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Some new examples with almost positive curvature

MARTIN KERIN

As a means to better understanding manifolds with positive curvature, there has
been much recent interest in the study of nonnegatively curved manifolds which
contain points at which all 2–planes have positive curvature. We show that there are
generalisations of the well-known Eschenburg spaces and quotients of S7�S7 which
admit metrics with this property.

53C20; 57S25, 57T15

It is an unfortunate fact that for a simply connected manifold which admits a metric of
nonnegative curvature there are no known obstructions to admitting positive curvature.
While there exist many examples of manifolds with nonnegative curvature, the known
examples with positive curvature are very sparse (see Ziller [31] for a comprehensive
survey of both situations). Other than the rank-one symmetric spaces, there are isolated
examples in dimensions 6; 7; 12; 13 and 24 due to Wallach [27] and Berger [4], and
two infinite families, one in dimension 7 (Eschenburg spaces; see Aloff and Wal-
lach [2] and Eschenburg [9; 10]) and the other in dimension 13 (Bazaikin spaces [3]).
In recent developments, two distinct metrics with positive curvature on a particular
cohomogeneity-one manifold have been proposed by Grove, Verdiani and Ziller [15]
and Dearricott [8], while Petersen and Wilhelm [21] propose that the Gromoll–Meyer
exotic 7–sphere admits positive curvature, which would be the first exotic sphere known
to exhibit this property.

In this paper we are interested in the study of manifolds which lie “between” those
with nonnegative and those with positive sectional curvature. It is hoped that the study
of such manifolds will yield a better understanding of the differences between these
two classes. Recall that a Riemannian manifold .M; h ; i/ is said to have quasipositive
curvature (resp. almost positive curvature) if .M; h ; i/ has nonnegative sectional
curvature and there is a point (resp. an open dense set of points) at which all 2–planes
have positive sectional curvature.

Theorem A

(i) There exists a free circle action and a free S3 action on S7�S7 such that each of
the respective quotients M13 WD S1n.S7 �S7/ and N11 WD S3n.S7 �S7/ admits
a metric with almost positive curvature.
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(ii) If M13 and N11 are equipped with the metrics from (i), then there exist Rie-
mannian submersions M13 �! CP3 and N11 �! S4 such that in each case the
fibre is S7 and the bundle is nontrivial but shares the same cohomology ring as
the corresponding product.

We use the Pontrjagin class to distinguish M13 and N11 from the respective products
in Theorem A(ii). Moreover, in each case the induced metric on the base is positively
curved.

It has been conjectured by F Wilhelm that, if M is a positively curved Riemannian
manifold, the dimension of the fibre of a Riemannian submersion M�!B must be less
than the dimension of the base. Theorem A shows that this is false when the hypothesis
is weakened to almost positive curvature.

Other than the Gromoll–Meyer exotic 7–sphere (see Gromoll and Meyer [14], Wil-
heim [29], Eschenburg and Kerin [11] and Petersen and Wilhelm [21]), the only other
previously known examples of manifolds with almost positive or quasipositive curvature
are given in Petersen and Wilhelm [22], Wilking [30], Tapp [25] and Kerin [18].

While Wilking [30] has shown that it is not possible in general to deform quasipositive
curvature to positive curvature, it is still unknown whether this can be achieved in the
simply connected case or whether one can always deform quasipositive curvature to
almost positive curvature.

Theorem B Let Lp;q � U.nC 1/�U.nC 1/, n� 2, be defined by

Lp;q D f.diag.zp1 ; : : : ; zpnC1/; diag.zq1 ; zq2 ;A// j z 2 S1;A 2 U.n� 1/g

where p1; : : : ;pnC1; q1; q2 2 Z. When the two-sided action of Lp;q on U.nC 1/ is
free, denote the quotient U.nC 1/==Lp;q by E4n�1

p;q . All E4n�1
p;q admit a metric with

quasipositive curvature.

Observe that to allow pi D pj for all 1� i < j � nC 1 in Theorem B is equivalent
to setting pi D 0 for all i , since the centre of U.nC 1/ is given by multiples of the
identity. Wilking [30] showed that these homogeneous spaces admit a metric with
almost positive curvature whenever q1q2<0, while Tapp [25] subsequently showed that
.q1; q2/¤ .0; 0/ is sufficient to guarantee the existence of a metric with quasipositive
curvature.

The biquotients E4n�1
p;q in Theorem B should be thought of as generalisations of the

Eschenburg spaces, which arise when n D 2. In Eschenburg [9] it is shown that
infinitely many Eschenburg spaces admit positive curvature, while in Kerin [18] it is
shown that all Eschenburg spaces admit a metric with quasipositive curvature.

Geometry & Topology, Volume 15 (2011)



Some new examples with almost positive curvature 219

The paper is organised as follows. In Section 1 we review some notation and geometric
techniques for biquotients. In Section 2 we review some facts about the Cayley numbers
and the exceptional Lie group G2 . In Section 3 we describe the manifolds M13 and N11

of Theorem A as biquotients and as the total spaces of Riemannian submersions. We
prove the curvature statements of Theorem A(i) in Section 4, while proof of the
topological statements in (ii) is postponed until Section 6. Section 5 is devoted to
establishing Theorem B.

Acknowledgments The majority of this work was completed as part of a PhD thesis
at the University of Pennsylvania under the supervision of Wolfgang Ziller. His constant
advice, support and friendship were inspiring. Thanks also to Jost Eschenburg for
useful comments. Finally, I wish to thank Burkhard Wilking for suggesting some
improvements.

1 Biquotient actions and metrics

In his Habilitation [9], Eschenburg studied biquotients in great detail. The following
section provides a review of the material in [9] and establishes the basic language,
notation and results which will be used throughout the remainder of the paper.

Let G be a compact Lie group, U� G�G a closed subgroup, and let U act on G via

.u1;u2/ ?g D u1gu�1
2 ; g 2 G; .u1;u2/ 2 U:

The action is free if and only if, for all nontrivial .u1;u2/ 2 U, u1 is never conjugate
to u2 in G. The resulting manifold is called a biquotient.

Let K� G be a closed subgroup, h ; i be a left-invariant, right K–invariant metric on
G, and U� G�K� G�G act freely on G as above. Let g 2 G. Define

Ug
L
WD f.gu1g�1;u2/ j .u1;u2/ 2 Ug:

Since U acts freely on G, so too does Ug
L

, and G==U is isometric to G==Ug
L

. This
follows from the fact that left-translation LgW G �! G is an isometry which satisfies
gu1g�1.Lgg0/u�1

2
DLg.u1g0u�1

2
/. Therefore Lg induces an isometry of the orbit

spaces G==U and G==Ug
L

.

Consider a Riemannian submersion � W Mn �! Nn�k . By O’Neill’s formula for
Riemannian submersions, � is curvature nondecreasing. Therefore secM � 0 implies
secN � 0, and zero-curvature planes on N lift to horizontal zero-curvature planes on M.
Because of the Lie bracket term in the O’Neill formula the converse is not true in
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general, namely horizontal zero-curvature planes in M cannot be expected to project to
zero-curvature planes on N.

Let K�G be Lie groups, k�g the corresponding Lie algebras, and h ; i a nonnegatively
curved left-invariant metric on G which is right-invariant under K. We can write
gD k˚ p with respect to h ; i. Given X 2 g we will always use Xk and Xp to denote
the k and p components of X respectively.

GŠ .G�K/=�KRecall that

via .g; k/ 7�! gk�1 , where �K is the free diagonal action of K on the right of
G�K. Notice that the restriction of h ; i to K is bi-invariant. Equip G�K with the
metric hh ; ii WD h ; i˚ th ; ijk , t > 0. Thus we may define a new left-invariant, right
K–invariant metric h ; i1 (with sec� 0) on G via the Riemannian submersion

.G�K; hh ; ii/ �! .G; h ; i1/

.g; k/ 7�! gk�1
(1)

hX;Y i1 D hX; ˆ.Y /iwith

where ˆ.Y /D YpC�Yk , �D t=.tC1/2 .0; 1/. Furthermore, it is clear that the metric
tensor ˆ is invertible with inverse described by ˆ�1.Y /D YpC .1=�/Yk .

Suppose � D Spanfˆ�1.X /; ˆ�1.Y /g � g is a zero-curvature plane with respect to
the metric h ; i1 , ie sec1.�/D 0. By the O’Neill formula � must therefore lift to a
horizontal zero-curvature plane z� � g˚ k with respect to hh ; ii. It is easy to check
that the horizontal lift of a vector ˆ�1.X / 2 g to g˚ k is given by .X;�.1=t/Xk/.
Then clearly

z� D Span
��

X;�
1

t
Xk

�
;

�
Y;�

1

t
Yk

��
:

But, since hh ; ii is a nonnegatively curved product metric, it follows immediately
by considering the unnormalised curvature that z� has zero-curvature if and only if
ŒXk;Yk� D 0 and the plane SpanfX;Y g � g has zero-curvature with respect to the
original metric h ; i, ie sec.X;Y /D 0.

From Tapp [26], which generalizes similar results in Eschenburg [9] and Wilking [30],
we know that if h ; i is induced by a Riemannian submersion to G from a bi-invariant
metric on some Lie group L, then in fact sec1.�/D 0 if and only if sec.z�/D 0 with
respect to hh ; ii, ie if and only if sec.X;Y / D 0 and ŒXk;Yk� D 0. We will always
be in this situation as throughout the paper we will use only the metrics described in
Example (a) and Example (b) below.
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Example (a) Suppose that .G;K/ is a symmetric pair and that the initial metric
h ; i D h ; i0 is a bi-invariant metric on G. As in (1), equip G with a new metric

(2) hX;Y i1 D hX; ˆ1.Y /i0

where gD k˚ p with respect to h ; i0 and ˆ1.Y /D YpC�1Yk . Then

� D Spanfˆ�1
1 .X /; ˆ�1

1 .Y /g � g

has zero-curvature with respect to h ; i1 , ie sec1.�/D 0, if and only if

(3) 0D ŒX;Y �D ŒXk;Yk�D ŒXp;Yp�:

The proof of this follows immediately from our previous discussion together with the
fact that Œp; p�� k whenever .G;K/ is a symmetric pair.

Example (b) Let G� K� H be a chain of subgroups and suppose that both .G;K/
and .K;H/ are symmetric pairs. Let gD k˚ p and kD h˚m be the corresponding
orthogonal decompositions with respect to the bi-invariant metric h ; i0 on G. Start
with the metric h ; i D h ; i1 defined by Example (a). Now define the metric h ; i2
on G as in (1), where K is replaced by H, s > 0 takes the role of t , and ‰ replaces ˆ:

hX;Y i2 D hX; ‰.Y /i1(4)

D hX; ˆ2.Y /i0(5)

with ˆ2.Y / D Yp C �1Ym C �1�2Yh , �2 D s=.s C 1/, and ‰.Y / D ˆ�1
1
ˆ2.Y / D

YpCYmC�2Yh .

Let � D Spanf‰�1.X /; ‰�1.Y /g � g. Then, by our discussion prior to Example (a),
sec2.�/ D 0 if and only if sec1.X;Y / D 0 and ŒXh;Yh� D 0. By again considering
horizontal lifts it is not difficult to check that sec1.X;Y /D0 if and only if conditions (3)
hold as for sec1.ˆ

�1
1
.X /; ˆ�1

1
.Y //D 0. Hence sec2.�/D 0 if and only if

(6) 0D ŒX;Y �D ŒXk;Yk�D ŒXp;Yp�D ŒXm;Ym�D ŒXh;Yh�

where we have used the fact that Œm;m�� h since .K;H/ is a symmetric pair.

