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Biharmonic functions on groups and
limit theorems for quasimorphisms along random walks

MICHAEL BJÖRKLUND

TOBIAS HARTNICK

We show for very general classes of measures on locally compact second countable
groups that every Borel measurable quasimorphism is at bounded distance from a
quasi-biharmonic one. This allows us to deduce nondegenerate central limit theorems
and laws of the iterated logarithm for such quasimorphisms along regular random
walks on topological groups using classical martingale limit theorems of Billingsley
and Stout. For quasi-biharmonic quasimorphisms on countable groups we also obtain
integral representations using martingale convergence.

20P05, 60F05

1 Introduction

1.1 Preliminaries

Throughout this article we denote by G a topological group and by � a regular
probability measure on G . We then refer to the pair .G; �/ as a measured group. A
real-valued function � on G is called a quasimorphism if the differential

@�.g; h/ WD �.gh/��.g/��.h/;

is bounded on G �G . In this case we denote by D.�/ WD supg;h j@�.g; h/j the defect
of � .

In this article we will be interested in the behavior of quasimorphisms on measured
groups along certain random walks. More precisely, let .�;B;P / be a probability mea-
sure space, and .!/n a sequence of �–distributed independent G –valued measurable
maps on �. We then define for all n� 1 a measurable map zn by zn WD !0 � � �!n�1

and refer to the sequence .zn/ as a random walk on G with �–distributed increments.
We will then be concerned with the asymptotic distributional and almost sure behavior
of the sequence .�.zn// for a �–integrable quasimorphism � on G .

In order to state our main result, we introduce the following terminology and notation:
We denote by ��n the n–th convolution of �, and by G� the closed semigroup
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124 Michael Björklund and Tobias Hartnick

generated by the support of �. We say that � is symmetric if ���D �, where � is the
involution of G given by �.g/D g�1 . Moreover, if G is locally compact then � is
called spread out if some convolution power ��n is nonsingular with respect to the
Haar measure on G .

Given a �–integrable quasimorphism � we define its �–distortion `�.�/ by the
formula

`�.�/D lim
n

1

n

Z
G

� d��n:

We say that � is �–tame if there is a constant C such that

j�.g/� n`�.�/j � C;

for ��n –almost every g and all n. In particular, if � is symmetric, then `�.�/D 0

so that in this case � is �–tame if and only if it is ��n –essentially bounded on G�
for all n.

1.2 Statement of the main results

Let .G; �/ be a measured group, and suppose that .zn/ is a random walk on G with �–
distributed increments. A �–measurable quasimorphism � on G satisfies the central
limit theorem with respect to � if there exists a nonnegative constant � , such that the
sequence ��.zn/� n`�.�/

p
n

�
converges in the sense of distributions to a centered Gaussian probability distribution
with variance �2 . We say that the central limit theorem is nondegenerate if � > 0.
Moreover, if the limit superior

lim
n!1

�.zn/� n`�.�/p
n log log n

D � > 0;

holds almost everywhere, we say that � satisfies the law of the iterated logarithm with
respect to �. We can now state the first version of our main theorem:

Theorem 1.1 Let G be a locally compact second countable topological group, � a
spread-out probability measure on G and � a Borel measurable quasimorphism on G ,
which is square-integrable with respect to �. Then � satisfies the central limit theorem
with respect to �. The central limit theorem is nondegenerate if and only if � is not
�–tame. In this case, � also satisfies the law of the iterated logarithm with respect to �.

We remark that the assumptions on � and � are very weak. For example, if �
has exponential moments, then every measurable quasimorphism will be �–square-
integrable so that the theorem applies.

Geometry & Topology, Volume 15 (2011)



Limit theorems for quasimorphisms 125

It is possible to extend Theorem 1.1 even further to arbitrary measured groups if one is
willing to make additional assumptions concerning the model of set theory that one
uses. For example, assuming the continuum hypothesis (CH), we can prove:

Theorem 1.2 (CH)1 Let .G; �/ be a measured group and suppose that � is a Borel
measurable quasimorphism on G , which is square-integrable with respect to �. If � is
not �–tame, then it satisfies the nondegenerate central limit theorem and the law of the
iterated logarithm with respect to the measure �.

In fact, it would suffice to assume Martin’s axiom in descriptive set theory (see Nor-
mann [15]), which is weaker then (CH). However, we do not know how to prove
Theorem 1.2 within ZFC.

We emphasize that the measurability issues which make the difference between Theorem
1.1 and Theorem 1.2 do not arise in the important special case where G is countable.
In this case we obtain the following unconditional statement:

Corollary 1.3 Let G be a countable group, � a probability measure on G and � a
�–square-integrable quasimorphism on G . If � is not �–tame, then it satisfies the non-
degenerate central limit theorem and the law of the iterated logarithm with respect to �.

