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Embedded contact homology and
Seiberg–Witten Floer cohomology V

CLIFFORD HENRY TAUBES

This is a sequel to four earlier papers by the author that construct an isomorphism
between the embedded contact homology and Seiberg–Witten Floer cohomology
of a compact 3–manifold with a given contact 1–form. These respective homol-
ogy/cohomology theories carry additional structure; this sequel proves that the iso-
morphism that is constructed in the first four papers is compatible with this extra
structure.

57R17; 57R57

1 Introduction

The first four papers [10; 11; 12; 13] in this series construct an isomorphism between
Hutchings’ embedded contact homology [3; 4; 5] and the Seiberg–Witten Floer co-
homology as defined by Kronheimer and Mrowka in [7]. Both embedded contact
homology and Seiberg–Witten Floer cohomology admit a canonical endomorphism that
reduce degree by 2. In addition, embedded contact homology and Seiberg–Witten Floer
cohomology come with canonical endomorphisms that are defined using the homology
of the ambient 3–manifold. This paper proves that these auxiliary endomorphisms
are intertwined by the isomorphism that is constructed in [10; 11; 12; 13]. A formal
assertion to this effect is given in Theorem 1.1 in Section 1.c to come. Both embedded
contact homology and Seiberg–Witten Floer cohomology have respective canonical
contact elements, and Theorem 1.1 asserts that the isomorphism in [10; 11; 12; 13]
maps one to the other.

Embedded contact homology and Seiberg–Witten Floer cohomology also have refine-
ments which define modules over the group ring of the second homology of the ambient
3–manifold. Theorem 1.1 in the upcoming Section 1.c asserts that these refined versions
of embedded contact homology and Seiberg–Witten Floer cohomology are isomorphic.

What follows directly in the intervening subsections sets the stage for the statement
of Theorem 1.1. Note in advance that the notation borrows heavily from the first four
papers of this series.
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2962 Clifford Henry Taubes

1.a Auxiliary structures on embedded contact homology

This first subsection briefly describes the various auxiliary structures on embedded
contact homology. There are four parts to what follows. The first part summarizes
the definition of embedded contact homology given by Hutchings in [3] (see also the
paper of Hutchings and the author [5]). A somewhat longer summary is provided in
[10, Section 2].

Part 1 Let M denote the 3–manifold in question and let a denote the contact 1–
form. The manifold M is oriented using the volume form a^ da. The contact form
a is chosen from a certain residual set, this denoted by NM and described in [11,
Part 3 of Section 1.a]. The 2–plane bundle kernel.a/ � TM is denoted by K�1 ; it
is oriented using da. With the choice of a compatible, bundle complex structure, the
dual bundle K will be viewed as a complex line bundle over M . Its first Chern class
is denoted by c1.K/. The vector field v that generates kernel.da/ and pairs with a to
give 1 is called the Reeb vector field, and its closed integral curves are called Reeb
orbits. These curves are oriented by the restriction of a. If  is a Reeb orbit, then the
integral of a along  is its length; this positive number is denoted by ` .

Fix a homology class � in H1.M IZ/. Such a choice is needed to define embedded
contact homology. With � chosen, let Zech denote the set defined as follows: An
element ‚2Zech consists of a finite set of pairs of the form .;m/ with  a Reeb orbit
and m a positive integer, but constrained to equal 1 when  is hyperbolic. Require
that distinct elements from ‚ have distinct Reeb orbit components, and require that
the

P
.;m/2‚ m define the class � . Given L � 1, use ZL

ech to denote the subset
consisting of those ‚ with

P
.;m/m` �L. The assumption that a2NM guarantees

that ZL
ech is a finite set. Among other virtues, all Reeb orbits of a contact form from

NM are nondegenerate in the sense that the associated linear return map [10, Equation
(2-4)] has neither 1 nor �1 as an eigenvalue. Moreover, no fractional root of unity is
an eigenvalue.

The embedded contact homology for the chosen class � is computed using a differential
on the free Z module generated by equivalence classes of pairs of the form .‚; o/

where ‚ 2Zech and where o is an ordering of those pairs in ‚ whose first component
is a positive hyperbolic Reeb orbit. (A hyperbolic Reeb orbit is either positive or
negative. It is positive when the eigenvalues of the associated linear return map are
positive.) The equivalence relation on ZZech identifies pairs .‚; o/ with ˙.‚0; o0/
when ‚D‚0 and when o differs from o0 by a permutation. The sign, C or �, is the
parity of this permutation. The embedded contact homology Z module is denoted in
what follows by Cech . Given L� 1, use CL

ech � Cech to denote the submodule that is
generated by equivalence classes of pairs .‚; o/ with ‚ 2 ZL

ech .
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The definition of the differential on Cech requires the choice of a complex structure
on the oriented 2–plane bundle K�1 D kernel.a/. Such a choice endows the R�M

with an R–invariant almost complex structure, J . The latter maps the tangent vector
@=@s along the R factor to the Reeb vector field, and acts on the kernel of a as the
chosen bundle complex structure. The differential for embedded contact homology can
be defined using an almost complex structure of this sort that is suitably generic as
described in [10, Section 1.c]. In particular, there is a residual set of allowed almost
complex structures – this denoted by Ja .

Choose J 2 Ja , and use J to define the notion of a pseudoholomorphic subvariety
in R �M . The differential on Cech is denoted by ı ; it is described briefly in [10,
Section 1.c]. In particular, it can be written as follows: If .‚C; oC/ is any given
generator, then ı.‚C; oC/D

P
.‚�;o�/2Cech

�.‚�; ‚C/.‚�; o�/, where �.‚�; ‚C/
is a count, weighted by ˙1, of the components of a moduli space, M1.‚�; ‚C/,
of pseudoholomorphic subvarieties with positive integer weights. The sets ‚� and
‚C determine the asymptotics of the subvarieties that comprise any given element
in this moduli space. To elaborate, introduce H2.M; ‚�; ‚C/ to denote the set of
relative homology classes of 2–chains z � M with boundary

P
.;m/2‚C

m �P
.;m/2‚�

m . Chains z and z 0 define the same class in H2.M; ‚�; ‚C/ when the
closed cycle z�z 0 is the boundary of a 3–cycle in M . This set H2.M; ‚�; ‚C/ is an
affine space modeled on H2.M IZ/. An element † 2M1.‚�; ‚C/ is a finite set of
pairs where each pair has the form .C;m/ with C �R�M being a pseudoholomorphic
subvariety and m a positive integer. These are constrained by ‚� and ‚C as follows:
Let �.C /�M denote the image of C via the projection from R�M to M . Then the
2–cycle

P
.C;m/2† m�.C / is a cycle in H2.M; ‚�; ‚C/. Other salient properties of

M1.‚�; ‚C/ are listed in [10, Section 2.c and Equation (2-10)].

The differential maps CL
ech to itself. Let PW H1.M IZ/ ! H 2.M IZ/ denote the

Poincaré duality isomorphism, and use p to denote the greatest positive integer divi-
sor of the image in H 2.M IZ/=Torsion of the cohomology class �c1.K/C 2P.�/.
Hutchings [3; 2] explains how Cech can be given a relative Z=pZ grading such that ı
decreases by 1 this degree. The definition of this degree is briefly summarized in [10,
Section 1.c] and also [12, Part 2 of Section 1.a].

Part 2 This part describes the refined version of embedded contact homology, which
Hutchings calls twisted embedded contact homology. What follows summarizes mostly
from [3, Section 11] where this refinement is described.

To start, the refinement requires the choice of a “reference cycle”, � , an oriented,
1–dimensional submanifold in M whose homology class is that of � . Suppose that
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‚ D f.;m/g 2 Zech . Let H2.M; �;‚/ denote the set that consists of the relative
homology classes of 2–chains z �M with @z D

P
.;m/2‚ m � � .

Define Cech;� to be the free Z module generated by pairs ..‚; o/;W / where .‚; o/ is
a generator of Cech and where W 2H2.M; �;‚/. To define the differential on Cech;� ,
remember that if ‚� and ‚C are both in Zech , then any given † 2M1.‚�‚C/

defines, via the projection from R�M to M , an element in H2.M; ‚�; ‚C/. This
understood, define the integer �.‚�; ‚C;W / to be the contribution to �.‚�; ‚C/
from the components in M1.‚�; ‚C/ that define the class W . The differential on
Cech;� sends a given generator ..‚C; oC/;WC/ to

(1-1)
ı
�
.‚C; oC/;WC

�
D
P
.‚�;o�/

P
W 2H2.M;‚�;‚C/

�.‚�; ‚C;W /
�
.O�; o�/;WCCW

�
:

The homology of the resulting chain complex is a module over the group ring
ZŒH 1.M IZ/�. Indeed, this module structure is defined as follows: Let Z 2 Z and let
x 2H 1.M IZ/. Then Zx sends a given generator ..‚; o/;W / to Z..‚; o/;W CWx/

where Wx can be any closed cycle in M that represents the Poincaré dual to x in
H 2.M �Z/.

Note that the homology as defined using a different reference cycle, �0 , is isomorphic to
that defined by � , but not canonically isomorphic. The isomorphism becomes canonical
with the choice of an element in H2.M; �; �0/.

Given L� 1, the chain complex Cech;� has its corresponding subcomplex CL
ech;� ; this

defined in the same manner as CL
ech . This subcomplex is preserved by ı .

Part 3 This part describes the additional structure on the embedded contact homology.
What follows summarizes what is said in [3, Section 12] and, with regards to the
“U –map”, what is said in [5, Section 2.5].

The contact element This is the class defined when � D 0 by the empty set ∅2 Cech .
Note that ı∅D 0 by virtue of the fact that the coordinate s is unbounded from above
on every pseudoholomorphic curve in R�M .

The action of H1.M /=Torsion An element � 2H1.M /=Torsion defines a degree–1

map on the embedded contact homology. This map is denoted here by �� . It is
induced by a map from Cech;� to itself that is defined as follows: To start, assign to each
generator .‚; o/ of Cech an element W‚ 2H2.M; �;‚/. Let W DfW‚g‚2Zech . Now
let ‚� and ‚C , denote given elements in Zech , and let W 2H2.M; ‚�; ‚C/. Then
W‚� CW �W‚C defines a class in H2.M IZ/. Let �W.W / denote the Poincaré
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duality pairing of this class with � . Define ��;W W Cech;�! Cech;� by demanding that
it act on any given generator ..‚C; oC/;WC/ as

(1-2)
��;W

�
.‚C; oC/;WC

�
D
P
.‚�;o�/

P
W 2H2.M;‚�;‚C/

�W.W /�.‚�;‚C;W /
�
.O�; o�/;WC�W

�
:

The definition guarantees that ı��;W C��;Wı D 0 and so ��;W defines a homomor-
phism on embedded contact homology. Note that ��;W depends on W . Even so, a
different choice adds at most a boundary to any given closed cycle in Cech;� , and so
the induced homomorphism on embedded contact homology is, in fact, independent
of the choices that comprise a given version of W . This induced homomorphism is
denoted by �� . Note that �� defines a homomorphism on the cohomology of each
L� 1 version CL

ech;� .

The U –map This is a degree �2 map on the embedded contact homology; it is
defined in [3, Section 12.1.4]. What follows briefly describes this map. To set the stage
for definition, let ‚� and ‚C again denote elements in Zech . Hutchings introduces a
moduli space, M2.‚�; ‚C/, with the properties listed next. First, M2.‚�; ‚C/D∅
unless the degree of ‚C is two less than that of ‚� . Second, any given element
† 2M2.‚�; ‚C/ is a finite set whose elements are pairs of the form .C;m/ where
C � R�M is a pseudoholomorphic subvariety and m is a positive integer. These
pairs are constrained so that distinct pairs have distinct subvariety components and such
that

P
.C;m/2† m�.C / 2H2.M; ‚�; ‚C/. Hutchings proves that this M2.‚�; ‚C/

has the structure of a smooth, 2–dimensional manifold.

Now fix a point p 2M that does not lie on any Reeb orbit. Let M2.‚�; ‚C/
p �

M2.‚�; ‚C/ denote the subset of elements which contain a pair whose subvariety
component goes through the point .0;p/ 2R�M . If J is suitably generic, this is a
finite set. Moreover, respective cyclic orderings, o� and oC , for the positive hyperbolic
Reeb orbits from ‚� and ‚C give each element in this set an associated weight, either
C1 or �1. More is said about these ˙1 weights momentarily. If M2.‚�; ‚C/¤∅,
set �p.‚�; ‚C/ to equal the sum of the ˙1 weights that are associated to the elements
in M2.‚�; ‚C/. Set �p.‚�; ‚C/D 0 otherwise.

Define the automorphism Up on Cech by declaring its action on a given generator
.‚C; oC/ to be

(1-3) Up.‚C; oC/D
P
.‚�;o�/

�p.‚�; ‚C/.‚�; o�/:

This descends to give an automorphism of the associated embedded contact homology
(see [5] for a proof). The latter automorphism is called the U –map. The map Up
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preserves any L� 1 version of the subcomplex CL
ech and so defines an automorphism,

U , of the latter’s cohomology.