Now that we have described how to induce new metrics on G from old ones and derived
zero-curvature conditions for these metrics, we proceed to consider biquotients G==U.
Let �GD f.g;g/ j g 2 Gg. Then, if the two-sided action of U on G is free, �G�U
acts freely on G�G via

(7) ..g;g/; .u1;u2// ? .g1;g2/D .gg1u�1
1 ;gg2u�1

2 /
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with .g;g/ 2�G, .u1;u2/ 2 U, .g1;g2/ 2 G�G, and there is a canonical diffeomor-
phism

(8) �Gn.G�G/=UŠ G==U

induced by the map

G�G �! G

.g1;g2/ 7�! g�1
1 g2:

Let K1 and K2 be arbitrary subgroups of G. We define left-invariant metrics, h ; iK1

and h ; iK2
, on G as in (1). Equip G�G with a left-invariant, right .K1�K2/–invariant

product metric .. ; //D h ; iK1
˚h ; iK2

. If U� K1 �K2 then the �G�U action is
by isometries and .. ; // induces a metric on G==U. Our goal is to determine when a
plane tangent to G==U has zero-curvature with respect to this induced metric.

By (8) and our choice of metric, the quotient map .G � G; .. ; /// �! G==U is a
Riemannian submersion. O’Neill’s formula implies that a zero-curvature plane tangent
to G==U must lift to a horizontal zero-curvature plane with respect to .. ; //. As in
the case of metrics on G, if .. ; // is induced from a bi-invariant metric on some Lie
group L, then Tapp [26] implies that horizontal zero-curvature planes with respect to
.. ; // must project to zero-curvature planes in G==U. For our purposes this will always
be true since we will consider only metrics as in Example (a) and Example (b).

We must determine what it means for a plane to be horizontal with respect to .. ; // and
the �G�U action. Since each �G�U orbit passes through some point of the form
.g; e/ 2 G�G, where e is the identity element of G, we may restrict our attention to
such points.

Recall that .. ; // is left-invariant. Therefore, letting u denote the Lie algebra of U,
the vertical subspace at .g; e/ 2 G�G is given by

Vg D
˚�

Adg�1 X �Y1;X �Y2

�
jX 2 g; .Y1;Y2/ 2 u

	
after left-translation to .e; e/ 2 G�G. Note that this is independent of the choice of
left-invariant metric on G�G.

Thus, with respect to .. ; //, the horizontal subspace at .g; e/ is

(9) Hg D
˚�
��1

1 .�Adg�1 X /;��1
2 .X /

�
j hX;Adg Y1�Y2i0 D 0 8 .Y1;Y2/ 2 u

	
where �1 and �2 are the metric tensors relating the left-invariant metrics h ; iK1

and h ; iK2
respectively to a fixed bi-invariant metric h ; i0 on G, ie hX;Y iKi

D

hX; �i.Y /i0 , iD1; 2. We recall that the metric tensors in Example (a) and Example (b)
are given by ˆ1 and ˆ2 respectively, as shown in (2) and (5).
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In particular, (9) shows that a horizontal 2–plane � in .G�G; .. ; /// must project to
a 2–plane on each factor, denoted by L�1 and L�2 respectively. Moreover, since .. ; //
is a product metric, sec.�/D 0 if and only if sec. L�i/D 0, i D 1; 2. Thus, for product
metrics involving the metrics described by Example (a) and Example (b), we may apply
conditions (3) and (6) respectively in order to determine when a horizontal plane �
has zero-curvature.

2 The Cayley numbers, G2 and its Lie algebra

We recall without proof some well known facts about Cayley numbers, the Lie group G2

and its Lie algebra. More details may be found in Gluck, Warner and Ziller [13] and
Murakami [20].

We may write the Cayley numbers as Ca D HCH`, where H is the algebra of
quaternions. Thus we have a natural orthonormal basis

fe0 D 1; e1 D i; e2 D j ; e3 D k; e4 D `; e5 D i`; e6 D j `; e7 D k`g

for Ca. Note that this description of Ca differs slightly from that given in Mu-
rakami [20], and accounts for the difference which occurs in the description of the Lie
algebra g2 in Theorem 2.2. Multiplication in Ca is nonassociative and defined via

(10) .aC b`/.cC d`/D .ac � xdb/C .daC bxc/`; a; b; c; d 2H:

Hence we have the following multiplication table, where the order of multiplication is
given by (row)�(column):

e1 D i e2 D j e3 D k e4 D ` e5 D i` e6 D j ` e7 D k`

e1 D i �1 k �j i` �` �k` j `

e2 D j �k �1 i j ` k` �` �i`

e3 D k j �i �1 k` �j ` i` �`

e4 D ` �i` �j ` �k` �1 i j k

e5 D i` ` �k` j ` �i �1 �k j

e6 D j ` k` ` �i` �j k �1 �i

e7 D k` �j ` i` ` �k �j i �1

Table 1: Multiplication table for Ca

Recall that the Lie group G2 is the automorphism group of CaŠR8 . In fact G2 is a
connected subgroup of SO.7/� SO.8/, where SO.8/ acts on CaŠR8 by orthogonal
transformations and SO.7/ is that subgroup consisting of elements which leave e0D 1
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fixed. SO.8/ also contains two copies of Spin.7/ which are not conjugate in SO.8/,
and G2 is the intersection of these two subgroups.

As our eventual goal is to prove Theorem A(i) and (ii), it is useful to recall the
fact that G2 appears in the descriptions of some interesting homogeneous spaces.
The following statements are well-known and follow from applications of the triality
principle for SO.8/. More details may be found in, for example, Adams [1, Theorem
5.5], Murakami [20] and Jacobson [17, page 79].

Theorem 2.1
(i) Spin.7/=G2DS7 , which inherits constant positive curvature from the bi-invariant

metric on Spin.7/. Moreover, the isotropy representation is transitive on the
collection of pairs of orthogonal unit tangent vectors.

(ii) Spin.8/=G2DS7�S7 and SO.8/=G2D .S7�S7/=Z2 , where Z2Df˙.id; id/g.

(iii) G2=SU.3/D S6 .

We now turn our attention to the Lie algebra of G2 . The proof of the following theorem
follows exactly as in Murakami [20] except that we use the basis and multiplication
conventions for Ca as in Table 1. Recall that so.n/D fA 2Mn.R/ jAt D�Ag.

Theorem 2.2 The Lie algebra of G2 , denoted by g2 , consists of matrices AD .aij / 2

so.7/ which satisfy aij C aji D 0 and the following equations:

a23C a45C a76 D 0

a12C a47C a65 D 0

a13C a64C a75 D 0

a14C a72C a36 D 0

a15C a26C a37 D 0

a16C a52C a43 D 0

a17C a24C a53 D 0

Hence g2 � so.7/ is 14–dimensional and consists of matrices of the form:

(11)

0BBBBBBBBB@

0 x1Cx2 y1Cy2 x3Cx4 y3Cy4 x5Cx6 y5Cy6

�.x1Cx2/ 0 ˛1 �y5 x5 �y3 x3

�.y1Cy2/ �˛1 0 x6 y6 �x4 �y4

�.x3Cx4/ y5 �x6 0 ˛2 y1 �x1

�.y3Cy4/ �x5 �y6 �˛2 0 x2 y2

�.x5Cx6/ y3 x4 �y1 �x2 0 ˛1C˛2

�.y5Cy6/ �x3 y4 x1 �y2 �.˛1C˛2/ 0

1CCCCCCCCCA
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Recall that G2 is a rank 2 Lie group. Therefore an examination of the elements (11)
of g2 reveals that the maximal torus of G2 is given by:

(12) T2
D

8̂<̂
:
0B@1

R.�/
R.'/

R.� C'/

1CA ˇ̌̌̌
ˇ R.�/D

�
cos � � sin �
sin � cos �

�9>=>;
3 Free isometric actions on SO.8/

Consider the rank one symmetric pair .G;K/D .SO.8/;SO.7// where

SO.7/ ,! SO.8/

A 7�!

�
1

A

�
with Lie algebras g; k respectively. Let hX;Y i0 D� tr.XY / be a bi-invariant metric
on G. With respect to h ; i0 we thus have gD p˚k. As in (2) we define a left-invariant,
right K–invariant metric h ; i1 on G by

(13) hX;Y i1 D hX; ˆ1.Y /i0

where ˆ1.Y /D YpC�1Yk , �1 2 .0; 1/. Recall that from Example (a) we know that a
plane

� D Spanfˆ�1
1 .X /; ˆ�1

1 .Y /g � g

has zero-curvature with respect to h ; i1 if and only if

(14) 0D ŒX;Y �D ŒXp;Yp�D ŒXk;Yk�:

We now equip G�G with the product metric h ; i1˚h ; i0 .

Consider an isometric action of U WD S1 �G2 � K�G on SO.8/ defined by

(15) A 7�! zR.�/ �A �g�1

where A 2 SO.8/, g 2 G2 , and

(16) zR.�/D

0B@I2�2

R.p1�/
R.p2�/

R.p3�/

1CA; R.�/D

�
cos � � sin �
sin � cos �

�
:

From (8) we know that �GnG�G=UŠ G==U whenever the biquotient action of U
on G is free.
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Lemma 3.1 �G�U acts freely and isometrically on .G�G; h ; i1˚h ; i0/ if and
only if .p1;p2;p3/ is equal to .0; 0; 1/ (up to sign and permutations of the pi ).

Proof Recall that conjugation of either factor of U by elements of G is a diffeomor-
phism, and that a biquotient action is free if and only if nontrivial elements in each
factor are never conjugate to one another in G. Thus we need only show that nontrivial
elements of S1 and T2 are never conjugate in G if and only if .p1;p2;p3/D .0; 0; 1/

up to sign and permutations of the pi , where T2 is the maximal torus of G2 described
in (12). This amounts to investigating when the sets of 2� 2 blocks on each side are
equal up to conjugation by an element of the Weyl group of SO.8/. We recall that the
Weyl group of SO.2n/ acts via permutations of the 2�2 blocks and changing an even
number of signs, where by a change of sign we mean R.�/ 7�! R.��/. A simple
calculation then yields the result.

Note that there are many other free S1�G2 actions on G. For example, there is a free
S1 action on the left of G=G2 by matrices of the form

(17)

0B@R.�/
R.�/

R.�/
R.k�/

1CA
where .k; 3/D 1. However, it is clear that only the action in Lemma 3.1 is isometric
with respect to the metric h ; i1˚h ; i0 on G�G.

It follows immediately from the long exact homotopy sequence for fibrations that a
biquotient Spin.8/==.S1�G2/DS1n.S7�S7/ must be simply connected. By the lifting
criterion for covering spaces the action by U on SO.8/ described above lifts to some
action by S1�G2 on Spin.8/. Therefore, together with Theorem 2.1, one might expect
that the resulting simply connected biquotient Spin.8/==.S1�G2/D S1n.S7�S7/ is a
nontrivial finite cover of SO.8/==.S1 �G2/. In fact the lemma below will demonstrate
that this covering map is a diffeomorphism.

Lemma 3.2 M13 WD SO.8/==.S1 �G2/ is simply connected and hence a quotient of
S7 �S7 by an S1 action.

Proof Consider a general embedding

S1
q ,! SO.8/

R.�/ 7�!

0B@R.q1�/
R.q2�/

R.q3�/
R.q4�/

1CA

Geometry & Topology, Volume 15 (2011)



Some new examples with almost positive curvature 227

where q D .q1; q2; q3; q4/ 2 Z4 and where R.u/ 2 SO.2/. The long exact homotopy
sequence for the fibration S1

q �G2 �! SO.8/ �! SO.8/==S1
q �G2 yields

: : : �! �1.S1
q �G2/D Z �! �1.SO.8//D Z2 �! �1.SO.8/==S1

q �G2/ �! 0:

Thus to obtain the desired result we need only show that the map Z�!Z2 is surjective.

