .r�r

1;0h/jc

�
C e00;

where ke00kL2 � c0.r
�1=2Ck�k2

L2
1

/. Add (2-43) to (2-44) to obtain a bound on the
L2 norm of t |.r�1=2v� CL�t�/ by c0.r

�1C r�1=2k�k2
L2

1

/.

Put this last bound into (2-41) and then use [10, Lemma 2.1] to see that

(2-45) k�kL2
1
� c0

�
r�1
C ık�k2

L2
1

�
:

Step 4 Fix a pair � and �0 2 B and any given b 2H with jbj bounded on M . This
step considers the difference between t |.…�b/ and t |.…�0b/. It follows from [9,
(2-11), (2-12)] that this difference obeys

jt |.…�b/ � t |.…�0b /j � c0r�1=2
j� � �

0
 j kbkL1 ;(2-46)

kt |
�
…�b

�

� t |

�
…�0b

�

kL2

1

� c0k� � �
0
kL2

1

 
r�1=2

kbkL1 C

 Z
S1�C

�
�
jzj=��

�
jrtbj

2e�
p

r jzj=c0

!1=2!
;

(2-47)

where rt is the covariant derivative along the S1 factor of S1 �C that is defined
using the connection A� .
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Step 5 Write f as f?C t .�/ as done in Steps 2 and 3. Fix a pair .;m/ 2‚. Then
write

(2-48)
r1=2
 t |.…�b�/

D r1=2
 t |.…�f/ � r1=2

 t |.…�t�/ C r1=2
 t |

�
…�.b�C�0�b

0
0/
�

:

Now write fD f?C t .�/ as in Steps 2 and 3. Then (2-48) gives

(2-49) r1=2
 t |.…�b�/ D r1=2

 t |.t .�// � � C eC e0;

where e accounts for the difference between …� and …, and where

(2-50) ke0kL2
1
� c0.r

�1=2
Ck�k2

L2
1

/:

With regards to e, it follows from (2-39), (2-45) and (2-47) that

(2-51) kekL2
1
� c0k�kL2

1
.ıC r1=2

k�k2
L2

1

C r�1=2/:

Given [10, (2-7)] and (2-49), what is written in (2-33), (2-50) and (2-51) implies that
the L2

1
norm of the map in (2-32) is bounded by

(2-52) c0k�kL2
1

�
ıC r1=2

k�kL2
1

�
C c0r�1=2:

As a consequence, the map in (2-32) sends the ball of radius c�1
0

r�1=4 in B to itself
if ı < c�1

0
and r � c0 . Granted this, let B� denote such a ball. Write its radius as

"r�1=4 .

Step 6 What follows explains how to prove the assertion that (2-32) is a contraction
on B� when ", ı < c�1

0
and r � c0 . To start, fix a pair �; �0 2B� . Define f as in Step 2

using � and define f0 to be the �0 analog. Note that uD f� f0 D b� � b�0 C t� � t�0 .
Subtract the f and f0 versions of (2-36) and write what results as

(2-53) L�uC r1=2.b�0C f/�uD r1=2.t� � t�0/� fC r�1=2.v� �v�0/CL�.t� � t�0/:

Now write uD u?C t .�/ and mimic what was done in Steps 2 and 3 to bound the
H norm of u? and the L2

1
norm of �. What with (2-36), (2-37) and (2-47), the

manipulations done in Step 5 can be repeated with only notational changes to establish
the contraction property when ", ı < c�1

0
and r � c0 . The details of all of this are

straightforward and omitted.

2.b Proof of Proposition 2.1

Fix a pair of functions .�; �/ on S1 with � real and � having values in C . Use the pair
.�; �/ to define the function h on the vortex moduli spaces fCmgm�1 . The upcoming
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Proposition 2.11 describes a compactness theorem for solutions to the corresponding
versions of (1-6) and for some related equations. Proposition 2.1 is a special case of
Proposition 2.11.

To set the stage for this proposition, suppose that gW S1�C!R is a smooth function
whose norm grows slower as jzj ! 1 on C than some power of jzj. The given
function g is used to define the smooth function g W S1�Cn!R as follows: If t 2 S1

and cD .A; ˛/, set

(2-54) g .t; c/D
1

2�

Z
C

g.t; � /.1� j˛j2/:

A function of this sort gives a perturbed version of (1-6), this the equation

(2-55)
i

2
c0Cr.1;0/.h C g /jc D 0:

The statement of the next proposition uses rC to denote the vector of partial derivatives
on C .

Proposition 2.10 Fix a positive integer, n. If n D 1, assume that .�; �/ is nonde-
generate, and if n > 1, assume that .�; �/ is either hyperbolic or n–elliptic. Given
K � 1, there exist " > 0 and T � 1 with the following significance: Suppose that
gW S1 �C!R is a smooth function with

sup
z2C

�
.KCjzj/�2

jgjC .KCjzj/�1
jr

CgjCK�1
jr

C
r

Cgj
�
< ":

Suppose that cW S1! Cn is a solution to the version of (2-55) that is defined using the
function g in (2-54) and the function h in (1-5). Write cD .A; ˛/. Then all points in
˛�1.0/ have distance T or less from the origin in C .

The set of maps cW S1! Cn that obey (2-55) is given the C1 Frechet topology via
its inclusion in the space C1.S1ICn/. The following proposition gives a condition
that guarantees the compactness of this space.

Proposition 2.11 Let n; .�; �/ and g be as described in Proposition 2.10. Define g
as in (2-54) and h as in (1-5). Then the space of solutions of the resulting version of
(2-55) is compact.

Proof of Proposition 2.11 Given Proposition 2.10, it then follows from what is said
in [9, Part 7 of Section 2.a] that there is a compact subset of Cn that contains the images
of all maps from S1 to Cn that obey (2-55). As a consequence of (2-55), the derivatives
of all such maps are uniformly bounded. This understood, differentiate (2-55) to see
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that the second derivatives of all such maps are uniformly bounded. Differentiate again
and continue in this vein to see that the derivatives to any given order are uniformly
bounded. Now apply the Arzela–Ascoli theorem to see that any sequence of maps
from S1 to Cn that all solve (2-55) has a subsequence that converges in any given
k � 1 version of the C k topology on the space of maps from S1 to Cm . Note that
convergence in the C 1 topology guarantees that the limit map obeys (2-55).

The remainder of this subsection contains the following.

Proof of Proposition 2.10 The proof is broken into seven steps.

Step 1 This step states and then proves a lemma about the clustering of n points in C .
Here is the lemma.

Lemma 2.12 Fix a positive integer, n, and fix �>1. Let ZDfz1; : : : ; zng2Symn.C/.
Then there exists R 2 .�; �2n

� and a partition of Z into nonempty subsets that have
the following property: The diameter of each partition subset is less than R and the
distance between any pair of distinct partition subsets is greater than R2 .

Proof of Lemma 2.12 Define an equivalence relation on Z as follows: Points z and
z0 from Z are equivalent if jz� z0j � � . Let ZD Z11[ � � � [Z1p denote the resulting
partition. If the distance between any two of distinct partition subsets from this partition
is greater than �2 , then there exists R slightly greater than � that makes the lemma
true. If two distinct partition subsets have distance less than or equal to �2 , then define
an equivalence relation on the set fZ11; : : : ;Z1pg as follows: Any two partition subsets
are deemed to be equivalent if their distance is less than or equal to �2 . The resulting
equivalence classes define a new partition of Z, this written as Z21[ � � � [Z2p0 . Note
that p0 < p . If the distance between any two distinct partition subsets from this new
partition is greater than �4 , then stop because there is a choice for R� �2 that makes
the lemma true. Otherwise, rerun this repartitioning exercise using the partition fZ2j g

in lieu of fZ1j g and using �2 in lieu of � . Continuing in this vein finds a partition
and value of R� �q for 1� q � 2n that makes the lemma true because the number
partition subsets decreases at each iteration of this step.

Step 2 Fix p� 1 and let t ! c.t/ denote a solution to (2-55). Let t ! Z.t/ denote
the corresponding map to Symn.C/ given by writing c.t/ D .A; ˛/ and taking the
zeros of ˛ . Fix t0 and let Z.t0/D Z1[ � � � [Zp denote a partition that is supplied by
Lemma 2.12. Thus, there exists R � �q for q 2 f1; : : : ; 2ng such that the diameter
of each partition subset is less than R and the separation between any two distinct
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partition subsets is greater than R2 . Since the corresponding map t!Z.t/2 Symn.C/
is continuous, there exists an open neighborhood of t0 with the property that if t 0 is
in this neighborhood, then Z.t 0/ also has a partition into p sets, each with diameter
less than 5

4
R and with pairwise separation greater than 3

4
R2 . These sets are in 1� 1

correspondence with those defined by t0 and they vary continuously with t when
viewed as maps into the relevant version of Sym. �/ .C/. Let I denote such an open
neighborhood of t0 . Write Z.t/D Z1.t/[ � � � [Zp.t/ as t varies I .

Step 3 This step derives a lower bound for the length of I in terms of R. The
following lemma summarizes the story.

Lemma 2.13 Fix .�; �/ as described in Proposition 2.10. Given K � 1 and "0 > 0,
there exists a constant, � > 1, with the following significance: Suppose that gW S1!C
is a smooth function that obeys the bound given by Proposition 2.10 with " < "0 . Let c
denote a solution to (2-55) as defined using .�; �/ and the function h given by (1-5)
and g by (2-54). Let Z denote the corresponding map from S1 to Cn . Suppose that
R > � is such that Z.t0/ has a partition whereby each partition subset has diameter
less than R, and whereby the distance between any two distinct partition subsets is
greater than R2 . Then, an interval I can be chosen as in Step 2 above so as to contain
Œt0� �

�1R�2; t0C �
�1R�2�.

Proof of Lemma 2.13 Take I to be the largest interval that contains t0 and has the
desired properties. If t 0 2 @I , then one or both of the following must occur:

(2-56)
� There exists j 2 f1; : : : ;pg such that Zj .t

0/ has diameter 5
4
R.

� There exists i ¤ j 2 f1; : : : ;pg such that dist.Zi.t
0/;Zj .t

0//D 3
4
R2 .

As is explained next, it takes time O.R�1/ for the first instance to occur. This can
be argued as follows: For each j , use ct

j .t/ D .Aj ; j̨ / to denote the solution to
(1-4) that is defined by Zj .t/. Thus, ct

j .t/ D .At
j ; ˛

t
j / 2 Symm.C/ with m D mj

depending on j . Each ct
j . � / defines a smooth map from I to the m D mj version

of Cm . Introduce zj .t/ to denote the center of Zj .t/; this given by .1=mj /
P

z2Zj .t/
z .

Define cj .t/ 2 Cmj so that its translate by zj .t/ is ct
i .

With the preceding understood, now write c.t/D .A; ˛/. It then follows from [9, (2-4)]
that ˛ D eu

Q
j ˛

t
j where jre.u/j � c0

P
i¤j e�

p
2jzi�zj j . Moreover, it follows from

[9, (2-4), (2-5)] that the function h C g that appears in (2-55) can be written as

(2-57) h C g D
1

2

X
j

mj

�
2�jzj j

2
C�xz2

j C x�z2
j Cg.zj /

�
C

X
j

gj .cj /C r;
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where gj is defined as in (2-54) using a function, gj that obeys jgj j�cK jzj. Meanwhile,
jrj C jdrj � cK

P
i¤j e�

p
2jzi�zj j . Here, and in what follows, cK depends only on

the constant K and .�; �/. The precise value of this constant can increase with each
appearance.

This last point with [9, (2-5), (2-16)] imply that

(2-58)
ˇ̌̌̌

d

dt
cj .t/

ˇ̌̌̌
� cK R:

This inequality implies that the first item in (2-56) can arise only if jt 0� t0j � cK R�1 .

Turn now to the second item in (2-56). It follows from [9, (2-16) and (2-3)] with (2-57)
that the point path t ! zj .t/ moves while t 2 I in accord with an equation that has
the schematic form

(2-59)
i

2

d

dt
zj C �zj C�xzj D rj ;

where jrj j < "jzj jC cK .1C
P

iWi¤j e�
p

2jzi�zj j/. This last observation has the fol-
lowing consequence: If 1

2
R2 � jzi � zj j �

3
2
R2 , then

(2-60)
ˇ̌̌̌

d

dt
.zi � zj /

ˇ̌̌̌
� cK R2:

This implies that the second item in (2-56) can occur only if jt 0� t0j � cK R�2 .

Step 4 Suppose now that Proposition 2.10 is false. If this is the case, there exist K� 1

plus, for each � 2 f1; 2; : : :g, the following:

(2-61)

� A positive number "� .

� A function g D g� on S1 �C that obeys the assumptions in Proposition
2.10 with constant "D "� .

� A map c� W S1! Cn that solves the version of (2-55) that is defined using
.�; �/ to define h and g� to define g .

And, this data has two properties. Here is the first: The sequence f"�g is decreasing
with limit zero. To state the second, let Z�. � / denote the map from S1 to Symn.C/
that corresponds to c� . Let d� D supt2S1 dist.Z� jt ; 0/. Here, 0 denotes the point
.0; : : : ; 0/ 2 Symn.C/. Granted this terminology, here is the second property: The
sequence fd�g is increasing and unbounded.
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What follows is a consequence of Lemma 2.13. There exists

(2-62)

� A positive integer N , a constant c0 > 0, and a cover of S1 by N or less
intervals of length at least c0R�2 .

� There exists a subsequence of fc�g such that on each interval of the cover
and for each index v in the subsequence, the corresponding Z�. � / 2

Symn.C/ has a partition as Z� D fZ�
1
; : : : ;Z�p g where

(a) Z�j . � / 2 Symmj .C / has diameter less than 5
4
R.

(b) dist
�
Z�i ;Z

�
j

�
> 3

4
R2 when i ¤ j .

(c) The integers p and fmj g1�j�p depend on I but not on the index � .

Pass to the subsequence that is described by (2-62) and renumber the latter starting
from one.

Step 5 Fix an index � and an interval from the cover given in (2-62). Use c� in lieu
of c to define the collection of functions fz�j g1�j�p on this interval. For each j , set
w�j D d�1

� z�j . By virtue of (2-61), the collection fw�j g obeys the equation

(2-63)
i

2

d

dt
w�j C �w

�
j C� xw

�
j D d�1

� r�j :

One consequence of this is that the collection fw�j g vary on their interval of definition
with first derivatives that are bounded by an index � independent constant.

For each t on the interval where fw�j g is defined, set

(2-64) }�.t I z/D
Q

1�j�p

�
z�w�j .t/

�mj :
The derivatives of the coefficients of }�.t; z/ are uniformly bounded on their interval
of definition. Moreover, if }�. � ; z/ and }0�. � ; z/ come from intervals of the cover
that overlap, then their coefficients for any given power of z differ by no more than
c0R=d� .

Step 6 It follows from what is said in the previous step that there is a subsequence
of the index set with the property that the coefficients of the corresponding sequence
of polynomials f}�. � ; z/g converge to give continuous and piecewise differentiable
functions on S1 . Let }. � ; z/ denote the resulting degree n polynomial. It follows now
from the definition of fw�j g that the roots of }.t; � / lie in the closed unit disk for each
t 2 S1 , and that there exists a nonempty, open set in S1 where }.t; � / has at least one
nonzero root. Let p. � / denote the function on S1 whose value at t is the number of
distinct, nonzero roots of }.t; � /. Fix t0 2 S1 where p. � / has its maximum. Then
p. � / D p.t0/ on some neighborhood of t0 . Let I � S1 denote the maximal open
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interval in S1 that is symmetric about t0 and has this property. Write this interval as
.t0� a; t0C a/ with a 2 .0; ��. When t 2 I , use fw1.t/; : : : ; wp.t0/.t/g to denote the
distinct, nonzero roots of }.t; � /. Each is a differentiable functions of t . Moreover, by
virtue of (2-61), each obeys

(2-65)
i

2

d

dt
wj C �wj C� xwj D 0:

Step 7 Standard uniqueness properties for first order, linear equations of the sort
that appear in (2-65) guarantee that none of the collection fwj g can vanish at t0˙ a.
Likewise, wi D wj at t0˙ a only if i D j . This requires that aD � . Since }. � ; z/
varies as a continuous function of S1 , it then follows that the collection fwj .t0��/g

is a permutation of the collection fwj .t0C�/g. This understood, there is a positive
integer p0 � n and a renumbering of the collection fwj g so that

(2-66)

w1.t0��/ D wp0.t0C�/;

w2.t0��/ D w1.t0C�/;
:::

wp0.t0��/ D wp0�1.t0C�/:

Define w� to be the 2�p0–periodic function that is defined by concatenating the
collection fwj g1�j�p0 at the points ft0��C2j�gjD0;:::;p0 . Then w� is a nontrivial,
2�p0–periodic element in the kernel of the .�; �/ version of (1-2). However, no such
solutions exist by assumption.

3 Properties of instantons

This section with Section 4 and Section 5 present some basic properties of instanton
solutions to (1-11). They serve as a resource for the subsequent proof of Theorem 1.2.

The purpose of this section is to summarize some general features of the spinor and
curvature of an instanton solution to any given � 2� and large r versions of (1-11).
The metric is defined by a given contact 1–form a and an almost complex structure J

on the kernel of a. Unless stated to the contrary, the only assumption is that da. � ;J. � //

is symmetric and positive definite. It is also assumed in what follows that the P –norm
of � is bounded by 1. With this bound implicit, all constants that appear in this and
subsequent sections are independent of �. (These constants will depend on � to
the extent that they increase from some positive lower bound if the P –norm of � is
allowed to increase.)
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Assume in what follows that dD .A;  D .˛; ˇ//W R! Conn.E/˚C1.M IS/ is an
instanton solution to (1-11). Note that much of what is done here is very similar to
what is done from Sections 2–4 in the article SW) Gr from [6].

3.a The size of ˛, ˇ and the curvature: Part 1

The lemma below gives the 4–dimensional version of what is said by the first two
bullets of Lemma 2.3.

Lemma 3.1 There exists � � 1 with the following significance: Suppose that r � �

and that .A;  D .˛; ˇ// is an instanton solution to (1-11). Then

� j˛j � 1C �r�1 .

� jˇj2 � �r�1.1� j˛j2/C �2r�2 .

Proof of Lemma 3.1 View X DR�M as a four dimensional Riemannian manifold
so as to view the instanton equations as the Seiberg–Witten equations on X . As in
Chapters 2a–2b of the article SW) Gr from [6], the Bochner–Weitzenboch formula
for the R�M Dirac operator @=@sCDA with (1-11) lead to differential equalities for
w D .1� j˛j2/ and jˇj2 of the following sort:

(3-1)
�

1
2
d|dwC r j˛j2w� jrA˛j

2C ew D 0,

�
1
2
d|d jˇj2C r j˛j2jˇj2C r.1Cjˇj2/jˇj2CjrAˇj

2C eˇ D 0,

where jewj � c0.j˛j
2CjrAˇj

2Cjˇj2/ and jeˇj � c0.jˇj
2Cjˇk˛jCjˇkrA˛j/. Here,

rA denotes the covariant derivative on sections over R�M of the pullbacks of E

and E˝K�1 ; it is defined by viewing A and the canonical connection on K�1 as
connections on the respective pullbacks. As in Chapters 2a–2c of the article SW) Gr
from [6], the maximum principle is used with these inequalities to derive the bounds
asserted by the lemma. The use of the maximum principle in this noncompact setting
requires Lemma 2.3 to guarantee the bounds given by the lemma hold as s!˙1.

The next lemma speaks to the size of .@=@s/A and BA . Note that given Lemma
3.1’s bound on jˇj2 , the top equation in (1-11) yields the bound j.@=@s/ACBAj �

r.1�j˛j2/Cc0 . The lemma that follows asserts both j.@=@s/Aj and jBAj are bounded
by c0r given an extra assumption. To state this assumption, suppose for the moment
that c D .A;  / is any given pair in Conn.E/ � C1.M IS/. Let Lc denote the
corresponding version of (1-14). With this notation understood, an instanton solution
s! d.s/ 2 Conn.E/�C1.M IS/ to (1-11) gives the continuous family of operators
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fLd.s/gs2R . This family of operators has a unique s!�1 limit, and a unique s!1

limit and so there is a well defined spectral flow for this family, this denoted by fd .

Note in this regard, that the notion of the spectral flow fd is ambiguous if either of the
s!˙1 limits has nontrivial kernel. As the results that follow demand only a lower
bound on fd , the phrase “fd � x” for any given x 2R is defined in the following way.
Let c� and cC denote the respective s!�1 and s!1 limits of d. Then fd � x if
there exist sequences fc�igiD1;2;::: and fcCigiD1;2;::: in Conn.E/�C1.M IS/ with
the following three properties: First they converge respectively to c� and cC . Second,
each element defines a version of (1-11) with trivial kernel. To set the stage for the third
requirement, fix, for each index i , a path in Conn.E/�C1.M IS/ of the following
sort: The path starts at c�i proceed to c� along a short path to c� , it then follows the
path defined by d to cC , and it then proceeds to cCi via a short path. The notion of
“short” is such that the sequence of paths converges in the C1 topology as i !1 to
the constant path. With such a path chosen, here is the third requirement: The spectral
flow for (1-11) along this path is at least x .

Introduce Fd to denote the minimum of fd and 0 when c1.det.S// is not a torsion
class, and to denote 0 otherwise.

The upcoming lemma reintroduces the function a on Conn.E/�C1.M IS/ as depicted
in [8, (3-19)]. By way of a reminder, the latter is defined in terms of the function E in
(1-9) and functions cs and e� on Conn.E/ by the formula

(3-2) aD
1

2
.cs� r E/C e�C r

Z
M

 |DA :

In this regard, the value of cs at a given connection A is defined as follows: Fix
once and for all a connection AE on E with harmonic curvature 2–form and write
ADAE CyaA with yaA a section of iT �M . Then

(3-3) cs.A/D�

Z
M

yaA ^�dyaA� 2

Z
M

yaA ^�

�
BE C

1

2
BAK

�
:

Meanwhile, e�.A/D i
R

M �^�BA .

Let dW R! Conn.E/�C1.M IS/ denote an instanton solution to (1-11). Introduce
as notation Ad D .lims!�1 a.djs/� lims!1 a.djs//. Note that Ad is gauge invariant.
It is a positive number except in the case when d is R–invariant.

Lemma 3.2 Given T > 1, there exists � > 1 with the following significance: Suppose
that r � � and that dD .A;  / is an instanton solution to (1-11) with either Ad < r2T

or else Fd � �r2T . Then both j.@=@s/Aj and jBAj are bounded by �r .
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The proof of Lemma 3.2 is given momentarily.

Note with regards to the subsequent applications of this lemma that the precise value
chosen for the constant T is of no significance. This understood, the proof of Lemma
3.2 and the statements of all subsequent applications in the rest of this article take
T D 1. A different choice for T changes various constants, but otherwise does not
change the conclusions.

The proof of Lemma 3.2 exploits a preliminary lemma that gives a uniform bound for
the L2 norm of BA on length 1 subcylinders of R�M .

Lemma 3.3 There exists a constant, � > 1 with the following significance: Suppose
that r � � and that dD .A;  / is an instanton solution to (1-11) with either Ad � r2

or Fd � �r2 . Let s denote any point in R. ThenZ
Œs;sC1��M

�ˇ̌̌̌
@

@s
A

ˇ̌̌̌2
CjBAj

2
C r

ˇ̌̌̌
@

@s
 

ˇ̌̌̌2
C r jDA j

2

�
� �r2:

Proof of Lemma 3.3 The proof has five steps.

Step 1 Introduce the 1–form

(3-4) B.A; / D BA� r. |�k � ia/� i � d�C 1
2
BAK

:

The next lemma says something about the L2 norms of .@=@s/A;B.A; /; .@=@s/ 

and DA . The statement of the lemma uses c� D .A�;  �/ and cC D .AC;  C/

to denote the respective s!�1 and s!C1 limits in Conn.E/�C1.M IS/ of
.A;  /.

Lemma 3.4 Suppose that .A;  / is an instanton solution to some r � 1 version of
(1-11). Let s0 � s 2R. Then

1

2

Z
Œs;s0��M

�ˇ̌̌̌
@

@s
A

ˇ̌̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌̌
@

@s
 

ˇ̌̌̌2
CjDA j

2

��
D a.djs/� a.d js0/:

Moreover,

1

2

Z
R�M

�ˇ̌̌̌
@

@s
A

ˇ̌̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌̌
@

@s
 

ˇ̌̌̌2
CjDA j

2

��
D a.c�/� a.cC/:

Proof of Lemma 3.4 Integrate the sum of norm squared of the top equation in (1-11)
with 2r times the norm squared of the lower equation. Integration by parts yields the
lemma’s assertion.

The next lemma bounds a.c�/� a.cC/ in terms of Fd and the respective values on c�
and cC of the function E in (1-9).
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Lemma 3.5 There exists a constant � � 1 with the following significance: Suppose
that r � � and that .A;  / is an instanton solution to (1-11). Then

a.c�/� a.cC/� �2�2FdC
1
2
r E.AC/�

1
2
r E.A�/

C �r2=3.lnr/k
�
jE.AC/j

4=3
CjE.A�/j

4=3
�
C �:

However, in the case when c1.det.S// is torsion,

a.c�/� a.cC/�
1
2
r E.AC/�

1
2
r E.A�/C �r2=3

�
jE.AC/j

4=3
C r2=3

jE.A�/j
4=3
�
C �:

Proof of Lemma 3.5 This follows from [8, Proposition 4.10].

These last two lemmas imply the following:

(3-5)

Z
R�M

�ˇ̌̌̌
@

@s
A

ˇ̌̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌̌
@

@s
 

ˇ̌̌̌2
CjDA j

2

��
� �2�FdC c0r2.lnr/c0 :

Step 2 Assume that either Ad < r2 or Fd > �r2 . When k 2 Z, let Ik D Œk; kC 1�.
It is a consequence of Lemma 3.4 and (3-5) that there are at most c0.lnr/c0 integers
k 2 Z where

(3-6)
Z

Ik�M

�ˇ̌̌̌
@

@s
A

ˇ̌̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌̌
@

@s
 

ˇ̌̌̌2
CjDA j

2

��
� r2:

In particular, given any k 2 Z, there exists T � c0.lnr/c0 such that

(3-7)
Z

Ik˙T�M

�ˇ̌̌̌
@

@s
A

ˇ̌̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌̌
@

@s
 

ˇ̌̌̌2
CjDA j

2

��
� r2:

This last inequality has the following consequence: There exist points s 2 Ik�T and
points s 2 IkCT such that

(3-8)
Z
fsg�M

�
jBAj

2
CjDA j

2/� r2:

Step 3 Fix a connection AE 2 Conn.E/ with harmonic curvature 2–form. Let A

denote for the moment any given element in Conn.E/ and write ADAE CyaA . Use
p.yaA/ in what follows to denote the value on the Poincaré dual of c1.det.S// of the
L2 –orthogonal projection of ya into the space of iR–valued harmonic 1–forms on M .
Introduce the Chern–Simon’s function cs as defined in (3-3). Then

(3-9) jcs.A/j � c0jp
�
yaA

�
jC c0kBAk

2
2:
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Now suppose that  2 C1.M IS/. It follows as a consequence of (3-9) that

(3-10) ja.A;  /j � c0

�
jp.yaA/jC kBAk

2
2C rkBAk2C rk k2kDA k2

�
:

Step 4 Let k and T be as in Step 2. Choose s� 2 Ik�T and sC 2 IkCT so that
(3-8) holds with s D s� and with s D sC . There exists a map uW M ! S1 so that
Ajs��u�1du can be written as AECya where ya is coclosed and such that jp.ya/j � c0 .
Extend ya as a section of iT �M over the cylinder Œs�; sC��M by writing A�u�1du

as AECya. With this extension understood, it follows from the top line in (1-11) that

(3-11)
ˇ̌̌̌

d

ds
p.ya/

ˇ̌̌̌
� c0r

at each s 2 Œs�; sC�. This implies that

(3-12) jp.yajsC/j � c0r.lnr/c0 :

Step 5 Take s D s� and s0 D sC in the first equality of Lemma 3.4. Then use (3-9)
at s D s� and at s D sC with (3-10) to see that

(3-13)
Z
Œs�;sC��M

�ˇ̌̌̌
@

@s
A

ˇ̌̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌̌
@

@s
 

ˇ̌̌̌2
CjDA j

2

��
� c0r2:

As a consequence

(3-14)
Z

Ik�M

�ˇ̌̌̌
@

@s
A

ˇ̌̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌̌
@

@s
 

ˇ̌̌̌2
CjDA j

2

��
� c0r2:

This implies the assertion of Lemma 3.3 because jB.A; /j
2 �

1
2
jBAj

2� c0r2 .

Proof of Lemma 3.2 Use (3-1) with the arguments used to prove Lemma 2.5 in the
article SW ) Gr from [6] to derive constants z1 , z2 , z3 , and z4 with two salient
features. First, they are .A;  / and r independent. To state the second, introduce the
function

(3-15) q0 D r.1C r�1z1/.1� j˛j
2/� z2r jˇj2C z3:

Also, introduce s to denote j.@=@s/A�BAj and set q Dmax.s � q0; 0/. Here is the
second feature: The function q obeys

(3-16) d|dqC 2r j˛j2q � z4

�
s C r.1� j˛j2/

�
:

Here and until said otherwise, d denotes the exterior derivative for functions on R�M

and d| denotes its formal L2 adjoint. Thus, d|d is minus the metric Laplacian on
R�M . (The factor 2 that multiplies r j˛j2 above and in subsequent equations differs
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from the factor multiplying r j˛j2 in the article SW) Gr from [6]. These differing fac-
tors have no bearing in what follows as they can be reconciled with a redefinition of r .)

Equation (3-16) implies that

(3-17) d|dq� z4q � c0r.1� j˛j2/C c0:

To make something of this, fix �>0 but less than one fourth the injectivity radius of M .
Fix x 2M and let B�R�M denote the ball of radius � with center at B . If �� c�1

0
,

then the operator d|d�z4 on B with Dirichlet boundary conditions has purely positive
spectrum with smallest eigenvalue greater than c�1

0
. Fix � so that such is the case. Let

G0. � ;x/ denote the Green’s function with pole at x . The maximum principle implies

(3-18) 0�G. � ;x/� c0

1

dist. � ;x/2
and jdG. � ;x/j � c0

1

dist. � ;x/3
:

Multiply both sides of (3-17) by �.dist. � ;x/=�/G0. � ;x/ and integrate over B . Inte-
grate by parts and invoke (3-18) to see that

(3-19) q.x/� c0�
�2

 Z
B

�ˇ̌̌̌
@

@s
A

ˇ̌̌̌2
CjBAj

2

�!1=2

C c0r�2:

Lemma 3.3 and this inequality imply that s � r.1C r�1z1/j.1 � j˛j
2/j C c0r . In

particular, s � c0r ; and this gives the claim made by Lemma 3.2.

3.b The size of ˛, ˇ and the curvature: Part 2

This part refines the bounds given by Lemmas 3.1 and 3.2. The next lemma speaks
to the size of the covariant derivatives of ˛ and ˇ . This lemma and, unless noted to
the contrary, the subsequent discussions use rA to denote the covariant derivative of
a section of a bundle over R�M as defined by viewing A as a connection on the
pullback of E over R �M . In particular, rA has a component that differentiates
along the R factor of R�M .

Lemma 3.6 There exists � � 1 with the following significance: Suppose that r � �

and that d D .A;  D .˛; ˇ// is an instanton solution to (1-11) with Ad < r2 or
Fd � �r2 . Then
� jrA˛j

2 � �r .
� jrAˇj

2 � � .

In addition, for each q � 1, there exists a constant �q which is such that when r � �

then
� jr

q
A
˛jC r1=2jr

q
A
ˇj � �qrq=2 .
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Proof of Lemma 3.6 These claims are local in nature and are proved by rescaling the
Seiberg–Witten equation as written in Gaussian normal coordinates about any given
point. Here and elsewhere in this article, these are coordinates which make the metric
look like the Euclidean metric up to an error that is proportional to the square of the
distance from the point in question. The rescaling writes the Gaussian coordinate
functions fx�gvD1;2;3;4 as x� D r�1=2y� . Uniform bounds on the curvatures in the
rescaled coordinates follow from Lemma 3.2. This understood, uniform bounds on the
covariant derivatives of the rescaled sections can be obtained using standard elliptic
regularity techniques. Undoing the rescaling gives the asserted bounds.

Lemma 3.7 There exists � > 1 with the following significance: Suppose that r � �

and that d D .A;  D .˛; ˇ// is an instanton solution to (1-11) with Ad < r2 or
Fd � �r2 . Define the function s! M.S/D r

R
Œs�1;sC1��M .1� j˛j2/ on R. Suppose

that s0 2R, that R� 1, and that K � 1 are such that supŒs0�R�2;s0CRC2� M. � /� K .
Then ˇ̌̌̌

@

@s
A�BA

ˇ̌̌̌
� r

�
1C �K 1=2r�1=2

�
.1� j˛j2/C �

at all points where s 2 Œs0�R; s0CR�.

Proof of Lemma 3.7 The proof is has four steps.

Step 1 Reintroduce the function q from the proof of Lemma 3.2. It follows from
(3-16) and just stated bound on s that z5 � 1 can be chosen independent of .A;  /
and r so that q1 Dmax.q� z5; 0/ obeys

(3-20) d|dq1C 2r j˛j2q1 � c0r.1� j˛j2/:

Write this equation as

(3-21) d|dq1C 2rq1 � c0r.1� j˛j2/C 2r.1� j˛j2/q1:

Let y 2 Œs0�R� 3
2
; s0CRC 3

2
� and let qy denote the function �.4js. � /�yj�1/q1 .

Note that qy has support only where js � yj � 1
2

. Multiply both sides of (3-21)
by the bump function �.4js. � / � yj � 1/ to obtain a differential inequality for qy .
Integrate this inequality using the fact that both s and q are bounded by c0r to see
that kqykL1 � c0.1CK /.

Step 2 Let � D c�1
0

denote a fixed constant that is much less than M ’s injectivity
radius. Given y 2 Œs0�R� 3

2
; s0CRC 3

2
�, use qy to denote now �.��1 dist. � ;y//q1 .

Multiply both sides (3-20) by the function �.��1 dist. � ;y// to obtain a differential
inequality for qy . For x 2 R �M , let G. � ;x/ now denote the Dirichlet Green’s
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function for the operator d|d on the ball of radius � centered at x . This Green’s
function is also described by (3-18). Use G. � ;y/ as in the proof of Lemma 3.2 with
the aforementioned differential inequality for qy to bound the norm of qy.y/ by

(3-22) jqy.y/j � c0

�
1CK C .K r/1=2

�
:

To elaborate, a factor c0.1CK / comes from the integration over the set of points
where d�.��1 dist. � ;y// ¤ 0 of factors that are products of ��2G. � ;y/qy and
��1jdG.y; � /jqy . What with (3-18), these contribute at most ��4c0kqykL1 . The
factor c0.K r/1=2 arises from the integral of G. � ;y/r.1� j˛j2/. Given d 2 .0; �/,
the latter is bounded by breaking the integrand into the part where dist. � ;y/� d and
where dist. � ;y/� d . The former contributes at most K d�2 and the latter at most rd2 .
Taking d D K 1=2r�1=2 gives the bound by c0.K r/1=2 of these two contributions.

The various y 2 Œs0�R� 3
2
; s0CRC 3

2
� versions of (3-22) together supply the bound

(3-23) q1 � c0

�
1CK C .K r/1=2

�
at all points in Œs0�R� 1; s0CRC 1��M .

Step 3 Let x D cosh.1
2
r1=2.s� s0//= cosh.1

2
r1=2.RC 1//. This function obeys the

equation

�
d2x

ds2
C

1

4
rx D 0

on Œs0 �R� 1; s0CRC 1� with value 1 at s D s0˙R. Note that x � kq1k1 on
Œs0�R� 1; s0CRC 1�; and x � r�10 on Œs0�R; s0CR��M if r � c0 .

To continue, use (3-1) with what is done in the discussion surrounding Equation (2-28)
in Section 2d of the first article SW) Gr in [6] to find constants z5 , z6 that have the
following properties: Both are positive, and v1 D .1� j˛j

2/C z5r�1� z6jˇj
2 obeys

(3-24)

� v1 � c0r�1 .

