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Topological properties of Hilbert schemes
of almost-complex four-manifolds II

JULIEN GRIVAUX

In this article, we study the rational cohomology rings of Voisin’s Hilbert schemes X Œn�

associated with a symplectic compact four-manifold X . We prove that these rings
can be universally constructed from H�.X;Q/ and c1.X / , and that Ruan’s crepant
resolution conjecture holds if c1.X / is a torsion class. Next, we prove that for any
almost-complex compact four-manifold X , the complex cobordism class of X Œn�

depends only on the complex cobordism class of X .

32Q60; 14C05, 14J35

1 Introduction

The Hilbert schemes of points X Œn� of a smooth projective complex surface X are
moduli spaces for finite subschemes of length n on X . By a result of Fogarty [16], the
varieties X Œn� are smooth crepant resolutions of the n–fold symmetric powers X .n/

of X , so that they present a strong geometric interest. Hilbert schemes of points
have been intensively studied in the past twenty years, and this has led to important
developments in algebraic and differential geometry as well as in theoretical physics
(see Iarrobino [24] and Göttsche [19] for an overview).

Among these various studies, we will recall here what concerns the cohomology rings
H�.X Œn�;Q/ of Hilbert schemes.

The first step towards the understanding of the vector spaces H�.X Œn�;Q/ was achieved
by Göttsche [17] with the computation of the generating series for the Betti numbers
bi.X

Œn�/ in terms of the Betti numbers of the surface X . Then Wafa and Witten
pointed out that the infinite-dimensional vector space HD

L
n�0 H�.X Œn�;Q/ was

(by Göttsche’s formula) an abstract highest-weight representation of the Heisenberg
superalgebra modeled on H�.X;Q/. Such a construction was geometrically realized
independently by Nakajima [34] and by Grojnowski [23], using correspondences given
by incidence varieties. The additive structure of the cohomology rings of Hilbert
schemes of points was thus given a precise geometric description.
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Then Lehn obtained in [25] a decisive result in the study of the multiplicative structure.
He computed explicitly, when E is an algebraic vector bundle on X and the EŒn�

are the associated tautological bundles on the X Œn� , the cup product by ch.EŒn�/ on
H�.X Œn�;Q/, and described in this way the subring of H generated by the Chern
classes of all the tautological bundles. This study was completed by Li, Qin and
Wang [29], who constructed virtual tautological Chern characters G.˛; n/ attached
to each cohomology class ˛ on X , and computed the cup product by each G.˛; n/

on H . The classes G.˛; n/ extend the Chern characters of the tautological bundles in
the following way: if ˛ is the Chern character of an algebraic vector bundle E , then
G.˛; n/ is the Chern character of EŒn� . Besides, it is shown in [29] that the components
.Gi.˛; n//0�i<n of the classes G.˛; n/ generate the ring H�.X Œn�;Q/ when ˛ runs
through a basis of H�.X;Q/. Using these generators, the authors obtained in [30]
a universal description of H�.X Œn�;Q/ from the ring H�.X;Q/ and the first Chern
class of X in H 2.X;Q/.

This study led to interesting consequences in the particular case where X is a K3–
surface. Indeed, at the same time, Chen and Ruan [9] developed the theory of orbifold
cohomology and hinted at the existence of strong relations between the orbifold coho-
mology ring of an orbifold and the cohomology ring of a crepant resolution: this is
known as the cohomological crepant resolution conjecture (see Ruan [38]). If X is a
K3–surface, the Hilbert schemes X Œn� are hyperkähler by a result of Beauville [4] and in
this case the cohomological crepant resolution conjecture predicts that for every positive
integer n, the ring H�.X Œn�;C/ and the orbifold cohomology ring H�orb.X

.n/;C/ of
the n–fold symmetric product of X are isomorphic (see Adem, Leida and Ruan [1,
Conjecture 4.24]). The above recalled description of the cohomology ring of Hilbert
schemes made it possible to prove this prediction (see [27]) by putting together results
of Lehn and Sorger [27] for the Hilbert schemes part with the computations performed
independently by Fantechi and Göttsche [15] and Uribe [42] for the orbifold part.

If we leave the algebraic setting and consider abstract compact complex surfaces instead
of projective ones, Hilbert schemes of points still exist (they are usually called Douady
schemes). If X is a compact Kähler surface, it can be deformed to a projective surface,
so that the general description given for the cohomology rings of X Œn� when X is
projective remains valid. In the general case of possibly non-Kähler compact complex
surfaces, Göttsche’s formula has been proved by de Cataldo and Migliorini [7], but
the study of the multiplicative structure cannot be performed as in the projective case.
Indeed, Lehn [25] uses in an essential way the fact that the cohomological cycle classes
of smooth algebraic curves on a smooth projective surface X span H 1;1.X /. This
property fails for abstract complex compact surfaces.
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In a still more general context, Voisin defined in [43] Hilbert schemes X Œn� associated
with any almost-complex four-manifold .X;J /: for every positive integer n, X Œn� is
a stably almost-complex differentiable manifold of real dimension 4n. These almost-
complex Hilbert schemes are symplectic if X is symplectic (see Voisin [44]), and are
still crepant resolutions of the n–fold symmetric products of X . This construction sheds
a new light on the results we have mentioned about the cohomology rings of Hilbert
schemes: indeed, Voisin’s results imply that, for any projective surface X and any
positive integer n, the underlying differentiable manifold of X Œn� depends only on the
underlying differentiable manifold of X and on the deformation class of the complex
structure of X in the space of almost-complex structures. This explains why the ring
H�.X;Q/ depends only on almost-complex invariants of X . On the other hand, it
is worth noticing that orbifold cohomology is naturally defined for almost-complex
orbifolds, which includes n–fold symmetric products of any almost-complex manifold.

Our paper is the second part of a program, the aim of which is the study of Voisin’s
almost-complex Hilbert schemes. The first part [21] has been devoted to the additive
structure of their cohomology rings: Göttsche’s formula has been proved and Nakajima
operators have been constructed. The first main concern here is the study of the ring
structure of the almost-complex Hilbert schemes. We prove the analog of Li, Qin and
Wang’s result quoted above under a symplectic hypothesis:

Theorem 1.1 If .X;J / is a symplectic four-manifold, the rings H�.X Œn�;Q/ can be
constructed by universal formulae from the ring H�.X;Q/ and the first Chern class
of X in H 2.X;Q/.

This theorem is proved in Section 5.3. Let us have a glimpse at the strategy of the proof.
The techniques developed in [21] allow us to adapt in the almost-complex case the
quasitotality of the proof of Lehn’s main formula [25, Theorem 3.10], except for the
very argument which has already been pointed out for non algebraic complex surfaces:
if .X;J / is an almost-complex compact four-manifold, the homology classes of smooth
J –holomorphic curves in X do not span H2.X;Q/ in general. To overcome this
difficulty, we use the symplectic assumption: if X is symplectic and if J is an adapted
almost-complex structure, Donaldson’s theorem on symplectic divisors [11] makes it
possible to span H2.X;Q/ by pseudoholomorphic curves for small perturbations of
the almost-complex structure J .

The second important problem in the proof of Theorem 1.1, which occurs only if
the first Betti number of X is nonzero, is to construct virtual tautological characters
for almost-complex Hilbert schemes. Indeed, in the classical situation, if X is a
projective surface, and if Yn is the incidence locus in X Œn��X , the virtual tautological
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Chern character G.˛; n/ is equal to pr1�Œch.OYn
/ : pr�

2
.˛ : td.X //�. The problem in

the almost-complex setting lies in the term ch.OYn
/. Unlike in the case of vector

bundles, there is no tractable analog of coherent analytic sheaves on almost-complex
Hilbert schemes: the differentiable structure of X Œn� is pretty hard to deal with; the
topological structure of X Œn� (as a C 0 –manifold) would do better, but sheaves of
continuous functions are generally ill-behaved. To explain the means used to cope
with this problem, we have to recall the basics of the construction of X Œn� when X

is an almost-complex four-manifold: it relies on the choice of a relative integrable
complex structure J rel

n , which is essentially a smooth family J rel
n;x of integrable complex

structures parameterized by X .n/ such that for each x in X .n/ , J rel
n;x is an integrable

complex structure in a neighbourhood Wx of the points of x . If W Œn�
rel is the disjoint

union of the Hilbert–Douady schemes W
Œn�

x , where each Wx is endowed with the
integrable structure J rel

n;x , then X Œn� is a subset of W Œn�
rel . Our main idea is to replace

X Œn� by W Œn�
rel , the latter having a much better structure: it is a differentiable orbifold

fibred in smooth analytic sets over X .n/ . We develop in a systematic way a theory
for these spaces, which we call relative analytic spaces, and for a particular class of
sheaves on them, the relatively coherent sheaves. These sheaves are locally an extension
of classical coherent analytical sheaves by C1 parameters. If T is a differentiable
orbifold chosen as parameter space and if F is a coherent analytic sheaf on an analytic
set Z , then it is possible to define a sheaf C1.T;F/ of smooth sections of F with
parameters in T as follows: if F is the sheaf OZ , then C1.T;OZ / is the subsheaf
of pr1� C1Z�T

consisting of smooth functions holomorphic in the first variables, and
for an arbitrary F , the sheaf C1.T;F/ is equal to F ˝OZ

C1.T;OZ /. Besides,
this construction can be sheafified in the space of parameters: if V is a differentiable
orbifold, there exists a sheaf zF on Z�V such that for all open subsets U and T of Z

and V respectively, �.U � T; zF/ is equal to �.U; C1.T;F//. In our construction,
Z � V is a local model for a relative analytic space and zF is a local model for a
relatively coherent sheaf on Z �V . A relative analytic space is obtained by gluing
together a family of such local models and so is a relatively coherent sheaf.

The formalism of relative analytic spaces and relatively coherent sheaves allows us to
use tools of algebraic and analytic geometry in the almost-complex setting. It does not
only solve our present problem, but will be essential in the last section of the paper
(Section 6). We give an independent exposition of this formalism, as it may be useful
in other situations.

As soon as Lehn’s formula is obtained and virtual Chern characters are constructed, The-
orem 1.1 follows from formal combinatorial arguments. We also prove (in Section 5.3)
that Ruan’s cohomological crepant resolution conjecture is valid for Hilbert schemes
of symplectic compact four-manifolds with torsion first Chern class:
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Theorem 1.2 Let .X; !/ be a symplectic compact four-manifold with vanishing first
Chern class in H 2.X;Q/. Then, for every positive integer n, the rings H�.X Œn�;C/
and H�orb.X

.n/;C/ are isomorphic.

Our second object in this paper is the description of the complex cobordism classes of
almost-complex Hilbert schemes. We obtain:

Theorem 1.3 Let .X;J / be an almost-complex compact four-manifold. For any
positive integer n, the complex cobordism class of X Œn� given by its stable almost-
complex structure depends only on the complex cobordism class of X .

This theorem is proved in Section 6. Our interest in this problem goes back to Voisin’s
original motivation for constructing Hilbert schemes in the almost-complex setting: it
is the computation of the cobordism classes of Hilbert schemes of points for projective
surfaces, achieved by Ellingsrud, Göttsche and Lehn in [14]. The authors proved
that these classes can be universally computed from the cobordism classes of the
surface X itself. Their result shows that Hilbert schemes of points for projective
surfaces can be interpreted as modifications at the level of complex cobordism. Voisin’s
idea was that this modification of the complex cobordism could be lifted at the level
of almost-complex manifolds. Although she actually constructed Hilbert schemes for
almost-complex four-manifolds, it is not at all clear that they actually lift the classical
Hilbert schemes at the cobordism level. Our theorem means that it is indeed the case.
The proof relies heavily on the use of relatively coherent sheaves to adapt the argument
of [14] in the almost-complex setting.

Let us now describe the organization of the paper.

Two distinct aims are pursued in Section 2. The first one is to define relative analytic
spaces, which occur in particular in Voisin’s construction of almost-complex Hilbert
schemes. The second one is to recall this construction as well as related results. This
section, which is mainly expository, will be used throughout the paper. In Section 2.1,
we recall classical results about Hilbert schemes of points. In Section 2.2, we introduce
relative and differentiable analytic spaces. This section consists mostly of definitions.
The link between relative analytic spaces and relative integrable structures originally
used by Voisin [43] is given by Proposition 2.12. We also state a general existence
result for relative integrable structures (Proposition 2.13), which is proved in Section 7.
In Section 2.3, we recall the construction of almost-complex Hilbert schemes only as
topological spaces. For the construction of their differentiable structures, we refer the
reader to Voisin’s papers [44, Section 2] for an outline and [43, Section 3] for a detailed
exposition. Then we state the main results of [43; 44; 21] about almost-complex
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and symplectic Hilbert schemes. In Section 2.4, we recall briefly the construction
of incidence varieties carried out in [21, Section 4], mainly to fix the notation. The
compatibility conditions (A) and (B) introduced in Section 2.4 will appear several times
in Section 3.5, Section 5.2 and Section 6.

In Section 3, we present the general theory of relatively coherent sheaves on the relative
analytic spaces introduced in Section 2.2. This formalism is rather heavy and will be
used in Section 5.2 to construct virtual tautological Chern characters and in Section 6
to compute the complex cobordism class of almost-complex Hilbert schemes. The
reader interested only in the description of the cohomology ring of X Œn� when X

is a symplectic compact four-manifold with vanishing first Betti number may skip
this section except for Definition 3.1, and go directly to Section 4. In Section 3.1,
we define relatively coherent sheaves as well as related operations: pullback, internal
Hom, tensor product, and the corresponding derived operations. In Section 3.2, we
define relative analytic subspaces and prove in Proposition 3.11 that their structure
sheaves are relatively coherent. The proof relies on deep properties concerning ideals
of differentiable functions. We also prove in Proposition 3.13 that relatively coherent
sheaves are stable under pushforward by finite maps. The aim of Section 3.3 is to
generalize the formalism of analytic K–theory of Borel and Serre [5] for relative
analytic spaces. Suitable morphisms are introduced in Definition 3.14, so that the
relatively coherent sheaves on a relative analytic space X become an abelian category.
The associated Grothendieck group is by definition the relative analytic K–theory of X.
Then the operations defined in Section 3.2 and Section 3.3 induce operations in relative
K–theory. Various formulae relating these operations are grouped in Proposition 3.16;
they will be frequently used in Section 3.5, Section 5.2 and Section 6. The aim
of Section 3.4 is to construct a map from relative analytic K–theory to topological
K–theory with complex coefficients. In the case of usual analytic K–theory, such
a map can be obtained via global real analytic locally free resolutions of coherent
analytic sheaves (see Atiyah and Hirzebruch [2, Proposition 2.6]). It is also possible
to use differentiable resolutions instead of real analytic ones, as explained in Atiyah
and Hirzebruch [3, Section 6]; this is the method we adopt in the case of relatively
coherent sheaves. The important point is that, although differentiable coherent sheaves
as introduced in [3, Definition 6.1] are defined by a global condition, it turns out that
they can be characterized by a local condition: it is the object of Proposition 3.17. This
allows us to prove that any relatively coherent sheaf F on a relative analytic space X

admits a finite locally free resolution over C1X in a neighbourhood of every compact
subset of X (Proposition 3.19), and then to associate with F a well defined element in
topological K–theory, called the topological class of F . Next, we prove two important
results about this class, namely the functoriality by pullback (Proposition 3.20) and
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the homotopy invariance (Proposition 3.21). In Section 3.5 we apply the formalism
of Sections 3.1–3.4 and associate with any almost-complex compact four-manifold X

various incidence sheaves on relative analytic spaces built from X via suitable relative
integrable complex structures. This defines the geometric setting which will be used
independently in Section 5.2 and Section 6. The last result of the section (Proposition
3.27), which is the analog of Ellingsrud, Göttsche and Lehn [14, Lemma 1.1] in a
relative setting, will be used only in the proof of Proposition 6.8.

The object of Section 4 is to carry out for symplectic four-manifolds Lehn’s computation
of the boundary operator [25, Theorem 3.10]. In Section 4.1 we adapt the first part of
Lehn’s argument to the almost-complex case as we did for the Nakajima relations in [21].
This yields half of Lehn’s formula (Theorem 4.2). In Section 4.2, we use Donaldson’s
theorem on symplectic divisors [11] to establish a general result (Proposition 4.6)
concerning pseudoholomorphic curves on symplectic four-manifolds. This result allows
us to obtain in Section 4.3 the other half of Lehn’s formula when X is symplectic: this
is the object of Theorem 4.7.

In Section 5, we deal with the cohomology rings of Hilbert schemes of points for
symplectic compact four-manifolds. In Section 5.1, we prove an induction relation for
the Chern characters of the tautological vector bundles constructed in [21] (Lemma
5.1). In Section 5.2, we construct virtual Chern characters satisfying the same induction
relation (Proposition 5.2). As we already mentioned, we use the machinery of relatively
coherent sheaves, and especially Section 3.5. Note that Section 5.2 can be skipped
if the first Betti number of X vanishes. In Section 5.3, we state and prove our main
results about the cohomology rings of symplectic Hilbert schemes which are Theorems
5.6, 5.7 and 5.9.

Finally, Section 6 is entirely devoted to the computation of the cobordism class of
Hilbert schemes of an almost-complex compact four-manifold (Theorem 6.1). We
combine the strategy of [14, Section 1-3] with the use of the relative incidence sheaves
of Section 3.5. In Sections 6.1, 6.2 and 6.3 respectively, we extend to the relative setting
the results of [14, Propositions 2.2, 2.3 and 3.1]. This is the object of Propositions 6.4,
6.5 and 6.8.
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2 Almost-complex Hilbert schemes and relative analytic
spaces

2.1 Hilbert schemes, incidence varieties and tautological bundles

Let X be a smooth complex manifold, OX be its sheaf of holomorphic functions and
n be a positive integer.

Definition 2.1 The Hilbert–Douady scheme X Œn� of n–points in X is the set of zero-
dimensional subschemes of length n in X , ie the set of ideal sheaves J of OX such
that

P
p2X dimC Op=Jp is equal to n.

Let Sn be the symmetric group on n symbols and let X .n/ WD X n=Sn denote the
n–fold symmetric product of X .

Definition 2.2 The Hilbert–Chow morphism �W X Œn� // X .n/ is defined by the
formula �.�/D

P
p2X lp.�/p , where lp.�/ is the length of � at p .

Some basic properties of Hilbert schemes of points are:

� X Œn� is a complex analytic space and � is a bimeromorphic map.

� If X is compact, so is X Œn� .

� The fibers of � are projective, and irreducible if dim X D 2 by Briançon [6].

� If X is a complex curve, then � is an isomorphism and X Œn� is smooth.

� If X is a complex surface, then X Œn� is smooth of dimension 2n and is irreducible
if X is connected by Fogarty [16].

For a thorough study of Hilbert schemes of points, we refer the reader to Göttsche [18]
and Nakajima [34].

In this section, we only consider the case dim X D 2. The Hilbert schemes correspon-
ding to different values of n are related through the incidence varieties:

Definition 2.3 For all positive integers m and n such that m>n, the incidence variety
X Œm;n� is the set of couples .�; � 0/ in X Œn� �X Œm� such that � is a subscheme of � 0 .

The incidence varieties X Œm;n� are analytic subvarieties of X Œn� �X Œm� . The case
mD nC 1 appears as particularly interesting in the theory:

� X ŒnC1;n� is smooth and irreducible by Cheah [8], Tikhomirov [41] and unpub-
lished work of Ellingsrud.
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� If Yn is the incidence locus, defined as

(2-1) Yn D
˚
.�;x/ in X Œn�

�X such that x 2 supp.�/
	
;

then X ŒnC1;n� ' P .Jn/ by Danila [10, Proposition 3.3]. As a consequence,
X ŒnC1;n� is isomorphic to the schematic blowup of Yn in X Œn� � X . The
exceptional divisor associated with this blowup is

(2-2) D D
˚
.�; � 0/ in X ŒnC1;n� such that supp.�/D supp.� 0/

	
:

These properties show that the incidence variety X ŒnC1;n� is closely related to the
incidence locus Yn . The latter satisfies the following properties:

� The morphism pr1jYn
W Yn

// X Œn� is flat and finite.

� The ideal sheaf JYn
admits a global locally free resolution of length 2 on

X Œn� �X by Danila [10, Lemma 3.2].