Recall that the homomorphism ��W �1.S1
q/�!�1.SO.n// is determined by the weights

qD .q1; : : : ; qm/, mDbn=2c, of the embedding, namely ��.1/D
P

qi mod 2. There-
fore �� is onto exactly when

P
qi is odd. In our case we have q D .0; 0; 0; 1/, and so

�� is a surjection.

Notice that the action of U on SO.8/ given in Lemma 3.1 may be enlarged to an
isometric action by SO.3/�G2 , and the resulting biquotient we call N11 . Now recall
that for all n we have a 2–fold cover Spin.n/ �! SO.n/ with �1.Spin.n//D 0 and
�1.SO.n// D Z2 . Thus, by the lifting criterion for covering spaces, the inclusion
SO.3/ ,! SO.8/ must lift to Spin.3/D S3 ,! Spin.8/. As in the case of UD S1�G2

above we show that N11 D SO.8/==.SO.3/ � G2/ is simply connected and hence
diffeomorphic to Spin.8/==S3 �G2 D S3n.S7 �S7/.

Lemma 3.3 N11 D SO.8/==.SO.3/�G2/ is simply connected and hence a quotient
of S7 �S7 by an S3 action.

Proof Consider the chain of embeddings j ıi W S1D SO.2/ ,! SO.3/ ,! SO.8/ given
by enlarging S1 above to an SO.3/ in SO.8/. We thus have an induced homomorphism
on fundamental groups .j ı i/� D j� ı i�W Z �! Z2 �! Z2 . But i� and .j ı i/�
are simply the homomorphism �� from Lemma 3.2. Hence i�.1/ D 1 mod 2 and
.j ı i/�.1/D 1 mod 2. This implies j�.1/D 1 mod 2 and therefore j� is a surjection.
An examination of the long exact homotopy sequence of the fibration SO.3/�G2 �!

SO.8/ �! N11 yields the result.

Recall that G2 � Spin.7/0 � SO.8/, where the second inclusion is via the spin embed-
ding. By our choice of metric on G�G we may therefore enlarge the actions of S1�G2

and SO.3/�G2 to isometric actions by S1�Spin.7/0 and SO.3/�Spin.7/0 respectively.
It was shown in Eschenburg [9, Theorem 75, Table 101] that these actions are free
and the resulting biquotients are CP3 and S4 respectively. It follows immediately that
there are fibre bundles

S7
D Spin.7/0=G2 �!M13

�! CP3

S7
D Spin.7/0=G2 �! N11

�! S4

for which the projections are Riemannian submersions.
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4 Almost positive curvature on M13 and N11

We are now in a position to prove the curvature statements Theorem A(i). We will
concentrate on the circle quotient of S7 �S7 , namely

M13
D SO.8/==.S1

�G2/D G==U;

since the other case follows trivially.

Consider the inclusions GDSO.8/�KDSO.7/�G2 . With respect to the bi-invariant
metric hX;Y i0 D� tr.XY / on G we have

gD p˚ k and kDm˚ g2

where

(18) pD

8̂̂<̂
:̂
0BB@

0 �wt

w 0

1CCA ˇ̌̌
w 2R7

9>>=>>;
and, by (11):

(19) mD

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

0BBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 v1 v2 v3 v4 v5 v6

0 �v1 0 v7 v6 �v5 v4 �v3

0 �v2 �v7 0 �v5 �v6 v3 v4

0 �v3 �v6 v5 0 v7 �v2 v1

0 �v4 v5 v6 �v7 0 �v1 �v2

0 �v5 �v4 �v3 v2 v1 0 �v7

0 �v6 v3 �v4 �v1 v2 v7 0

1CCCCCCCCCCCA

ˇ̌̌̌
ˇ vi 2R

9>>>>>>>>>>>=>>>>>>>>>>>;
Lemma 4.1 Let Wi 2 p, i D 1; 2, and Vj 2 m, j D 1; 2, be orthonormal vectors
with respect to h ; i0 . Then rank.Wi/ D 2, rank.Vj / D 6, rank.ŒW1;W2�/ D 2 and
rank.ŒV1;V2�/D 6.

Proof Suppose P , Q and Z are real n � n matrices. It is well-known (and not
difficult to prove using the rank-nullity theorem) that:

(i) If rank.P /D n, then rank.PZ/D rank.Z/.
(ii) If rank.Q/D n, then rank.ZQ/D rank.Z/.

In particular, if P and Q are invertible matrices then, for Z0 D PZQ, it follows that
rank.Z/D rank.Z0/.

Choose arbitrary pairs of orthonormal vectors in p and m and show that the conclusions
of the lemma hold. The result now follows from the facts that the isotropy representation
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of G2 � SO.8/ splits irreducibly as p˚m and, moreover, is transitive on the sets of
pairs of orthonormal vectors in p and m respectively, ie G2 acts transitively on the
unit tangent bundle to S6 . (Recall Theorem 2.1(i).)

Let U D S1 �G2 � K �G be as in Lemma 3.1. Thus, equipping G �G with the
product metric h ; i1 ˚ h ; i0 as before, we may induce a metric on G==U via the
diffeomorphism

�GnG�G=U �! G==U:

As discussed in Section 1, we may restrict our attention to points of the form .A; I/ 2

G�G. Let E78 2 g denote the vector spanning the Lie algebra of the S1 factor of U.
By (9) the horizontal subspace at .A; I/ with respect to h ; i1˚h ; i0 is given by

HA D f.�ˆ
�1
1 .AdAt W /;W / jWg2

D 0; hW;AdA E78i0 D 0g:

Suppose that

� D Spanf.�ˆ�1
1 .AdAt X /;X /; .�ˆ�1

1 .AdAt Y /;Y /g � g˚ g

is a horizontal zero-curvature plane at .A; I/ 2 G�G. Since we have equipped G�G
with the product metric h ; i1˚h ; i0 , our discussion in Section 1 shows that � must
project to zero-curvature planes L�i , i D 1; 2, on each factor. Considering L�2 we find:

Lemma 4.2 Suppose X;Y 2 g are linearly independent vectors such that Xg2
D

Yg2
D 0 and ŒX;Y �D 0. Then it may be assumed without loss of generality that X 2 p

and Y 2m.

Proof Since ŒX;Y � D 0 and .G;K/ is a symmetric pair, it follows that ŒXp;Yp� D

�ŒXm;Ym�. Suppose that ŒXm;Ym�¤ 0. Then, by Lemma 4.1, ŒXm;Ym� is a matrix of
rank 6. But ŒXp;Yp� has rank no more than 2, so we have a contradiction. Therefore
ŒXp;Yp�D ŒXm;Ym�D 0.

The equality ŒXp;Yp�D 0 implies that, since .G;K/ is a rank one symmetric pair, we
may assume Yp D 0 without loss of generality. Hence X 2 p˚m and Y 2 m. On
the other hand, by Theorem 2.1(i) there are no independent commuting vectors in m.
Then, without loss of generality, X 2 p and Y 2m.

The horizontal zero-curvature plane � is thus determined by

(20) X D

0BB@
0 �wt

w 0

1CCA 2 p; Y D

0BB@
0 0

0 .vij /

1CCA 2m
with ŒX;Y �D 0, where w 2R7 and .vij /D .vij j 2� i; j � 8/.
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By Lemma 4.1 we know that Y has rank 6, that is, the column space of Y is a six-
dimensional subspace of R7 . The condition ŒX;Y �D 0 is equivalent to w 2R7 being
perpendicular to each of the columns of Y . Therefore w , and hence X , is uniquely
determined up to scaling by Y . Let  W m �! p be the (unique) map assigning X 2 p

to Y 2m such that, by abusing the notation of (18) and (19), X D  .Y / is given by

(21) wt
D  .v1; : : : ; v7/D .v7;�v2; v1;�v4; v3; v6;�v5/:

It is easy to check that Œ .Y /;Y �D 0, and  is clearly a linear isomorphism. Moreover,
 is G2 –equivariant since AdgŒX;Y � D ŒAdg X;Adg Y �, for all g 2 G2 , and by
uniqueness. Therefore every horizontal zero-curvature plane � is determined by a pair
.X;Y /D . .Y /;Y /, with X 2 p, Y 2m.

Given ŒX;Y �D 0, the conditions in (14) imply that L�1 has zero curvature if and only
if Œ.AdAt X /p; .AdAt Y /p�D 0. But .G;K/ is a rank one symmetric pair and thus L�1

has zero curvature if and only if .AdAt X /p; .AdAt Y /p are linearly dependent, that is,
if and only if either

.AdAt X /p D 0 or .AdAt Y /p D 0 or .AdAt X /p D s.AdAt Y /p

for some s 2R�f0g.

Suppose that .AdAt X /pD s.AdAt Y /p , for some s2R�f0g. Then AdAt .X�sY /?p.
Since elements of p?D kDso.7/ have vanishing determinant, it follows from the discus-
sion on ranks in the proof of Lemma 4.1 that rank.X �sY /D rank AdAt .X �sY /� 6.
But X and Y describe a horizontal zero-curvature plane, so the vector w 2 R7

determining X is orthogonal to the columns of sY , which itself has rank 6. Hence
rank.X � sY / D 7, which is a contradiction. Therefore either .AdAt X /p D 0 or
.AdAt Y /p D 0.

Before we continue, we recall some simple facts about A2 SO.8/. We may write A as

AD

0BBB@
a11 a12 � � � a18

a21
::: zA

a81

1CCCA
where zA is a 7� 7 matrix. Since AAt D I , one can easily derive the identities

a2
11C

X
ja1k j

2
D 1(22)

a11.ak1/C zA.a1k/
t
D 0(23)

.ak1/.ak1/
t
C zA zAt

D I7�7(24)

where .a1k/ and .ak1/ are row and column vectors respectively (with 2� k � 8).
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Consider X 2 p as in (20) and suppose that .AdAt X /p D 0. A simple computation
shows that this is equivalent to

a11w
t zAD .ak1/

tw.a1k/D h.ak1/; wi.a1k/:

If we multiply both sides by .a1k/
t , then the identity (23) above yields

�a2
11h.ak1/; wi D �a2

11w
t .ak1/

D h.ak1/; wi.a1k/.a1k/
t

D h.ak1/; wi
X
ja1k j

2:

By (22), this reduces to .ak1/
tw D h.ak1/; wi D 0. Hence a11w

t zA D 0, ie either
a11D0 or wt zAD0. However, if wt zAD0, then AdAt X D0. Since X ¤0, this gives a
contradiction. Therefore the condition .AdAt X /pD 0 is satisfied if and only if a11D 0

and h.a21; : : : ; a81/
t ; wi D 0. It is clear that the set of such w is six-dimensional. For

reasons of dimension we will therefore always be able to find a pair .X;Y / describing
a zero-curvature plane, since we need only ensure that AdAt X;AdAt Y ? S1 .

On the other hand, consider Y 2 m as in (20) such that .AdAt Y /p D 0. It is again
simple to show that this is equivalent to

.ak1/
t .vij / zAD 0:

If we multiply both sides by zAt , then (24) gives

0D .ak1/
t .vij /.I7�7� .ak1/.ak1/

t /

D .ak1/
t .vij /� ..ak1/

t .vij /.ak1//.ak1/
t

D .ak1/
t .vij /

where the last equality follows from .ak1/
t .vij /.ak1/ D 0, since all entries on the

diagonal of AdAt Y 2 so.8/ must be zero.

Let X D  .Y / 2 p be given by w 2R7 . Now .ak1/
t .vij /D 0 implies that the vector

.a21; : : : ; a81/
t 2 R7 is perpendicular to each column of the rank 6 matrix .vij /.

Hence either ak1 D 0, for all 2� k � 8, or w D .a21; : : : ; a81/
t .