� v1 � .1� j˛j
2/.

� d|dv1C
1
4
rv1 � 0 where j˛j2 � 1

2
.

Set "D r�1=2 and note that v2D v
1�"
1

obeys v2� .1�j˛j
2/, and it obeys the equation

(3-25) d|dv2C
1
4
rv2 �

1
8
r1=2.1� j˛j2/;

where j˛j2 � 1
2

.
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Step 4 Step 3 implies that q2 D q1� c0.1C r�1=2kq1k1/r
1=2.v2Cx/ obeys

(3-26) d|dq2C
1
4
rq2 � 0

on the subset U � Œs0�R� 1; s0CRC 1��M where j˛j2 � 1
2

and it is nonpositive
on the boundary of this subset. The maximum principle asserts that q2 is negative
on U .

The inequality asserted by the second bullet in Lemma 3.2 for points in U follows
using (3-23), the fact that q2 � 0 in U , and the bound by r�10 on the values of x at
points in Œs0�R; s0CR�. The inequality for points in the complement of U follows
from (3-23) and the fact that .1� j˛j2/ is greater than 1

2
on this complement.

3.c The size of ˛, ˇ and the curvature: Part 3

The bounds given in Lemma 3.7 are used here to further refine the a priori bounds
on ˛ , ˇ and the curvature. The first lemma below states the analog here of what is
asserted by [6, Propositions 2.8 and 4.4 of the article SW) Gr].

Lemma 3.8 Given K � 1, there exists � � 1 with the following significance: Sup-
pose that r � � , and that .A;  D .˛; ˇ// is an instanton solution to (1-11) with
either Ad < r2 or Fd � �r2 . Fix a point s0 2 R and R � 2; and suppose that
sups2Œs0�R�3;s0CRC3� M.S/�K . Let X��R�M denote the subset of points where
1� j˛j � ��1 . The bounds stated below hold on the domain Œs0�R; s0CR��M .
� jrA˛j

2C r jrAˇj
2 � �r.1� j˛j2/C �2 .

� r.1� j˛j2/CjrA˛j
2C r jrAˇj

2 � �.r�1C re�
p

r dist. � ;X�/=�/.
� jˇj2 � �.r�2C r�1e�

p
r dist. � ;X�/=�/.

As in Lemma 3.6, what is written as rA refers to the covariant derivative over R�M

as defined by viewing A as a connection on the pullback of the bundle E to R�M .

Proof of Lemma 3.8 What with Lemma 3.7, the manipulations done in Step 2 from
the proof of Proposition 4.4 in the article SW) Gr in [6] can be copied to obtain the
following: There exists an r and .A;  / independent constant z6 � 1 such that the
function y D jrA˛j

2C r jrAˇj
2� z6 obeys the differential inequality

(3-27) d|dyC 2r j˛j2y � c0r.1� j˛j2/yC c0y

at points in Œs0�R�1; s0CRC1��M where 1�j˛j2 � c�1
0

. Meanwhile, use (3-1)
with Lemma 3.1 and Lemma 3.6 to obtain an .A;  / and r independent constant z7

such that the function w D .1� j˛j2/� z7jˇj
2 obeys

(3-28) �c0Cy � d|dw C 2r j˛j2w � c0.yC 1/:
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Let s ! x.s/ again denote the function cosh.1
2
r1=2.s � s0//= cosh.1

2
r1=2.RC 1//.

Fix c� � 1 and define u D max.y � c0.kyk1C c0/.w C x/� c0; 0/. If c� � c0 , it
follows from (3-27) with the leftmost inequality in (3-28) that u obeys the differential
inequality

(3-29) d|duC 1
64

ru� 0

on the domain U � Œs0�R� 1; s0CRC 1��M where 1� j˛j2 � c�1
0

and that u is
zero on the boundary of U . This understood, the maximum principle finds uD 0 in
the whole of U . What with Lemma 3.6, this proves the assertion of the first bullet of
the lemma for points in U . Meanwhile, Lemma 3.6 and the fact that w > c�1

0
on the

complement of U imply the assertion of the first bullet on the complement of U .

To obtain the assertion of the second bullet, use (3-27) with the left hand inequality
in (3-28) to see that u0 D max.yC c�1

0
rw � c0; 0/ obeys d|du0C 1

64
ru0 � 0 in U .

Keeping this in mind, let cM > 0 denote a constant that is much less than the injectivity
radius of M . Let x 2X� denote a point with s.x/ 2 Œs0�R; s0CR�, and let B �X�
denote the ball with center x and radius equal to half of the minimum of cM and
dist.x;X�/. Use � to denote the radius of the ball B . Let G. � ;x/ denote the Green’s
function for the operator d|d C 1

64
r with pole at x . This operator obeys the bounds

0�G. � ;x/� c0

1

dist. � ;x/
e�
p

r dist. � ;x/=c0 ;

jdG. � ;x/j � c0

1

dist. � ;x/
e�
p

r dist. � ;x/=c0 :

(3-30)

Multiply both sides of the inequality d|du0C 1
64

ru0 � 0 by �.dist. � ;x/=�/G. � ;x/
and integrate by over B . Given that ju0j � c0r , integration by parts finds that u0jx �

c0re�
p

r�=c0 .

This implies what is asserted by the second bullet of the lemma. The third bullet follows
from the second using Lemma 3.1.

The next lemma refines the bounds given by Lemma 3.7 for the curvature.

Lemma 3.9 Given or K � 1, there exists � � 1 with the following significance:
Suppose that r � � , and that .A;  D .˛; ˇ// is an instanton solution to (1-11) with
either Ad < r2 or Fd � �r2 . Fix a point s0 2 R and R � 1; and suppose that
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sups2Œs0�R�3;s0CRC3� M.s/� K . Then

�

ˇ̌̌̌
@

@s
ACBA

ˇ̌̌̌
� r.1� j˛j2/C �

�

ˇ̌̌̌
@

@s
A�BA

ˇ̌̌̌
� r.1� j˛j2/C �

at all points in Œs0�R; s0CR��M .

The proof of this lemma requires a second result, one of great importance in its own
right. This is the analog of the monotonicity formula stated by Proposition 3.1 of the
article SW) Gr in [6].

Lemma 3.10 Given K � 1, there exists � > 1 with the following significance: Take
r � � and let d D .A;  D .˛; ˇ// be an instanton solution to (1-11) with either
Ad < r2 or Fd � �r2 . Fix s0 2 R and suppose that supŒs0�4;s0C4� M. � / � K . Given
x 2 Œs0�R�1; s0CRC1��M and given a number � 2 .r�1=2; ��1/, use M.x; �/ to
denote the integral of r.1� j˛j2/ over the radius � ball in R�M centered at x . Then

� If �1 > �0 are in .r�1=2; ��1/, then M.x; �1/ > �
�1�2

1
=�2

0
M.x; �0/.

� M.x; �/� �K�2 .
� Suppose that j˛j � 1

2
at x . If � 2 .r�1=2; ��1/, then M.x; �/� ��1�2 .

Proof of Lemma 3.10 Lemma 3.7 holds on the ball of radius c�1
0

centered at x by
virtue of what is assumed about M. � /. This being the case, the proof of Proposition 3.1
in the article SW) Gr from [6] can be repeated here with only cosmetic changes to
prove the first item. The second follows from the first given the bound on M . The third
follows from the first given that M.x; r�1=2/� c0r . To prove the latter assertion, it is
sufficient to note that if j˛j.x/� 1

2
, then it follows using the first item of Lemma 3.6

that j˛j � 3
4

in the ball of radius c�1
0

r�1=2 centered at x .

Proof of Lemma 3.9 The first assertion follows directly from (1-11) using Lemma
3.1. To obtain the second assertion, reintroduce the function q1 from Step 1 of the
proof of Lemma 3.7. What is asserted by Lemma 3.9 follows if q1 can be bounded by
an .A;  / and r independent constant at points in Œs0�R; s0CR��M . To see that
this is the case, fix a point x in this domain and let B denote a ball of radius �D c�1

0

centered at x , with � chosen to be much less than the injectivity radius of M . Let
zx denote the function with compact support on B given by �.��1 dist.x; � //. Let x
denote the function with compact support on B that obeys

(3-31) d|dxC 1
64

rxD d|dzxq1� 2hdzx; dq1i:
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Here, h ; i is used to denote the metric inner product. Given that the Dirichlet Green’s
function for d|dC 1

64
r in B obeys (3-30), and given that jq1j � c0r1=2.1�j˛j2/Cc0 ,

it follows that jxj.x/ � c0 . Note that these last three versions of the constant c0

depend on K , as do the subsequent appearances of c0 in this proof. However, they
are otherwise independent of .A;  / and r . Granted this, it follows from (3-20) that
qx D zxq1� x obeys

(3-32) d|dqxC 2r j˛j2qx � c0r in B:

By construction, qx D 0 on @B .

Given Lemma 3.10, the proof of Lemma 3.5 of the article SW) Gr in [6] can be copied
almost verbatim to obtain a positive function u on B that obeys the following three
conditions: First, u� c0 , a constant that depends on K , but not r . Second, d|du� r

at points where j˛j � 1=2. Third, jd|duj � c0r on the whole of B . Granted these
conditions, it follows that the function �Dqx�cu�c0 is such that d|d�C2r j˛j2��0

in B . Since � � 0 on @B , the maximum principle demands that � � 0 in B . What
with u� c0 and x.x/� c0 this means that q1jx � c0 .

Together, Lemma 3.8 and Lemma 3.9 assert only that the curvature BA is O.1/ at
points where j˛j is nearly 1. To say more about this, let FA D ds ^ .@=@s/AC�BA

where � here denotes the Hodge star along the M factor in R�M . This 2–form FA

is the associated curvature 2–form that comes by viewing E as a bundle over R�M

and A as a connection on this E! R�M . Suppose that }W Œ0;1/! Œ0;1/ is a
smooth, nondecreasing function which obeys }.x/D x for x near 0 and }.1/D 1.
With } chosen, set

(3-33) yADA� 1
2
}.j˛j2/j˛j�2.x̨rA˛�˛rA x̨/;

this a connection on E ’s pullback over R�M . Here, and as previously, rA denotes
the covariant on R�M as defined by A. The curvature, F yA , of this connection is

(3-34) F yA D .1�}/FA�}
0
rA x̨ ^rA˛:

If the assumptions of Lemma 3.6 hold, then

(3-35) jF yAj � c0

�
r�1
C re�

p
r dist. � ;X�/=�

�
at all points with s 2 Œs0�R; s0CR�.

3.d Behavior near R� when  is elliptic

Suppose that  �M is a Reeb orbit with a tubular neighborhood map of the sort
described in (1-15).
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Lemma 3.11 There exists � � 1 with the following significance: Suppose that r � � ,
and that d D .A;  D .˛; ˇ// is an instanton solution to (1-11) with either Ad < r2

or Fd � �r2 . Let  denote a Reeb orbit as just described. Then jˇj � �r�1 and
jrAˇj � �r�1=2 at all points in R�M with distance ��1 or less from R�  .

By way of reminder, rA here also refers to the covariant derivative defined on R�M

by viewing A as a connection on the pullback of E to R�M .

Proof of Lemma 3.11 The key point to note is that J is integrable on a uniform
radius tubular neighborhood of R�  . Let R�U denote this neighborhood.

With this last point in mind, note that the splitting SDE˚EK�1 identifies ˇ as an
E–valued 2–form on R�M which lies everywhere in the subbundle T 0;2.R�M /.
Viewed in this way, the lower equation in (1-11) can be written as

(3-36) x@A˛Cx@
|
A
ˇ D 0:

Here, x@|
A
W C1.R�M IT 0;2.R�M /˝E/! C1.R�M IT 0;1.R�M /˚E/ is

the formal L2 adjoint of the composition of first exterior covariant differentiation and
then projection to the T 0;2 summand. As J is integrable, x@2 D 0. As a consequence,
(3-36) implies that

(3-37) x@Ax@
|
A
ˇCF

0;2
A
˛ D 0

on R�U . Here, F
0;2
A

denotes the T 0;2.R�M / component of A’s curvature 2–form.
The Bochner–Weitzenboch formula for x@Ax@

|
A

together with Lemma 3.1 and Lemma
3.6 can be used with (3-37) to see that d|d jˇjC2r jˇj � c0 on R�U . It follows as a
consequence that uD jˇj � c0r�1 obeys

(3-38) d|duC 2ru� 0 on R�U:

Meanwhile, Lemma 3.1 finds juj � c0r�1=2 on the boundary of R � U . This last
observation, (3-38) and the fact that the Green’s function for the operator d|d C 2r

obeys the bounds given by (3-30) implies that juj � c0r�1=2e�
p

r dist. � ;R�@U /=c0 . The
bound jˇj � c0r�1 follows from this.

To obtain the desired bound on jrAˇj at a given point p in R�U , let B denote the
ball of radius r�1=2 centered at p . Use parallel transport via A and the Riemannian
connection to view ˇ on B as a section of the product bundle B �C . With this view
understood, then (3-37) on B can be written as

(3-39) d|dˇC q0 � dˇ D rq1ˇC q2˛;
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where the coefficients of q0 and both q1 and q2 have absolute values bounded by c0 .
Note also that q0 is determined solely by the Riemannian metric, and its derivatives to a
fixed order are bounded by c0 . Let �p denote the function with compact support on B

given by �.r1=2 dist. � ;p//. Let g. � ; � / denote the Green’s function for the operator
.d|d C q0 � d/ on B with Dirichlet boundary conditions. A standard asymptotic
expansion finds

(3-40) jgj.p;x/j � c0 dist.p;x/�2 and jdgj.p;x/j � c0 dist.p;x/�3

at points with dist.p;x/ � 7
8
r�1=2 . Multiply both sides of (3-39) by �pg , and then

integrate the result. The result is an integral expression asserting

(3-41) ˇjx D

Z
B

g.x; � /q;

where q has support where dist.p; � / � 1
2
r�1=2 . Moreover, jq j is bounded by c0

because such is the case for both r jˇj and j˛j. Differentiate (3-41) now and use (3-40)
with what was just said about jq j to see that jrAˇj � c0r�1=2 .

4 Instantons and pseudoholomorphic subvarieties: Part I

This proposition below describes the fundamental relationship between instanton solu-
tions to (1-11) and pseudoholomorphic subvarieties in R�M . Here as in Section 3,
these equations are defined by a given pair .a;J / and a given 1–form � 2 � with
P –norm bounded by 1. The only unstated constraint is that da. � ;J. � // is symmetric
and positive definite.

Proposition 4.1 Given ı > 0 and K � l , there exists � � 1 with the following
significance: Let I denote either R or a connected, open subset which can be bounded
or not, but of total length at least 2ı�1C16. Suppose that r � � , and that dD .A;  D
.˛; ˇ// is an instanton solution to (1-11) with either Ad < r2 or Fd � �r2 , and with
sups2I M.s/� K . Let I � I denote a connected set of points with distance at least 7

from any boundary point of I and length 2ı�1 .

� Each point in I �M where j˛j � 1� ı has distance �r�1=2 or less from a point
where ˛ is zero.

� There exists a finite set, # , whose components are pairs of the form .C;m/ where
C is a closed, irreducible pseudoholomorphic subvariety in a neighborhood of
the closure of I �M and where m is a positive integer. Moreover, no two pairs
in # share the same subvariety component. This set is such that
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(a) sup
z2
S
.C;m/2# C;

s.z/2I

dist.z; ˛�1.0//C sup
z2
S
.C;m/2# C;

s.z/2I

dist

 [
.C;m/2#

C; z

!
< ı .

(b) Let � denote the restriction to I�M of a 2–form on I�M with k�k1D 1

and kr�k1 � ı�1 , and with support where s 2 I . Define yA from A and
˛ as in (3-33) using }.x/D x . Thenˇ̌̌̌

ˇ i

2�

Z
I�M

� ^F yA�
X

.C;m/2#

m

Z
C

�

ˇ̌̌̌
ˇ� ı:

(c)
X

.C;m/2#

m

Z
C

da� � .

Sections 4.a–4.c contain the proof of this proposition. The remaining subsections
contain various related results. Note that the arguments in this section borrow much
from Sections 4–6 from the article SW) Gr in [6]. Note also that what is denoted in
the rest of this section by yA is defined by (3-33) using }.x/D x .

4.a Instantons at the length scale r�1=2

This subsection provides the instanton analog what is asserted in Proposition 4.2 of
the article SW) Gr in [6]. This is the analog is stated as Lemma 4.3 in Part 2 of this
subsection; Part 1 sets the stage.

Part 1 Introduce complex coordinates .x1;x2/ for C2 DR4 . Give C2 the standard
metric with Kahler form !0D .i=2/.dx1^d xx1Cdx2^d xx2/. Use PCW

V2
T �C2!V2

T �C2 to denote the projection onto the self dual subspace and P� to denote the
projection onto the anti-self dual subspace.

Of interest here are pairs .A0; ˛0/ on C2 where A0 is a unitary connection on the
trivial bundle and ˛0 is a section of this bundle; and where:

(4-1)

� x@A0
˛0 D 0.

� PCFA0
D�.i=2/.1� j˛0j

2/!0 .

� j˛0j � 1.

� jP�FA0
j � jPCFA0

j � 2�1=2.1� j˛0j
2/.

Proposition 4.1 in the article SW) Gr from [6] describes the pairs .A0; ˛0/ that satisfy
these conditions. The following proposition contains some of what is in Proposition 4.1
and some new things as well.
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Proposition 4.2 Suppose that .A0; ˛0/ obeys (4-1).

� If j˛0j < 1 somewhere, then infC2 j˛0j D 0. If ˛�1
0
.0/¤∅, then this locus is

either all of C2 or a complex analytic subvariety of complex dimension 1.

� There exists � � 1 that is independent of .A0; ˛0/ and has the following signifi-
cance: Let X� �C2 denote the set of points where 1� j˛0j � � . Then

1� j˛0jC jrA0
˛0j � �e� dist. � ;X�/=� :

� If j˛0j < 1 somewhere, and if there exists z � 1 such that the integral of
.1 � j˛0j

2/ over the ball of any given radius R � 1 centered at the origin is
bounded by zR2 , then

(a) The locus ˛�1.0/ is a nonempty, complex algebraic subvariety with complex
dimension 1. As such, this locus near any given point is the zero locus of a
holomorphic polynomial.

(b) The order of the latter polynomial has an purely z –dependent upper bound.
(c) Given z , there exists � such that 1� j˛0jC jrA0

˛0j � �e� dist. � ;˛�1.0//=� .

If, in addition, the integral over C2 of jPCFA0
j2� jP�FA0

j2 is finite, then

(d) This integral is a nonnegative integer multiple of 4�2 .
(e) If the latter integral is zero, then .A0; ˛0/ is the pullback via a projection

C2!C of a solution on C to the vortex equations in (1-4) and ˛�1
0
.0/ is a

union of planes.

� The set of gauge equivalence classes of pairs .A0; ˛0/ that obey (4-1) is sequen-
tially compact with respect to convergence on compact subsets of C2 in the C1

topology.

Proof of Proposition 4.2 The only assertions not contained in Proposition 4.1 of the
article SW) Gr from [6] are the assertion in the first item that the infimum of j˛0j is
zero if j˛0j < 1 at any point and the bound given in the second item. To prove that
infC2 j˛0j D 0, suppose that ˛0 is nowhere zero. If so, there is a gauge transformation
that writes ˛0 D eu with u a real valued function. The first item in (4-1) is satisfied if
and only if A0 D�

x@uC @u. The second item is obeyed if and only if

(4-2) d|duD .1� e2u/:

Here, d denotes the exterior derivative on R4 and d| denotes its formal L2 adjoint.
The condition in the third point of (4-1) requires that u< 0 at some point, and so the
maximum principle has u< 0 everywhere. If u is bounded from below, then there is a
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uniform bound on jruj. Indeed, if x 2C2 , then (4-2) implies that

(4-3)

u.x/D
1

2�2

Z
C2

 
1

jx� . � /j2
.1� e2u/�u

1

jx� . � /j2
d|d�x

C2u

�
d

1

jx� . � /j2
; d�x

�!
;

where �x. � / D �.jx � . � /j/ and where h ; i denotes Euclidean inner product. Dif-
ferentiate (4-3) to obtain the uniform bound on ru. Meanwhile, differentiating (4-2)
finds that

(4-4) d|d jrujC e2u
jruj � 0:

Given that u is bounded from below, there exists c> 0 such that d|d jrujCcjruj � 0.
This last inequality can not be satisfied with jruj uniformly bounded unless it is
everywhere zero. Indeed, if R � 1, then jruj on the ball of radius R must be
less than the solution in this ball to the equation d|dgR C cgR D 0 with boundary
condition equal to the supremum of jruj. This solution at the origin is bounded
c0R�2e�

p
cR supC2 jruj. This last expression converges to zero as R!1.

The proof of the second item can be proved using arguments that are very much like
those used to prove Lemma 3.8. In fact, the algebraic manipulations in this case
are simple as there are no Riemannian curvature terms to deal with. The details are
straightforward and so omitted.

Part 2 Suppose that x 2 R�M and that .A;  D .˛; ˇ// is an instanton solution
to (1-11). Fix complex coordinates centered at x of the following sort: First, the
coordinates are Gaussian normal ones. In addition, there is an identification of R4

with C2 that writes the resulting complex coordinate functions as .y1;y2/; and these are
such that fdy1; dy2g span T 1;0.R�M /jx . Let � > c�1

0
be such that these coordinates

are defined on the ball of radius � in C2 . Use these coordinates to identify this ball
with its image in R�M . Define the map yr W C2!C2 using the rule yr.y/D r�1=2y .
The pullback of .A; ˛/ via yr to the ball of radius r1=2� in C2 is denoted in what
follows by .Ax; ˛x/.

Lemma 4.3 Given z � 1, R � 1, k 2 f0; 1; : : :g and " > 0, there exists � > 1 with
the following significance: Suppose that r � � and that .A;  / is an instanton solution
to (1-11). Let x 2R�M and suppose that j.@=@s/A�BAj � r.1� j˛j2/C z on the
ball of radius 1 centered at x . Under these conditions, there exists a solution .A0; ˛0/

to (4-1) on C2 such that .Ax; ˛x/D .A0Cya; ˛0C�/ where .ya; �/ has C k norm less
than " on the ball of radius R in C2 .
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Proof of Lemma 4.3 The proof is essentially the same as that of Proposition 4.2 in
the article SW) Gr from [6].

4.b Proof of bullet 1 of Proposition 4.1

Suppose that the assertion is false. If so, there exists ı > 0 and K � 1, and for each
n 2 f1; 2; : : :g, a set f.rn; .An;  n//;xng such that the assumptions of Proposition 4.1
hold for the interval ID Œ�8; 8�, and such that j˛nj � 1�ı at a point xn 2 Œ�1; 1��M ,
and with dist.xn; ˛

�1
n .0// > nr�1=2 . No generality is lost by assuming that what is

said by Lemma 4.3 applies to .An;  n/ using for x the point xn with the constant
" < n�1ı . Let f.A0n; ˛0n/gnD1;2;::: denote the corresponding sequence of solutions
to (4-1). Use the final item in Proposition 4.2 to find gauge transformations that yield a
new sequence with a convergent subsequence. Let .A0; ˛0/ denote the limit. Note in
particular that j˛0j is no greater than 1� ı at the origin. For each R � 1, write the
integral of .1� j˛0j

2/ over the radius R ball in C2 as K RR2 .

Suppose that fK RgR�1 is bounded. Then Point (a) of the third item in Proposition
4.2 implies that there is nonconstant, holomorphic polynomial h on C2 and a smooth
function u such that ˛0 D euh. Thus, ˛�1

0
.0/ D h�1.0/. Let D � C2 denote an

embedded, closed holomorphic disk of radius 1 or less that intersects ˛�1
0
.0/ at its

center and has boundary disjoint from ˛�1.0/. The winding number of ˛0.0/=j˛0.0/j

on the boundary of D is thus positive. The form of convergence that is asserted by
Proposition 4.2 and the final item of Proposition 4.2 implies that each large n version
of ˛nxn

is nonzero on the boundary of D and also has positive winding number. As
a consequence, there is a zero of each such section in D . Let d denote the distance
between d ’s center and the origin in C2 . Then ˛n has a zero with distance less than
.d C 1/r�1=2 from xn when n is large. This contradicts the assumptions. Thus, the
sequence fK RgR�1 must be unbounded.

Suppose that the sequence fK RgR�1 is unbounded. Given the second item in Propo-
sition 4.2, the convergence asserted by Proposition 4.2 has the following additional
consequence: Fix R� 1, and then the integral of any sufficiently large n version of
the function r.1�j˛nj

2/ over the ball of radius Rr�1=2 centered at xn will be greater
than 1

2
K RR2r�1 . This runs afoul of the second bullet of Lemma 3.10 when n is large.

Thus, there is no sequence of the sort that would arise were the first item of Proposition
4.1 false.
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4.c Convergence

This subsection addresses the second bullet of Proposition 4.1. The discussion that
follows has four parts. The fourth part contains the proof of the second bullet of
Proposition 4.1.

Part 1 Suppose that f.rn; .An;  n//gnD1;2;::: is a sequence of the following sort:
First, the sequence frngnD1;2;::: � Œ1;1/ is increasing and unbounded. Second,
any given .An;  n/ is an instanton solution to the r D rn version of (1-11) that
obeys the assumptions of Proposition 4.1 for I D Œ�8; 8� and for a given K � 1.
A verbatim repeat of what is said in Sections 5b–5c of SW ) Gr from [6] finds
a subsequence of f.rn; .An;  n//gnD1;2;::: now renumbered consecutively from 1,
a closed set † � Œ�3; 3� �M and a bounded linear functional, m on the space
C 0.Œ�3; 3��M I

V2
T �.Œ�3; 3��M // with the properties listed below:

Property 1 The set † has finite, 2–dimensional Hausdorff measure. Let †0 denote
the part of † in Œ�2; 2��M . If x 2†0 , then the Hausdorff measure of †’s intersection
with the ball of radius � centered at x lies between c�1

0
��2 and c0�

2 .

Property 2 The distribution m has support on †. Moreover, m is also closed in the
sense that m.d�/D 0 if � is a 1–form with compact support in Œ�2; 2��M . Finally,
m annihilates sections of

V0;2
T �.Œ�2; 2��M /; and it is positive on the forms

(4-5)
�
ds ^ aC 1

2
� a
�
C �

if v is anti-self dual with j�j � 21=2 .

Property 3 Let D �C denote the open unit disk and D denote its closure. Suppose
that � is an orientation preserving embedding of D �D ! .�2; 2/�M . Assume
in addition that �.D � @D/is disjoint from †0 . Let � denote a smooth 2–form
on �.D � D/ that vanishes near �.@D � D/ and integrates to 1 on any disk of
the form �.D; z/ with z 2 D . Then m.�/ is an integer. Moreover, m.�/ � 1

if �.0; � / intersects †0 and maps D in an orientation preserving fashion onto a
pseudoholomorphic disk.

Property 4 The following sequences converge with limit zero: To describe the first
sequence, let †0D†\ .Œ�2; 2��M /. Here is the n–th element of the first sequence:

(4-6) sup
z2†0

dist.z; ˛�1
n .0//C sup

z2˛�1
n .0/

dist.†0; z/:

Geometry & Topology, Volume 14 (2010)



2872 Clifford Henry Taubes

Each of the remaining sequences is labeled by a 2–form on Œ�2; 2��M with supremum
norm equal to 1 and compact support. Let � denote such a form. The sequence labeled
by � has n–th element

(4-7)
i

2�

Z
Œ�2;2��M

� ^F yAn
�m.�/:

To say something about the proof that these properties hold, remark that the assumptions
on the sequence imply that Lemmas 3.1, 3.6, 3.8, 3.9 and 3.10 can be invoked on
Œ�4; 4��M . These lemma with Lemma 3.1 are the key inputs to the arguments used
to prove Lemmas 5.1 and 5.2 in the article SW) Gr from [6]. Indeed, Lemma 3.9
implies the following: Let f.An;  n/gnD1;2;::: denote the original sequence. Then the
sequence of distributions

f�! .i=.2�//

Z
Œ�2;2��M

� ^F yAn
gnD1;2;:::

on C 0.Œ�4; 4��M I
V2

T �.Œ�4; 4��M // is bounded. Granted this, then this sequence
of distributions has a weakly convergent subsequence. A convergent subsequence is
chosen and the limit distribution is taken to be m . The conclusions of Lemma 3.10
are used to construct a refined subsequence whose version of the set †0 is the support
of m . The fact that m is closed is a consequence of the fact that .i=.2�//F yAn

is a
closed 2–form. The remaining assertions of Property 2 follow in a straightforward
fashion using (3-34) and (3-35) and the bounds given by Lemmas 3.1, 3.6, 3.8 and
3.9. The assertion made in Property 3 about the integer value of m follows using two
facts: First, .i=.2�//F yAn

represents the first Chern class of a complex line bundle E .
Second, this 2–form is nearly zero at any given point in the complement of †0 when
n is large. The positivity of m.�/ when � maps 0�D onto a pseudoholomorphic
disk follows using Lemma 4.3.

Part 2 The notion of a positive cohomology assignment is introduced in Section 6a
of the article SW) Gr from [6]. The definition refers to the notion of an admissible
map. The analogous definition in the present context requires first the specification
of a closed subset †0 � Œ�2; 2��M with finite 2–dimensional Hausdorff measure.
With the latter specified, a smooth map � W D! .�1; 1/�M is said to be admissible
if it extends as a continuous map to @D and maps the latter to the complement in
.�1; 1/�M of †0 ’s intersection with .�1; 1/�M . The set of admissible maps is
open in C1.DI .�1; 1/�M /. A homotopy hW Œ0; 1��D! .�1; 1/�M is admissible
if it extends as a continuous map from Œ0; 1�� @D into .�1; 1/�M and is such that
h.t; � / is admissible for each t 2 Œ0; 1�. A positive cohomology assignment associates
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to each admissible map � and integer, I.�/, subject to the following rules:

(4-8)

� I.�/D 0 if �.D/ is disjoint from †0 .

� If �0 and �1 are admissable maps that are homotopic via an admissable
homotopy, then I.�0/D I.�1/.

� If � is admissable and if �W D ! D is a proper, degree k map, then
I.� ı�/D kI.�/.

� Suppose that � is admissable and that ��1.†0/ is contained in a dis-
joint union

S
� D� �D where each D� is the image via an orientation

preserving embedding, �� , of D into D . Then I.�/D
P
� I.� ı ��/.

� If � is an orientation preserving, pseudoholomorphic embedding whose
image intersects †, then I.�/ > 0.

As is explained next, the distribution m from Part 1 can be used to define a positive
cohomology assignment for Part 1’s set †0 . This is done as follows: Suppose first that �
is an admissible embedding that extends as a smooth embedding of D . Then � extends
as an embedding �W D �D! .�1; 1/�M such that �.0; � /D � . Fix a 2–form a

with compact support on D and with integral 1 and pull the latter back to D�D via the
projection to the first factor. Push this form forward by � . Define I.�/D m.�/. The
fact that m is closed implies that I.�/ has no dependence on either the form � or the
extension � of � . The definition just given can be used to define I.�/ in the case when
� immerses D and is such that ��1.†0/ is contained in a disjoint union of subdisks
on which � is 1�1. Indeed, define I. � / as above for each such subdisk and take I.�/

to be the sum of the resulting numbers. Granted the preceding, suppose now that � is
any given admissible map. A very small perturbation, �0 , of � will be an admissible
immersion of the sort just described. Define I.�/ to equal I.�0/. Since m is closed,
the value of I.�/ does not depend on �0 if supz2D dist.�.z/; �0.z// is sufficiently
small. The first four points in (4-8) follow either directly from the definition, or from
the fact that m is closed. The fact that I. � / is an integer follows from Property 3 in
Part 1 above, as does the fact that I.�/ is positive when ��1.†/¤∅ and � maps D

onto a pseudoholomorphic disk.

Part 3 Let # denote a finite set whose typical element is a pair .C;m/ of the following
sort: First, C is the restriction to Œ�1; 1��M of a closed, irreducible, oriented 2–
dimensional subvariety of some open neighborhood in R�M of Œ�1; 1��M with
nonempty intersection with .�1; 1/�M . Second, m is a positive integer. Assume, in
addition that no two pairs from # share the same subvariety.

Suppose that
S
.C;m/2# C D†0 . Each admissible map has a well defined intersection

number with each subvariety from # . If � is an admissible map, and .C;m/ 2 # ,
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use IC .�/ to denote the intersection number of � with C . Define I.�/ to equalP
.C;m/2‚ mIC .�/. The latter obeys the top four positive cohomology assignment

axioms in (4-8). It obeys the final axiom if and only if each subvariety from # is pseudo-
holomorphic. A positive cohomology assignment of this sort is said to be carried by # .

The next lemma asserts that a positive cohomology assignment for †0 is necessarily
of the sort just described. This is the analog here of Proposition 6.1 in the article
SW) Gr from [6].

Lemma 4.4 Let I. � / denote a positive cohomology assignment as described in Part 2.
This positive cohomology assignment is carried by a finite set # whose typical element
is a pair .C;m/ where C is a closed, irreducible, pseudoholomorphic subvariety in a
neighborhood of Œ�1; 1��M and where m is a positive integer.

Proof of Lemma 4.4 The proof of Proposition 6.1 in the article SW) Gr from [6]
is essentially local in nature, and so can be exported for use in the present context.
To elaborate on this, agree first to extend the definition of an admissible map so as to
allow maps from D into .�2; 2/�M . Thus, a map in this context is admissible if it
extends to @D so as to map the latter to the complement of †0 in .�2; 2/�M . Mimic
what is done in Part 2 above to define a positive cohomology assignment on the set of
admissible maps from D into .�2; 2/�M . This done, the arguments in Sections 6b–6e
of the article SW ) Gr from [6] can be applied to prove the lemma. Note that the
proof establishes that the subvarieties from the pairs in # live in .�2; 2/�M .

Part 4 This part contains the following.

Proof of bullet 2 of Proposition 4.1 Suppose I , ı , K and I are such that the propo-
sition were false. There would then be a sequence f.rn; .An;  n D .˛n; ˇn///gnD1;2;:::

where frngnD1;2;::: is a sequence in Œ1;1/ that is increasing without bound and where
any given .An;  n/ is an instanton solution to (1-11) that obeys the assumptions of the
proposition but not the conclusions.

What follows can be arranged by passing to a diagonal subsequence of the original
sequence f.rn; .An;  n//gnD1;2;::: and then renumbering this subsequence consecu-
tively from 1. Fix s0 2

1
2
Z \ I . Then translate each .An;  n/ along the R factor

of R �M by �s0 and apply the arguments in Part 1 to the result. The result is a
set † D †s0

� Œ�2; 2��M , its subset
P

0s0
� Œ�1; 1��M and a distribution ms0

;
these obeying Properties 1–4 of Part 1. As noted in Part 2 of Section 4.c, they define a
positive cohomology assignment. According to Lemma 4.4, this positive cohomology
assignment is carried by a set # D #s0

of the sort that is described at the outset of
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Part 3. Translate the subvariety components of this set along the R factor of R�M

so that the origin goes to s0 and so that all subvariety components from the pairs that
comprise #s0

sit in a neighborhood of Œs0� 1; s0C 1��M .

Let #Cs0
denote the subset of pairs in #s0

whose subvariety component has nonempty
intersection with Œ0; 1� �M , and let #�s0

� #s0
denote the subset of pairs whose

subvariety component has nonempty intersection with Œ�1; 0��M . The convergence
of the sequences that are described in Property 4 of Part 1 imply that the s! s0 translate
of #Cs0

must agree with the s! s0C
1
2

translate of #�
s0C1=2

. This is to say that the
subvarieties and associated integers match up. As a consequence, there exists a set, # ,
of pairs whose typical element has the form .C;m/ with C a closed, irreducible, pseu-
doholomorphic subvariety of a neighborhood I �M in R�M , and with m a positive
integer. Note that this set # must be finite because Property 4 in Part 1 implies an s0�

independent bound on both the integer component of any pair from #s0
, and the area of

the intersection with .�1; 1/�M of the subvariety component of any pair from #s0
.