1.3 General strategy

Let us call two quasimorphisms � and z� equivalent if their difference is uniformly
bounded. The results we are interested in are invariant under replacing a quasimorphism
by an equivalent one; in particular, `�.�/ does not change upon changing � to an
equivalent representative. Thus for the proofs of Theorem 1.1 and Theorem 1.2 it
is convenient to work with a representative of the equivalence class of � , which is
adapted to the measure �. The following definition makes this idea precise:

Definition 1.4 Let .G; �/ be a measured group. Let .G; �/ be a measured group. A
real-valued function z� on G is quasi-right-harmonic with respect to � if it is Borel mea-
surable and integrable with respect to the measure � and there is a constant ` such thatZ

G

z�.gh/ d�.h/D z�.g/C `;

for all g . If `D 0, we say that z� is right-harmonic. There is also an obvious “left”
notion of quasi-harmonicity which we will adapt, and we say that z� is quasi-biharmonic
with respect to � if it is both quasi-left- and quasi-right-harmonic with respect to �.

1For the convenience of the reader not interested in this generalization we have marked all results in
this paper which depend on the continuum hypothesis by (CH).
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Under the assumptions of Theorem 1.1 (or Theorem 1.2 and (CH)) we are able to
establish the existence of a �–quasi-biharmonic quasimorphism z� equivalent to � . In
the situation of Theorem 1.1 it is even unique up to a constant, and assuming (CH) it
can be chosen universally measurable.

From the existence of z� one deduces immediately that for a random walk .zn/ on G

with �–distributed increments the sequence .�.zn/�n`�.�// can be uniformly approx-
imated by a cocycle martingale. Our square-integrability assumption on � implies that
this cocycle martingale can be chosen square-integrable as well. Then our results follow
from the fundamental works of Billingsley [2] and Stout [17] on square-integrable
cocycle martingales.

1.4 Integral representations

Assume now that the measured group .G; �/ in question is countable (and the topology
on G is the discrete one). Then, by the results established in the proof of the two
main theorems, every quasimorphism � on G is at bounded distance to a unique
�–quasi-biharmonic quasimorphism z� subject to the normalization z�.e/ D 0, and
this can be shown without invoking (CH). If we assume that � is cohomologically
nontrivial, ie not at bounded distance from a homomorphisms, then we can establish
an integral representation theorem for z� :

Theorem 1.5 Let .G; �/ be a countable measured group, � a cohomologically non-
trivial quasimorphism on G and z� as above. Then there exists a nonatomic G –quasi-
invariant Lebesgue space .X; �/ and an additive cocycle ˛W G �X !R such that

z�.g/D

Z
X

˛.g; �/ d�.�/ .g 2G/:

A more precise version of this theorem will be proved in Proposition 4.2 below.

1.5 Connection to existing work

The ideas developed in the present paper allow for a short proof of an (unpublished)
conjecture of Calegari on central limit theorems for quasimorphisms along random
walks on countable groups. Partial results in this direction, complemented with a wide
range of applications, can be found in a recent preprint [6] by Calegari and Maher,
which is heavily inspired by an earlier paper [5] by Calegari and Fujiwara. We also
mention the works of Horsham [8] and Horsham and Sharp [9] where more precise
limit theorems are established for quasimorphisms along (not necessarily independent)
random walks on free groups and certain surface groups.
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Limit theorems for quasimorphisms 127

The results on integral representations of quasimorphisms are inspired from the work
of Picaud in [16]. In trying to extend his results to more general groups, we came
up with the idea to study quasimorphisms along random trajectories. These attempts
ultimately triggered most of the results in this paper.

1.6 Outline of the paper

The paper is organized as follows. We start in Section 2 by providing the existence
of a suitable quasi-biharmonic quasimorphisms equivalent to a given one under the
assumptions of either Theorem 1.1 or Theorem 1.2. In the former case, the existence is
established using a standard Banach limit argument going back to Burger and Monod [3].
In the latter case we make use of measure-linear means. A beautiful construction of such
means assuming (CH) was provided by Mokobodzki; since there are few accessible
accounts of Mokobodzki’s construction, we explain the necessary details in an appendix,
expanding the classical presentation in Meyer [14]. In Section 3 we provide the proofs
of Theorem 1.1 and Theorem 1.2 by reduction to the case of cocycle martingales, for
which a quite satisfactory central limit theory is known. Finally, Section 4 is devoted
to establish the integral representation result stated in Theorem 1.5 and some variants
thereof.

Acknowledgements We thank ETH Zürich, Hebrew University and Technion for
hospitality during the preparations of this article, and Uri Bader, Marc Burger, Danny
Calegari, Albert Fisher, Matt Foreman, Nicolas Monod, Amos Nevo, Jean-Claude
Picaud, Jean-Paul Thouvenot and Benji Weiss for many stimulating discussions on the
subject of this article. TH was partially supported by SNF grants PP002-102765 and
200021-127016.

2 Quasi-biharmonic representations of quasimorphisms

We now aim to construct quasi-biharmonic quasimorphisms equivalent to a given
quasimorphism. Our first observation concerns the possible values of the additive
constant implicit in the term quasi-biharmonic:

Lemma 2.1 Let .G; �/ be a measured group, and suppose that � is quasi-right-
harmonic quasimorphism with respect to �. Then,Z

G

�.gh/ d�.h/D �.g/C `�.�/;

for all g 2G , where `� is the �–distortion of � .
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Proof We can without loss of generality assume that �.e/D 0. Hence, for all n, we
have Z

G

�.h/ d��n.h/D n`;

which immediately gives the result.