If ak1D0, for all 2�k�8, then by (22), (23) and (24) A2O.7/�SO.8/. Conversely,
given A 2 O.7/, it is clear that AdAt preserves the orthogonal decomposition p˚ k.
Thus AdAt X , with X 2 p, will always be orthogonal to S1 and, for dimension reasons,
there will always be a Y 2m such that AdAt Y ? S1 . Therefore it is always possible
to find a pair .X;Y / spanning a horizontal zero-curvature plane.
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Finally, in the case w D .a21; : : : ; a81/
t , there is, up to scaling, a unique pair .X;Y /

determined by the coordinates of A. Clearly X is determined by w while, by (21), Y

is given by

.v1; : : : ; v7/D .a41;�a31; a61;�a51;�a81; a71; a21/:

It is easy to see that the condition hX;AdA E78i0 D 0 is given by the algebraic
expression:

(25)
8X

kD2

.a18ak7� a17ak8/ak1 D 0

A straightforward computation shows that condition hY;AdA E78i0 D 0 is given by

0D .m23Cm58�m67/a41� .m24�m57�m68/a31

C .m25�m38Cm47/a61� .m26Cm37Cm48/a51

� .m27�m36�m45/a81C .m28Cm35�m46/a71

C .m34Cm56�m78/a21

(26)

where mk` D ak8a`7�ak7a`8 . It is clear that if both (25) and (26) hold, then there is
a horizontal zero-curvature plane at .A; I/.

We have shown that a horizontal zero-curvature plane occurs at .A; I/ if and only if
one of the following conditions is satisfied:

(a) a11 D 0

(b) A 2 O.7/� SO.8/

(c) Equations (25) and (26) hold.

The locus of such points is clearly lower dimensional. Moreover, extending the U
action to an action by SO.3/�G2 increases the number of conditions which must be
satisfied in order for a zero-curvature plane to be horizontal. Theorem A(i) now follows
immediately.

5 Generalised Eschenburg spaces

Consider the rank one symmetric pairs .G;K/D .U.nC 1/;U.1/U.n// and .K;H/D
.U.1/U.n/;U.1/U.1/U.n�1// where n� 2 and the inclusions K ,!G and H ,!K
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are given by

.z;B/ 7�!

�
z

B

�
; z 2 U.1/; B 2 U.n/

.z; w;C / 7�!

�
z;

�
w

C

��
; z; w 2 U.1/; C 2 U.n� 1/and

respectively. Let g; k and h be the Lie algebras of G;K and H respectively. Let
hX;Y i0 D�Re tr.XY / be a bi-invariant metric on G. With respect to h ; i0 we thus
have the orthogonal decompositions gD p˚ k and kDm˚ h, where:

pD

8̂̂<̂
:̂
0BB@

0 �xxt

x 0

1CCA
ˇ̌̌̌
ˇ x D

0B@ x2
:::

xnC1

1CA 2Cn

9>>=>>;

mD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0BBBBB@
0

0 �xyt

y 0

1CCCCCA
ˇ̌̌̌
ˇ y D

0B@ y3
:::

ynC1

1CA 2Cn�1

9>>>>>=>>>>>;
and

As in Example (a) and Example (b) we define a left-invariant, right K–invariant metric
h ; i1 on G by

(27) hX;Y i1 D hX; ˆ1.Y /i0

where ˆ1.Y /D YpC�1Yk , �1 2 .0; 1/, and a left-invariant, right H–invariant metric
h ; i2 on G via

(28) hX;Y i2 D hX; ‰.Y /i1 D hX; ˆ2.Y /i0

where ˆ2.Y / D Yp C �1Ym C �1�2Yh , �2 2 .0; 1/, and ‰.Y / D ˆ�1
1
ˆ2.Y / D

YpCYmC�2Yh .

Equip G�G with the left-invariant, right .K�H/–invariant product metric h ; i1˚h ; i2 .

Consider the subgroup Lp;q � K�H defined by

Lp;q D f.diag.zp1 ; : : : ; zpnC1/; diag.zq1 ; zq2 ;B// j z 2 S1;B 2 U.n� 1/g

where p1; : : : ;pnC1; q1; q2 2 Z. Lp;q acts on G via

G �! G

A 7�! diag.zp1 ; : : : ; zpnC1/A diag.xzq1 ;xzq2 ;B�1/
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where z 2 U.1/ and B 2 U.n� 1/. It is not difficult to show that this action is free if
and only if

(29) .p�.1/� q1;p�.2/� q2/D 1 for all � 2 SnC1:

We denote the resulting biquotients G==Lp;q by E4n�1
p;q and remark that nD 2 gives

the usual Eschenburg spaces (see Eschenburg [9, Section 41]).

Recall the canonical diffeomorphism

E4n�1
p;q D G==Lp;q Š�GnG�G=Lp;q

given in (8). Now, since Lp;q � K�H, there is a metric on E4n�1
p;q induced from the

product metric on G�G.

From (9) it is easy to show that the horizontal subspace at a point .A; I/ 2 G�G is
given by

(30) HA D f.�ˆ
�1
1 .AdA� W /; ˆ�1

2 .W // jWu.n�1/ D 0; hW;AdA P �Qi0 D 0g

where A� D xAt , P D diag.ip1; : : : ; ipnC1/, QD diag.iq1; iq2; 0; : : : ; 0/, and hD

u.1/˚ u.1/˚ u.n� 1/ as before.

Proposition 5.1 Suppose that

� D Span
˚�
�ˆ�1

1 .AdA�
zX /; ˆ�1

2 . zX /
�
;
�
�ˆ�1

1 .AdA�
zY /; ˆ�1

2 . zY /
�	

is a horizontal zero-curvature plane at .A; I/ 2 G � G. Then X D ˆ�1
1
. zX / and

Y Dˆ�1
1
. zY / can be written in one of the following forms:

(i) X 2 g and Y D diag.i; 0; : : : ; 0/

(ii) X 2 p˚ h and Y D diag.0; i; 0; : : : ; 0/

(iii) X 2 p˚ h and Y D diag.i; i; 0; : : : ; 0/

(iv)

X D

0BB@
0 �xxt

x 0

1CCA and Y D

0BBBBB@
i

iˇ �xyt

y 0

1CCCCCA
where x2 ¤ 0, ˇ D 1�

PnC1
jD3 jyj j

2 , and xj D�ix2yj for j D 3; : : : ; nC 1
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(v)

X D

0BB@
i˛ �xxt

x 0

1CCA and Y D

0BBBBB@
0

iˇ �xyt

y 0

1CCCCCA
where x D .0;x3; : : : ;xnC1/

t ¤ 0 2Cn and
PnC1

jD3 xj xyj D 0.

Proof From the discussion in Section 1 we know that the projections L�i , i D 1; 2,
onto the first and second factor must be two-dimensional zero-curvature planes with
respect to h ; i1 and h ; i2 respectively.

Consider

L�2 D Spanfˆ�1
2 . zX /; ˆ�1

2 . zY /g D Spanf‰�1.X /; ‰�1.Y /g

where ‰ D ˆ�1
1
ˆ2 . L�2 has zero-curvature with respect to h ; i2 if and only if the

equalities in (6) hold, namely if and only if

0D ŒX;Y �D ŒXk;Yk�D ŒXp;Yp�D ŒXm;Ym�D ŒXh;Yh�:

Since .G;K/ is a rank-one symmetric pair, ŒXp;Yp�D 0 if and only if Xp and Yp are
linearly dependent. Without loss of generality we may assume that Yp D 0. Similarly,
.K;H/ being a rank-one symmetric pair implies that ŒXm;Ym�D 0 if and only if Xm

and Ym are linearly dependent. Without loss of generality we may assume that either
Xm D 0 or Ym D 0. Thus we have two possibilities:

X DXpCXmCXh and Y D Yh(31)

X DXpCXh and Y D YmCYh:(32)

Since � is horizontal and ˆ1 simply scales kDm˚ h by �1 2 .0; 1/, then we must
have Xu.n�1/ D Yu.n�1/ D 0, where hD u.1/˚ u.1/˚ u.n� 1/. Therefore in both
cases above we have

Xh D diag.ia; ib; 0; : : : ; 0/; Yh D diag.ic; id; 0; : : : ; 0/; some a; b; c; d 2R:

Clearly ŒXh;Yh� D 0. Then ŒXk;Yk� D ŒXm;Yh�C ŒXh;Ym�. In the case of (31) our
zero-curvature condition is thus 0D ŒXm;Yh�, while for case (32) we have 0D ŒXh;Ym�.

Consider general vectors ZD diag.i˛; iˇ; 0; : : : ; 0/2 h and W 2m. Then 0D ŒZ;W �

if and only if either ˇD 0 or W D 0. Applying this to case (31) yields (after rescaling)
two cases:

X DXpCXmCXh and Y D diag.i; 0; : : : ; 0/(33)

X DXpCXh and Y D Yh:(34)
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On the other hand, case (32) yields the added possibility

(35) X D

0BB@
i˛ �xxt

x 0

1CCA 2 p˚ h and Y D YmCYh:

As (33) is already of the form (i) in the proposition, we concentrate on cases (34)
and (35).

The only zero-curvature condition remaining to us is ŒX;Y �D 0. Since Yp D 0, this is
equivalent to ŒXp;Yk�D 0. Consider the general vectors

U D

0BB@
0 �xut

u 0

1CCA 2 p and V D

0BBBBB@
i

iı �xvt

v 0

1CCCCCA 2 k

where uD .u2; : : : ;unC1/
t 2Cn , v D .v3; : : : ; vnC1/

t 2Cn�1 , and ; ı 2R. Then

ŒU;V �D 0

() i. � ı/u2C

nC1X
jD3

ujxvj D 0 and uj D�iu2vj ; j D 3; : : : ; nC 1:
(36)

Suppose u2D 0. Then (36) becomes uj D 0, j D 3; : : : ; nC1, and
PnC1

jD3 ujxvj D 0.
This is satisfied if and only if one of the two following possibilities holds:

uj D 0 for all j D 2; : : : ; nC 1;(37)

or

u2 D 0;  D 0;

nC1X
jD3

ujxvj D 0:(38)

On the other hand, if we assume u2 ¤ 0 then (36) becomes

(39)

u2 ¤ 0; uj D�iu2vj ; j D 3; : : : ; nC 1;

ı D


ju2j
2

0@ju2j
2
�

nC1X
jD3

juj j
2

1A :
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Now, if we apply conditions (37), (38) and (39) to case (34) we arrive at one of the
following (after rescaling where appropriate):

X D diag.ia; ib; 0; : : : ; 0/ and Y D diag.ic; id; 0; : : : ; 0/(40)

X 2 p˚ h and Y D diag.0; i; 0; : : : ; 0/(41)

X 2 p˚ h and Y D diag.i; i; 0; : : : ; 0/:(42)

Since X and Y must span a two-plane, it is clear that diag.i; 0; : : : ; 0/ must lie in
the plane spanned by the X and Y given in (40). Therefore zero-curvature planes
described by (34) fall into one of the classes given by (i), (ii) and (iii) of the proposition.

For case (35) conditions (37), (38) and (39) imply that X and Y must have one of the
following forms (after rescaling):

X D diag.i; 0; : : : ; 0/ and Y 2 k(43)

X D

0BB@
i˛ �xxt

x 0

1CCA and Y D

0BBBBB@
0

iˇ �xyt

y 0

1CCCCCAor

where x D .0;x3; : : : ;xnC1/
t ¤ 0 2Cn and

PnC1
jD3 xj xyj D 0, or finally

(44) X D

0BB@
i˛ �xxt

x 0

1CCA and Y D

0BBBBB@
i

iˇ �xyt

y 0

1CCCCCA
where x2 ¤ 0, ˇ D 1�

PnC1
jD3 jyj j

2 , and xj D�ix2yj for j D 3; : : : ; nC 1.