It follows from the manner of convergence that is described in Property 4 of Part 1 that

(4-9) lim
n!1

 
sup

z2
S
.C;m/2# C;

s.z/2I

dist.z; ˛�1
n .0//C sup

z2
S
.C;m/2# C;

s.z/2I

dist

 [
.C;m/2#

C; z

!!
D 0:

In particular, Assertion (a) of the second item of Proposition 4.1 holds if n is sufficiently
large. To obtain Assertion (b) of the second item, note that there exists a finite set, �ı ,
of compactly supported 2–forms on R�M such that any 2–form v where s 2 I and
with both k�k1 � 1 and kr�k1 � ı�1 has distance 1

8
ı in the C 0 metric topology

from some form in �ı . Given that �ı is a finite set, (4-7) implies that

(4-10)

ˇ̌̌̌
ˇ i

2�

Z
I�M

� ^F yAn
�

X
.C;m/2#

m

Z
C
�

ˇ̌̌̌
ˇ� 1

8
ı

for all � 2�ı when n is large. Thus, Assertion (b) of the second item in Proposition
4.1 also holds when n is large.

To obtain Assertion (c), note first that the form da is nonnegative on the tangent planes to
any pseudoholomorphic subvariety. This understood, if .C;m/2 # , then the integral of
da over C is finite if there is a ı–independent upper bound to its integral over the jsj �
ı�1 part of C . Such a finite upper bound follows using the Assertion (b) of the second
item with �D�.jsj�ı�1C1/da. Note in particular that the integral of the wedge of this
form with F yAn

can be bounded by an n–independent multiple of K by first integrating
by parts and then applying (4-10) and Lemma 3.9 to the resulting expression.
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4.d Multiple limits

Fix ı > 0, K � 1 and an unbounded set I �R for use in Proposition 4.1. Fix r � 1

and an instanton solution, d D .A;  D .˛; ˇ//, to (1-11) that obeys the hypothesis
of Proposition 4.1. As will now be explained, the instanton d can well determine via
Proposition 4.1 a number of very distinct sets of the sort denoted in Proposition 4.1
by # . To say more, first translate d along the R factor of R�M so that the following
is true: There exist an unbounded set of consecutive integers, ƒ, such that 0 2 ƒ

and such that if k 2ƒ, then Ik D Œ�ı
�1� 8C 1

2
kı�1; ı�1C 8C 1

2
kı�1� is in I and

the union,
S

k2ƒ Ik , is all of I . There exists such a translation by virtue of the fact
that I is noncompact. Proposition 4.1 supplies a set # D #k for each interval Ik .
Note that each subvariety from a pair in any given #k is defined on the whole of
R�M . Even so, the points in ˛�1.0/ are guaranteed to have distance ı or less from
†k D

S
.C;m/2#k

C only if s 2 Ik D Œ�ı
�1C

1
2
kı�1; ı�1C

1
2
kı�1�. Of course, the

points in †k that sit where s 2 Ik \IkC1 have distance ı or less from those in †kC1 ,
and vice-versa; but there is no apriori guarantee that such is the case for all s 2R. If
such were the case for all s 2 R, then one could see about taking #k D #kC1 . This
then begs the following question:

Can the collection f#kgk2ƒ from Proposition 4.1 be defined so as
to have a finite number of elements? If so, can such a set be chosen
whose size is apriori bounded in a ı–independent fashion?

The next proposition asserts that the set f#kgk2ƒ can be chosen so as to have a finite
number of distinct elements; a number with bound determined solely by K .

Proposition 4.5 Given K � 1, suppose that each Reeb orbit with length at most
.1=.2�//K is nondegenerate. There exists � � 1, and given ı > 0, there exists
�ı � 1 which, with � , has the following significance: Suppose that r � �ı , and
that d D .A;  D .˛; ˇ// is an instanton solution to (1-11) with either Ad < r2 or
Fd � �r2 . Let I �R denote a connected subset of length at least 2ı�1C 16 such that
sups2I M.s/� K . Let I � I denote the set of points with distance at least 7 from any
boundary point of I . Then

� Each point in I �M here j˛j � 1� ı has distance �r�1=2 or less from a point
where ˛ is zero.

� There exists
(a) A positive integer N � � and a cover of I as

S
1�k�N Ik by connected

open sets of length at least 2ı�1 . These are such that Ik \ Ik0 D ∅ if
jk � k 0j> 1. In addition, if jk � k 0j D 1, then Ik \ Ik0 has length between

1
128
ı�1 and 1

64
ı�1 .
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(b) For each k 2 f1; 2; : : : ;N g, a set #k whose typical element is a pair .C;m/
where m is a positive integer and where C � I�M is a pseudoholomorphic
subvariety defined on a neighborhood of Ik �M . These elements of #k are
constrained so that no two pair share the same subvariety component; and so
that X

.C;m/2#k

m

Z
C

da< �:

In addition, the collection f#kgkD1;:::;N is such that

(1) sup
z2
S
.C;m/2#k

C;

s.z/2Ik

dist.z; ˛�1.0//C sup
z2˛�1.0/;

s.z/2Ik

dist

 [
.C;m/2#k

C; z

!
< ı .

(2) Let k 2 f1; : : : ;N g, let I 0 � Ik denote an interval of length 1, and let v
denote the restriction to I 0�M of a 2–form on I�M with k�k1D 1 and
kr�k1 � ı

�1 . Thenˇ̌̌̌
ˇ i

2�

Z
I 0�M

� ^F yA�
X

.C;m/2#

m

Z
C

�

ˇ̌̌̌
ˇ� ı:

� Suppose that I is unbounded from above. Fix EC � K and assume with regards
to the Reeb orbits only that all with length at most .1=.2�//EC are nonde-
generate. Assume in addition that lims!1 E.djs/ � EC . Then the preceding
conclusions hold with the constant � depending on K and EC , and with �ı
depending on the latter and on ı . Moreover, if IDR and all Reeb orbit of length
at most .1=.2�//EC are nondegenerate, then lims!�1 E.djs/� ECC ı .

Proof of Proposition 4.5 The argument for the first bullet is the same as that given
for the analogous point of Proposition 4.1. The proof of second bullet has four parts.
Part 5 of what follows proves the third bullet.

Part 1 This part and Part 2 of the proof supply conditions that force a pseudoholomor-
phic subvariety to lie everywhere close to a Reeb orbit. The following lemma refers to
a constant, `M , which is the smallest of the lengths of the Reeb orbits.

Lemma 4.6 Given N � 1 and " > 0, there exists �" > 1 with the following signifi-
cance: Suppose C is a closed, irreducible, pseudoholomorphic subvariety in a neighbor-
hood of Œ�4; 4��M such that both

R
C da<��1

" and
R

C\.Œ�3;3��M / ds ^ a�N . Then
each point of C js for jsj � 1 has distance along M no greater than " from some Reeb
orbit,  , of length less than N C ". Moreover, there is a positive integer m� `�1

M
N
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such that if � is a smooth 2–form on Œ�1; 1��M with k�k1D 1 and kr�k1 � "�1 ,
then ˇ̌̌̌

ˇ
Z

C\.Œ�1;1��M /

� �m

Z
Œ�1;1��

�

ˇ̌̌̌
ˇ� ":

Proof of Lemma 4.6 This is proved by invoking Lemma 4.4 as follows: Suppose that
there is no such �" . There would then exist a sequence fCkgkD1;2;::: that obeyed the
hypothesis of the lemma with �" replaced by k�1 , but not the conclusions. Given the
assumptions, it follows that the subvarieties that define this sequence have uniformly
bounded area where they intersect Œ�3; 3��M . As a consequence, there is a subse-
quence (hence renumbered consecutively from 1) whose intersection with some neigh-
borhood of Œ�2; 2��M converges pointwise to a set, †0 , with finite 2–dimensional
Hausdorff measure. The subsequence can, and should be chosen so that the sequence of
distributions f� !

R
Ck
�gkD1;2;::: on the space C 0.Œ�2; 2��M I

V2
.Œ�2; 2��M //

has a weakly convergent subsequence to a distribution. Denote the latter by m . The pair
consisting of †0 and m defines a positive cohomology assignment. Lemma 4.4 asserts
that this cohomology assignment is carried by a finite set # whose typical element
is a pair .C;m/ where C is a closed, irreducible, pseudoholomorphic subvariety that
is defined in some neighborhood of Œ�1; 1��M and where m is a positive integer.
Because of the manner of convergence that defines m , the 2–form da must integrate to
zero on the subvariety component of each pair from # . Since da is nonnegative on the
tangent space of each such component, it follows that da is zero on each component,
and so each component is Œ�2; 2�� with  a Reeb orbit. The manner of convergence
that defines m implies that the length of each Reeb orbit involved is bounded by N .
Use ‚ to denote the set of pairs .;m/ that arise from # . Given the manner of
convergence of fCngnD1;2;::: to †0 , all points of each large n version of Cn at any
point s 2 Œ�1; 1� distance less than " from a fixed Reeb orbit from � , and vice versa.
Furthermore, the integral of a fixed 2–form � over the s 2 Œ�1; 1� part of each large n

version of Cn will differ by less than " from
P
.;m/2‚ m. As this conclusion conflicts

with the assumptions about the sequence fCngnD1;2;::: , the lemma must be true.

This last lemma has the following corollary:

Corollary 4.7 Suppose that N � 1 has been given and that each Reeb orbit of
length N or less is nondegenerate. Given " > 0, there exists �" > 1 with the following
significance: Let I �R denote an interval of length at least 4, and suppose that C is a
closed, irreducible, pseudoholomorphic subvariety in a neighborhood of I�M with the
property that

R
C\.I 0�M / da< ��1

" and
R

C\.I 0�M / ds^a�N for all intervals I 0 � I
of length 1. Let I � I denote the subset with distance at least 3 from any boundary
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point of I . Then there exists a finite set ‚ consisting of pairs .;m/ with  a Reeb
orbit and m a positive integer. This set is such that no two pair share the same Reeb
orbit. In addition,

�
P
.;m/2‚ m` �N .

� Each point of C js for jsj � 1 has distance along M no greater than " fromS
.;m/2‚  . Conversely, each point in

S
.;m/2‚  has distance no greater than

" from C js .
� If v is a smooth 2–form on I �M with k�k1 D 1 and kr�k1 � "�1 . Thenˇ̌̌̌

ˇ
Z

C\.I�M /

� �
X

.;m/2‚

m

Z
I�

�

ˇ̌̌̌
ˇ� ":

Proof of Corollary 4.7 This follows directly from Lemma 4.6 given the nondegener-
acy assumption. Indeed, the latter implies that the Reeb orbits with length less than
2�N in M are finite in number and so any two are separated by some minimal distance.
Take " much less than this distance and invoke Lemma 4.6.

Part 2 The next lemma supplies a somewhat different condition that forces a pseudo-
holomorphic subvariety to be everywhere close to a Reeb orbit.

Lemma 4.8 Suppose that N � 1 has been given and that each Reeb orbit of length N
or less is nondegenerate. There exists � > 1, and given "> 0, there exists R"> 16 with
the following significance: Let I�R denote an interval of length at least 2R" , and sup-
pose that C is a closed, irreducible, pseudoholomorphic subvariety in a neighborhood
of I�M with the property that

R
C\.I 0�M / da< ��1 and

R
C\.I 0�M / ds^a�N for

all intervals I 0 � I of length 1. Let I � I denote the subset with distance at least R"

from any boundary point of I . There exists a finite set ‚ consisting of pairs .;m/
with  a Reeb orbit and m a positive integer. This set is such that no two pair share the
same Reeb orbit. In addition,

�
P
.;m/2‚ m` �N .

� Each point of C js for s 2 I has distance along M no greater than " fromS
.;m/2‚  . Conversely, each point in

S
.;m/2‚  has no greater than "

from C js .
� If I 0 � I is an interval of length 1 and v is a smooth 2–form on I 0 with
k�k1 D 1 and kr�k1 � "�1 , thenˇ̌̌̌

ˇ
Z

C\.I 0�M /

� �
X

.;m/2‚

m

Z
I 0�

�

ˇ̌̌̌
ˇ� ":
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Proof of Lemma 4.8 Fix ı > 0, but very much less than the distance between any two
distinct Reeb orbits with length less than N . Let I� � I denote the set of points with
distance at least 4 from each boundary point. Let � D �ı denote the constant provided
by Corollary 4.7. Suppose that C denotes a subvariety that obeys the assumptions of
Corollary 4.7 with ı used in lieu of ", and let ‚C denote the set of pairs of Reeb orbit
and positive integer that Corollary 4.7 provides. Note that the collection of such sets is
finite since the Reeb orbits with length at most N are nondegenerate. Let ƒN denote
this set.

Now suppose that " < ı and that there is no R" as claimed by the lemma. Given
that ƒN is finite, there exists ‚ 2 ƒN , a sequence fIkgkD1;2;::: of intervals of
length 32k , and a sequence fCkgkD1;2;::: where any given Ck is a closed, irreducible,
pseudoholomorphic subvariety from a neighborhood of Ik �M with the property thatR

C\.I 0�M / da � ��1
ı

and with
R

C\.I 0�M / ds ^ a � N for each interval I 0 � Ik of
length 1. Moreover, one or both of the following is true:

(4-11)

� There is a point in each Ck \ .Ik � M / with distance k or more
from a boundary point of Ik �M and with distance " or greater fromS
.;m/2‚ Ik �  . Or, there is a point in this union with distance k or

more from a boundary point, and with distance " or more from C .

� There is an interval I 0
k
� I with length 1 and distance k or more from a

boundary point of Ik and a smooth 2–form vk on I 0
k

with k�kk1 D 1

and kr�kk1 � "
�1 that violates the inequality asserted in the lemma.

Suppose first that the top item in (4-11) is obeyed. By translating Ik and Ck along
the R factor of R�M , one can arrange that such a point sits where s D 0. Assume
that this is the case. Taking limits, as in the proof of Lemma 4.6, finds a subsequence
(to be renumbered consecutively from 1) that converges pointwise on bounded do-
mains inside R �M to a pseudoholomorphic subvariety, C� � R �M with the
following properties: Each point of C� has distance ı or less from

S
.;m/2‚ R�  .

But, there exists a point on C� where s D 0 with distance greater than " fromS
.;m/2‚ R �  or vice-versa. Given that each Reeb orbit from ‚ is isolated, it

follows that limjsj!1.supz2C�js
dist.z;

S
.;m/2‚  // D 0. But this is not possible

since integration by parts finds the integral of da over C� to be zero under these
assumptions.

Suppose next that the bottom item in (4-11) is obeyed but not the top. Translate each
Ik and Ck along the R factor of R �M so that I 0

k
D Œ0; 1�. Use Ck to denote

now the translated version of the original. By virtue of the Arzela–Ascoli theorem,
there is a subsequence of fCkgkD1;2;::: (hence renumbered consecutively from 1) with
the following property: Let f�kgkD1;2;::: now denote the corresponding sequence
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of translated 2–forms. This sequence has a subsequence that converges strongly in
C 0.Œ0; 1��M I

V2
.Œ0; 1��M / to a form v1 with sup–norm 1. The latter is Lipschitz

with Lipschitz constant "�1 . Meanwhile, the arguments given for Lemma 4.6 can be
used to prove that the sequence of distributions f�!

R
Ck\.Œ0;1��M / �g has a subse-

quence that converges weakly to the distribution given by � !
P
.;m/m

R
Œ0;1�� �

where m is a positive integer. But this sort of convergence is not possible given the
properties of �1 .

Thus, neither of the possibilities in (4-11) are allowed, so the lemma must be true.

Part 3 Return to the context of Proposition 4.5 and its set I . The first point to make
is that if r � c0 and Œs0; s0C 1� 2 I , then

(4-12)

ˇ̌̌̌
ˇ i

2�

Z
Œs0;s0C1��M

ds ^ a^F yA

ˇ̌̌̌
ˇ� c0K :

This follows from Lemmas 3.1, 3.8 and Lemma 3.9. Meanwhile, what with (3-34) and
(3-35), it follows from an integration by parts that

(4-13)
i

2�

Z
I 0�M

da^F yA � c0K

if I 0 � I is any given closed subset and r � c0 . Keep these inequalities in mind in
what follows.

Lemma 4.9 Given K � 1, suppose that each Reeb orbit with length .1=.2�//K
or less is nondegenerate. Given also " > 0, there exists � � 1 with the following
significance: Suppose that r � � and that .A;  D .˛; ˇ// is an instanton solution to
(1-11) with either Ad < r2 or Fd ��r2 . Let I�R denote a connected subset of length
at least 16 with M.s/ � K on I . Let I denote the set of k � Z with Œk; k C 1� 2 I
and with .i=.2�//

R
Œk;kC1��M da^F yA � ". Let I 0 � I � .

S
k2I Œk; k C 1�/ denote

any given component. Then �"2 � .i=.2�//
R

I 0�M da^F yA .

Proof of Lemma 4.9 Suppose that ı > 0 has been given, and that s 2 I 0 is a point
with distance at least ı�1C 8 from any boundary point of I 0 . Invoke Proposition 4.1
using in lieu of I the interval Is D Œs� ı

�1� 8; sC ı�1C 8�. Given that r is greater
than some ı–dependent constant, this proposition supplies an Is version of its set # ,
this denoted by #s . Thus, the typical element in #s is a pair .C;m/ with m a positive
integer and C a closed, pseudoholomorphic subvariety that is defined in a neighborhood
of Œs� ı�1; sC ı�1�. Let I 00 � Œs� ı�1; sC ı�1� denote a length 1 subcylinder. Then
the integral of da over C ’s intersection with I 00 �M is less than "C ı . Let � � 1 be
as described in Lemma 4.8 and assume now that "C ı is less than ��1 . Fix "0 > 0
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and let R"0 , denote the constant from Lemma 4.8. Suppose that ı�1 > 2R"0 . Lemma
4.8 asserts that the each point of C in the set Œs� ı�1CR"0 ; sC ı

�1�R"0 ��M has
distance "0 or less from R�  where  is a Reeb orbit with length no greater than K .
As a consequence, each point of ˛�1.0/ with distance at least R"0 C 16 from any
boundary point of I 0 has distance "0 or less from some R�  .

To continue fix s 2 I 0 with distance at least R"0 C 16 from any boundary point of I 0 .
The integral of .i=.2�//a^F yA over the portion of fsg �M with distance 2"0 or less
from  can be written using the coordinates that are used in (1-15) as

(4-14)
`

4�2
i

Z
t2S1

 Z
jzj<2"0

F yA

ˇ̌̌̌
t

!
dt C e;

where jej � c0K "0 . This bound on e follows using the Lemmas 3.1, 3.6, 3.8 with
Lemma 3.9. Meanwhile, it follows from Proposition 4.1 and (3-35) that the integral
term in (4-14) is equal to m` C e0 where je0j � c0r�1=2 .

Granted what just said, it follows using an integration by parts that the integral of
.i=.2�//da^F yA over the portion of I 0�M with distance at least R"0C16 from any
boundary point of I 0 is no less than �c0.K"0C r�1=2/.

A lower bound for the integral over the rest of I 0 �M is obtained as follows: Note
first that Lemmas 3.1, 3.6, 3.8 and 3.9 imply that

(4-15) �c0r�1
�

i

2�

Z
fsg�M

da^F yA

at each point s 2R. Note as well, that the bottom equation in (1-11) implies that

(4-16)
i

2�
da^rA˛^rA x̨ � �c0jrAˇj

2:

Given the bound in (4-15), it follows that the integral of .i=.2�//da^F yA over the
remaining portion of I 0 �M is no less than c0R"0r

�1 .

Thus, the integral over I 0 �M is no less than �c0.K"0CR"0r
�1C r�1=2/ if r is

greater than some "0 dependent constant. This understood, choose "0 < 1
2
c�1

0
K�1"2 .

Granted what was said above, the desired bound for the integral of .i=.2�//da^F yA
follows if r is greater than some purely "–dependent constant.

Part 4 With " > 0 fixed and much less than 1, take r large enough so as to invoke
Lemma 4.9. Let I D I" be as described in Lemma 4.9. Fix R� 1 and consider the
integral on the left hand side of (4-13) for I 0 D Œ�R;R��M . Let NR denote the
number of integers k 2 I with Œk; kC 1�� Œ�R;R�. The contribution to the Œ�R;R�

version of the left hand side of (4-13) from the cylinders Œk; k C 1� � Œ�R;R� with
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k 2 I" sums to at least NR". Meanwhile, Lemma 4.9 implies that the contribution
from the rest of Œ�R;R��M is no less than �.NRC1/"2 . This understood, it follows
from (4-13) that NR � c0K "�1 . As this last bound is independent of R, there are at
most this many integers in I" . Let N" denote the number of elements in I" .

Fix L> ı�1 and for each s 2 I with distance at least LC 7 from any boundary point
of I , let Is D Œs�L; sCL�. Given L, Proposition 4.1 can be invoked if r � �L � 1

where �L depends only on K , f and L. In particular, Proposition 4.1 supplies its
set # D #s . Suppose that s has distance at least LC 1 from I" . If " � c�1

0
and

if L D 4Rı where Rı is defined from Lemma 4.9, then Lemma 4.9 can be used
to replace any s 2 Is version of #s with a collection # 0s whose typical element is a
pair .R � ;m/ with  a Reeb orbit of length less than K and with m a positive
integer such

P
.m; /m` . This replacement of #s with # 0s has the following cost: The

conclusions of Proposition 4.1 hold using #s only on Œs� 3Rı; sC 3Rı �.

Let I0 � I denote the set of points with distance less than 6Rı from I" . This set is a
disjoint union of at most N" intervals whose total length is at most 6RıN" . Given that
" is fixed already in a ı–independent fashion, Proposition 4.1 can be applied to each
such interval if r � �0

ı
> 1 to supply for each a set # . This understood, the conclusions

of Proposition 4.5 are satisfied using some N 0 � N" versions of # to deal with the
components of I0 , while using for I � I0 at most N 0C 1 versions of sets # whose
constituent pairs have subvariety component R�  .

Part 5 The assumption is that I has the form Œs0;1/ or .�1;1/. To prove the
assertion made by the third bullet about I , fix " > 0 and very small. Let I denote the
subset of k 2 Z\ I with .i=.2�//

R
Œk;kC1��M da^F yA > ". Note that I is bounded.

Let ƒ denote the set of components of I� .
S

k2I Œk; kC 1�/ with length at least 16.
This is a finite set because the s!˙1 limits of d are solutions to (1-8). Let N denote
the number of elements in ƒ. Order the set ƒ as fI 0

0
; : : : ; I 0

N
g with the ordering given

by the value of the supremum of s . Thus, I 0
N

is unbounded from above. With the
preceding understood, the remainder of the proof is broken into four steps.

Step 1 Let sN� denote the minimum point in I 0
N

or �1 if I 0
N
DR. Fix ı0 > 0 but

small. Apply Proposition 4.1 to the intervals in I of length 2ı�1
0
C 16 with a point

from I 0
N

. Then apply Lemma 4.6 to all subintervals in I 0
N

of length 1. Given the
conclusions of Proposition 4.1, there exists r0 that depends only on ı0 and is such
that if r > r0 , then Lemma 4.6 assigns to any such subinterval a collection of pairs of
Reeb orbit and positive integer weight. Given that the Reeb orbits of length EC or
less are nondegenerate, the conclusions of Lemma 4.6 applied to overlapping length 1
intervals starting at any given, sufficiently large value of s and then working towards
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smaller values leads to the following conclusion when ı0 � c�1
0

and " < c�1
0

, and r is
large: There exists a finite set ‚ consisting of pairs .;m/ with  a Reeb orbit and m

a positive integer. This set is such that no two distinct pairs share the same Reeb orbit.
Furthermore,

P
.;m/2‚ m` � .1=.2�//EC and the assertions of the two bullets of

Proposition 4.1 hold using the given value of ı0 for the whole of I D I 0
N

for large r

with the set # D f.R� ;m/g.;m/2‚ .

Step 2 If N D 1 and so I 0
N
D I , then nothing more need be said. Assume that this

is not the case. Apply Proposition 4.1 to overlapping subintervals of length 2ı�1
0
C 16

in I with a point from I 0
N�1

. Then apply Lemma 4.6 to overlapping subintervals of
length 1. These assign to each such subinterval a finite collection of pairs of Reeb
orbit and positive integer if ı0; " < c�1

0
and r > r0 . To elaborate, let yI denote a given

such length 1 interval and let ‚ denote the assigned collection. The conclusions of
Proposition 4.1 hold for the I D yI , with constant ı equal to ı0 when r � r0 , and with
# D f.R� ;m/g.;m/2‚ .

Let S.N�1/C denote the maximal point of I 0
N�1

and let SN� denote the mini-
mal point of I 0

N
. Let ‚0 denote the collection of Reeb orbits assigned to yI� D

Œs.N�1/C� 1; s.N�1/C�. Let SN� denote the minimal point in I 0
N

and introduce
yIC to denote ŒSN�;SN� C 1�. Let � denote the piecewise differentiable function
on R that is zero for s < s.N�1/C � 1, equals s � s.N�1/C on yI� is equal to 1 on
Œs.N�1/C; sN��, equals sN�C1� s on yIC and is zero for s > sN�C1. Integrate the
4–form .i=.2�//d� ^ a^FA on R�M and integrate by parts using (4-15) to see
that

(4-17)
i

2�

Z
yIC�M

ds ^ a^F yA�
i

2�

Z
yI��M

ds ^ a^F yA � �c0."C ı0/

when r � c0 . Granted this, granted the conclusions of Step 1, and granted what is said
by Proposition 4.1, it then follows that

P
.;m/2‚0 m` � .1=.2�//EC if ı0 and " are

less than c�1
0

.

With the preceding understood, it then follows using the argument from Step 1 for
I 0

N�1
that each subinterval of length 1 in I 0

N�1
is assigned this same collection ‚0 by

Lemma 4.6. As a consequence, the two bullets of Proposition 4.1 hold for r � r0 with
ı D ı0 , with I D I 0

N�1
, and with the set # D f.R� ;m/g.;m/2‚0 .

Step 3 Repeat Step 2 first with the roles of the pair .I 0
N
; I 0

N�1
/ played by the

pair .I 0
N�1

; I 0
N�2

/, and then by .I 0
N�2

; I 0
N�3

/, and so on to draw the following
conclusion: For any k 2 f1; : : : ;N g, there is a finite set ‚k of pairs .;m/ of
Reeb orbit and positive integer such that no two pair share the same Reeb orbit,
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such that
P
.;m/2‚k

m` � .1=.2�//EC , and such that the two bullets of Proposi-
tion 4.1 hold for r � r0 , with ı D ı0 , with I being the whole of I 0

k
with the set

# D # 0
k
D f.R� ;m/g.;m/2‚k

.

Granted the preceding, it follows that Lemma 4.9 can be invoked when r � r0 with
each I 0

k
used instead of I and with EC used instead of K . Doing so leads to the

conclusion that the integer N is bounded apriori given K .

Step 4 Given the conclusions of this last step, then the arguments in Part 4 can be used
with only cosmetic changes to prove that the assertions of the first two bullets of Propo-
sition 4.5 hold with the assumption that all Reeb orbits of length less than .1=.2�//EC
are nondegenerate. Meanwhile, the assertion that lims!1 E.djs/� ECC ı follows
from the I 0

1
version of Step 3 using Item (2)(b) of the second bullet of Proposition 4.5.

4.e Local structure

This subsection says something about how the points in ˛�1.0/ vary when this locus is
very near a pseudoholomorphic subvariety. The results are summarized in Lemma 4.10
below. The latter is the analog here of Lemma 5.4 in the article SW D Gr from [6].

The lemma refers to a connected component, C , of the jsj � 2 part of a pseudoholo-
morphic submanifold that is defined on some neighborhood of Œ�2; 2��M in R�M .
Assume in what follows that f˙1g are regular values of s on C . To further set the
stage for the lemma, let � W N ! C denote C ’s normal bundle. There exists �1 > 0

and an exponential map as described in [9, Section 4.a] on the radius �1 disk bundle in
N that embeds this disk bundle. Introduce N1 to denote the radius �1 disk bundle and
use eC W N1!R�M to denote the exponential map. Note that eC embeds each fiber
disk of N1 as a pseudoholomorphic disk and that its differential is an isometry along C .
Use N 0

1
and N 00

1
to denote the respective radius 1

2
�1 and radius 1

4
�1 subbundle in N1 .

To continue with the stage setting, suppose that p � C is any given point. If D �C
is an embedded disk centered at p , use parallel transport by the Hermitian connection
to identify N jD as D �N jp .

Here is one final piece of notation: If .A;  / is an instanton, use S in what follows to
denote the jsj � 1 part of the intersection between ˛�1.0/ and eC .N1/.

Lemma 4.10 Fix C is as described above. Given " > 0 and K � 1, there exists
� � 1 such that the following is true: Suppose that r � � , and that d D .A;  D

.˛; ˇ// is an instanton solution to (1-11) with either Ad < r2 or Fd � �r2 , and with
sups2Œ�8;8� M.s/ � K . Assume that the intersection of ˛�1.0/ with eC .N1/ lies
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eC .N
0
1
/. Let m� 1 denote the integral of .i=.2�//F yA on any fiber disk of N 0

1
. Let ı

denote the greater of the numbers r�1=2 and supz2C\.Œ�1;1��M / dist.z;S/. Assume
that ı < ��1 . Let p 2 C denote a point where jsj � 1 and let D �C denote the disk
of radius ı centered at p . There exists a set of m or fewer points ƒ�N1jp such that
if z 2D , then each point in S \ eC .N1jz/ has distance at least "ı from eC .ƒjz/.

Proof of Lemma 4.10 The proof is essentially identical but for one small aspect
to the proof of Lemma 5.4 in the article SW D Gr from [6]. To explain the dif-
ference, start as in the proof of Lemma 5.4 in this same SW D Gr article by as-
suming the lemma is false so as to derive nonsense. There then exist sequences
f.rn; .An;  n//gnD1;2;::: , fıngnD1;2;::: and fpng�C\.Œ�1; 1��M / with the following
properties: First, the sequence frngnD1;2;::: � Œ1;1/ is increasing and unbounded and
the sequence fıngnD1;2;::: � .0;

1
4
�0/ is decreasing with limit zero. Second, any given

.rn; .An;  n D .˛n; ˇn// obeys the assumptions of the lemma with ıD ın , but is such
that there is no set of m or fewer points in N1jpn

that makes the conclusions of the
lemma hold. Third, the sequence fpngnD1;2;::: converges.

To proceed from here, fix complex Gaussian coordinates centered at pn of the sort that
is described in Part 2 of Section 4.a, but chosen so that the coordinates, x D .x0;x1/,
are such that the plane x1 D 0 is tangent to C at zn and the plane x0 D 0 is tangent
to eC .N1/ at pn . Let �� > 0 be such that the coordinates are defined for jxj � �� .
There are two cases to consider. In the first case is that where fınr

1=2
n gnD1;2;::: has

a bounded and thus convergent subsequence. In this case, pull .An;  n/ back to the
radius r

1=2
n �� ball in C2 by the map x! r

1=2
n x . If there is no bounded subsequence

of fınr
1=2
n gnD1;2;::: , pull .An;  n/ back to the radius ı�1

n �� ball in C2 by the map
x ! ınx . In either case, view the result as a pair .Anı;  nı/ of connection on the
trivial C bundle and spinor on a ball of radius �n in C2 . In either case, the sequence
f�ngnD1;2;::: is unbounded.

As argued in the proof of Lemma 5.4 in the article SW D Gr from [6], there is
a complex algebraic subvariety † � C2 and a subsequence of f.An;  n/gnD1;2;:::

(hence renumbered consecutively from 1) with the following properties: First, † has
intersection number no greater than m with any complex line that is not contained
in †. Second, the sequence

(4-18) lim
R!1

lim
n!1

 
sup
x2†
jxj�R

dist.x; ˛�1
nı .0//C sup

z2˛�1
nı
.0/

jxj�R

.†;x/

!

converges with limit zero. Third, every point in † has distance 1 or less from the
x1 D 0 plane unless the sequence fpngnD1;2;::: converges to a point where jsj D 1. In
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the latter case, there exists a unit length complex number � , and every point in † has
distance 1 or less from the x1 D 0 plane where real .�x0/� 0. (The latter case does
not arise in the case studied in SW D Gr.)

The only algebraic subvarieties that obey the third property are disjoint unions of at
most m parallel planes with x1 D constant. However, if † is of the latter sort, then
the manner of convergence implies that the conclusions of the lemma are not violated
when n is large.

5 Instantons and pseudoholomorphic subvarieties: Part II

Fix again a pair .a;J / and then � so as to define (1-11)). Here as before, � has
P –norm bounded by 1. The upcoming Proposition 5.1 states the first results from
this section. The main result in this subsection is Proposition 5.5 in Section 5.e, this a
stronger version of Proposition 5.1.

Proposition 5.1 says the same thing as the I D R version of Proposition 4.5 but for
one very important difference: Proposition 4.5’s requirement that sups2R M.S/�K is
replaced by a condition on the s!1 limit of the instanton: ECD lims!1 E.Ajs/�K .
Here, E is the function on Conn.E/ that is depicted in (1-9). Recall that when d is a
given instanton, then fd denotes the spectral flow from its s!�1 limit to its s!1

limit.

Proposition 5.1 Fix .A;J / as above. Given K � 1 and EC � K , there exists � � 1,
and given ı > 0, there exists �ı � 1 which, with � , has the following significance:
Suppose that r � �ı , and that dD .A;  D .˛; ˇ// is an instanton solution to (1-11). If
c1.det.S// is a torsion class, assume Ad � K r or fd � ���1r2 . If c1.det.S// is not
a torsion class, assume that Ad � K r or that fd � �K r . In either case, assume that
lims!1 E.Ajs/� EC and require that all Reeb orbits with length at most .1=.2�//EC
are nondegenerate.

� Let c� D lims!�1.A;  /js . Then c� is a solution to (1-11) with E.c�/ �

ECC ı .
� Each point in R�M where j˛j � 1�ı has distance at most �r�1=2 from where
˛ D 0.

� Moreover, there exists
(a) A positive integer N � � and a cover of R as

S
1�k�N Ik by connected

open sets of length at least 2ı�1 . These are such that Ik \ Ik0 D ∅ if
jk � k 0j> 1. In addition, if jk � k 0j D 1, then Ik \ Ik0 has length between

1
128
ı�1 and 1

64
ı�1 .
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(b) For each k 2 f1; 2; : : : ;N g, a set #k whose typical element is a pair .C;m/
where m is a positive integer and where C �R�M is a pseudoholomorphic
subvariety defined in a neighborhood of Ik �M . These elements of #k are
constrained so that X

.C;m/2#k

m

Z
C

da< �:

In addition, these sets f#kgkD1;:::;N are such that

(1) sup
z2
S
.C;m/2#k

C;

s.z/2Ik

dist.z; ˛�1.0//C sup
z2˛�1.0/;

s.z/2Ik

dist

 [
.C;m/2#k

C; z

!
< ı .

(2) Let k 2 f1; : : : ;N g, let I 0 � Ik denote an interval of length 1, and let �
denote the restriction to I 0 �M of a 2–form on R�M with k�k1 D 1

and kr�k1 � ı�1 . Thenˇ̌̌̌
ˇ i

2�

Z
I 0�M

� ^F yA�
X

.C;m/2#

m

Z
C

�

ˇ̌̌̌
ˇ� ı:

Proof of Proposition 5.1 This follows from Proposition 4.5 given an r –independent,
bound on the function M . The Sections 5.a–5.d explain how the required bound is
obtained.

5.a The functions M and E

Let dD .A;  /W R! Conn.E/�C1.M IS/ denote an instanton solution to (1-11).
Introduce E.s/ to denote E.Ajs/ and introduce

(5-1) E.s/D

Z sC1

s

E.x/ dx:

This section explains how bounds on E give bounds on M .

To start this task, use the top equation in (1-11) with an integration by parts to see that

(5-2)
d

ds
ED�2EC 2L;

where

(5-3) L.s/D r

Z
fsg�M

�
1� j˛j2Cjˇj2

�
C

Z
M

a^�

�
�C

1

2
BAK

�
:
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Integrate (5-2) to see that

(5-4) E.s/D e�2s

Z s

�1

e2x L.x/ dx:

It follows from Lemma 3.1 that L.s/� �c0 ; and thus (5-4) implies the bound

(5-5) c0 � E.s/� e2t .E.sC t/C c0/:

Now define L.s/ to be
R sC1

s L.x/dx . It then follows from (5-4) and (5-5) that

(5-6) E.s/� c0C c0E.sC 1/ and L.s/� c0E.s/C c0E.sC 2/C c0:

Note in particular that a bound on E supplies a bound on L . Meanwhile, it is a
consequence of Lemma 3.1 that jM� Lj � c0 . Thus, a bound on E gives a bound on M .