� If �W X ŒnC1;n� //X Œn� and  W X ŒnC1;n� //X ŒnC1� are the natural morphisms
induced by the projections, if �W X ŒnC1;n� // X is the residual map defined by
the formula �.�; � 0/D supp.�=� 0/, if j D .id; �/W X ŒnC1;n� // X ŒnC1;n� �X

and if LDOX ŒnC1;n�.�D/, then there exists a natural exact sequence on the
product X ŒnC1;n� �X [14, Section 1]

(2-3) 0 // j�L // . ; id/�OYnC1
// .�; id/�OYn

// 0:

The variety X ŒnC1;n� can be constructed explicitly via a global locally free
resolution

0 // A // B // JYn
// 0

of JYn
: if P .B/ is the projective bundle of B (using Grothendieck’s convention

for projective bundles), if � W P .B/ // X Œn� �X is the associated projection
and if s is the section of ��A�.1/ given by the morphism ��A //��B // OB.1/,
then s is transverse to the zero section and its vanishing locus is isomorphic
to X ŒnC1;n� .

We end this section with tautological bundles. Let pr1 and pr2 be the projections from
X Œn� �X on the first and second factors.

Definition 2.4 Let E be a holomorphic vector bundle on X and n be a positive
integer. The tautological vector bundle EŒn� is a holomorphic vector bundle on X Œn�

defined by the formula EŒn� D pr1�.OYn
: pr�

2
E/.
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If E is a holomorphic vector bundle on X and n is a positive integer, the tautological
vector bundles EŒn� and EŒnC1� are related through an exact sequence on X ŒnC1;n�

(see [25, page 193]):

(2-4) 0 // ��E˝L //  �EŒnC1� // ��EŒn� // 0:

2.2 Relative spaces and relative integrable complex structures

The geometric structure underlying the construction of the almost-complex Hilbert
scheme of Voisin [43] is that of relative integrable structure, or in an almost equivalent
way that of relative analytic space. In this article, this point of view is systematically
expanded in order to study coherent sheaves in relative analytic spaces, which is done
in Section 3.

Throughout this section, B and B0 denote compact differentiable effective orbifolds
(see Satake [39] and Adem, Leida and Ruan [1, Section 1.1]). Recall that a map
f W B // B0 is smooth if for any b in B there exist two orbifold charts (Vb , Gb ,
Ub ) and (Vf .b/ , Gf .b/ , Uf .b/ ) near b and f .b/, a group morphism �W Gb

// Gf .b/
and a smooth �–equivariant map from Vb to Vf .b/ inducing f on Ub .

Definition 2.5 Let X be a separated topological space and � W X // B be a continu-
ous surjective map.

(i) A relative chart (resp. relative holomorphic chart) on X is given by a homeomor-
phism �W U

� // Y �V such that �jU D pr2 ı� , where U is an open subset
of X, V is an open subset of B and Y is a differentiable manifold (resp. Y is a
smooth analytic space).

(ii) Let �W U � // Y �V and  W U 0 � // Y 0 �V 0 be two relative charts (resp. rela-
tive holomorphic charts) and let .y; v/ � // . .y; v/; v/ be the associated transi-
tion function  ı ��1W �.U \U 0/ //  .U \U 0/ . The charts � and  are
compatible if  is smooth (resp.  is smooth and for all v in pr2.�.U \U 0//

the function y
� //  .y; v/ is holomorphic).

(iii) A relative atlas (resp. relative holomorphic atlas) on X is a collection of com-
patible relative charts (resp. relative holomorphic charts) on X whose domains
cover X.

(iv) A relative atlas (resp. relative holomorphic atlas) A on X is maximal if every
relative chart (resp. relative holomorphic chart) on X compatible with all the
charts of A belongs to A.

(v) If A is a relative atlas (resp. relative holomorphic atlas) on X, the saturated
atlas of A is the smallest maximal atlas containing A.
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To be able to define and study relatively coherent sheaves in Section 3, we introduce
the notion of complete relative holomorphic atlas (cf Remark 3.3 (iii)).

Definition 2.6 Let X be a separated topological space and let � W X // B be a
continuous surjective map.

(i) If �W U � // Y �V is a relative holomorphic chart, if Y 0 (resp. V 0 ) is an open
subset of Y (resp. V ) and if U 0 D ��1.Y 0 �V 0/, then �jU 0 W U

0 � // Y 0 �V 0

is a relative holomorphic chart called the restriction of � to U 0 .

(ii) A relative holomorphic atlas A on X is complete if
� for all relative holomorphic chart � in A, all the restrictions of � are in A.
� for all finite family

˚
�i W Ui

� // Yi �Vi

	
1�i�r

of relative holomorphic
charts in A such that the open sets Ui are pairwise disjoint, then the relative
holomorphic chart

`r
iD1 �i W

`
Ui

� //
`
.Yi �Vi/ is in A.

(iii) If A is a relative holomorphic atlas on X, the completed atlas of A is the
smallest complete relative holomorphic atlas containing A.

(iv) If A and A0 are two relative holomorphic atlases on X, we say A refines A0
if for any relative holomorphic chart �W U � // Y �V in A0 and any x in U ,
there exists a neighbourhood Ux of x in U such that �jUx

is in A.

(v) Two relative holomorphic atlases A and A0 are equivalent if A refines A0 and
A0 refines A.

We define now relative differentiable spaces and relative analytic spaces.

Definition 2.7 (i) A relative differentiable space (resp. relative analytic space)
over B is the data of a separated topological space X endowed with a continuous
surjective map � W X // B and with a maximal relative atlas (resp. an equivalent
class of complete relative holomorphic atlas) over B .

(ii) If X is a separated topological space, if � W X // B is a continuous surjective
map and if A is a maximal relative atlas (resp. a complete relative holomorphic
atlas) on X, we denote by .X;A/ the associated relative differentiable space
(resp. relative analytic space).

Remark 2.8 (i) If .X;A/ is a relative differentiable space (resp. relative analytic
space) over B , the fibers .Xb/b2B defined by Xb WD �

�1.b/ are differentiable
(resp. complex) manifolds, but they do not form in general a fibration over B ,
since the projection map � is not assumed to be proper.
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(ii) The connected components of a relative differentiable space (resp. relative ana-
lytic space) .X;A/ are still relative differentiable spaces (resp. relative analytic
spaces). If X is connected, the dimension (resp. complex dimension) of Xb is
independent of b . We call it the relative real dimension (resp. relative complex
dimension) of X.

(iii) If .X;A/ is a relative differentiable space over B , then X is a differentiable
orbifold and the projection � W X // B is smooth.

Let us introduce some natural operations on relative analytic spaces.

Definition 2.9 (i) (Base change) Let .X;A/ be a relative differentiable space
(resp. relative analytic space) over B and uW B0 // B be a smooth map. If A D
f�i W Ui

� // Yi �Vigi2I , if A0 D f�i �B idB0 W Ui �B B0
� // Yi �u�1.Vi/gi2I and if

u�.A/ is the saturated (resp. completed) atlas of A0 , then .X�B B0;u�.A// is a relative
differentiable space (resp. relative analytic space) over B0 .

(ii) (Fiber product) Let .X;A/ and .X0;A0/ be two relative differentiable spaces
(resp. relative analytic spaces) over the same base B . Suppose �W U � // Z �V and
�0W U 0

� // Z0 �V are two relative charts (resp. relative holomorphic charts) over
the same open set V . Then � �B �

0W U �B U 0
� // .Z �Z0/�V is a relative chart

(resp. relative holomorphic chart) on X�B X0 . If A00 is the relative atlas (resp. relative
holomorphic atlas) on X �B X0 consisting of such charts � �B �

0 and if A �B A0
is the saturated (resp. completed) atlas of A00 , then .X�B X0;A�B A0/ is a relative
differentiable space (resp. relative analytic space).

(iii) (Relative tangent bundle) Let .X;A/ be a relative differentiable space (resp.
relative analytic space) over B , where AD f�i W Ui

� // Yi �Vigi2I . We define a set
T relX by T relXD

`
b2B TXb , and a relative differentiable (resp. relative holomorphic)

atlas A0 on T relX by A0 D fd rel�i W T
relUi

� // T Yi �Vigi2I , where d rel�i is the
relative differential of �i . If T relA is the saturated (resp. completed) atlas of A0 , then
.T relX;T relA/ is a relative differentiable space (resp. relative analytic space) called
the relative tangent bundle of X. As a topological space, T relX is a topological vector
bundle over X.

Relative analytic spaces are introduced by Voisin [43] by means of relative integrable
structures:

Definition 2.10 Let X be a relative differentiable space over B . A relative integrable
complex structure J rel on X is a continuous section of End .T relX/ satisfying the
following conditions:
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� If �W U � // Y �V is any relative chart of X, the map J relW Y �V // T Y is
smooth.

� For every b in B , the map J rel
b W Xb

// End .TXb/ defines an integrable com-
plex structure on Xb .

The next proposition allows us to construct local holomorphic trivializations for relative
integrable complex structures.

Proposition 2.11 Let .X;A/ be a relative differentiable space over B and J rel be a
relative integrable complex structure on X. For every x in X, there exist a neighbour-
hood Ux of x and a relative chart �W Ux

� // W �V in A such that:
� W is an open subset of CN , where 2N is the relative real dimension of the

connected component of x in X.
� If Jst is the standard complex structure on CN and if b is any point in V , then

�bW .Ux \Xb;J
rel
b / // .W;Jst/

is a biholomorphism.

Proof Let zUx be a neighbourhood of x , z�W zUx
� // Y �V be a relative chart, and

put z�.x/D .y0; v0/. The relative integrable complex structure J rel defines a smooth
family .Jv/v2V of integrable complex structures on Y . By the Newlander–Nirenberg
theorem with parameters, there exist a neighbourhood Uy0

� Uv0
of .y0; v0/ and

smooth complex-valued functions z1; : : : ; zN on Uy0
� Uv0

such that for every v
in Uv0

, .z1
v ; : : : ; z

N
v / are holomorphic coordinates on .Uy0

;Jv/ (see [44, page 271]).
If Ux D z�

�1.Uy0
�Uv0

/, we define � on Ux by � D ..z1; : : : ; zN / ı z�; �/.

Proposition 2.11 enables us to relate relative complex structures and relative analytic
spaces.

Proposition 2.12 Let .X;A/ be a relative differentiable space over B . There is a
natural bijection between relative integrable complex structures on X and maximal
relative holomorphic atlases contained in A.

Proof If X is endowed with a structure of relative analytic space over B , Proposition
2.11 allows us to construct a relative holomorphic atlas on X and then the corresponding
saturated atlas. Conversely, if f�i W Ui

� // Zi �Vi gi2I is a relative holomorphic atlas
on X, the complex structures of the Zi ’s define a relative integrable complex structure
on X.

As a corollary, if X is a relative analytic space over B , there exists a canonical relative
integrable complex structure on the underlying relative differentiable space.
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Relative integrable structures are introduced in [43] to deal with problems in almost-
complex geometry. Let us give some general results about relative integrable complex
structures associated with an almost-complex manifold.

Let .X;J / be an almost-complex compact manifold and B be a compact connected
differentiable orbifold. Recall that B carries a stratification with finitely many strata.
If Z is a closed subset of X �B , we say that Z is an incidence set if the following
conditions are satisfied:

� The map pr2 jZ W Z
// B is surjective and finite.

� For each stratum B� of B , if Z� D pr�1
2
.B�/\Z , then Z� is a submanifold

of X �B� and the map pr2 jZ� W Z�
// B� is a covering map.

Let us introduce now some notation. Let g be a Riemannian metric on X , " be a
positive integer and Z be an incidence set of X �B .

� If W is neighbourhood of Z in X �B (considered as a relative differentiable
space over B ), Bg; ".W / will denote the set of relative integrable complex
structures J rel on W such that kJ rel�JkC 0;g;W < ".

� We put Bg; " D lim
�!W ;Z�W

Bg; ".W /.

Proposition 2.13 Let B be a compact differentiable orbifold, .X;J / be an almost-
complex compact manifold and Z be an incidence set in X �B . If g is a Riemannian
metric on X , there exists a positive real number "0 such that for any positive " smaller
than "0 , Bg; " is nonempty and weakly contractible in the following sense: for every
nonnegative integer p and every pair of smooth families .J rel

0; s/s2Sp and .J rel
1; s/s2Sp in

Bg; " parameterized by the sphere Sp , there exists a smooth family .J rel
t; s/.t; s/2Œ0;1��Sp

parameterized by Œ0; 1��Sp joining .J rel
0; s/ and .J rel

1; s/.

This result is implicit in [44], although not stated in this degree of generality (see [44,
Proposition 4]). We provide a proof in Section 7.

2.3 Construction of the almost-complex Hilbert scheme

First of all, we define relative Hilbert schemes.

Definition 2.14 Let .X;A/ be a relative analytic space over B of relative complex
dimension two and J rel be the associated relative integrable complex structure. For any
positive integer n, we define a set XŒn�rel by X

Œn�
rel D

`
b2B X

Œn�

b
, where X

Œn�

b
is the Hilbert

scheme of n–points of Xb endowed with the integrable complex structure J rel
b . If

AD f�i W Ui
� // Yi �Vi gi2I and A0 D f�Œn�i;relW U

Œn�
i;rel

// Y
Œn�
i �Vi gi2I
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and if AŒn� is the completed atlas of A0 , then .XŒn�rel ;AŒn�/ is a relative analytic space
called the relative Hilbert scheme of X.

Let us now recall the definition of Voisin’s almost-complex Hilbert schemes. Let .X;J /
be an almost-complex compact manifold of dimension four, g be a Riemannian metric
on X , n be a positive integer and Zn be the incidence set in X �X .n/ defined by

(2-5) Zn D
˚
.pIx/ in X �X .n/ such that p 2 x

	
:

We use the notation introduced at the end of Section 2.2. Let " be any positive real
number smaller than the bound "0 of Proposition 2.13. Then Bg; " is nonempty.

Definition 2.15 Let W be a small neighbourhood of Zn in X �X .n/ and J rel be a
relative integrable complex structure in Bg; ".W /. The topological Hilbert scheme X

Œn�

J rel

is the subset of the relative Hilbert scheme W Œn�
rel defined by

X
Œn�

J rel D
˚
.�I x / in W Œn�

rel such that x D �x.�/
	
;

where �x W W
Œn�

x
// W

.n/
x is the Hilbert–Chow morphism associated with the inte-

grable complex structure J rel
x .

Remark 2.16 (i) The topological Hilbert scheme X
Œn�

J rel depends only on the germ
of J rel along Zn , ie of the image of J rel in Bg; " .

(ii) If W is a small neighbourhood of Zn , let fJ rel
t gt2B.0;r/�Rd be a smooth family

in Bg; ".W /. This family defines a relative integrable complex structure zJ rel on
the relative analytic space �W DW �X .n/ .X .n/ �B.0; r//. Then there exists a
natural relative topological Hilbert scheme over B.0; r/ whose fibers are the
.X

Œn�
J rel

t
/t2B.0;r/ , namely,

.X Œn�; fJ rel
t gt2B.0;r//D

˚
.�I x; t/ in �W Œn�

rel such that x D �x; t .�/
	
;

where �x; t W W
Œn�

x
// W

.n/
x is the Hilbert–Chow morphism associated with

the complex structure zJ rel
x; t .

To obtain a differentiable structure on X
Œn�

J rel , Voisin uses relative integrable structures
in a contractible subset B0 of Bg; " satisfying some additional geometric conditions
(see [43, page 711]). The main results she obtains are:

Theorem 2.17 [43, Theorem 5, Theorem 6, Theorem 3; 44, Theorem 3] Let .X;J /
be an almost-complex compact four-manifold, J rel be a relative integrable structure
in B0 and n be a positive integer. Then

Geometry & Topology, Volume 15 (2011)



276 Julien Grivaux

(i) X
Œn�

J rel has a natural differentiable structure. Furthermore, if J 0rel is another
relative integrable structure in B0 , there is a diffeomorphism between X

Œn�

J rel and
X
Œn�

J 0 rel which is uniquely defined up to isotopy.

(ii) There is a canonical Hilbert–Chow map �W X
Œn�

J rel
// X .n/ satisfying the fol-

lowing property: for any x in X .n/ and any integrable complex structure in a
neighbourhood Ux of supp.x/, ��1.x/ is homeomorphic to the fiber at x of
the usual Hilbert–Chow morphism from U

Œn�
x to U

.n/
x .

(iii) X
Œn�

J rel can be endowed with a stable almost-complex structure, and the associated
complex cobordism class of X

Œn�

J rel depends only on the deformation class of J .

(iv) If X is symplectic and J is compatible with the symplectic structure, X
Œn�

J rel is
also symplectic.

For arbitrary relative integrable structures, this theorem has the following topological
form:

Theorem 2.18 [21, Proposition 3.4, Proposition 3.10, Remark 3.5]

(i) Let J rel be a relative integrable complex structure in Bg; " . Then X
Œn�

J rel is a
topological manifold of real dimension 4n.

(ii) If W is a neighbourhood of Zn in X � X .n/ and if fJ rel
t gt2B.0;r/�Rd is

a smooth path in Bg; ".W /, then the associated relative topological Hilbert
scheme .X Œn�; fJ rel

t gt2B.0;r// over B.0; r/ is a topological fibration (cf Remark
2.16 (ii)).

(iii) For any x in X .n/ and any integrable structure J in a neighbourhood Ux of
supp.x/, the Hilbert–Chow morphism �W X

Œn�

J rel
// X .n/ is locally homeomor-

phic over a neighbourhood of supp.x/ to the classical Hilbert–Chow morphism
from U

Œn�
x to U

.n/
x .

We can compare almost-complex Hilbert schemes corresponding to different relative in-
tegrable complex structures. Let g and g0 be two Riemannian metrics on X , "0 and "0

0

be the bounds given by Proposition 2.13, " and "0 be positive real numbers smaller
than "0 and "0

0
respectively and J rel , J 0rel be relative integrable complex structures

in Bg; " and Bg0; "0 . Then there exists a positive real number "00 smaller than " such
that Bg; "00 is included in Bg0; "0 . Since, by Proposition 2.13, Bg; " , Bg0; "0 and Bg; "00

are nonempty, connected and simply connected, X
Œn�

J rel and X
Œn�

J 0rel are homeomorphic
by Theorem 2.18 (ii); and this homeomorphism is canonical up to isotopy.

Therefore, for every positive integer n, there exists a canonical ring H�.X Œn�;Q/ (resp.
K.X Œn�/) such that for every relative integrable complex structure J rel in Bg; " , the
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ring H�.X
Œn�

J rel ;Q/ (resp. the ring K.X
Œn�

J rel/) is canonically isomorphic to H�.X Œn�;Q/
(resp. to K.X Œn�/ ).

Theorem 2.18 (iii) implies that Göttsche’s classical formula for the Betti numbers of
Hilbert schemes of points also holds in the almost-complex case (see [22, Theorem 3.9]).

2.4 Incidence varieties and Nakajima operators

If m and n are two positive integers, let

(2-6) Zn�m D
˚
.pI x; y/ in X �X .n/

�X .m/ such that p 2 x[y
	
:

Relative integrable structures in a neighbourhood of Zn�m are denoted by J rel
n�m .

Definition 2.19 (i) If J rel
1;n�m and J rel

2;n�m are two relative integrable structures
in neighbourhoods W1 and W2 of Zn�m , then the product Hilbert scheme
.X Œn��Œm�;J rel

1;n�m;J
rel
2;n�m/ is defined by

.X Œn��Œm�;J rel
1;n�m;J

rel
2;n�m/D

˚
.�; � 0I x; z / in W

Œn�
1;rel �X .n/�X .m/ W

Œm�
2;rel

such that �1;x; z.�/D x and �2;x; z.�
0/D z

	
:

(ii) If m>n and if J rel
n�.m�n/ is a relative integrable structure in a neighbourhood W

of Zn�.m�n/ , the incidence variety .X Œm;n�;J rel
n�.m�n// is defined by

.X Œm;n�;J rel
n�.m�n//D

˚
.�; � 0I x; y / in W

Œn�
rel �X .n/�X .m�n/ W

Œm�
rel

such that � � � 0; �x;y.�/D x and �x;y.�
0/D x[y

	
:

As it is the case for topological Hilbert schemes, the product Hilbert schemes and
the incidence varieties are canonically defined up to homeomorphisms isotopic to the
identity if the relative integrable structures used to define them are chosen close enough
to J in C 0–norm.