Therefore, in order to complete the proof we may restrict our attention to horizontal
zero-curvature planes for which X and Y are of the form (44).

Without loss of generality we may assume that the vectors ‰�1.X / and ‰�1.Y /

spanning L�2 are orthogonal. By (28) and since Y 2 k this is equivalent to hXh;Yhi0D0,
where we recall that hV;W i0 D�Re tr.V W /. For (44) we get orthogonality if and
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only if ˛ D 0. Hence, as desired, we may rewrite (44) as

X D

0BB@
0 �xxt

x 0

1CCA and Y D

0BBBBB@
i

iˇ �xyt

y 0

1CCCCCA
where x2 ¤ 0, ˇ D 1�

PnC1
jD3 jyj j

2 , and xj D�ix2yj for j D 3; : : : ; nC 1.

In order to simplify the statements and computations to follow we fix

At WD

0BBBB@
cos t � sin t

sin t cos t

In�1

1CCCCA 2 U.nC 1/; cos2 t ¤Q

for the remainder of the proof, where In�1 denotes the .n�1/�.n�1/ identity matrix.

Lemma 5.2 If p1 ¤ p2 and p1Cp2 ¤ q1C q2 , Then a vector

.�ˆ�1
1 .AdA� W /; ˆ�1

2 .W //

W D diag.i; 0; : : : ; 0/; diag.0; i; 0; : : : ; 0/ or diag.i; i; 0; : : : ; 0/with

cannot be horizontal at .At ; I/ 2 G�G.

Proof Consider V D diag.i�; i'; 0; : : : ; 0/. From (30) we see that a vector of the
form .�ˆ�1

1
.AdA�t

V /; ˆ�1
2
.V // is horizontal if and only if hV;AdAt

P �Qi0 D 0.
Since hX;Y i0 D�Re tr.XY /, this is equivalent to the condition

�q1C'q2 D �

nC1X
kD1

ja1k j
2pk C'

nC1X
kD1

ja2k j
2pk

D .� cos2 t C' sin2 t/p1C .� sin2 t C' cos2 t/p2:

If .�; '/ D .1; 0/ this becomes q1 D p1 cos2 t C p2 sin2 t which is equivalent to
.p1 � p2/ cos2 t D q1 � p2 , that is cos2 t 2 Q. This is impossible by definition
of At . Similarly, when .�; '/D .0; 1/ we again have a contradiction. Finally, when
.�; '/D .1; 1/ we get q1C q2 D p1Cp2 , which contradicts our hypothesis.
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Recall that the projection L�1 of a plane � as in Proposition 5.1 onto the first factor is
given by

L�1 D Span
˚
ˆ�1

1 .AdA�
zX /; ˆ�1

1 .AdA�
zY /
	

D Span
˚
ˆ�1

1 .AdA�.ˆ1X //; ˆ�1
1 .AdA�.ˆ1Y //

	
:

Equation (3) provides us with conditions for L�1 to have zero-curvature with respect
to h ; i1 but, if we assume that L�2 has zero-curvature, since .G;K/ is a rank-one
symmetric pair the conditions reduce to

(45)
�
.AdA� .ˆ1X //p ; .AdA� .ˆ1Y //p

�
D 0:

That is, the p components of AdA� .ˆ1X /p and AdA� .ˆ1Y /p must be linearly de-
pendent. There are three possible cases:

.AdA� .ˆ1X //p D 0

.AdA� .ˆ1Y //p D 0

.AdA� .ˆ1X //p D s .AdA� .ˆ1Y //p

for some s 2R�f0g.

Recall that �W Dˆ1.W /DWpC�1Wk , �1 2 .0; 1/, and that

AdA�
�W D nC1X

k;`D1

xakia j̀ zwk`

where �W D . zwij / and W 2 g. Then, since p is completely determined by the first row
of vectors in g, we may abuse notation to write

(46) .AdA�
�W /p D

 
nC1X

k;`D1

xak1a j̀ zwk`

ˇ̌̌
j D 2; : : : ; nC 1

!
:

Lemma 5.3 Let � be a zero-curvature plane at .At ; I/2G�G as given by Proposition
5.1(iv). If p1 ¤ p2 and p1Cp2 ¤ q1C q2 then � cannot be horizontal.

Proof By (46) we have

.AdA�t
.ˆ1X //p D .� cos2 t xx2� sin2 t x2;� cos t xx3; : : : ;� cos t xxnC1/

.AdA�t
.ˆ1Y //p D .i�1.ˇ� 1/ cos t sin t;��1 sin t xy3; : : : ;��1 sin t xynC1/ :

If .AdA�t
.ˆ1X //pD 0 then xj D yj D 0 for all j D 3; : : : ; nC1, since xj D�ix2yj ,

j D 3; : : : ; nC 1. Thus ˇ D 1 and Y D diag.i; i; 0; : : : ; 0/. By Lemma 5.2 Y cannot
determine a horizontal vector.
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If .AdA�t
.ˆ1Y //pD 0 then Y D diag.i; i; 0; : : : ; 0/ and, again, Lemma 5.2 shows that

� cannot be horizontal.

Finally we examine the situation .AdA�t
.ˆ1X //pD s.AdA�t

.ˆ1Y //p for some nonzero
s 2 R. Then cos t xj D s�1 sin t yj implies that �i cos t x2yj D s�1 sin t yj for
j D 3; : : : ; nC1, since xj D�ix2yj for j D 3; : : : ; nC1. We have already shown that
if � is to be horizontal the yj cannot all be zero. Therefore x2D i.s�1 sin t=cos t/2 iR.

Now .�ˆ�1
1
.AdA�t

.ˆ1X //; ˆ�1
2
.ˆ1X // is a horizontal vector if and only if the equa-

tion hX;AdAt
P �Qi0 D 0 is satisfied; that is, if and only if

0D

nC1X
`D1

Im

 
a1`

nC1X
kD2

xak`xk

!
p`

D Im.a11xa21x2/p1C Im.a12xa22x2/p2

D cos t sin t .p1�p2/ Im.x2/

where again we recall that hV;W i0 D �Re tr.V W /. By hypothesis and definition
of At we have x2 D i Im.x2/D 0, which contradicts the assumption that x2 ¤ 0.

Lemma 5.4 Let � be a plane at .At ; I/ 2 G�G as determined by Proposition 5.1(v).
Then � does not have zero curvature at .At ; I/.

Proof Following (46) we write

.AdA�t
.ˆ1X //p D .�i�1˛ cos t sin t;� cos t xx3; : : : ;� cos t xxnC1/

.AdA�t
.ˆ1Y //p D .i�1ˇ cos t sin t;��1 sin t xy3; : : : ;��1 sin t xynC1/ :

If .AdA�t
.ˆ1X //pD0 then X D0, which is a contradiction since � is two-dimensional.

Similarly, .AdA�t
.ˆ1Y //p D 0 gives a contradiction. On the other hand, if there

is some nonzero s 2 R such that .AdA�t
.ˆ1X //p D s.AdA�t

.ˆ1Y //p then we find
cos t xj D s�1 sin t yj , j D 3; : : : ; nC 1. However, since

PnC1
jD3 xj xyj D 0, this

implies that xj D yj D 0 for all j D 3; : : : ; nC 1. But, by hypothesis, xj cannot
all be zero for planes of this type, and so we have a contradiction. Therefore, by the
discussion following (45), � cannot admit zero-curvature at .At ; I/.

Proof of Theorem B If p1 D � � � D pnC1 then we may assume without loss of
generality that pi D 0, for all i D 1; : : : ; nC 1. Since the action is free we must have
.q1; q2/¤ .0; 0/. Hence, by Tapp [25], we are done.

As discussed in Section 1, a permutation of the integers p1; : : : ;pnC1 induces a
diffeomorphism E4n�1

p;q �! E4n�1
p;q . Therefore, if pi ¤ pj for some i ¤ j , we may
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assume that p1 ¤ p2 . If p1Cp2 ¤ q1C q2 then we are done by Proposition 5.1 and
Lemmas 5.2, Lemma 5.3 and 5.4.

Finally, if p1 ¤ p2 but p1Cp2 D q1C q2 , then the freeness condition (29) implies
that either .p1;p2; : : : ;pnC1/D .1; : : : ; 1;�1; : : : ;�1/ and .q1; q2/D .0; 0/ (up to
sign and permutations of the pi ), where #fi j pi D�1g 2 fb.nC 2/=2c; ng, or there is
some pk 62 fp1;p2g, k 2 f3; : : : ; nC 1g.

In the latter case we may permute and relabel the pi such that p1Cp2 ¤ q1C q2 ,
in which case we are done as above. In the former case we may assume that p1 D 1,
p2 D�1 and p3 D�1 (after reordering if necessary). Then, for

A0 WD

0BBBBBBB@

1=2 1=
p

2 1=2

�1=2 1=
p

2 �1=2

�1=
p

2 0 1=
p

2

In�2

1CCCCCCCA
2 U.nC 1/;

we may repeat the approaches used in the proofs of Lemmas 5.2, 5.3 and 5.4 to rule
out the existence of any horizontal zero-curvature planes at .A0; I/ 2G�G. Note that,
unlike in the proof of Lemma 5.4, it is necessary to show that a plane as determined by
Proposition 5.1(v) cannot have zero curvature and be horizontal at the same time.

6 Topology of M13 and N11

We turn now to the topological assertions of Theorem A regarding the biquotients
M13 D SO.8/==.S1 �G2/ and N11 D SO.8/==.SO.3/�G2/, namely that they have
the same cohomology rings but are not homeomorphic to CP3

� S7 and S4 � S7

respectively.

Theorem 6.1 The biquotients M13 and N11 have the same cohomology rings as
CP3
� S7 and S4 � S7 respectively. In particular M13 and N11 are not manifolds

known to admit positive curvature.

Proof In Section 3 we established that M13 and N11 are the total spaces of S7 –
bundles over CP3 and S4 respectively. Given an arbitrary fibration S7 �! E �! B,
where B is a simply connected, compact manifold with dim B� 7, the Euler class e is
trivial since H8.BIZ/D 0 and so the Gysin sequence splits into short exact sequences,
from which it immediately follows that Hj .EIZ/D Hj .B� S7IZ/, for all j . Now
M13 and N11 are quotients of S7 � S7 by S1 and S3 respectively. A quick glance
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at the Serre spectral sequences of these fibrations shows that the ring structures of
H�.M13IZ/ and H�.N11IZ/ agree with those of H�.CP3

�S7IZ/ and H�.S4�S7IZ/
as desired.

In order to distinguish M13 and N11 from the products CP3
� S7 and S4 � S7 ,

respectively, we want to analyse their Pontrjagin classes. There is a general procedure
(developed in Borel and Hirzebruch [5], Eschenburg [10] and Singhof [23]) for com-
puting the R–Pontrjagin class of a biquotient G==U, where R is a coefficient ring such
that H�.GIR/ and H�.UIR/ have no torsion, and the action of U on G is (effectively)
free. Let �W U �! G�G denote the embedding and assume that we have such an R.

We adopt the following notation: For a compact, connected Lie group L, let TL denote
the maximal torus and WL the Weyl group. Let EL be a contractible space on which L
acts freely. The classifying space of L is the quotient BL WD EL=L. A product of Lie
groups L1 and L2 is written L1L2 .