Granted all of this, the next two lemmas supply a bound on E and hence a bound on M .
These lemmas again use EC to denote the s!1 limit of E.Ajs/.

Lemma 5.2 Assume that c1.det.S// is torsion. Given K � 1, there exists � � 1 with
the following significance: Suppose that r � � and that d D .A;  / is an instanton
solution to (1-11) with Ad � K r or fd > ���1r2 . Assume that EC � K . Then
sups2R E.s/� �K C �2 .

Lemma 5.3 Assume that c1.det.S// is not torsion. Given K � 1, there is a constant
� � 1 with the following significance: Suppose that r � � and that d D .A;  / is
an instanton solution to (1-11) with Ad � K r or fd � �K r and EC � K . Then
sups2R E.s/� �K .

The remaining subsections supply the proofs of these last two lemmas.

5.b Preliminaries

Given s 2R, let a.s/D a.djs/ denote the value of (3-2) on djs . Bounds on a.s/ are
obtained here in terms of E.s/, L.s/ and

(5-7) O.s/D

Z
fsg�M

�
jB.A; /j

2
C r jDA j

2
�
:

Here, B is defined in (3-4). The bounds for the various terms in a.s/ are obtained
sequentially moving from right (easy) to left (hard).

The right most term in (3-2) is bounded using Holder’s inequality:

(5-8) r

ˇ̌̌̌
ˇ
Z

M

 |DA 

ˇ̌̌̌
ˇ� c0r1=2O1=2:
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The next term in line is bounded by using (3-4) to write BA in terms of B.A; / and a
remainder. What with Lemma 3.1, an application of Holder’s inequality to the resulting
expression finds

(5-9) je�j � c0C c0.LC O1=2/:

The term �1
2
r E is left as is, and so all that remains is to bound 1

2
cs. Suppose that

uW M !U.1/ is a given smooth map, and write A�u�1duDAECya. Let csu.s/D

cs.Au/. Introduce ya? to denote the L2 orthogonal projection of ya onto the subspace
of iR–valued coclosed 1–forms on M that are L2 orthogonal to the space of iR
valued harmonic 1–forms on M . Then

(5-10)
Z

M

ya^�dyaD

Z
M

ya? ^�dya?:

The operator �d on C1.M I iT �M / is invertible on the coclosed 1–forms that
are L2 orthogonal to the harmonic 1–forms. Let …? denote the L2 –orthogonal
projection onto the latter space. Use hB and hL to denote the respective elements in
…?C1.M I iT �M / that obey �dhB D…

?B.A; / and �dhL D r…?. |� � ia/.
Thus,

(5-11) ya? D hBC hLC i�:

It follows from Lemma 3.1 that

(5-12) jhLj � c0

�
r1=3
jLj2=3C 1

�
:

The proof of this is essentially identical to the proof of the third bullet of [8, Proposition
4.10]. Meanwhile, the L2 norm of hB on M is bounded by c0O1=2 . All of this being
the case, it follows using (5-10) that

(5-13)

ˇ̌̌̌
ˇ
Z

M

ya^�dya

ˇ̌̌̌
ˇ� c0

�
1C OC r2=3

jLj4=3
�
:

The term ya� ya? contributes to cs only via the right most term in (3-3). The latter is
proportional to the value on the Poincaré dual of c1.det.S// of the cohomology class
defined by the L2 orthogonal projection of ya onto the space of harmonic 1–forms,
thus to p.ya/.

Let au.s/D a.A�u�1du;u /. Putting all that was just said together gives

(5-14) au.s/� c0

�
1C LC r1=2O1=2

C OC r2=3
jLj4=3

�
C i�p.ya/� 1

2
r E:
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Since au.s/� au.s
0/ is independent of u, it follows from Lemma 3.4 that the function

s! au.s/ is a nonincreasing function on R. As a consequence, (5-14) finds the bound

(5-15) r E � �2a.ucC/C c0.r C LC OC r2=3
jLj4=3/C i�p.ya/:

Here, ucC is used to denote the gauge transform by u of the configuration cC .

To exploit this, introduce O.s/ to denote
R sC1

s O.x/dx . The measure of the subset
in Œs; sC 1� where O � 8O is no greater than 1

8
. By the same token, the measure of

the subset in Œs; sC 1� where L � 8L is no greater than 1
8

. Thus, there exist points
s0 2 Œs; sC 1� where both O � 8O and L � 8L . Take such a point in (5-15) to see that

(5-16) r E.s0/� �2a.ucC/C c0.r C LC OC r2=3
jLj4=3/C i�p.yajs0/:

Now use the right hand inequality in (5-4) to see that E.x/ � c0E.s0/C c0 for all
x 2 Œs� 1; s�. This understood, (5-6) and (5-16) give

(5-17)
r E.s� 1/� �c0a.ucC/C c0.r C O.s//

Cc0r2=3 sup
x�s

jE.x/j4=3C c0 sup
Œs;sC1�

jp.ya/j:

Finally, use the second equality in Lemma 3.4 to bound O.s/ and so find that

(5-18)
r E.s� 1/� �c0a.ucC/C c0

�
r C a.c�/� a.cC/

�
Cc0r2=3 sup

x�s

jE.x/j4=3C c0 sup
Œs;sC1�

jp.ya/j:

5.c Proof of Lemma 5.2

Since E � c0C c0r in any event, it is sufficient to consider the case where EC � "r

for a suitable " > c�1
0

This understood, suppose that " > 0 has been fixed and assume
in what follows the bound EC � "r .

Given that c1.det.S// is a torsion class, the term with p.ya/ is absent in (5-18) and
a.ucC/ D a.cC/. To bound �a.cC/ in (5-18), use the fact that ja.cC/C 1

2
r ECj is

equal to j1
2
cs.cC/C e�j, and so it follows from (5-19) that ja.cC/j � c0r EC .

To continue, consider the term a.c�/� a.cC/. This is Ad , and so this difference is
bounded by default by K r if the apriori assumption on Ad is satisfied. As explained
next, a bound on this difference by c0K r also follows if fd > �c�1

0
r2 . To see why,

use the bound on ja.cC/j in the preceding paragraph. If a.c�/ < 0, it can be discarded
from (5-18). Suppose that a.c�/� 0. This condition requires that cs.c�/� r E.c�/�c0 .
However, according to [8, Proposition 4.10], if c1.det.S// is torsion, then

(5-19) c0

�
r2=3
jEj4=3C c0

�
� jcsj;
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for any solution to (1-8). Applied to c� , this inequality together with the condition
that cs.c�/ � r E.c�/ � c0 leads to the following dichotomy: Fix c > c0 . Either
E.c�/� cr�1 , in which case cs.c�/� c0 when r is large, and thus a.c�/� c0 ; or else
E.c�/� cr�1 . In the latter case, (5-19) together with the condition cs� r E�c0 requires
that cs.c�/ � c�1

0
r2 if c � c0 . However, this is not possible if " � c�1

0
given the

bound fd � �c�1
0

r2 . Indeed, with [7, Proposition 5.1], the condition cs.c�/� c�1
0

r2

requires that the spectral flow function on c� be greater than c�1
0

r2 . Meanwhile, (5-19)
applied to cC implies that jcs.cC/j � c0"

4=3r2 because EC � "r . This understood, [7,
Proposition 5.1] bounds the absolute value of the spectral flow function on cC from
below by �c0"

4=3r2 . Thus, the spectral flow fı would be less than �c�1
0

r2 were
"� c�1

0
. Hence, if "� c�1

0
and EC � "r , then a.c�/� c0r2=3 .

Granted the preceding, (5-18) implies that

(5-20) E.s� 1/� c0.1CK /C c0r�1=3 sup
x�s

jE.x/j4=3:

Given T � 1, use sT to denote the largest value of s 2R where E.s� 1/� K CT .
Take s D sT in (5-20) to see that

(5-21) T � c0C c0K C c0r�1=3T 4=3:

Given that EC � "r , it follows from (5-21) that there exist .A;  / and r –independent
constants z0 � 1 and z1 � 1 with the following property: If "� c�1

0
, then

(5-22) T D z0C z1K

can not be a solution to (5-21). This last observation implies Lemma 5.2’s claim.

5.d Proof of Lemma 5.3

The argument for this lemma has three parts.

Part 1 Consider the version of (5-18) that arises when the map uW M !S1 is chosen
as follows: Write cC D .AC;  C/. Take u so that AC � u�1duD AE CyaC where
yaC is coclosed and where the L2 norm of its projection into the space of harmonic
1–forms is bounded by 100. Such a choice for u is always available. Granted this
choice, it follows using [7, Lemma 2.4, (4-2)] that

(5-23)
ˇ̌
a.ucC/C

1
2
r EC

ˇ̌
D
ˇ̌

1
2
csC e�

ˇ̌
� c0C c0r EC:

If the assumption on Ad is obeyed, replace a.c�/� a.cC/ in (5-18) by K r . If this as-
sumption is not obeyed, introduce the function afDa�2�2f on Conn.E/�C1.M IS/.
This function is constant on the C1.M IU.1// orbits in Conn.E/ � C1.M IS/,
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although only defined at those pairs where (1-14) has trivial kernel. Such is the case
for c� and cC . Moreover,

(5-24) af .c�/� af .cC/D a.c�/� a.cC/C 2�2fd:

This is used in (5-18) to replace a.c�/� a.cC/ by af .c�/� af .cC/C c0K r if the
assumption on Ad is not obeyed. To continue in this case, discard af .c�/ if the latter is
nonpositive. As argued next, it is always the case af .c�/� c0 when fd ��K r and r

is large. To see why, suppose that af .c�/� 0. This requires that csf .c�/� r E.c�/�c0

with csf denoting cs� 4�2f . Meanwhile [8, Proposition 4.10] asserts that

(5-25) jcsf j � c0

�
r2=3
jEj4=3.lnr/c0 C 1

�
for any solution to (1-8).

Fix c � c0 and there is the following dichotomy: Either E.c�/� cr�1 , in which case
(5-25) finds jcsf .c�/j � c0 and thus af .c�/� c0 ; or else E.c�/� cr�1 . If c� c0 , this
with (5-25) and the lower bound csf .c�/� r E.c�/� c0 requires E.c�/� c0r.lnr/�c0 ;
and therefore the upper bound jcsf j � c0r2.lnr/�c0 . But, this violates [7, Proposition
5.1] which finds the apriori bound jcsf j � c0r31=16 . To summarize, af .c�/� c0 in
the case fd � �K r . Meanwhile, (5-25) applied to cC bounds jcsf .cC/j and thus
jaf .cC/j by c0C c0EC .

Granted all of the above, it follows directly from (5-18) that

(5-26) E.s� 1/� c0C c0K C c0r�1=3 sup
x�s

jE.x/j4=3C c0r�1 sup
Œs;sC1�

jp.ya/j:

To exploit (5-26), fix T � 1, and introduce sT to denote the largest value of s 2 R
where E.s� 1/ > K CT . Take s D sT in (5-26) to see that

(5-27) T � c0C c0K C c0r�1=3T 4=3
C c0r�1 sup

ŒsT ;sTC1�

jp.ya/j:

Suppose that jp.ya/j for s 2 sT C 1 is bounded by 1
100

c�1
0

r.K C T /. If such is the
case, then (5-27) implies that

(5-28) T � c0

�
1CK C r�1=3T 4=3

�
;

this an equation with no solution with T � 2c0.1CK / but less than c�1
0

r . Thus, a
bound on jp.ya/j for s 2 ŒsT ; sT C 1� by a very small multiple of r.K CT // leads to
the desired bound on sups2R E.s/. As explained in what follows, jp.ya/j has, in fact,
an r –independent upper bound.
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Part 2 Introduce for each s 2R the function

(5-29) M.s/D r

Z
fsg�M

.1� j˛j2/:

Thus, the integral of M. � / on any given interval Œs; sC 1� is the function M.s/. It is a
consequence of what is written in the first item of Lemma 3.1 that M. � /� �c0 .

Write ADAE Cya as before and introduce

(5-30) yaF
D ya� 1

2

�
j˛j2C�.j˛j/

��1�
x̨rA˛�˛rA x̨

�
:

The connection AF DAECya
F is flat where j˛j � 1

2
for here ˛=j˛j is AF –covariantly

constant. Suppose that � �M and � 0 are embedded, oriented, homologous loops.
Suppose in addition that s > s0 are points in R and that † � Œs; s0��M is a closed
immersed surface with respective boundaries fsg � � and fs0g � � 0 . Then

(5-31)
Z
fsg��

yaF
�

Z
fsg�� 0

yaF
D 0

unless † enters the region where j˛j � 1
2

.

In what follows, cT � 1 denotes a constant that depends on T and K , but not on r

and not on dD .A;  /. This understood, fix r � cT where cT � 1 is large enough
to invoke Lemmas 3.1, 3.6, 3.8, 3.9 and 3.10 on the domain ŒsC 8; s0� 8��M using
100.K CT / in lieu of K . Assume M. � /� 100.K CT / on ŒsC 8; s0� 8�. Suppose
that d > c0r�1=4 and that each point of † has distance at least d from where j˛j � 1

2
.

This being the case, it follows using Lemma 3.8 and Lemma 3.9 that yaF can be written
on both � and � 0 as

(5-32) yaF
D bC q;

where jbj � .cT M.s/C cT /d
�2 and where q is the projection of ya onto the space of

harmonic 1–forms. Given the bound on jbj, what is written in (5-31) implies that

(5-33)

ˇ̌̌̌
ˇ
Z
fsg��

q�

Z
fsg�� 0

q

ˇ̌̌̌
ˇ� cT

�
.M.s/CM.s0//C cT

�
`d�2;

where `Dmaxflength .�/; length .� 0/g. If the homology class of � and � 0 is Poincaré
dual to c1.det.S//, then (5-33) implies that

(5-34) jp.yajs/� p.yajs0/j � cT

�
.M.s/CM.s0//C cT

�
`d�2:

Given the top line in (1-11), use of Lemma 3.1 and Lemma 3.9 finds that

(5-35)
ˇ̌̌̌

d

ds
p.ya/

ˇ̌̌̌
� cT C cT M.s/:
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Suppose that s � s 0 � 3 and that † intersects Œs0; s0 C 1� �M as Œs0; s0 C 1� � � 0

and has the analogous product structure in Œs � 1; s��M . Granted (5-35) and this
product structure, then both appearances of M. � / in (5-34) can be replaced by M. � /.
In particular, if s0 is greater than sT , then the fact that jL�Mj � c0 together with (5-6)
and the M version of (5-34) imply that

(5-36) jp.yajs/� p.yajs0/j � cT .1CK CT /`d�2:

Keep in mind that this holds if there is an immersed surface † � Œs; s0� �M with
distance d � c0r�1=4 from ˛�1.0/, and † is Œs0; s0 C 1� � � 0 and Œs � 1; s� � � at
distances 1 or less from the boundaries of Œs; s0��M .

Part 3 This part starts with a lemma that is well known to the pseudoholomorphic
curve experts. It is a corollary of Lemma 4.8.

Lemma 5.4 Suppose that N � 1 has been given and that each Reeb orbit of length at
most N is nondegenerate. Given also ı >0, there is a constant ��1 with the following
significance: Suppose that C �R�M is a pseudoholomorphic subvariety with bothR

C da�N and sups2R

R
C\.I Œs;sC1��M / ds ^ a�N . Then there is a set I �R with

at most � components and total length ��1 or less, and such that if s 2R�I , then each
point of C js has distance ı or less from a Reeb orbit in M with length at most N .

Keep this lemma in mind.

Fix " > 0. With T fixed, there exists KT;" � 1 such that if r � �T;" , then Proposition
4.5 can be invoked using K CT in lieu of K , using " in lieu of ı , and using for I the
set ŒsT C16;1/. The proposition supplies a constant NT and some N �NT intervals
fIkgkD1;:::;N and corresponding sets f#kgkD1;:::;N . Granted what is said about these
sets in Proposition 4.5, and granted Lemma 5.4, there exist NT";LT;" � 1 and there
exists a closed set I0 � ŒsT C 16;1/ composed of N � NT;" disjoint intervals of
length at most LT;" such that the following is true: If s 2 ŒsT C 16;1/ is not in I0 ,
then each point of ˛�1.0/js has distance " or less from a Reeb orbit with length at
most .1=.2�//EC .

Given the preceding, fix a smooth embedded loop in M whose points have distance at
least 4" from each Reeb orbit with length at most .1=.2�//EC . Choose this loop so
that its homology class is Poincaré dual to c1.det.S//. Knowing that the Reeb orbits
are nondegenerate, there exists "T > 0 with the following significance: If " < "T ,
then there exists such a loop with length bounded by a T –dependent constant, `T .
This understood, take "D "T and fix such a loop, � , as just described. Now consider
(5-35) with d D "T , with Œs; s0� � ŒsT C 16;1/� I 0 and with †D Œs; s0�� � . This
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version of (5-35) bounds the total change in p.ya/ on any such Œs; s0�. In particular,
it implies that the total change in p.ya/ over any component of ŒsT C 16;1/� I0 is
bounded by cT .K CT /`T "

�2
T

. Note that there are no more than NT;"C1 components
of ŒsT C 16;1/� I0 . Meanwhile, what with (5-34), the total change in p.ya/ over any
component of I0 and over ŒsT ; sT C 16� is at most cT LT;".K CT /. As there are at
most NT;"C 1 such components, the total change in p.ya/ between any s 2 ŒsT ;1/

and 1 is at most

(5-37) cT .K CT /NT;"LT;"`T "
�2
T :

Granted (5-37), then (5-27) leads to (5-28) if r is sufficiently large, and thus a uniform
bound on T by c0K .

5.e More about limits

The proposition that follows strengthens Proposition 5.1 as it asserts that all curves
in each k 2 f1; : : : ;N g version of #k are defined on the whole of R �M . As in
Proposition 5.1, the pair .a;J / consist of a contact 1–form on M and a compatible
almost complex structure on the kernel of a. The latter with a given choice of � with
P –norm less than 1 are used to define (1-11).

Proposition 5.5 Fix .a;J / as above. Given K � 1 and EC � K , there exists � � 1,
and given ı > 0, there exists �ı � 1 which, with � , has the following significance:
Suppose that r � �ı , and that dD .A;  D .˛; ˇ// is an instanton solution to (1-11).
If c1.det.S// is a torsion class, assume Ad � K r or fd � ���1r2 . If c1.det.S// is
not a torsion class, assume that Ad � K r or that fd � �K r . In either case, assume
that EC D lims!1 E.Ajs/ � K and that all Reeb orbits of length no greater than
.1=.2�//EC are nondegenerate.

� Let c� D lims!�1.A;  /js . Then c� is a solution to (1-11) with E.c�/ �

ECC ı .

� Each point in R�M where j˛j � 1�ı has distance at most �r�1=2 from where
˛ D 0.

� Moreover, there exists

(a) A positive integer N � � and a cover of R as
S

1�k�N Ik by connected
open sets of length at least 2ı�1 . These are such that Ik \ Ik0 D ∅ if
jk � k 0j> 1. In addition, if jk � k 0j D 1, then Ik \ Ik0 has length between

1
128
ı�1 and 1

64
ı�1 .
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(b) For each k 2 f1; 2; : : : ;N g, a set #k whose typical element is a pair .C;m/
where m is a positive integer and where C �R�M is a pseudoholomorphic
subvariety. These elements of #k are constrained so thatX

.C;m/2#k

m

Z
C

da< �:

In addition, these sets f#kgkD1;:::;N are such that

(1) sup
z2
S
.C;m/2#k

C;

s.z/2Ik

dist.z; ˛�1.0//C sup
z2˛�1.0/;

s.z/2Ik

dist

 [
.C;m/2#k

C; z

!
< ı .

(2) Let k 2 f1; : : : ;N g, let I 0 � Ik denote an interval of length 1, and let �
denote the restriction to I 0 �M of a 2–form on R�M with k�k1 D 1

and kr�k1 � ı�1 . Thenˇ̌̌̌
ˇ i

2�

Z
I�M

� ^F yA�
X

.C;m/2#

m

Z
C

�

ˇ̌̌̌
ˇ� ı:

Proof of Proposition 5.5 Start with the assertion that each curve in each k 2

f1; : : : ;N g. If this is not true, there would exist an unbounded sequence frngnD1;2;:::

and a corresponding sequence of instantons fdngnD1;2;::: to the corresponding r D rj
version of (1-11) that obeyed the assumptions with fixed K and ı , but such that this
particular assertion was false. In any event, the conclusions of Proposition 5.1 hold
for n sufficiently large. Since Proposition 5.1’s integer N is uniformly bounded,
a subsequence (hence renumbered consecutively from 1) can be chosen so that all
members have the same integer N . By passing to another subsequence, one can assume
that there exists an integer k 2 f1; : : : ;N g and a sequence f#k;ngnD1;2;::: where any
given index n element comes from some index j version of one of Proposition 5.1’s
sets #k . Moreover, each such #k;n contains a pair whose J –holomorphic curve is not
the restriction to some neighborhood of Ik �M of a J –holomorphic subvariety that
obeys the Proposition 5.5’s requirements. Finally, there is no replacement of #k;n by a
corresponding set that does obey Proposition 5.5’s requirements. This last conclusion
is seen below to generate nonsense.

The n–independent bound on the integral of da over the constituent curves in any
given #k;n implies that the sequence ff#k;ng1�k�N gnD1;2;::: has a subsequence hence
renumbered consecutively that converges to what is often called a “broken trajectory”
of J –holomorphic subvarieties. This broken trajectory consists of a finite, ordered
collection f#kgkD1;2;:::;N 0 , of sets with the following properties: The typical element
in each set is a pair .C;m/ where C � R�M is a pseudoholomorphic subvariety
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and where m is a positive integer. As usual, no two pairs from any given #k share
the same subvariety. Moreover, at least one pair from #k has a subvariety that is not
R–invariant. There are also constraints on the s!˙1 limits of the pairs from #k .

To say more about these constraints, note that the s!�1 limit of the pairs from #k

defines a set, ‚k� , whose typical element is a pair .;m/ with  a Reeb orbit and
m a positive integer. In this regard, .;m/ appears if  is an s!�1 limit of the
constant s slices of †k D

S
.C;m0/2#k

C . What follows describes how m is obtained.
Let E� denote the ends of †k whose constant s slices converge as s!�1 to  .
Then m is a sum of positive integers with the sum indexed by the ends in E� . In
particular, an end E contributes to this sum the product mE m0 where m0 is the integer
component of the pair from #k that contains E and where mE is the degree of the
projection from any constant s��1 slice of E to  . The s!1 limit of the pairs
from #k define an analogous set, this denoted by ‚kC . With this notation in hand, the
pairs f#kgkD1;:::;N are such that ‚k� D‚k�1;C for k > 1.

The convergence of ff#k;ngkD1;:::;N gnD1;2;::: to f#kgkD1;2;:::;N 0 is such that the fol-
lowing is true: Let Ik;n denote the index n version of Proposition 5.5’s interval Ik .
The set of integers f1; : : : ;N 0g is partitioned into N subsets. These are denoted by
fƒkg1�k�N . The sequence f#k;ngnD1;2;::: determines the collection f#k0 W k

0 2ƒkg.
For each n, the interval Ik;n is written as a union of consecutive intervals that are
indexed by the elements in ƒk . Each subinterval can be assumed to have length greater
than N . Let k 0 2ƒk and let Ik0;n � Ik;n denote the corresponding subinterval. Let
�k0;n0 W R�M !R�M denote the constant translation along the R factor that puts
the midpoint of Ik0;n at the origin.

(5-38)

�

X
.C;m/2#k0

m

Z
C

daD lim
n!1

X
.C;m/2#k;n

m

Z
C\Ik0;n

da.

�

X
.C;m/2#k0

m

Z
C
� D lim

n!1

X
.C;m/2#k;j

m

Z
C\Ik0;n

�k0;n � � ,

where � denotes a 2–form on R�M with compact support.

� Let U �R�M denote a compact set. Then

(a) lim
n!1

sup
z2
S
.C;m/2#k0

.C\U /

dist

 
z;

[
.C;m/2#k;n

�k0;n.C /

!
D 0.

(b) lim
n!1

sup
z2
S
.C;m/2#k;n

.�k0;n.C /\U /

dist

 
z;

[
.C;m/2#k0

C

!
D 0.
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This convergence follows using the arguments in [6, Section 6], or by using the results
about convergence of J –holomorphic curves on symplectizations as can be found in
Bourgeois et al [1]. Granted (5-38), replace each n 2 f1; 2; : : :g version of #k;n by
the version of f#k0 W k

0 2 ƒkg that is obtained by translating the subvarieties from
any given #k0 by the translation along the R factor of R�M that is given by ��1

k0;n
.

It follows from (5-38) that this replacement for #k;n obeys all of Proposition 5.5’s
requirements.

6 Proof of Theorem 1.2

The proof begins by assuming the theorem is false so as to generate some nonsense. In
particular, were it false, then there exists a sequence f.rn; .An;  n//gnD1;2;::: such that

(6-1)

� The sequence frngnD1;2;::: � Œ1;1/ is increasing and unbounded.

� Any given dn D .An;  n/ is a solution to the r D rn version of (1-11) in
M1.c�; cC/.

� dn is not in the image of ‰r .

The remaining subsections generate some nonsense from this assumption by proving
that these conditions are not mutually consistent.

6.a Finding # 2M1.‚�;‚C/

An element, # , in M1.‚�; ‚C/ can be viewed as a finite set whose typical element has
the form .C;m/ with C �R�M an embedded, pseudoholomorphic subvariety and
with m a positive integer which is equal to 1 if C is not R–invariant. The subvariety
components of different pairs from # are distinct and disjoint. In addition, there is
precisely one such component that is not R–invariant.

Lemma 6.1 There an element #2M1.‚�; ‚C/, a subsequence of f.An; n/gnD1;2;:::

(hence renumbered consecutively from 1) and a corresponding sequence of constant
translations along the R factor of R�M , all with the following property: For each n,
write the translated version of  n as a pair .˛n; ˇn/. The sequence with n–th element

sup
z2
S
.C;m/2# C

dist.z; ˛�1
n .0//C sup

z2˛�1
n .0/

dist

 [
.C;m/2#

C; z

!

converges with limit zero. In addition, if I � R is an interval of length 1 and � is a
2–form on R�M with k�k1 D 1 and support on I �M , then the sequence whose
n–th element is .i=.2�//

R
R�M � ^F yA�

P
.C;m/2# m

R
C � also converges with limit

zero.
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Proof of Lemma 6.1 The proof has two parts.

Part 1 Proposition 5.5 can be brought to bear with if n is sufficiently large. By passing
to a subsequence and renumbering the latter consecutively from 1, the proposition can
be applied using rn and .An;  n/ with ı D 1=n. Each sufficiently large n application
of this proposition produces a collection f#k;ngkD1;:::;Nn

of some Nn pairs as described
in (b) of the second item of the proposition. Note in this regard that Nn has an n–
independent upper bound. By virtue of what is said in (b) of the second item of the
proposition, the subsequence can be winnowed further so that NnDN is independent of
n, and so that the sequence ff#k;ngkD1;:::;N gnD1;2;::: has a subsequence that converges
to a broken trajectory between ‚� and ‚C where the convergence is as described in
the proof of Proposition 5.5 and (5-38). The manner of convergence is of the sort that
is described in the proof of Proposition 5.1 and (5-38). This broken trajectory consists
of an ordered collection f#kgkD1;2;:::;N 0 as described in the proof of Proposition
5.5: First, the typical element in each set is a pair .C;m/ where C � R �M is a
pseudoholomorphic subvariety and where m is a positive integer. As usual, no two
pairs from any given #k share the same subvariety. Moreover, at least one pair from #k

has a subvariety that is not R–invariant. There are also the constraints on the s!˙1

limits of the pairs from #k , using the notation from the proof of Proposition 5.5, these
are

(6-2) ‚1� D‚�; ‚k� D‚k�1;C for k > 1 and ‚NC D‚C:

Part 2 Suppose that c1.det.S// is torsion: Given that the embedded contact homology
index I.‚�; ‚C/D 1 and given that Ja comes from Ja , what is said in Hutchings [2,
Lemma 9.5] (see also Hutchings and Sullivan [4, Corollary 11.5] and Hutchings [3,
Theorem 5.1]) prove that N 0 D 1 and that # D #1 2M1.‚�; ‚C/. To elaborate, any
given #k 2 f�k0g1�k0�N 0 defines a relative class in H2.M I‚k�; ‚kC/ as described in
[8, Section 2.c]. Let ŒZk � denote this class. Hutchings uses ŒZk � to define via [8, (2-9)]
the integer I.‚k�; ‚kC;Zk/. This is the embedded contact homology index of #k .
By virtue of (6-2),

P
1�k�N 0 I.‚k0 ; ‚k0 ;Zk/ is equal to 1. If N 0 > 1, then there

must exist at least on element f#kg1�k�N 0 whose embedded-contact homology index
is nonpositive. As such element must contain a pair with a non–R–invariant subvariety,
[2, Lemma 9.5] proves that this is not possible given that J is in the set Ja . Given
that N 0 D 1 and given that the one element is in M1.‚�; ‚C/, the conclusions of the
lemma follow from Proposition 5.5 using what is said in (5-38) about convergence.

Suppose that c1.det.S// is not torsion. Each k 2 f1; : : : ;N 0g has its associated
embedded contact homology index I.‚k�; ‚kC;Zk/ as in the previous case. Given
(6-2) the collection fZkg1�k�N 0 defines a class ŒZ� 2H2.M; ‚�; ‚C/ and thus the
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integer I.‚�; ‚C;Z/. As argued momentarily, this integer is equal to 1. Given
that I.‚�; ‚C;Z/ D 1, the arguments from the previous case can be applied to
prove that N D 1 and that # D #1 2 M1.‚�; ‚C/. What follows explains why
I.‚�; ‚C;Z/D 1.

To start the explanation, fix a surface †�R�M as described in [10, Part 1 of Sec-
tion 2.b] whose projection to M defines the class ŒZ�. Let c�D .A�;  � D .˛�; ˇ�//
and cCD .AC;  CD .˛C; ˇC// denote the respective s!�1 and s!1 limits of
a given large n version of .An;  n/. The fact that † defines the class Z implies (via
Alexander duality) that the normal bundle of † extends over R�M as the bundle E

and, given a tubular neighborhood of †, there is a pair, .A; ˛/, of connection on E

and section of E with the following properties: First, ˛ vanishes transversally and its
zero locus is †. Second, ˛ is A–covariantly constant on the complement of the given
tubular neighborhood of †.

Use † as in [10, Section 2.c] to define the integer k† and the corresponding opera-
tor DE . Granted what was said in the preceding paragraph, [10, Lemma 2.5] finds that
the index of the dD .An;  n/ version of (1-12) is equal to index .DE/C2k† , and thus
the latter is equal to 1. Meanwhile, [10, Lemmas 2.7 and 2.8] with [10, (2-109)] assert
that the index of DE is equal to I.‚�; ‚C;Z/� 2k† . These last two conclusions
imply the desired result: I.‚�; ‚C;Z/D 1.

Lemma 6.1 has the refinement that follows.

Lemma 6.2 The sequence of translations for Lemma 6.2 can be chosen so that the
following is also true: Fix ı� > 0 and then there exists n� such that if n> n� ,

sup
z2
S
.C;m/2#

dist.z; ˛�1
n .0//C sup

z2˛�1
n .0/

dist

 [
.C;m/2#

C; z

!
< ı�r

�1=2
n :

The proof of Lemma 6.2 is deferred to Section 7. Accept it for now.

6.b The distance between .An;  n/ and .A�;  �/

For each n, let dn D .An;  n D .˛n; ˇn// now denote the translate along the R factor
of R�M of the original n–th sequence element using the n–th translation from the
sequence of translations that is described by Lemma 6.1 and Lemma 6.2. With n

specified, use .A�;  �/ in what follows to denote the r D rn version of the pair that is
constructed in [9, Section 5.a].
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Lemma 6.3 There exists � >0 and, given ı>0, there exists nı�1; and these are such
that the following is true: If n�nı , then there exists a smooth map uDunW R�M!S1

such that .An � u�1du;u n/ D .A
�C .2r/1=2b0;  �C �0/ with jb0j C j�0j � ı and

jrb0j � �r1=2 .

The remainder of this subsection contains the following.

Proof of Lemma 6.3 The following simplified notation is used: When n is given,
then .A;  / is used in what follows to denote any given version of .An;  n/. Also,
fUC g.C;m/2# ; fU�g2„†� , fUCg2„†C and U0 are used to denote the r D rn

versions of the sets that are described in [9, (5-3)].

The argument that follows has five parts.

Part 1 Fix n and trivialize E over U0 as U0 �C as done in Step 2 of Part 1 of [9,
Section 6.a]. It is a consequence of Proposition 5.1, Lemma 3.8, the first bullet of
Lemmas 3.7, 3.8 and 6.2 that j˛j � 1� c0r�1 on U0 if n� c0 . Granted that such is
the case, there is a gauge transformation u0W U0! S1 such that u0˛ D j˛j1C where
1C is the trivializing section of E . Thus,

(6-3) ju0˛� 1Cj � c0r�1:

Let AI denote the connection on E! U0 that makes 1C covariantly constant and
write ADAI C .2r/1=2b0 . Given that Lemma 3.8 finds jrA˛j � c0r�1=2 and Lemma
3.6 finds jr2

A
˛j � c0r , it follows that

(6-4) jb0j< c0r�1 and jrb0j � c0r1=2:

Part 2 Given .C;m/ 2 # , use � W N ! C to denote the normal bundle to C , and
let N1 �N denote the disk bundle that is described in [9, Section 4.a]. Reintroduce
eC W N1!R�M , this the exponential map from [9, Section 4.a].

Fix .C;m/ 2 # and a point p 2 C . Then fix complex Gaussian coordinates centered
at p of the sort that is described in Part 2 of Section 4.a, but chosen so that the
coordinates, x D .x0;x1/, are such that the plane x1 D 0 is tangent to C at p and
the plane x0 D 0 is tangent to eC .N0jp/. Let �� > 0 be such that the coordinates are
defined for jxj��� . Rescale by the map x! r�1=2x and let .Anp;  npD .˛np; ˇnp//

denote the resulting pair of connection and spinor defined now on the radius r1=2��
ball in C2 . The zeros of ˛np have distance ı or less from the x1 D 0 plane. Let
.A0; ˛0/ denote what is given for large n by Lemma 4.3. Since ˛�1

0
.0/ is a complex

algebraic subvariety of C2 and since its zeros all have distance ı or less from the
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x1 D 0 plane, so ˛�1
0
.0/ must be a disjoint union of some m or less planes, all of

the form x1 D constant. This implies that .A0; ˛0/ is the pullback via the projection
x! x1 from C2 to C of a vortex in Cm .

Granted the preceding, Lemma 6.2 and Lemma 4.3 have the following consequence:
Given a positive integer k and real numbers " > 0 and T � 1, the restriction of
all sufficiently large n versions of .Anp; ˛np/ to the radius T ball in C2 has C k

distance " or less to some gauge transformation of the pullback via x! x1 of the
symmetric vortex in Cm .

Given k , " and T , the preceding conclusions do not yet hold for all points inS
.C;m/2# C with a bound on n that is independent of the chosen point. The next

lemma makes such a statement. To set the stage, suppose that a positive integer
n and a real number � > 1 have been specified. Given .C;m/ 2 # and a point
p 2 C , let ƒ denote the set of triples that have the form .q; .C 0;m0// such that
.C 0;m0/ 2 # and q 2 C 0 \ eC .N1jp/ has distance �r

�1=2
n or less from p . Set

mn�.p/D
P
.q;.C 0;m0/2ƒ/m0 .

Lemma 6.4 Given a positive integer k and real numbers "> 0 and R� 1, there exists
� � 1 with the following significance: Suppose that n� � and that p 2

S
.C;m/2# C .

Define the pair .Anp; ˛np/ as in described above. This pair has C k distance " on the
ball of radius R in C2 to a gauge transformation of the pull back of a vortex in Cmn�.p/

via the projection x! .x0;x1/ of C2 to C .