From now on, we fix a Riemannian metric g on X and assume that all relative integrable
structures are sufficiently close to J in C 0–norm.

Let J rel
n�.m�n/ , J rel

n , J rel
m and J rel

n�m be relative integrable structures in neighbourhoods
W , W 0 , W 00 and �W of Zn�.m�n/ , Zn , Zm and Zn�m , respectively. We consider
the following compatibility conditions of relative analytic spaces:

(A) For every .x;y/ in X .n/ � X .m�n/ , W 0x �Wx;y and J rel
n�.m�n/;x;y jW 0x D

J rel
n;x ; ie W 0 �X .n/ .X .n/ �X .m�n//�W , where the base change map is the

first projection. If this condition holds, there is a natural morphism � from
.X Œm;n�;J rel

n�.m�n// to .X Œn�;J rel
n /.
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(B) For every .x;y/ in X .n/ �X .m�n/ , W 00x[y DWx;y and J rel
n�.m�n/;x;y D

J rel
m;x[y ; ie W 00 �X .m/ .X .n/ �X .m�n//DW , where the base change map is
.x;y/

� // x[y: If this condition holds, there is a canonical morphism � from
.X Œm;n�;J rel

n�.m�n// to .X Œm�;J rel
m /.

(C) For every .x;y/ in X .n/ �X .m�n/ , �Wx;x[y D Wx;y and J rel
n�.m�n/;x;y D

J rel
n�m;x;x[y ; ie �W �X .n/�X .m/ .X .n/�X .m�n//DW , where the base change

map is .x;y/ � // .x;x[y/: If this condition holds, there is a natural embedding
of .X Œm;n�;J rel

n�.m�n// into the product Hilbert scheme .X Œn��Œm�;J rel
n�m;J

rel
n�m/:

Each of these conditions can be satisfied for a suitable choice of relative integrable
complex structures (this is obvious for conditions (B) and (C); for condition (A),
it is necessary to use the gluing method developed in Section 7). Unfortunately,
conditions (A) and (B) cannot hold at the same time, unless X carries an integrable
complex structure. Indeed, if nD 1 and mD 2, assume that we are given three relative
integrable complex structures J rel

1�1 , J rel
1 and J rel

2 such that .J rel
1 ;J rel

1�1/ satisfies (A)
and .J rel

2 ;J rel
1�1/ satisfies (B). Then, for all x and y in X ,

J rel
1;xjW 0x \W 0y

D J rel
1�1;x;y jW 0x \W 0y

D J rel
2; fx;ygjW 0x \W 0y

D J rel
1�1;y;xjW 0x \W 0y

D J rel
1;y jW 0x \W 0y

so that J rel
1 defines a global integrable complex structure on X .

If J rel
n�.m�n/ is a relative integrable complex structure in a neighbourhood of Zn�.m�n/ ,

let us fix four relative integrable complex structures J rel
n , J rel

1;n�.m�n/ , J rel
m and

J rel
2;n�.m�n/ in respective neighbourhoods of Zn , Zn�.m�n/ , Zm and Zn�.m�n/ such

that .J rel
n ;J rel

1;n�.m�n// satisfies the compatibility condition (A) and .J rel
m ;J rel

2;n�.m�n//

satisfies the compatibility condition (B). For i D 1; 2, there is a homeomorphism be-
tween .X Œm;n�;J rel

m�.m�n// and .X Œm;n�;J rel
i;m�.m�n// which is canonical up to isotopy.

In this way, we get two continuous maps from .X Œm;n�;J rel
m�.m�n// to .X Œn�

J rel
n
/ and

.X
Œm�
J rel

m
/. Their homotopy classes are canonical and are still denoted by � and � .

The incidence varieties X Œm;n� are locally homeomorphic to the integrable model U Œm;n�

where U is an open set of C2 ; this allows us to put a stratification on each X Œm;n� . In
this way, the X Œm;n� are stratified topological spaces locally homeomorphic to analytic
spaces endowed with their natural stratifications, and so each of them has a fundamental
homology class.

The construction of representations of the Heisenberg superalgebra H.H�.X;Q// of
H�.X;Q/ into H D

L
n2N H�.X Œn�;Q/ via correspondence actions of incidence

varieties done by Nakajima [34] and Grojnowski [23] also holds in the almost-complex
setting:
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Theorem 2.20 [21, Definition 4.3, Theorem 4.5] If .X;J / is an almost-complex
compact four-manifold, Nakajima operators

˚
qi.˛/, i 2 Z, ˛ 2 H�.X;Q/

	
can be

constructed. They depend only on the deformation class of J and satisfy the Heisenberg
commutation relations:

8 i; j 2 Z; 8˛; ˇ 2H�.X;Q/; Œqi.˛/; qj .ˇ/�D i ıiCj ;0

�Z
X

˛ˇ
�

idH :

Furthermore, these operators induce an irreducible representation of H.H�.X;Q//
in H with highest weight vector 1.

Finally, we introduce relative incidence varieties, which are essential in Sections 4.1,
5.2, 6.2 and 6.3.

Definition 2.21 If m, n are two positive integers with m>n, if W is a neighbourhood
of Zn�.m�n/ and if J rel

n�.m�n/ is a relative integrable complex structure on W , W Œm;n�
rel

is the subset of W Œn�
rel �X .n/�X .m�n/ W Œm�

rel defined by

W Œm;n�
rel D

˚
.�; � 0I x; y/ in W Œn�

rel �X .n/�X .m�n/ W Œm�
rel such that � � � 0

	
:

If f�i W Ui
� // �i �Vi gi2I is a maximal relative holomorphic atlas on W , then for all i

in I we have .�Œn�i �Vi
�
Œm�
i / Œ.U

Œn�
i;rel �Vi

U
Œm�
i;rel/\W Œm;n�

rel � D �
Œm;n�
i �Vi . Therefore,

for mD nC 1, the relative incidence varieties W Œm;n�
rel are relative analytic spaces.

3 Coherent sheaves on relative analytic spaces

In this part, the letters B and B0 always denote compact differentiable effective
orbifolds.

3.1 Operations on relatively coherent sheaves

We start by defining relative holomorphic functions.

Definition 3.1 Let .X;A/ be a relative analytic space over B . A continuous complex-
valued function f defined on an open subset � of X is relatively holomorphic if
for any x in � and for any relative holomorphic chart �W U � // Z �V of A in a
neighbourhood of x , the function f ı��1 is smooth and holomorphic in the variables
of Z in a neighbourhood of �.x/.

The sheaf Orel
X of relatively holomorphic functions on X is a sheaf of rings on X.
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Definition 3.2 Let .X;A/ be a relative analytic space over B . A sheaf F of Orel
X

–
modules is relatively coherent if there exists a relative holomorphic atlas zA equivalent
to A such that for any relative holomorphic chart �W U � // Z �V in zA, there exists
a coherent analytic sheaf xF on Z such that F jU and ��1.pr�1

1
xF ˝pr�1

1
OZ

Orel
Z�V

/

are isomorphic as sheaves of Orel
Z�V

–modules.

An equivalent definition of relatively coherent sheaves can be stated using gluing
conditions: if zAD f�i W Ui

� // Zi �Vigi2I and if �ij WD �i ı�
�1
j are the associated

transition functions, a relatively coherent sheaf on X is given by a family of coherent
sheaves f xFigi2I on the smooth analytic sets fZigi2I and a family of isomorphisms
of sheaves of Orel

�j .Uij /
–modules between ��1

ij Œ.
xFi ˝pr�1

1
OZi

Orel
Zi�Vi

/j�i .Uij / � and
. xFj ˝pr�1

1
OZj

Orel
Zj�Vj

/j�j .Uij / satisfying the usual cocycle condition.

Remark 3.3 (i) Let F be a relatively coherent sheaf on X given by a family of
sheaves f xFigi2I . Then, for any b in B , if J is the set of the indices i in I

such that b belongs to Vi , the sheaves f xFigi2J on fZi � bgi2J patch together
into a coherent analytic sheaf on Xb , which we denote by Fb .

(ii) If .X;A/ is a relative analytic space and if E is a locally-free sheaf of Orel
X –

modules, then E is relatively coherent. In particular T relX is relatively coherent
on X.

(iii) If .X;A/ is a maximal relative analytic space, it is not difficult to prove that any
relatively coherent sheaf on X is in fact locally OX–free. This fact justifies the
use of nonmaximal atlases.

Let us now introduce a class of morphisms between relative analytic spaces that is
well-adapted to relatively coherent sheaves.

Definition 3.4 (i) Let .X;A/ and .X0;A0/ be two relative analytic spaces over
B and let f W X // X0 be a continuous map over B . Two relative holomor-
phic charts �W U

� // Z �V and �0W U 0
� // Z0 �V in A and A0 are f –

compatible if f .U /� U 0 and if there exists a holomorphic map gW Z // Z0

such that the following diagram commutes:

U
f jU //

� �

��

U 0

� �0

��
Z �V

.g; id/
// Z0 �V

Geometry & Topology, Volume 15 (2011)



Topological properties of Hilbert schemes of almost-complex four-manifolds II 281

(ii) Let .X;A/ and .X0;A0/ be two relative analytic spaces over B and let f W X //X0

be a continuous map over B . We say that f is a morphism when there exists a
relative atlas zA equivalent to A such that for any relative holomorphic chart �
in zA, there exists a relative holomorphic chart �0 in A0 such that and � and �0

are f –compatible.

(iii) Let .X;A/ and .X0;A0/ be two relative analytic spaces over B and B0 and
f W X // X0 be a continuous map. We say that f is a weak morphism if there
exist a smooth orbifold map uW B // B0 and a morphism zf W X // X0 �B0 B

such that f is obtained by composing zf with the base change map from X0�B0B

to X0 induced by u.

If f W X // X0 is a weak morphism, then the sheaf f �1Orel
X0 is a subsheaf of Orel

X .
Therefore we get a pullback functor f �W Mod.Orel

X0 /
// Mod.Orel

X / given by the
formula f �F D f �1F ˝f �1Orel

X0
Orel

X .

To prove that many usual operations on Mod.Orel
X / induce operations on relatively

coherent sheaves, we use a flatness lemma:

Lemma 3.5 Let W be an open subset of Rn , G be a finite group of diffeomorphisms
of W and Z be a smooth analytic set. If V DW =G , then Orel

Z�V
is flat over pr�1

1
OZ .

Proof Let ıW W // V be the projection and M be a sheaf of pr�1
1

OZ –modules.
Then

.ı; id/�1.M˝pr�1
1

OZ
Orel

Z�V /D .ı; id/
�1M˝pr�1

1
OZ

.Orel
Z�W /

G

' Œ.ı; id/�1M˝pr�1
1

OZ
Orel

Z�W �
G :

Since the functor F � // FG from Mod G.Orel
Z�W

/ to ModŒ.Orel
Z�W

/G � is exact, it
suffices to prove that Orel

Z�W
is smooth over pr�1

1
OZ . Let k D b.nC 1/=2c. Then

W �Rk can be seen as an open subset �W in C.nCk/=2 . By [31, Theorem 2 bis]
Orel

Z� �W is flat over O
Z� �W , and O

Z� �W is flat over pr�1
1

OZ . Therefore Orel
Z� �W is

flat over pr�1
1

OZ . If qW Z � �W // Z �W is the projection, then q�1Orel
Z�W

is a
direct factor of Orel

Z� �W in Mod.pr�1
1

OZ /, so that Orel
Z�W

is flat over pr�1
1

OZ .

We obtain as a consequence:

Proposition 3.6 (i) Let .X;A/ be a relative analytic space over B and F , G
be relatively coherent sheaves on X. Then for every nonnegative integer k ,
Tork

Orel
X
.F ;G/ and ExtkOrel

X
.F ;G/ are relatively coherent on X.

Geometry & Topology, Volume 15 (2011)



282 Julien Grivaux

(ii) Let f W X // X0 be a weak morphism between two relative analytic spaces
.X;A/ and .X0;A0/, and G be a relatively coherent sheaf on X0 . Then for every
nonnegative integer k , Tork

f �1Orel
X0
.f �1G;Orel

X / is relatively coherent on X.

(iii) Let .X;A/ be a relative analytic space over B , F be a relatively coherent
sheaf on X and uW B0 // B be a smooth map. If zuW X�B B0 // X is the
associated base change morphism, then Tork

zu�1Orel
X
.zu�1F ;Orel

X�BB0
/ vanishes

for every positive integer k .

Proof (i) Since two equivalent relative holomorphic atlases always admit a common
equivalent refinement, there exists a complete relative holomorphic atlas zA on X

equivalent to A such that for every relative holomorphic chart �W U � // Z �V in zA,

F jU ' ��1.pr�1
1
xF ˝pr�1

1
OZ

Orel
Z�V / and GjU ' ��1.pr�1

1
xG˝pr�1

1
OZ

Orel
Z�V /

where xF and xG are coherent analytic sheaves on Z . Then

.F ˝Orel
X
G/jU ' ��1.pr�1

1 . xF ˝OZ
xG /˝pr�1

1
OZ

Orel
Z�V /

HomOrel
X
.F ;G/jU ' ��1.pr�1

1 HomOZ
. xF ; xG /˝pr�1

1
OZ

Orel
Z�V /:and

Since Orel
Z�V

is flat over pr�1
1

OZ , for any nonnegative integer k , we obtain by
derivation

Tork
Orel

X
.F ;G/jU ' ��1.Tork

OZ
. xF ; xG /˝pr�1

1
OZ

Orel
Z�V /

ExtkOrel
X
.F ;G/jU ' ��1.ExtkOZ

. xF ; xG /˝pr�1
1

OZ
Orel

Z�V /:and

(ii) We can take refinements zA and zA0 of A and A0 such that for any relative
holomorphic chart �W U � // Z �V in zA, there exists a relative holomorphic chart
�0W U 0

� // Z0�V 0 in zA0, a holomorphic map gW Z // Z0 , a smooth map uW V // V 0

and a coherent analytic sheaf xG on Z0 such that f .U /� U 0 , �0 ı f ı ��1 D .g;u/

and GjU 0 ' �0�1.pr�1
1
xG˝pr�1

1
OZ0

Orel
Z 0�V 0

/. Thus

.f �1G˝f �1Orel
X0
Orel

X /jU

' ��1
�
.g;u/�1Œpr�1

1
xG˝pr�1

1
OZ0

Orel
Z 0�V 0 �˝.g;u/�1Orel

Z0�V 0
Orel

Z�V

�
' ��1

�
pr�1

1 .g�1 xG˝g�1OZ0
OZ /˝pr�1

1
OZ

Orel
Z�V

�
;

so that for any nonnegative integer k , Lemma 3.5 yields

Tork
f �1Orel

X0
.f �1G;Orel

X /' �
�1
�
pr�1

1 Tork
g�1OZ0

.g�1 xG;OZ /˝pr�1
1

OZ
Orel

Z�V

�
:

(iii) We can assume that XDZ �B , F D pr�1
1
xF ˝pr�1

1
OZ

Orel
Z�B

and zuD .id;u/,
where Z is a smooth analytic space and xF is a coherent analytic sheaf on Z . Let
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.z; b0/ be an element of Z � B0 , put b D u.b0/, and let E� be a free resolution
of xFz . By Lemma 3.5, E�˝Oz

Orel
z;b

is a free resolution of Fz;b . Therefore, the
germ of Tork

zu�1Orel
X
.zu�1F ;Orel

X�BB0
/ at .z; b0/ is the k –th cohomology group of

.E�˝Oz
Orel

z;b
/˝Orel

z;b
Orel

z;b0
. The latter complex being isomorphic to E�˝Oz

Orel
z;b0

,
the result is again a consequence of Lemma 3.5.

Remark 3.7 Let F and G be two relatively coherent sheaves on a relative analytic
space X over B . Then for every b in B and for every nonnegative integer k , we
have Tork.F ;G/b D Tork

OXb
.Fb;Gb/ and Extk.F ;G/b D ExtkOXb

.Fb;Gb/. A similar
result holds for the Tor sheaves appearing in (ii).

3.2 Relative analytic subspaces and direct image

The definition of a relative analytic subspace runs as follows:

Definition 3.8 Let .X;A/ be a relative analytic space over B and Z be a closed subset
of X. We say that Z is a relative analytic subspace (resp. smooth relative analytic
subspace) of X if there exists a relative holomorphic atlas zA equivalent to A such that
for any holomorphic chart �W U � // Z �V in zA with U\Z¤∅, there exists a closed
(resp. closed and smooth) analytic subspace Z0 of Z satisfying �.U \Z/DZ0 �V:

For instance, the relative incidence varieties W Œm;n�
rel introduced in Definition 2.21 are

relative analytic subspaces of W Œn�
rel �X .n/�X .m�n/ W Œm�

rel , they are smooth if mD nC1.
We will study other examples in Section 3.5.

Remark 3.9 If Z is a smooth relative analytic subspace of a relative analytic space
.X;A/, then Z is also a relative analytic space: a complete relative holomorphic atlas
on Z is obtained by taking the restrictions to Z of the charts of A.

The forthcoming proposition is needed to associate relatively coherent sheaves with
relative analytic subspaces:

Proposition 3.10 Let n and k be positive integers, � and W be open subsets of Cn

and Rk respectively, and T be a reduced analytic subset of �. Assume that the ideal
sheaf of T is globally generated by holomorphic functions f1; : : : ; fd on �.
� If gW ��W // C is a relatively holomorphic function on ��W such that

gjT�W � 0, then for any .z0; w0/ in ��W , there exist relatively holomor-
phic functions �1; : : : ; �d in a neighbourhood Uz0;w0

of .z0; w0/ such that
g D

Pd
iD1 �i fi on Uz0;w0

.
� Furthermore, if G is a finite group of diffeomorphisms of W fixing w0 and if g

is G –invariant, then the functions �i can be chosen G –invariant too.
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Proof Let .z0; w0/ in ��W . For any z in �, let ygw0
.z/ be the formal Taylor expan-

sion of the function w � // g.z; w/ at w0 . Writing ygw0
.z/D

P
jI jDk˛I .z/ .w�w0/

I ,
the hypotheses made on g imply that the functions ˛I are holomorphic on � and vanish
on T . Therefore for every multiindex I of length k , there exist holomorphic functions
˛I1; : : : ; ˛Id in a Stein neighbourhood Uz0

of z0 such that ˛I D
Pd

iD1 ˛Ii fi on Uz0
.

Hence we get ygw0
D
Pd

iD1

�P
jI jDk ˛Ii .w�w0/

I
�
fi in O.Uz0

/ŒŒw�w0��. If Si (resp.
yfi;z0

) denotes the formal expansion of z
� //

P
jI jDk ˛Ii.z/ .w�w0/

I (resp. fi ) at z0

in CŒŒz � z0; w �w0�� (resp. in CŒŒz � z0��) and if ygz0;w0
denotes the formal Taylor

expansion of g at .z0; w0/ in CŒŒz� z0; w�w0��, then ygz0;w0
D
Pd

iD1 Si
yfi;z0

. Thus
for any .z0; w0/ in ��W , ygz0;w0

is divisible by yf1;z0
; : : : ; yfd;z0

in CŒŒz�z0; w�w0��.
Since the fi ’s are analytic, it follows from [32, Theorem 1.1’, page 82] that there
exist �1; : : : ; �d in C1.�/ such that g D

Pd
iD1 �ifi . It remains to prove that the

functions fi can be chosen relatively holomorphic in a neighbourhood of any point
in ��W .

If .z0; w0/ is an element of ��W and if r is an integer such that 0� r � n, let us
consider the property (Pr ):

(Pr )

There exist a neighbourhood Uz0;w0
of .z0; w0/ in ��W and smooth

functions �1; : : : ; �d on Uz0;w0
such that:

� g D
Pd

iD1 �ifi on Uz0;w0
.

� If r � 1, 1� i � d and 1� j � r , then @�i=@xzj � 0.