We can now prove the desired existence result in the situation of Theorem 1.2. For this
we use the existence of measure-linear means (due to Mokobodzki), as explained in
detail in the appendix of this paper. As far as the statement of the present proposition
is concerned we recall that given a measurable space .Y;B/ a subset A� Y is called
universally measurable if it is measurable with respect to every complete finite measure
on B . If .Z; C/ is another measurable space, we say that a map f W Y ! Z is
universally measurable if the preimage of every universally measurable set in Z is
universally measurable in Y . For a more detailed discussion of these terms we refer
the reader to the appendix.

Proposition 2.2 (CH) Let .G; �/ be a measured group, and � a Borel measurable
quasimorphism, integrable with respect to �. Then there is a universally measurable
quasimorphism z� , which is equivalent to � , and quasi-biharmonic with respect to �, ieZ

G

z�.gk/ d�.k/D

Z
G

z�.kg/ d�.k/D z�.g/C `�.�/;

where `�.�/ is the �–invariant of � .

Proof Throughout the proof we fix a Mokobodzki mean m, ie an invariant mean on N
with the additional properties stated in Proposition A.1 of the appendix. Recall that the
homogeneous representative of � is given by

y�.g/D lim
n!1

�.gn/

n
:

Since � is assumed to be Borel measurable, and multiplication is a continuous operation,
we see that the functions g 7! �.gn/ are Borel measurable for all n. Since y� is the
pointwise limit of a sequence of Borel measurable functions, it is itself Borel measurable.
By assumption, the measure � is a regular Borel probability measure on G , and thus
the functions

z�n.g1;g2/D

Z
G

@y�.g1;g2h/ d��n.h/;

are all Borel measurable, and uniformly bounded in absolute value by the defect D.y�/.
Moreover, every section g 7! z�n.g; k/, for fixed k 2 G , is Borel measurable and
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uniformly bounded on G for all n. Thus, the conditions in Proposition A.1 are satisfied,
and the function

z�.g/ WD y�.g/C

Z
N

z�n.g; e/ dm.n/;

is well-defined and universally measurable on G . Moreover, it is equivalent to y� and
hence to � . We claim that z� is the quasi-biharmonic function we are looking for. To
verify this, we first observe that Proposition A.1 applied to the probability measures
ıg ��, for g 2G , yields the identityZ

G�G

� Z
N

z�n.g1;g2/ dm.n/
�

d.ıg��/.g1;g2/D

Z
N

� Z
G

z�n.g; h/ d�.h/
�

dm.n/:

Since, Z
G

z�n.g; h/ d�.h/D

Z
G

Z
G

�
y�.ghk/� y�.hk/� y�.g/

�
d��n.k/ d�.h/

D

Z
G

�
y�.gh/� y�.h/� y�.g/

�
d��.nC1/.h/

D z�nC1.g; e/;

for all n, we note that by the shift-invariance of m,Z
G

� Z
N

z�n.g; h/ dm.n/
�

d�.h/D

Z
N

z�n.g; e/ dm.n/:

Moreover, the identity

z�n.gk; e/D z�n.g; k/C z�n.k; e/� y�.k/� y�.gk/

holds for all g; k 2G and n, which readily implies thatZ
G

z�.gk/ d�.k/D z�.g/C

Z
G

z�.k/ d�.k/; 8g 2G:

By Lemma 2.1, we can now conclude thatZ
G

z�.k/ d�.k/D `�.�/:

Since y�.gh/D y�.hg/ for all h;g 2 G , the proof of the quasi-left-harmonicity of z�
boils down to establishing the identityZ

G

� Z
N
�n.k;g/ dm.n/

�
d�.k/D `�.�/�

Z
G

y�.k/ d�.k/;
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for all g 2G . To do this, we first notice that

lim
n!1

1

n

Z
G

y�.gh/ d��n.h/D `�.�/

for all g 2G . Hence, for fixed g 2G ,Z
G

�Z
N
�n.k;g/dm.n/

�
d�.k/D

Z
N

�
`.nC1/
� .g;y�/�`n

�.g;y�/�

Z
G

y�.k/d�.k/
�

dm.n/

D lim
n!1

1

n

Z
G

y�.gh/d��n.h/�

Z
G

y�.k/d�.k/;

by the definition of m, where

`n
�.g; y�/ WD

Z
G

y�.gh/ d��n.h/; g 2G:

Indeed, the expression Z
N

�
`.nC1/
� .g; y�/� `n

�.g; y�/
�

dm.n/

is sandwiched between the limit inferior and limit superior of the sequence

1

n

nX
kD1

�
`.kC1/
� .g; y�/� `k

�.g; y�/
�
;

which is in fact convergent, with the limit

`�.�/D lim
n!1

1

n

Z
G

y�.gh/ d��n.h/; 8g 2G;

which proves the existence of z� .