Hutchings in [3] defines a refined version of U that gives an automorphism of the
twisted embedded contact homology. To say more, fix W 2 H2.M; ‚�; ‚C/ and
let �p.‚�; ‚C;W / denote the contribution to �p.‚�; ‚C/ from those elements in
M2.‚�; ‚C/

p that define the class W . Define Up on Cech;� by declaring that its
action on a given generator .‚C; oC;WC/ be given by the right hand side of (1-1)
with �p.‚�; ‚C;W / replacing �.‚�; ‚C;W /.

Part 4 This part of the subsection elaborates on the definition of the signs that are
used to define the U –map. To start, remark that the data used to define the signs for
the differential on Cech also orients the moduli space M2.‚�; ‚C/ for any given pair
of generators f.‚�; o�/, .‚C; oC/g; this is done using ideas of Quillen that concern
determinant line bundles for families of Fredholm operators. The details are described
in [12, Part 1 of Section 3.b].

Now let † �M2.‚�; ‚C/
p . As explained to the author by Mike Hutchings, the

following is a consequence of the index inequalities in [1]:

(1-4)
There is precisely one pair .C;m/ 2 † with C not an R–invariant
cylinder. Moreover, this pair has mD 1. Finally, C is embedded and
it does not intersect any R–invariant cylinder from a pair in †.

Since p is not on any Reeb orbit, it follows that .0;p/ 2 C . What follows is now a
consequence of (1-4): The tangent space to M2.‚�; ‚C/ at † is canonically identified
with the L2

1
kernel of C ’s version of the operator DC that is depicted in [10, (2-8)].

To say more, introduce � W N ! C to denote C ’s normal bundle. The operator DC is
an R–linear first order operator that sends a section of N to one of N ˝T 0;1C ; it is
defined so as to send a given section � of N to

(1-5) DC � D x@�C �C �C�C
x�;

where �C is a certain section of T 1;0C and �C a section of N 2˝T 0;1C , these defined
by the 1–jet along C of the almost complex structure. This gives a bounded, Fredholm
operator from L2

1
.C IN / to L2.C IN ˝T 0;1C /. Its kernel in this guise is denoted

kernel.DC /; this a 2–dimensional vector space of sections of N . Implicit in the
assertion that p is generic is the condition that the restriction map kernel.DC /!N jp
is an isomorphism. This understood, then the orientation of M2.‚�; ‚C/ at p also
orients N jp . This orientation either agrees or disagrees with the complex orientation
of N jp . If it agrees, then † contributes C1 to �p.‚�; ‚C/. If it disagrees, then †
contributes �1 to �p.‚�; ‚C/.
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1.b Auxiliary structures on the Seiberg–Witten Floer cohomology

This subsection briefly describes the various auxiliary structures on the Seiberg–Witten
Floer cohomology. A detailed account of these structures is given in Kronheimer and
Mrowka’s book [7]. There are also four parts to this subsection.

Part 1 What follows here is a brief summary of those parts of the definition of the
Seiberg–Witten Floer cohomology that are needed for subsequent definitions. Much of
what is said in what follows paraphrases material in [10, Section 3]. To start, fix a SpinC

structure for M and then write the corresponding spinor bundle S as E ˚EK�1

with E the Ci eigenbundle for Clifford multiplication by the contact form a. To relate
things to the embedded contact homology, agree to choose the SpinC structure so that
E ’s first Chern class is Poincaré dual to the class � .

Fix r � 1 and then choose a suitably generic, small normed function g from the Banach
space P of [10, Section 3.d]. In particular, choose g so that the gauge equivalence
classes of solutions to [10, (3-5)] can be used as generators of the Seiberg–Witten Floer
cochain complex, CSW ; and so that the instanton solutions to [10, (3-6)] can be used to
define the differential on this same cochain complex. An additional constraint on g is
given below.

Part 2 This part describes the refined version of the Seiberg–Witten Floer cohomology;
this will correspond to the homology of Cech;� . The generators for this refinement are
supplied in part by the irreducible solutions to the large r version of [10, (3-5)] and in
part by any reducible solutions. As it turns out, the reducible solutions play no role in
the proof of Theorem 1.1, and so they are not discussed further. The generators that are
defined using the irreducible solutions are their equivalence classes with respect to the
equivalence relation that identifies c and c0 when c0 D uc with u a smooth, but null-
homotopic map from M to S1 . The resulting Z–module is denoted by CSW� . This Z
module admits a free action of H 1.M IZ/ whose quotient is CSW . The differential
on CSW� is defined on the irreducible generators via a modified version of [10, (3-4)].
This modification replaces any given version of the weight �.c0; c/ that appears in [10,
(3-4)] with the integer, ��.c0; c/, that gives the contribution to �.c0; c/ from the subset
of components in M1.c

0; c/ that contain instantons with s!�1 limit c0 and s!1

limit uc where u is a null-homotopic map from M to S1 . Here, as in [10, Section 3],
the space M1.c

0; c/ is defined to be the space of instanton solutions to [10, (3-6)] with
the following two properties: First, if d is in this space, then lims!�1 d.s/D c0 and
lims!1 d.s/D uc with u 2 C1.M IS1/. The second property refers to the index of
d’s version of operator that is depicted in [10, (3-9)]: The L2

1
index of this operator

must equal 1.
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This refined version of Seiberg–Witten Floer cohomology can be viewed as a module
over the group ring ZŒH 1.M IZ/�. The action of this group ring on a given generator
of CSW� is defined as follows: Let c denote the generator. Fix Z 2 Z and fix x 2

H 1.M IZ/. Then Zx.c/D Z.uxc/ where ux can be any smooth map from M to S1

that defines the class x .

Part 3 This part describes the additional structure on the Seiberg–Witten Floer coho-
mology.

The contact element This class is defined in all but name by Kronheimer and Mrowka
in [6]. In any event, it is the class in the Seiberg–Witten Floer cohomology for the
SpinC structure with c1.E/D 0 that is described in [9, Theorem 4.1].

The action of H1.M /=Torsion This action increases degree by 1. In order to define
the action on the irreducible solutions, it is necessary to first make some additional
choices. To this end, suppose that c is a gauge equivalence class of some irreducible
solution to [10, (3-5)]. Fix a generator, c� , of the module CSW� that projects to c.
Thus, c is the orbit of c� under the action of H 1.M IZ/ on CSW� . Use � to denote
the set of such choices. A given � 2H1.M IZ/=Torsion defines a homomorphism

(1-6) ��;�W CSW�
! CSW�

by its action on the generators. To specify this action, consider the action on a gen-
erator cC from the set �. Let c� denote another generator of CSW� and let d denote
an instanton solution to [10, (3-6)] with s!�1 limit equal to c� and s!1 limit
equal to ucC where u is a null-homotopic map from M to S1 . Write cC D uCcC�
and c� D u�c�� with u˙ maps from M to S1 . These define respective classes x�
and xC in H 1.M IZ/. Set

(1-7) ��;�.cC/D
P

c�2CSW� �.x��xC/��.c�; cC/c�;

where the notation �. � / invokes the identification

H1.M IZ/=TorsionD Hom.H 1.M IZ/IZ/:

This automorphism of CSW� anticommutes with the coboundary endomorphism and so
descends to an automorphism of the cohomology of CSW� . It defines an automorphism
of the cohomology of CSW by virtue of the fact that it commutes with the H 1.M IZ/
action on CSW� . Neither of these cohomology actions depend on the choices that
comprise �. This understood, these cohomology actions of � are denoted in what
follows by �� .

The U –map This is a degree �2 map on the cohomology of CSW� and CSW . What
follows is equivalent to the definition given in [7, Chapters 3.2 and 25.3]. The au-
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tomorphism U is defined via a map on the generators of CSW and CSW� , and only
the irreducible generators are discussed in what follows. To this end, first fix a point
p 2M . Now suppose that cC and c� are irreducible solutions to [10, (3-5)]. Introduce
the moduli space M2.c�; cC/ of instanton solutions to [10, (3-6)] with the following
two properties: First, the s!�1 limit is c� and the s!1 limit is ucC where u

is a smooth map from M to S1 . Second, the corresponding version of the operator D
in [10, (3-9)] has Fredholm index equal to 2.

Write a given element d2M2.c�; cC/ as .A;  D .˛; ˇ//, and let M2.c�; cC/
p denote

the subset of elements in M2.c�; cC/ with the property that ˛ vanishes at the point
.0;p/ 2 R �M . If the perturbation function g is chosen from a certain residual
subset of P , then this is a finite set. Moreover, the choices that are needed to define
the differential for the Seiberg–Witten Floer cohomology can be used to canonically
associate a weight, either C1 or �1, to each element in M2.c�; cC/

p . The sum of
these ˙1 weights is denoted by �p.c�; cC/. This ˙1 weight assignment is described
in more detail momentarily.

These signs can be used to define an automorphism, Up , on CSW :

(1-8) UpcC D
P

c�2CSW� �p.c�; cC/c�:

This map commutes with the differential and so descends to a degree �2 homomorphism
on the cohomology of CSW . The latter is independent of the point p , and is denoted
by U in what follows.

The definition of U on the cohomology of CSW� is defined using the analog of (1-8)
that has �p.c�; cC/ replaced by just the contribution to this sum from those instantons
with s!�1 limit equal to c� and s!1 limit equal to ucC with u a null-homotopic
map from M to S1 .

Part 4 What follows says more about the ˙1 weights that are used to define the sum
on the right hand side of (1-8). To start the story, associate the point ˛jsD0.p/2Ejp to
any given instanton solution dD .A;  D .˛; ˇ// of [10, (3-6)]. This association can
be viewed as a map from the moduli space of instanton solutions to [10, (3-6)] to a 1–
dimensional, complex vector space. For example, this map can be restricted to any given
version of the moduli space M2. � ; � / and likewise to any given version of M1. � ; � /.
This map can also be evaluated on any constant map from R to Conn.E/�C1.M IS/.
If the perturbation function g is chosen in a suitably generic fashion, then this map has
purely transverse zeros on all versions of M2. � ; � /, it lacks zeros on all versions of
M1. � ; � /, and it is nonzero on any constant map from R to Conn.E/�C1.M IS/.
As a consequence, there will be but a finite number of zeros in M2.c�; cC/ for any
given pair c� and cC .
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The data used to orient any given version of M1. � ; � / using Quillen’s notion of the
determinant line bundle also serves to orient any given version of M2. � ; � /. This is
described in [7] and summarized in [12, Part 1 of Section 3.b]. Given that M2. � ; � / is
oriented, then each transversal zero of a map from M2. � ; � / to C has a well defined
local Euler number, this either C1 or �1. This local Euler number is the ˙1 weight
that is assigned to any given element in M2. � ; � /

p .

1.c The equivalence

The theorem that follows gives the formal statement of equivalence between the cor-
responding auxiliary structures for embedded contact homology and Seiberg–Witten
Floer cohomology.

Theorem 1.1 Fix a class � 2 H1.M IZ/ and fix the SpinC structure whose spinor
bundle S splits as E˚EK�1 where c1.E/ is Poincaré dual to � . Then the isomor-
phism between the corresponding embedded contact homology and the Seiberg–Witten
Floer cohomology given in [10] can be assumed to have the following properties:

� It identifies the respective contact elements in the case when c1.E/D 0.

� It intertwines the respective actions of H1.M IZ/=Torsion.

� It intertwines the respective U –maps.

In addition, this isomorphism is induced by an isomorphism between the respective
ZŒH 1.M IZ/� refinements of the embedded contact homology and Seiberg–Witten Floer
cohomology. The latter isomorphism intertwines the actions of H1.M IZ/=Torsion
and the U –map.

Acknowledgements This work was supported in part by the National Science Foun-
dation.

2 The proof of Theorem 1.1

The subsections that follow prove Theorem 1.1 but for some technical points that
concern the U –map. The latter are proved in Section 3 and Section 4 to come.

The arguments in this section and the subsequent sections refer to the solutions to
certain special versions of [10, (3-5) and (3-6)]. These versions are defined using a
metric with jaj D 1 and �da D 2a. Note that a metric of this sort restricts to the
kernel of a as the bilinear form da. � ;J. � // where J is such that this bilinear form is
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symmetric and positive definite. These special versions are defined using a function g

used in [10, (3-5), (3-6)] that has the form e� with e� given in [10, (3-11)] using a
coclosed 1–form � from the Banach space of � that is defined in [10, Section 3.d].
With the metric and g just described, what is written in [10, (3-5)] is

(2-1)
� BA� r. |� � ia/� i � d�C 1

2
BAK

D 0.

� DA D 0.