We have seen that (P0 ) is true. Fix r such that 0 � r � n � 1, and assume that
(Pr ) holds. We consider a presentation Oq

z0
// Od

z0

//
�
JT

�
z0

//0 of the ideal
sheaf of T at z0 , where the first map is given by a matrix M in Md;q

�
Oz0

�
and the

second one by .f1; : : : ; fd /. If Orel
r denotes the sheaf of smooth functions on ��W

holomorphic in the first r variables, then Orel
r is flat over pr�1

1
O� (this is proved

exactly as in Lemma 3.5). Thus we get an exact sequence

(3-1) .Orel
r /

q
z0;w0

M // .Orel
r /

d
z0;w0

.f1;:::;fd / // .Orel
r /z0;w0

Pick �1: : : : ; �d in .Orel
r /z0;w0

such that g D
Pd

iD1 �ifi . Since g is relatively
holomorphic,

Pd
iD1 @�i=@xzrC1 fi � 0. By the exactness of (3-1), there exists an

element .'j /1�j�q in .Orel
r /

q
z0;w0

such that for every i with 1� i � d , @�i=@xzrC1DPq
jD1

Mij'j . Now the map @=@xzrC1W .Orel
r /z0;w0

// .Orel
r /z0;w0

is surjective, so
that there are functions .j /1�j�q in .Orel

r /z0;w0
such that for 1� j �q , @j=@xzrC1D

'j . If z�iD�i �
Pd

jD1 Mijj then
Pd

iD1
z�ifiD

Pd
iD1 �ifiDg in a small neighbour-

hood of the point .z0; w0/ and @ z�i=@xzrC1D @�i=@xzrC1�
Pd

iD1 Mij@j=@xzrC1D 0,
so that z�i is in .Orel

rC1
/z0;w0

. This proves that (PrC1 ) holds. By a finite induction,
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we obtain that (Pn ) holds. This means that �1; : : : ; �d are relatively holomorphic in a
neighbourhood of .z0; w0/.

To prove the last statement, it suffices to replace for each i the function �i by the
G –invariant function z�i defined by z�i.z; w/D jGj

�1
P

u2G �i.z;u : w/.

Proposition 3.11 Let X be a relative analytic space over B and Z be a relative
analytic subspace of X. If J rel

Z is the ideal sheaf of Z in Orel
X consisting of the relative

holomorphic functions vanishing on Z and if Orel
Z DOrel

X =J
rel
Z is the structure sheaf of

Z, then J rel
Z and Orel

Z are relatively coherent on X.

Proof Since the result is local, we can assume that XDZ �V and that ZDZ0�V ,
where V is a differentiable orbifold, Z is a smooth analytic space and Z0 is an analytic
subset of Z . If JZ 0 is the ideal sheaf of Z0 in Z , then J rel

Z D pr�1
1

JZ 0 :Orel
X by

Proposition 3.10. By Lemma 3.5, Orel
X is flat over pr�1

1
OZ , so the equality pr�1

1
JZ 0 :

Orel
X D pr�1

1
JZ 0 ˝pr�1

1
OZ

Orel
X holds. This implies J rel

Z is relatively coherent. Using
again that Orel

X is flat over pr�1
1

OZ , we obtain that Orel
Z D pr�1

1
OZ 0 ˝pr�1

1
OZ

Orel
X ,

and thus the sheaf Orel
Z is relatively coherent too.

Let us make an important remark:

Remark 3.12 Let Z be any reduced analytic set and V be a differentiable orbifold.
Then it is possible to define a sheaf Orel

Z�V
of relative holomorphic functions on Z�V

(which is a subsheaf of C 0
Z�V

) as follows: since we can argue locally, we assume that
there exists an open set U in some Cn such that Z is a reduced analytic subset of U .
Then we define Orel

Z�V
as the structure sheaf of Z �V in U �V . Using Proposition

3.11, it is easy to prove that the definition in independent of U . This makes it possible
to construct singular relative analytic spaces, although we will not go any further in
this direction.

Following the strategy of [20, Chapter 1, Section 3], we prove:

Proposition 3.13 Let f W X // X0 be a morphism between two relative analytic
spaces .X;A/ and .X0;A0/, Z be a relative analytic subspace of X such that f is finite
on Z and F be a relatively coherent sheaf on X supported in Z. Then f�F is relatively
coherent on X0 .

Proof For any point x0 in X0 , let �0W U 0 � // Z0 �V be a relative holomorphic chart
of A0 in a neighbourhood U 0 of x0 . Since f is finite on Z, there exists a relative
holomorphic chart �W U � // Z �V in a neighbourhood of f �1.x0/\Z such � and �0

are f –adapted. Up to a refinement of A, we can assume that:
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� �.U /� U 0 and ��1.U 0/\Z� U .

� �0 ıf ı��1 D .g; id/, where gW Z // Z0 is holomorphic.

� �.U \Z/D Y �V , where Y is a reduced analytic subset of Z .

� The function gjY W Y // Z0 is finite.

� The sheaf F jU is isomorphic to ��1.pr�1
1
xF ˝pr�1

1
OZ

Orel
Z�V

/, where xF is a
coherent analytic sheaf on Z supported in Y .

Let us prove that the natural morphism

(3-2) pr�1
1
.g� xF /˝pr�1

1
OZ0

Orel
Z 0�V

// .g; id/� .pr�1
1
xF ˝pr�1

1
OZ

Orel
Z�V

/

is an isomorphism. The function g being finite on Y and Orel
Z�V

(resp. Orel
Z 0�V

) being
flat over pr�1

1
OZ (resp. pr�1

1
OZ 0 ), both members of (3-2) define exact functors from

CohY .Z/ to Mod.Orel
Z 0�V

/. Let JY be the ideal sheaf of Y . Since g is proper, we
can assume, after shrinking Z0 if necessary, that J N

Y
xF vanishes for N large enough.

Using the exact sequences

0 // J NC1
Y

xF // J N
Y
xF // J N

Y
xF=J NC1

Y
xF // 0;

we see that it is sufficient to prove that (3-2) is an isomorphism when xF is an
OY –module. Under this assumption, for any z0 in g.Y /, we can take local OY –
presentations of xF in a neighbourhood of the finite set g�1.z0/\Y . Thus it is enough
to prove that (3-2) is an isomorphism when xF D OY . If h D gjY , this amounts to
show that the natural morphism from h�OY ˝pr�1

1
OZ0

Orel
Z 0�V

to .h; id/�Orel
Y �V

is an
isomorphism. Since the problem is local, we can assume that there exist two positive
integers m and n and an open subset � of Cm such that Z0 is open in Cn , Y is a
closed analytic subset of ��Z0 and h is the restriction to Y of the projection from
Cm �Cn to Cn .

We deal at first with the case mD 1. If .w; z0/ denotes the coordinates on C �Cn ,
then for any z0 in h.Y /, .h�OY /z0 is free over Oz0 : a basis is given by the functions
1; w; : : : ; wd , where d is the degree of h (see [20, I, Section 2]). Since the general
Weierstrass division theorem remains valid for relative holomorphic functions, for any v
in V , the module ..h; id/�Orel

Y �V
/z0;v is also free over Orel

z0; v with basis 1; w; : : : ; wd .
This yields the required isomorphism.

To conclude, we argue by induction on m. Let us write � D �00 ��0 , where �00

and �0 are open in C and Cm�1 respectively, and let pW ��Z0 // �0 �Z0 and
qW �0 �Z0 // Z0 be the natural projections. Then there exists an analytic hypersur-
face S in ��Z0 containing Y such that p is finite on S . If zY D p.Y /, then zY is

Geometry & Topology, Volume 15 (2011)



Topological properties of Hilbert schemes of almost-complex four-manifolds II 287

an analytic subset of �0 �Z0 and q is finite on zY . By Proposition 3.11, Orel
Y �V

is,
as a sheaf of Orel

.��Z 0/�V
–modules, isomorphic to pr�1

1
OY ˝pr�1

1
O��Z0

Orel
.��Z 0/�V

.
Therefore the result in the case mD 1 yields the isomorphism

p�OY ˝pr�1
1

O�0�Z0
Orel
.�0�Z 0/�V ' .p; id/�O

rel
Y �V :

Besides, we get another isomorphism by induction, namely

q�.p�OY /˝pr�1
1

OZ0
Orel

Z 0�V ' .q; id/� .p�OY ˝pr�1
1

O�0�Z0
Orel
.�0�Z 0/�V /:

Putting these two isomorphisms together, we get the result.

3.3 Relative analytic K –theory

We are now going to introduce morphisms of relatively coherent sheaves. A natural idea
would be to consider relatively coherent sheaves on a relative analytic space .X;A/ as
a full subcategory of the abelian category Mod.Orel

X / of sheaves of Orel
X –modules on X.

Unfortunately, the resulting category would be nonabelian. Indeed, if XDZ �B is
trivial, if F is relatively coherent on X and if � is a smooth cut-off function in B ,
the multiplication by � defines an endomorphism of F over Orel

X whose kernel is
far from being relatively coherent in general. Now, if A is given by the family of
relative holomorphic charts f�i W Ui

� // Zi �Vigi2I , another natural definition is to
glue together the abelian categories .Coh.Zi//i2I of coherent analytic sheaves on Zi .
This is what we do.
Definition 3.14 (i) A strict morphism between to relatively coherent sheaves F

and G on a relative analytic space .X;A/ is a morphism u in HomOrel
X
.F ;G/

satisfying the following condition: there exists a relative holomorphic atlas zA
equivalent to A such that for every relative holomorphic chart �W U � // Z �V

in zA, there exist two coherent analytic sheaves xF and xG on Z as well as a
morphism v in HomOZ

. xF ; xG / such that F jU ' ��1.pr�1
1
xF ˝pr�1

1
OZ

Orel
Z�V

/,
GjU ' ��1.pr�1

1
xG˝pr�1

1
OZ

Orel
Z�V

/ and the following diagram commutes up
to isomorphism:

F jU
u //

�

GjU
�

��1.pr�1
1
xF ˝pr�1

1
OZ

Orel
Z�V

/
��1.v˝id/ // ��1.pr�1

1
xG˝pr�1

1
OZ

Orel
Z�V

/

(ii) If X is a relative analytic space and Z is a closed subspace of X, we call Cohrel.X/

(resp. Cohrel
Z .X/) the subcategory of Mod.Orel

X / whose objects are relatively
coherent sheaves on X (resp. relatively coherent sheaves on X supported in Z)
and whose morphisms are strict morphisms.
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If X is a relative analytic space and Z is a closed subset of X, the categories Cohrel.X/

and Cohrel
Z .X/ are abelian subcategories of Mod.Orel

X / by Lemma 3.5.

In the sequel, the Grothendieck group of an abelian category C is denoted by K.C/.

Definition 3.15 Let X be a relative analytic space and Z be a closed subset of X. The
relative analytic K–theory of X (resp. relative analytic K–theory of X with support
in Z) is defined by Krel.X/DK.Cohrel.X// (resp. Krel

Z .X/DK.Cohrel
Z .X//).

As for coherent sheaves, we can define usual operations on relative analytic K–theory.
These definitions rely on Proposition 3.6 and Proposition 3.13.

� (Product) If X is a relative analytic space and Z is a closed subset of X, a
product from Krel.X/˝Z Krel.X/ (resp. Krel.X/˝Z Krel

Z
.X/) to Krel.X/ (resp.

Krel
Z
.X/) is defined by

F :G D
X
k�0

.�1/k Tork
Orel

X
.F ;G/:

� (Dual morphism) Let X be a relative analytic space and Z be a closed subset
of X. The dual morphism F � // F_ from Krel.X/ to Krel.X/ (resp. from
Krel

Z
.X/ to Krel

Z
.X/) is given by

F_ D
X
k�0

.�1/k ExtkOrel
X
.F ;Orel

X /:

� (Pullback morphism) Let f W X // X0 be a weak morphism between relative
analytic spaces and Z0 be a closed subset of X0 . The pullback morphism
(resp. the pullback morphism with support) f !W Krel.X0/ // Krel.X/ (resp.
f !W Krel

Z0
.X0/ // Krel

f �1.Z0/
.X0/) is defined by

f !G D
X
k�0

.�1/k Tork
f �1Orel

X0
.f �1G;Orel

X /:

� (Gysin morphism) Let f W X // X0 be a morphism between two relative
analytic spaces and Z be a relative analytic subset of X such that f is finite on
Z. The Gysin morphism f� from Krel

Z
.X/ to Krel.X0/ is induced by the exact

functor f�W Cohrel
Z .X/

// Coh.X0/:

We now list all the properties we need concerning the operations introduced above.

Geometry & Topology, Volume 15 (2011)



Topological properties of Hilbert schemes of almost-complex four-manifolds II 289

Proposition 3.16 (i) (Product structure) If X is a relative analytic space and if
Z is a closed subspace of X, then Krel.X/ is a unitary ring and Krel

Z
.X/ is a

module over Krel.X/. Besides, if F and G are relatively coherent sheaves on X

and if G is supported in Z, then

F _: G D
X
i�0

.�1/i ExtiOrel
X
.F ;G/ in Krel

Z .X/:

(ii) (Functoriality) The pullback morphism (resp. Gysin morphism) in relative
K–theory is contravariant (resp. covariant) with respect to weak morphisms
(resp. with respect to morphisms). Besides, the pullback and the dual morphism
commute.

(iii) (Projection formula) Let f W X // X0 be a morphism between two relative
analytic spaces and Z be a relative analytic subspace of X such that f is finite on
Z. If F is a relatively coherent sheaf on X supported in Z and G is a relatively
coherent sheaf on X0 , then f�.F : f !G/D f�F :G in Krel.X0/.

(iv) (Base change I) Let f W X // X0 be a morphism between two relative analytic
spaces over B , � be a relative analytic space over B and Z0 be a relative analytic
subspace of X0 �B � such that the projection qW X0 �B � // X0 is finite on Z0 .
If f� D f �B id� , we consider the cartesian diagram:

X�B �
f� //

p

��

X0 �B �

q

��
X

f

// X0

If ZD f �1
�
.Z0/, then Z is a relative analytic subspace of X�B� and p is finite

on Z. Besides, the pullback and Gysin morphisms

p�W Krel
Z
.X�B �/ // Krel.X/; q�W Krel

Z0
.X0 �B �/ // Krel.X0/;

f !
W Krel.X0/ // Krel.X/ f !

�W Krel
Z0
.X0 �B �/ // Krel

Z
.X�B �/

are related through the formula f !q� D p�f
!
�

.

(v) (Base change II) Let � be a relative analytic space over B , f W X // X0 be
a morphism between two relative analytic spaces over B and assume that X0

is a smooth relative analytic subspace of �. If f� D f �B id� , consider the
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cartesian diagram

X
.id; iıf / //

f

��

X�B �

f�
��

X0
.id; i/

// X0 �B �

Then the pullback and Gysin morphisms

.id; i/� W Krel.X0/ // Krel
X0
.X0 �B �/; .id; i ıf /� W Krel.X/ // Krel

X
.X�B �/;

f !
W Krel.X0/ // Krel.X/; f !

� W K
rel
X0
.X0 �B �/ // Krel

X
.X�B �/

are related through the formula f !
�
.id; i/� D .id; i ıf /�f ! .

(vi) (Base change III) Let .X;A/ be a relative analytic space over B , Z be a closed
subset of X, uW B // B0 be a smooth map and zuW X�B B0 // X be the
associated base change morphism. Then the pullback functor zu� from Cohrel.X/

to Cohrel.X�B B0/ (resp. from Cohrel
Z .X/ to Cohrel

zu�1.Z/
.X�B B0/) is exact, and

zu! D zu� .

Proof (i) If F , G and H are relatively coherent sheaves on X, there is a spectral
sequence (canonical from E2 ) such that

E
p;q
2
D Torp

Orel
X

.Torq
Orel

X

.F ;G/;H/; E
p;q
1 D Grp TorpCq

Orel
X

.F ;G;H/

and E
p;q
2

vanishes on each component of X except for finitely many couples .p; q/.
Furthermore, by Proposition 3.6 (i), the sheaves E

p;q
2

are relatively coherent on X and
the morphisms d

p;q
2

are strict. Thus, for all r � 2, the sheaves E
p;q
r are relatively

coherent and the morphisms d
p;q
r are strict, so thatX

p;q�0

.�1/pCqE
p;q
2
D

X
n�0

.�1/n Torn
Orel

X

.F ;G;H/

in Krel.X/. This yields the associativity of the product. The proofs of the remaining
properties in (i) and of (ii) are essentially similar, using spectral sequences associated
with the composition of two functors.

The proofs of (iii), (iv) and (v) are performed in the same way. We detail the proof
of (iv).

(iv) For x in X, we take two relative holomorphic charts �W U � // Z �V and
�0W U 0

� // Z0 �V in neighbourhoods of x and f .x/ such that � and �0 are f –
compatible. Let us write �0 ıf ı ��1 D .g; id/, where gW Z // Z0 is holomorphic.
If ı1; : : : ; ıN are elements of � such that q�1.f .x// \ Z D

SN
iD1

�
f .x/; ıi

�
, we
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choose a relative holomorphic chart  W Uı1;:::;ıN

� // Y �V in a neighbourhood of
the ıi ’s. The local form of the diagram of (iv) is then:

Z �Y �V
.g; id; id/ //

pr13

��

Z0 �Y �V

pr13

��
Z �V

.g; id/
// Z0 �V

Furthermore, we can assume that .�0 �V  /Œ.U
0 �Uı1;:::;ıN

/\X�D xZ�V , where xZ
is an analytic subset of Z0 �Y and pr1 is finite on xZ. Then for any coherent analytic
sheaf xG on Z0 �Y supported in xZ, we use Proposition 3.13 and we get

.g; id/�
�
pr13�.pr�1

12
xG˝pr�1

12
OZ0�Y

Orel
Z 0�Y �V /

�
' .g; id/�.pr1�

xG˝pr�1
1

OZ0
Orel

Z 0�V /

' g�.pr1�
xG/˝pr�1

1
OZ

Orel
Z�V

' pr1�

�
.g; id/� xG

�
˝pr�1

1
OZ

Orel
Z�V

' pr13�

�
pr�1

12 .g; id/
� xG˝pr�1

12
OZ�Y

Orel
Z�Y �V

�
' pr13�

�
.g; id; id/�.pr�1

12
xG˝pr�1

12
OZ0�Y

Orel
Z 0�Y �V /

�
:

Taking the derivative with respect to xG and using Lemma 3.5, we obtain the result.

(vi) This is an immediate consequence of Proposition 3.6 (iii).

3.4 Topological K –theory for relatively coherent sheaves

In Section 3.3, we have constructed a theory for relative coherent sheaves as well as
associated operations. It remains to obtain cohomological information about these
objects. To do so, we construct global resolutions by complex vector bundles for
relatively coherent sheaves. We start with a general result:

Proposition 3.17 Let Y be a differentiable orbifold.

(i) Locally free sheaves of C1
Y

–modules are projective elements in the category
Mod.C1

Y
/. In particular, if 0 // F // G // H //0 is an exact sequence

of sheaves of C1
Y

–modules on Y and if H is locally free, then this sequence
globally splits.

(ii) If H is sheaf of C1
Y

–modules admitting a finite free resolution in a neighbour-
hood of any point of Y , then H admits a finite locally free resolution in a
neighbourhood of any compact subset of Y .
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(iii) Two finite locally free resolutions of a sheaf of C1
Y

–modules are subresolutions
of a third one.

(iv) Let 0 // F // G // H // 0 be an exact sequence of sheaves of C1
Y

–mod-
ules such that G and H admit finite locally free resolutions on Y . Then
F admits a finite locally free resolution on Y and we can find three such
resolutions F� , G� and H� of F , G and H related by an exact sequence
0 // F� // G� // H� // 0 .

Proof (i) Let P , Q, H be sheaves of C1
Y

–modules such that Q is a quotient of P
and H is locally free, and let � be in HomC1

Y
.H;Q/. It is possible to lift � locally

to a morphism from H to P , and then globally using a partition of unity on Y .

(ii) Let K be a compact subset of Y . We choose a finite covering .Ui/1�i�d of K

and open sets .Vi/1�i�d such that for 1� i � d , Ui is relatively compact in Vi and
H admits a finite free resolution on Vi . For each i , we multiply this resolution by a
smooth cut-off function equal to 1 on Ui and supported in Vi . We obtain in this way
a complex of sheaves

0 // .C1
Y
/niN // � � � � � � // .C1

Y
/ni1

�i // H // 0

on Y , which is exact in Ui . If E D
Ld

iD1.C1Y /
ni1 and if � D

Ld
iD1 �i W E // H

is the sum of the �i ’s, then the morphism � is surjective in a neighbourhood of K .
For 1� i � d , let Ni and N denote the kernels of �i and � respectively. We have
an exact sequence

0 // Ni jUi
// N jUi

//
L

j 6Di.C1Ui
/nj1 // 0:

By (i), N jUi
is isomorphic to Ni jUi

˚ .C1
Ui
/
P
j 6Di nj1 . Furthermore Ni jUi

admits a
finite free resolution of length N � 1. Thus N admits a finite free resolution of length
at most N � 1 in a neighbourhood of every point in K and we can start the argument
again. After at most N steps, we obtain a locally free kernel.