In order to establish a corresponding result in the situation of Theorem 1.1 we follow
an argument going back to [3] in the case of a countable discrete group with symmetric
measure. (The fact that this argument applies in our setting was kindly pointed out to us
by Nicolas Monod.) We remind the reader that if � is a spread-out regular probability
measure on a locally-compact second countable topological group G and the equation
 ��D  admits an almost everywhere defined Haar measurable solution, which is
assumed to be bounded on compact subsets of the group, then an everywhere defined
continuous solution  0 can be found in the same Haar class as  (see eg Azencott [1]).
The same arguments carry over to the quasi-harmonic case.

Proposition 2.3 Suppose that � is a spread-out probability measure on G , and � is a
Borel measurable quasimorphism, which is �–integrable with respect to �. Then there
is a unique continuous quasimorphism z� , which is quasi-biharmonic with respect to �,
satisfies z�.e/D 0 and is equivalent to � .
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Limit theorems for quasimorphisms 131

Proof As far as existence of z� is concerned, large parts of the proof are analogous to
the proof of Proposition 2.2, thus we will only highlight those steps which are used
to circumvent the use of Mokobodzki means. In complete analogy with the proof of
Proposition 2.2, we define the sequence

 n.g/ WD

Z
G

@y�.g; h/ d��n.h/;

for n � 1. The functions . k/ are uniformly bounded in the L1.G/–norm, so by
Komlós’ theorem [12] there is a subsequence .nk/ such that the limit

z�.g/D y�.g/C lim
N!1

1

N

nX
kD1

1

nk

nk�1X
jD0

 j .g/

exists on a m–conull subset Y �G , so z�� y� is a well-defined element in L1.G;m/.
Moreover, by the same arguments as in the proof of Proposition 2.2, we see that z�
satisfies the convolution equations

z� ��D �� z� D z�C `�.�/

m–almost everywhere. Thus, by the remark preceding the proof, as z� is clearly
bounded on compact subsets of G , it admits a continuous representative (with respect
to m) which is also a quasimorphism.

For the uniqueness part, we owe the following beautiful argument to Uri Bader: Suppose
that z� , z�

0
are two representatives and consider f WD z��z�

0
. Then f is �–biharmonic

and uniformly bounded, ie f 2 L1.G/��� . However, if we denote by .@�G; �/

the Poisson boundary of the measured group .G; �/ (see eg Kaı̆manovich and Ver-
shik [11]) and by H1���.G �G/ the space of harmonic functions on the measured
group .G �G; ���/ then we have

L1.G/��� D .L1.G �G/G/��� D .L1.G �G/���/G

DH1���.G �G/G DL1.@�G � @�G/G

DR;

where in the last step we used double ergodicity of the G–action on the Poisson
boundary (see eg Kaı̆manovich [10]). We deduce that f is constant; then f .0/D 0

yields z� D z�
0
.
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3 Cocycle martingales and the proofs of the main theorems

Throughout this section we use the following notation: Let .G; �/ be a measured
group, and .!n/ a bi-infinite sequence of independent and �–distributed G–valued
measurable maps, defined on a common probability measure space .�;B;P�/, which
we assume is equipped with an ergodic Z–action � with the property that !nD!0ı�

n

for all n. We stress that any sequence of independent and �–distributed random
variables admits such a representation. For n� 1, we define the corresponding random
walk by zn D !0 � � �!n�1 , and for m� n we denote by Bn

m the � –algebra generated
by the maps f!m; : : : ; !n�1g.

Definition 3.1 A sequence of real-valued measurable maps .�n/ on � such that �n

is Bn
m –measurable for a fixed m and all n�m, and

EŒ�nC1 jBn
m�D �n; 8 n�m

is called a martingale with respect to .Bn
m/. We say that the sequence .�n/ is centered

if
R
� �m dP�D 0. We say that a sequence .�n/ of real-valued measurable maps on �

is a cocycle for � if

�nCm D �nC �
m�n; 8m; n� 0;

and if .�n/ in addition is a martingale with respect to some filtration .Bn
m/ of B , we

say that .�n/ is a cocycle martingale. If �0 is not constant almost everywhere, the
cocycle martingale is nondegenerate.

The asymptotic almost sure and distributional behaviors of cocycle martingales have
been extensively studied in the literature. In order to be able to apply these results in
our context, we establish the following approximation result:

Proposition 3.2 (CH) Let .G; �/ be a measured group, and suppose that .zn/

is a random walk on G with �–distributed increments. For any Borel measurable
square-integrable quasimorphism � , there is a square-integrable and centered cocycle
martingale .�n/ with respect to the � –algebra filtration .Bn

�1/ such that

sup
n
k�.zn/� n`�.�/� �nk1 � 3D.�/:

Moreover, the cocycle martingale .�n/ is nondegenerate if and only if � is not �–tame.

Alternatively, we have the following version of the proposition which holds within ZFC:
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Proposition 3.3 Let G be a locally compact second countable topological group and
� a spread-out regular probability measure on G . Suppose that .zn/ is a random walk
on G with �–distributed increments. For any Borel measurable square-integrable
quasimorphism � , there is a square-integrable and centered cocycle martingale .�n/

with respect to the � –algebra filtration .Bn
�1/ such that

sup
n
k�.zn/� n`�.�/� �nk1 � 3D.�/:

Moreover, the cocycle martingale .�n/ is nondegenerate if and only if � is not �–tame.