Consider the following commutative diagram of fibrations

G�EGG //

��

G�EGG

��
G�U EGG

'G //

'U

��

G�GG EGG D B�G

B�
��

BU B�
// BGG

where 'G and 'U are the respective classifying maps, and �W G �! GG denotes
the diagonal embedding. Now, since projection onto the first factor in each case is a
homotopy equivalence, we have G' G�EGG and G==U' G�U EGG . Thus, up to
homotopy, we can consider the diagram above as:

(47)

G //

��

G

��
G==U

'G //

'U

��

BG

B�
��

BU B�
// BGG

We would like to use the Serre spectral sequences of the fibrations on the left and right,
as well as the commutativity of the diagram, to compute the Pontrjagin class of (the
tangent bundle of) G==U. We will need to know H�.GIR/, H�.BUIR/, H�.BGGIR/ and
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the homomorphisms .B�/�W H�.BGGIR/ �! H�.BUIR/ and .'U/
�W H�.BUIR/ �!

H�.G==UIR/.

Let L be a compact, connected Lie group and R a ring such that H�.LIR/ has no
torsion. Then

(48) H�.LIR/Dƒ.y1; : : : ;yr /

where r D rank.L/. Hence, from the Serre spectral sequence of the universal bundle
L �! EL �! BL ,

(49) H�.BLIR/D RŒxy1; : : : ; xyr �

where xyj denotes the transgression of yj .

Let .t1; : : : ; tr / be coordinates of the maximal torus TL . By an abuse of notation we
identify tj with the element tj 2 H1.TLIR/. The corresponding transgression arising
from the Serre spectral sequence for TL �! ETL �! BTL is xtj 2 H2.BTL IR/. Since L
does not have any torsion in its R–cohomology we have

(50) H�.BLIR/D H�.BTL IR/
WL D RŒxt1; : : : ;xtr �WL :

Thus we have explicit well-defined generators of H�.BLIR/ which we identify with xyj ,
j D 1; : : : ; r .

Suppose now that hW L1 �! L2 is a homomorphism of Lie groups. Then the commu-
tative diagram

L1
h // L2

TL1

?�

OO

h

// TL2

?�

OO

induces a commutative diagram of classifying spaces

(51)

BL1

Bh // BL2

BTL1

OO

Bh

// BTL2

OO
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which in turn induces the commutative diagram:

(52)

H�.BL1
/

��

H�.BL2
/

.Bh/
�

oo

��
H�.BTL1

/ H�.BTL2
/

.Bh/
�

oo

In particular, by (50), we see that .Bh/
� can be determined by simply understanding

h.TL1
/� TL2

.

Consider again diagram (47). Recall that, since there is no torsion,

H�.BGGIR/D H�.BGIR/˝H�.BGIR/:

Then H�.BGGIR/ is generated by classes of the form xyj ˝ 1 and 1 ˝ xyj , j D

1; : : : ; r D rank.G/. Consider the diagonal embedding �W G ,! GG. In coordinates
�jTG is given by tj 7�! .tj ; tj /, j D 1; : : : ; r . We have commutative diagrams as in
(51) and (52). Now

��W H1.TGIR/˝H1.TGIR/ �! H1.TGIR/

tj ˝ 1 7�! tj

1˝ tj 7�! tj

which in turn implies

.B�/�W H2.BTG IR/˝H2.BTG IR/ �! H2.BTG IR/

xtj ˝ 1 7�! xtj

1˝xtj 7�! xtj :

Therefore, by (50),

.B�/�W H�.BGGIR/ �! H�.BGIR/

xyj ˝ 1 7�! xyj

1˝ xyj 7�! xyj :

Since the diagram (47) is commutative we see that

(53)
'�G.xyj /D '

�
G..B�/

�.xyj ˝ 1//D '�U..B�/
�.xyj ˝ 1//

'�G.xyj /D '
�
G..B�/

�.1˝ xyj //D '
�
U..B�/

�.1˝ xyj //:
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We remark that, by naturality of spectral sequences, one can deduce from (47) that

H�.G==UIR/D H�
 

H�.GIR/˝H�.BUIR/˝
dyj D '

�
U..B�/�.xyj ˝ 1//�'�U..B�/�.1˝ xyj //

˛! :
Let us now focus on computing the Pontrjagin class of G==U. Let � be the tangent
bundle of G==U. In analogue with Singhof [23], we introduce the following vector
bundles over G==U: First, let ˛G WD .GG=U/�G g, where G acts on .GG=U/� g via

g ? .Œg1;g2�;X /D .Œgg1;gg2�;Adg X /

with g;g1;g22G, Œg1;g2�D .g1;g2/�U2GG=U, and X 2g. Second, let ˛U WDG�Uu,
where u� g˚ g is the Lie algebra of U and U acts on G� u via

.u1;u2/ ? .g; .Y1;Y2//D .u1gu�1
2 ; .Adu1

Y1;Adu2
Y2//

with g 2 G, .u1;u2/ 2 U and .Y1;Y2/ 2 u. Then, as in Singhof [23, Proposition 3.2]:

Lemma 6.2 � ˚˛U D ˛G .

Proof Recall that, since U acts on G via .u1;u2/?gDu1gu�1
2

, .u1;u2/2U, g 2G,
the vertical subspace at g 2 G (after left-translating back to e 2 G) is given by

Vg D fAdg�1 Y1�Y2 j .Y1;Y2/ 2 ug � g:

Moreover, since the action of U on G is free, we have

(54) f.Y1;Y2/ 2 u j Adg�1 Y1 D Y2 for some g 2 Gg D f0g:

Given g 2 G, consider the maps

 gW g �! ˛G

X 7�! ŒŒg�1; e�;X �

f W ˛U �! ˛Gand

Œg; .Y1;Y2/� 7�! ŒŒg�1; e�;Adg�1 Y1�Y2�:

It is easy to check that f is well-defined and that fŒg�..˛U/Œg�/ D  g.Vg/, where
.˛U/Œg� is the fibre of the bundle ˛U over Œg�D g �U 2G==U. Furthermore, (54) allows
us to deduce that f is injective.

If we now equip G with a bi-invariant metric, then (after left-translation to the identity
in G) the horizontal subspace at g is given by

Hg D
˚
X jX 2 g; X ? Vg

	
� g:
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Note that U acts on the horizontal distribution by taking X 2Hg to Adu2
X 2Hu1gu�1

2
,

where .u1;u2/2U. Let LHDH=U be the orbit space under the U action. In particular,
� Š LH and we can represent the tangent space at Œg� 2 G==U by

LHŒg� D
˚
Œg;X � jX 2 g; X ? Vg

	
where the g in Œg;X � serves only to keep track of the base point.

Recall that each point in ˛G may be represented as ŒŒg1;g2�;Adg2
X �D ŒŒg�1

2
g1; e�;X �,

for some g1;g2 2 G and X 2 g. Consider the map

qW ˛G �! LHŒg� D �

ŒŒg1;g2�;Adg2
X � 7�! Œg�1

1 g2;X
?�

where X? is the component of X 2 g orthogonal to Vg�1
1

g2
. Clearly q is surjective.

The fact that q is well-defined follows from noticing that .Adu2
X /? D Adu2

.X?/ 2

Hu1gu�1
2

, for all X 2 g, g 2 G and .u1;u2/ 2 U.

Now q.ŒŒg1;g2�;Adg2
X �/D 0 for some ŒŒg1;g2�;Adg2

X � 2 ˛G if and only if X? D

0 2 Hg�1
1

g2
, that is, X 2 Vg�1

1
g2

. Thus ŒŒg1;g2�;Adg2
X � D ŒŒg�1

2
g1; e�;X � 2

fŒg�1
1

g2�
..˛U/Œg�1

1
g2�
/ and we have ker q D f .˛U/. Therefore ˛G=f .˛U/ D � . In

other words, ˛G D � ˚˛U as desired.

Recall from Borel and Hirzebruch [5] that, if V is a representation of a Lie group L,
then the homogeneous vector bundle ˛L D P �L V associated to the L–principal
bundle P�! B WD P=L is the pullback under the classifying map 'LW B�! BL of the
vector bundle EL �L V associated to the universal L–principal bundle EL �! BL , ie
˛L D '

�
L .EL �L V /. In particular, from Borel and Hirzebruch [5] and Singhof [23] we

know that the Pontrjagin class of the bundle ˛L �! B is given by

p.˛L/D 1C p1.˛L/C p2.˛L/C � � � D '
�
L .a/; a WD

Y
˛i2�

C
L

.1C x̨2
i /

where �CL is the set of positive weights of the representation of L on V . We have
identified ˛i 2 H1.TLIR/ with x̨i 2 H2.BTL IR/ via transgression, and so it follows
that a 2 H�.BTL IR/

WL Š H�.BLIR/.

The vector bundles ˛U and ˛G are associated to principal U and G bundles respectively
and, in this case, the weights of the defining representations are the roots of the
corresponding Lie groups.

Since p.V ˚W /Dp.V /`p.W /, for vector bundles V and W over some manifold M,
we have

p.�/ p.˛U/D p.˛G/:
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By our discussion above and since inverses are well-defined in the polynomial algebra
H�.BUIR/ it follows that

p.�/D '�G.a/'
�
U.b
�1/

where a WD
Q
˛i2�

C
G
.1C x̨2

i / and b WD
Q

ǰ2�
C
U
.1C x̌2j /. In particular,

p1.�/D p1.˛G/� p1.˛U/

D '�G

 X
˛i2�

C
G

x̨
2
i

!
�'�U

 X
ǰ2�

C
U

x̌2
j

!
:(55)

In our situation, the Lie groups G D SO.8/ and Uk WD SO.k/�G2 , with k D 2; 3,
have no torsion in their cohomology for coefficients in RD Zp , p an odd prime (see
Mimura and Toda [19, Corollary 3.15, Theorem 5.12]). We use the process outlined
above to compute the Zp –Pontrjagin classes of M13 and N11 . Before we continue we
establish an easy lemma which will prove useful in the topological computations to
follow.

Lemma 6.3 Consider a triple .r1; r2; r3/ such that
P

ri D 0. Let �i.r/ and �i.r
2/

denote the i –th elementary symmetric polynomials in r1; r2; r3 and r2
1
; r2

2
; r2

3
respec-

tively. Then �1.r
2/D�2�2.r/ and �2.r

2/D �2.r/
2 .

Proof Since �1.r/D
P

ri D 0 we have

0D �1.r/
2

D .r2
1 C r2

2 C r2
3 /C 2.r1r2C r1r3C r2r3/

D �1.r
2/C 2�2.r/

as desired. On the other hand:

�2.r/
2
� �2.r

2/D .r1r2C r1r3C r2r3/
2
� .r2

1 r2
2 C r2

1 r2
3 C r2

2 r2
3 /

D 2.r2
1 r2r3C r1r2

2 r3C r1r2r2
3 /

D 2r1r2r3.r1C r2C r3/

D 0

In [9, pages vi i and 139], Eschenburg provides a beautiful diagram which explicitly
describes the embedding of the root system G2 into B3 . Recall that B3 is the root
system corresponding to the Lie algebra so.7/ and is given by

B3 D f˙ti j 1� i � 3g[ f˙.ti ˙ tj / j 1� i < j � 3g:
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The root system G2 lies on a hypersurface in SpanfB3g and is given by

G2 D f˙si j 1� i � 3g[ f˙.si � sj / j 1� i < j � 3g

where si D
1
3
.2ti � tj � tk/, fi; j ; kg D f1; 2; 3g. Notice that

P
si D 0 and that

si � sj D ti � tj 2 B3 . Furthermore, si is the projection of ti 2 B3 and �.tj C tk/ 2 B3

onto the hypersurface containing G2 .

Since the Lie group G2 is simply connected and has no centre, we see that the inclusions

exp�1.I/D integral lattice of G2 � root lattice of G2 � weight lattice of G2

are in fact equalities. Therefore, by our above discussion of the roots of G2 , the
integral and weight lattices of G2 are spanned by fsi j 1 � i � 3g,

P
si D 0. Thus

by an abuse of notation we may assume that fsi j 1 � i � 3g,
P

si D 0, spans
H1.TG2

IZ/D Hom.�;Z/, where TG2
is a maximal torus of G2 and � is the integral

lattice of G2 .