Proof of Lemma 6.4 Remark first that there is an upper bound to the size of mnc.p/

that is independent of c and p . Let m� denote the latter. Now, let .A; ˛/ denote a
pair of connection on the trivial bundle over the radius T ball in C2 and section over
this ball. Suppose that m0 �m� and that .A; ˛/ has C k distance less than 1

2
" from

the pullback of a vortex, .A0; ˛0/ 2 Cm0 via the projection x! x1 from C2 to C .
Suppose, in addition that m�m0 and that m0�m zeros of ˛0 have distance T 0 � 1

or more from the origin in C2 . Use what is said [9, Part 4 in Section 2.a] to draw the
following conclusion: Given k; " and T , there exists T� such that if T 0 > T� , then
any such .A; ˛/ will have C k distance less than " on the ball of radius T from the
pullback of vortex in Cm .

Granted this, assume that the lemma is false so as to obtain a contradiction. If the
lemma is false, there are k; " and T and a sequence fpngnD1;2;::: �

S
.C;m/2# C with

the following property: There are infinitely many integers n 2 f1; 2; : : :g such that the
pDpn version of .Anp; ˛np/ has C k distance greater than " on the ball of radius T in
C2 from any gauge transformation of the pull back of any vortex from Cmnc.pn/ with
c D T� . Pass to a subsequence with this property and renumber consecutively from 1.
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Even so, there exists m2 f1; : : : ;m�g and a subsequence of f.Anp; ˛np/gnD1;2;::: such
that mnc.pn/Dm, and such that a gauge transformation of each .Anp; ˛np/ makes
the resulting sequence converge on compact subsets of C2 to a solution, .A0; ˛0/,
to (4-1). Moreover, there exists z � 1 such that the integral of .1� j˛0j

2/ over any
given T 0 > 1 ball centered on the origin in C2 is bounded by zT 02 . As a consequence,
˛�1

0
.0/ is a complex algebraic subvariety in C2 . Each component of this subvariety

has bounded distance from the plane x1 D 0, and so the locus ˛�1
0
.0/ is a disjoint

union of planes on which x1 is constant. Thus, .A0; ˛0/ is the pullback of a vortex in
some Cm0 for m0 2 fm; : : : ;m�g via the projection x! x1 from C2 to C .

With the preceding understood, each sufficiently large n version of .Anp; ˛np/ will
have C k distance 1

2
" or less on the ball of radius T in C2 from some gauge transform

of .A0; ˛0/. What with the conclusions of the first paragraph of the proof, this implies
that .Anp; ˛np/ has distance " or less on the ball of radius T in C2 from a gauge
transform of the pullback via the map x! x1 of a vortex in Cm . This violates the
assumptions and so proves the lemma.

Part 3 Consider a given element .C;m/ 2 # so as to discuss .A; ˛/ on UC . To this
end, use Lemma 6.4 to conclude that there exists a map, yuC , from the part of UC with
distance 1

4
Tr�1=2 or less from C to S1 with certain desirable properties. To state the

latter, write .A� yuC d yu�1
C
; yuC /D .A

�C .2r/1=2bC 1;  
�C �C 1/ where .A�;  �/

is described on UC in [9, Step 2 of Part 2 in Section 5.a]. According to what is said in
Lemma 6.4, the gauge transformation uC 1 can be chosen so that

(6-5) jbC 1jC j�C 1jC r�1=2
jrbC 1j � c0."CR�1/

at points in UC with distance 1
4

Tr�1=2 or less from C if n � c0 . To construct yuC ,
cover C � .

S
E2EC

E4R/ by disks of radius Tr�1=2 so that the concentric disks of
radius 1

8
Tr�1=2 are disjoint. This being the case, at most c0 such disks can overlap.

As a consequence, there is a partition of unity for this cover such that if D is any given
disk in the cover, then the norm of the derivative of the partition function with value 1 at
D ’s center is bounded by c0T �1r1=2 and the norm of its second derivative is bounded
by c0T �2r . According to Lemma 6.4, there is a map, uCD , from the ball of radius
Tr�1=2 centered at the origin in D to S1 such that .A�u�1

CD
duCD ;uCD / can be

written as a pair .A�C .2r/1=2b;  �C �/ where b and � obey (6-5) if n� c0 . As a
consequence, the partition of unity can be used to patch these gauge transformations
together where disks overlap to give the map yuC .

Note that (6-5) implies that yuC˛ differs from sm=jsjm by c0."CT �1/ at points on
where jsj 2 Œ1

8
Tr�1=2; 1

4
Tr�1=2�. According to what is said in Lemma 3.8, j˛j �

1� c0e�T=c0 on the rest of UC . This then allows for an extension of yuC from the
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jsj� 1
8

Tr�1 part of UC to the whole of UC so as to give a map uC W UC!S1 with the
following properties: First, uC˛Dj˛js

m=jsjm at points where jsj � 1
4

Tr�1=2 . To state
the second, write uC D 

�C�C and write and A�uC duC
�1 as A�C .2r/1=2bC .

Then

(6-6) j�C jC jbC j � c0."CT �1/ and jrbC j � c0r1=2

if n� c0 . Note in this regard that the bound on jrbC j at points where jsj � 1
8

Tr�1=2

follows from the q D 2 version of the third bullet of Lemma 3.6.

Given that sm=jsjm is the transition function between the respective trivializations
of E over UC and over U0 , and given that uC˛ D j˛js

m=jsjm and u0˛ D j˛j1C on
UC \U0 , it follows that the pair .u0;uC / define a smooth map from U0[UC to S1 .

Part 4 Fix  2 „†� so as to discuss .A; ˛/ on U� . Write U� as .�1;�R��

S1 �C with coordinates .w ; t; z/ as described in [9, (4-1)]. Fix .C;m/ 2 # with
C \ U� ¤ ∅; and let p denote a point in C \ U� . The exponential map eC

gives a diffeomorphism between the restriction of N1 to a neighborhood of p and a
neighborhood of p in U� that has certain special properties. To elaborate, write the
coordinates .w ; t/2 .�1;�R��S1 of the point p as .wp; tp/. A neighborhood of p

in C has coordinates . yw ; yt/ that are defined on a neighborhood of the origin in R2

and such that C near p is parametrized by . yw ; yt/! .w DwpC yw ; t D tpCyt ; z D

zE .wpC yw ; tpCyt// with zE . � / given by the version of the map in (4-2) for the end
E � C that contains p . As noted in Property 4 and (4-4) of Section 4.a, there is a
trivialization of C ’s normal bundle on a neighborhood of z so that with � denoting
the fiber coordinate for the normal bundle, then eC sends the coordinates . yw ; yt ; �/ to
the point

(6-7)

�
w DwpC yw C rs; t D tpCyt C rt ;

z D zE .wpC yw ; tpCyt/C .1C rz/

�
`

2�

��1=2

�

�
in U� . Here, rs; rt and rz are as described in [9, (4-4)]. It then follows that the
inverse diffeomorphism pulls back � and d� as

(6-8)

� .e�1
C /��D

�
`

2�

�1=2

.z� zE /C e

� .e�1
C /�d�D

�
`

2�

�1=2�
dz�

�
@

@s
zE

�
dw�

�
@

@t
zE

�
dt

�
C e0 ,

where jej � c0jzj
2j�j and je0j � c0.j�j jzjC jzj

2/.
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Granted (6-7) and (6-8), it then follows from Lemma 6.4 together with [9, (2-4)] that
there is a map, yu, from the ball of radius 3

4
Tr�1=2
 in U� centered at p to S1 with

the following property: Introduce .A�;  �/ from [9, (5-8)]. Then .A� yu�1d yu; yu /

can be written in this ball as .A�C .2r/1=2b;  �C �/ where

(6-9) j�jC jbjC r1=2
jrbj � c0."C r�3� /

if n� c0 .

Denote by U 0� the portion of U� where the distance to
S
.C;m/2# C is smaller than

1
4

Tr�1
 . Granted (6-9), an argument like the one used in Part 3 invoking [9, (2-4)]

gives a map yu�W U 0�!S1 such that .A�yu�1
�d yu�; yu� /D .A

�C .2r/1=2b�1;

 �C ��1/ where the pair .b�; ��/ also obeys (6-9) with the addition to the right
hand side of c0T �1 .

Let U 00� denote the subset of U� where the distance to
S
.C;m/2# C is no greater

than 1
8

Tr�1=2
 . Given [9, (2-4)] and given Lemma 3.8 and the final item of Lemma

3.6, it follows that yu� can be extended from U 00� to the whole of U� so to give
a map, u� , to S1 with the following properties: First, .A� u�1

�du�;u� / D

.A�C .2r/1=2b�;  
�C ��/ where

(6-10) j��jC jb�j � c0."CT �1/ and jrb�j � c0r1=2:

Second, the map u� and the map u0 from Part 2 define a smooth map from U0[U�
to S1 . Third, if .C;m/ 2 # , then the map u� and the map uC from Part 3 define a
smooth map from UC [U� to S1 . The construction of such an extension of yu�
is straightforward and so the details are omitted except for the reminder to take into
account the nontrivial transition functions on U0 \U� and on U� \UC that are
used in [9, Section 5.a] for the description of .A�;  �/.

As might be imagined, there is a map yuC from any  2„†C version of UC with
the analogous properties.

Part 5 As noted, the maps fu0; fuC g.C;m/2# ; fu�g2„†� ; fuCg2„†Cg patch to-
gether so as to define a single map smooth, uW R�M ! S1 . This being the case,
write the pair .A� u�1du;u / as .A� C .2r/1=2b0;  � C �0/ and it follows from
(6-3), (6-4), (6-6) with the various  2„� and  2„C versions of (6-10) that the
bound claimed by Lemma 6.3 holds if n� c0 .

6.c Equation (5-20) of [9]

Reintroduce the space K� as defined at the end of [9, Step 4 in Section 5.a]. Section 5.a
of [9] assigns to any given element � 2K� a pair .A� ;  �/ of connection on E!R�M

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg–Witten Floer cohomology IV 2907

and section over R�M of S . A formula for this pair is given by [9, (5-15)]. Write
this pair .A� ;  �/ as .A�;  �/C t� where t� is viewed as a section over R�M of
iT �.R�M /˚S .

Fix some large n, and introduce from Lemma 6.3 the gauge transformation un so as
to write

.A;  /D .An�u�1
n dun;un n D .A

�
C .2r/1=2b0;  �C �0/

with jb0jC j�0j � ı and jrb0j�c0�r1=2 . With � 2K� given, write

.A;  /D .A� ;  �/C ..2r/1=2.��dsCb�/; ��/:

This is to say that ..2r/1=2.��dsC b�/; ��/D ..2r/1=2b0; �0/� t� . To make the con-
nection with what is done in [9, Sections 5.d and 6], note that .b� ; �� ; ��/ obeys the
top two equations in [9, (5-20)]. By way of reminder, the three equations in [9, (5-20)]
assert that a section bD .b; �; �/ over R�M of iT �M ˚S˚ iR obeys

(6-11)

�
@
@s

bC�dM b� dM� � 2�1=2r1=2. �|��C �|� �/� 2�1=2r1=2�|��

D�2�1=2r�1=2
�
@
@s

A� CBA� � r. �|� � � ia/� .i � d�C 1
2
BAK

/
�
.

� .rA� /s�CDA��C 21=2r1=2.cl.b/ � C� �/C 2r1=2.cl.b/�C��/
D�rs 

� �DA� 
� .

�
@
@s
�C�dM � b� 2�1=2r1=2.�| � � �|�/D 0.

In this equation, dM refers to the exterior derivative along the M factor in R�M . An
additional gauge transformation must be done to .A;  / so as to obtain a new version
of .b� ; �� ; ��/ that obeys all three equations in (6-11), and thus all of [9, Property 1 of
Section 5.d].

Lemma 6.5 Given ı > 0, there exists � � 1 with the following significance: Suppose
that n� � and that � 2K� with k�k1 � ��1 . There exists a continuous, locally L2

2

map uD unW R�M ! S1 such that .An�u�1du;u n/D .A
�C .2r/1=2b;  �C�/

where b.�/D .b; �/ is a locally L2
1

section of iT �.R�M /˚S whose components
obeys (6-11)when viewed as a section of iT �M ˚ S˚ iR. Moreover, the spinor
component, �, has norm less than ı ; and if s 2R, thenZ

Œs;sC1��M

jb.�/j2 � �ı:

Finally, u is a smooth map if � is a smooth element in K� .
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A slightly stronger assumption is required so as to obtain a uniform bound on all
components of b� . This assumption is stated in the next lemma. This next lemma plays
no role in the subsequent arguments.

Lemma 6.6 Suppose that �� 2 .0; 1/ has been given. Then there is a constant, �� � 1,
and, given ı , a constant � for use in Lemma 6.5 such that the following is true: Let
� denote the constant from [9, Section 4.c], and suppose that � < ��1

� �� . Assume in
addition that n and � are as described in Lemma 6.5, and that � is Holder continuous
with exponent �� and corresponding Holder norm bounded by ��1

� r1=2ı . Then b.�/

from Lemma 6.5 obeys jbj � ı . In particular, if z � 1, if n is sufficiently large and if
k�kK � z , then jb.�/j � ı .

Proof of Lemma 6.5 and Lemma 6.6 Given that .A;  / is an instanton, all three
items of (6-11) hold if the gauge transformation is chosen so that bD .b; �; �/ obeys
the third item of (6-11). Given what is said about jb0j C j�0j by [9, Lemma 6.3 and
Lemma 2.6], the desired bounds on jbj are guaranteed if n is large, and if k�k1 and
ju� 1j and r�1=2jduj are all suitably small. The five steps that follow explain how to
find such a gauge transformation.

Step 1 The approach is much like that used Part 6 of Section 2.a. To say more, write
the map u as uD es with s a map from R�M to iR. The desired triple .b; �; �/ is
determined by s and .b� ; �� ; ��/ via

(6-12) b D b� � .2r/�1=2dM s ; � D �� � .2r/�1=2 @

@s
s ; �D es � � �C es�� :

Equation (6-11) is obeyed if s obeys an equation having the schematic form

(6-13) d|ds C 2r j �j2s CR.s/�Pb �P� D 0;

where the notation is as follows: First d| denotes the formal L2 adjoint of the exterior
derivative on R�M . Second,

(6-14)

� R.s/D r.e�s � es C 2s/j � j2C r.es � e�s /.j � j2� j �j2/

�r
�
.e�s � 1/��| � � .es � 1/ �|��

�
,

� Pb D .2r/1=2
�
�
@

@s
�� C d

|
M

b�
�

and P� D r l.��| � � �|��/.

Note in particular that jR.s/j � c0r js j.j�� jC k�k1Cjs j/.

With regards to the size of .b� ; �� ; ��/, remark that

(6-15) j.b� ; �� ; ��/j � c0

�
jb0jC j�0jC k�k1C r�1=2

�
:
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As a consequence, if " > 0 is given apriori, then the norm of .b� ; �� ; ��/ can assumed
to be less than " if k�k1 � c�1

0
" and if n is large. This understood, fix " > 0 and

assume that n and � are such that j.b� ; �� ; ��/j< ".

A solution to (6-13) is found by writing the latter as the equation for the fixed point of
a mapping from C 0.R�M I iR/ to itself. The map has the form s ! T.s/ where

(6-16) T.s/jx D
Z

R�M

G.x; � /
�
�R.s/CPbCP

�
;

where G.x;p/ denotes the Green’s function for the operator d|dC2r j �j2 on R�M

with pole at the point p . It follows from the second item of the upcoming Lemma
6.7 that a fixed point of T in C 0.R�M I iR/ is, in fact, a smooth function when �
is smooth. In this case, the equation T.s/D s can be differentiated twice to see that
(6-13) is obeyed. In the case, when � is not smooth, a fixed point of (6-16) is none the
less a locally L2

2
function that obeys (6-13). This follows using standard properties of

the Laplacian on R�M . Indeed, the fixed point s is bounded and so it is a locally L2 ,
weak solution to the equation d|ds D�r j �j2s CK, where KD�R.s/CPbCP�
is a locally L2 function on R�M .

Step 2 This step constitutes a digression to consider integrals such as the one on the
right hand side of (6-16). The following lemma says what is needed for now.

Lemma 6.7 There exists a constant � � 1 with the following significance: Take r � �

and let G denote the Green’s function for the operator d|d C r . Suppose that f is a
smooth, bounded section of iT �.R�M / and m is a bounded, iR valued function.
Let x denote the iR valued function on R�M that obeys

x jx D
Z

R�M

G.x; � /.r1=2d|f C rm/:

Then jx j � �.kf k1Ckmk1/.

The proof of this lemma requires the following analog of Lemma 2.8:

Lemma 6.8 There exists � > 0 such that

�
R

R�M G.x; � /� �r�1 .

�
R

R�M jdGj.x; � /� �r�1=2 .
� Fix � > 0. Then

(a)
R

dist.x;� />� jdG
 �
d j.x; � /� �.1Cj ln.�r1=2/j/,

(b)
R

dist.x;� />� jdGj.x; � / dist.x; � /�1 � �.1Cj ln.�r1=2/j/,

at each x 2M .
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Proof of Lemma 6.8 The proof is much like that of Lemma 2.8. To start, fix " > 0

and let g. � ;p/ denote the Green’s function for d|d C 2"2r with pole at p 2R�M .
The latter is strictly positive and it obeys

(6-17)

� g.x;p/� c0

1

dist.x;p/2
e�"
p

r dist.x;p/=c0 .

� jdgj.x;p/� c0

1

dist.x;p/3
�
1C "r1=2 dist.x;p/

�
e�"
p

r dist.x;p/=c0 .

� jdg
 �
d j.x;p/� c0

1

dist.x;p/4
�
1C "2r dist.x;p/2

�
e�"
p

r dist.x;p/=c0 .

Use the Green’s function g to write

(6-18) G.x;p/D g.x;p/�

Z
R�M

G.x; � /r.j �j2� "2/g. � ;p/:

The Green’s function G is also positive, this a consequence of the maximum principle.
It is also the case that G.x;p/DG.p;x/.

Fix T � 1 and integrate G. � ;p/ over the region where js � s.p/j � T . View the
result as a function of p 2 R�M and write its supremum as r�1m . Note that this
function has constant limits as js.p/j !˙1, so m is well defined. Given that G > 0,
it follows from (6-18) using the first item in (6-17) that

(6-19) m � c0"
�2
Cmr sup

p2R�M

Z
j 0j�"

g. � ;p/:

What with (6-17), this last equation implies that m obeys (2-27). This understood, it
follows that if "� c0 , then m � c0"

�2 which is independent of T .

To obtain what is claimed by the second item in Lemma 6.8, again fix T � 1. Differen-
tiate (6-18) with respect to p . Take the absolute value of both sides and integrate with
respect to x . Use the middle inequality in (6-17), the first assertion of the lemma and
the fact that G.x;p/DG.p;x/ to see that the js� s.p/j � T portion of the integral
in the second assertion of the lemma is bounded by c0r�1=2 . As this is independent
of T , the result follows.

To obtain Part (a) of the third assertion, fix T � 1. Differentiate (6-18) with respect
to both x and pI then use the results of the lemma’s second assertion with the second
and third items of (6-17) to obtain a bound by c0jln.�r1=2/j on the contribution to the
integral in question from the js�s.p/j �T part of R�M . As this is also independent
of T , the result then follows. To obtain Part (b), first differentiate (6-18) with respect
to x . Then take the norm of both sides, divide by dist.x;p/ and integrate with respect
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to p . An upper bound by �jln.�r1=2/j for the right hand side of the resulting expression
follows using the second item of the lemma with the first item in (6-17).

Proof of Lemma 6.7 The bound on x follows by using the first and second items of
Lemma 6.8 after an integration by parts to take the derivative off of f and replace it
with a derivative from the right on G .

Step 3 Given Lemma 6.7, minor notational modifications to the argument given in
Step 3 of the proof of Lemma 2.7 proves the following: There exists c0 > 2 with the
following significance: Set j.b� ; �� ; ��/j D ". If " < c�1

0
, then the map T obeys

(6-20)
� jT.s/j � c�1

0
js jC c0" if js j � c�1

0
.

� jT.s/� T.s 0/j � c�1
0
js � s 0j if both js j and js 0j are less than c�1

0
.

This then implies that if " < c�1
0

, then T has a unique fixed point on the ball of radius
c�1

0
in C 0.R�M I iR/; and this fixed point has sup norm bounded by ". Let s denote

this fixed point.

Step 4 Suppose now that ��2 .0; 1/ has been specified and that � is Holder continuous
with exponent �� . A bound on jds j by can be obtained by copying almost verbatim the
arguments used in Step 4 of the proof of Lemma 2.7. There are but two salient changes
and one additional observation. Here is are the changes: First, any given appeal to
Lemma 2.8 is replaced by the appeal to the corresponding part of Lemma 6.8. To state
the second, recall that the proof of Lemma 2.7 used the fact that L2

1
functions on the

circle are Holder continuous with exponent 1
2

. Appeal to this fact is replaced by the
assumption Holder continuity assumption on � .

What follows is the important new observation: What is written as t� comes very close
to obeying the third equation in (6-11) in that the derivatives of � that arise in the
t� contribution to Pb appear with a factor bounded by c0�� . This being the case, a
close look at the analysis of the terms in the R�M version of (2-30) finds that the
k –th such term is bounded by c0r1=22�k��=c0��r

���k�kC 0;� . The sequence of such
bounds is again summable, and its sum is bounded by r1=2c0�

�1
� ��r

��k�kC 0;� . The
claim made by the lemma follows from this bound.

Step 5 Given the constant ı in Lemma 6.5, it follows from Steps 2–3 that s exists.
What is said in these steps also imply the following: If the expression on the right hand
side of (6-15) is bounded by c�1

0
ı�4 , then js j is bounded by ı2 if ı � c�1

0
. It then

follows that the spinor component of b� is bounded by ı if ı � c�1
0

and n is large.
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With b as written in (6-12), a bound on its L2 norm over Œs; sC 1��M follows from
a bound on the L2 norm of r�1=2ds over this same cylinder. To obtain such a bound,
set m to denote the function on �.js. � /� sj � 1/ on R�M . Multiply both sides of
(6-13) by r�1ms , and then integrate the result over R�M . Integrate by parts so as
to equate the integral of r�1msd|ds with the integral of the function �r�1m jds j2�
r�1 1

2
.d|dm/js j2 . The resulting equation equates the integral of r�1m jds j2 with an

integral over Œs � 1; s C 2� �M whose integrand is bounded by c0ı . Since m is a
nonnegative function and equal to 1 on Œs; sC 1��M , this last equality leads directly
to the L2 bound asserted by Lemma 6.5.

The assertions made by Lemma 6.6 follow directly from what is said in Step 4.

6.d Choosing �

To summarize what has been done so far, suppose that ı > 0 has been chosen. As
demonstrated in the preceding, there exists � > 1 such that if � 2K� with k�k1<��1 ,
then the following is true: Define h.�/ as instructed in [9, Section 6.d]; and then
introduce qD b.�/� h.�/. This section q obeys

(6-21)

� DqD r�1=2.v� vh/� r1=2q� q� 2r1=2h� q.

� The L2 norm of q on any given cylinder of the form Œs; sC 1��M is
bounded by ı .

� The spinor component of q is bounded by ı .

Here, the notation is that used in [9, Section 6]. The bounds on the L2 norm of q and
on its spinor component follow from Lemma 6.5 and what is said about h.�/ in [9,
Section 6.d].

Reintroduce from [9, Part 6 in Section 7.a] the projection …� in order to defined the
subspace H?

�
D .1�…�/H . Likewise introduce the homomorphism t� W L! L as

defined in [9, (6-9)] and its adjoint, t |
�

. Since H?
�

is the kernel in H of t |
�

, any element
f 2H can be written uniquely as f?C t�.�/. Of interest here is the decomposition of
q in this manner as q?C t�.�/.

Lemma 6.9 There exists � > 1 with the following significance: Suppose that ı is
positive but less than ��1 and that n � � . Then there exists � 2 K� with k�k1 � ı
such that …�.b.�/� h.�//D 0.
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The rest of this subsection is occupied with the following.

Proof of Lemma 6.9 The proof has nine steps.

Step 1 This part says something about the size of t |
�
. � / for any given � 2K� . To this

end, fix .C;m/ 2 # and a point p 2C � .
S

E2EC
E2R/ and suppose that f is a section

of iT �.R�M /˚S that is defined near p . It then follows using [9, (6-57)] that

(6-22) j.t |
�
.f//C j � c0.1Ck�k1/

Z
N jp

�C jfjr
1=2e�

p
r jsj=c0 :

Here, � W N ! C denotes C ’s normal bundle and s denotes the canonical section
over N of ��N . Similar integrals bound the other components of t|

�
.f/.

Step 2 Suppose that � 2K� is any given element. It then follows from the definition
given in [9, Section 6.d] of h.�/ and from [9, Lemma 3.10] that t |

�
.h.�// has k � k1

norm bounded by c0.k�k1C 1/r�3=4 . Indeed, such is the case because any given bC

from [9, (6-54)] has vanishing VC 0 component, and because any given b˙ from [9,
(6-43)–(6-44)] has vanishing V0 component.

To analyze the t |
�

image of b.�/, write the pair .A� ;  �/ as .A�;  �/C..2r/1=2c� ; &�/
with .c� ; &�/ here viewed as a section of iT �.R�M /˚S . Likewise, view the iT �M

and iR components of b.�/ as giving a section of iT �.R �M / and use the pair
.b0; �0/ of Lemma 6.3 and the iR valued function s D s.�/ from the proof of Lemma
6.5 to write b.�/D .b; �/ with

(6-23) b D b0� c� � r�1=2ds and �D es�0� es&� C .e
s
� 1/ �:

Given ı > 0, Lemma 6.3 asserts that jb0j C j�0j � ı when n is large. Meanwhile,
jc� jC j&� j � c0k�k1 .

Step 3 Equation (6-8) finds that js j � c0.ı C k�k1/. Lemma 6.6 can be used to
bound jds j given a suitable bound for k�kK . However less is needed in what follows;
only a bound for the k � k� norm of t |

�
..�r�1=2ds ; .es � 1/ �// when � 2 K� . The

following lemma is used to obtain what is needed. The lemma augments the assertions
made by Lemma 6.7.

Lemma 6.10 The constant � that appears in Lemma 6.7 can be chosen so that the
following additional conclusion holds: Let � 2 K� . Set f D .�r�1=2dx ; x �/ and
then
� kt |

�
.f/k1 � �r�1=2.r�1=2C6� Ck�k1/.kf k1Ckmk1/.

� If, in addition, � 0 2K� , then
kt |
�
.f/� t |

�0
.f/k1 � c0r�1=2k� � � 0k1.kf k1Ckmk1/.
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Proof of Lemma 6.10 A preliminary digression is needed for some relevant back-
ground. To start this digression, return to the context in [9, Section 2] of the vortex
equation on C . For the purposes at hand, let x denote a bounded function on C .
Let c D .A; ˛/ denote a solution to (1-4), and introduce the corresponding version,
#c , of the operator depicted in (2-8). Then � D .�21=2x@x ; ˛x / can be written as
#

|
c .2

1=2x ; 0/. As a consequence, � is L2 orthogonal to the kernel of #c . Note that the
integral of the inner product between � and an element in the kernel of #c converges
uniformly by virtue of [9, (2-2)] and the fact that jx j is bounded.

To explore the consequences of this last observation, consider first .C;m/ 2 # and a
point p 2 C � .

S
E2EC

E2R/. Suppose that C is either not R–invariant, or that its
associated integer is 1. Then C ’s component of t |

�
.f/ at p can be written as

(6-24) .t |
�
.f//C D

Z
N jp

�C �
|
1�D0�r

k�

where the notation is as follows: First, �1�;r is as defined in [9, (6-57)] and N jp is the
fiber at p of C ’s normal bundle. Second, k� has components .r�1=2q�0.dx /; q�1.x //
where q�0.dx / is a linear combination of the R �M components of dx whose
coefficients are bounded by .c0jsjCk�k1/ and have derivatives with norm bounded by
c0.1Cr1=2k�k1/. Meanwhile, jq�1.x /j � c0.jsjCk�k1/jx j. Finally, the coefficients
of .q�0� q�01/.dx / and q�1.x/�q�01.x / enjoy similar bounds but for the replacement
of k�k1 with k� � � 0k1 .

Consider now the proof of the first assertion. Given the bound on jx j already noted, it
follows using [9, (2-2)] that the contribution to (6-24) from the q�1.x / part of k� is
bounded by c0r�1=2.r�1=2Ck�k1/.kf k1Ckmk1/.

To consider the contribution to the integral in (6-24) from q�0.dx /, it proves useful to
write G.x; � / as in (6-18) for the case "D 1. This done, define x g by the rule

(6-25) x gjx D

Z
R�M

g.x; � /.r1=2d|f C rm/:

By the second items of (6-17) and Lemma 6.8, the contribution to k from q�0.d.x�x g//

is bounded in absolute value by c0r�1=2.r�1=2Ck�k1/.kf k1Ckmk1/.

Split the contribution to k from q�0.dx g/ into two parts by splitting x g as xg1Cxg2 ,
where xg2 is defined by using �.r�1=2 dist.x; � //g.x; � / in (6-25) rather than g.x; � /.
The contribution to (6-24) from dxg1 is analyzed with the help of the third item in (6-17).
The result finds this contribution bounded by c0r�1=2.r�1=2Ck�k1/.kf k1Ckmk1/.

The integral that is used to define C ’s component at p of t |
�
..r�1=2q�0.dx g2/; 0// is

analyzed as follows: First, the derivatives of x g2 that appear in q�0.dx g2/ that are in
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directions along the fiber of N jp are transferred to �C q|
�0
.�1�D0;r / using integration

by parts. This done, then the second item in (6-17) can be used to see that the resulting
expression is bounded by c0r�1=2.r�1=2Ck�k1/.kf k1Ckmk1/.

The derivatives of xg2 which appear in q�0.dxg2/ and are transversal to the fiber
of N at p are analyzed by exploiting the fact that the integral that defines xg2 is
confined to regions where dist.x; � /� r�1=2 . In particular, the standard small distance
approximations for g.x; � / can be employed when r is large to write such a derivative
– a component of .rH g/.x; � / – as a sum .@=@z1/gC g0 where the notation is as
follows: First, z D z1 C iz2 is a complex Gaussian coordinate along the fiber of
N jp . Meanwhile, both g and g0 have the following properties: They are bounded by
c0 dist.x; � /�2 and their derivatives from the right are bounded in absolute value by
c0.dist.x; � /�3C r�1=2 dist.x; � /�2/.

These bounds are used to evaluate the integral of �C �1�D0;r q�0.dx g2/ along the fiber of
N jp as follows: First, integrate by parts along the fiber of Np so as to transfer the @=@z1

derivative on g to a derivative along the fiber of �C q|
�0
.�1�D0;r /. Having done this,

the just mentioned bounds on the derivatives of g and g0 can be used in a straightforward
way to bound the q�0.dx g/ contribution by c0r�1=2.r�1=2Ck�k1/.kf k1Ckmk1/.

Except for cosmetic changes, the analysis given can be employed so as to bound the
other components of t|

�
.f/ by what is claimed in the first item of the lemma. A very

similar sort of argument proves the claim made by the second item of the lemma. These
are left to the reader.

Step 4 The � D 0 version of q is smooth; this follows from (6-21) using standard
elliptic regularity theorems. More to the point, because the L2 norm of q on cylinders
of the form Œs; s C 1� �M has an s–independent upper bound, there exists an r –
dependent constant z such that the following is true: If p 2 R�M and � 2 .0; 1�,
then

(6-26)
Z

dist.p;� /<�

�
jrqj2Cjqj2

�
� z�4:

Now write the � D 0 version of q as q?C t0.�/. It follows from what was just said
about q that each component of � is also smooth; and it follows from (6-26) that
k�kK� is finite. In addition, what is said in Step 2 and what is said by Lemma 6.10
imply that k�k1 � c0r�1=2ı when n is large.

Write � D r�1=2�.0/I thus �.0/ is an element in K� with k�.0/k1 � c0ı if n is
large. Assume that such is the case. This �.0/ is the zero’th element of a sequence
f�.k/gkD0;1;::: whose limit is the desired element � . The sequence is constructed
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inductively along the following lines: Suppose that �.k/ 2 K� for some k � 0 and
that k�.k/k1 is such as to invoke Lemma 6.5. Assume as well that �.k/ is smooth.
Use � D �.k/ to define .A� ;  �/. This done, introduce the � D �.k/ version of
qD b.�/� h.�/. Then q.�k/ is smooth, and the same argument that led to (6-26) in
the case k D 0 gives the analogous inequality for q.�k/ with perhaps a different z .
Keeping this in mind, decompose q.�k/D q?C t�D�.k/.�/. Then � is smooth, and
what with the q.�k/ version of (6-26), it follows that k�kK� is finite. Write this new
version of � is written as r�1=2.�.kC1/ � �.k//, thus giving the next element in the
sequence; provided that enough can be said about the size of k�.kC1/��.k/k1 .

Step 5 To set up what is needed to construct the whole sequence f�.k/gkD0;1;::: and
say something about its properties, suppose that � and � 0 are in K� . It follows directly
from the definitions of t� and .c� ; &�/ using [9, (2-9), (2-11), (2-12)] that

(6-27) t |
�
..c�0 ; &�0//D r�1=2.� 0C e/;

where

(6-28) kek1 � c0.r
�1=2C8�

Ck�k1/k�
0
k1:

By the same token, if � , � 0 and �C � 0 are in K� , then

(6-29) t |
�C�0

..c� ; &�//� t |
�
..c� ; &�//D r�1=2e;

where this new version of e also obeys (6-28).

To continue, fix � and � 0 as above, and use s and s 0 to denote the functions that appear
in their respective versions of (6-23). It follows from Lemma 6.7 that

(6-30) js � s 0j � c0k� � �
0
k1

when n is large. In addition, if f is set equal to .�r�1=2ds ; .es � 1/ �/ and f 0 is
defined analogously using s 0 , it follows from Lemmas 6.7 and 6.10 that

(6-31) kt |
�
.f /� t

|
�0
.f 0/k1 � c0ık� � �

0
k1:

when n is large.

Step 6 Suppose now that �.k/ is as described in Step 4. Then (6-23) with (6-27)–(6-31)
imply that

(6-32) k�.kC1/
��.k/k1 � c0ık�

.k/
k1

if it is the case that k�.k/k1 � c0ı and n is sufficiently large. This has the following
consequence: If ı� c�1

0
and if n is sufficiently large, then the sequence f�.k/gkD0;1;:::
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can be constructed as described in Step 4. Moreover, (6-32) implies that this sequence
converges in the C 0 topology. This is the topology that is defined by replacing each
version of k � kK in [9, (5-13)] with the norm k � k1 .

Let � denote this limit. Let k�kK� denote the norm on K� from [9, Step 4 in Section 5.a].
If k�kK� is finite, it then follows from the construction that b.�/�h.�/ is in H?

�
. This

understood, the claim made by Lemma 6.9 follows with a proof that k�kK� is finite.

Step 7 To prove that k�kK� <1, it is useful to introduce an equivalent norm and
prove that the latter is finite on � . To this end, return for the moment to the context and
notation of [9, (2-27)]. Fix " 2 .0; 1/ and then define a new norm, denoted k � kK;" , on
C1.C I c�V1;0CEm/ by declaring

(6-33) k�k2K;" D sup
p2C;�<"

���
Z

dist. � ;p/<�
jr�j2:

Replace k � kK in [9, (5-13)] with k � kK;" , to define the norm k � kK;" , on Ksmooth . Note
that k � kK;" gives a norm on Ksmooth that is equivalent to k � kK .

The proof of convergence of f�.k/gkD0;1;2;::: with respect to the norm k�kK;" , requires
first some remarks about t�.c� ; &�/. What is needed concerns the respective terms in
(6-27) and (6-29) that are denoted by e. Here is what is needed about e:

(6-34) kekK;" � c0.r
�1=2C8�

Ck�k1/k�
0
kK;"C c0k�kK;"k�

0
k1;

where c0 is independent of ". As with (6-29), this inequality follow readily from the
definitions of t� and .c� ; &�/ using [9, (2-9), (2-11), (2-12)].