Proof of Proposition 3.2 and Proposition 3.3 Appealing either to Proposition 2.2 or
to Proposition 2.3 we find a quasi-biharmonic quasimorphism z� equivalent to � . Now
for every g 2 G the function  g.h/ D z�.hg/� z�.h/ is bounded and left-harmonic
with respect to �. For any ! D .!n/ 2�, we define the sequence

qk D !�kC1 � � �!�1; k � 0:

By the left-harmonicity of  g , the sequence �n
k
WD  zn

.qk/ is a bounded martin-
gale with respect to the � –algebra filtration .Bn

�k
/, for every fixed n. Thus, by the

martingale convergence theorem, the limit

�n D lim
k!1

�
z�.qk zn/� z�.qk/

�
exists on a conull subset �0 ��, which we can take to be independent of n. We claim
that the sequence .�n/ is a cocycle with respect to the shift-action on �, ie

�mCn.!/D �m.!/C �n.�
m!/;

for all m; n� 0, where � denotes the shift action on �. To check this, we notice that

�n.�
m!/D lim

k!1

�
z�.!�.k�m/ � � �!�1!o � � �!m�1!m � � �!nCm�1/

� z�.!�.k�m/ � � �!�1!o � � �!m�1/
�

D lim
k!1

�
z�.!�k � � �!�1!o � � �!m�1!m � � �!nCm�1/

� z�.!�k � � �!�1!o � � �!m�1/
�

D �nCm.!/� �m.!/;

for all m; n� 0, and hence �n D
Pn�1

kD0 �
k�1 for all n. In particular,

dn D �nC1� �n D �
n�1;

so EŒ dn jBn
�1 �.!/D

Z
G

z�.!�k � � �!n�1g/ d�.g/� z�.!�k � � �!n�1/D `�.�/;
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almost everywhere, by the quasi-right-harmonicity of z� . We conclude that �n D

�n� n`�.�/ is a centered cocycle martingale, which is clearly square-integrable with
respect to the induced Bernoulli measure P� on �.

To prove the claim about the nondegeneracy of .�n/, we note that �1 is almost
everywhere zero on � if and only if

EŒ �1 jB0
�m �.!/D z�.qm!0/� z�.qm/D `�.�/;

almost everywhere on � and for all m. Since � is on a uniformly bounded distance
from z� , this condition implies that

j�.g/� n`�.�/j � 3D.�/;

for ��m –almost every g and all m, which means that � is �–tame. Conversely, if �
is �–tame, then clearly � is zero almost everywhere, which proves the claim.

Using either Proposition 3.3 or Proposition 3.2 we can now reduce the proofs of
Theorem 1.1 and Theorem 1.2 to two fundamental results in the theory of cocycle
martingales.

Proof of Theorem 1.1 and Theorem 1.2 If � is �–tame, then the distribution of
.�.zn/ � n`�.�// is contained in a fixed bounded subset of R for all n, and thus
the central limit theorem holds with � D 0. Now assume that � is not �–tame.
Then, by Proposition 3.3 or Proposition 3.2, there is a centered nondegenerate cocycle
martingale .�0

n/ on a uniformly bounded distance away from �.zn/� n`�.�/.

A theorem of Billingsley [2] asserts that a centered cocycle martingale .�n/ on
.�;B;P�/ with � D k�0k2 <1 satisfies a central limit theorem, ie the sequence
.�n=
p

n/ converges in the sense of distributions to a centered Gaussian distribution with
variance � , and if .�n/ is nondegenerate then � > 0. Assuming the same conditions,
Stout [17] later proved that the iterated law of the logarithm holds too, ie there is a
conull subset �0 �� such that

lim
n

�n.!/p
n log log n

D �;

for all ! 2�0 . Applying these two results to the cocycle martingale .�0
n/ above, we

obtain the desired conclusion for � .
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4 Quasimorphisms on countable groups and integral repre-
sentations

In this section we focus on the special case of quasimorphisms on discrete measured
groups; in order to avoid the use of the continuum hypothesis we assume that the group
in question is countable. Thus let G be a countable group, � a regular probability
measure (which is automatically spread-out) and � a �–integrable quasimorphism
on G . For technical reasons we will always assume that the support � generates G

as a semigroup. By Proposition 2.3 there then exists a unique �–quasi-biharmonic
quasimorphism z� equivalent to � with z�.e/D 0. We want to write z� as an integral
over some special cocycle on a nonatomic Lebesgue space. The precise type of cocycle
we have in mind is described in the following definition:

Definition 4.1 Let .X; �/ be a G–space, ie a probability measure space equipped
with a measurable action of G . We say that .X; �/ is quasi-invariant if the action of G

preserves the measure class of � , ie if g�� is equivalent to � for all g . A �–measurable
map ˛W G �X !R is called a cocycle on .X; �/ if

˛.gh; �/D ˛.g; h�/C˛.h; �/;

for all g; h2G and �2X . Given a quasimorphism � on G and a cocycle ˛W G�X!R,
we call ˛ a cocycle representative of � if there is a constant such that

k�.g/�˛.g; � /kL1.X ;�/ � C;

for all g 2G .