Proposition 6.4 Let p be an odd prime. The Zp first Pontrjagin classes of M13

and N11 are
p1.M

13/D 2˛2 and p1.N
11/D ˇ

respectively, where ˛ is a generator of H2.M13IZp/ D Zp and ˇ is a generator of
H4.N11IZp/D Zp .

Proof Let G D SO.8/ and let Uk WD SO.k/ � G2 , k D 2; 3, act freely on G as
described in Section 3 with quotients M13 and N11 respectively. Let �k W Uk ,! GG,
k D 2; 3, denote the respective inclusions.

For p an odd prime, the Zp –cohomology of G and Uk is

H�.GIZp/Dƒ.y1;y2;y3;y4/; y1 2 H3;y2; y4 2 H7; y3 2 H11

H�.Uk IZp/Dƒ.wk ;x1;x2/; wk 2 H2k�3.SO.k//; xi 2 H8i�5.G2/:

Let TG and TU be the maximal tori of G and Uk respectively, with coordinates being
given by .t1; t2; t3; t4/ and .u; s1; s2; s3/,

P
si D 0, respectively. By an abuse of

notation (and our earlier discussion of the roots of G2 ) we will identify ti , u and sj

with the elements ti 2 H1.TG/ and u; sj 2 H1.TU/. The corresponding transgressions
are xti 2 H2.BTG/ and xu;xsj 2 H2.BTU/.

The Weyl group WG acts on H�.BTG/ via permutations in xti and an even number of
sign changes. Therefore a basis for H�.BTG/

WG is given by elementary symmetric
polynomials �i.xt

2/ WD �i.xt
2
1
; : : : ;xt2

4
/, i D 1; 2; 3, and xt1xt2xt3xt4 . Hence, by (50), the

generators of H�.BG/ can be chosen as xyi WD �i.xt
2/ 2 H4i , i D 1; 2; 3, and xy4 WD

xt1xt2xt3xt4 2 H8 .
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The Weyl group WU2
is the dihedral group of order twelve. It acts trivially on u,

while the action on the root system G2 is by rotations of �=3 and by reflections
through the horizontal axis. Therefore, given our description of the root system of G2

above, WU2
acts on H�.BTU/ via permutations in xsi and a simultaneous sign change

of all xsi . On the other hand, WU3
D Z2 �WU2

, where the Z2 factor acts trivially
on the si and by a sign change on u. Thus elements of H�.BTU/ which are invariant
under WUk

are given by sums and products of xuk�1 and the elementary symmetric
polynomials �2.xs/ WD �2.xs1;xs2;xs3/ and �i.xs

2/ WD �i.xs
2
1
;xs2

2
;xs2

3
/, i D 1; 2; 3. However,

since
P

si D 0, Lemma 6.3 shows that a basis for H�.BTU/
WUk is given by xuk�1 and

the symmetric polynomials �2.xs/ and �3.xs
2/. By (50), generators of H�.BUk

/ are
given by xwk WD xu

k�1 2 H2.k�1/ , xx1 WD �2.xs/ 2 H4 and xx2 WD �3.xs
2/ 2 H12 .

Consider �k W Uk ,! GG as above. By (12), �k jTU W TU �! TGG has (in coordinates)
the form �k jTU.u; s1; s2; s3/D ..0; 0; 0;u/; .0; s1; s2;�s3//. Hence

.�k jTU/
�
W H1.TGG/ �! H1.TU/

ti ˝ 1 7�! 0; i D 1; 2; 3

t4˝ 1 7�! u

1˝ t1 7�! 0

1˝ ti 7�! si�1; i D 2; 3

1˝ t4 7�! �s3

from which it follows:

.B�k jTU
/�W H2.BTGG/ �! H2.BTU/

xti ˝ 1 7�! 0; i D 1; 2; 3

xt4˝ 1 7�! xu

1˝xt1 7�! 0

1˝xti 7�! xsi�1; i D 2; 3

1˝xt4 7�! �xs3

Therefore, by (52) we have:

(56)

.B�k /
�
W H�.BGG/ �! H�.BUk

/

xy1˝ 1 7�! xu2

xyi ˝ 1 7�! 0; i D 2; 3; 4

1˝ xyi 7�! �i.xs
2/; i D 1; 2; 3

1˝ xy4 7�! 0
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In particular, .B�k /
�.1˝ xy1/ D �2xx1 , .B�k /

�.1˝ xy2/ D xx
2
1

(by Lemma 6.3) and
.B�k /

�.1˝ xy3/D xx2 .

We are now in a position to compute the first Pontrjagin class of G==Uk . Recall that
the positive roots of GD SO.8/ are ti ˙ tj , 1� i < j � 4. Hence:X

˛i2�
C
G

x̨
2
i D

X
1�i<j�4

�
.xti �xtj /

2
C .xti Cxtj /

2
�

D 2
X

1�i<j�4

.xt2
i C
xt2
j /

D 6

4X
iD1

xt2
i

D 6xy1

Since SO.2/ has no (positive) roots and SO.3/ has only one positive root, namely u,
we may denote the positive root of SO.k/ by .k�2/u, for kD 2; 3, respectively. From
our earlier description of the roots of G2 , the positive roots of Uk D SO.k/�G2 are

.k � 2/u; s1; s2; �s3; s1� s3; s2� s1; s2� s3

where
P

si D 0. Then:X
ǰ2�

C
Uk

x̌2
j D .k � 2/xu2

Cxs2
1 Cxs

2
2 Cxs

2
3 C .xs1�xs3/

2
C .xs2�xs1/

2
C .xs2�xs3/

2

D .k � 2/xu2
C 3�1.xs

2/� 2�2.xs/

D .k � 2/xu2
� 8�2.xs/ by Lemma 6.3

D .k � 2/xu2
� 8xx1

Note that, by (53) and (56),

'�G.xy1/D '
�
Uk
..B�k /

�.xy1˝ 1//D '�Uk
.xu2/

� 2'�Uk
.xx1/D '

�
Uk
..B�k /

�.1˝ xy1//D '
�
Uk
..B�k /

�.xy1˝ 1//D '�Uk
.xu2/:and

It follows now from (55) that:

p1.G==Uk/D p1.˛G/� p1.˛Uk
/

D 6'�G.xy1/� .k � 2/'�Uk
.xu2/C 8'�Uk

.xx1/

D 6'�Uk
.xu2/� .k � 2/'�Uk

.xu2/� 4'�Uk
.xu2/

D .4� k/'�Uk
.xu2/ 2 H4.G==Uk/
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It remains only to show that '�Uk
.xu2/ is a generator of H4.G==Uk/. To achieve this,

consider the Serre spectral sequence for the fibration G �! G==Uk �! BUk
.

Suppose k D 2. Notice that h xw2i D H2.BU2
/ D E2;0

2
will survive until E1 since

H�.G/ contains no elements of degree 1.

On the other hand, suppose now that k D 3. By (56) the generator y1 2 H3.G/ D
E0;3

2
D E0;3

4
gets mapped under d4 to

d4.y1/D .B�3/
�.xy1˝ 1/� .B�3/

�.1˝ xy1/D xu
2
C 2xx1 2 E4;0

2 4 D E4;0
D H4.BU3

/:

The generators xw3 D xu
2 and xx1 of H4.BU3

/ are both mapped to zero by d4 . Thus,
the E4;0

5
term is a Zp generated by xw3 D xu

2 and survives to E1 .

Recall that the classifying map '�Uk
is the edge homomorphism

'�Uk
W Hi.BUk

/D Ei;0
2 � Ei;0

1 ,! Hi.G==Uk/:

By the discussion above '�Uk
. xwk/D '

�
Uk
.xuk�1/¤ 0, k D 2; 3. Hence '�Uk

. xwk/ is a
generator of H2.k�1/.G==Uk/D Zp . If k D 3 we are done. When k D 2, we know
from Theorem 6.1 that H4.M13/ is generated by the square of a generator of H2.M13/.
That is, '�U2

. xw2
2
/D '�U2

.xu2/ is a generator of H4.M13/.

Remark 6.5 Since H8 and H12 are trivial for each of the manifolds M13 and N11 ,
we have in fact computed their total Pontrjagin classes pD 1C p1 in Zp coefficients.

Remark 6.6 In terms of integral cohomology, the proposition tells us only that
p1.M

13/ and p1.N
11/ are nontrivial and not divisible by any primes p � 3. Thus

p1.M
13/ and p1.N

11/ have the form ˙2` 2 ZD H4 , for some ` 2N [f0g.

Corollary 6.7 N11 is not homeomorphic to S4 �S7 .

Proof By the previous remark, in integral coefficients p1.N
11/ D ˙2` 2 Z D

H4.N11IZ/, for some ` 2N[f0g. However, since all (integral) Pontrjagin classes for
spheres are trivial and integral Pontrjagin classes are homeomorphism invariants, N11

cannot be homeomorphic to a product of spheres.

Since p1.CP3
� S7/D 4 2 , where  generates H2.CP3

� S7IZ/, we are unable to
distinguish M13 and CP3

�S7 using the proposition. We need to explicitly compute
the integral Pontrjagin class of M13 . We can accomplish this by “hot-wiring” the
technique for computing Pontrjagin classes in the absence of torsion in the cohomology
groups.

Geometry & Topology, Volume 15 (2011)



252 Martin Kerin

Before we begin we establish two topological statements which will be used in the
proof of Theorem 6.10. From now on we will always assume that our cohomology
groups have integral coefficients, and by spectral sequence we will always mean Serre
spectral sequence.

Proposition 6.8 The classifying space BG2
of G2 , has low dimensional integral

cohomology groups H1 D H2 D H3 D H5 D 0 and H4 D Z with generator xx D �2.xs/,
where �2.xs/ WD �2.xs1;xs2;xs3/,

P
xsi D 0, and xsi 2 H2.BTG2

/, i D 1; 2; 3, are the
transgressions of the elements si 2 H1.TG2

/, i D 1; 2; 3, which span the integral
lattice of G2 .

Proof Consider the universal bundle G2 �! EG2
�! BG2

where EG2
is contractible.

From Whitehead [28, Theorem 5.17], we know that Hj .G2/D 0, j D 1; 2; 4; 5, and
H3.G2/DZ. Let x be a generator of H3.G2/. Since EG2

is contractible all entries in
the spectral sequence for the fibration G2 �! EG2

�! BG2
must get killed off. Since

d4W E0;3
4
�! E4;0

4
is the only possible nontrivial differential with domain E0;3

4
it must

map x 2 H3.G2/ to a generator xx of H4.BG2
/, and so H4.BG2

/D Z. Similarly it is
clear from the spectral sequence that Hj .BG2

/D 0 for j D 1; 2; 3; 5.

Now consider the fibration S6DG2=SU.3/�!BSU.3/�!BG2
. The spectral sequence

associated to this fibration shows that xx 2 E4;0
2
D H4.BG2

/ survives to E1 . Thus,
since there are no other nonzero entries on the corresponding diagonal in E1 , we
see that H4.BG2

/ D H4.BSU.3//. Recall that H�.BSU.3// is a polynomial algebra
generated by the elementary symmetric polynomials �i.xs/D �i.xs1;xs2;xs3/, i D 2; 3,
in the transgressions xsj of sj 2H1.TSU.3//, j D 1; 2; 3, where the sj span the integral
lattice of SU.3/. Note that

P
sj D 0, TG2

D TSU.3/ and deg.�i.xs//D 2i . Therefore
H4.BG2

/ is generated by �2.xs/ as desired.