The convergence of f�.k/gkD0;1;2;::: with respect to the norm k � kK;" would follow
directly from (6-27), (6-29) and (6-34) but for the contribution of the � D �.k/ version
of t�.�r�1=2ds ; .es � 1/. � C &�// to the definition of �.kC1/ . The next lemma
supplies a fundamental bound for the L2 norms of ds and rds that is used to control
the contribution from this term. Here is the motivation for this lemma: If � 2K� and
if x is any given iR valued function on R �M , then bounds on the K–norm of
t�.�r�1=2dx ; .ex � 1/. �C&�// follow immediately from bounds on the L2 norms
of dx and rdx on balls in R�M of varying radii.

Lemma 6.11 There exists a constant � > 0 with the following significance: Fix n> �

and set r D rn . Suppose that " 2 .0; r�1� and that � 2 .0; "�. Let � and � 0 denote two
elements in K� and let s and s 0 denote the respective solutions to (6-13) given by the
small normed fixed point of (6-16). ThenZ

dist.p;� /��

�
jrd.s � s 0/j2Cjd.s � s 0/j2

�
� c0r�1=4��

�
k� � � 0k21Ck� � �

0
k

2
K;"
�
:
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This lemma is proved in Step 9.

To use this lemma to prove that � 2K� when n is large, set "D r�1 . Given Lemma
6.11, it follows from (6-23), (6-27)–(6-29), and (6-34) that

(6-35) k�.kC1/
��.k/kK;"� c0.r

�1=4
Cı/

�
k�.k/��.k�1/

k1Ck�
.k/
��.k�1/

kK;"
�
:

If n is large, iteration of this inequality shows that the sequence f�.k/gkD0;1;::: is a
Cauchy sequence with respect to the norm k � kK;" . As such it converges, and so its
limit, � , has k�kK;" <1. Thus, � 2K� when n is large.

Step 8 The proof of Lemma 6.11 requires an auxiliary lemma whose statement and
proof occupy this Step 8. Here is the required lemma.

Lemma 6.12 The constant � in Lemma 6.7 and Lemma 6.10 can be chosen so that the
following additional conclusion holds: Let p and p0 be any two points in R�M and let
� denote r1=2 dist.p;p0/. Then jx .p/�x .p0/j � ��.1Cj ln.�/j/.kf k1Ckmk1/.

Proof of Lemma 6.12 The contribution to x from rm has bounded derivative as
can be seen using the second item of Lemma 6.8. In particular, this item of Lemma
6.8 gives a bound of the norm of this derivative by c0r1=2kmk1 . Thus, this part
contributes at most c0�kmk1 to jx .p/� x .p0/j. To see about the contribution from
d|f , write G as in (6-18) using "D 1. This done, write the contribution from d|f

as x g C .x � x g/ where x g is defined by (6-25). It then follows using the second
item of Lemma 6.10 and the second item of (6-17) that the function x � x g has
bounded derivative with norm bounded by c0r1=2kf k1 . Thus, x � x g contributes
at most c0�kf k1 to jx .p/� x .p0/j. Consider now the contribution from x g . It
proves convenient to write x g once again as x g1Cx g2 where x g2 is defined by using
�.
p

r dist.x; � //g.x; � / in (6-35) rather than g.x; � /. Integrate by parts to remove
the derivative from f and then appeal to the third and fourth items of (6-17) to see
that x g1 has bounded derivative with norm bounded by c0r1=2kf k1 . Thus, x g1

contributes at most c0�kf k1 to jx .p/� x .p0/j. As for x g2 , integrate by parts to
put the derivatives from f onto g . If dist.p;p0/ > c�1

0
r�1=2 , use the second item

in (6-17) to bound jx g2.p/j and jx g2.p
0/j both by c0kf k1 so as to conclude that

jx g2.p/� x g2.p
0/j � c0kf k1 � c0�kf k1 .

To consider the case where dist.p;p0/� c�1
0

r�1=2 , introduce Gaussian normal coor-
dinates centered on the point midway between p and p0 so as to identify p , p0 and
the domain of integration as subsets of R4 . Granted this identification, use the third
item in (6-17) to bound jg.p;y/� g.p0;y/j by c0 dist.p;p0/jyj�4 ; and use this to
bound the contribution to jx .p/� x 0.p0/j from the portion of the integration domain

Geometry & Topology, Volume 14 (2010)



Embedded contact homology and Seiberg–Witten Floer cohomology IV 2919

where jyj � 4 dist.p;p0/. Meanwhile, use the second item in (6-17) to bound the
integration over the rest of the integration domain by c0 dist.p;p0/. The bound using
dist.p;p0/jyj�4 supplies a term bounded by c0�.1Cj ln.�/j/kf k1 .

Step 9 This step contains the following.

Proof of Lemma 6.11 To start the derivation of the needed estimates, fix two elements
� and � 0 in K� . By virtue of (6-13), the difference s � s 0 obeys an equation that can
be written schematically as

(6-36) d|d.s � s 0/C 2r j �j2.s � s 0/D K:

Here, K is the difference between the respective � and � 0 versions of what is denoted
in (6-13) by �RCPbCP� .

Fix � 2 .0; r�1=2/ and p 2R�M . Let �p denote the function on R�M given by
�.��1 dist. � ;p//. Multiply both sides of (6-36) by ��p.s � s 0/ and then integrate the
result. What with (6-14), a suitable integration by parts and Holder’s inequality finds
that

(6-37)

Z
dist.p;� /��=4

jd.s � s 0/j2 � c0r�4
�
ks � s 0k21Ck� � �

0
k

2
1

�
Cc0�

�2

Z
dist.p;� /��

j.s � s 0/� .s � s 0/j2;

where s � s 0 denotes the average value of s � s 0 over the radius � ball centered at p .
Use (6-30) to bound ks � s 0k1 by c0k� � �

0k1 and use Lemma 6.12 to bound the
integral on the right in (6-37) by c0k���

0k21r�6.1Cj ln.�r1=2/j2/. Here is the result:

(6-38)
Z

dist.p;� /��=4
jd.s � s 0/j2 � c0r�4

�
1Cj ln.�r1=2/j2

�
k� � � 0k21:

To continue, set " 2 .0; r1=2/ and suppose now that � 2 .0; "�. It then follows from
(6-14) that

(6-39)
Z

R�M

�pjKj
2
� c0r2�4

k� � � 0k21C c0r6���.r�1�2/k� � � 0k2K;":

Granted (6-39), multiply both sides of (6-36) by �p and then integrate the squares of
the results. An integration by parts finds that

(6-40)

Z
R�M

�pjrd.s � s 0/j2 � c0r2�4
k� � � 0k21C c0r6���.r�1�2/k� � � 0k2K;"

Cc0�
�2

Z
dist.p;� /��=4

jd.s � s 0/j2:
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What with (6-38), this gives

(6-41)

Z
dist.p;� /��=4

jrd.s � s 0/j2 � c0

�
r�2

�
1Cj ln

�
�r1=2

�
j
2
�

Cr6���.r�1�2/
��
k� � � 0k21Ck� � �

0
k

2
K;"
�
:

Take "D r�1 and take � 2 .0; "�. The resulting versions of (6-38) and (6-41) imply
what is claimed by the lemma.

This completes the proof of Lemma 6.9.

6.e A bound for k�kK

The purpose of this section is to prove that k�kK is finite and small. The results are
summarized by the following.

Lemma 6.13 The constant � in Lemma 6.9 can be chosen so that the following
additional conclusion holds: The norm k � kK2

1
is finite on � and k�kK2

1
� �ı .Thus,

� 2K . Moreover, k�kK � �ı .

Recall that the norm k � kK2
1

is defined by replacing each occurrence of k � kK in [9,
(5-13)] by the norm given by the top line in [9, (2-27)].

Granted Lemma 6.13, the proof of Theorem 1.2 is completed as follows.

Proof of Theorem 1.2 If n is large and so ı small, it is a consequence of Lemma 6.13
that � obeys the assumptions that are made by [9, Proposition 6.4]. This understood,
(6-21) and Lemma 6.9 imply that qD q.�/� h.�/ as described above is precisely the
element in H that is assigned to � by [9, Proposition 6.4]. As a consequence, � is
given by [9, Proposition 7.1] if n is large and so ı is small. Indeed, [9, Proposition
7.1] asserts that there is unique, small normed solution to [9, (7-1)] with any given
small normed value for q. � /. Let � D q.�/. For each x 2 Œ0; 1�, [9, Proposition
7.1] finds a solution to �x to (7-1) with q.�x/D x�. This gives a continuous path in
.An;  n/’s component of M1.c�; cC/ that connects the pair .An;  n/ to a point in
the image of ‰r . Because ‰r maps any given component of M1.‚�; ‚C/ onto a
component of M1.c�; cC/, this implies that .An;  n/ is in the image of ‰r . However,
this conclusion contradicts the assumption made at the outset. This contradiction proves
Theorem 1.2.
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Proof of Lemma 6.13 Reintroduce the constant R� given in [9, (4-8)]. Fix T >

100R� so as to define the bump function, m , on R�M . This function is to equal
1 where jsj � T and to vanish where jsj � T C r2 . Also, jdm j � c0r�2 . To be
precise, m is defined to equal �.r�2.jsj � T // where the jsj > T and where the
distance to any Reeb orbit from either „†� or „†C is greater than 100�� . To define
m where s<�T and where the distance to  2„†� is less than 100�� , introduce the
coordinates .w ; t; z/ as in [9, (4-1)]. This done, set m on the domain in question to be
�
�
r�2.`=.2�//jwCx .1=2/jzj2j�T

�
where x D .1��.jzj=.16��//. Use the same

formula for m at points where both s > T and the distance to any given  2„†C less
than 100�� .

Introduce �T to denote the element in K whose C 2 C entries are those of � , and
whose respective  2„†� and  2„†C entries are given in terms of the coordinates
in [9, (4-1)] by �

�
.`=.2�//r

�2jw j � T
�
�˙ . The first four parts of what follows

prove k�T kK2
1
< c0ı . This implies, by taking T !1, that � 2K and that k�kK2

1
� c0ı .

Part 5 of what follows uses this last bound to prove that k�kK � c0ı .

Part 1 Set qT Dmq. Note that qT 2H?
�

because T �R. What with the top line of
(6-21), this qT obeys the equation

(6-42) DqT D�r�2m 0qT q� r1=2qT q� qT � 2r1=2h� qT C r�1=2m.v� vh/;

where m 0 is the endomorphism of iT �R˚ S˚ iR that is defined by applying the
principle symbol of D to the 1–form dm . This equation is used to derive the upper
bound

(6-43) kqT kH � c0r�1=2.r�1=2C8�
Ck�T kK2

1
/:

Such an upper bound follows from what is said in [9, Lemma 6.1] given suitable bounds
for the L2 norms of the various terms that appear on the right hand side of (6-42). The
desired bounds are derived in the next paragraph.

Given what is said in the second item of (6-21), it follows that the L2 norm of the term
r�2m 0q is bounded by c0r�1ı . To say something about the norm of r1=2q� qT , use
the fact that bilinear operator . � /� . � / involves the spinor component of at least one
of its entries to see that the L2 norm of this term is no greater than c0ıkqT kH .
Given what is said about h in [9, Lemma 6.3], it follows that the L2 norm of
r1=2h � qT is less than c0ıkqT kH when n is large. The arguments that are used
to prove the third item in [9, Lemma 6.3] bound the L2 norm of r�1=2m.v� vh/ by
c0r�1=2.r�1=2C8� C r�1ıCk�T kK2

1
/.
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Part 2 Because T �R, the term �r�1m 0q that appears in (6-42) is in the subspace
L?
�
D .1�…�/L. This understood, (6-42) requires that

(6-44) …�.m.v� vh//D r1=2…�
�
DqT C r1=2q� qT C 2r1=2h� qT

�
:

A bound on the K2
1

norm of � will be derived using (6-44). This task requires the
derivation of bounds on the L2 norms of the terms that appear on the right hand side
of this equation.

The easiest of the terms to consider are r…�.q�qT / and r…�.h�qT /. Indeed, because
. � /�. � / involves the spinor component of at least one of its entries, it follows that the L2

norm of r…�.q�qT / is bounded by c0r1=2ıkqT kH ; thus by c0ı.r
�1=2C8�Ck�T kK2

1
/.

Meanwhile, it follows from the second item of [9, Lemma 6.3] that the L2 norm of
r…�.h� qT / is bounded by c0r�1=16.r�1=2C8� Ck�kK2

1
/.

It follows from [9, (6-6), (6-7)] that the L2 norm of r1=2…�DqT obeys

(6-45) r1=2
k…�DqT k2 � c0.k�T kK2

1
C r�1/.rW/1=2C c0��r

1=2
kqT kH;

where the notation is as follows: What is denoted as W is given by

(6-46) W D sup
.C;m/2#

sup
p2C

ˇ̌̌̌
ˇ
Z

N jp

k
�
qT

�ˇ̌̌̌ˇ
2

;

with k .qT / being a linear function of the components of qT with support on the
part of the fiber of N at p where the distance to p is bounded by �� . Moreover,
this linear function k obeys jk j C r�1=2jrV k j � c0r1=2e�

p
r dist. � ;†/=c0 with †

denoting
S
.C;m/2# C and rV denotes differentiation along the fiber of N . By way

of explanation, the term with W is the analog here of the contribution to [9, (6-66)]
of what is called A1 in [9, (6-67)]. Meanwhile, the term c0��r

1=2kqT k
2
H in (6-45)

corresponds to r1=2 times what is denoted in [9, (6-67)] by A2 . As is explained in
Part 3, W � c0r�1ı2 . Granted this, it then follows from (6-45) and what is said in the
preceding paragraph that the L2 norm of the right hand side of (6-44) is bounded by

(6-47) c0ı.r
�1=2C8�

Ck�T kK2
1
/

when n is large.

Part 3 To see why W � c0r�1ı2 , consider first the contribution from h.�/. This sec-
tion of iT �M ˚ S has a part whose absolute value is less than c0.r

�1 C

r�1=2e�
p

r dist. � ;†/=c0/, and a second part that is the product of a function with support
where jsj �R� and something invariant with respect to translations on the R factor of
R�M with k � kH norm bounded by c0r�1 on any given constant s slice of R�M .
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The bounded part contributes at most r�2 to W . The other part has support far out on
the ends of the curves in C . This part comes from what is denoted in [9, (6-30)] by b�
and bC ; it corresponds to what is denoted by e� in [9, Lemma 3.10]. Given that each
end of each C from a pair in # is transversal to the constant s slices of R�M , it
follows using the fact that L2

1
functions restrict to hyperplanes as L2 functions that

the integral of either the b� or bC version of je� j2 over what is the normal bundle
fiber N jp is bounded by a uniform multiple of ke�k2H . As this is bounded by c0r�2 ,
it follows that the contribution to W from h.�/ is bounded by c0r�2 .

Turn now to the contribution to W from b.�/. As can be seen in (6-12), all but the
contribution of r�1=2ds to b.�/ is bounded by c0ı . As a consequence, all but r�1=2ds
contribute at most a factor c0r�1ı2 to W . A bound by c0r�1ı2 on the contribution to
W from r�1=2ds follows as an immediate consequence of the upcoming Lemma 6.14.

Lemma 6.14 augments the assertions that are made by Lemmas 6.7, 6.10 and 6.12.
To set the notation used by the lemma, suppose that D �C is a disk centered at the
origin and that 'W D!R�M is a smooth embedding. Suppose that w is a section
of '�T .R�M / and a is a 1–form on R�M . Then ha;wi is used to denote the
function on D that is obtained by viewing w as a section along '.D/ of T .R�M /

and then pairing the latter at any given point in D with the 1–form a .

Lemma 6.14 Fix a constant c � 1 and the constant � that appears in Lemmas 6.7, 6.10
and 6.12 can be chosen so that the following additional conclusion hold: Let D �C
denote the disk of radius ��1 centered at the origin. Suppose that 'W D!R�M is
an embedding that is isometric at the origin in D and whose second derivatives are
bounded by c . Let o denote a smooth section of '�T .R�M / with compact support
in the concentric disk of with half D ’s radius. Thenˇ̌̌̌

ˇ
Z

D

hdx ; oi

ˇ̌̌̌
ˇ� ��kf k1Ckmk1�

Z
D

�
jrojC r1=2

joj
�
:

Proof of Lemma 6.14 The arguments are much the same as those used in the proof
of the first item of Lemma 6.10. In short, write the Green’s function G as in (6-18)
for the case "D 1 and define x g as in (6-25). Given the second items in (6-17) and
Lemma 6.8, the contribution to the integral of hdx ; oi from d.x � x g/ is bounded by

(6-48) c0

�
kf k1Ckmk1

�
r1=2

Z
D

joj:

Meanwhile, the contribution from hdx g; oi is bounded by writing x again as x g1Cx g2 .
The contribution from hdx g1; oi is also bounded by (6-48) as can be seen using
the second and third items in (6-17). The contribution of hdx g1; oi is bounded by
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c0.kf k1 C kmk1/ times the L1 norm of rq . To see this, integrate by parts to
move derivatives of x along '.D/ onto o and then use the second item in (6-17).
To handle the term with a derivative of x that is transverse to D , use the standard
short distance expansion of g.x; � / to write any such derivative of g as .@=@z1/gCg0 ,
where z D z1C iz2 a complex Gaussian coordinate along '.D/, and where g and g0

are both bounded by c0 dist.x; � /�2 and have derivatives from the right bounded in
absolute value by c0.dist.x; � /�3C r�1=2 dist.x; � /�2/.

Part 4 This part of the proof begins with a description of the left hand side of (6-44).
In this regard, much can be borrowed from what is done in [9, Section 7.d]. To this end,
write …�.v � vh/ as � D ..�C /.C;m/2# ; .��/2„†�/; .�C/2„†C/. The various
components of � are described by [9, (7-30), (7-31), (7-34)].

Let T1 denote the linear map from K to L that is defined in [9, Part 2 of Section 7.e].
By virtue of what was said above about …�.v� vh/, it follows from (6-44) and (6-47)
that �T obeys an equation of the form

(6-49) T1

�
�T
�
C e1

�
�T
�
D e0T ;

where e1 obeys ke1.�T /kL2 � c0ık�T kK2
1

and e0 obeys ke0T kL2 � c0r�1=2C8� . To
elaborate, the terms T1.�T /Ce1.�T / account for the difference between the �T version
of …. �/ .v� vh/ and the version that is defined by replacing � with 0 2K .

Let C 2 C denote the one element that is not R–invariant, and use V0 to denote the
1–dimensional vector L2 kernel of DC with DC defined as in [9, (4-5)]. A linear
map q W K! V0 is described in [9, Section 7.f]. According to [9, Proposition 7.2],
the operator T1 maps the kernel of q surjectively onto L. As is explained in the next
paragraph, �T can be written as �T�C�T where q.�T�/D 0 and where

(6-50) k�T kK � c0ı and kT1

�
�T

�
kL � c0ır

�1=c0 :

Granted this decomposition, it follows from (a) and (b) of the second item of [9,
Proposition 7.2] that k�T�kK2

1
� c0.r

�1=2C8� C ır�1=c0/. These bounds on �T� and
hT imply what is claimed by Lemma 6.13.

To obtain �T , reintroduce the linear map q�W V0! K that is defined at the end of
[9, Section 7.f]. Let C again denote the one surface from a pair in # that is not R–
invariant. Fix an element o 2 V0 D kernel.DC / with L2 norm 1. Then �T D rq�.o/
where r D hq.�T /; oi2hqq�.o/; oi�1

2
Here, h ; i denotes the L2 inner product on the

space of square integrable sections of C ’s normal bundle. Note in this regard that
hqq�.o/; oi2 differs from 1 by at most c0r�1=c0 The asserted bounds on the norms
of �T and T1.�T / follow directly from what is said about q�.o/ in the paragraph
following [9, (7-49)].
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Part 5 Granted that � 2K , it satisfies the T !1 version of what is written in (6-49),
this the equation T1.�/C e1.�/ D e0 . It is a consequence of [9, (7-30), (7-31) and
(7-34)] that ke1.�/kK � c0ık�kK . Given what is said in (6-49) about �T , it follows
from (c) of the second item in [9, Proposition 7.2] that k�kK � c0.ıCke0kL/. Thus,
the desired bound on k�kK follows from a bound on ke0kL by c0.r

�1=4C ık�kK/.
Such a bound is derived in the three steps that follow.

Step 1 Define the norm k � k� as in [9, (6-51)]. The derivation of the desired ke0kL
bound requires the bound

(6-51) kqk� � c0r�1=2.ıCk�kK/:

This bound follows from [9, Lemma 6.5] with the top equation in (6-21) playing the
role played by [9, (6-55)]. Note that the assumptions for [9, Lemma 6.5] hold when n

is large by virtue of the following facts: First, (6-43) implies that q is in H and that

(6-52) kqkH � c0r�1=2ı:

Meanwhile, it follows from what is said in the preceding parts of the proof that the
square of the L2 norm of uD r�1=2.v�vh/ is bounded by mLD c0r�1ı2 . In addition,
what is said in [9, Section 7.d] implies that the uD r�1=2.v�vh/ version of the integral
on the right hand side of [9, (6-56)] is bounded by m� D c0r�1.r�1=2C8� Ck�kK/

2 .

Step 2 Return to the notation used in [9, Section 7.b] and Part 2 of the digression
that follows [9, Lemma 6.5]. In particular, fix � 2 .0; 1/ and let D� denote a disk of
radius � as described in Part 2 of this same digression. If D� is in some .C;m/ 2 #
version of C � .

S
E2EC

E2R/, use e0� to denote the component e0C . By the same
token, if D� is in some U� version of .�1;�R��S1 , or in some UC version of
ŒR;1/�S1 , use e0� to denote the corresponding component of e0 .

Step 3 The L2 norm of e0� over D� has a contribution from the � D 0 version of
…. �/ .v�vh/ and a contribution from each term in r1=2…�.DqC r1=2q�qC 2r1=2h�q/.
It is a direct consequence of [9, (7-30), (7-31) and (7-34)] that the contribution from
the � D 0 version of …. �/ .v� vh/ is no greater than c0r�1=2C8�� .

Turn now to the contribution from r1=2…�Dq. As noted in [9, Step 2 of Section
7.b], the square of the L2 norm of the relevant component of …�Dq over D� is at
most c0.A1 C A2/ with the latter defined in [9, (6-67)]. [9, (6-68)] bounds A1 by
mL D r�1.r�1=2C8� Ck�kK2

1
/2 . As k�kK2

1
� c0ı , this finds A1 � c0r�1ı2k�k2K�

v .

A bound on A2 for the case � > r�1=2�v is given in [9, (6-69)] using this same mL .
This bound finds the �> r�1=2�v version of A2 to be less than c0r�3=2ı2�v . A bound
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on the � < r�1=2 versions of A2 by c0r�3=2.ıCk�kK/
2 is obtained by invoking [9,

Lemma 7.4] using the version of [9, (6-55)] that is given by the top line in (6-21). Note in
this regard that kqk� in this case is given in (6-51) and m�Dc0r�1.r�1=2C8�Ck�kK/

2 .

Consider next the contributions from r…�.h�q/ and r…�.q�q/ to the square of the L2

norm of e0� over D� . To this end, the arguments used in [9, Step 3 of Section 7.b] can
be applied with but minor notational changes to bound these contributions. To elaborate,
[9, (7-6)] implies that r…�.h� q/ contributes c0r�1=8.r�1=2C8� Ck�kK/�

� or less
to the L2 norm of e0� over D� . Meanwhile, [9, (7-12)] with the bound k�kK2

1
� c0ı

implies that the contribution of r…�.q � q/ to the L2 norm of e0� over D� can be no
greater than c0ı.r

�1=2C8� Ck�kK/�
� .

Taken together, these bounds imply that ke0kL � c0.r
�1=4C ık�kK/ as claimed.

7 Proof of Lemma 6.2

The arguments for Lemma 6.2 are much like those in Sections 5b–5d of the article
SW D Gr in [6]. Note in this regard that the author found a gap in the proof of the
latter’s Lemma 5.5 while writing this subsection. What follows has a replacement
lemma that is used with the subsequent arguments from the article SW D Gr in [6] to
prove Lemma 6.2. This replacement lemma can be used as well in the article SW D Gr
of [6] in lieu of the latter’s Lemma 5.5.

The proof of Lemma 6.2 starts by assuming that the lemma is false and then proceeds
to derive nonsense from this assumption. To begin this derivation, introduce

ın D r1=2
n sup

z2˛�1
n .0/

dist

 [
.C;m/2#

C; z

!
ı0n D r1=2

n sup
z2
S
.C;m/2# C

dist.z; ˛�1
n .0//:

(7-1)

If the lemma is false, then there is a subsequence of f.rn; .An;  n//gnD1;2;::: , hence
relabeled consecutively from 1, such that either fıngnD1;2;::: is bounded away from
zero, or fı0ngnD1;2;::: is bounded away from zero. As is explained in Section 7.a, it is
always the case the any sufficiently large n version of ı0n is no greater than c0ın . Thus,
the convergence of the former sequence implies the convergence of the latter. This
understood, assume that there exists ı0> 0 such that ın>ı0 for all n. Sections 7.b–7.e
derive the desired nonsense from this assumption.
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7.a ın versus ı0n

What follows explains why ı0n < c0ın for n large. If .C;m/ 2 # and let � W N ! C

denote as usual C ’s normal bundle. Fix ı > 0 and let Nı ! C denote the radius ı
subdisk bundle. Lemma 6.1 guarantees that all sufficiently large n versions of ˛�1

n .0/

intersect eC .Nıjz/ for each z 2 C . Furthermore, no point in ˛�1
n .0/ lies outsideS

.C;m/2# eC .N2ı/.

Fix .C;m/ 2 # and T �R so that the jsj> T part of C is far out on each end of C .
If n is large, and z 2 C lies where jsj< T , then dist.z; ˛�1

n .0// < ınr
�1=2
n . Indeed,

this is due to the following fact: If T > 1 is given, then
S
.C;m/2# eC embeds the

jsj � T portion of any sufficiently small ı version of
S
.C;m/2# Nı . Now fix an end

E � C . Given n, use En � E to denote the set of points where z is the only point
of N1jz with distance 16ınr

�1=2
n or less whose image via eC lies in [.C 0;m0/2#C 0 .

It follows from [9, (4-2)] that En is path connected and contains jsj D T part of E .
This implies that dist.z; ˛�1

n .0// < ınr
�1=2
n also.

To continue, fix  2„†� and reintroduce the notation used in [9, Section 5.c]. The
simplest case to consider is that where U� contains just a single end, E , fromS
.C;m/2# C . If this end comes from a pair .C; 1/, then what is said above implies that

every point z 2E has distance ınr
�1=2
n or less from ˛�1

n .0/ when n is large. Suppose
that this end comes from .C;m/ with m> 1, or that U� contains a second end. To
treat this case reintroduce from [9, Section 5.c] the partition fE1; : : : ; EN g of the ends
of
S
.C;m/2# C that lie in U� . The simplest case now to consider is that where there

is but one partition subset, E1 . In fact, this case gives the crux of the argument that
works in general. To start the story for the N D 1 case, let �< 0 denote the eigenvalue
�qE that appears in each E 2 E1 version of [9, (4-2)]. Note that there exists c0 � 1

with the following properties:

(7-2)

� If E � E1; then the w > ��1 ln.ınr
�1=2
n /C c0 part of E contains En .

� If E � E1 and z 2 E has w .z/ � ��1 ln.ınr
�1=2
n /C c0 , then all points

in the constant w D w .z/ slice U�\
�S

.C;m/2# C
�

have distance at
most c016ınr

�1=2
n or less from z .

Granted this, it follows that all points in U�\ .
S
.C;m/2# C / have distance no greater

than c0ınr
�1=2
n from ˛�1

n .0/.

In the case when there is more than one partition subset, the argument just given proves
that all points in

S
E2EN

E have distance no greater than c0ınr
�1=2
n from ˛�1

n .0/.
Granted that the desired conclusion holds for the ends in EN , this argument can now
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be reapplied with only notational changes to prove that the desired conclusion holds
also for the ends in EN�1 . It then works for the ends in EN�2 , and so on.

7.b Integrals of the curvature

This subsection begins the proof proper of Lemma 6.2. The starting point is a sequence
frn; .An;  n/gnD1;2;::: for which fıngnD1;2;::: does not converge to zero. Thus, there
exists ı0 > 0 such that ın > ı0 for all n. The constant c0 that appear below henceforth
depends implicitly on min.1; ı0/.

The substantive part of the proof is the upcoming Lemma 7.1 which concerns certain
integrals of the curvature 2–form. To set the stage for the lemma, suppose that C

comes either from a pair in # , or that C DR�  with  in either „†� or „†C .

Recall that N1 �N is a subbundle of radius c�1
0

whose fibers disks are embedded by
the exponential map eC from [9, Section 4.a]. Let D �C for the moment denote a
given disk radius c�1

0
, then eC will embed N1jD . Let D0 �D denote the concentric

disk with half D ’s radius and use eC to identify N1jD0 with its image in R �M .
Granted this identification, then there exists an orthogonal basis for T 1;0.R �M /

of the following sort: Use s to denote the tautological section over N of ��N and
let � denote the Hermitian connection pulled up to ��N . The basis is denoted by
f�0; ��1g where �0 is a section of ��T �C with norm

p
2 that restricts to C as a

section of T 1;0C . Meanwhile, �1Dr�sC& where & vanishes along C , and to order
jsj2 , it is a section of ��T C . In addition j�j differs from 1 by at most c0jsj

2 and
jr��j � c0jsj. This constant is chosen so as to give �1 norm

p
2 also. Finally, the

pullback of ds^aC 1
2
da to each fiber disk in N1jD0 differs from that of .i=2/�1^x�1

by no more than c0jsj
2 .

Fix n large and use .A; ˛/ to denote .An;  n/. Define the connection yA as in (3-33)
using an increasing function x!}.x/ with }Dx near xD 0 and with }.1/D 1. Fix
a disk D�C as above, write the curvature of F yA on N1jD0 using the basis f�0; ��1g as

(7-3) F yADf0�0^x�0Cf1�1^x�1CfC�0^�1�
xfCx�0^x�1Cf��0^x�1�

xf�x�0^�1:

Lemmas 3.1, 3.6, 3.8 and 3.9 with (3-35) put constraints on the coefficients that appear
here as they require that

(7-4)

� jxj2f1Cjyj
2f0Cxxyf�Cx xy xf���c0

�
r�1
n Ce�

p
r dist.X�;� /=c0

�
for any

unit vector .x;y/ 2C2 .

� jfCj � c0r
1=2
n .r�1

n C e�
p

r dist.X�;� /=c0/.

Given p 2C and �> 0, use D� in what follows to denote the disk of radius � centered
at p . Assume in all cases that � is such that the exponential map eC embeds N1jD4�
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Now suppose that z> 0 is less than the radius of the fiber disks in N1 . (Such an upper
bound is also assumed implicitly below.) Use Nz � N1 in what follows to denote
the radius z subbundle. With z given, introduce �z to denote the function �.jsj=z/
on N1 . Define the set X� �R�M to be the region where j˛j � 1� ��1 , with � as
given by Lemma 3.8.

Lemma 7.1 Given c > 0 and k 2 f0; 1; : : :g, there exists a constant � > 1 with the
following significance: Fix C and p 2 C . Take n � � and fix � 2 .ınr

�1=2
n ; ��2/,

then z 2 .��; ��1/, and then �˙ 2 Œ8ınr
�1=2
n ; z �. Assume that ˛�1.0/\N jD2�

does
not contain points with jsj 2 Œ1

8
�˙; z �. In what follows, � D 0 if }.j˛j2/ D 1 at all

points with jsj � 1
4

z ; otherwise �D 1.

�

Z
��1.D�/

�z jsj
ke�
p

rn dist.X�;� /=c � ��2.�˙/
kr�1

n .

�

Z
��1.D�/

�z jsj
k
jF yAj � ��

2�k
˙

�
1C�.z=�˙/

kr�1
n

�
�

Z
��1.D�/

�z jsj
k
jfCj � ��

2r�1=2
n �k

˙

�
1C�.z=�˙/

kr�1
n

�
.

�

Z
��1.D�/

�z jsj
k

�
jf0jC

�
�˙

�

�1=2

jf�j

�
� ��2�k

˙

�
�˙=�C�e�

p
rnz=���1C�.z=�˙/

kr�1
n

�
.

The following is a parenthetical remark with regards to the �D 0 case: Lemma 3.7
and Lemma 3.8 say that given ı > 0, there exists an n–independent constant �ı such
that j˛j � 1� ı where jsj � .1

8
ınC �ı/r

�1=2
n . This understood, there will be choices

for } and z for which the condition on }.j˛j2/ follows from the earlier constraint
that jsj � 1

8
�˙ on the zero locus of ˛ .

As noted in the introduction to this section, there is a gap in the proof of Lemma 5.5
from the article SW D Gr in [6]. The argument that follows proving Lemma 7.1 can be
used to prove the following: In the context of what is assumed for Lemma 5.5 in the
article SWD Gr from [6], the assertions of Lemma 7.1 hold with �D 0 and }.x/D x .
The latter result can be used in lieu of Lemma 5.5 for the parts in this SW D Gr article
that refer to its Lemma 5.5.

Proof of Lemma 7.1 The proof has two steps.

Step 1 This step proves the first item. To start, fix x 2 .r�1=2; z/ and then fix a
maximal set, ƒx , of points in the portion of ˛�1.0/ that lies in Nz=2jD� with the
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following property: Any two distinct points from ƒx have distance at least x apart.
According to Lemma 3.10, the integral of r.1�j˛j2/ over the ball of radius 4x centered
at any given point in ƒx can be no greater than c0x 2 . Note that ˛�1.0/\Nz=2jD� is
covered by the union of these balls of radius 4x and center in ƒx . If x < c0� , then
this set can have at most c0�

2x �2 elements when n is large if z � c�1
0

. This follows
from Lemma 6.1. To elaborate, note that if z � c�1

0
, then

S
.C 0;m0/2# C 0 intersects

Nz=2jD2�
only in D2� unless D2� is far out on an end of

S
.C 0;m0/2# C 0 . In the latter

case, each component of the intersection is the image of a nearly parallel section over
D2� of Nz . By the same token, if x > � , then there are at most c0 elements in ƒx .
Now let Ux denote the union of the intersections of the balls of radius x centered at
the points of ƒx with Nz jD� .

Consider first the case when k D 0. The integral is no greater than the sum, indexed by
the integers q2 Œ1; c0r1=2z �, of the contributions from Uq=

p
r�U.q�1/=

p
r . Here, U0D

∅. To bound this sum, remark that the factor e�
p

r dist.X�;� /=c is less than e�
p

rx=cc0

on Nz jD� �Ux . Granted this, any given radius qr�1=2 ball with center in ƒq=
p

r

contributes at most e�q=cc0 times the volume of its intersection with Nz jD� . Given what
was said about the maximum number of such balls, it follows that the left hand side
of (7-3) can never be greater than c0

P
qD0;1;2;::: e

�q=cc0.�2=.qr�1=2/2.qr�1=2/4 ,
which is less than c0�

2� cr�1 .

Consider next the case when k > 0. If q=
p

r < 16�˙ , then the contribution from a
ball with center in ƒq=

p
r is at most c0�

k
˙

e�q=cc0 times the volume of its intersection
with Nz jD� . If q=

p
r � 16�˙ , then the contribution is at most c0.q=

p
r/ke�q=cc0

times the volume of its intersection with Nz jD� . These contributions sum to less than
c0.�

k
˙
C r�k=2/�2r�1 .

Step 2 What with (3-35) and (7-4), the second and third items of the lemma follow
directly from the first item of the lemma.

To prove the fourth item, note first that �z D 1 on the support of F yA if }.j˛j2/D 1

where jsj � 1
4

z . Now, let �D denote the function on C that assigns to u 2 C

the value of �.4 distC .p;u/=�/. Here, distC . � ; � / denotes the distance as measured
on C . Use pullback via the map � to view �D as a function on ��1.C /. The
integral of �z jf0j over ��1.D�/ is less than that of �D�z jf0j over ��1.D2�/. To
bound the latter integral, note that the x D 0 version of (7-4) finds f0 � jf0j �

c0.r
�1
n C e�

p
rn dist.X�;� /=c0/. This understood, it follows from the first item of the

lemma that up to an error that is at most c0�
2�k

˙
.1C�.z=�˙/

k/r�1
n , the integral over

��1.D2�/ of �D jsjk jf0j is no greater than the integral of �Df0 over ��1.D2�/.
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This is, up to a factor,

(7-5)
Z
��1.D2�0 /

�D�z jsj
k
�
F yA ^ �1 ^x�1

�
:

To bound (7-5), note that �1 ^x�1 can be written as im.d.�skC1x�1//C o, where joj �
c0jsj and where im. � / designates the imaginary part of the indicated C–valued form.
It follows from (3-34), Lemma 3.8, and the second item of the lemma that the absolute
value of the contribution of o to (7-5) is less than c0�

2�kC1
˙

.1C�.z=�˙/
kC1r�1

n /.