The notation here is from [10, Section 3]. In particular,  |� is defined in [10,
Section 3.a] and the Dirac operator DA in [10, Section 3.c]. What is denoted by � is
the metric’s Hodge star operator. The generators of the Seiberg–Witten Floer cochain
complex are defined using the solutions to (2-1).

With � 2 � fixed, and r � 1 chosen, Mr henceforth denotes the space of gauge
equivalence classes of solutions to (2-1). The corresponding version of [10, (3-6)], the
equation for instantons, reads

(2-2)
�

@
@s

ACBA� r. |� � ia/� i � d�C 1
2
BAK

D 0.

�
@
@s
 CDA D 0.

Note that (2-1) and (2-2) appear in [10] as (3-17) and (3-18), respectively.

There is also a corresponding version of the operator that is depicted in [10, (3-9)]:
This is the operator on sections over R�M of iT �M ˚S˚ iR that sends a given
section .b; �; �/ to one whose respective iT �M , S and iR components are

(2-3)

�
@
@s

bC�db� d� � 2�1=2r1=2. |��C �|� /.

�
@
@s
�CDA�C 21=2r1=2.cl.b/ C� /.

�
@
@s
�C�d � b� 2�1=2r1=2.�| � |�/.

The notation here is that used in [10, (3-9)]. In particular, cl. � / denotes the Clifford
multiplication endomorphism as defined in [10, Section 3.a].

Keep in mind the following notational convention: In any given appearance, c0 denotes
a constant that is greater than 1. Moreover, its value can be assumed to increase between
subsequent appearances. It is always independent of r and other significant parameters.

2.a The contact elements

What with [11, Proposition 3.1], the fact that the respective contact elements in embed-
ded contact homology and Seiberg–Witten Floer cohomology coincide follows directly
from [9, Proposition 4.3] and what is said in its proof.

Geometry & Topology, Volume 14 (2010)



2972 Clifford Henry Taubes

2.b The ZŒH 1.M I Z/� module structure

This subsection is concerned with the following proposition:

Proposition 2.1 Fix a class � 2H1.M IZ/ and fix the SpinC structure whose spinor
bundle S splits as E˚EK�1 where c1.E/ is Poincaré dual to � . The isomorphism
that is given by [10, Theorem 1] is induced by an isomorphism between the respective
ZŒH 1.M IZ/� refinements of the embedded contact homology and Seiberg–Witten
Floer cohomology.

Proof of Proposition 2.1 The proof of this proposition has five parts.

Part 1 Fix L� 1 and suppose that .ya; yJ / is a pair of contact structure from the
set NM and almost complex structure from Jya that obey the conditions in [10, (4-1)].
Define ZL

ech as in Part 1 of Section 1.a using this pair. Fix a 1–form � with small
P –norm from the Banach space � that is described in [10, Section 3.d]. Now take
r large enough to invoke [10, Theorem 4.2] for a given choice of 1–form �. The
latter describes a bijection, ˆr , from ZL

ech to the set Mr of gauge equivalence classes
of solutions to (1-5) for which the function E given in [10, (3-13)] has value less
than 2�L.

Part 2 Fix r > 0. The following is a consequence of what is said in [11, Lemma 3.10]:
If r is sufficiently large, and if cD .A;  D .˛; ˇ// is a solution to the corresponding
version of (2-1) with gauge equivalence class in the image of ˆr , then the connection yA
given by [10, (4-7)] is flat on the complement of the radius r tubular neighborhood of
any Reeb orbit in M with length less than L. To elaborate, [10, Lemma 3.10] finds
that j˛j has distance at most 1=1000 from 1 on the complement of the radius c0r1=2

tubular neighborhood of any Reeb orbit in M with length less than L.

With the preceding understood, choose r so that each point on the reference loop �
has distance at least 3r from any Reeb orbit in M with length less than L. Fix a
flat connection, � , on E that admits a nonzero, covariantly constant section on the
complement of the radius r tubular neighborhood of � . Given c as above, write the
corresponding connection yA as � C ac . Suppose that � is an embedded, oriented loop
in M that has distance at least r from � and from the Reeb orbits with length less
than L. Define

(2-4) X�.c/D
1

2� i

Z
�

ac:

This X�.c/ is necessarily an integer. Note as well that X�.uc/D X�.c/ when u is a
null-homotopic map from M to S1 . In general, X�.uc/ is obtained X�.c/ by adding
the integer that is obtained by evaluating the class defined by u in H 1.M IZ/ on the
class defined by � in H1.M IZ/.
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Part 3 This part of the discussion describes a lift of ˆr so as to give a 1–1 correspon-
dence between the set Zech;�Df.‚;W / W‚2ZL

ech and W 2H2.M; �;‚/g and the set
of generators of CSW� that have E < 2�L. To define this lift, fix a set, ƒ, of oriented,
embedded loops in M �

S
.;m/2‚  that generate H1.M IZ/=Torsion and are such

that each point in each loop from ƒ has distance at least 3r from � and from each
Reeb orbit in M with length less than L. Any given element .‚;W / 2 ZL

ech defines
a map, N.‚;W /W ƒ! Z; its value on a given loop is the loop’s algebraic intersection
number with W .

A bijection between the set ZL
ech;� and the set of generators of CSW� with E < 2�L is

defined as follows: The bijection sends a given .‚;W / 2 ZL
ech;� to the orbit under the

identity component of C1.M IS1/ of a solution, c.‚;W / , to (2-1) with the following
properties: First, its orbit under all of C1.M IS1/ is ˆr .‚/. Second, X�.c.‚;W //D

N.‚;W /.�/ for all � 2ƒ.

To see that the map just define is a bijection, it is enough to prove that it is equivariant
with respect to the actions of H 1.M IZ/ on ZL

ech and on the set of generators for CSW� .
To this end, suppose that z 2H 1.M IZ/ and that Wz is a cycle in M that represents
the Poincaré dual of z in H2.M IZ/. Let � denote an embedded loop in M with
distance at least 3r from � and from any Reeb orbit with length less than L. Then
N.‚;WCWz /.�/D N.‚;W /.�/Cz.�/ where z.�/ represents the value of the cocycle z

on � . This understood, let uz W M ! S1 denote a smooth map that defines the class z .
Then X�.uzc.‚;W //D X�.c.‚;W //C z.�/. Taking � from the set ƒ, it follows that
c.‚;WCWz / D uzc.‚;W / as desired.

The bijection just defined is denoted in what follows by ˆr� .

Part 4 Fix a pair ‚� and ‚C from ZL
ech and † 2M1.‚�; ‚C/. Let c� and cC

denote respective solutions to (2-1) that define ˆr .‚�/ and ˆr .‚C/. [10, Theo-
rem 4.3] associates to † an instanton d 2M1.c�; cC/. Among other things, d is a
smooth map from R to Conn.E/ � C1.M IS/ such that lims!�1 d.s/ D c� and
lims!1 d.s/D ucC with u here a smooth map from M to S1 .

Lemma 2.2 Fix a pair of generators .‚�; o�/ and .‚C; oC/ of CL
ech , an element

W� 2 H2.M; �;‚�/, an element, W , of H2.M; ‚�; ‚C/, and an element † 2
M1.‚�; ‚C/ that defines W . Let d denote the instanton solution to (2-2) with
lims!�1 d.s/ D c.‚�;W�/ that is obtained from † using [10, Theorem 4.3]. Then
lims!1 d.s/D uc.‚C;W�CW / where u is a homotopically trivial map from M to S1 .

Proof of Lemma 2.2 Let � denote a given loop in ƒ, and let NW .�/ denote its
algebraic intersection number with W . Thus,

(2-5) N.‚C;W�CW /.�/D N.‚C;W�/.�/C NW .�/:
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Given that † defines the element W , the number NW .�/ can be viewed as the algebraic
intersection number between R�� and the cycle

P
.C;m/2‚ mC . Note in this regard

that there exists R� 1 such that all intersections occur where s 2 Œ�R;R��M .

To continue, let � W R�M !M denote the projection, and use � to view E as a
bundle over R�M . As a pullback, the restriction of E to any given fiber of � has a
canonical connection. Now write dD .A;  D .˛; ˇ// and view the connection A as
a connection on this pullback of E to R�M . Note that A’s restriction to any given
fiber of � is identical to the canonical connection. View it as a section of this pullback
bundle. Take this view so as to define rA˛ as a section of T � .R�M /˝E . Now
use [10, (4-7)] to define the connection yA from A and ˛ . Note that yA as opposed
to A need not restrict to any given fiber of � as the canonical connection.

This understood, let F yA 2 C1.R�M; iT � .R�M // denote the curvature of yA. It
follows from the construction given in [11, Sections 4–7] that .1=.2� i//FA represents
the Poincaré dual of the 2–chain defined by the formal sum

P
.C;m/2‚ mC . In

particular, this has the following consequence: If � 2ƒ, then

(2-6) NW .�/D
1

2� i

Z
R��

F yA:

Now write yA D � C a† where a† 2 C1.R�M I iT � .R�M //. It follows from
(2-6) using Stokes theorem that

(2-7) NW .�/D�X�.c.‚;W�//C X�.uc.‚C;W�CW //:

What with (2-5), this implies that N.‚C;W�CW /.�/D X�.uc.‚C;WCW //. Given that
the preceding holds for all � 2ƒ, it follows that u must be homotopically trivial.

Part 5 Let ‚ 2 ZL
ech . Order the subset of pairs .; 1/ 2 ‚ for which  is positive

hyperbolic (its linear return map has positive eigenvalues). Doing so for all such ‚
identifies ZL

ech with a set of generators of CL
ech . This identification extends by linearity

to define an isomorphism between CL
ech and the submodule of CSW whose generators

are such that E < 2�L. [10, Theorem 4.3] describes an isomorphism of complexes of
the sort just described. Let Tˆ denote the latter.

The data used to define Tˆ also identifies the set ZL
ech;� with the set of generators

of CL
ech;� . Given such an identification, the map ˆr� defines a 1–1 correspondence

between the set of generators of CL
ech;� and the set of generators of CSW� with E< 2�L.

This extends by linearity to give an isomorphism between CL
ech;� and the submodule

of CSW� that is generated by the equivalence classes with E< 2�L. Use Tˆ� to denote
this last isomorphism. What with [10, Theorem 4.3] and Lemma 2.2 above, it follows
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that Tˆ� intertwines the embedded contact homology differential with the differential
on CSW� .

Granted the preceding, the arguments given [10, Section 4.c] for [10, Theorem 1] can
be repeated with only notational changes to complete the proof of Proposition 2.1.

2.c The action of H1.M I Z/=Torsion

The purpose of what follows is to prove that the isomorphism that is described in
Proposition 2.1 intertwines the actions of H1.M IZ/=Torsion. To start this proof,
fix � 2 H1.M IZ/=Torsion and introduce a W D fW‚g‚2Zech so as to define the
map ��;W as in (1-2). The definition of the corresponding automorphism of CSW�

requires first the specification of a set X , this a lift to CSW� of the set of generators
of CSW . Given any value for L� 1 and then r very large, take this set X to have the
following property: If ‚ 2 ZL

ech , then the lift of ˆr .‚/ is ˆr�..‚;W‚//D c.‚;W‚/ .
Granted such a set X , define ��;X as in (1-6). Note in this regard that if r 0 > r , then
it follows from the third bullet of [10, Theorem 4.2] that the lifts in the version of X
defined by r of the elements in ˆr .ZL

ech/ enjoy a canonical identification with those
of their ˆr 0 counterparts in the r 0 version of X .

Now let ‚� and ‚C denote given elements in ZL
ech , and let W 2H2.M; ‚�; ‚C/. The

isomorphism used by Proposition 2.1 is constructed so that the integer �.‚�; ‚C;W /

that appears in (1-2) is the same as the integer ��.c.‚�;W�/; c.‚C;WCCW // that appears
in (1-7). This understood, it is enough to prove that the class W‚� CW �W‚C in
H2.M IZ/ is Poincaré dual to the class in H 1.M IZ/ that is defined by any map
uW M ! S1 with the property that c.‚C;W‚�CW / D uc.‚C;W‚C / . This last property
follows from the definition of the map ˆr� . It follows from what is said a the end of
the preceding paragraph that the isomorphism so defined by a given large choice for r

is suitably independent of r , and thus consistently defined on the length filtration of
Zech;� given by the inclusion of a given L version of ZL

ech;� into an L0 >L version.

2.d The U –map

The assertions in Theorem 1.1 about the U –map are proved here modulo the proofs of
the upcoming Proposition 2.5 and Theorem 2.6. The argument that follows has three
parts.

Part 1 This part gives an analog of [10, (2-10)] for the subvarieties that contribute to
the U –map. To set the stage, fix a point p 2M that is not on any Reeb orbit.
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Lemma 2.3 A residual set, Ja;p , of almost complex structures can be chosen so as to
have the following additional property: Fix J 2 Ja;p and fix a pair, ‚� and ‚C , in
Zech . Then the following are true:

� No element from M1.‚�; ‚C/ has a pair .C;m/ with p 2 C .