Note that if ˛W G�X !R is a cocycle representative of some quasimorphism � , then
��.g/ WD ˛.g; �/ is a quasimorphism on G , equivalent to � , for �–almost all � 2X ,
hence the name.

Now that we have clarified our notion of cocycle let us turn to the measure spaces that
we are going to use: Furstenberg [7] constructed, for any countable measured group
.G; �/, a quasi-invariant G–space .@�G; �/, called the Poisson boundary of .G; �/,
where � satisfies the convolution equationZ

G

Z
@�G

 .g�/ d�.�/d�.g/D

Z
@�G

 .�/ d�.�/;

for all  2L1.@�G; �/, and the map

 7! z .g/D

Z
@�G

 .g�/ d�.�/
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is an isometry between L1.@�G; �/ and the space of bounded harmonic functions
on G . Since every quasimorphism on an amenable group is trivial in the sense that it
is at bounded distance from a homomorphism (see eg Calegari [4]) and we are mainly
interested in nontrivial quasimorphisms here, there is no loss of generality in assuming
G to be nonamenable. In this case .@�G; �/ is indeed a nonatomic Lebesgue space
(see eg Furstenberg [7]), and we will realize our quasimorphism on this space:

Proposition 4.2 Let .G; �/ be a countable measured group, and � a quasimorphism
on G , integrable with respect to �. Denote by z� the unique �–quasi-biharmonic
quasimorphism with z�.e/D0 equivalent to � and by .@�G; �/ be the Poisson boundary
of .G; �/. Then there exists a cocycle ˛W G � @�G!R with the following properties:

(i) ˛ is a cocycle representative for � (and hence also for z� ).

(ii) The quasimorphism z� admits the integral representation

z�.g/D

Z
@�G

˛.g; �/ d�.�/ .g 2G/:

(iii) For �–almost every � 2 @�G the map g 7! ˛.g; �/ is quasi-left-harmonic with
respect to �.

Proof The function z̨.g; h/D z�.gh/�z�.h/ is right-harmonic with respect to � in the
second variable, for fixed g , and uniformly bounded by z�.g/CD.z�/. Thus, for every
g 2 G , there is a conull set Yg � @�G , and a measurable function ˛.g; � /W Yg! R
such that

z�.gh/� z�.h/D

Z
G

˛.g; h�/ d�.�/; 8 h 2G:

In particular, by letting h D e , we conclude that z�.g/ D
R
@�G ˛.g; �/ d�.�/. Since

G is countable, we can without loss of generality assume that ˛ is defined on the set
Y 0D

T
g Yg . Since z� is quasi-biharmonic, it is clear that ˛. � ; �/ is quasi-left-harmonic

for all � 2 Y 0 , so it suffices to establish the cocycle property for ˛ on some conull
subset of @�G . To prove this, we argue as follows. For any triple g; h; k 2G , we have

z�.ghk/� z�.hk/D z�.ghk/� z�.hk/C z�.hk/� z�.k/;

and hence,Z
@�G

˛.gh; k�/ d�.�/D

Z
@�G

˛.g; hk�/ d�.�/C

Z
@�G

˛.h; k�/ d�.�/:

For a fixed pair g; h 2G , we define the following bounded and measurable functions
on the Poisson boundary @�G ,

˛0.�/ WD ˛.gh; �/ and ˛1.�/ WD ˛.g; h�/C˛.h; �/:
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By the earlier equality, we see thatZ
@�G

˛0.k�/ d�.�/D

Z
@�G

˛1.k�/ d�.�/ 8 k 2 @�G;

and both sides define left-harmonic bounded functions on G . Since the Poisson
boundary representation of left-harmonic functions is unique, we conclude that ˛0D˛1

are equal on a �–conull subset Y of @�G , which can be taken to be G –invariant and
independent of g; h 2 G and contained in Y 0 . The equality ˛0 D ˛1 on Y amounts
exactly to say that ˛ is a cocycle defined on Y . Since Y is G–invariant we can
extend ˛ to a cocycle on @�G by defining it to be zero on Y c .

Note that Theorem 1.5 is contained in Proposition 4.2.

Now that we have established an integral representation for the �–quasi-biharmonic
representative of a given equivalence class of a quasimorphism � , we would also
establish such an integral representation for the homogeneous representative y� of this
equivalence class. We recall that the latter is given by the formula

y�.g/ WD lim
n

�.gn/

n
; g 2G:

It turns out that we can construct an integral representation for y� from our integral
representation for z� . This construction has the following remarkable property: If ˛
denotes the cocycle used for the representation of z� , then there exists an integral kernel
for y� of the form � � ˛ , where � W G �X ! R is some measurable function which
does not depend on � . More explicitly:

Proposition 4.3 For any countable group G and quasi-invariant G–space .X; �/,
there is a measurable map � W G �X ! R with the property that for any quasimor-
phism � on the group G and any cocycle representative ˛ of � on .X; �/, we have
the identity

y�.g/D

Z
X

˛.g; �/ �.g; �/ d�.�/; 8g 2G;

where y� denotes the homogenization of � .