To analyze the im.d.�skC1x�1// contribution to the integral in (7-5), integrate by parts
to see that this contribution is no greater than

(7-6) c0

ˇ̌̌̌Z
��1.D2�/

.d�D�z C�
Dd�z/^F yA ^ im.�skC1

x�1/

ˇ̌̌̌
:

The contribution of the part of the integrand in (7-6) with d�z is no greater than

(7-7) c0�
2�k

˙
�
�
e�
p

rnz=�
C .z=�˙/

kr�1
n

�
:

Indeed, this follows from (3-35), Lemma 3.8 and the second item of Lemma 7.1.
Meanwhile, the contribution to (7-6) from d�D is no greater than

(7-8) c0�
�1

Z
��1.D2�/

�z jsj
kC1

�
jf�jC jfCj

�
:

It follows from the second item in the lemma that what is written here is no greater
than c0�

2.�˙�
�1/�k

˙
.1C�.z=�˙/

kr�1
n /.

What was said in the preceding paragraphs directly implies the asserted bound for jf0j’s
contribution to the integral in the fourth item of the lemma. To derive the bound asserted
for the jf�j contribution, use the first item in (7-4) with xD�.�˙=�/

1=2f�=jf�j and
with y D 1 to bound .�˙=�/

1=2jf�j by

c0.jf0jC .�˙=�/jf1jC r�1
n C e�

p
rn dist.X�;� /=c0/:

7.c Special sections of N

To set the stage for the lemma, suppose that C comes either from a pair in # , or
that C DR�  with  in either „†� or „†C . The purpose of this subsection is to
construct some special sections of powers of the normal bundle over parts of C .

To set the notation, first introduce !C to denote the induced volume form on C . The
upcoming definition also requires a choice of � 2 .0; c�1

0
/. With � given, each p 2 C

is assigned the function �p. � / D �.dist.p; � /=�/. The definition also requires the
specification of numbers z > 0 and �˙ > 0.
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Fix an increasing function }W Œ0;1/! Œ0;1/ such that }.x/D x near 0 and such
that }.1/D 1. In what follows, it is sufficient to consider only two versions of } , the
first being }1.x/D x and the second }2.x/D x�.x/C 1��.x/. Given an index n,
use yA to denote the .An;  n/ version of (3-33) as defined using the function } . Note
that yA is flat where j˛j2 � 1

2
when } D }2 .

Assign to each integer k � 0 the section, ok D o.n/k of N˝k using the rule

(7-9) ok jp D �
�2��k

˙

Z
Nz

�p�zs
k

�
i

2�
F yA

�
^��!C :

Note that the appearance of the function �z in (7-9) is superfluous in the case } D }2

if j˛j2 � 1
2

at the points where jsj � 1
4

z . This is because F yA D 0 where �z � 1.

The next lemma says the first things about ok . The statement of this lemma refers
to the coefficients .�C ; �C / that appear in [9, (4-5)]. It also refers to an integer m.
When C comes from # , the latter is the integer that pairs with C . If C DR�  with
 2„†� or with  2„†C , then mDm� or mDmC , respectively. Note �C D 0

in all cases when m> 1.

Lemma 7.2 Given a positive integer k , there exists a constant � > 1 with the fol-
lowing significance: Suppose that n � � . Fix � 2 Œınr

�1=2
n ; ��2/; z � �� , and then

�˙ 2 Œ8ınr
�1=2
n ; z �. Suppose that D� � C is an embedded disk such that Nz jD2�

contains no points in ˛�1.0/ with jsj 2 Œ1
8
�˙; z �. Define ok D o.n/k at points in D�

using the formula in (7-9).

jok j � �
�
1C .z=�˙/

kr�1
n

�
jx@�ok j � �

�
1C .z=�˙/

k.r�1
n C z�1e�

p
rnz=�/

�
:

Moreover,

� In the case k D 1, write x@�o1C �C o1C�Cxo1 D e.
(a) If �˙ < � , then

jej � �
�
.�˙=�/

1=2
C .�=�˙/

1=2z�1e�
p

rnz=�
C .�˙/

�1r1=2
n

��
1C .z=�˙/

2r�1
n

�
:

(b) If D2� lies in an end of C and if yA is defined using }. � / with }.j˛j2/D 1

where

jsj � 1
4

z on Nz jD2�
; then jo1j � � and jej � �

�
�C .�˙=�/

1=2
C .�˙/

�1r�1
n /:

� Suppose that m > 1 and that yA using }. � / with }.j˛j2/D 1 where jsj � 1
4

z
on Nz jD2�

. Take k 2 f1; : : : ;mg. Then jok j � � and jx@�ok C k�C ok j �

�.�2
˙
C .�˙/

�1r�1
n /.
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Proof of Lemma 7.2 The proof has four steps.

Step 1 The fact that jok j � c0.1C .z=�˙/
kr�1

n / follows from Lemma 7.1. To see
about the asserted bound for jx@�ok j, use parallel transport by � from the center point
of D� to define a product structure for N over the disk D2� . Writing N here as
D2� �C identifies the section s of ��N !N with the complex coordinate z 2 C .
This done, then ok can be viewed as the C–valued function:

(7-10) ok jp D
i

2�
��2��k

˙

Z
C�D2�

�p�z f1zk dz ^ dxz ^!C ;

where f1 is the dz ^ dxz component of F yA . Note that if }.x/D x�.x/C 1��.x/,
then the assumption j˛j2 > 1

2
at the points where jsj � 1

4
z implies that the function

�z in (7-9) is 1 on the support of jF yAj.

Now fix a complex, Gaussian coordinate for C centered at p ; this a complex function
u such that ujp D 0, and du spans T 1;0C near p with jduj D

p
2 at p . Granted

(7-10), act on ok by @=@xu. The result, after an integration by parts and an appeal to
Lemma 7.1 can be seen to differ by at most c0�.1C .z=�˙/

kr�1
n / from

(7-11) �
1

4�
��2��k

˙

Z
C�D2�

�p�z

�
@

@xu
f1

�
.1Cg/zk dz ^ dxz ^ du^ dxu:

Here, g D g.u/ is defined by writing !C D
i
2
.1Cg/du^ dxu. To proceed from here,

use the fact that F yA is closed to write

(7-12)
@

@xu
f1 DC

@

@xz
xf��

@

@z
xfC;

where fC is the du^ dz component of F yA and f� is the du^ dxz component. Insert
this into (7-11) and integrate by parts again. It follows from (3-34) and Lemma 7.1 that
the contribution from xf� to (7-11) is no greater than c0z�1e�

p
rz=�.z=�˙/

k . However,
in the case where m> 1 or C DR�  with  an elliptic Reeb orbit, the contribution
from xf� to (7-11) is zero as can be seen after integrating by parts. Meanwhile, an
integration by parts finds that the contribution from xfC is

(7-13) �
1

4�
k��2��k

˙

Z
C�D2�

�p�zxfC.1Cg/zk�1 dz ^ dxz ^ du^ dxu:

To finish the story, note that fC can be written in terms of the coefficients in (7-3) as

(7-14) fC D fCCg1f1Cg�CCf�Cg�� xf�Cg0f0C yg.F yA/;

where jygj � c0jzj
2 and jg1j C jg�Cj C jg��j C jg0j � c0jzj. This being the case,

the claimed bound for jx@�ok j follows from (7-14) using the second and third items
Lemma 7.1.
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Step 2 To obtain Assertion (a) of the first bullet of the lemma, substitute the left hand
side of (7-14) for fC in (7-13). What with the first item of Lemma 7.1, the argument
that leads from Equation (5.32) in the article SW D Gr from [6] to Equation (5.33)
in this same article can be invoked to see that the g1f1 term gives the �C and �C

terms with an error of size at most c0�˙.1C .z=�˙/
2r�1

n /. Use the third item of
Lemma 7.1 to bound the fC contribution by c0.�˙r1=2/�1.1C .z=�˙/r

�1
n /. Use the

fourth item of Lemma 7.1 to bound the f� and f0 contributions by c0..�˙=�/
1=2C

.�=�˙/
1=2e�

p
rz=�/.1C .z=�˙/r

�1
n /.

Step 3 To obtain Assertion (b) of the first bullet, note first that the bound on jo1j

comes directly from Lemma 7.1. To bound jej, note that the function �z that appears in
(7-10) is equal to 1 on the support of F yA . This understood, it follows using Lemma 7.1
that .@=@xu/o1 differs from (7-11) by no more than c0� . Substitute (7-12) into (7-11).
Because �z D 1, there is no contribution from the xf� term. Furthermore integration
by parts finds (7-11) to be equal on the nose to (7-13). Use (7-14) with Lemma 7.1 to
see that the f1 term contributes the �C and �C terms to the expression for e plus an
error that is no greater than c0�˙ . Meanwhile, Lemma 7.1 finds that the contribution
from the f� and f0 terms are bounded in absolute value by c0.�˙=�/. Finally, the
contribution from the fC term is no greater than c0�

�1
˙

r�1
n . To see why, use (3-34) to

see that

(7-15) xfC D r.1�}/x̨ˇ�}0
�
x@A0 x̨

x@A1˛�x@A1 x̨
x@A0˛

�
;

where fx@A0; x@A1g denote the respective covariant derivatives for any given connection
A along the vector fields that are dual to the basis fx�0; x�1g. Given that the top equation
in (1-11) equates the x@A0 and x@A1 derivatives of ˛ with derivatives of ˇ , the claimed
bound on the integral of �pjfCj follows from (7-16) using Lemma 3.11 and the first
item of Lemma 7.1.

Step 4 This step derives the refined bounds for the case m > 1 that is asserted by
the lemma’s second bullet. The bound on jok j follows directly from Lemma 7.1. To
bound jej, first introduce upDwpCi tp to denote the coordinates of the point p2R�
as written using the coordinates from [9, Property 5 in Section 4.a]. The function
�p. � / in (7-10) is equal to �.jup � . � /j=�/. The form !C in (7-10) is .i=2/du^dxu.
As a consequence, the function g that appears in (7-11) is zero and the g D 0 version
of (7-11) is exactly x@ok . Meanwhile, �z is equal to 1 on the support of F yA . This,
understood, use (7-12) and then integrate by parts to see that x@ok is given by (7-13)
with g D 0 and �z D 1.
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To continue, remark that �0 in this case is equal to �0 D .`=.2�//.1Cjzj
2/�1=2du.

Meanwhile,

(7-16) �1D
`

2�
.1Cjzj2/1=2.1C2jzj2/�1=2

�
dz�

1

2
Rz.du�dxu/Cz.1Cjzj2/�1du

�
:

As a consequence, the term that is denoted by g1 in (7-14) contributes the factor
k�C D

1
2
kR to the left hand side of what is written in the second bullet of the lemma

with an error that is no greater than c0�
2
˙

. Meanwhile, both g�� and g�C are zero in
(7-14). Furthermore, what is written as yg can also be taken to be zero. This understood,
it only remains to account for the fC contribution to e . The latter is no greater than
c0�
�1
˙

r�1 . This follows using [8, (3-18)], (7-15), Lemma 3.11 and the first item of
Lemma 7.1.

Lemma 7.2 leads to the following corollary.

Lemma 7.3 Take .C;m/ as in Lemma 7.2. Given a positive integer k and �� 2 .0; 1/,
there is a constant � > 1 with the following significance: Suppose that I 2 R is an
interval of length at least three and let I1 � I denote the subset with distance at least 1
from any boundary point of I . Define ok at points in C \ .I1 �M / by the formula in
(7-9) using the data and under the assumptions in one of the next two bullets.

� Fix n � � , fix � 2 Œınr
�1=2
n ; ��2/ and �˙ 2 Œ8ınr

�1=2
n ; ��2�, and set z D

maxf�˙; r
�1=2
n .lnrn/

2g. Assume that Nz jC\.I�M / contains no points from
˛�1.0/ with jsj 2 Œ1

8
�˙; z �.

� If C is accompanied by an integer m> 1, fix n� � , and fix � 2 Œınr
�1=2
n ; ��2/,

�˙ 2 Œ8ınr
�1=2
n ; ��2�, and z � �˙ . Assume that }.j˛j2/D 1 on Nz jC\.I�M /

where jsj � 1
4

z .

In either case, ok is Holder continuous with exponent �� on C \ .I1 �M / and it
has Holder norm no greater than � . Moreover, if x 2 .0; 1/ and Dx � C \ .I1 �M /

is an embedded disk of radius x , then the L2
1

norm of ok on Dx is bounded by
�x .1Cj ln x j.

Proof of Lemma 7.3 This follows from Lemma 7.2’s bound on jok j and jx@�ok j using
standard properties of the d –bar operator and its Green’s function.

The final lemma in this subsection describes circumstances that guarantee a uniformly
positive lower bound for the absolute value of at least one of Lemma 7.2’s sections
fokgkD1;2;::: . To set the stage, suppose that C is as described in Lemma 7.2. Given
p 2 C , suppose that a large index n has been chosen; and suppose that � and z are
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as described in Lemma 7.2. Now assume that ˛ has no zeros on Nz jD2�
at any point

with jsj 2 Œ1
4

z; z �. If such is the case, then the connection

(7-17) A0 DA�
1

2

�
�z � .1��z/j˛j

�2
��
x̨rA˛�˛rA x̨

�
is well defined on E ’s restriction to Nz jD2�

. Note in particular that A0 is flat and
˛j˛j�1 is A0 covariantly constant where jsj � 3

8
z . As a consequence, the integral of

.i=.2�//FA0 over any fiber disk of Nz jD2�
is a fixed integer. The latter is denoted by

ym in the upcoming lemma. Of course, if C comes as the pair .C;m/2 # , then ymDm

when D2� is the sole component of .
S
.C 0;m0/2# C 0/\Nz jD2�

.

Lemma 7.4 Given "� 2 .0; 1/ and x � 1, there is a constant � > 1 with the following
significance: Suppose .C;m/ are as in Lemma 7.2. Take n�� and �2 Œx ınr

�1=2
n ; ��2�.

Given p 2 C , construct ok on D2� for each k 2 k 2 f1; : : : ; ymg using the data and
under the assumptions in one of the next two bullets.

� Take � as above, �˙ 2 Œ8ınr
�1=2
n ; ��2� and set z D maxf�˙; r

�1=2
n .lnrn/

2g.
Assume that Nz jC\.I�M / contains no points from ˛�1.0/ with jsj 2 Œ1

8
�˙; z �.

� If C is accompanied by an integer m>1, take � as above, �˙ 2 Œ8ınr
�1=2
n ; ��2�,

and then z � �˙ . Assume that }.j˛j2/D 1 on Nz jC\.I�M / where jsj � 1
4

z .

In either case, assume that there exists z 2Nz jp with ˛.z/D 0 and jsj � "��˙ . Then
there exists k 2 f1; : : : ; ymg such that jok jpj � �

�1 .

Proof of Lemma 7.4 The following fact is justified momentarily: With � , z and �˙

given, there exists � � 1 independent of n such that if n� � , then

(7-18) ��2

Z
Nz

�p

�
i

2�
F yA

�
^��!C D np ymC e;

where np is defined by the rule np D �
�2
R

C �
p . Meanwhile, e D 0 if the second

bullet in the lemma holds, and jej � c0e
�
p

rnz=c0 otherwise. Hold on to (7-18).

To continue, use parallel transport from p along the radial geodesics in D2� to give
a product structure to N jD2�

. Fix " 2 .0; 1
8
/ but much less than "� . Suppose first

that fıngnD1;2;::: diverges. Use Lemma 4.10 to find, for any sufficiently large n, a
set ƒ�Nz jp of at most ym points with the following properties: First, each point in
˛�1.0/\Nz jD2�

has distance "2ınr
�1=2
n or less from D2� �ƒ. Second, the distance

between any two distinct points in ƒ is greater than "ınr
�1=2
n . Each point in any

sufficiently large n version of ƒ has an associated, positive integer multiplicity, this
being the degree of ˛=j˛j on a circle of radius 1

4
" in Nz jp about the given point. These
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integers sum to ym. When u 2 ƒ, use mu to denote its associated integer. It then
follows using (3-35) and Lemmas 3.8 and 7.1 that

(7-19) ��2�� ym
˙

ˇ̌̌̌Z
Nz

�p…u2ƒ.s�u/muF yA ^ �0 ^x�0

ˇ̌̌̌
� c0"

when n is large. Given the assumptions of the lemma, there is at least one point in
��1
� ƒ with norm greater "� . This fact with (7-18) and (7-19) implies what is asserted

by the lemma. In the case when fıngnD1;2;::: converges, Lemma 4.10 and Proposition
4.2 give ƒ and also (7-19) when n is large. As before, (7-18) and (7-19) imply the
lemma’s assertion.

The fact that (7-18) holds with eD 0 when the second bullet of the lemma is assumed
follows from two facts: First, yADA0 where jsj � 1

2
z on Nz jD2�

. Moreover, both are
flat here, and both are such that ˛=j˛j is covariantly constant. In the case where the
first bullet of the lemma is assumed, then the A0 version of (7-18) holds with eD 0.
Meanwhile, it follows from (3-35), Lemma 3.8 and the first item in Lemma 7.1 that
the yA and A0 versions of (7-18) differ by no more than c0e�

p
rnz=� .

7.d Convergence on domains where jsj is bounded

The lemmas from the preceding section are used here to say something about the points
in ˛�1

n .0/ where the distance to
S
.C;m/2# C is a sizable fraction of ınr

�1=2
n .

Lemma 7.5 Given "� > 0 and T �R, there exists � > 0 such that if n� � , then

sup
x2˛�1

n .0/;
js.z/j�T

dist

 [
.C;m/2#

C;x

!
� "�ınr�1=2

n :

The remainder of this subsection is occupied with the following.

Proof of Lemma 7.5 Suppose for the sake of argument that this lemma is false. If so,
there exists T �R and "� > 0 and a subsequence (hence renumbered consecutively
from 1) of f.rn; .An;  n//gnD1;2;::: such that the following is true: For each n, there
is a point xn where ˛n D 0 and with js.xn/j � T such that dist.

S
.C;m/2# C; zn/ >

"�ınr
�1=2
n . Nonsense will now be derived from this assumption. To this end, distinguish

now two cases. In the first case, fıngnD1;2;::: is bounded. In this case, no generality is
lost by assuming that this sequence converges to some ı0 > 0 and that jın� ı0j � 7

8
ı0

for all n. This is called the convergent case in what follows. In the second case,
fıngnD1;2;::: is unbounded. In this case no generality is lost by assuming that the
sequence is increasing. This case is called the divergent case. The derivation of the
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desired nonsense has two parts, these depending on whether the sequence fıngnD1;2;:::

is divergent or convergent.

Part 1 Suppose here that fıngnD1;2;::: is divergent. For each n, fix an increasing,
unbounded sequence fx ngnD1;2;::: � Œ8;1/ but such that the sequence fx 2

nınr
�1=2
n g

converges to zero. One additional growth constraint on fx ngnD1;2;::: is given momen-
tarily. For any given such sequence fx ngnD1;2;::: , there exists an increasing, unbounded
sequence fTngnD1;2;:::�fR;1g such that the following is true: For each n, let zD zn

denote the maximum of the numbers x 2
nınr

�1=2
n and .lnrn/

2r
�1=2
n . Then the map

�.C;m/2#eC embeds the jsj � Tn part of �.C;m/2#Nz .

Given n, set �D �n D x nınr
�1=2
n , set z D zn Dmaxfx 2

nınr
�1=2
n ; .lnrn/

2r
�1=2
n g and

set �˙ D �˙n D 8ınr
�1=2
n . Fix .C;m/ 2 # . If C is not R–invariant (and so mD 1),

use (7-10) to define the section o1Do.n/1 using the function x!}.x/Dx to define yA
from .An;  n/. If C is R–invariant and k 2f1; : : : ;mg use (7-10) to define okD o.n/k
using the function x! }.x/D x�.x/C 1��.x/ to define yA from .An;  n/. The
following is a consequence of Lemma 7.2 and Lemma 7.3: Given T 0 > R, there
exists n0 such that the sequence fo.n/kgn�n0 , is uniformly Holder continuous for any
given exponent � 2 .0; 1/ on the jsj � T 0 portion of C . Moreover, it has bounded L2

1

norm on this part of C . Furthermore, for each n and k , the section ok D o.n/k obeys

(7-20)
� if mD 1, then x@�o1C �C o1C�Cxo1 D e,

� if m> 1, then x@�ok C k�C ok D e,

where, in each case, eD e.n/ obeys jej � 1=T 0 .

Granted this last fact, it follows that the sequence fo.n/kgnD1;2;::: has a subsequence
that converges strongly on compact subsets of C in the L2

1
topology and in any given

� 2 .0; 1/ Holder topology to a bounded section of N˝k that obeys the eD 0 version
of (7-20). Use ok to denote this section.

Now comes the promised extra constraint on the sequence fx ng1;2;::: . By assumption,
there exists "� > 0, a subsequence of f.rn; .An;  n//gnD1;2;::: (hence renumbered
consecutively from 1) and .C;m/ 2 # with the following property: For each n, there
is a point, yn , in the jsj< Tn� 1 part of the z D zn version of Nz where ˛n D 0 and
with distance at least "�ınr

�1=2
n from C . This understood, it follows from Lemma

7.4 that there exists an increasing, unbounded sequence fx 0ngnD1;2;::: such that if
x n � x 0n , then there is an integer k 2 f1; : : : ;mg such that jo.n/k j � c > 0 at the point
�.yn/ 2 C . Here c depends on "� but neither on n nor yn . Assume that this growth
constraint holds.
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Suppose that there exists, for each n, such a point yn 2 C as above and that these
are such that js.yn/j is bounded. Then there is a subsequence of f�.yn/gnD1;2;::: that
converges in C to a point p 2 C , and this point is such that ok jp ¤ 0. Thus, ok

is a nontrivial, bounded solution to the e D 0 version of (7-20) on the whole of C .
This conclusion is nonsense because the assumptions in [9, Section 4.b] prohibit such
solutions.

Part 2 This part argues the case for Lemma 7.5 when fıngnD1;2;::: converges. Let
ı0 > 0 denote the limit in what follows. Choose an increasing, unbounded sequence
fx ng as in Part 1. Use � D �n D x nınr

�1=2
n with z D zn D r

�1=2
n .lnrn/

2 and �˙ D

�˙n D 8ınr
�1=2
n to construct for each .C;m/ 2 # , for each k 2 f1; : : : ;mg, and a

section o.n/k of N˝k . Here again, use for } the function x! }.x/D x when C

is not R–invariant, but use the function }.x/D x�.x/C 1��.x/ otherwise. It is a
consequence of Lemmas 7.2, 7.3 and 7.4 that the sequence fo.n/kgkD1;2;::: converges
on compact subsets of C to a section ok of N˝k . This section is a priori bounded and
uniformly Holder continuous on C for any given Holder exponent in .0; 1/. Moreover,
if fx ngnD1;2;::: does not grow too fast, then there is a point p 2 C where ok ¤ 0. As
is explained momentarily, the section ok also obeys the eD 0 version of (7-20). Given
that it is bounded on C , this conclusion is also nonsense.

If C is R–invariant, then the fact that eD 0 follows from the bound given in the final
assertion of Lemma 7.2 because the latter finds the integer n version of the right hand
side of (7-20) bounded by �.�2

˙n
C ı0r

�1=2
n /.

Granted the preceding, it remains only to discuss the case that C is not R–invariant.
Here, mD 1 so k D 1. It follows from what is said in Steps 1 and 2 of the proof of
Lemma 7.1 that the section o1 will obey the eD 0 version of (7-20) if the following is
true: Let e.n/ denote the integer n version of

(7-21) ��2��1
˙

Z
C�D2�

�p xfC dz ^ dxz ^ du^ dxu:

Then limn!1 supjsj�Tn�1 je.n/jD 0. The proof that this happens is given momentarily.
What follows directly a digression for two observations The digression makes no
assumptions about the integer m or k 2 f1; : : : ;mg.

Observation 1 The observation here is summarized in the upcoming Lemma 7.6. To
set the stage, note that the sections fo1; : : : ; omg that are obtained as limits of the m

sequences ffo.n/kgnD1;2;:::g1�k�m define a section over C of the vortex bundle CN;m .
Let c denote this section. This section c is uniformly Holder continuous on C for
any exponent � 2 .0; 1/. It also has finite L2

1
norm on any compact subset of C .
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Moreover, given " > 0 and T 0 > R, there is a smooth section c";T 0 of CN;m and a
section, �";T 0 , of .c";T 0/�V1;0CN;m with the following properties: First, k�";T 0k1 < "
and " bounds both the L2

1
norm of �"0;T 0 over the jsj � T 0 part of C and the K�

norm of �";T 0 as defined in [9, (2-27)] with C replaced by its jsj � T 0 part. Finally,
cD expc"0;T 0 .�"0;T 0/.

Fix n large, and let � D xnınr
�1=2
n as before. Let � 2 C and let D� � D de-

note the embedded disk of radius � centered at p . Assume that n is large and so
the z D r

�1=2
n .lnrn/

2 version of Nz jD2�
has no intersections with ˛�1

n .0/ where
jsj 2 Œ1

8
z; 2z �. Use parallel transport via the connection � along the radial geodesics

from p to write the bundle N over D2� as D2� � C . This done, lift c as a pair
.� C 1

2
.a1dxz�xa1dz/; ˛1/ where a1 and ˛1 are complex valued functions on D2��C

such that the pair .AD 1
2
.a1dxz�xa1dz/; ˛1/ obeys the vortex equations (1-4) on each

fiber C . Use .ar ; ˛r / to denote the pullback of .a1; ˛1/ by the map from D2��C to
itself that sends .u; z/ to .u; r1=2

n z/.

The lemma that follows is an analog of sorts to Lemma 6.3. This lemma reintroduces
fx@A0; x@A1g; these being the respective covariant derivatives for any given connection A

along the vector fields that are dual to the basis fx�0; x�1g for T 0;1.R�M /jN .

Lemma 7.6 There exists an increasing, unbounded sequence fx 0ngnD1;2;::: , such that
if each x n � x 0n for each n, then the following is true: Fix " > 0, T 0 �R and then n

sufficiently large. Fix p 2 C where jsj � T 0 . There is a smooth map unW D2� �C!
U.1/ such that .An� u�1

n dun; un˛n/ can be written on the jzj � "�1r
�1=2
n portion of

D2� �C as

An� u�1
n dun D � C

1
2
r1=2
n .ar dxu �xar du/C cn and un˛n D ˛

r
C &n;

where j&njC r
�1=2
n .jr�&njC jcnj/� ".

Proof of Lemma 7.6 This follows as a direct consequence of Lemmas 4.3 and 4.10.

Observation 2 Fix ">0 and use r in what follows to denote rn ; and use .A; .˛; ˇ// to
denote .An�u�1

n dun; .un˛n; unˇn// where un is given by Lemma 7.6. The integer N

version of the function xfC that appears in (7-21) has the form given in (7-16).

To say something about the size of the contributions to (7-21) from the three terms in
(7-16), note first that

(7-22)

� jx@An0˛nj � c0"r
1=2
�
e�
p

r jzj=c0 C r�1
�

� jx@A˛j � c0

�
e�
p

r jzj=c0 C r�1
�

� jˇj � c0r�1=2
�
e�
p

r jzj=c0 C r�1
�
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on the jzj � 3
4

z part of D2� �C . Indeed, the first item follows from Lemma 7.6 and
Lemma 3.8. The second item follows from Lemma 3.8 because the Dirac equation
writes the d –bar derivatives of ˛ in terms of the derivatives of ˇ . The third item also
quotes from Lemma 3.8.

With the digression now over, return to the proof that the k D 1 version of e is zero.
To start, note that (7-15), (7-22) and Lemma 7.6 imply the following: The integral in
(7-21) can be written as

(7-23) ��2��1
˙

Z
C�D2�

�p�z
�
r.1� j˛r

j
2/x̨rˇCx@Ar 1 x̨

r@Ar 1ˇ
�

�dz ^ dxz ^ du^ dxuC r;

where jrj � c0". Note that the derivation of (7-23) invokes the Dirac equation to write
x@A0˛ as �x@A1ˇ . To say something about the integral in (7-23), integrate by parts now
to take the derivative x@Ar 1 off of x̨r and put it on @Ar 1ˇ . Doing so adds a term with
a derivative of �z , thus a term with norm bounded by r�1 when n is large. Now
commute these two derivatives on ˇ and integrate by parts to leave just one derivative,
x@Ar 1 , on ˇ . The result of all of these manipulations is an integral whose integrand has
a factor with a derivative on �z . As a consequence, the resulting integral has norm
bounded by r�1 when n is large. This then proves that je.n/1j � c0" when n is large.

7.e On the ends of C

The next lemma gives the large jsj analog of what is asserted by Lemma 7.5. These
lemmas together imply the following: Fix "� > 0 and all sufficiently large n ver-
sions of ın are less than "�ın . This is, of course, impossible. This nonsense proves
Lemma 6.2.

Lemma 7.7 Given "� > 0 and T �R, there exists � > 0 such that if n� � , then

sup
z2˛�1

n .0/;
js.z/j�T

dist

 [
.C;m/2#

C; z

!
� "�ınr�1=2

n :

Proof of Lemma 7.7 Each Reeb orbit in either „†� or „†C has a tubular neighbor-
hood map as described in [9, (4-1)] with coordinates .w ; t; z/ for R�S1 �D . The
latter map is used implicitly in what follows.

If Lemma 7.7 is false, then there exists "� > 0, a Reeb orbit  2„†� or „†C and a
subsequence of f.rn; .An;  n//gnD1;2;::: (hence renumbered consecutively) with the
following property: Fix T �R. Suppose that  2„†� . If n is sufficiently large, there
is a point in  ’s version of .�1;�2T ��S1 �D where ˛n D 0 and with distance
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at least "�ınr
�1=2
n from

S
.C;m/2# C . If  2„†C , then the same conclusion holds

except that the point in question lies in  ’s version of Œ2T;1/�S1 �D . Assume in
what follows that  2 „†� so as to derive some nonsense. But for some cosmetic
changes, the same argument will derive nonsense in the case where  2„†C . This
understood, the latter case is not discussed further. The derivation of nonsense for the
case  2„†� presented in next in three parts.

Part 1 This part considers the case when  is such that m� D 1. In particular, this
part deals with the case when  is hyperbolic. Given T �R and then n sufficiently
large, Lemma 7.5 say that there are no points in ˛�1

n .0/\ .Œ�2T;�T ��S1�D/ with
distance greater than "�ınr

�1=2
n from C . Even so, there is a point yn 2 ˛

�1
n .0/\

.Œ�1;�2T /�S1 �D/ such that dist.yn;C / � "�ınr
�1=2
n . It follows from Lemma

7.5 that the sequence fs.yn/gnD1;2;::: has no convergent subsequence.

Construct from .An;  n/ the section o.n/1 as described in Lemma 7.2. Note that
o.n/1 is defined on the whole of the end E of C in .�1;�T ��S1 �D Trivialize
the normal bundle to C on E by the vector field @=@z to view o.n/1 as a map from
.�1;�T � � S1 to C . Let q.n/1W .�1;�T � w .yn/� � S1 ! C denote the map
sending uDw C i t to o.n/1juCwn

.

The resulting sequence fq.n/1gnD1;2;::: has a subsequence that converges on compact
subsets of R � S1 in the Holder topology with any given exponent in .0; 1/ to a
map q1 from R� S1 to C that has uniformly bounded L2

1
norm on the cylinders

fŒn; nC 2��S1gn2Z , is uniformly Holder continuous for any given exponent in .0; 1/,
and is nonzero at some point on f0g �S1 . Moreover, the argument given in Parts 1
and 2 of the proof of Lemma 7.5 can be employed with no changes to see that q1 obeys
x@�q1C �q1C�xq1 D 0 on the whole of R�S1 . However, this is impossible as there
are no nontrivial, uniformly bounded solutions to this equation.

Part 2 Suppose now that m� > 1. To keep notation to a minimum, assume in what
follows that ` D 2� . This assumption has no bearing on the arguments and can be
eliminated at the cost of inserting a factor of `=.2�/ or its inverse in many of the
subsequent equations.

Introduce from [9, Section 5.c] the partition fE1; : : : ; EN g of the ends of
S
.C;m/2# C

that lie in U� . The argument that follows is simplest in the case when there is but
one of these sets, thus N D 1. In this regard, the algebra is somewhat simpler when
there is also just one end in E1 . The reader might find the going easier by assuming
that such is the case at first reading. In any event, the rest of this Part 2 considers the
case when N D 1. The argument for this case has three steps.

Note that m is used as shorthand for m� in these steps.
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Step 1 Suppose for the moment that the ends in E1 are not part of R�  . (Note that
E1 has but a single end if it has any from R�  .) Each E 2 E1 has an associated
multiplicity, qE 2 Z. These are the same for all ends in E1 . Introduce, as in [9,
(4-1)], the local coordinate u D w C i t with .w ; t/ the coordinates of R � S1 . It
follows from [9, (4-2)] that any given end E from E1 appears in the w � w0 �

�1 portion of R � S1 �D as a q–sheeted graph over .�1;w0� � S1 with sheets
parameterized (locally) as the graph of a multivalued function u ! zE .u/. Here,
zE .u/D &E e�RwCkE u=qE .1C rE / where &E 2C� 0 and kE 2 Z is relatively prime
to qE and obeys .kE � 1/=qE < R < kE=qE . Meanwhile jrE j �

1
100

e�jw j=c0 . This
function zE . � / also obeys the equation .@=@xu/zE C RzE D 0. Let ZE .u/�C denote
the set of qE values of zE .u/. As a final remark, note that the collection f&EgE2E1

is
such that &E=&E 0 can not be a qE –th root of unity unless E D E 0 .

If a counterexample to the assertion made by Lemma 6.2 is to appear here, then there is
an infinite subsequence of f.rn; .An;  n//gnD1;2;::: with the following property: There
exists .un DwnC i tn; zn/ 2 .�1;�w0��S1 �D where ˛n D 0 and such that

(7-24) jzn� z0j � "�ınr�1=2
n for all z0 2 ZE

�
un

�
and all E 2 E1:

Here are two cases to consider with regards to (7-24):

(7-25)

� There exists " > 0 and a subsequence of f.rn; .An;  n/gnD1;2;:::

with a corresponding .un; zn/ 2 ˛
�1
n .0/ such that (7-24) holds with

"e.�RCkE=qE /wn < ınr
�1=2
n .

� Fix any " > 0. If n is sufficiently large, then any point .un; zn/ 2 ˛
�1
n .0/

that obeys (7-24) is such that "e.�RCkE=qE /wn > ınr
�1=2
n .

If E is part of an R–invariant cylinder, and if E is to provide a counterexample to the
assertion made by Lemma 6.2, then there is a subsequence of f.rn; .An;  n//gnD1;2;:::

where (7-24) holds with zE . � /D 0.

Step 2 Assume that either the first item in (7-25) holds, or else E is part of an
R–invariant cylinder and so (7-24) holds with zE D 0. Pass to a refined subse-
quence for which the corresponding sequence fıngnD1;2;::: either converges, or is
increasing and unbounded. Relabel the subsequence in question consecutively from 1.
Such a subsequence can and should be chosen so that after this relabeling, both
e.�RCkE=qE /wn � n�4 and wn < �n. Require in addition that the associated sequence
f.ınr

�1=2
n /�1e.�RCkE=qE /wngnD1;2;::: converges. Note that the first item in (7-25)

guarantees that this is a bounded sequence.