(iii) Let H be a sheaf of C1
Y

–modules and .Ei/0�i�N and .Fi/0�i�N be two finite
locally free resolutions of H on Y . Let us construct by induction a finite locally
free resolution G� of H on Y such that E� and F� are subresolutions of G� . We
put G0 DE0˚F0 , the map from G0 to H being obtained by adding the two maps
from E0 and from F0 to H . If k is a positive integer smaller than or equal to N � 1,
assume that we have constructed .Gi/0�i�k as well as injections E�

� � // G� and
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F�
� � // G� in degrees at most k . Then in the two diagrams

0 // Ek
//

��

Gk
//

��

Qk
//

��

0 0 // Fk
//

��

Gk
//

��

Rk
//

��

0

0 // Ek�1
//

��

Gk�1
//

��

Qk�1
//

��

0 0 // Fk�1
//

��

Gk�1
//

��

Rk�1
//

��

0

:::

��

:::

��

:::

��

:::

��

:::

��

:::

��
0 // E0

//

��

G0
//

��

Q0
//

��

0 0 // F0
//

��

G0
//

��

R0
//

��

0

0 // H //

��

H //

��

0 0 // H //

��

H //

��

0

0 0 0 0

all the lines and the columns are exact and Q0; : : : ;Qk ;R0; : : : ;Rk are locally free by
induction. Let NkD ker.Ek

//Ek�1/, N 0
k
D ker.Fk

//Fk�1/, N 00
k
D ker.Gk

//Gk�1/,
zQk D ker.Qk

//Qk�1/ and zRk D ker.Rk
//Rk�1/. By breaking the exact sequences

of the two last columns into short exact sequences, we obtain that zQk and zRk are
locally free. The two sequences

0 // Nk
// N 00

k
// zQk

// 0 and 0 // N 0
k

// N 00
k

// zRk
// 0

are exact. By (i), N 00
k
'Nk ˚

zQk 'N 0
k
˚ zRk , and we can define GkC1 by the

formula GkC1 D .EkC1˚
zQk/˚ .FkC1˚

zRk/.

If k DN , we end the resolution G� by putting GNC1 DN 00
N

.

(iv) If . zGi/0�i�N and .Hi/0�i�N are locally free resolutions of G and H , let us
construct by induction locally free resolutions F� and G� of F and G such that zG� is
a quotient of G� , together with an exact sequence 0 // F� // G� // H� // 0 .

Since H0 (resp. zG0 ) is a projective object by (i), we can lift the map from H0 to H
(resp. from zG0 to H) to a map � (resp. z� ) from H0 to G (resp. from zG0 to H0 ). If
G0 DH0˚

zG0 , there is a natural surjective map from G0 to G obtained by adding �
and the map from zG0 to G . Besides, .id; z�/W G

0
// H

0
is surjective, we denote its

kernel by F0 .

If k is a positive integer smaller than or equal to N , assume that we have constructed
.Fi/0�i�k and .Gi/0�i�k ; an exact sequence 0 // F� // G� // H� // 0 and a
surjective morphism from G� to zG� in degrees at most k . Let Nk D ker.Fk

// Fk�1/,
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N 0
k
D ker.Gk

// Gk�1/, N 00
k
D ker.Hk

// Hk�1/ and zNk D ker. zGk
// zGk�1/. We

have an exact sequence 0 // Nk
// N 0

k
// N 00

k
// 0 . If R� D ker.G� // zG�/

and Sk D ker.Rk
// Rk�1/ the sequence 0 // Sk

// N 0
k

// zNk
// 0 is exact,

so that N 0
k
'Sk˚

zNk by (i). As above, we lift the map from HkC1 to N 00
k

(resp. from
Sk ˚

zGkC1 to N 00
k

) to a map �k (resp. z�k ) from HkC1 to N 0
k

(resp. from Sk ˚
zGk

to HkC1 ). If GkC1 DHkC1˚Sk ˚
zGkC1 , there is a natural surjection from GkC1

to N 0
k

obtained by adding �k and the map from Sk ˚
zGkC1 to N 0

k
. Then we define

FkC1 by FkC1 D ker.z�k ; id/.

If k DN , FNC1 DNNC1 and GNC1 DN 0
NC1

, so that F� and G� are locally free
resolutions of F and G .

We apply now this result in our context. If .X;A/ is a relative analytic space, then
X is also a differentiable orbifold, and Orel

X is a subsheaf of C1X . Therefore, we can
associate with every relatively coherent analytic sheaf F on X the sheaf F1 defined
by F1 D F ˝Orel

X
C1X , which is a sheaf of C1X –modules. This sheaf admits a finite

free resolution in a neighbourhood of any point of X, thanks to the lemma:

Lemma 3.18 Let U be an open subset of Rn , G be a finite group of diffeomorphisms
of U and Z be a smooth analytic set. If W D U=G , then C1

Z�W
is flat over pr�1

1
OZ .

Proof As in Lemma 3.5, it suffices to prove that Orel
Z�U

is flat over pr�1
1

OZ . If Y is
a real-analytic manifold, let C!

Y
be the sheaf of real-analytic functions on Y . Then,

C!
Z

is flat over OZ , C!
Z�U

is flat over pr�1
1

C!
Z

and C1
Z�U

is flat over C!
Z�U

by [31,
Theorem 2].

The Grothendieck group of the category of complex topological vector bundles on a
topological space Y will be called K.Y /. Besides, the class in K.Y / of a complex
vector bundle E on Y will be denoted by ŒE�. Then Proposition 3.17 and Lemma
3.18 yield:

Proposition 3.19 If .X;A/ is a relative analytic space and if F is a relatively coherent
sheaf on X, then the sheaf F1 admits a finite locally free resolution in a neighbourhood
of any compact subset of X. Besides, if U is a relatively compact open subset of X and
.Ei/0�i�N is a locally free resolution of F1 on U, then the element

PN
iD0.�1/i ŒEi �

of Krel.U/ is independent of E� and depends only on the class of F in Krel.X/.

In conclusion, we can associate with each relatively coherent sheaf F on X a topological
class ŒF1� in lim

 �U
K.U/, where U runs through all the relatively compact open subsets

of X. Furthermore, if Z is a closed subset of X and F is supported in Z, then the
topological class of F lies naturally in lim

 �U
KU\Z.U/.
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We are going to prove two fundamental properties of the topological class, namely the
functoriality by pullback and the homotopy invariance. We start with the first one.

Proposition 3.20 Let f be a weak morphism between two relative analytic spaces X

and X0 , Z be a relative analytic subspace of X0 and F be a relatively coherent sheaf on
X0 supported in Z. Then the pullback morphism

f �W lim
 �

U0��X0

KU0\Z.U
0/ // lim

 �
U��X

KU\f �1.Z/.U/

maps ŒF1� to Œ.f !F/1�.

Proof We can assume that F1 admits a global locally free resolution on X0 . Let
.Ei/0�i�N be such a resolution. Then for every nonnegative integer k , the cohomology
sheaf of f �E� in degree k is

Tork
f �1C1

X0
. f �1F1; C1X /

which is isomorphic to
Tor k

f �1Orel
X0
. f �1F ;Orel

X /
1

by Lemma 3.5 and Lemma 3.18. We define the sheaves Nk and Ik by the expressions
Nk D ker.f �Ek

// f �Ek�1/ and Ik D Im.f �EkC1
// f �Ek/. Then we have exact

sequences

0 // Nk
// f �Ek

// Ik�1
// 0 ;(3-3)

0 // Ik
// Nk

// Tork
f �1C1

X0
. f �1F1; C1X / // 0:(3-4)

If U is relatively compact in X, then the sheaves

Tori
f �1C1

X0
. f �1F1; C1X /

admit, by Proposition 3.19, a global locally free resolution on U. Since N0 DE0 , the
repeated use of Proposition 3.17 (iv) with the exact sequences (3-3) and (3-4) shows
that the sheaves Ni and Ii admit global locally free resolutions on U, and that the
following identities hold in KU\f �1.Z/.U/:

Œf �Ek �D ŒNk �C ŒIk�1� and ŒNk �D ŒIk �C ŒTork
f �1C1

X0
.f �1F1; C1X /�:

As a consequence,
PN

iD0.�1/i Œf �Ei �D
PN

iD0.�1/i ŒTori
f �1C1

X0
.f �1F1; C1X /�. This

yields the result.

We can now come to the homotopy invariance of the topological class:
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Proposition 3.21 Let Y be a relative analytic space over B � Œ0; 1�, R be a relative
analytic subspace of Y and F be a relatively coherent sheaf on Y supported in R.
Assume that the pair .R;Y/ is topologically trivial over Œ0; 1� (ie for any t0 in Œ0; 1�, if
XDYt0

and ZDRt0
, then there exists a homeomorphism between Y and X� Œ0; 1�

over B� Œ0; 1� mapping R to Z� Œ0; 1�). For every t in Œ0; 1�, let it W Yt
// Y be the

natural inclusion. Then, via the homeomorphism between Yt and X, the topological
class Œ.i�t F/1� in lim

 �U��X
KU\Z .U/ is independent of t .

Proof Let U be an open relatively compact subset of X, 'W X� Œ0; 1� // Y be a
homeomorphism trivializing the pair .R;Y/ and let U0 D '.U� Œ0; 1�/. Then U0 is
open and relatively compact in Y. We take a locally free resolution .Ei/0�i�N of
F1 on U0 . By the homotopy invariance property for topological K–theory, the classPN

iD0.�1/i Œi�t F1� in KU\Z .U/ is independent of t . By Proposition 3.16 (vi) and
Proposition 3.20, i�t E� is a locally free resolution of i�t F1 in U. This yields the
desired result.

3.5 Relative incidence sheaves

Let .X;J / be an almost-complex compact four-manifold and n be a fixed positive
integer. If W , W 0 and W 00 are small neighbourhoods of the incidence loci Zn�1 , Zn

and ZnC1 introduced in (2-5) and (2-6), let J rel
n�1 , J rel

n and J rel
nC1 be relative integrable

complex structures on W , W 0 and W 00 respectively. To simplify the notation, we put

X Œn�
DX

Œn�
J rel

n
; X ŒnC1�

DX
ŒnC1�
J rel

nC1
;

X ŒnC1;n�
DX

ŒnC1;n�
J rel

n�1
; X Œn��Œ1�

D .X Œn��Œ1�; J rel
n�1; J rel

n�1/:

Definition 3.22 The four relative incidence sets Yn , YnC1 , zYn and zYnC1 are de-
fined by:

Yn D
˚
.�; wIx/ in W 0rel

Œn�
�X .n/ W 0 such that w 2 supp.�/

	
;

YnC1 D
˚
.�; wIy/ in W 00rel

ŒnC1�
�X .nC1/ W 00 such that w 2 supp.�/

	
;

zYn D
˚
.�; wIx;p/ in W

Œn�
rel �X .n/�X W such that w 2 supp.�/

	
;

zYnC1 D
˚
.�; wIx;p/ in W ŒnC1�

rel �X .n/�X W such that w 2 supp.�/
	
:

The relative incidence sets Yn , YnC1 , zYn and zYnC1 are relative analytic subspaces
of W 0rel

Œn�
�X .n/ W 0 , W 00rel

ŒnC1�
�X .nC1/ W 00 , W Œn�

rel �X .n/�X W and W ŒnC1�
rel �X .n/�X W

respectively. For instance, if
˚
�i W Ui

� // �i �Vi

	
i2I

, where Vi and �i are open
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subsets of X .n/ and C2 respectively, is a maximal relative atlas on W 0 , the associated
atlas on W 0rel

Œn�
�X .n/ W 0 is the completed atlas of˚

�
Œn�
i �Vi

�i W U
Œn�
i �Vi

Ui
� // �

Œn�
i ��i �Vi

	
i2I
:

For any i in I , let Yn; i be the incidence locus in �Œn�i ��i defined by (2-1). Then
we have .�Œn�i �Vi

�i/ Œ.U
Œn�
i �Vi

Ui/\Yn�D Yn; i �Vi .

Definition 3.23 (i) The relative exceptional divisor Drel is the subset of W ŒnC1;n�
rel

defined by

Drel D
˚
.�; � 0I x; p/ in W ŒnC1;n�

rel such that supp.�/D supp.� 0/
	
:

(ii) The relative residual morphism x�W W ŒnC1;n�
rel

// W is defined by

x�.� ; � 0 Ix ;p/D .supp.�=� 0/Ix;p:/

(iii) The relative diagonal �rel is the subset of W �X .n/�X W defined by

�rel D
˚
.w1; w2 Ix; p/ in W �X .n/�X W such that w1 D w2

	
:

The set Drel is a relative analytic subspace of W ŒnC1;n�
rel of relative codimension one,

and the fibers Drel;x;p of Drel over X .n/ � X are the usual exceptional divisors
in W

ŒnC1;n�
x;p defined by (2-2). The ideal sheaf J rel

Drel
is locally free of rank one on

W ŒnC1;n�
rel , so that J1

Drel
is a complex line bundle on W ŒnC1;n�

rel .

Let us give a list of notation which are extensively used in the sequel of this section as
well as in Section 5.2 and Section 6.

Notation 3.24 Notation related to sheaves is as follows:

� The relatively coherent sheaves

Orel
Yn
; Orel

YnC1
; Orel
zYn
; Orel
zYnC1

.resp. J rel
Yn
; J rel

YnC1
; J rel
zYn
; J rel
zYnC1

/

on W 0rel
Œn�
�X .n/W 0; W 00rel

ŒnC1�
�X .nC1/W 00; W Œn�

rel �X .n/�X W ; W ŒnC1�
rel �X .n/�X W

defined by Proposition 3.11 are denoted by On , OnC1 , zOn and zOnC1 (resp.
Jn , JnC1 , zJn and zJnC1 ).

� The ideal sheaf J rel
Drel

is denoted by L.

� The relatively coherent sheaf Orel
�rel

on W �X .n/�X W is denoted by O� .
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Notation for cohomology classes is given as follows:
� The restriction to X ŒnC1;n� of the first Chern class of L1 in H 2.X ŒnC1;n�;Q/

is denoted by l .
� If 0� i � 2nC 2, we define a class �i;n in H 2i.X Œn� �X;Q/ by the formula
�i;n D ci.Œ zO1n �/jX Œn��Œ1� .

For morphisms, we use the following notation:
� The natural morphisms from W ŒnC1;n�

rel to W Œn�
rel and W ŒnC1�

rel are denoted by �
and  respectively.

� The natural projections from

W 0rel
Œn�
�X .n/ W 0; W 00rel

ŒnC1�
�X .nC1/ W 00; W Œn�

rel �X .n/�X W;

W ŒnC1�
rel �X .n/�X W; W ŒnC1;n�

rel �X .n/�X W

W 0rel
Œn�
; W 00rel

ŒnC1�
; W Œn�

rel ; W ŒnC1�
rel ; W ŒnC1;n�

rel ; resp.to

are denoted by xp , xq , p , q , zp , resp.
� The morphism x�W W ŒnC1;n�

rel
// W has already been defined in Definition

3.23 (ii).
� The morphism x� W W ŒnC1;n�

rel
// W Œn�

rel �X .n/�X W is defined by x� D .�; x� /.
� The morphism j W W ŒnC1;n�

rel
// W ŒnC1;n�

rel X .n/�X W is defined by j D .id; x� /.
� If f W X // X0 is a morphism of relative analytic spaces over X .n/ �X , we

define fW by

fW D f �X .n/�X idW W X�X .n/�X W // X0 �X .n/�X W:

The relative incidence sheaves On , OnC1 , zOn and zOnC1 are related if the relative
integrable complex structures J rel

n , J rel
nC1 and J rel

n�1 satisfy some compatibility condi-
tions.
� If the compatibility condition (A) of Section 2.4 is satisfied in the case mDnC1,

let kW W 0rel
Œn�
�X .n/ .X .n/ �X /

� � // W Œn�
rel be the associated injection. Letting r

denote the base change morphism from W 0rel
Œn�
�X .n/ .X Œn� �X / to W 0rel

Œn� , then
r�On D k� zOn and r�Jn D k� zJn .

� If the condition (B) of Section 2.4 is satisfied, a weak morphism s from W ŒnC1�
rel

to W
00ŒnC1�
rel can be obtained by composing the isomorphism

W ŒnC1�
rel

� // W 00rel
ŒnC1�

�X .nC1/ .X .n/ �X /

with the base change morphism from W 00rel
ŒnC1�

�X .nC1/ .X .n/�X / to W 00rel
ŒnC1� .

Then s�OnC1 D
zOnC1 and s�JnC1 D

zJnC1 .
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The sheaves zOn and zOnC1 fit into an important exact sequence:

Proposition 3.25 Let X be the relative analytic space W
ŒnC1;n�

rel �X .n/�X W .

(i) There is a natural exact sequence on X:

0 // j�L //  �
W
zOnC1

// ��
W
zOn

// 0:

(ii) The relatively coherent sheaves j�L and zp�L˝ x��
W
O� are isomorphic on X.

(iii) The three sheaves

Tori
x��1

W
Orel

W
.x��1

W O�;Orel
X /; Tori

 �1
W

Orel. �1
W
zOnC1;Orel

X /

Tori
��1

W
Orel.��1

W
zOn;Orel

X /and

vanish for any positive integer i .

Proof Using Proposition 3.6, the proposition is an immediate consequence of the
analogous results in the integrable case. For instance, the exact sequence of (i) is
obtained via relative holomorphic charts on W using the exact sequence (2-3).

We now turn to the computation of the classes �i;n .

Lemma 3.26 For every positive integer i , the classes �i;n are independent of the
relative integrable complex structure J rel

n�1 .

Proof Let J rel
0;n�1 and J rel

1;n�1 be two relative integrable complex structures on a
neighbourhood W of Zn�1 such that kJ rel

0;n�1�JkC 0;g;W and kJ rel
1;n�1�JkC 0;g;W

are strictly smaller than the bound "0 given in Proposition 2.13. Then there exist a
neighbourhood U of Zn�1 included in W as well as a relative integrable complex
structure zJ rel

n�1 on U � Œ0; 1� (considered as a relative differentiable space over the base
X .n/ �X � Œ0; 1�) such that zJ rel

n�1jU�f0g D J rel
0;n�1jU and zJ rel

n�1jU�f1g D J rel
1;n�1jU . If

XD .U � Œ0; 1�; zJ rel
n�1/, let us introduce the incidence set

yYn D
˚
.�; wIx;p; t/ in XŒn� �X .n/�X�Œ0;1�X such that w 2 supp �

	
:

Then yYn is a relative analytic subset of XŒn� �X .n/�X�Œ0;1�X. Furthermore, for any t

in Œ0; 1�, if it W X
Œn�
t �X .n/�X�ftgXt

// XŒn� �X .n/�X�Œ0;1�X is the natural injection,
then i�t Orel

yYn

is the incidence sheaf zOn on U Œn� �X .n/�X U , where U is endowed with
the relative integrable complex structure zJ rel

n�1jU�ftg . Since the relative product Hilbert
scheme .X Œn��Œ1�; zJ rel

n�1/ is a topological fibration over Œ0; 1�, the required result is a
direct consequence of Proposition 3.21.
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We compute now the cohomology classes �i;n . Let �W X ŒnC1;n� // X be the restric-
tion of pr1 ı x� to X ŒnC1;n� . If � is the canonical homotopy class in ŒX ŒnC1;n� WX Œn��

introduced in Section 2.4, we define � in ŒX ŒnC1;n� WX Œn� �X � by � D .�; �/.

Proposition 3.27 If 1� i � 2nC 2, �i;n D .�1/i��.l
i/.

Proof Let us assume that .W;J rel
n�1/ and .W 0;J rel

n / satisfy the compatibility condi-
tion (A) of Section 2.4 for mD nC 1. Then X Œn��Œ1� D X Œn� �X . In this proof, we
denote the two relative analytic spaces W ŒnC1;n�

rel and W Œn�
rel �X .n/�X W by X and X0

respectively. The homotopy class of the restriction of x� W X // X0 to X ŒnC1;n� is � .