Proof Since � is quasi-invariant under the action by the countable group G , the
(multiplicative) Radon–Nikodyn cocycle, defined by

�.g; �/ WD
dg��

d�
.�/;

is well-defined on a �–conull subset X 0 �X for all g 2G . For a fixed g , we consider
the sequence .�.gn; � / of measurable functions on X . We note that k�.gk ; � /k1 � 1
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for all n and g , so we can apply Komlós’ theorem [12], and find a subsequence .nk/,
which may depend on g , such that the limit

�.g; �/ WD lim
N

1

N

N�1X
kD1

1

nk

nkX
jD1

�.gj ; �/

exists in L1.X; �/ and on a conull subset of X 0 . We claim that � is the sought after
kernel. To prove this, let ˛ be a cocycle representative of a quasimorphism � on
.X; �/, and note that

Z
X

˛.g; �/ �.g; �/ d�.�/D lim
N

1

N

N�1X
kD1

1

nk

nkX
jD1

Z
X

˛.g; �/ �.gj ; �/ d�.�/

D lim
N

1

N

N�1X
kD1

1

nk

nkX
jD1

Z
X

˛.g;gj�/ d�.�/

D lim
N

1

N

N�1X
kD1

1

nk

Z
X

˛.gnk ; �/ d�.�/

D lim
N

1

N

N�1X
kD1

�.gnk /

nk

;

where the last equality is justified by the fact that there is a constant C such that the
essential supremum of j˛.g; �/� �.g/j is bounded by C for all g 2 G . Since the
Cesàro average of a convergent sequence is convergent with the same limit, we can
identify the limit with y�.g/. Finally, since G is countable, the procedure above can
be repeated for every fixed choice of g , to the effect that � is defined on a common
�–conull subset of the measure space .X; �/.

It would be interesting to gain a better understanding of � from a cohomological point
of view.

Finally, we note that the (mean) quasi-harmonicity of cocycle representatives for a
given measure � on G is immediate if the G–space .X; �/ is �–stationary, ie if �
satisfies Z

G

Z
X

 .g�/ d�.g/d�.�/D

Z
X

 .�/ d�.�/;
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for all  2 L1.X; �/. Indeed, let ˛ be a cocycle on .X; �/, and define �.g/ WDR
X ˛.g; �/ d�.�/ for g 2G . Then,Z

G

�.hg/ d�.h/D

Z
G

Z
X

˛.hg; �/ d�.h/d�.�/

D

Z
G

Z
X

˛.h; �/ d�.h/d�.�/C

Z
G

Z
X

˛.g; h�/ d�.h/d�.�/

D �.g/C `;

for all g 2 G , where ` is a constant, ie � is quasi-left-harmonic with respect to �.
In particular, if ˛ is a cocycle representative for a quasimorphism � on .X; �/, we
conclude that

`�.�/D

Z
G

Z
X

˛.g; �/ d�.�/d�.g/:

Moreover, if � is square-integrable with respect to �, a simple argument gives

�2
D

Z
G

Z
X

.˛.g; �/� `�.�//
2 d�.�/d�.g/;

where �2 is the variance in Theorem 1.2.

Appendix A Strongly affine maps and Mokobodzki means

This section is devoted to the construction of Mokobodzki means, a special class of
invariant means on N (or any amenable semigroup), which are universally measurable
and satisfy an analogue of Lebesgue’s dominated convergence theorem for uniformly
bounded sequences of measurable functions. We stress that the construction can only
be made within certain extensions of ZFC, eg under the assumption on the Continuum
Hypothesis as in Meyer [14] or under the (weaker) assumption of Martin’s axiom
as in Normann [15]. It has recently been proved by Larson [13] that Mokobodzki
means do not exist if the Continuum Hypothesis is discarded and replaced by the Filter
Dichotomy. The exposition given here is expanded from the classical source [14].

Let .Y;B/ be a measurable space. A set A � Y is universally measurable if it is
measurable with respect to every complete finite measure on the B . If .Z; C/ is another
measurable space, we say that a map f W Y ! Z is universally measurable if the
preimage of every universally measurable set in Z is universally measurable in Y . We
denote by B� the � –algebra of all universally measurable sets in .Y;B/.

Let E be a locally convex and separable topological vector space, and K a compact
and convex metrizable subset of E . We denote by CC.K/ the set of convex functions
on K , which are bounded from below and equal to the limit of a decreasing sequence
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of convex lower semicontinuous functions, and we define C�.K/ WD �CC.K/. We say
that a real-valued function u on K is strongly convex if it is universally measurable,
bounded from below, and if for all x 2K and all probability measures � on K with
barycenter x , we have

u.x/�

Z
K

u.y/ d�.y/:

Similarly, a real-valued function v on K is strongly concave if �v is strongly convex,
and strongly affine if it is both strongly convex and concave.