For each n, construct sections fo.n/kg1�k�m as described by Lemma 7.2 and (7-9)
using for C the w 2 Œwn � .1=.50q2// ln.n/;wnC .1=.50q2// ln.n/� portion of the
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cylinder R �  . To elaborate, the construction is done using the following data:
The connection yA is defined from .An;  n/ using the function } given by the
rule }.x/ D x�.x/C 1 � �.x/. Take � D �n D 100ınr

�1=2
n and take z D zn D

100nınr
�1=2
n . Finally, take �˙ D �˙n D 16ınr

�1=2
n . The vector field @=@z trivializes

the normal bundle to C here, and this understood, view each o.n/k as a C–valued
function. For each n and k 2 f1; : : : ;mg, define the function q.n/k with domain
Œ�.1=.50q2// ln.n/; .1=.50q2// ln.n/��S1�R�S1 by setting q.n/k juD o.n/k juCwn

.

As is explained next, there exists �� � 50 m2 which guarantees the following when n

is large:

j˛nj
2
�

1

2
at all .u; z/2

�
wn�

1

��
ln.n/;wnC

1

��
ln.n/

�
�S1
�D; jzj �

1

4
zn:(7-26)

To see why this is true, note first that z must have distance 2ınr
�1=2
n or less from a

point z0 2 ZE.u/. Such a point z0 obeys jz0j � c0e.�RCkE=qE /w , and this is less
than c0n1=2e.�RCkE=q/wn if u is such that w � c�1

0
ln.n/ for a suitable choice

of c0 . By virtue of what is assumed by the first item in (7-25), the latter is less
than c0"

�1n1=2ınr
�1=2
n , and so jzj � n�1=4zn when n is large.

What with (7-26), the final bullet of Lemma 7.2 can be invoked to see that

(7-27) jq.n/k j � c0

�
1C e�.�RCkE=qE /w

�k and x@q.n/k C
1

2
kRq.n/k D en;

where fje.n/jgnD1;2;::: has limit zero. As in the proof of Lemma 7.3, these bounds imply
that each k 2 f1; : : : ;mg version of fq.n/kgnD1;2;::: has a subsequence that converges
on compact subsets of R�  in any given Holder norm to a function, qk , that obeys

(7-28) jqk j � c0

�
1C e�.�RCkE=qE /w

�k and x@qk C
1

2
kRqk D 0:

These subsequences can and should be chosen so as to guarantee that fqkg1�k�m

enjoys one additional property. To

elaborate, let h denote the number of ends in E1 . Thus, mD hqE . Also, let c denote
the limit of the f.16ınr

�1=2
n /�1e.�RCkE=qE /wngnD1;2;::: . Here is the extra property:

(7-29)

Either qk ¤ 0 for some k ¤ 0 mod
�
qE
�
;

or there exists x 2 f1; : : : ; hg

such that qkDxqE ju ¤ cxqE
�P

E2E1
&

xqE
E

�
e�x.qE RwCkE u/:

To see why this is true, recall zE .u/D&E e�RwCkE u=qE .1CrE / with jrE j�
1

100
e�jw j=c0 .

With this in mind, note that the first item in (7-25) finds e�jwnj=c0 e.�RCkE=qE /wn �
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n�4ınr
�1=2
n when n is large. This and (7-24) imply that jzn� z0j � 1

2
"�ınr

�1=2
n for

any z0 2D that has the form �&E e�RwnCkE un=qE with E 2E1 and with �q D 1. This
guarantees the existence of subsequences whose limits obey (7-29).

To see what (7-28) and (7-29) imply, remark that a solution to the right hand equation
in (7-28) is a linear combination of functions that have the form e�kRwCju for some
j 2 Z. A function of this sort obeys the left hand inequality in (7-28) if and only if
R < j=k � kE qE . (It follows from [2, Lemma 6.11] that no such j exists unless k is
divisible by qE , but this fact is not needed for what follows.) The other possibility has
k D xqE and j D xkE for some x 2 f1; : : : ; hg. Thus, qxqE D &xe�x.qE RwCkE u/ for
some &x 2C . Thus, in each case, qk is a finite polynomial.

Introduce the two u–dependent polynomials

(7-30)
� P .�/ju D �mC

P
1�k�m qk.u/�

m�k .

� P0.�/D �
mC

P
1�x�h c

xqE
�P

E2E1
&

xqE
E

�
e�x.qE RwCkE u/�m�xqE .

These two polynomials differ. In particular, the following is a consequence of what
was said in the preceding paragraph about the possibilities for fqk.u/g1�k�m :

(7-31)
Given �> 0, there exists w� such that if u has real part greater than
w� , then P .�/ju has a root with distance greater than � from each
root of P0.�/.

Indeed, (7-31) follows from what [10, Part 6 of Section 3.a] says for the proof of [10,
Lemma 3.2], and from what is said in [9, Section 7.i] for the proof of [9, Lemma 7.5].

Given that each sequence fq.n/kgnD1;2;::: converges pointwise on bounded domains
to qk , what is said by (7-31) requires the following for all large n: There exists points
.u; z/ 2 ˛�1

n .0/ such that jz � z0j > 16�ınr
�1=2
n for all z0 2 ZE .u/ and all E 2 E1

when �> c0 . Of course, this is nonsense because any such .u; z/ must have distance
ınr
�1=2
n or less from some point in some end E 2 E1 .

Step 3 This step considers the case where the second item in (7-25) holds. To start, fix
a subsequence of f.rn; .An;  n//gnD1;2;::: and renumber consecutively from 1 so that
fıngnD1;2;::: is either unbounded or converges. This sequence can and should be chosen
so that the following is also true: If (7-24) holds for any given .un; zn/ 2 ˛

�1
n .0/, then

e.�RCkE=qE /wn > enınr
�1=2
n .

Fix an increasing, unbounded sequence fx ngnD1;2;::: � Œ8;1/ but such that the se-
quence fx 2

nınr
�1=2
n g converges to zero. Choose x n � n. One additional upper bound

on the growth of the sequence fx ngnD1;2;::: arises below. Set �n D x nınr
�1=2
n and set
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zn D n2ınr
�1=2
n . This choice for fzngnD1;2;::: guarantees the existence of a constant

c � 1 with the following property:

(7-32)
Let †n denote the w 2 Œwn� .1=c/ ln.n/; wnC .1=c/ ln.n/� part ofS

E2E1
E . If n is large, then the exponential map embeds the radius

2zn disk bundle in N1j†n
.

With �n and zn understood, set �˙n D 16ınr
�1=2
n .

Fix n large, set �D�n , zDzn and �˙D�˙n , and then mimic what is done when kD1

in Parts 1 and 2 of the proof of Lemma 7.5 to construct over †n a section, o.n/1 , of the
normal bundle N . However, use now the function } given by }.x/Dx�.x/C1��.x/

to define yA.

Use the product structure on N j†n
given by the vector field @=@z to view o.n/1 as a

complex function on each component of †n . Fix such a component, and use the local pa-
rameterization of any given E 2E1 as the graph of zE . � / to view o.n/1 on the given com-
ponent as a C–valued function on Œwn�.1=c/ ln.n/;wnC.1=c/ ln.n/��.R=.2�qE Z//.
With this view understood, define q.n/1 by the rule q.n/1ju D o.n/1juCwn

. Thus, q.n/k
is defined on the domain Œ�.1=c/ ln.n/; .1=c/ ln.n/�� .R=.2�qE Z//.

It follows from Assertion (b) of the first bullet in Lemma 7.2 that the sequence fq.n/1g
is uniformly bounded. Moreover, the sequence fx@q.n/1C 1

2
Ro.n/1gnD1;2;::: converges

uniformly to zero uniformly also. Lemma 7.4 implies that the sequence fq.n/1gnD1;2;:::

has uniformly bounded Holder norm for any given exponent in .0; 1/. As a consequence
of all of this, there is a subsequence of fq.n/1gnD1;2;::: that converges in any such Holder
topology on compact subsets of R� .R=.2�qE Z// to a bounded function, q1 , that
obeys the equation x@q1C

1
2

Rq1D0. Moreover, Lemma 7.4 implies that the subsequence
can be chosen so that q1 ¤ 0 at some point on the w D 0 circle. However, this is
nonsense because the operator x@C 1

2
R has trivial bounded kernel.

Part 3 This part considers the case when there are two or more sets in the partition
fE1; : : : ; Eng. To set the stage, suppose that E 2 E1 [ � � � [ EN is not R–invariant.
Reintroduce the notation ZE .u/ for the set of qE points in E ’s intersection with
fug �D . As before, each point is one of the qE values of a multivalued function,
zE .u/, that has the form zE .u/D &E e�RwCkE u=qE .1C rE / where &E 2C�f0g and
jrE j � c0e�jw j=c0 . All ends in any given Eb have equal versions of kE and qE . These
are denoted in what follows by kb and qb . The following is also true: If E and E 0
are distinct elements of any given Eb then &E=&E 0 is not a qb –th root of unity. If E is
part of R� , then EN D fEg. In this case set ZE .u/D f0g. Take qE for such an end
to be the integer that accompanies R�  as an element in # , and take kE D1.
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The argument now proceeds in an inductive fashion. To set up the induction, first set
E0 D∅. Given b 2 f1; : : : ;N g, say that Property b is satisfied when the following is
true:

(7-33)

Given "� > 0, there exists n� such that if n> n� and if .u; z/ 2 .�1;�w0��

S1 �D lies where ˛n D 0, then one of the following is true:

� There exists z0 2
S

E2E0[���[Eb
ZE .u/ with jz0� zj< "�ınr

�1=2
n .

� jz� z0j> ınr
�1=2
n for all z0 2

S
E2E1[���[Eb

ZE .u/

and jzj � "�e.�RCkb=qb/w .

The bD 0 version of Property b makes no constraints and so is tautologically satisfied.
The plan for what follows is to assume Property b � 1 for a given b 2 f1; : : : ;N g

and then prove that Property b holds as well. The proof that Property b� 1 implies
Property b is given in the three steps that follow. Note that if Property N holds, then
no counterexample to the claims in Lemma 6.2 can occur on an end E �

S
.C;m/2# C

whose constant s slices converge pointwise to  as s!�1.

Step 1 Assume, to the contrary, that Property b� 1 holds but not Property b . This
requires the existence of some "� > 0 and a subsequence of f.rn; .An;  n//gnD1;2;:::

with the following: For each subsequence index n, there is a point .unDwnC i tn; zn/

where ˛n is zero, and which obeys the following:

(7-34)

� There is no point z0 2
S

E2E0[���[Eb
ZE .un/ with jz0� znj< "�ınr

�1=2
n .

� Either jznj> "�e
.�RCkb=qb/wn , or there exists z0 2

S
E2Eb

ZE .un/ with
jzn� z0j � ınr

�1=2
n .

Note that if b > 1, then Property b� 1 requires, in addition:

(7-35)

� jzn� z0j> ınr
�1=2
n for all z0 2

S
E2E1[���[Eb�1

ZE
�
un

�
.

� Given "b > 0, then jznj � "be.�RCkb�1=qb�1/wn for all n sufficiently
large.

Various scales are involved here, these being jznj, ınr
�1=2
n and then the various

j 2 f1; : : : ;N g versions of e.�RCkj =qj /wn . What follows describes three consequences
of (7-34) and (7-35) that say something about the relative sizes of these scales. Here is
the first consequence: If b > 1, the first item in (7-34) and the second item in (7-35)
have the following consequence:

(7-36) Given "b > 0, then ınr
�1=2
n � "be.�RCkb�1=qb�1/wn for all n suffi-

ciently large.
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Indeed, the first point in (7-34) requires that jznj C c0e.�RCkb=qb/wn be larger than
"�ınr

�1=2
n , and so the second point in (7-35) gives (7-36).

Here is the second consequence: If b > 2, the inequality in (7-30) is consistent with
the assumptions about fıngnD1;2;::: only if

(7-37) r�1=2C1=c0
n < e.�RCkb�2=qb�2/wn

when n is large. Indeed, were the opposite inequality to hold for a large c0 , then
e.�RCkb�1=qb�1/wn and hence ınr

�1=2
n would be less than r

�1=2�1=c0
n .

Here is the final consequence: What with the definition of ın , the first item in (7-35)
implies the following:

(7-38) There exists z0 2
S

E2Eb[���[EN
such that jzn� z0j � ınr

�1=2
n :

This is true whether b D 1 or b > 1.

The subsequent discussion considers separately two possibilities that correspond to the
dichotomy that is depicted in (7-25). These are as follows:

(7-39)

� There exists " > 0 and a subsequence of f.rn; .An;  n//gnD1;2;:::

with a corresponding .un; zn/ 2 ˛
�1
n .0/ such that (7-34) holds with

"e.�RCkb=qb/wn < ınr
�1=2
n .

� Fix any " > 0. If n is sufficiently large, then any point .un; zn/ 2 ˛
�1
n .0/

that obeys (7-34) is such that "e.�RCkb=qb/wn > ınr
�1=2
n .

To derive nonsense in either case, pass to a subsequence of f.rn; .An;  n//gnD1;2;:::

(hence renumbered consecutively from 1) where (7-32) holds and where fıngnD1;2;:::

either converges or else increases with no upper bound. What with (7-33), the subse-
quence can and should be chosen when b>1 so that ınr

�1=2
n �n�4e.�RCkb�1=qb�1/wn .

Additional conditions on this subsequence will be imposed below.

Step 2 This step derives nonsense when the top item in (7-39) is relevant. In this
case, no generality is lost by assuming that the top item holds for a given " and for all
indices n, and that the sequence f.16ınr

�1=2
n /�1e.�RCkb=qb/wngnD1;2;::: converges.

Let mD
P

E2Eb[���[EN
qE and construct for each n and for each k 2 f1; : : : ;mg, a C–

valued function o.n/k on Œwn�.1=.50 m2// ln.n/;wnC.1=.50 m2// ln.n/��S1 as done
in Lemma 7.2 using the following data: Take C to be the Œwn � .1=.50 m2// ln.n/;
wnC .1=.50 m2// ln.n/� � S1 portion of R �  . Meanwhile, define yA using the
function } given by }.x/D x�.x/C 1��.x/. Finally, take �D �n D 100ınr

�1=2
n ,
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take z D zn D nınr
�1=2
n , and take �˙n to be 16ınr

�1=2
n . Define the function q.n/k

on Œwn� .1=.50 m2// ln.n/;wnC .1=.50 m2// ln.n/��S1 by q.n/k ju D o.n/k juCwn
.

The next lemma plays a principal role in what follows.

Lemma 7.8 There exists �� � 50 m2 with the following significance: Take n � � .
Then all points .u; z/ 2 ˛�1

n .0/ with u 2 Œwn� .1=��/ ln.n/;wnC .1=��/ ln.n/��S1

and with jzj � zn obey

jzj � ��.ınr�1=2
n C e.�RCkb=qb/w /:

Moreover, j˛nj
2 �

1
2

at all points .u; z/ with u as above and with z such that jzj 2
Œ1
4

zn; zn�.

Proof of Lemma 7.8 Suppose that c> 1 and that u2 Œwn�ln.n/;wnC.1=c/ ln.n/��
S1 and that z 2D are such that ˛.u; z/D 0 and jzj � 100z D 100nınr

�1=2
n . Given

that c > c0 , and given the fact that ınr
�1=2
n � n�4e.�RCkb�1=qb�1/wn , this implies that

(7-40) jz� z0j � 2ınr�1=2
n for all z0 2

S
E2E1[���[Eb�1

ZE .u/

when n is large. Thus, there exists z0 2
S

E2Eb[���[EN
ZE .u/ such that jz � z0j �

ınr
�1=2
n . This implies that

jzj � ınr�1=2
n C c0e.�RCkb=qb/w :

To obtain the final assertion of the lemma, remark that this last bound is less than
ınr
�1=2
n C n1=2e.�RCkb=qb/wn if c > c0 . If n is large, this upper bound requires that

jzj � n�1=4zn .

Let �� be as given in Lemma 7.8. Here is a first consequence of Lemma 7.8. If
u 2 Œ�.1=��/ ln.n/; .1=��/ ln.n/��S1 , then

(7-41) jq.n/k j � c0.1C e.�RCkb=qb/w /k :

Indeed, this follows from the second bullet of Lemma 7.1. What follows is a second
consequence of Lemma 7.8. This one follows with the help of the second bullet in
Lemma 7.2. If u 2 Œ�.1=��/ ln.n/; .1=��/ ln.n/��S1 , then

(7-42) x@q.n/k C
1
2
kRq.n/k D e.n/;

where fje.n/jgnD1;2;::: is a sequence with limit zero.

It follows from (7-41) and (7-42), just as in the proof of Lemma 7.3, that each k 2

f1; : : : ; qg version of the sequence fq.n/kgnD1;2;::: has a subsequence that converges
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uniformly on compact subsets of R�S1 in the Holder topology for any given exponent
in .0; 1/. Denote the limit by qk . This limit obeys

(7-43) jqk j � c0

�
1C e�.�RCkE=q/w

�k and x@q.n/k C
1
2
kRq.n/k D 0:

Write q D hqb Cmb where mb 2 f0; : : : ; qb � 1g, and let c denote the limit of the
sequence

f.16ınr�1=2
n /�1e.�RCkE=qE /wngnD1;2;::::

As explained next, these q different subsequences can be chosen so as to ensure that
(7-29) holds. To see why this must be true, note first that the assumption in the first
item of (7-39) requires that

(7-44) .ınr�1=2
n /�1e.�RCkb0=qb0 /wn � c0.

1
n
/1=c0

if b0 > b . These assumptions have the following additional implication: Recall that
any given end E is the graph of a multivalued function

u! zE .u/D &E e�RwCkE u=qE .1CrE /:

Then jrE j is also bounded above by c0.
1
n
/1=c0 . These bounds with (7-34) guarantee

the existence of subsequences with limits fqkg1�k�q that obey (7-29).

Just as in Step 2 of Part 2, the fact that (7-29) holds leads to nonsense. Indeed, define
the u–dependent polynomials, monic degree m polynomials P .�/ and P0.�/ using
the following analog of (7-30):

(7-45)
� P .�/ju D �mC

P
1�k�m qk.u/�

m�k ,

� P0.�/D �
mC

P
1�x�h c

xqE
�P

E2Eb
&

xqE
E

�
e�x.qE RwCkE u/�m�xqE ,

where h here is the number of ends that comprise Eb . What is asserted by (7-31)
holds here for the same reason that it holds in Step 2 of Part 2. As in Step 2 of
Part 2, the assertion in (7-31) and the fact that the sequences ffq.n/kgnD1;2;:::g1�k�m

converge pointwise on bounded domains to fqkg1�k�m demands, for all large n, a
point .u; z/ 2 ˛�1

n .0/ such that

jz� z0j> 16�ınr�1=2
n for all z0 2

S
E2Eb[���[EN

ZE .u/

when � > c0 . Of course, this is nonsense because any .u; z/ 2 ˛�1
n .0/ must have

distance ınr
�1=2
n or less from

S
E2E1[���[EN

E 2 E1 .

Step 3 This step derives nonsense when the second item in (7-39) is assumed. The
derivation of nonsense for this case is very nearly the same as that done in Step 3
of Part 2. To say a bit more, remark first that no generality is lost by choosing the
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subsequence of f.rn; .An;  n//gnD1;2;::: and then renumbering consecutively from 1
so that if (7-34) holds for any given .un; zn/ 2 ˛

�1
n .0/, then

e.�RCkb=qb/wn � enınr�1=2
n :

Granted this last condition, the second bullet in (7-34) and (7-38) demand a point
z0 2

S
E2Eb

ZE .un/ such that jzn� z0j � ınr
�1=2
n .

Fix an increasing, unbounded sequence fx ngnD1;2;::: � Œ8;1/ but such that the se-
quence fx 2

nınr
�1=2
n g converges to zero. Choose x n � n. One additional upper bound

on the growth of the sequence fx ngnD1;2;::: arises below. Set �n D x nınr
�1=2
n and set

zn D n2ınr
�1=2
n . This choice for fzngnD1;2;::: guarantees the existence of a constant

c � 1 with the following property:

(7-46)
Let †n denote the w 2 Œwn� .1=c/ ln.n/;wnC .1=c/ ln.n/� part ofS

E2Eb
E . If n is large, then the exponential map embeds the radius

2zn disk bundle in N1j†n
.

With �n and zn understood, set �˙n D 16ınr
�1=2
n . Now repeat verbatim what is said

in the final three paragraphs of Step 3 in Part 2 to obtain nonsense.

8 Perturbations of (1-11)

This last section proves the assertions that are made by Item (iii) from the first bullet of
[8, Theorem 4.3]. The first subsection below reviews some of the notation and restates
the claim as Proposition 8.1. The second subsection gives a proof.

8.a Perturbations

As noted in [8, Sections 1.c, 1.d], it is often necessary to modify (1-11) so as to
guarantee that all instanton solutions with nondegenerate s!˙1 limits are suitably
nondegenerate in their own right. An allowed perturbation is defined by the choice
of a gauge invariant function on Conn.E/�C1.M IS/. Such a function must come
from a certain Banach space of smooth functions. This space is described in the
aforementioned subsections of [8]. It is denoted in [8] and here by P . Let p denote a
given element in P . The resulting version of (1-8) can be viewed as the equations that
define the critical points of the function aC p on Conn.E/�C1.M IS/ with a given
by (3-2). The resulting perturbed version of (1-8) is written schematically as

(8-1)
� BA� r. |� � ia/� i � d�CTj.A; /C

1
2
BAK

D 0.

� DA �Sj.A; / D 0.
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The corresponding version of (1-11) has the form

(8-2)
�

@
@s

ACBA� r. |� � ia/� i � d��Tj.A; /C
1
2
BAK

D 0.

�
@
@s
 CDA �Sj.A; / D 0.

A solution to (8-2) is said to be an instanton if its s!˙1 limits are solutions to (8-1).

There is a corresponding version of the symmetric operator that is depicted in (1-14),
this given in [8, (3-7)]. There is, likewise, a corresponding version of the operator
in (1-12), this depicted by [8, (3-9)]. A solution to (8-1) is said to be nondegenerate
when the latter’s version of [8, (3-7)]. Let d denote an instanton solution to (8-2) with
nondegenerate s !˙1 limits. Then d’s version of [8, (3-9)] defines a Fredholm
operator in a suitable sense. The instanton d is said to be nondegenerate when the
latter operator has trivial cokernel.

Section 3.b introduced the notion of the spectral flow, fd , along an instanton solution
to (1-11) with nondegenerate s ! ˙1 limits. This notion is well defined for the
instanton solutions to (8-2) with nondegenerate s!˙1 limits if it is understood that
the term spectral flow in this context refers to the following family of operators: Let
d denote the given instanton. The corresponding family of operators is parametrized
by R. The s 2 R member is the version of the operator that is defined in [8, (3-7)]
using the connection and spinor from djs .

Given a pair of nondegenerate solutions c� , cC to (8-1), use M1;p.c�; cC/ to denote
the space of instanton solutions to (8-2) with s ! �1 equal to c� , with s !1

limit gauge equivalent to cC , and with spectral flow function fd D 1. If all instantons
in M1;p.c�; cC/ are nondegenerate, then the latter space is a smooth manifold of
dimension 1 with a free R action that is induced by the constant translations along the
R factor of R�M .

The upcoming Proposition 8.1 restates Item (iii) from the first bullet of [8, Theorem 4.2].
This proposition refers to a pair .a;J /, of contact form in NM and almost complex
structure from Ja . Given L� 1, this pair is assumed to obey (1-15). The set ZL

ech is
defined by .a;J /. The proposition specifies a constant � ; it is implicit that Theorem
1.1 and Theorem 1.2 can be invoked using L and .a;J / when r > � .

Proposition 8.1 Fix L� 1 and a pair .a;J / just described. There exists � � 1 with
the following significance: Define the space Mr using the pair .a;J /, a 1–form �2�

with P –norm bounded by 1, and r � � . Let ‚� and ‚C denote any two elements in
ZL

ech . Use c� and cC to denote solutions to (1-8) whose gauge equivalences classes are
the respective images in Mr of ‚� and ‚C via Theorem 4.2’s map ˆr . Let p 2 P
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denote a sufficiently small element that vanishes to second order on the image of ˆr .
Define M1;p.c�; cC/ as above. There exists an R–equivariant diffeomorphism from
M1.‚�; ‚C/ to M1;p.c�; cC/.

8.b Proof of Proposition 8.1

The proof has four parts.

Part 1 Let rL > 1 be such that Items (i) and (ii) of the first bullet in [8, Theorem 4.3 ]
holds for r � rL and fix r � rL . If p is sufficiently small, perturbation theory finds an
R–equivariant embedding „pW M1.c�; cC/!M1;p.c�; cC/ onto a union of smooth
components of M1;p . This map varies with p in a suitably smooth manner, and is such
that „0 is the identity. In particular, if d 2M1.c�; cC/ and fpkgkD1;2;::: is a sequence
in P that converges to zero, then the corresponding sequence f„pk

.d/g converges to d

in the topologies that are considered in Chapter 16 of [5]. For example, this sequence
converges to zero in any given n� 0 version of C n topology on maps from R to the
space Conn.E/�C1.M IS/. Granted the preceding, Proposition 8.1 follows if it is
the case that „p is surjective when ever p has suitably small norm. The parts that
follow prove that this is the case by deriving a contradiction if it is not.

Part 2 Assume that there exists an increasing, unbounded sequence frigiD1;2;::: �

ŒrL;1/ and a corresponding sequence fpi;kgkD1;2;::: � P that converges to zero with
the following property: Fix any given index pair .i; k/ and there is an instanton, di;k ,
in the pD pi;k version of M1;p.c�; cC/ that is not in the image of the corresponding
version of „p .

To derive nonsense from this assumption fix i and let r D ri . The lemma that follows
plays a key role in the subsequent argument.

Lemma 8.2 There exists � � 1 such that if r D ri � � , then the following is true: For
each k 2 f1; 2; : : :g write the s!1 limit of di;k as ui;kcC . Then a.c�/�a.ui;kcC/�

2�Lr .

Proof of Lemma 8.2 Consider first the case when c1.det.S// is a torsion class. If this
is so, then a.ui;kcC/D a.cC/. Meanwhile, both c� and cC define gauge equivalence
classes in the image of ˆr . As such, both have E < 2�L. It follows from this and
(5-19) that both are such that jaj<�Lr if r is large. Thus, a.c�/�a.ui;kcC/ < 2�Lr

if r is large.

Suppose instead that c1.det.S// is not a torsion class. It follows from the fourth bullet
in (8-3) that ja.c�/� a.ui;kcC/j � ja

f .c�/� af .u1;kcC/jC 2�2 . Meanwhile, as c�
and ui;kcC are such that E<2�L, it follows from (5-25) both are such that jaf j<�Lr

when r is large. These last two inequalities prove the claim.

Geometry & Topology, Volume 14 (2010)



2954 Clifford Henry Taubes

Part 3 Given Lemma 8.2, it follows from the analysis in Chapters 16–19 of [5] that
there is a subsequence of this sequence (hence renumbered consecutively from 1) that
converges to what is called a broken trajectory. A broken trajectory in this case consists
of a finite, ordered set of instanton solutions to (1-11). Let N DNi denote the number
of elements in this set, and use fdj g1�j�N to denote the set itself with the dependence
on the index i understood. To say more about this set, use c

j
C to denote the s!1

limit of dj and use cj
� to denote the s!�1 limit dj . Then

(8-3)

� cj
� D c

j�1
C for each j 2 f2; : : : ;N g.

� c1
� D c� andcN

C D ucC for some u 2 C1.M IS1//.

� a.c1
�/ > a.c

j
C/ for each j 2 f1; : : : ;N g.

�
P

1�j�N fdj D 1.

Note that fdi;kgkD1;2;::: must stay uniformly far in any given C n norm from any
instanton solution to (1-11) from M1.c�; cC/ for if not, then any given large k version
would be in the image of the corresponding version of „p . This last fact about
fdi;kg1;2;::: implies that Ni > 1. A proof that Ni D 1 for sufficiently large i generates
the desired nonsense.

Part 4 It follows from the first bullet in (8-3) that any given sufficiently large index i

version of the sequence fa.cj
�/g1�j�N is such that

(8-4) a.c�/D a.c1
�/ > � � �> a.cN

� /D a.ucC/:

This chain of inequalities implies that a.cj
�/�a.c

j
C/� 2�Lri for each j 2 f1; : : : ;N g

when the index i is large. This is to say that each d 2 fdj g1�j�N version of what
is denoted in Proposition 5.1 by Ad is bounded by 2�Lri . It follows from this using
Proposition 5.5 that each cj

� is such that E.cj
�/ is bounded by 2�L when r D ri > c0 .

Thus, each is in the image of ˆr . Proposition 5.5 implies even more: There is a
broken J –holomorphic trajectory of the sort described in the proof of Lemma 6.1
that interpolates between ‚� and ‚C . Denote the constituents as f#kg1�k�N 0 . An
argument that differs little from that used in Part 2 of the proof of Lemma 6.1 proves
that their embedded contact homology indices must add to 1. This being the case, if
N DNi > 1, then at least one of the broken J –holomorphic trajectories must contain
an element # that has nonpositive embedded contact homology index. As each contains
a non–R–invariant subvariety, this event is not possible given the assumed genericity
of the pair .a;J /.
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Index to the notation

�r Equation (1-10), Theorem 4.2
of [8]

 r Equation (1-16), Theorem 4.3
of [8]

a: the contact 1–form Part 1 of Section 1.a
�: a class in H1.M IZ/ Part 1 of Section 1.a
k�1: the kernel of a oriented by �da Part 1 of Section 1.a
c1.k/: the first Chern class of k Part 1 of Section 1.a
v: the Reeb vector field Part 1 of Section 1.a
Reeb orbit: a closed integral curve of v, typically
denoted by 

Part 1 of Section 1.a

‚: a finite set of pairs .;m/ with  a Reeb
orbit and m a positive integer

Part 1 of Section 1.a

Z: a set of ‚’s as above satisfying particular
constraints

Part 1 of Section 1.a

` : when  is a Reeb orbit, the integral of a

along 
Part 1 of Section 1.a

ZL: a subset of Z with a length bound given
by L on the Reeb orbits

Part 1 of Section 1.a

J : the given almost complex structure Part 2 of Section 1.a
 : a Reeb orbit, aka a closed integral curve of v
.�; �/ defined for a given Reeb orbit in

Equation (1-1)
L: a differential operator associated to a Reeb
orbit

Equation (1-2)

nondegenerate Part 2 of Section 1.a
elliptic, hyperbolic Part 2 of Section 1.a
rotation number Part 2 of Section 1.a
R: the rotation number for an elliptic Reeb orbit Part 2 of Section 1.a
L–nondegenerate Part 2 of Section 1.a
Cm: vortex moduli space Part 3 of Section 1.a
h Equation (1-5)
r.1;0/h Part 3 of Section 1.a
nondegenerate in the context of a map cW S1!

Cm

Part 3 of Section 1.a

C‚ Part 3 of Section 1.a
C‚� Part 3 of Section 1.a
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metric on TM Part 4 of Section 1.a
S: spinor bundle Part 4 of Section 1.a
Conn.E/ Part 4 of Section 1.a
BA Part 4 of Section 1.a
 |� Part 4 of Section 1.a
DA Part 4 of Section 1.a
� Part 4 of Section 1.a
AK Part 4 of Section 1.a
cl. � /: Clifford multiplication map Part 4 of Section 1.a
� Part 4 of Section 1.a
P Part 4 of Section 1.a
P–norm Part 4 of Section 1.a
Mr Part 4 of Section 1.a
E.A/ Equation (1-9)
CZL Part 4 of Section 1.a
CZL� Part 4 of Section 1.a
NM Part 1 of Section 1.b
Ja Part 1 of Section 1.b
Zech Part 1 of Section 1.b
M1.‚�; ‚C/ Part 1 of Section 1.b
I.‚�; ‚C;Z/ Part 1 of Section 1.b and Equa-

tion (2-9) of [8], Section 2.c
of [8]

d a solution to (1-11)
instanton Part 2 of Section 1.b
Dd the operator in Equation (1-12)
H Part 2 of Section 1.b
L Part 2 of Section 1.b
k � kH Equation (1-13)
Lc the operator in Equation (1-14)
nondegenerate in the context of a solution to
Equation (1-8)

Part 2 of Section 1.b

nondegenerate in the context of a solution to
Equation (1-11)

Part 2 of Section 1.b

M1.c�; cC/: an instanton moduli space Part 2 of Section 1.b
ZL

ech Part 3 of Section 1.b
ZL�

ech Part 3 of Section 1.b
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c0 a constant that is greater than 1
and is independent of what ever
relevant data is under consider-
ation. The precise value of c0

can increase between subsequent
appearances.

�: a smooth function from R to Œ0; 1� that
equals 1 on .�1; 5

16
� and value 0 on Œ 7

16
;1/

˛; ˇ: respective E and EK�1 components of a
spinor  

Part 1 of Section 2.a

rA Part 1 of Section 2.a
#c Equation (2-8)
…jt Property 3 in Part 4 of Section

2.a
yr Part 3 of Section 2.a
#

|
c� Part 4 of Section 2.a
.A�;  �/ in the context of the proof of
Theorem 1.1

Part 5 of Section 2.a

f.c ; � /g.;m/2‚ Part 5 of Section 2.a, Step 4 in
Section 3.a of [9]

fU g.;m/2‚ and U0 Step 1 of Part 5 of Section 2.a
admissible extension Step 3 of Part 5 of Section 2.a
� : product connection Step 4 of Part 5 of Section 2.a
JD f.c ; � /g.;m/2‚ Section 3.a of [9]
w W w D 1� j˛j2 Section 3.a
fd: spectral flow along the path d Section 3.a
Fd Section 3
a Equation (3-2)
cs Equation (3-3)
e� Section 3.a
Ad Section 3
B.A; // Equation (3-4)
p. � / Step 3 in the proof of Lemma 3.5

in Section 3.a
M. � / Lemma 3.7 in Section 3.b
X� Lemma 3.8 in Section 3.c
yA Equation (3-33)

F yA Equation (3-34)
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N : the normal bundle to a submanifold Section 4.e
N1: a small radius disk subbundle of N Section 4.e, Section 4.a of [9]
eC : a certain exponential map defined on N1 Section 4.e, Section 4.a of [9]
EC introduction to Section 5, Propo-

sition 5.1
E Section 5.a
L Section 5.a
L Section 5.a
O Section 5.b
O Section 5.b
M Section 5.d
broken trajectory Section 5.e
fUC g.C;m/2# ; fU�g2„†� ; fUCg2„†C ,
U0

Section 6.b, Equation (5-3) of [9]

.A�;  �/ in the context of the proof of Theorem
1.2

Part 3 of Section 6.b, Part 2 of
Section 5.a of [9]

s: the tautological section of ��N !N Part 3 of Section 6.b
E : typically an end of a J–holomorphic curve Part 4 of Section 6.b
K� Section 6.c, Step 4 in Section 5.a

of [9]
.A� ;  �/ Section 6.c, Equation (5-15) in

Section 5.a of [9]
.b� ; �� ; ��/ Section 6.c
b.�/ Lemma 6.5
t� Section 6.c
dM Section 6.c
D Equation (6-21), Section 6 of [9]
. � /� . � / Equation (6-21), Section 6 of [9]
h.�/ Section 6.d and Section 6.d of [9]
q.�/ Section 6.d
…� Section 6.d, Part 6 in Section 7.a

of [9]
H?
�

: H?
�
D .1�…�/H Section 6.d

L Section 6.d, Section 7.a of [9]
t� : a homomorphism from L to L Section 6.d, Equation (6-9) of [9]

t|
�

Section 6.d
.c� ; &�/ Equation (6-23)
�1�;r Equations (6-24), (6-57) of [9]
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k� Equation (6-24)
k � kK Step 6 in the proof of Lemma 6.9,

(5-13) of [9]
k � kK� Step 6 in the proof of Lemma 6.9,

Step 4 of Section 5.a of [9]
k � kK;" Step 7 in the proof of Lemma 6.9
k � kK2

1
Section 6.e

�D..�C /.C;m/2# ; .��/2„†�/; .�C/2„†C/ Part 4 of the proof of Lemma
6.13, Equations (7-30), (7-31)
and (7-34) of [9]

f0, f1, fC, f� Equation (7-3)
ok Equation (7-9)
qE Step 1 of Part 2 in the proof of

Lemma 7.7
zE Step 1 of Part 2 in the proof of

Lemma 7.7, (4-1) of [9]
kE Step 1 of Part 2 in the proof of

Lemma 7.7
ZE Step 1 of Part 2 in the proof of

Lemma 7.7
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