Let f�i W Ui
� // �i �Vi gi2I , where �i and Vi are open subsets of C2 and X .n/ �X

respectively, be a maximal relative holomorphic atlas on W . If  i D �
ŒnC1;n�
i , if

i D �
Œn�
i �Vi

�i and if Oi D U
Œn�
i;rel �Vi

Ui , then the family

f i W U
ŒnC1;n�
i;rel

� // �
ŒnC1;n�
i �Vigi2I .resp. fi W Oi

� // �
Œn�
i ��i �Vi gi2I /

is a relative holomorphic atlas on X (resp. X0 ). For any i in I , let Yn; i be the
incidence locus in �Œn�i ��i defined by (2-2), and let 0 // Ai

// Bi be a locally
free resolution of length two of the ideal sheaf JYn; i

(see Section 2.1). By the very
construction of global smooth resolutions for relatively coherent sheaves (Proposition
3.19), we can assume, after shrinking W if necessary, that there exists a locally
free resolution 0 // A // B of length 2 of zJ1

n
on X0 such that for any i in I ,

0 // �1
i A1i // �1

i B1i is a subresolution of 0 // AjOi
// BjOi

, where by a
slight abuse of notation, we write A1i instead of

pr�1
1 Ai ˝pr�1

1
O
�
Œn�
i
��i

C1
�
Œn�

i
��i�Vi

and B1i instead of
pr�1

1 Bi ˝pr�1
1

O
�
Œn�
i
��i

C1
�
Œn�

i
��i�Vi

:

Let P .B/ be the projective bundle of B (using Grothendieck’s convention), K be the uni-
versal quotient line bundle on P .B/, � W P .B/ // W Œn�

rel �X .n/�X W be the projection
and s be the section of ��A�˝K obtained via the morphism ��A // ��B // K .

Lemma 3.28 (i) The vanishing locus Z.s/ of s is canonically isomorphic to X.

(ii) After changing base from X .n/ �X to X n �X , the section s is transverse to
the zero section.

(iii) If j is the embedding of X into P .B/, then j �K' L1 .
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Proof (i) By Proposition 3.17 (i), we can split the injection of �1
i A1i in AjOi

.
If AjOi

' �1
i .A1i ˚Ri/ is such a splitting, it induces another splitting BjOi

'

�1
i .B1i ˚Ri/. The resolution 0 // AjOi

// BjOi
is therefore isomorphic to

0 // �1
i .A1i ˚Ri/

Ni // �1
i .B1i ˚Ri/;

Ni D

�
�1

i Mi 0

0 id

�
:where

For any point p in �ŒnC1;n�
i �Vi , we have an obvious bijection between the two sets

fu in .B1i jp˚Ri jp/
� such that u vanishes on .A1i jp˚Ri jp/g

fu in .B1i jp/
� such that u vanishes on A1i jp

	
:and

If we consider the embedding of P .�1
i B1i / in P .BjOi

/ given by the splitting of BjOi
,

this means that Z.s/\ ��1.Oi/ lies in P .�1
i B1i /. Furthermore, it is easy to see

that the embedding of Z.s/ \ ��1.Oi/ in P .�1
i B1i / is independent of the split-

ting. If z� W P .Bi/ // �
Œn�
i ��i is the projection of the projective bundle of Bi , if

zs is the section of z��A�i .1/ given by the morphism z��Ai
// z��Bi

// OP.Bi /.1/

and if ıi W P .�1
i B1i /

� // P .B1i / is the natural isomorphism induced by i , then
Z.s/\��1.Oi/D ı

�1
i .Z.zs /�Vi/: The zero locus Z.zs / being canonically isomorphic

to �ŒnC1;n�
i , we get a commutative diagram

P . �1
i B1i /

�

ıi

// P .B1i /

U
ŒnC1;n�
i;rel

?�

OO

�

 i

// Z.zs /�Vi

?�

OO

Thus Z.s/\��1.Oi/' U
ŒnC1;n�
i;rel .

(ii) Let p be in .�Œn�i ��i/�Vi . We choose a neighbourhood Up�Vp of p such that
Ai , Bi and Ri are trivial on Up , Up and Up�Vp , of respective ranks r , rC1 and m.
Let q be a point in z��1.p/ \ .Z.zs / � Vi/. We can find an affine hyperplane H1

in CrC1 which does not contain zero and an hyperplane H2 in Cm such that the
open subset .H1 �H2 �Up/�Vp of P .B1i ˚Ri/ contains q . The restriction of s

to H1 � f0g � Up is a holomorphic map from H1 � Up to .Cr /� corresponding
to the section zs , and sW .H1 �H2 �Up/�Vp

// .Cr ˚Cm/� can be expressed as
s.u1;u2; zI v/.˛; ˇ/D zs.u1; z/.˛/C u2.ˇ/. After changing base from X .n/ �X to
X n�X , the variable v lies in the preimage of Vi in X n�X , which is smooth. Since
zs is transverse to the zero section, the result ensues.
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(iii) We write j on W
ŒnC1;n�

i;rel as the composed of the following morphisms:

W
ŒnC1;n�

i;rel
�

 i

// .�
Œn�
i ��i/�Vi

� � // P .Bi/�Vi ' P .B1i /
� � // P .B jOi

/

Since the restriction of OP.Bi /.1/ to �Œn�i ��i is the ideal sheaf of the exceptional
divisor in �Œn�i ��i , the sheaves j �K and L1 are isomorphic on W

ŒnC1;n�
i;rel . It is

then a routine verification to check that these isomorphisms patch together into a global
isomorphism between j �K and L1 .

We now finish the proof of Proposition 3.27. Let r W P .B/�X .n/�X .X n �X / // P .B/
be the natural base change map. Point (ii) of Lemma 3.28 imply that Z.r�s/ is Poincaré
dual to the top Chern class of r�.��A�˝ K/. Since the pullback morphism r� is
injective in cohomology with rational coefficients, Z.s/ is Poincaré dual to the top
Chern class of ��A�˝ K in H8nC8.P .B/;Q/. Besides, if " is the first Chern class
of K in H 2.P .B/;Q/, point (iii) of Lemma 3.28 imply that l D j �"jX ŒnC1;n� . As x�
is proper, we get for 1� i � 2nC 2:

x��.j
�"i/D ��j�.j

�"i/D ��.ŒX� : "
i/

D ��
�
cr .�

�A�˝K/ : "i
�
D

rX
kD0

ck.A�/ �� "rCi�k

D

rX
kD0

ck.A�/ si�k.B�/D ci.A��B�/D .�1/ici. zJ1n /D .�1/ici. zO1n /:

Let u (resp. v ) denote the embedding of X ŒnC1;n� (resp. X Œn��X ) in X (resp. in X0 ).
Since x��x�� D id and ���� D id, we get

v�x��.j
�"i/D ���

�v�x��.j
�"i/D ��u

�
x�� x��.j

�"i/D ��u
�j �"i

D ��l
i ;

so that ��l i D .�1/iv�ci. zO1n /D .�1/i �i;n .

4 The boundary operator

4.1 Lehn’s formula in the almost-complex case

Let .X;J / be an almost-complex compact four-manifold, and W 0 , W be respective
neighbourhoods of Zn and Zn�1 endowed with relative integrable complex struc-
tures J rel

n and J rel
n�1 . If L is the invertible sheaf defined in Notation 3.24, let F be the

restriction of L1 to X ŒnC1;n� . By the homotopy invariance of topological K–theory,
the class of F in K.X ŒnC1;n�/ is independent of J rel

n�1 , and its first Chern class is l .
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If f�i W Ui
� // Zi �Vi gi2I is a maximal relative holomorphic atlas on W , the tauto-

logical sheaves
pr�1

1 OŒn�
Z
Œn�

i

˝pr�1
1

O
Z
Œn�
i

Orel
Z
Œn�

i
�Vi

patch together into a locally free sheaf T Œn�
rel on W Œn�

rel . The restriction T Œn� of T Œn�
rel to

X Œn� satisfies the properties (see [21, Proposition 5.3, Lemma 5.4, Proposition 5.5]):

(i) The class of T Œn� in K.X Œn�/ is independent of J rel
n .

(ii) The cohomology class �2c1.T
Œn�/ in H 2.X Œn�;Q/ is Poincaré dual to the

fundamental homology class of @X Œn� , where

@X Œn�
D
˚
.�Ix/ in X Œn� such that there exists p in x with lengthp.�/� 2

	
is the so-called boundary of X Œn� .

(iii) If � and � are the homotopy classes introduced in Section 2.4 in the case
mD nC 1, then �� T ŒnC1���� T Œn� D F in K.X ŒnC1;n�/.

If m and n are positive integers with m> n, we define a class I
Œm;n�
T in K.X Œm;n�/

by the formula I
Œm;n�
T D �� T Œm���� T Œn� . Then property (iii) implies that I

ŒnC1;n�
T

and F are equal in K.X ŒnC1;n�/.

Let us recall Lehn’s definition of the boundary operator [25, Definition 3.8]:

Definition 4.1 Let HD
L

n�0 H�.X Œn�;Q/.

(i) The boundary operator dW H // H is defined by

dŒ.˛n/n�0�D
�
c1.T

Œn�/[˛n

�
n�0

:

(ii) If A is an endomorphism of H , the derivative A0 of A is defined by the formula

A0 D Œd;A�D d ıA�A ı d:

We now state a partial extension of Lehn’s main formula [25, Theorem 3.10] for
almost-complex four-manifolds.

Theorem 4.2 Let .X;J / be an almost-complex compact four-manifold. Then there
exist classes .en/n�0 in H 2.X;Q/ such that for all integers m, n and for all rational
cohomology classes ˛ and ˇ on X ,

Œq0n.˛/; qm.ˇ/�D�nm qnCm.˛ˇ/C ınCm;0

�Z
X

ejnj˛ˇ
�

idH :
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Proof Exactly as in [25, Lemma 3.9], we start by proving that correspondences
actions induced by homology classes on incidence varieties are stable under derivation.
We denote by PD the Poincaré duality map between the homology groups and the
cohomology groups of a compact topological manifold.

Lemma 4.3 Let m, n be two positive integers with m> n, u be a rational homology
class on X Œm;n� and u�W H

�.X Œn�;Q/ // H�.X Œm�;Q/ be the correspondence map
given by the formula u�.�/D PD�1Œ��.u\�

��/�. Then .u�/0 D Œu\ c1.I
Œm;n�
T /�� .

Proof For every rational cohomology class � on X Œn� ,

.u�/
0� D c1.T

Œm�/[u�� �u�
�
c1.T

Œn�/[ �
�

D PD�1
h�
��.u\�

��/
�
\ c1.T

Œm�/� ��
�
u\��

�
c1.T

Œn�/[ �
��i

D PD�1
h
��

�
u\

��
��c1.T

Œm�/���c1.T
Œn�/
�
[���

��i
D PD�1 ��

��
u\ c1.I

Œm;n�
T /

�
\���

�
D
�
u\ c1.I

Œm;n�
T /

�
�
.�/:

By this Lemma, the proof of the theorem boils down to computing the commutator of
two correspondences. Lehn’s proof can be adapted exactly as we did in [21] for the
Nakajima relations. This yields (see [22, Section 4.3] for a detailed exposition):
� For all integers m and n such that mC n is nonzero, there exists an excess

multiplicity �n;m in Z such that for all rational cohomology classes ˛ and ˇ
on X , the commutation relation Œq0n.˛/; qm.ˇ/�D �n;m qnCm.˛ˇ/ holds.

� For every nonnegative integer k , there exists an excess intersection class ek in
H 2.X;Q/ such that for every integer n and for all rational cohomology classes
˛ and ˇ on X , the identity Œq0n.˛/; q�n.ˇ/�D .

R
X ejnj ˛ˇ/ idH holds.

The terms �n;m and ek are the excess contributions. The multiplicity �n;m can be
computed locally on X , so that Lehn’s proof is valid and gives �n;m D�nm.

Unlike the multiplicities �n;m , the excess classes ek involve the global geometry
of X . We compute these classes in Section 4.3 under the additional assumption that
X be symplectic.

Corollary 4.4 When ˛ runs through a basis of H�.X;Q/, the operators d and q1.˛/

generate H from the vector 1.

Proof The corollary is a straightforward consequence of the commutation relations
Œq0

1
.˛/; qm.1/�D�m qmC1.˛/; m> 0.
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4.2 Holomorphic curves in symplectic four-manifolds

Until now, we have only considered integrable structures in small open sets of .X;J /.
To compute the excess classes en appearing in Theorem 4.2, we construct pseudoholo-
morphic curves in X for perturbed almost-complex structures. To do so we use the
following theorem of Donaldson, which is a symplectic analog of Kodaira’s embedding
theorem:

Theorem 4.5 [11, Theorem 1] Let .V; !/ be a symplectic manifold of dimension 2n

such that ! is an integral class and let z! be a lift of ! in H 2.V;Z/. For any sufficiently
large positive integer k , the Poincaré dual of k z! in H2n�2.V;Z/ is the homology class
of a closed symplectic submanifold of V . More precisely, if J is an almost-complex
structure on V compatible with ! , there is a positive constant C such that for any large
integer k , there exist an almost-complex structure Jk on X and a Jk –holomorphic
submanifold Sk of codimension two in V such that k z! is Poincaré dual to Sk and
that kJk �JkC 0� C=

p
k .

We apply this theorem to our situation:

Proposition 4.6 Let .X; !/ be a symplectic compact four-manifold, J be an adapted
almost-complex structure on X and N be the second Betti number of X . Then
there exist almost-complex structures .Ji/1�i�N arbitrary close to J in C 0–norm and
two-dimensional submanifolds .Ci/1�i�N such that:

(i) For any i with 1 � i � N , Ci is Ji –holomorphic and Ji is integrable in a
neighbourhood of Ci .

(ii) The homology classes of C1; : : : ;CN span H2.X;Q/ over Q.

Proof Let ˛1; : : : ; ˛N be closed differential two-forms on X such that the !C˛i ’s
are rational symplectic forms whose cohomology classes span H 2.X;Q/. Then there
exist almost-complex structures . zJi/1�i�N on X such that for every i , zJi is adapted to
!C˛i . Besides, if g is a Riemannian metric on X and if " is a positive real number, we
can assume by choosing the j̨ ’s small enough that k zJi �JkC 0;g < " for 1� i �N .
Let m1; : : : ;mN be positive integers such that m1.! C ˛1/; : : : ;mN .! C ˛N / are
integral classes. By Theorem 4.5, there exist a positive integer k , a family .J 0i /1�i�N

of almost-complex structures on X and a family .Ci/1�i�N of two-dimensional
submanifolds of X such that for 1� i �N , Ci is J 0i –holomorphic, kJ 0i � zJikC 0;g <"

and kmi Œ!C˛i � is Poincaré dual to ŒCi �. Thus, for each integer i between 1 and N ,
J 0i defines an almost-complex structure on Ci , which is integrable since Ci is two-
dimensional. Furthermore, J 0i endows the normal bundle NCi=X with the structure of
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a complex vector bundle over the Riemann surface .Ci ;J
0
i /. By the Koszul–Malgrange

integrability theorem [12, Theorem 2.1.53], there exists a structure of holomorphic line
bundle on NCi=X . Let Ui be a tubular neighbourhood of Ci in X , diffeomorphic to
a neighbourhood of the zero section in NCi=X . Pulling back the integrable complex
structure on NCi=X by this diffeomorphism, we obtain an integrable complex structure
J 00i on Ui whose restriction to Ci is equal to J 0i . Since we are free to restrict Ui , we
can assume that kJ 00i �J 0ikC 0;g;Ui

< ", so that kJ 00i �JkC 0;g;Ui
< 3 ". If " is small

enough, this implies that there exist a relatively compact neighbourhood Vi of Ci in
Ui as well as a smooth family .Jt /0�t�1 of almost-complex structures on Vi such that
J0 D J jVi

, J1 D J 00i jVi
and for every t in Œ0; 1�, kJ � JtkC 0;g;Vi

< 3 ". Let � be a
smooth real-valued function on X supported in Vi such that �� 1 in a neighbourhood
of Ci . We define an almost-complex structure Ji on X by Ji.p/D J�.p/.p/. Then
Ji is integrable on Vi , Ci is Ji –holomorphic and kJi �JkC 0 < 3 ".

4.3 Computation of the excess term in the symplectic case

Our aim in this section is to prove Lehn’s formula in full generality for symplectic
four-manifolds:

Theorem 4.7 Let .X; !/ be a symplectic compact four-manifold and J be is an
almost-complex structure compatible with ! . If n is a nonnegative integer, the excess
contribution en of Theorem 4.2 is given by

en D
1

2
n2.n� 1/c1.X /:

This means that for all integers n, m and for all rational cohomology classes ˛ and ˇ
on X ,

Œq0n.˛/; qm.ˇ/�D�nm
�
qnCm.˛ˇ/�

jnj � 1

2
ınCm;0

�Z
X

c1.X /˛ˇ
�

idH

�
:

In the integrable case, the statement of the theorem is [25, Proposition 3.15], with slightly
different notation. We start by an outline of Lehn’s original proof [25, Section 3.4], then
we show how to adapt it in the symplectic case. In the sequel, if Z is a triangulable
cycle in a topological manifold Y , we denote by ŒZ� the cohomological cycle class
of Z .

If X is a smooth projective surface and if C is a smooth algebraic curve on X , a
result of Grojnowski (see Lemma 4.8 below) describes explicitly the class ŒC Œn�� in
H 2n.X Œn�;Q/ in terms of the classes qi1

.ŒC �/ : : : qiN
.ŒC �/ : 1, where i1; : : : ; iN are

positive integers of total sum n.
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Let X
Œn�
0

be the set of elements in X Œn� whose support is a single point. If @C Œn�

denotes the intersection C Œn�\ @X Œn� , the term

I D

Z
X Œn�

ŒX
Œn�
0
� : Œ@C Œn��

can be computed in two different ways:

(i) The integral I is equal to q�n.1/ .Œ@C
Œn��/. Since C Œn� and @X Œn� intersect generi-

cally transversally, Œ@C Œn��D Œ@X Œn�� : ŒC Œn��D�2 c1.T
n/ : ŒC Œn��D�2 d.ŒC Œn��/. Thus,

I is a linear combination of terms q�n.1/ qi1
.ŒC �/ : : : q0ik

.ŒC �/ : : : qiN
.ŒC �/ : 1, where

i1; : : : ; iN are positive integers of total sum n. These terms vanish except in two cases:

� N D 1, i1 D n. Then

q�n.1/ q
0
n.ŒC �/ : 1D�

Z
X

en : ŒC �:

� N D 2, i1C i2 D n. Then q�n.1/ qk.ŒC �/ q
0
n�k

.ŒC �/ : 1D 0 and

q�n.1/ q
0
k.ŒC �/ qn�k.ŒC �/ :1D�nk qk�n.ŒC �/ qn�k.ŒC �/ :1D nk.n�k/ ŒC �2:

This computation gives

I D
1

n

Z
X

en : ŒC �C

�
n

2

�
ŒC �2:

(ii) The cycle C Œn� intersects transversally X
Œn�
0

in its smooth locus. Besides, the
intersection C Œn�\X

Œn�
0

is C
Œn�
0

, which is canonically isomorphic to C . Therefore

I D

Z
X Œn�

ŒX
Œn�
0
� : ŒC Œn�� : Œ@X Œn��D deg C ŒOX Œn�.@X Œn�/�D deg C ŒOC Œn�.@C

Œn�/�;

which is �n.n� 1/ deg C KX by direct computation.

The excess terms en lie in the Neron–Severi group of X so that it is enough to show
that for every smooth algebraic curve C ,Z

X

h
en�

1

2
n2.n� 1/ c1.X /

i
: ŒC �D 0:

This is proved by comparison of the two expressions obtained for I .

Proof of Theorem 4.7 If  is a rational cohomology class on X of even degree, we
define the vertex operators .Sm. //m�0 acting on H by the formulaX

m�0

Sm. / tm
D exp

 X
n>0

.�1/n�1

n
qn. / tn

!
:
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Since  is of even degree, the operators .qi. //i>0 commute in the usual sense,
so that the definition of Sm. / is unambiguous. The following lemma is due to
Grojnowski [23] in the integrable case; we refer the reader to Nakajima [35, Section 9.3]
for a detailed exposition.