The goal of this appendix is to prove the following beautiful result by Mokobodzki
(see Meyer [14]).

Proposition A.1 (CH) There is an invariant mean m on N with the property that
whenever .�;B/ is a measurable space, and . n/ a uniformly bounded sequence of
B–measurable functions on �, the function

 � WD

Z
N
 n dm.n/

is B�–measurable and moreover, the equalityZ
�

 � d�D

Z
N

� Z
�

 n d�
�

dm.n/

holds for every probability measure � on .�;B/.

We need the following two lemmata.

Lemma A.2 Suppose that u 2 C�.K/ and v 2 CC.K/ with u � v on K are given.
Then, for any probability measure � on K , there are u0 2 C�.K/ and v0 2 CC.K/
such that the inequalities u� u0 � v0 � v hold and the equality u0 D v0 holds almost
everywhere on K with respect to � .

Proof By the definition of the class CC.K/, there is a decreasing sequence .vn/ of
convex lower semicontinuous functions, which we can assume is bounded from below,
such that vD infn vn . Similarly, there is an increasing sequence .un/ of concave upper
semicontinuous functions, bounded from above, such that uD supn un . Define

u0n D un�
1

n
and v0n D vnC

1

n
;

and note that by the Hahn–Banach theorem, the set Ln of continuous and affine maps
on K which are sandwiched between u0n and v0n is nonempty for all n. Since both
u0n and v0n are bounded functions on K , the weak closure xLn of Ln in L1.K; �/ is
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compact for all n. Moreover, the family .Ln/ is a nested sequence of precompact and
convex subsets of L1.K; �/, so we conclude that the countable intersection

T
n
xLn

contains at least one element, which we denote by w0 . By the Banach–Saks theorem,
we can choose a sequence .wk/ with wk 2

xLnk
, for some sequence .nk/, such that

wk !w0 in the norm topology of L1.K; �/ and moreover, kwk �w
0k1 � 2�k . By a

standard application of the Borel–Cantelli lemma, the sequence .wk/ converges to w0

on a conull subset K0 of K , so we may define the functions

u0 D lim inf
k

wk and v0 D lim sup
k

wk :

By construction, we have the inequalities u� u0� v0� v on K , and u0D v0 on K0 .

The second lemma uses the Continuum Hypothesis. Before we state and prove the
lemma, we recall some basic notions from set theory. The set of countable ordinals
.�;</ is the unique (up to order isomorphism) well-ordered uncountable set with the
property that the sets

�x WD fy 2� jy < xg

are countable, for all x 2�. We stress that the construction of .�;</ only depends
on the Axiom of Choice. The cardinality of � is @1 , so by the Continuum Hypothesis
there is a set-theoretic bijection between � and the real line.

Lemma A.3 (CH) Suppose that u 2 C�.K/ and v 2 CC.K/ with u � v on K are
given. Then there is a strongly affine map w on K which satisfies u� w � v .

Proof Since the set of all probability measures on K has the same cardinality as
the real line (unless K consists of one point, in which case the lemma is trivial), we
can index this set by the countable ordinals, ie M 1.K/D .�˛/˛2� . By a transfinite
recursion of Lemma A.2, we produce a decreasing sequence .v˛/ of elements in
CC.K/, and an increasing family .u˛/ of elements in C�.K/, such that

u� u˛ � v˛ � v;

and u˛ D v˛ �˛–almost everywhere. Since all probability measures on K occurs
in the enumeration, we have inf˛ v˛ D sup˛ u˛ . We denote this function by w . As
we have w D u˛ D v˛ on a �˛–conull subset of K , the function w is universally
measurable, and it is clearly bounded.

The barycenter property is easily verified using the following simple trick. Let � be
a probability measure on K with barycenter x . Then there is a countable ordinal ˛
with �˛ D .�C ıx/=2. As w is �˛ –almost everywhere equal to u˛ , which is an upper
semicontinuous concave function, and also to v˛ , which is a lower semicontinuous
convex function, we have w.x/D

R
K w.y/ d�.y/, and hence w is strongly affine.
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We can now prove Proposition A.1.

Proof of Proposition A.1 Let K denote the unit ball in `1.N/. We can without loss
of generality assume that j nj � 1 for all n, so that the map z WD . n/ is well-defined
and B–measurable as a map of � into K . The functions

u.x/ WD lim inf
n

1

n

nX
kD1

xk and v.x/ WD lim sup
n

1

n

nX
kD1

xk

clearly belong to the classes C�.K/ and CC.K/ respectively, so by Lemma A.3, there
is a strongly affine and shift-invariant map m on K which is sandwiched by u and v .
Hence, the composition  � WD

R
N  n dm.n/ is universally measurable, which proves

the first part of the proposition.

Moreover, if � is a probability measure on �, then the pushforward z �� is a probability
measure on K , so by the defining property of strongly affine maps, we haveZ

K

� Z
N

xn dm.n/
�

d z ��.x/D

Z
N

� Z
K

xn d z ��.x/
�

dm.n/;

which exactly translates to the equality asserted in the proposition.
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