� The space M2.‚�; ‚C/
p has a finite set of elements.

� Let † 2M2.‚�; ‚C/
p .

(1) The subvariety
S
.C;m/2† C is embedded.

(2) There is exactly one element .C;m/ 2 † where C is not an R–invariant
cylinder. This element has mD 1.

(3) Let .C; 1/ 2† be such that C is not an R–invariant cylinder. The kernel of
the corresponding version of the operator DC from (1-5) is 2–dimensional
and the restriction of this kernel to p 2 C defines an isomorphism with the
normal bundle to C at p .

(4) Let E �† denote an end. Let qE ; divE and �qE denote the data that appear
in E ’s version of [10, (2-6)]. Then divE D fqEg and �qE ¤ 0.

(5) Let E and E 0 denote distinct pair of either positive or negative ends of †
such that E D E 0 and qE D qE 0 Let �qE and �qE0 denote the 2�q–periodic
eigenvector that appears in the respective E and E 0 versions of [10, (2-6)].
Then �qE jt ¤ �qE0 jtC2�k for any t 2 S1 and k 2 Z.

Proof of Lemma 2.3 As explained to the author by Hutchings, the existence of a
version of Ja where Assertions (1) and (2) of the third bullet hold follow directly from
the index inequalities asserted by [1, Lemma 9.5]. Given Assertions (1) and (2) of the
third bullet, then Assertion (3) of the third bullet follows using the Sard–Smale theorem
in a manner that is standard fare in the curve counting business. Similar arguments
using the Sard–Smale theorem prove what is asserted by the first bullet and they prove
that the space M2.‚�; ‚C/

p has at worst countable set of elements, and that each
is nondegenerate. The fact that this space is finite is a compactness assertion and this
assertion follows from [2, Theorem 1.8]. Assertions (4) and (5) of the third bullet
follow using essentially the same arguments as those given in [5, Section 3].

Part 2 This part discusses a slight generalization of the notion of a .ı;L/ approxi-
mation to any given pair of contact form a and compatible almost complex structure.
To set the stage, suppose that a is from the residual set described in [10, Lemma 2.1],
that p 2M has been chosen, and that J is from Ja;p . Fix L > 1 and ı > 0. The
definition of a .ı;L/ approximation to .a;J / is given in the discussion that surrounds
[10, (2-11)]. What follows is the needed generalization of this definition.
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A pair .ya; yJ / of contact structure on M and compatible almost complex structure on
R�M is said to be a .ı;L;p/-approximation for .a;J / when the following is true:
There is a smooth, 1–parameter family f.a� ;J� /g�2Œ0;1� of pairs of contact structure
and compatible almost complex structure with .a0;J0/D .a;J / and .a1;J1/D .ya; yJ /;
and such that

(2-8)

(1) For each � 2 Œ0; 1�, the respective sets of a and a� Reeb orbits with
symplectic action less than L are identical.

(2) Let  denote a Reeb orbit for a with ` < L. If  is elliptic or hy-
perbolic as defined using a, then it is respectively elliptic or hyperbolic
as defined using any � 2 Œ0; 1� version of a� and the rotation number is
� –independent.

(3) Let ‚� and ‚C denote generators of CL
ech . For each � 2 Œ0; 1�, there

exists

(a) A 1–1 correspondence between the components of the respective
J and J� versions of the space M1.‚�; ‚C/ such that partnered
components contribute the same sign to the respective J and J�
versions of �.‚�; ‚C/.

(b) A 1–1 correspondence between the components of the respective
J and J� versions of the space M2.‚�; ‚C/

p such that partnered
components contribute the same sign to the respective J and J�
versions of �p.‚�; ‚C/.

(4) Let  denote a Reeb orbit with ` <L. There is a coordinate embedding
'W S1�D!M of the sort described in the preceding with the following
property: If  is hyperbolic with rotation number k , then the ya–version
of the pair .�; �/ is equal to .1

2
k; i�e�ikt / for some � 2 .0; ı/. If  is

elliptic with rotation number R , then

(i) .2�=` /'
�yaD .1� Rjzj2/dt C .i=2/.zdxz�xzdz/.

(ii) The '�–pull back of the yJ –version of T 1;0.R�M / is spanned by
the forms dsC iya and .`=.2�//.dz� i Rzdt/.

(5) The contact structure ya comes from the residual set given in [10, Lemma
2.1] and the almost complex structure yJ comes from the set Jya;p .

The proposition that follows gives the analog of [10, Proposition 2.4] for .ı;L;p/–
approximations. It refers to the contact 1–forms from the residual set given in [10,
Lemma 2.1]. By way of a reminder, if a is a contact form from this set, then the
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linear return map for any given Reeb orbit lacks eigenvalues that are fractional roots of
unity.

Proposition 2.4 Let a denote a contact 1–form the residual set given in [10, Lemma
2.1]. Fix a point p 2M and let J denote a complex structure from Ja;p . Fix ı > 0 and
L � 1 such that there is no generator ‚ of Cech with

P
.;m/2‚ m` D L. Suppose

that .ya; yJ / is a.ı;L;p/ approximation to the given pair .a;J /. Then the identification
provided by the first item in (2-8) between the Reeb orbits with symplectic action
less than L induces a degree preserving isomorphism between the a and ya versions
of CL

ech that intertwines the respective differentials and the U –map. Thus, it induces an
isomorphism between the respective .a;J / and .ya; yJ / versions of the cohomology of
the chain complex Z.ZL

ech/ that intertwines the respective U –maps.

Proof of Proposition 2.4 The assertions are a direct consequence of (2-8).

The next proposition asserts the existence of .ı;L;p/ approximations. It is the analog
of [10, Proposition 2.5].

Proposition 2.5 Let a denote a 1–form from the residual set described by [10,
Lemma 2.1]. Fix p 2 M and let J 2 Ja;p . Fix ı > 0 and L � 1 such that there
is no element ‚ 2 Zech with

P
.;m/2‚ m` D L. Then there exists a .ı;L;p/

approximation to .a;J /.

The proof of this proposition is given in the next section.

The existence of a .ı;L;p/ approximation makes it possible to use the constructions
in [11; 12; 13] to directly compare the respective counts that define the embedded
contact homology and Seiberg–Witten Floer cohomology versions of the U –map.

Part 3 To set the stage for what is to follow, fix L� 1 and p 2M . Suppose that ya
is a contact 1–form on M from the residual set described in [10, Lemma 2.1] and that
yJ 2 Jya;p with ya are such that the conditions in [10, (4-1)] are obeyed. The upcoming

Theorem 2.6 is a generalization of [10, Theorem 4.3].

Before stating the theorem, reintroduce as notation Mr to denote the set of gauge
equivalence classes of irreducible solutions to (2-1). Given a pair, c� and cC , of
irreducible solutions to (2-1), introduce M .c�; cC/ to denote the space of instanton
solutions to (2-2) with s ! �1 limit equal to c� and s !1 limit equal to ucC
where u can be any smooth map from M to S1 . Associate to each d 2M .c�; cC/

the operator, Dd , that is depicted in (2-3). This operator gives a Fredholm map from
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L2
1
.R�M I iT �M˚S˚iR/ to the space L2.R�M I iT �M˚S˚iR/ if both the c�

or cC version of the operator that is depicted in [11, (3-8)] has a trivial kernel. In this
case, M .c�; cC/D

S
k2Z Mk.c�; cC/ where any given k 2Z version of Mk.c�; cC/

consists of the instantons whose corresponding version of D.�/ has index k .

Assume now that neither the c� nor the cC version of [11, (3-8)] has trivial kernel.
Given that the latter condition holds, a given instanton d 2M .c�; cC/ is said to be
a smooth point of M .c�; cC/ when the cokernel of Dd is trivial. This terminology
is meant to reflect the following fact: Suppose that d 2M .c�; cC/ is a smooth point.
Then d has a neighborhood in M .c�; cC/ with the structure of a smooth manifold
whose dimension is that of the kernel of Dd . In particular, there is a ball about the
origin in this kernel and a smooth diffeomorphism of this ball onto such a neighborhood
of d in M .c�; cC/.

Theorem 2.6 Fix L � 1, a point p 2M , and a pair .ya; yJ / just described. There
exists � � 1 with the following significance: Define Mr using r � � and a 1–form
� 2� with P norm bounded by 1. Then the conclusions of [10, Theorems 4.2–4.5]
hold, and the following in addition:

� Let ‚� and ‚C denote any two elements in ZL
ech . Use c� and cC to denote

solutions to (2-1) whose gauge equivalences classes are the respective images of
‚� and ‚C via the map ˆr from [10, Theorem 4.2].

(i) If dD .A;  D .˛; ˇ// 2M1.c�; cC/, then ˛j.0;p/ ¤ 0.

(ii) The set M2.c�; cC/
p is finite.

(iii) The space M2.c�; cC/ is smooth near M2.c�; cC/
p .

(iv) The assignment to any given dD .A;  D .˛; ˇ// 2M2.c�; cC/ of ˛j.0;p/
defines a map to a complex line that is smooth on the smooth part of
M2.c�; cC/ and that vanishes transversely at each point in M2.c�; cC/

p .

� There is a bijection, ‰r;p , from M2.‚�; ‚C/
p to M2.c�; cC/

p with the fol-
lowing property: The contribution of any given element in M2.‚�; ‚C/

p to
the integer �p.‚�; ‚C/ that appears in (1-3) is the same as the contribution of
its partner in M2.c�; cC/

p to the integer �p.c�; cC/ that appears in (1-8).

Given Proposition 2.5 and Theorem 2.6, the assertions in Theorem 1.1 about the U –map
are proved using the same strategy used in [10, Section 4.c] to prove [10, Theorem 1].
Indeed, the arguments from this point differ only cosmetically from those given in [10,
Section 4.c]. Note in this regard that the isomorphism that intertwines the U –maps for
the respective ZŒH 1.M IZ/�–module refinements of embedded contact homology and
Seiberg–Witten Floer cohomology is that used to prove Proposition 2.1.
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3 Proof of Proposition 2.5

As is explained in what follows, the same sort of homotopy used in [10, Appendix A]
to prove the latter’s Proposition 2.4 serve for Proposition 2.5. The explanation for why
this is true has five parts.

Part 1 Fix Q� 1 so as to construct inductively the sequence f.ak ;Jk/gkD0;1;2;:::;Q

as done in [10, Appendix A]. Here, .a0;J0/D .a;J /; and for each k 2 f0; : : : ;Qg, all
but the fourth item of (2-8) are satisfied if yaD ak and yJ D Jk . The fourth item of (2-8)
is replaced by [10, (A-1)]. The construction of .ak ;Jk/ from .ak�1;Jk�1/ proceeds
inductively just as in [10, Appendix A]. Given what is done in [10, Appendix A], the
only new point is that of guaranteeing Condition (3)(b) in (2-8) for .ak ;Jk/ given that
it is satisfied for .ak�1;Jk�1/.

The guarantee for Condition (3)(b) in (2-8) requires a generalization of what is said
in [10, (A-4)]. To state the latter, let ‚� and ‚C denote elements in ZL

ech and let †
denote an element in either M1.‚�; ‚C/ or M2.‚�; ‚C/

p . As noted in [10, (2-10)]
and in Lemma 2.3 above, there is a unique pair in † whose submanifold component
is not an R–invariant cylinder. Let C � R �M denote this pseudoholomorphic
submanifold. Let DC denote C ’s version of the operator in (1-5). This operator has
trivial kernel as a map from L2

1
.C IN / to L2.C IN ˝T 0;1C / where N !C denotes

C ’s normal bundle. and thus it has a well defined inverse, this denoted by D�1
C

The
latter is a bounded map to the L2 orthogonal complement of the kernel of DC . There
is a bound to the norm of D�1

C
that is independent of C , ‚� and ‚C . As in the

Appendix to [10], this bound is denoted by �0 .

Let L0 denote the smallest of the lengths of the Reeb orbits for the original Reeb vector
field v . In the case when  is a Reeb orbit from RL , and q is a positive integer less
than L=L0C 1, there is a version of the operator DC for C DR�  whose domain
consists of the space L2

1
sections of the normal bundle of C that are 2�q–periodic

around the constant s 2R slices of R�  . The latter version of DC is also invertible,
and �0 can be chosen so as to be greater than the norm of its inverse. The existence of
this bound �0 is a consequence of the fact that there are a finite set of Reeb orbits and
integers under consideration.

Part 2 If k <Q and .ak ;Jk/ has been constructed so that all but Condition (4) in
(2-8) is obeyed, then any given element † from the .ak ;Jk/ version of M2.‚�; ‚C/

p

contains just one pair whose submanifold component is not R–invariant. This subman-
ifold, C , is such that DC W L

2
1
.C IN /! L2.C IN ˝ T 0;1C / is invertible. Here, as

before, D�1
C

is a map from L2.C IN ˝ T 0;1C / to the L2 orthogonal complement
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in L2
1
.C IN / of kernel.DC /. There is a single upper bound for the norms of all

such versions of D�1
C

because there are at most a finite set of subvarieties under
consideration.