Lemma 4.8 Let zJ be an almost-complex structure on X in the deformation class
of J , and let C be a zJ –holomorphic curve on X . Assume that zJ is integrable
in a neighbourhood of C . Then for any positive integer n, ŒC Œn�� D Sn.ŒC �/ : 1 in
H 2n.X Œn�;Q/.

Proof Let V be a small neighbourhood of C in X such that zJ is integrable on
V , U be a relatively compact neighbourhood of C in V , m and n be two positive
integers such that m> n and J rel

n�.m�n/ be a relative integrable complex structure in
a neighbourhood W of Zn�.m�n/ . If �W D V �U .n/ �U .m�n/ , let us assume that�W �W , that J rel

n�.m�n/j �W D zJ and that J rel
n�.m�n/ is close to zJ in C 0–norm. Then�W Œm;n�

rel \ .X Œm;n�;J rel
n�.m�n// is exactly the usual incidence variety U Œm;n� , where

U is endowed with the integrable complex structure zJ . We denote by yqi.˛/ the
usual Nakajima operators on U , in order to distinguish them from the almost-complex
Nakajima operators on X . Then we have a commutative diagram:

H�c .U
Œn�;Q/ //

yqm�n.ŒC �/

��

H�.X Œn�;Q/

qm�n.ŒC �/

��

H�c .U
Œm�;Q/ // H�.X Œm�;Q/

Besides yqn.ŒC �/ : 1 lies in H�c .U
Œn�;Q/ and its image in H�.X Œn�;Q/ is qn.ŒC �/ : 1.

Since the identity of the lemma holds in H 2n
c .U Œn�;Q/ for the classical Nakajima

operators, we obtain the result.

If .C; zJ / satisfies the hypotheses of Lemma 4.8, Lehn’s computations recalled above
apply verbatim and giveZ

X

h
en�

1

2
n2.n� 1/ c1.X /

i
: ŒC �D 0:

By Proposition 4.6, H 2.X;Q/ is spanned by cohomology classes of such holomorphic
curves. Since the intersection form of X is nondegenerate on H 2.X;Q/, we get
en D

1
2

n2.n� 1/ c1.X /.
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The derivative of the Nakajima operators can be explicitly expressed using the Virasoro
operators Ln.˛/ defined in [25, Section 3.1]:

Corollary 4.9 If .X; !/ is a symplectic compact four-manifold and if J is a compa-
tible almost-complex structure, then for every n in Z,

q0n.˛/D nLn.˛/�
1

2
n.jnj � 1/qn.c1.X / ˛/:

For the proof, see [25, page 180].

5 The ring structure of H �.X Œn�; Q/

5.1 Geometric tautological Chern characters

Let .X;J / be an almost-complex compact four-manifold, n be a positive integer and
�, � be the homotopy classes in ŒX ŒnC1;n� WX Œn�� and ŒX ŒnC1;n� WX ŒnC1�� introduced
in Section 2.4.

If E is a complex vector bundle on X , it is possible to associate with E a sequence
of tautological vector bundles .EŒn�/n>0 on X Œn� . These tautological bundles are
constructed in [21, Section 5] using relative holomorphic structures on E , and their
classes in complex K–theory are shown to be independent of these auxiliary structures
[21, Proposition 5.3]. This construction yields tautological morphisms from K.X /

to K.X Œn�/.

If F is the class in K.X ŒnC1;n�/ defined at the beginning of Section 4.1, then the
tautological bundles EŒn� and EŒnC1� are related through the identity ��EŒnC1� D

��EŒn�C ��E˝F in K.X ŒnC1;n�/, which is a K–theoretical analog of (2-4) (see
[21, Proposition 5.5]). This gives in H even.X ŒnC1;n�;Q/ the relation

��.ch.EŒnC1�//D ��.ch.EŒn�//C �� ch.E/ : ch.F /:

Lemma 5.1 For every class ˛ in H even.X;Q/ and every positive integer n, there
exists a unique class G.˛; n/ in H even.X Œn�;Q/ such that G.˛; 1/D ˛ and for every
positive integer n,

��G.˛; nC 1/���G.˛; n/D ��˛ : ch.F /:
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Proof The Chern character on X gives an isomorphism between K.X /˝Z Q and
H even.X;Q/. Therefore, we can define the classes G.˛; n/ in H even.X Œn�;Q/ as
follows: if y is the unique class in K.X /˝Z Q such that ch.y/D ˛ , then G.˛; n/D

ch.yŒn�/. Furthermore, G.˛; n/ is unique since ���� D .nC 1/ id.

5.2 Virtual tautological Chern characters

In this section, we extend Lemma 5.1 to odd cohomology classes. We adapt the method
originally developed in the projective case by Li, Qin and Wang in [29, Section 5].

Proposition 5.2 For every class ˛ in H�.X;Q/ and every n in N� , there exists a
unique class G.˛; n/ in H�.X Œn�;Q/ such that G.˛; 1/ D ˛ and for every positive
integer n,

��G.˛; nC 1/���G.˛; n/D ��˛ : ch.F /:

Remark 5.3 If X is a projective surface, if Yn is the incidence locus in X Œn� �X

and if td.X / is the Todd class of X , then G.˛; n/D pr�
1
Œch.OYn

/ : pr�
2
˛ : pr�

2
td.X /�

(see [29, Lemma 5.8]).

Proof We adopt the notation of Section 3.5, especially those of Notation 3.24.

� The projection from W (W 0 , W 00 ) to X is denoted by t (t 0 , t 00 , resp.).

� The projection from

W 0rel
Œn�
�X .n/W 0; W 00rel

ŒnC1�
�X .nC1/ W 00; W Œn�

rel �X .n/�X W;

W ŒnC1�
rel �X .n/�X W; W ŒnC1;n�

rel �X .n/�X W

W 0; W 00; W ; W ; W; resp.to

is denoted by �1 , �2 , �3 , �4 , �5 , resp.

� The first and second projections from W �X .n/�X W to W are denoted by �6

and �7 .

Thanks to Proposition 3.19, we can assume that O1
n

, O1
nC1

, zO1
n

and zO1
nC1

admit
global smooth locally free resolutions. Let �n (resp. �nC1 , z�n , z�nC1 ) be the Chern
character of the relative incidence sheaf On (resp. OnC1 , zOn , zOnC1 ) in

H�Yn
.W 0rel

Œn�
�X .n/ W 0/ (resp. H�YnC1

.W 00rel
ŒnC1�

�X .nC1/ W 00/;

H�
zYn
.W Œn�

rel �X .n/�X W /; H�
zYnC1

.W ŒnC1�
rel �X .n/�X W //:
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Since xp (resp. xq , p , q ) is finite on Yn (resp. YnC1 , zYn , zYnC1 ), we can define six
cohomology classes as follows:

K.˛; n/D xp�
�
�n : �

�
1 t 0�.˛ : td.X //

�
in H�.W 0rel

Œn�
;Q/;

K.˛; nC 1/D xq�
�
�nC1 : �

�
2 t 00�.˛ : td.X //

�
in H�.W 00rel

ŒnC1�
;Q/;

zK.˛; n/D p�
�
z�n : �

�
3 t�.˛ : td.X //

�
in H�.W Œn�

rel ;Q/;

zK.˛; nC 1/D q�
�
z�nC1 : �

�
4 t�.˛ : td.X //

�
in H�.W ŒnC1�

rel ;Q/;

G.˛; n/DK.˛; n/jX Œn� in H�.X Œn�;Q/;

G.˛; nC 1/DK.˛; nC 1/jX ŒnC1� in H�.X ŒnC1�;Q/:

Then, by Proposition 3.10 (ii),

 � zK.˛; nC 1/��� zK.˛; n/D zp�
�
. �W z�nC1��

�
W z�n/ : �

�
5 t� .˛ : td.X //

�
D zp�

�
zp� ch.L/ : x� �W ch.ŒO1� �/ : x�

�
W ��7 t�.˛ : td.X //

�
:

Since ch.ŒO1
�
�/ is supported in �rel , for every ˇ in H�.W �X .n/�X W;Q/, we obtain

that ch.ŒO1
�
�/ : ��

6
ˇ D ch.ŒO1

�
�/ : ��

7
ˇ . Using the diagram

W ŒnC1;n�
rel �X .n/�X W

x��
W //

zp

��

WX .n/�X W

�6

��
W ŒnC1;n�

rel x�
// W

we get

 � zK.˛; nC 1/��� zK.˛; n/D ch.L/ zp� x� �W
�
ch.ŒO1� �/ : �

�
6 t� .˛ : td.X //

�
D ch.L/ x� �

�
�6� ch.ŒO1� �/ : t

�.˛ : td.X //
�
:

Lemma 5.4 (i) If zt D t�X .n/�X t W WX .n/�X W //X�X and if i W X //X�X

is the diagonal injection, then ch.ŒO1
�
�/D zt� i� td.X /�1 .

(ii) ��G.˛; n/D �� zK.˛; n/jX ŒnC1;n� .

(iii) ��G.˛; nC 1/D  � zK.˛; nC 1/jX ŒnC1;n� .

Proof (i) The class ŒO1
�
� in K�rel .WX .n/�X W / is the pullback by the map zt of the

class ŒC1
�X
� in K�X

.X �X /. Besides, the differentiable Grothendieck–Riemann–Roch
theorem for immersions [3, Theorem 3.3] yields ch.ŒC1

�X
�/D i� td.X /�1 .
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(ii) If .W;J rel
n�1/ and .W 0;J rel

n / satisfy the compatibility condition (A) of Section 2.4,
then we have ��G.˛; n/D �� zK.˛; n/jX ŒnC1;n� . To conclude in the general case, we
argue exactly as in Lemma 3.26.

(iii) The proof is the same as (ii), replacing condition (A) by condition (B).

By (i), we get �6� ch.ŒO1
�
�/D�6� zt

� i� td.X /�1D t� pr1� i� td.X /�1D t� td.X /�1 ,
so that  � zK.˛; nC1/��� zK.˛; n/D ch.L/ x� � t�˛ . By points (ii) and (iii), we obtain
the relation ��G.˛; n/ � ��G.˛; nC 1/ D ch.F / : ��˛ . This finishes the proof of
Proposition 5.2.

5.3 The ring structure and the crepant resolution conjecture

In this section, X is a symplectic compact four-manifold endowed with a compatible
almost-complex structure.

We introduce operators acting on HD
L

n2N H�.X Œn�;Q/ by cup product with the
components of the virtual tautological Chern characters constructed in Section 5.2.

If ˛ is a homogeneous rational cohomology class on X and if i , n are positive integers,
we denote by Gi.˛; n/ the .j˛j C 2i/–th component of G.˛; n/ and by Si.˛/ the
operator on H that acts by cup product with Gi.˛; n/ on H�.X Œn�;Q/.

We now state a result, originally proved by Lehn for geometric tautological Chern
characters [25, Theorem 4.2] and generalized by Li, Qin and Wang for virtual ones
[29, Lemma 5.8]. We include a proof for the sake of completeness.

Proposition 5.5 For all homogeneous rational cohomology classes ˛ , ˇ on X and
for any positive integer k , ŒSk.˛/; q1.ˇ/�D .1=k!/q

.k/
1
.˛ˇ/.

Proof Let ˛ , ˇ be homogeneous rational cohomology classes on X and n be a
positive integer. The operator q1.ˇ/W H

�.X Œn�;Q/ // H�.X ŒnC1�;Q/ is given by
q1.ˇ/ : � D ��.�

�� : ��ˇ/. Therefore

G.˛; nC 1/ : .q1.ˇ/ : �/� q1.ˇ/ : .G.˛; n/ : �/

D ��
�
��� : ��G.˛; nC 1/ : ��ˇ

�
� ��

�
��.� :G.˛; n// : ��ˇ

�
D ��

�
ch.F / : ��� : ��.˛ˇ/

�
by Proposition 5.2

D

X
k�0

1

k!
��
�
c1.F /

k ��� : ��.˛ˇ/
�
:
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On the other hand, since q1.˛ˇ/ is given on H�.X Œn�;Q/ by the action by correspon-
dence of the Poincaré dual of ��.˛ˇ/, we have by Lemma 4.3

q
.k/
1
.˛ˇ/D

��
PD .��.˛ˇ//

�
�

�.k/
D
��

PD .��.˛ˇ//\ c1.F /
�
�

�.k�1/

D � � � D
�
PD .��.˛ˇ//\ c1.F /

k
�
�
:

This yields the result.

As explained in [25, Remark 4.5], Proposition 5.5, Theorem 4.7 and Corollary 4.4 yield
a complete description of the operators Sk.˛/.

The forthcoming Theorems 5.6, 5.7 and 5.9 extend to Hilbert schemes of symplectic
manifolds the analogous results for projective surfaces of Li, Qin and Wang [29, Theo-
rem 5.2; 30, Theorem 4.1] and, for Theorem 5.9, of Lehn and Sorger [27, Theorem 1.1]
and Qin and Wang [37, Theorem 5.13]. The first two results are formal consequences of
the various relations between qn.˛/, d, Ln.˛/ and Si.˛/ listed in [30, Theorem 2.1].
Thus, the two following theorems are formal consequences of Theorem 4.7, Corollary
4.9 and Proposition 5.5:

Theorem 5.6 If 0 � i < n and if ˛ runs through a fixed basis of H�.X;Q/, the
classes Gi.˛; n/ generate the ring H�.X Œn�;Q/.

Theorem 5.7 For every integer n, the ring H�.X Œn�;Q/ can be built by universal
formulae from the ring H�.X;Q/ and the first Chern class of X in H 2.X;Q/.

In the case where b1.X / vanishes, Theorem 5.6 implies that the rings H�.X Œn�;Q/
are generated by the components of the tautological Chern characters ch.EŒn�/, where
E runs through all complex vector bundles on X .

We now turn to the study of a particular case of Ruan’s crepant resolution conjecture.
Orbifold cohomology provides a geometrical approach to the rings H�.X Œn�;Q/. If
J is an adapted almost-complex structure on X , the symmetric product X .n/ is an
almost-complex Gorenstein orbifold. The orbifold cohomology ring H�orb.X

.n/;Q/ is
Z–graded and depends only on the deformation class of J (see [9; 1; 15]).

After works by Lehn and Sorger [26; 27], Li, Qin and Wang [28; 29; 30], Fantechi
and Göttsche [15] and Uribe [42], Qin and Wang [37, Section 2.6] developed a set of
axioms that characterize H�orb.X

.n/;Q/ as a ring. Here is their result, as stated in [1,
Theorem 5.24]:
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Theorem 5.8 Let A be a graded unitary ring, .X;J / be an almost-complex compact
four-manifold and H.H�.X;C// be the Heisenberg superalgebra of H�.X;C/. We
assume that:

(i) The ring A is an irreducible H.H�.X;C//–module and 1 is a highest weight
vector.

(ii) For any ˛ in H�.X;C/ and for any nonnegative integer i , there exist classes
Oi.˛; n/ in Aj˛jC2i such that if Di.˛/ is the left multiplication by

L
n Oi.˛; n/

on A and if dDD1.1/, then:
� For all ˛ , ˇ in H�.X;C/, for every nonnegative integer k ,

ŒDk.˛/; q1.ˇ/�D q
.k/
1
.˛ˇ/:

� If ıX is the class in H�.X;C/˝3 mapped by the Künneth isomorphism to
the cycle class of the diagonal in X 3 , thenX

l1Cl2Cl3D0

W ql1
ql2

ql3
W .ıX /D�6 d:

Then the rings A and H�orb.X
.n/;C/ are isomorphic.

(We use the physicists’ normal ordering convention

W ql1
ql2

ql3
WD qm1

qm2
qm3

; where fl1; l2; l3g D fm1;m2;m3g and m1 �m2 �m3/:

We apply this theorem to prove Ruan’s conjecture for the symmetric products of a
symplectic four-manifold with torsion first Chern class.

Theorem 5.9 Let .X; !/ be a symplectic compact four-manifold with vanishing first
Chern class in H 2.X;Q/. Then, for every positive integer n, Ruan’s crepant conjecture
holds for X .n/ , ie the rings H�.X Œn�;C/ and H�orb.X

.n/;C/ are isomorphic.

Proof Let Ok.˛; n/D k!Sk.˛; n/. The first condition of Theorem 5.8 (ii) is exactly
Proposition 5.5. The second condition is a formal consequence of the Nakajima relations
and of the formulae Œq0n.˛/; qm.ˇ/�D�nm qnCm.˛ˇ/, q0n.˛/D nLn.˛/.

6 The cobordism class of X Œn�

In this section, .X;J / is an almost-complex compact four-manifold, and no symplectic
hypotheses are required. The almost-complex Hilbert schemes X Œn� are endowed with
a stable almost complex structure, hence define almost-complex cobordism classes. By
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classical results of Novikov [36] and Milnor [33], the almost-complex cobordism class
of X Œn� is completely determined by the Chern numbersZ

X Œn�

P
�
c1.X

Œn�/; : : : ; c2n.X
Œn�/
�
;

where P runs through all polynomials P in QŒT1; : : : ;T2n� of weighted degree 4n,
each variable Tk having degree 2k . We intend to prove the following result:

Theorem 6.1 The almost-complex cobordism class of X Œn� depends only on the
almost-complex cobordism class of X .

This means that if P is a weighted polynomial in QŒT1; : : : ;T2n� of degree 4n, there
exists a weighted polynomial zP ŒT1;T2� of degree 4, depending only on P and n, such
that Z

X Œn�

P
�
c1.X

Œn�/; : : : ; c2n.X
Œn�/
�
D

Z
X

zP
�
c1.X /; c2.X /

�
:

This result has been proved by Ellinsgrud, Göttsche and Lehn [14, Theorem 0.1] when
X is projective. In Sections 6.1, 6.2 and 6.3, we adapt the authors’ original proof in a
relative setting. Throughout this section, we use extensively the notation of Section
3.5, especially Notation 3.24.

6.1 Computation of TX Œn� in K –theory

Let J rel
n�1 (resp. J rel

n , J rel
nC1 ) be a relative integrable complex structure in a neighbour-

hood W (resp. W 0 , W 00 ) of Zn�1 (resp. Zn , ZnC1 ). We denote the class of

T relW Œn�
rel (resp. T relW ŒnC1�

rel ; T relW 0rel
Œn�
; T relW 00rel

ŒnC1�
/

in Krel.W Œn�
rel / (resp. Krel.W ŒnC1�

rel /, Krel.W 0rel
Œn�
/, Krel.W 00rel

ŒnC1�
/) by z�n (resp. z�nC1 ,

�n , �nC1 ).

Lemma 6.2 The restriction to X Œn� (resp. X ŒnC1� ) of the topological class of �n

(resp. �nC1 ) is the class of the complex vector bundle T X Œn� (resp. TX ŒnC1� ) in
K.X Œn�/ (resp. K.X ŒnC1�/) given by the stable almost-complex structure on X Œn�

(resp. X ŒnC1� ).

Proof If J rel
n satisfies the conditions .C/ listed in [43, page 711], then X

Œn�
J rel

n
is smooth.

Besides, the construction performed in [43] of the stable almost-complex structure
of X

Œn�
J rel

n
shows that T X Œn� and T relW Œn�

rel jX Œn� have the same class in K.X Œn�/. Since
relative almost-complex structures satisfying the conditions .C/ can be chosen arbitrary
close to J in C 0–norm, Proposition 2.13 implies, after shrinking W if necessary,
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that J rel
n can be joined by a smooth path

˚
J rel

n; t

	
t2Œ0;1�

to another relative integrable
structure satisfying the conditions .C/. By rigidity of the topological K–theory, the
class of T relŒW Œn�

rel ;J
rel
n; t �jX Œn� in K.X Œn�/ is independent of t . The result follows.

Remark 6.3 For an arbitrary J rel
n , by Theorem 2.18 (ii), X

Œn�
J rel

n
is only a topological

manifold. Therefore, the advantage of using T relW Œn�
rel is that this complex vector

bundle is defined for any relative integrable complex structure J rel
n .