Proposition 6.9 The low dimensional integral cohomology groups of the manifold
SO.8/=G2 D .S7 �S7/=Z2 are Hj .SO.8/=G2/D Hj .RP7/, 0� j � 6.

Proof Consider the spectral sequence for the fibration

RP7
D SO.7/=G2 �! SO.8/=G2 �! SO.8/=SO.7/D S7:

Recall:

Hj .RP7/D

8̂<̂
:

Z if j D 0; 7;

Z2 if j D 2; 4; 6;

0 if j D 1; 3; 5:
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It is clear that each E0;j
2
DHj .RP7/, j �5, survives to E1 . For E0;6

2
DH6.RP7/DZ2

notice that there are no nontrivial homomorphisms Z2 �! Z and so the differential
d7W E0;6

7
DZ2 �! E7;0

7
DZ must be trivial. Therefore E0;6

2
DH6.RP7/ also survives

to E1 . Since there are no other nonzero entries on the corresponding diagonals we get
the desired result.

We are now ready to complete the proof of Theorem A(i).

Theorem 6.10 The first integral Pontrjagin class of M13DSO.8/==.S1�G2/ is given by

j p1.M
13/j D 8z2

where z is a generator of H2.M13IZ/D Z. In particular, M13 is not homeomorphic
to CP3

�S7 .

Proof Consider once again diagram (47), with GD SO.8/ and UD S1 �G2 such
that G==UDM13 . In the proof of Proposition 6.4 we followed the usual techniques
of Borel and Hirzebruch [5], Eschenburg [10] and Singhof [23] when there is no
torsion in cohomology, namely we computed B� and B� and then used the fact
that the diagram commutes in order to compute the Zp Pontrjagin class, for odd
primes p . However, since SO.8/ and G2 have torsion in integral cohomology, we need
to adopt a different approach in order to compute the integral Pontrjagin class. Since
H8.M13/D H12.M13/D 0 we can restrict our attention to the first integral Pontrjagin
class p1.M

13/ 2 H4.M13/. The key idea to be taken from the proof of Proposition 6.4
is that we computed the first Pontrjagin classes of some vector bundles over BG and
BU , then pulled them back to M13 under the classifying maps 'G and 'U respectively.
As it turns out, the first Pontrjagin classes of these vector bundles over BG and BU are
the same in integral coefficients as in Zp coefficients p � 3. Our strategy, therefore, is
to compute the maps '�UW H4.BU/ �! H4.M13/ and '�GW H4.BG/ �! H4.M13/ and
pull back the respective first Pontrjagin classes.

As a first step in computing '�UW H4.BU/ �! H4.M13/ we notice that H�.U/ D
H�.S1/˝H�.G2/ and H�.BU/ D H�.BS1/˝H�.BG2

/ since H�.S1/ and H�.BS1/

are torsion-free. Therefore

Hj .U/D

8̂̂̂̂
<̂
ˆ̂̂:

Z if j D 0;

ZD hwi if j D 1;

ZD hxi if j D 3;

0 if j D 2; 4; 5;

Geometry & Topology, Volume 15 (2011)



254 Martin Kerin

where w is a generator of H1.S1/ and x is a generator of H3.G2/, and applying
Proposition 6.8,

Hj .BU/D

8̂̂̂̂
<̂
ˆ̂̂:

Z if j D 0;

ZD h xwi if j D 2;

Z˚ZD h xw2i˚ hxxi if j D 4;

0 if j D 1; 3; 5;

where xw is the transgression of w resulting from the spectral sequence for the universal
bundle of S1 and generates H2.BS1/ (hence generates H�.BS1/DZŒ xw�), and xx is the
transgression of x resulting from the spectral sequence for the universal bundle of G2

and generates H4.BG2
/.

Recall that 'UW G==U �! BU is the classifying map since we have the following
diagram of principal U–bundles

U //

��

U

��
G�EU

�2 //

��

EU

��
G�U EU �2

// BU

where �2 denotes projection onto the second factor and U �! EU �! BU is the uni-
versal bundle. Since EU is contractible, projection onto the first factor gives homotopy
equivalences G� EU ' G and G�U EU ' G==U. The resulting map G==U �! BU

is 'U . Hence 'U is the classifying map. Therefore, up to homotopy, we may consider
the following commutative diagram of fibrations:

U //

��

U

��
G //

��

EU

��
G==U

'U
// BU
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Consider first the spectral sequence for the fibration on the left. Recall that H�.M13/D

H�.CP3
�S7/. Hence:

Hj .G==U/D

8̂̂̂̂
<̂
ˆ̂̂:

Z if j D 0;

ZD hzi if j D 2;

ZD hz2i if j D 4;

0 if j D 1; 3; 5:

Since GD SO.8/ we have from Čadek, Mimura and Vanžura [7]:

Hj .G/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z if j D 0;

0 if j D 1;

Z2 D hri if j D 2;

ZD hyi if j D 3;

Z2 D hr
2i if j D 4:

Since H1.G/D 0 we see that d2W E0;1
2
D hwi �! E2;0

2
D hzi must have trivial kernel,

ie d2.w/D kz for some k 2 Z, k ¤ 0. Then E0;2
3
D hzi=hkzi survives to E1 and

since H2.G/D Z2 we must therefore have k D˙2, ie d2.w/D˙2z .

On the other hand, the spectral sequence shows that on the E4 –page we have the
differential d4W E0;3

4
D hxi �! E0;4

4
D hz2i=h2z2i. However, since H3.G/D Z and

H4.G/D Z2 , we must have d4.x/D 0 2 hz2i=h2z2i.

Since EU is contractible it is clear from the spectral sequence for the fibration on the
right that d2W E0;1

2
D hwi �! E2;0

2
D h xwi is an isomorphism with d2.w/ D xw , and

d4W E0;3
4
D hxi �! E4;0

4
D h xw2i˚ hxxi is given by d4.x/D xx .

By naturality of the spectral sequence we thus have for the left-hand fibration that
d2.w/ D '

�
U. xw/ 2 hzi and d4.x/ D '

�
U.xx/ 2 hz

2i=h2z2i. Therefore, since we have
already shown that d2.w/D˙2z 2 hzi and d4.x/D 0 2 hz2i=h2z2i, we find

'�U. xw/D˙2z 2 H2.G==U/D hzi

'�U.xx/D 2kz2
2 H4.G==U/D hz2

i; for some k 2 Z:(57)

We now turn our attention to computing '�GW H4.BG/ �! H4.M13/. In order to show
that 'GW G==U �! BG is the classifying map consider the commutative diagram of
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principal G–bundles:

G //

��

G

��
GG�U EGG //

��

GG�GG EGG

��
.�GnGG/�U EGG 'G

// .�GnGG/�GG EGG

Since GG�GG EGG D EGG and .�GnGG/�GG EGG DG�GG EGG D B�G we see that
the fibration on the right-hand side is the universal bundle for G. On the left-hand
side we have .�GnGG/�U EGGDG�U EGG , and projection onto the first factor gives
homotopy equivalences GG �U EGG ' GG=U and G �U EGG ' G==U. Thus up to
homotopy the diagram becomes

G //

��

G

��
GG=U //

��

EGG

��
G==U

'G
// BG

as desired. Recall that H3.G/Dhyi. The cohomology of BG is described in Brown [6]
and Feshbach [12], but for our purposes we need only that:

Hj .BG/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z if j D 0;

0 if j D 1; 2;

Z2 if j D 3;

Z if j D 4;

Z2 if j D 5:

Whilst proving Proposition 3.6 in [16] Grove and Ziller showed that, since ED EGG is
contractible, in the spectral sequence for the bundle G �! E �! BG the differential
d4W E0;3

4
D h2yi �! E4;0

4
D H4.BG/ is an isomorphism, ie 2y gets mapped to a

generator xy of H4.BG/ D Z. This follows from the facts that E2;2
2
D Z2 (by the

Universal Coefficient Theorem) and that d2W E0;3
2
D hyi �! E2;2

2
D Z2 must be onto.
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Therefore naturality of the spectral sequence implies that d4.2y/D'�G.xy/ in the spectral
sequence for the left-hand fibration G �! GG=U �! G==U, where H3.G/D hyi and
H4.BG/D hxyi.

In order to determine the exact value of '�G.xy/ 2 H4.G==U/ we need to examine the
spectral sequence for the left-hand fibration. First we must compute the cohomology
of GG=U in low-dimensions. Recall that GG=UD V8;6 � SO.8/=G2 , where V8;6 is
the Stiefel manifold SO.8/=SO.2/. From Čadek, Mimura and Vanžura [7] we find:

Hj .V8;6/D

8̂<̂
:

Z if j D 0; 2;

0 if j D 1; 3; 5;

Z2 if j D 4:

In Proposition 6.9 we computed the low dimensional cohomology groups of SO.8/=G2 .
From the general Künneth formula for cohomology (see Spanier [24, Theorem 11,
Section 5]) it follows that:

Hj .GG=U/D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

Z if j D 0;

0 if j D 1; 3;

Z˚Z2 if j D 2;

Z3
2

if j D 4;

Z2 if j D 5:

Since H4.GG=U/ D Z3
2

, in the spectral sequence for G �! GG=U �! G==U the
differential d2W E0;3

2
D H3.G/ D hyi �! E2;2

2
D Z2 must be trivial, ie E2;2

2
D Z2

must survive to E1 . It thus follows that Ei;j
2
D Ei;j

3
D Ei;j

4
for i � 5; j � 4. Since

H3.GG=U/D 0 the differential d4W E0;3
4
D hyi �! E4;0

4
D H4.G==U/D hz2i must be

given by d4.y/Dnz2 for some nonzero n2Z. On the other hand, since H4.GG=U/D
Z3

2
, E0;4

4
D E2;2

4
D Z2 and E1;3

4
D E3;1

4
D 0, the filtration for the spectral sequence

shows that nD˙2, ie d4.y/D˙2z2 . But we have already shown that d4.2y/D'�G.xy/.
Therefore

'�G.xy/D˙4z2
2 H4.G==U/D hz2

i:

Furthermore, while proving Lemma 5.4 in [16] Grove and Ziller showed that, by con-
sidering the spectral sequences of the fibrations SO.8/=SO.3/ �! BSO.3/ �! BSO.8/

and SO.3/=SO.2/ �! BSO.2/ �! BSO.3/ , we can let xy D �1.xt
2/D �1.xt

2
1
;xt2

2
;xt2

3
;xt2

4
/,

where .t1; : : : ; t4/ are the coordinates of a maximal torus TG of G and by abuse of
notation we identify ti 2 H1.TG/ with xti 2 H2.BTG/ via transgression.

We are now in a position to compute the first Pontrjagin class of M13DG==U. We have
already shown that, despite having torsion in cohomology, H4.BG/ Š H4.BTG/

WG
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and H4.BU/ Š H4.BTU/
WU since the generators are xy D �1.xt

2/ and xx D �2.xs/

respectively. Therefore, in the present setting, Equation (55) for p1 is still valid
for integral coefficients.

As in the proof of Proposition 6.4, p1.˛G/ D 6'�G.xy/. But '�G.xy/ D ˙4z2 . Hence
p1.˛G/D˙24z2 2 H4.G==U/.

Similarly, from the proof of Proposition 6.4 we have p1.˛U/D�8'�U.xx/. Thus, since
'�U.xx/D 2kz2 by (57), p1.˛U/D�16kz2 2 H4.G==U/, for some k 2 Z.

Therefore, by (55),

p1.�/D p1.˛G/� p1.˛U/

D 8.2k˙ 3/z2
2 H4.G==U/:

By Proposition 6.4 we know that p1.�/D p1.G==U/ is divisible only by 2. Therefore
we must have 2k˙ 3D˙1, which implies p1.G==U/D˙8z2 as desired.
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