The plan for what follows is to exhibit a k –independent constant Q� such that if
Q>Q� , then .akC1;JkC1/ can be constructed so that

(3-1)

� .yaD akC1; yJ D JkC1/ obeys all but the fourth item of (2-8).

� .akC1;JkC1/ obeys instead the index kC 1 version of [10, (A-1)].

� If ‚� and ‚C are in ZL
ech and C is a subvariety M2.‚�; ‚C/

p , then
the operator DC is invertible as a from the orthogonal complement in
L2

1
.C IN / of kernel.DC / to L2.C IN ˝T 0;1C /.

� The evaluation map epW kernel.DC /!N jp is an isomorphism.

The pair .akC1;JkC1/ is constructed as in the Appendix of [10]. By way of a reminder,
this requires the choice of a positive constant, � . There is an upper bound for the
choice of � that is determined by k , but there is no positive lower bound for the
choice. The construction starts with the pair, .akC1;�;JkC1;�/ which are described
in Parts 1 and 2 of the Appendix A to [10]. The desired pair .akC1;JkC1/ will be a
small perturbation of .akC1;�;JkC1;�/. To verify (3-1), it is necessary to first consider
the .akC1;�;JkC1;�/ versions of M2.‚�; ‚C/

p .

Part 3 Take � > 0 and very small. Fix any given ‚� and ‚C from Zech . This
done, each † in the .ak ;Jk/ version of M2.‚�; ‚C/

p is assigned a partner in
the .akC1;�;JkC1;�/ version of M2.‚�; ‚C/

p . This is done as follows. Write the
partner as †0 . If .C;m/ 2 † and C is R–invariant, then .C;m/ 2 †0 . If C is not
R–invariant, then the pair .C; 1/ is replaced by .C 0; 1/ where C 0 is obtained from C

by solving [10, (A-16)] for a suitable, small normed section of C ’s normal bundle.
What follows describes how this is done.

To start, introduce the Banach spaces B0 and B1 from Step 2 in Part 3 of Appendix A
to [10]. Note in particular that elements in B1 are in L2

1
.C IN /\C 0.C IN /. Introduce

the linear operators p1 and p2 �rC that appear in [10, (A-16)]. As noted in Lemma A.2
from the Appendix to [10], there exists Q� which is independent of k;C; ‚� and ‚C
with the following significance: Let B?

1
denote the L2 –orthogonal complement to the

kernel of DC . If Q >Q� , then DC C p2 � rC C p1 is invertible as a map from B?
1

to B0 . Note that the norm of this inverse can depend on C .

Choose � > 0 so that elements in B1 with norm k � k� < 2� define sections of the
disk bundle N1 �N that is described in Step 1 of Part 3 of [10, Appendix A]. Note in
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particular that this bundle is the domain of an exponential map, eC . This is a map from
N1 to R�M that restricts to C as the identity; it is locally a diffeomorphism that
embeds each normal disk. Let � denote a section of N1 over † which has jsj !1
limit equal to zero. Then C 0 D eC ı � is a deformation of C in R�M . In particular,
this deformation is JkC1;�–pseudoholomorphic if and only if it obeys Equation (A-16)
in [10].

Define a map, yW B?
1
! B1 so as to send any given � 2 B?

1
to y.�/D �� e�1

p .�jp/.
Said differently, the image of y is the graph of the map �!�e�1

p .�jp/ from B?
1

to
kernel.DC /. By construction, y.�/jp D 0. For � 0 2 .0; �/, use U� 0 � B?

1
to denote

the ball of radius � 0 . Define TpW U� 0 ! B?
1

by sending any given element � to

(3-2)
Tp.�/D�.DC C p2 � rC C p1/

�1
�
.p2 � rC C p1/e�1

p .�jp/

C<1.y.�// � rC y.�/CR0y.�/C p0

�
:

Here is the reason for this definition: If Tp.�/D �, then the composition eC ı y.�/ is
a pseudoholomorphic deformation of R�M that contains the point p .

The following lemma is the analog in the present context of [10, Lemma A.3]:

Lemma 3.1 There exists � 0 2 .0; �/ such that if � is sufficiently small then the
following is true: Suppose that † is an element in the Jk version of M1.‚�; ‚C/ or
M2.‚�; ‚C/

p and that C is the submanifold from † that is not R–invariant. Then
Tp defines a contraction mapping from U� 0 , to itself. For such � , the map Tp has a
unique fixed point in U� 0 . Moreover, this fixed point has k � k� norm bounded by cC� ,
and it is a smooth section of N that obeys [10, (A-16)]. Here, cC is independent of � .

Proof of Lemma 3.1 Note first that

(3-3) kTp.�/k� � cC

�
�k�k�Ck�k

2
�C �

2
�
:

Here, cC depends on C . Without the term .p2 �rC Cp1/e�1
p .�jp//, the bound in (3-3)

lacks the term �k�k� on the right and follows using [10, (A-13) and (A-17)]. The addi-
tional term cC�k�k� is the bound for �.DCCp2 �rCCp1/

�1..p2 �rCCp1/e�1
p .�jp//.

It is obtained by using the fact that the norm of any element in the kernel of DC with
unit L2 norm is bounded along C by a C –dependent constant times e�jsj=c0 . As a
parenthetical remark, note that the constant c0 that appears in this exponential can
be taken to be independent of k and C . The reason is as follows: This exponential
decay is determined by the smallest of the absolute values of those versions of the
operator from (1-5) that are defined using the Reeb orbits from ‚�[‚C with their
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corresponding pairs .��Dk=Q; ��Dk=Q/. Similar considerations find that

(3-4) kTp.�/� Tp.�
0/k� � cC 2

�
�Ck�k�Ck�

0
k�

�
k�� �0k�:

The lemma follows from (3-3) and (3-4) using the contraction mapping theorem.

The result asserted by Lemma 3.1 can be formalized to say that there is an injective
map from the .ak ;Jk/ version of M2.‚�; ‚C/

p to the .akC1;�;JkC1;�/ version
when � is small. This map, F2 , is defined in the following manner: Let † denote
any given element in the .ak ;Jk/ version of M2.‚�; ‚C/

p and let †0 denote its
partner. The pairs in † and †0 with R–invariant submanifold components agree. Let
.C; 1/ 2† denote the one additional element. Use C to define the map Tp and let �
denote the fixed point given by Lemma 3.1. Take C 0 �R�M to be the image of C

via the composition eC ı y.�/.

Part 4 The next lemma states some relevant properties of the elements that lie in
F2 ’s image when � is small. These properties are the analogs of those asserted by [10,
Lemmas A.4].

Lemma 3.2 Suppose that � is very small. Let † denote an element in the .ak ;Jk/

version of M2.‚�; ‚C/
p and let †0 denote its partner in the .akC1;�;JkC1;�/ version

as defined by the map F2 . Let †0 denote the submanifold from †0 that is not R–
invariant and let N 0 denote the normal bundle to C 0 .

� The associated operator DC 0 , has trivial cokernel.

� The evaluation map epW kernel.DC 0/!N 0jp is an isomorphism.

� The signs that † and †0 would contribute to the respective .ak ;Jk/ and
.akC1;�;JkC1;�/ versions of the U –map are identical.

Proof of Lemma 3.2 The proof that DC 0 , has trivial cokernel differs in no essential
way from the proof of [10, Lemma A.4]. Recall that this is proved as follows: First,
DC 0 is written as an operator from L2

1
.C IN / to L2.C IN ˝T 0;1C /, this an operator

that appears as DC C p2 � rC C p1C r. The operator r is seen to define a bounded
operator from L2

1
.C IN / to L2.C IN ˝T 0;1C / with norm bounded by c0k�k� , and

thus by cC� . Meanwhile, [10, Lemma A.2] proves that the small � versions of
DC C p2 � rC C p1 are invertible.

To prove the second assertion, use what was just said to define an isomorphism between
the kernel.DC / and kernel.DC 0/ as follows: The map sends any given element � to
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�Ck.�/ where k.�/D�.DC Cp2 �rC Cp1Cr/�1..p2 �rC Cp1Cr/�/. As is argued
momentarily, this map k. � / has the following property:

(3-5)
There exist a decreasing function �! �.�/ with �.0/D 0 and such
that if � 2 kernel.DC / has unit L2 norm, then jk.�/j � cC �.�/ at
each point in C .

This implies the assertion made by the second bullet since the identification of DC 0

with DC C p2 � rC C p1C r is compatible with the identifications between the normal
bundles of C and C 0 at p given by the exponential map eC .

To obtain (3-5), note first that r has operator norm as a map from B1 to B0 that is
bounded by cC k�k� � cC� . Here, cC is a constant that is independent of � . Indeed,
this follows using [8, Theorem 3.5.2 and Lemma 5.4.1] because the first order terms
in r have coefficients bounded by cC j�j and the coefficients of the zeroth order terms
are bounded by cC jr�j. Meanwhile, the operator DC C p2 � rC C p1 is invertible; its
inverse maps from the space B0 to B?

1
with norm independent of � when � is small.

This implies that .DC C p2 � rC C p1C r/ is invertible when � is small; and that its
inverse maps B0 to B?

1
with norm independent of � when � is small. Note that these

observations prove that k.�/ is in B?
1

. What with [8, Theorem 3.5.2], bound on the
size of its k � k� norm gives a bound on its pointwise norm.

To bound kk.�/k� , fix R� 1 and take �>�R where �R is such that the support of p1

is described in [10, (A-14)]. Write .p2 � rC C p1C r/� as .p2 � rC C p0
1
C r/�C pC�

where p0
1

is the part of p1 whose support is in the disks with radius R�1 about the
points where C intersects the Reeb orbits from RL . As noted previously, elements
in the kernel of DC with unit L2 norm have pointwise norm bounded by cC e�jsj=c0 .
This being the case, and given that pC has support where jsj > R, it follows that
k.DC C p2 � rC C p1 C r/�1pC�k� � �.p/ where �. � / can be assumed to be a
continuous function with lim�!0 �.�/D 0. In particular. the contribution to k.�/jp
from pC� has norm bounded by cC �.p/. Meanwhile, the contribution to k.�/ from
.p2 � rC C p0

1
C r/� has B0 norm bounded by cC R�1 as can be seen using what is

said above about r, and what is said in the Appendix of [10] about p2 and p0
1

.

Given what just said about the norm of k.�/ at p , the argument for the final bullet of
Lemma 3.2 differs only cosmetically from those used to prove the final assertion of
[10, Lemma A.4]; as such, this last argument is left to the reader.

Part 5 Take � very small, and in particular, so that the conclusions of Lemma 3.2 are
valid. Perturb .akC1;�;JkC1;�/ in the manner that is described in Part 5 of Appendix A
to [10] with the following added constraint: It should be made so that the new version
of the almost complex structure also agrees with the original on all pseudoholomorphic
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curves that appear in elements from F2 ’s image. Moreover, the 2–jets of the new and
original versions should also agree on the latter. Let .akC1;�;JkC1;�/ now denote the
result of such a perturbation.

By construction, the perturbation to the new version of .akC1;�;JkC1;�/ does not
affect the pseudoholomorphic subvarieties that are obtained using the map F2 . Thus,
F2 still gives an injective map from the .ak ;Jk/ version M2.‚�; ‚C/

p to the
.akC1;�;JkC1;�/ version.

Lemma 3.3 There exists �k > 0 such that if �<�k , then the map F2 just described is
a bijection from .ak ;Jk/ version of M2.‚�; ‚C/

p to the .akC1;�;JkC1;�/ version
of M2.‚�; ‚C/

p .

Proof of Lemma 3.3 The argument used in Part 6 of Appendix A of [10] can be
repeated almost verbatim to prove Lemma 3.3.

Lemma 3.3 has the following happy consequence: Any sufficiently small � version of
.akC1;�;JkC1;�/ obeys now all but item (4) of (2-5) with the latter replaced by [10,
(A-1)]. Thus, any sufficiently small � version of this pair can serve for .akC1;JkC1/.

4 Theorem 2.6

This section contains the proof of Theorem 2.6. Note in this regard that the proof uses
much the same technology that is used in [11; 12; 13] to prove [10, Theorem 4.3].
This being the case, much of what follows refers to sections in [11; 12; 13] and their
notation.

4.a L1–Norms

This section constitutes a digression to derive some inequalities that are used in the
subsequent parts of the proof. To set the stage for what is to follow, let †�R�M denote
a pseudoholomorphic submanifold that obeys the five constraints in [11, Section 4.b].
[11, Propositions 6.4, 7.1 and 7.6] associate to † certain instanton solutions to any
sufficiently large r version of (2-2). To say more, introduce the ball B from [11,
Proposition 6.4]. Let V0 denote the vector space that appears in [11, Proposition 7.1]
and introduce the map q W B! V0 as in [11, Proposition 7.1]. Fix � 2 q.B/ and let
�� 2 B \ q�1.�/ denote the element given by this same [11, Proposition 7.1]. Let
h D h.��/ and q D q.��/ be as given in [11, Proposition 6.4]. Lemma 4.1 to come
provides, among other things, an L1 bound on both q and h.
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As � varies in q.B/, the assignments �! h.��/�h.�0/ and �! q.��/ give smooth
maps from q.B/ to the Hilbert space H from [11, Section 6.a]. Lemma 4.1 also gives
an L1 bound on the derivatives of these maps. Note in this regard that the lemma uses
h0 and q0 to denote the respective the directional derivative of h and q in the direction
of any given unit normed vector in V0 .

Lemma 4.1 There is a constant � � 1 with the following significance: If r � � , then
[11, Propositions 6.4, 7.1 and 7.6] can be invoked to construct h.��/ and q.��/ from
any given � 2 V0 with norm j�j � ��1 . Then the following is true:

� Both jh.��/j and jq.��/j are bounded pointwise by �r�1=� .

� The norms of their directional derivatives, jh0j and jq0j, are also bounded by
�r�1=� .

Proof of Lemma 4.1 The proof has six steps.

Step 1 It follows from what is said in [11, Lemma 3.10] that the � D 0 version of
jh.�/j is bounded by r�1=c0 . Meanwhile, it follows from the description of h.�/ in [11,
Section 5.b] and the bound j��j � c0.r

�1=c0 Cj�j/ from Proposition 7.1 that jh.��/j
is also bounded by r�1=c0 .

The desired bound on the jh0j follows directly from the description of h in [11, Sec-
tion 5.b] given a suitable bound on the K–norm of the derivative of the map �! �� .
To say more about this, let � 0 2 K denote the directional derivative of this map in
the direction of a given unit length vector in V0 . It follows from what is said in [11,
Section 5.b] that jh0j � r�1=c0k� 0kK .

Step 2 To bound k� 0kK , first recall that [11, Proposition 7.2] and [11, Section 7.a]
define �� to be the fixed point in B of the map ��W B ! K that sends any given
element � to �.F /�1.T0CT2.�/;��/ where F is the map .T1; q/ from K to L�V0 .
This said, its directional derivative, � 0 , in the direction of a given unit vector �0 2 V0

obeys

(4-1) � 0 D�.F /�1.T2�j�� � �
0;��0/;

where T2� denotes the differential of the map T2 . Introduce the map q�W V0!K as
defined at the end of [11, Section 7.f]. It is a consequence of what is said in the second
and third bullets of [11, Proposition 7.2] that

(4-2)
� 0� q�

�
�0
�

K � c0.r
�1=2C8�

Cj�j/:

This implies that k� 0kK � c0 .
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Step 3 A bound for jqj is derived in this step and Steps 4–6. Introduce the pair
.A�;  �/ from [11, Section 5.a]. The bundle E can be trivialized over any ball in
R�M of radius 100r�1=2 so that the following is true: Let � denote the product
connection given by this trivialization and write A� in this ball as �C .2r/1=2a . Then
jaj � c0 . Moreover, given an integer k � 1, there exists an r –independent constant ck

such that the derivatives to order k of a and  in this ball are bounded by ckrk=2 .

These last observation have the following consequence: Let D� denote the operator on
C1.R�M I iT �M ˚S˚ iR/ that is given by using .A�;  �/ in [11, (6-4)]. Suppose
that U �R�M is a ball of radius c�1

0
, and that f and w are L2

1
sections over U of

iT �M ˚ S˚ iR that obey D�f D w. Let U 0 � U denote the concentric ball with
half the radius of U and let U 00 � U denote the concentric ball with one fourth the
radius of U . If r � c�1

0
, then

(4-3) sup
x2U 00

jfj � c0 sup
x2U 0

Z
dist.x;�/�1=

p
r

1

dist.x; � /3
jwjCc0r2 sup

x2U 0

Z
dist.x;�/�1=

p
r

jfj:

This is proved using standard parametrix arguments.

Step 4 Set � D �� and reintroduce the pair .A� ;  �/ from [11, Section 5.b]. Write
A� D A� C .2r/1=2.b�� C ���ds/ and  � D  � C ��� so as to define b�� D

.b�� ; ��� ; ���/, this a section over R �M of iT �M ˚ S ˚ iR. It follows from
what is said in [11, Proposition 7.1 and Lemma 3.10] that jb�� j � c0.r

�1=4Cj�j/. This
has the following consequence: The .A� ;  �/ version of [11, (6-4)] differs from D� by
a zeroth order term whose L1 norm is bounded by c0r1=2jb�� j � c0r1=2.r�1=4Cj�j/.
Thus, the top line of [11, (6-1)] can be written as an equation for bD b.��/ that has
the schematic form D�bDw where

(4-4) jwj � c0r1=2.r�1=c0 Cj�j/jbjC c0r1=2
jbj2C c0r�1=2

jvj:

This understood, the plan for what follows is to use (4-3) with fD b and with w just
described to bound kbk1 by r�1=c0 . Given that jhj � r�1=c0 , this will supply the
promised bound for jqj.

Step 5 To start this plan, observe that the contribution to the left most integral on the
right hand side of (4-3) from r1=2.r�1=c0 Cj�j/jbj is at most c0.r

�1=c0 Cj�j/kbk1 .
Note in particular that this is less than 1

100
kbk1 if j�j � c�1

0
and r � c0 .

The contribution to the left most integral on the right hand side of (4-3) from r1=2jbj2

is no greater than

(4-5) c0r1=2
kbk1 sup

x2R�M

Z
dist.x;�/<1=

p
r

1

dist.x; � /3
jbj:
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Introduce the norm k � k� as defined in [11, (6-51)]. The integral in this last expression
is bounded by c0r��=4kbk� as can be seen by breaking it into a sum indexed by the
positive integers where the k –th term is the contribution to the integral from the region
where the distance to x lies in the interval .2�kr�1=2; 2�kC1r�1=2/. Given this bound,
and given the fifth bullet of [11, Proposition 7.1], it follows that what is written in (4-5)
is bounded also by c0.r

�1=c0 Cj�j/kbk1 . As noted in the preceding paragraph, this
is less than 1

100
kbk1 if j�j is less than c�1

0
and r is greater than c0 .

Consider next the contribution to the left most integral on the right hand side of (4-3)
from r�1=2jvj. To this end, reintroduce the norm k � kK� as defined in [11, (2-27)],
and note that this norm has the following property: Let � and C be as in [11, (2-27)].
Let � < 1 be given. Then

(4-6) sup
u2C

Z
dist.�;u/<�

1

dist.u; � /
jr�j � c0�

�
k�kK�:

This can be seen by writing the integrand as a sum indexed by the positive integers
where the k –th term gives the contribution to the integral from the region where the
distance to u lies in the interval .2�k�; 2�kC1�/.

What with (4-6), it follows from the description of v in [11, Section 6.d], especially
[11, (6-32), (6-38)–(6-40) and (6-49)], that the contribution to the left most integral on
the right hand side of (4-3) from r�1=2jvj is at most c0r�1=c0 .

Step 6 The observations made in Step 5 imply that the left most integral on the right
hand side of (4-3) is no greater than

(4-7)
1

50
kbk1C r�1=c0

if r � c0 and j�j � c�1
0

. Meanwhile, the fD b version of the right most integral on
the right hand side of (4-3) is no greater than r��=2r1=2kbk� . In particular, this is
bounded curtesy of [11, Propositions 7.1 and 6.4] by r��=2.r�1=4Cj�j/. This being
the case, the f D b version of (4-3) implies that kbk1 � r�1=c0 when r � c0 and
j�j � c�1

0
.

Step 7 This step explains very briefly how to derive the desired bound for jq0j. The
strategy is very much the same as that used to bound jqj. Here is a sketch of what
is done: Differentiate the top equation in [11, (6-1)] so as to derive an equation of
b0D h0Cq0 that has the schematic form D�b

0Dw0 . Equation (4-3) is used with fD b0

and with w0 in lieu of w to bound kb0k1 . The latter with the bound from Steps 1
and 2 on kh0k1 gives the promised bound for kq0k1 .
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The details of the derivation differ only cosmetically from what was done in Steps 3–6
to obtain the bound for kqk1 , especially so given (4-6), given Step 2’s bound on
k� 0kK , and given the bound from [11, Proposition 6.4] on kq0k� .

4.b The map ‰r;p

The purpose of this subsection is to define the map ‰r;p . To prepare for the definition,
fix # 2M2.‚�; ‚C/

p . This element # obeys Constraints 1–4 of [11, Section 4.b].
Fix a constant translation of # along the R factor of R �M so that the resulting
submanifold, †, obeys all five of the constraints in [11, Section 4.b]. Let s� 2R denote
the translation amount. This is to say that any given point .s;x/ 2 R�M lies in †
if and only if .s � s�;x/ lies in # . In particular, the point q D .s�;p/ is in †. The
translation by s� is needed to satisfy the fifth constraint in [11, Section 4.b].

If r � c0 , then the map ˆr given in [11, Theorem 4.2] is defined on both ‚� and ‚C .
This is assumed in what follows. In addition, [11, Propositions 6.4, 7.1 and 7.6]
associate to † a family of instanton solutions to (2-2) that are parametrized by a small
radius ball in the vector space V0 from [11, Proposition 7.1].

Proposition 4.2 There is a constant � � 1 with the following significance: Fix r � � .
Let B � V0 denote the ball of radius ��1 . [11, Propositions 6.4, 7.1 and 7.6] can be
invoked using any given element in B to obtain an instanton solution to (2-2). This
defines a map, ‰BW B!M2.c�; cC/. Given � 2 B , write the spinor component of
the instanton ‰B.�/ as  .�/ D .˛.�/; ˇ.�//.

� The image of ‰B consists of smooth points, and ‰B is an embedding.

� There is a unique element, �p 2B with ˛.�p/D 0 at q . This element �p is such
that j�pj � r�1=� .

� The assignment to � 2 B of ˛.�/jq defines a map from B to a complex line that
vanishes transversally at �p .

This proposition is proved momentarily.

The map ‰r;p is defined as follows: Fix r � c0 so that the map ˆr from [10, Theorem
4.2] is defined, and so that Proposition 4.2 can be invoked for any given element in
M2.‚�; ‚C/. Let # 2M2.‚�; ‚C/

p and let c� and cC denote solutions to (2-1)
that define the respective gauge equivalence class of the image of ‚� and ‚C via the
map ˆr of [10, Theorem 4.2]. Introduce V0;B , the map ‰BW B!M2.c�; cC/, and
the element �p 2 B as in Proposition 4.2. Define ‰r;p.#/ to be the translate of the
instanton ‰B.�p/ by �s� along the R factor of R�M .
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4.c Proof of Proposition 4.2

This proof has six parts.

Part 1 [12, Proposition 3.1] guarantees that the image of ‰B consists of smooth
points in the subset M2.c�; cC/ of M .c�; cC/ when B has radius c�1

0
or less. The

rest of this part with Parts 2 and 3 prove that ‰B has injective differential when B has
radius c�1

0
or less.

To start, remark that a tangent space at a given smooth point d 2 M .c�; cC/ can
be viewed as the kernel of the operator that is defined by d via (2-3). By way of
reminder, the kernel here and in what follows refers to the version whose domain
and range are the respective spaces L2

1
and L2 sections over R�M of the bundle

iT �M ˚S˚ iR. When d has the form ‰B.�/, this operator is gauge equivalent to an
operator on the Hilbert space H from [11, Part 1 in Section 6.a]. To describe this gauge
equivalent operator, introduce � D �� 2B\q�1.�/ to denote the element given by [11,
Proposition 7.1] from �. Define b.��/ from �� as described by [11, Proposition 6.4]
and then use b.��/ in [11, (5-19)] to define the pair .A;  / D .A.�/;  .�//. Define
D.�/ by [11, (6-4)] using this version of .A;  /. This D.�/ is gauge equivalent to d’s
version of [12, (1-12)]. Thus, the tangent space to M .c�; cC/ at ‰B.�/ is isomorphic
to kernel.D.�// �H and the differential of ‰B at � can be viewed as a linear map
from V0 to kernel.D.�//. This map to kernel.D.�// is written in what follows as the
composition } �Y where Y is a linear map from V0 into H and } is the L2 –orthogonal
projection to the complement to a certain linear subspace.

To define the map Y , note first that the map �! b.��/� b.0/ defines a smooth map
from V0 to H . Let �0 denote a unit normed element in V0 and introduce b0 to denote
the directional derivative of b.�.�//� b.0/ at � in the direction �0 . This b0 is one of
two contributions to Y �0 . The second contribution comes via the chain rule from the
derivative at � D �� of the assignment �! .A� ;  �/ with the latter as defined in [11,
Section 5.b]. Denote this second contribution by t0 . Thus, Y �0 D b0C t0 .

To say more about } �Y , note that the iT �M ˚S components of D.�/.Y �0/ are zero.
This can be seen by differentiating the equation in the top bullet of [11, (6-6)]. The
effect of } is to change Y �0 by adding an element in H that has the form

(4-8)
�
� dx ; 2r1=2x .�/;�

@

@s
x
�

where x is a certain iR–valued, L2
2

function on R�M . As a parenthetical remark,
note that (4-8) can be written as .D.�//|ux where ux D .0; 0; x / and where .D.�//|

denotes the formal L2 adjoint of D.�/ . No matter the choice of x , the addition of
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(4-8) to Y �0 gives a section, fx , of iT �M ˚S˚ iR over R�M with the property
that Dfx has zero iT �M and S components. This element has zero iR component if
and only if x obeys the equation

(4-9) �
@2

@s2
x C d|dx C r j .�/j

2x CmD 0

where m here denotes the iR component of D.�/.Y �0/.

Part 2 Introduce C to denote the set of components of †. To find the desired solution
to (4-9), note that it is a consequence of Lemma 4.1 that j .�/j � 1

2
at points with

distance c0r�1=2 or greater from
S

C2C C if the radius of B is less than c�1
0

Granted
that such is the case, then the bilinear form

(4-10) z! h.x /D
Z

R�M

�ˇ̌̌̌
@

@s
x

ˇ̌̌̌2
Cjdxj2C r

ˇ̌
 .�/

ˇ̌2
jxj2

�
on L2

1
.R�M I iR/ obeys h.x / � c0rkx k2

2
. This last fact, and the fact that m is an

L2 section of iT �M ˚S˚ iR imply via a standard variational argument that (4-9)
has a unique L2

1
solution. Let x now denote this solution. This iR–valued function is

smooth, it obeys

(4-11)
Z

R�M

�ˇ̌̌̌
@

@s
x

ˇ̌̌̌2
Cjdxj2C r jxj2

�
� c0r�1

kmk22;

and what is written in (4-8) defines an element in H .

Part 3 The differential of ‰B on �0 is nonzero if the addition of (4-8) to Y �0 is
nonzero. To see that such is the case, use [11, (4-2), Proposition 6.4] and the description
of h. � / given in [11, Section 6.d] to see that the directional derivative of b.�.�// at �
in the direction of �0 obeys

(4-12) kb0kH � c0r�1=2:

To say something about t0 , reintroduce from [11, (6-9)] the � D �� version of the
homomorphism t� . It then follows from what is said in [11, Section 5.b] that t0 is
an element in H that differs from t��.�

0/ by a term whose L2 norm is bounded by
c0r�1=c0 and whose H–norm is bounded by r1=2�1=c0 . Note in this regard that the
L2 norm of t��.�

0/ is bounded from below by c�1
0

and from above by c0 . This is
implied by [12, (3-3)]. Meanwhile, its H–norm is bounded from below c�1

0
r1=2 and

bounded from above by c0r1=2 .
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What just said about b0 and t0 implies that

(4-13)
� kY �0k2 � c�1

0
.

� kmk2 � c0.kD.�/.t��.�
0//k2C r1=2�1=c0/.

To more about the L2 norm of m, introduce the operator D that is defined by [11,
(6-4)] using for .A;  / the � D �� version of .A� ;  �/. By way of reminder, this pair
is defined in [11, Section 5.b]. It is a consequence of [11, Proposition 6.4] and the
bound by c0r1=2 on kt��.�

0/kH that

(4-14) kD.�/.t��.�
0//k2 � kD.t��.�

0//k2C c0r1=2.r�1=c0 Cj�j/:

Now use the definition of t� in [11, (6-9)] with the description of D in [11, Sec-
tion 6.a] and what is said about V0 in [11, Section 7.f] to see that kD.t��.�

0//k2 �

c0r1=2.r�1=c0 Cj�j/. This bound also follows from what is said in the proof of [12,
Proposition 3.1]. These last bounds with the second bullet in (4-14) imply that

(4-15) kmk2 � c0r1=2.r�1=c0 Cj�j/:

What with (4-15), the bound in (4-11) and the lower bound given by the first bullet in
(4-13) imply that k} �Y �0k2 > c�1

0
if the radius of B is less than c�1

0
Given what was

said in Part 1, such a nonzero lower bound implies, in particular, that ‰B has injective
differential.

Part 4 This part sets the stage for proof that ‰B is 1–1 when B ’s radius is bounded
by c�1

0
. To start, let C �R�M denote the one element from C that is not R–invariant.

Let � W N ! C denote C ’s normal bundle. [11, Part 2 of Section 4.a] describes an
exponential map, eC , that maps a fixed radius subbundle N1 �N into R�M as an
immersion. This map sends the zero section to C , its differential along the zero section
is an isometry, and it embeds each fiber disk in N1 as a pseudoholomorphic disk in
R�M .

The tangent space to M2.‚�; ‚C/ at † is isomorphic to the kernel of C ’s version of
the operator that appears in [11, (4-5)]. This operator maps L2

1
sections of N to L2

sections of N ˝T 0;1C . Its kernel is 2–dimensional; and this kernel is, by definition,
the vector space V0 . Thus each element in V0 is a section of N . By assumption, the
differential of eC along the zero section maps V0 isomorphically onto N jp .

As constructed, C passes through the point q D .s�;p/ 2 R �M . Fix a unitary
identification of N jq with C . Fix T � 1 and let D � C D N jq denote the radius
T r�1=2 disk centered on the origin. The exponential map eC is used implicitly in
what follows to identify D with its image via eC in R �M . When � 2 B , write
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 .�/ D .˛.�/; ˇ.�//. What with the C–linear identification between N jq and Ejq
from [11, Section 5.a], the component ˛.�/ on D can be viewed as a section over D

of ��N , thus a map from D to C .

Introduce from [11, Part 1 of Section 1.b] the vortex moduli space C1 . This space
has a unique symmetric vortex. This vortex has a unique lift as a pair .AC ; ˛C / of
connection on, and section of the product bundle C �C! C such that ˛C at any
given point z 2C has the form j˛C jz=jzj. What with [11, (5-19) and (5-2)], the map
˛.�/ on D can be written in terms of the complex coordinate z on D as

(4-16) ˛.�/.z/D ˛
C .r1=2zC�jq/C �.�/.z/;

where �.�/ is the E �E˚EK�1 component of b.�/.

Part 5 The assertion that ‰B is 1–1 follows as a direct corollary to:

Lemma 4.3 There exists � � 1 with the following significance: If r � � and if the
radius of B is less than ��1 , then each � 2 B version of (4-16) has a unique zero, z�
in the subdisk in D of radius ��1r�1=2 . Moreover, the resulting map �! z� maps B

diffeomorphically onto its image.

Proof of Lemma 4.3 Take r � c0 and the radius of B less than c�1
0

where c0 here
is such that the constructions that lead to (4-16) can be made. Note that ˛C jD vanishes
transversely at the origin in D . In particular, its differential at 0 2D is a C–linear
isomorphism from C to itself, this multiplication by a positive, real number. Denote
the latter as �. Write ˛C as �zC u.z/ with juj � c0jzj

2 and jrAC uj � c0jzj. This
partial Taylor’s expansion of ˛C can be used to write a zero of ˛.�/ on D as the fixed
point of a map, P� from C to C that sends any given z 2D to

(4-17) P�.z/D�r�1=2�jq � r�1=2��1
�
�.�/.z/C u.r1=2zC�jq/

�
:

As argued next, the map P� has a unique fixed point in the disk of radius c0r�1=2

about the origin in D . To see why this is, first use the top bullet of Lemma 4.1 to prove

(4-18) jP�.z/j � r�1=2
j�jqjC c0r�1=2

�
r�1=c0 C r jzj2Cj�jqj

2
�
:

This bound has the following consequence: There exits c0 such that if j�j � c�1
0

, then
P� maps the disk of radius c�1

0
r�1=2 in C to itself. The map P� is a contraction on

such a disk. if jrA.�/�.�/j � c�1
0

r1=2 when r � c0 and j�j � c�1
0

. That such a bound
exists is a direct consequence of [13, Lemmas 3.6 and 4.3]. Indeed, the latter have the
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following corollary:

(4-19)
There exists c0 � 1, and given � > 0, there exists an r –independent
constant c� which are such that jrA.�/�.�/j � �r

1=2 when r � c� and
j�j � c�1

0
.

Granted that P� is a contraction on the radius c0r�1=2 disk centered at the origin, the
contraction mapping theorem asserts that it has a unique fixed point on this disk. Let
z� denote this fixed point. This fixed point has norm jz�j � c0r�1=2j�j.

Now suppose that � and �0 are two elements in V0 with norms less than c�1
0

with c0

such that the z� and z�0 can be defined as above. It then follows from the � and �0

versions of (4-17) that

(4-20) r1=2.z�� z�0/D .���
0/jqC r;

where jrj is bounded by c0 times the sum of the following terms:

(4-21)

� j�.�/.z�0/� �.�0/.z�0/j.

� jrA.�/��jjz�� z�0 j.

� .r1=2jz�jC r1=2jz�0 jC j�jqjC j�
0jqj/.jz�� z�0 jC j.���

0/jqj/.

It is a consequence of what is said in the second bullet of Lemma 4.1 that the first
item in (4-21) is bounded by c0r�1=c0 j.���0/jqj. What is said in (4-19) implies that
the following: Given � > 0, there exists c� � 1 such that if r � c� , then the second
item in (4-21) is bounded by �r1=2jz�� z�0 j. As for the third item in (4-21), use the
equality between z� and the right hand side of (4-17) to prove the following: Given
� > 0, there exists an r –independent constant c� � 1 with the following significance:
The third item in (4-21) is bounded by �.r1=2jz�� z�0 jC j.���

0/jqj/ if j�j and j�0j
are both less than c�1

� .

These last points guarantee that the map �! z� separates points in B if r � c0 and if
B ’s diameter is less than c�1

0
.

These last points also guarantee that the map z.�/ is Lipschitz on B . An argument to
show that z.�/ is smooth uses the implicit function theorem as applied to the map from
D �B to C that sends any given pair .z; �/! z�P�.z/.

Part 6 This part establishes the claims that are made by the second and third bullets
in Proposition 4.2. Consider first the existence of �q . To this end, again identify N jp
with C . Let TW C DNp! V0 denote the inverse of the restriction isomorphism. Let
D0 � C denote a disk of radius c�1

0
with c0 such that T.D0/ � B . Write the map

z!˛C .z/ as �zCu.z/, this as in the proof of Lemma 4.3. Let � 2D0 . Then �D T.�/
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is such that ˛.T.�//.0/ D 0 if and only if � is a fixed point of the map Z W D0! C
given by

(4-22) Z.�/D���1
�
�T.�/jqC u.�/

�
:

As is argued next, this map has a unique fixed point in D0 . This fixed point is �p . To
start the argument, use the first bullet in Lemma 4.1 to see that jZ.�/j�c0.r

�1=c0Cj�j2/.
This implies that Z maps the disk of radius c�1

0
to itself if r � c0 . To see if Z is a

contraction, use the second bullet of Lemma 4.1 to see that

(4-23) jZ.�/�Z.�0/j � c0.r
�1=c0 Cj�jC j�0j/j� � �0j:

Thus, Z is a contraction mapping of the disk of radius c�1
0

to itself if r � c�1
0

.

Granted the preceding, the contraction mapping theorem asserts that Z has a unique
fixed point in the radius c�1

0
disk if r � c0 . Let �p denote this fixed point. It follows

from (4-22) using the first bullet in Lemma 4.1 that this fixed point has norm no greater
than r�1=c0 . Set �p D T.�p/. By construction, ˛.�p/ vanishes at q .

To finish the arguments for the second bullet, fix c0 so any � 2 B with j�j � c�1
0

lies
in T.D0/. Define B1 � B to be the subdisk about the origin with this radius. The
fact that �p is unique insures that �p is the only element in B0 with the property that
˛.�/jq D 0.

To obtain the assertions of the third bullet of Proposition 4.2, write

(4-24) ˛.T.�//jq D��C u.�/C �.T.�//jq:

This identifies the map �! ˛.�/jq on B1 as a map from B1 to C , thus a section of
the trivial line bundle. To see that this map vanishes transversely at �p , use the second
item of Lemma 4.3 to deduce that the differential of what is depicted on the right hand
side of (4-24) differs from � by at most c0.j�jCr�1=c0/. In particular, this differential
is nowhere zero on D0 if the latter’s radius is less than c�1

0
and if r � c0 .

4.d The question of signs

The definition of the U –map for embedded contact homology uses a weight, either C1

or �1, that is associated to each element in M2.‚�; ‚C/
p . Meanwhile, the definition

of the U –map for the Seiberg–Witten Floer cohomology uses a C1 or �1 weight
that is associated to each element of M2.c�; cC/

p . What follows in this subsection
is a proof that the ˙1 embedded contact homology weight of any given element
# �M2.‚�; ‚C/

p is identical to the Seiberg–Witten Floer cohomology weight of
‰r;p.#/ 2M2.c�; cC/

p . This proof has four steps. The discussion introduces notation
and conventions from [12, Section 3.b].
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Step 1 Associated to any generator .‚; o/ of Cech is a free Z=2Z module ƒ.‚; o/.
The set of these modules has the following salient feature: Let ‚� and ‚C de-
note any pair of elements in Zech and let ƒ.‚�; ‚C/ denote the orientation sheaf
of M1.‚�; ‚C/ and for the union of the components of M2.‚�; ‚C/ that con-
tain points in M2.‚�; ‚C/

p . The sheaf ƒ.‚�; ‚C/ is canonically isomorphic to
ƒ.‚�; o�/˝ƒ.‚C; oC/

� . As a consequence, a set of the form fo.‚;o/ 2ƒ.‚; o/ W
.‚; o/ is a generator of Cechg defines an orientation for

(4-25)

�S
‚�;‚C2Zech

M1.‚�; ‚C/
�

[
�S

‚�;‚C2Zech

�S
†2M2.‚�;‚C/p

TM2.‚�; ‚C/j†
�
:

An orientation of the set in (4-25) of this sort is deemed a coherent system of orientations.
By way of a reminder, this term signifies that the orientations behave consistently when
curves are concatenated end to end. The precise definition of this term is given in [5,
Section 9.5].

A coherent system of orientations must be used to define both the differential in
embedded contact homology and the U –map for embedded contact homology. The con-
structions in [12, Section 3.b] describe a particular coherent system of orientations. (The
discussion in [12, Section 3.b] proves coherence only for

S
‚�;‚C2Zech

M1.‚�; ‚C/,
but the arguments apply with only notational changes to the whole of (4-25).)

Step 2 Associated to any irreducible generator c 2Mr is a free Z=2Z module ƒ.c/.
The set fƒ.c/gc2Mr has the following property: Let c� and cC denote any pair of
elements in Mr ; and let ƒ.c�; cC/ denote the orientation sheaf for the smooth portion
of M1.c�; cC/ and for the union of those components of M2.c�; cC/ that contain
one or more points of M2.c�; cC/

p . Then ƒ.c�; cC/ is canonically isomorphic to
ƒ.c�/˝ƒ.cC/

� . This understood, a set foc 2ƒ.c/gc2Mr defines an orientation for

(4-26)
�S

c�;cC2Mr M1.c�; cC/
�
[
�S

c�;cC2Mr

�S
d2M2.c�;cC/p

T M2.c�; cC/jd
�
:

An orientation for this set of the sort just described is deemed a coherent system
of orientations. A coherent system of orientations must be used to define both the
differential for the Seiberg–Witten Floer cohomology and the U –map. A precise
definition of this term is given in [7].

Step 3 Fix L� 1 and take r very large. [12, Section 3.b] explains how to obtain a
coherent system of orientations forS

c�;cC2ˆr .ZL
ech/

M1.c�; cC/
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from the coherent system of orientations forS
‚�;‚C2ZL

ech
M1.‚�; ‚C/

that defines oech . These orientations are intertwined by the map ‰r from [10, Theorem
4.2]. Moreover, the isomorphism between embedded contact homology and Seiberg–
Witten Floer cohomology that is described in [10, Section 4], and in Section 2 here,
assumes that these are the orientations that are used to define the respective differentials
for embedded contact homology and Seiberg–Witten Floer cohomology.

The arguments used in [12, Section 3.b] can be repeated verbatim (save for some minor
notation) to extend the preceding correspondence of orientations so as to obtain a
coherent system of orientations for

(4-27)

�S
‚�;‚C2ZL

ech
M1.ˆ

r .‚�/; ˆ
r .‚C//

�
[
�S

‚�;‚C2ZL
ech

�S
†2M2.‚�;‚C/p

T M2.ˆ
r .‚�/; ˆ

r .‚C//j‰r;p.†/

��
from the set fo.‚;o/g.‚;o/ is a generator of Cech . As noted above, this set defines a coherent
system of orientations for

(4-28)

�S
‚�;‚C2ZL

ech
M1.‚�; ‚C/

�
[
�S

‚�;‚C2Zech

�S
†2M2.‚�;‚C/p

TM2.‚�; ‚C/j†
��
:

But for the slight notational changes, the arguments from [12, Section 3.b] establish
the following with regards to the induced orientations on the T M2 part of (4-27): Let
‚� and ‚C denote any two elements in Zech and let † denote any given element
in M2.‚�; ‚C/

p . Take r � c0 so as to define the map ‰B as in Proposition 4.2
and the element �p in Proposition 4.2’s ball B . Let C 2 C denote the element that is
not R invariant, and use the canonical identification between TM2.‚�; ‚C/j† and
kernel.DC / to identify the former vector space with Proposition 4.2’s vector space V0 .
Then the differential of ‰B at �p is orientation preserving.

Step 4 Fix L > 1 and let .‚�; o�/ and .‚C; oC/ denote a pair of generators of
CL

ech . Fix # 2M2.‚�; ‚C/ and let x ech 2 f˙1g denote # ’s contribution to the
weight �p.‚�; ‚C/ that appears in (1-3). This sign can be computed as follows:
Translate # along the R–factor of R �M to obtain the centered element †. Let
C 2 C denote the one element that is not R–invariant, and identify TM2.‚�; ‚C/j†
with kernel.DC / as done above. Let eC� denote the restriction homomorphism from
kernel.DC / to N jq . The sign x ech is equal to 1 if the restriction homomorphism eC�

is orientation preserving, and �1 if it reverses orientation.

Fix r very large and let c� and cC denote respective solutions to (2-1) that generate
ˆr .‚�/ and ˆr .‚C/. Let x SW 2 f˙1g denote the contribution that ‰r;p.#/ would
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make to the weight �p.c�; cC/ that appears in (1-8). This sign can be computed as
follows: Introduce d2M2.c�; cC/ to denote the corresponding translate of the instanton
‰r;p.#/. Thus, dD‰B.�p/. A neighborhood of d in M2.c�; cC/ is parameterized
via the map ‰B by the ball B � V0 . As noted in the previous step, this map is
orientation preserving. Write ‰B.�/ as .˛.�/; ˇ.�//. As argued in the previous steps,
the assignment �! ˛.�/jq defines a section of a smooth, complex line bundle near
�p 2B which vanishes transversally at �p . Thus, the differential of this section at �p is
an isomorphism from V0 to the bundle Ejq . The sign x SW is C1 if this isomorphism
is orientation preserving and it is �1 otherwise.

To see that x ech D x SW , reintroduce the notation from Parts 4 and 5 of the previous
subsection. Note in particular that (4-16) implicitly uses the complex linear identifica-
tion between N jq with Ejq that comes from the definitions in [11, Section 5.a]. With
a C–linear trivialization understood, the assignment �! ˛.�/jq can be viewed as a
map from B to N jq . This map sends any given � 2 B to

(4-29) �eC�.�/C u.eC�.�//C ��jq;

where �, u and � are as in (4-17) and (4-22). Given that � 2C�f0g, the conclusion
that x ech D x SW follows from (4-23) when r is large. Indeed, (4-23) implies that the
differential of (4-29) at �p is orientation preserving if and only if eC� is orientation
preserving if r � c0 .

4.e The surjectivity of ‰r;p

Fix L> 1 and a pair ‚� and ‚C of elements in ZL
ech . Let c� and cC denote solutions

to (2-1) that define the respective equivalence classes ˆr .‚�/ and ˆr .‚C/. The pur-
pose of this subsection is to prove that ‰r;p maps M2.‚�; ‚C/

p onto M2.c�; cC/
p

if r is sufficiently large. The proof is practically identical save for notation to that
given in Theorem 1.2 of [13]. What follows summarizes these arguments.

As with the proof of [13, Theorem 1.2], the argument begins by assuming to the contrary
that there exists a sequence f.rn; .An;  n//gnD1;2;::: such that

(4-30)

� The sequence frngnD1;2;::: � Œ1;1/ is increasing and unbounded.

� Any given dn D .An;  n/ is a solution to the r D rn version of (2-2) in
M2.c�; cC/

p .

� dn is not in the image of ‰r;p .

The derivation of nonsense from this assumption will prove that the large r versions of
‰r;p are surjective.
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The arguments for [13, Lemmas 6.1 and 6.2] can be repeated modulo some small
notational changes to prove the following:

Lemma 4.4 There is an element # � M2.‚�; ‚C/
p and a subsequence of

f.An;  n/gnD1;2;::: (hence renumbered consecutively from 1) with the following prop-
erty: For each n, write  n as a pair .˛n; ˇn/. The sequence whose n–th element is

r
1=2
n

�
supz2

S
.C;m/2# C dist.z; ˛�1

n .0//C supz2˛�1
n .0/ dist

�S
.C;;m/2# C; z

��
converges with limit zero. In addition, if I � R is an interval of length 1 and � is a
2–form on R�M with k�k1 D 1 and support on I �M , then the sequence whose
n–th element is .i=.2�//

R
R�M � ^F yA�

P
.C;m/2# m

R
C � also converges with limit

zero.

Now translate # by a constant amount, s� , along the R–factor of S1 �M so that the
result, †, is centered. Translate each large n version of .An;  n/ by the same amount.
So as to avoid excessive notation, use .An;  n/ henceforth to denote the result of this
translation.

The arguments given in [13, Sections 6.b–6.e] can be repeated verbatim now to conclude
that all sufficiently large n versions of .An;  n/ are gauge equivalent on R�M to an
instanton that is obtained from the r D rn version of Proposition 4.2’s map ‰B . In fact,
given ı� > 0, these arguments find that any sufficiently large n version of .An;  n/

is gauge equivalent to the image, via the r D rn version of ‰B , of a point �.n/ with
j�.n/j< ı� . This understood, it follows then from Proposition 4.2 that any sufficiently
large n version of .An;  n/ is gauge equivalent to the translate of ‰r;p.#/.

This last conclusion directly contradicts what is assumed in (4-30) thus proving that all
large r versions of ‰r;p are surjective.

4.f Proof of Theorem 2.6

The claim made by item (i) of the first bullet follows directly from Lemma 4.1. This is
by virtue of the following facts: First, the point x 2M is disjoint from all of the Reeb
orbits. Second, there are but a finite number of components of M1.‚�; ‚C/. Finally,
if † 2M1.‚�; ‚C/ and .C;m/ 2†, then C avoids the point .0;x/ 2R�M . The
assertion made by (ii) of the first bullet, that M2.c�; cC/

p is finite, follows from the
fact that ‰r;p is surjective. The assertion made by (iii) of the first bullet follows from
the first bullet of Proposition 4.2. The assertion made by (iv) of the first bullet follows
the second and third bullets of Proposition 4.2.

The assertion made by the second bullet follows from Proposition 4.2 with what is said
in Section 4.d and Section 4.e.

Geometry & Topology, Volume 14 (2010)



3000 Clifford Henry Taubes

References
[1] M Hutchings, An index inequality for embedded pseudoholomorphic curves in sym-

plectizations, J. Eur. Math. Soc. .JEMS/ 4 (2002) 313–361 MR1941088

[2] M Hutchings, The embedded contact homology index revisited, from: “New perspec-
tives and challenges in symplectic field theory”, (M Abreu, F Lalonde, L Polterovich,
editors), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263–297 MR2555941

[3] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact
homology of T 3 , Geom. Topol. 10 (2006) 169–266 MR2207793

[4] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered
cylinders. I, J. Symplectic Geom. 5 (2007) 43–137 MR2371184

[5] M Hutchings, C H Taubes, The Weinstein conjecture for stable Hamiltonian structures,
Geom. Topol. 13 (2009) 901–941 MR2470966

[6] P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130
(1997) 209–255 MR1474156

[7] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monographs
10, Cambridge Univ. Press (2007) MR2388043

[8] C B Morrey, Jr, Multiple integrals in the calculus of variations, Grund. der math.
Wissenschaften 130, Springer, New York (1966) MR0202511

[9] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture. II. More
closed integral curves of the Reeb vector field, Geom. Topol. 13 (2009) 1337–1417
MR2496048

[10] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I,
Geom. Topol. 14 (2010) 2497–2581

[11] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology II,
Geom. Topol. 14 (2010) 2583–2720

[12] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology III,
Geom. Topol. 14 (2010) 2721–2817

[13] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology IV ,
Geom. Topol. 14 (2010) 2819–2960

Department of Mathematics, Harvard University
Cambridge, MA O2138, USA

chtaubes@math.harvard.edu

Proposed: Rob Kirby Received: 15 November 2008
Seconded: Tom Mrowka, Gang Tian Revised: 11 October 2010

Geometry & Topology, Volume 14 (2010)