Proposition 6.4 The following identities hold in Krel.W Œn�
rel / and Krel.W ŒnC1�

rel / res-
pectively:

z�n D p�. zOnC
zO_n � zOn : zO_n /; z�nC1 D q�. zOnC1C

zO_nC1�
zOnC1 : zO_nC1/:

Proof Let �W U � // Z �V be a relative holomorphic chart on W 0 , p be the first
projection from ZŒn� �Z to ZŒn� and Yn be the incidence locus in ZŒn� �Z defined
by (2-1). Since p is finite on zYn , we obtain by Proposition 3.13:

p�HomOrel. zJn; zOn/jU

' ��1
�
pr�1

1

�
p� HomO

ZŒn��Z
.JYn

;OYn
/
�
˝ pr�1

1
O

ZŒn��Z
Orel

Z Œn��Z�V

�
' ��1Œpr�1

1 T ZŒn�
˝ pr�1

1
O

ZŒn��Z
Orel

Z Œn��Z�V
�' .T rel W Œn�

rel /jU :

These local isomorphisms patch together into a global isomorphism between the two
relative holomorphic bundles p� HomOrel. zJn; zOn/ and T W Œn�

rel . If i is a nonnegative
integer, Proposition 3.6 yields the isomorphism

ExtiOrel. zOn;Orel/jU

' ��1
�
pr�1

1 ExtiO
ZŒn��Z

.OYn
;OZ Œn��Z /˝ pr�1

1
O

ZŒn��Z
Orel

Z Œn��Z�V

�
:

Since Yn has codimension 2 in ZŒn��Z , ExtiOrel. zOn;Orel/D0 for i <2 by [13, Propo-
sition 18.4, Theorem 18.7]. Besides, zJn locally admits a free resolution of length 2.
Using Proposition 3.16 (i), we get the following equalities in Krel

zYn

.W Œn�
rel �X .n/�X W /:

zJ _n : zOn DHomOrel. zJn; zOn/� Ext1Orel. zJn; zOn/C Ext2Orel. zJn; zOn/

DHomOrel. zJn; zOn/� Ext2Orel. zOn; zOn/

DHomOrel. zJn; zOn/� Ext2Orel. zOn;Orel/

DHomOrel. zJn; zOn/� zO_n

so that p�HomOrel. zJn; zOn/D p�Œ.Orel � zO_n / : zOnC
zO_n �. The proof of the second

identity is exactly the same.
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6.2 Comparison of TX Œn� and TX ŒnC1� via the incidence variety X ŒnC1; n�

We use the notation of the previous section. The relative canonical bundle of W is
denoted by Krel

W
.

Proposition 6.5 The following identity holds in Krel.W ŒnC1;n�
rel /:

 !
z�nC1 D �

!
z�nCLCL_: x� !Krel_

W � x� !.Orel
W �T relW CKrel_

W /

�L : x� ! zO_n �L_: x� !Krel_
W : x� ! zOn:

Proof By Proposition 6.4,  !z�nC1 D  
! zp�. zOnC1C

zO_
nC1
� zOnC1 : zO_nC1

/. Let us
consider the cartesian diagrams:

W ŒnC1;n�
rel �X .n/�X W

 W //

zp
��

W ŒnC1�
rel �X .n/�X W

q
��

W ŒnC1;n�
rel

 // W ŒnC1�
rel

W ŒnC1;n�
rel �X .n/�X W

�W //

zp
��

W Œn�
rel �X .n/�X W

p
��

W ŒnC1;n�
rel

� // W Œn�
rel

Since p (resp. q ) is finite on zYn (resp. zYnC1 ), Proposition 6.4 and Proposition
3.16 (iv) yield

 !
z�nC1 D zp� 

!
W .
zOnC1C

zO_nC1�
zOnC1 : zO_nC1/

�!
z�n D zp��

!
W .
zOnC

zO_n � zOn : zO_n /:and

Thus, we obtain by Proposition 3.25 and Proposition 3.16 (ii):

 !
z�nC1 D �

!
z�nC zp�

h
zp!L : x� !

W O�C zp!L_: x� !
W O_�� zp

!.L :L_/ : x� !
W .O�:O

_
�/

� zp!L : x� !
W O� : �!

W
zO_n � zp!L_: x� !

W O_� : �
!
W
zOn

i
:

Note that L :L_ DOrel
W ŒnC1;n�

rel
. Let � W W �X .n/�X W // W be the first projection.

Since � is injective on �rel , the diagram

W ŒnC1;n�
rel �X .n/�X W

x�W //

zp
��

W �X .n/�X W

�

��
W ŒnC1;n�

rel
x� // W
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and Propositions 3.16 (iv) and 3.25 (ii) give

 !
z�nC1 D �

!
z�nCL : x�!��O�CL_:x�!��O_�� x�

!��.O� :O_�/

� zp�.j�L : �!
W
zO_n /�L_: zp�Œx�!

W O_� : �
!
W
zOn�:

Now ��O� DOrel
W

, ��O_� DKrel_
W

and O� :O_� DOrel
W
�T rel

W
CKrel_

W
, and if

ıW W // W �X .n/�X W is the diagonal injection, then x�!
W
O_
�
D x�!

W
ı�K

rel_
W
D

j�x�
!Krel_

W
thanks to Proposition 3.16 (v) and to the diagram:

W ŒnC1;n�
rel

j //

x�
��

W ŒnC1;n�
rel �X .n/�X W

x�W
��

W
ı // W �X .n/�X W

By Proposition 3.16 (ii) and (iii), we get

 !
z�nC1 D �

!
z�nCLCL_ : x�! Krel_

W � x�!.Orel
W �T rel

W CKrel_
W /

� . zp ı j /� ŒL : .�W ı j /! zO_n ��L_: . zp ı j /� .�W ı j /! zOn:

Since zp ı j D id and �W ı j D x� , we obtain the result.

6.3 Cohomological computations

Lemma 6.6 If i is a positive integer, the following identities hold in H 2i.X ŒnC1;n�;Q/:

(i) ci.�
!z�n/jX ŒnC1;n� D ��ci.X

Œn�/ and ci. 
!z�nC1/jX ŒnC1;n� D ��ci.X

ŒnC1�/.

(ii) ci Œ.x�
! zOn/

1�jX ŒnC1;n� D ���i;n .

(iii) ci.x�
� T relW /jX ŒnC1;n� D ��ci.X /.

Proof (i) By the homotopy invariance of topological K–theory, the cohomology
class ci.�

!z�n/jX ŒnC1;n� in H 2i.X ŒnC1;n�;Q/ is independent of J rel
n�1 . Thus, we can

assume that W and W 0 satisfy the compatibility condition (A) of Section 2.4. It
follows from Lemma 6.2 that ci.�

!z�n/jX ŒnC1;n�D��ci.�n/jX Œn�D��ci.X
Œn�/. Using

the compatibility condition (B) instead of (A) we obtain the second identity.

(ii) By Proposition 3.20, Œ.x� ! zOn/
1�D x��Œ zOn

1�. This gives the result.

Geometry & Topology, Volume 15 (2011)



Topological properties of Hilbert schemes of almost-complex four-manifolds II 319

(iii) Let SW DW �X .n/ X , where the base change morphism is given by the diagonal
injection of X in X .n/ . We consider the diagram:

W ŒnC1;n�
rel

x� // W SW? _oo

X ŒnC1;n�
?�

OO

�
// X

?�

OO

X
?�

OO

Then, ci.x�
� T relW /jX ŒnC1;n� D ��ci.T

rel SW /jX . Since SW is a neighbourhood of
�X in X �X , T rel SW jX ' TX , so that ci.T

rel SW /jX D ci.X /.

For any nonnegative integer k , denote by dk the k –th Chern class of ŒC1
�X
� in

H 2k.X � X;Q/. If i WX // X �X is the diagonal injection, the differentiable
Grothendieck–Riemann–Roch theorem for immersions [3, Theorem 3.3] gives d0 D 1,
d1 D 0, d2 D �i�.1/, d3 D �i� Œc1.X /� and dk D 0 for k � 4. Thus i�d0 D 1,
i�d1 D 0, i�d2 D�c2.X /, i�d3 D�c1.X / c2.X / and i�dk D 0 for k � 4.

Proposition 6.7 Let i be a positive integer.

(i) .�; id/��i;nC1� .�; id/��i;n D
Pi

kD0 pr�
1

lk : .�; id/� di�k .

(ii) ��ci.X
ŒnC1�/���ci.X

Œn�/ is a universal polynomial in the classes l , ��cj .X /

and ���j ;n .

Proof (i) Let Zn�1�1 be the incidence locus in X � .X .n/ �X �X / defined by

Zn�1�1 D
˚
.pI x; q; r/ in X � .X .n/

�X �X / such that p 2 x[ q[ r
	

and let J rel
n�1�1 be a relative integrable complex structure in a neighbourhood �W of

Zn�1�1 . We can assume that .W;J rel
n�1/ and . �W ;J rel

n�1�1/ satisfy as relative analytic
spaces the compatibility condition W �X .n/�X .X

.n/�X �X /� �W , the base change
map being given by the diagonal injection of X into X �X .

Exactly as in Section 3.5, we can construct relative incidence sheaves yOn and yOnC1 on�W Œn�
rel and �W ŒnC1�

rel as well as a relative exceptional divisor yDrel in �W ŒnC1;n�
rel . Let y� �W ,

y �W , y� �W , yj , yp , yL, y�rel and Oy� be the analogs of �W ,  W , x�W , j , zp , L, �rel

and O� . In this context, Proposition 3.25 takes the following form:

� There is a natural exact sequence on �W ŒnC1;n�
rel �X .n/�X�X

�W relating yOn and
yOnC1 , namely,

0 // yj� yL // y 
��W yOnC1

// y�
��W yOn

// 0:
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� yj� yLD yp� yL˝ y���W Oy� .

� y���W Oy� D y�
!�W Oy� , y 

��W yOnC1 D y 
!�W yOnC1 and y�

��W yOn D y�
!�W yOn .

Arguing as in Section 6.3 and using Proposition 3.20, we get c1. yp
� yL/jX ŒnC1;n��X D

pr�
1

l and for any nonnegative integer k ,

� ck Œ.y�
��W Oy�/

1�jX ŒnC1;n��X D .�; id/
�dk ,

� ck Œ. y 
��W yOnC1/

1�jX ŒnC1;n��X D .�; id/
��k;nC1 ,

� ck Œ. y�
��W yOn/

1�jX ŒnC1;n��X D .�; id/
��k;n .

This yields the result.

(ii) This is a straightforward consequence of Proposition 6.5 and Lemma 6.6.

We are now going to perform in our context the induction step of [14]. For any subset I

of f0; : : : ;mg, we denote by prI the projection from X ŒnC1� �X m to the product of
the factors indexed by I .

Proposition 6.8 If m is a positive integer, let P be a polynomial in the coho-
mology classes pr�

0
ci.X

ŒnC1�/, pr�
0k
�i;nC1 , pr�

kl
di , pr�

k
ci.X / .1 � k; l � m/ on

X ŒnC1��X m: Then there exists a polynomial zP depending only on P , in the analogous
classes on X Œn� �X mC1 , such thatZ

X ŒnC1��X m

P D

Z
X Œn��X mC1

zP :

Proof We consider the incidence diagram:

X ŒnC1;n� �X m

.�; id/

vv

.�; id/

))
X ŒnC1� �X m .X Œn� �X /�X m

Since .�; id/ and .�; id/ are generically finite of degrees nC 1 and 1 respectively,Z
X ŒnC1��X m

P D
1

nC 1

Z
X Œn��X mC1

.�; id/�Œ.�; id/�P �:

Let i be a positive integer. The class .�; id/� pr�
0

ci.X
ŒnC1�/� .�; id/� pr�

0
ci.X

Œn�/

is, by Proposition 6.7 (ii), a polynomial in the classes pr�
0

l , .�; id/� pr�
1

cj .X / and
.�; id/� pr�

01
�j ;n ; and Proposition 3.27 gives .�; id/� pr�

0
lj D .�1/j pr�

01
�j ;n . Thus,
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.�; id/�.�; id/� pr�
0

ci.X
ŒnC1�/� pr�

0
ci.X

Œn�/ is a polynomial in the classes pr�
01
�j ;n

and pr�
1

cj .X /.

By Proposition 6.7 (i), .�; id/� pr�
0k
�i;nC1� .�; id/� pr�

0;kC1
�i;n is a polynomial in

the classes pr�
0

l and .�; id/� pr�
1;kC1

dj . Applying Proposition 3.27 again, we obtain
that .�; id/�.�; id/� pr�

0k
�i;nC1�pr�

0;kC1
�i;n is a polynomial in the classes pr�

01
�j ;n

and pr�
1k

dj .

To conclude, we use the relations

.�; id/� pr�kl di D .�; id/� pr�kC1; lC1 di ;

.�; id/� pr�k ci.X /D .�; id/� pr�kC1 ci.X /:

We can now finish the proof of Theorem 6.1. We writeZ
X Œn�

P
�
c1.X

Œn�/; : : : ; c2n.X
Œn�/
�
D

Z
X Œn�1��X

zP1 D

Z
X Œn�2��X 2

zP2 D � � � D

Z
X n

zP

where zP is a universal polynomial in the classes pr�
k

ci.X / and pr�
kl

di . By the
explicit expression of the classes di , we obtain that

R
X n
zP is a universal polynomial

in the Chern numbers c1.X /
2 and c2.X /.

7 Appendix: Existence of relative integrable complex struc-
tures

This appendix is devoted to the proof of Proposition 2.13. This proof is carried out in
several steps. We introduce at first some notation and terminology:
� If Y and A are two subsets of X � B and B respectively, we put Y jA D

Y \ .X �A/.
� If Y is a subset of X � B , we say that Y is adapted to Z if Y contains

pr�1
2
Œpr2.Y /\Z�.

� If W and W 0 are open subsets of X �B , we write W . W 0 if W \W 0 is
nonempty and if W jpr2.W /\ pr2.W

0/ is included in W 0jpr2.W /\ pr2.W
0/ .

Then we have:

Lemma 7.1 Let K be a compact subset of B . Then for any neighbourhood W

of ZjK in X � B , there exists a neighbourhood U of K in B such that W jU is
adapted to Z .

Proof Let � W Z // B be the restriction of the first projection to Z . Since � is finite,
� is closed. Thus, if U D B n�

��
.X �B/ nW

�
\Z

�
, U is an open neighbourhood

of K in B , and W jU is adapted to Z .
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We are now going to study in detail some very special open subsets of X �B , which
are essentially tubular neighbourhoods of Z . The construction of these open sets relies
on the (probably well-known) lemma:

Lemma 7.2 Let Y be a differentiable orbifold endowed with its natural stratifica-
tion, S be a stratum of T and K be a compact subset of Y . Then there exist a
neighbourhood U of K in Y and a smooth retraction RW U // U \S:

Proof We start by a local construction. Let x be a point in S and Ux be a neighbour-
hood of x in Y such that Ux is isomorphic as an orbifold to V =G , where V is an open
subset of Rn and G is a finite group of diffeomorphisms of V . Let � W V // Ux be
the quotient map and y be an element of ��1.x/. We can assume that G is equal to
the stabilizer Gy of y . In this case, ��1.S \Ux/ is exactly the subset of the points
of V fixed by all the elements of G ; we denote it by V G .

Let us construct an embedding of Ux into an Euclidean space. By Bochner’s lineariza-
tion theorem, we can assume that the finite group G acts linearly on V . This means that
the action of G is induced by a linear representation of G in GL.n;R/ if we choose
y as the origin of Rn . Then G also acts on the algebra RŒX1; : : : ;Xn� of polynomial
functions on Rn and the algebra RŒX1; : : : ;Xn�

G of G –invariant polynomials is finitely
generated [40, Appendix 4, Proposition 1]. Let �1; : : : ; �d be a set of generators and
� D .�1; : : : �d /. The map �W Rn // Rd induces a smooth map z� from Rn=G

to Rd which is easily checked to be injective. Since Ux is open in Rn=G , z� gives an
embedding of Ux in Rd .

Let us now prove that the restriction of z� to S \ Ux is an immersion. Since
�jV G W V G // S \Ux is a diffeomorphism, this is equivalent to show that the re-
striction of � to V G is an immersion. Let p be a point in V G , h be a tangent
vector in TpV G , and assume that ��.h/ D 0. If we put  i D �i � �i.p/ for
1 � i � d , then every G–invariant polynomial P on Rn can be decomposed as
P1 1 C � � � C Pd d C P .p/, where the Pi ’s are G–invariant. This proves that
P�.h/D 0. Let A be the algebra of polynomial functions on the vector space .Rn/G .
Then A is a quotient of RŒX1; : : : ;Xn� and G acts trivially on A, so that A is a
quotient of RŒX1; : : : ;Xn�

G . Let us choose a linear form u on .Rn/G such that, via
the identification between TpV G and .Rn/G , u.h/ is nonzero. If zu is a lift of u in
RŒX1; : : : ;Xn�

G , then zu�.h/ is nonzero, which is a contradiction.

We can now argue as in the proof of the Whitney embedding theorem in the compact
case: using a partition of unity, we obtain an embedding � of a neighbourhood U of K

into some Euclidean space RN such that �jU\S is an immersion. Since �.U \S/
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is a submanifold of RN , after shrinking U if necessary, we can consider a tubu-
lar neighbourhood � of �.U \ S/ in RN such that �.U / is included in �. If
zRW � // �.U \S/ is the retraction associated with this tubular neighbourhood, we

define RW U // U \S by composing zR ı� with the inverse of the diffeomorphism
�jU\S W U \S

� // �.U \S/ .

Let r be the injectivity radius of X . Since X is compact, r is positive. For any x

in X and " satisfying 0< " < r , the exponential map expg.x/ at x associated with
the Riemannian metric g is a diffeomorphism between the Euclidean ball of TxX

of radius " centered at the origin and the geodesic ball Bg.x; "/. The former being
endowed with the integrable complex structure Jx , we get a canonical integrable
complex structure on the latter.

Let us fix a stratum B� of B and a compact subset K� of B� . We denote by d.�/ the
number of sheets of the covering map pr2 jZ� W Z�

// B�: If � is a sufficiently small
number in �0; r Œ, there exists a small neighbourhood V� of K� in B� such that for any b

in V� , if Zjb D fx1; : : : ;xd.�/g, then the geodesic balls .Bg.xi ; �//1�i�d.�/ are pair-
wise disjoint in X . By Lemma 7.2, we can assume that there exist a neighbourhood U�
of K� in B such that U� \B� D V� and a smooth retraction RW U� // V�: Then
we put �D

`
b2V�

`
x2Z jR�.b/

Bg.x; �/. Since � is a neighbourhood of ZjK� ,
Lemma 7.1 shows that � is adapted to Z if U� is a sufficiently small neighbourhood
of K� . We call such an open set � an �–neighbourhood of Z above K� . It is easy to
prove that if W is any neighbourhood of ZjK� , then there exists an �–neighbourhood
of Z above K� contained in W if � is a sufficiently small positive real number.

We now explain how to cover Z in a compatible way by a finite number of �–
neighbourhoods.

Lemma 7.3 Let W be an open subset of X �B adapted to Z , B� be a stratum of B

such that @B� is contained in pr2.W / and �0 be a positive real number. Then, for every
relatively compact open subset V of pr2.W / containing @B� , there exist a compact
subset K� of B� , a positive real number � smaller than �0 and a �–neighbourhood �
of Z above K� such that xB� � V [K� and �. W jV .

Proof Let U be a relatively compact neighbourhood of @B� in xB� \ V and put
K� D

xB� nU . Then K� is compact in B� and xB� � V \K� . If K0 D . xV \ xB�/ nU ,
then K0 is a compact subset of B� included in K� and W is a neighbourhood
of ZjK 0 . Thus, for � small enough, there exists an �–neighbourhood �0 of Z

above K0 contained in W . We can even assume that �0 D�jO , where � is an
�–neighbourhood of Z above K� and O is a small neighbourhood of K0 in B . Since
�jO �W , �jO \V �W jO \V , so that �. W jV .
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Then we get:

Lemma 7.4 For every positive real number �0 , we can construct a finite covering
.Wi/1�i�N of Z by open subsets of X �B such that:

� For each i , there exists �i in �0; �0� such that Wi is a disjoint finite union of
�i –neighbourhoods of Z above compact subsets of the strata of B .

� For every i such that 2� i �N , Wi . Wi�1[ � � � [W1 .

� The integer N is smaller than the number of strata of B .

Proof Let ƒ be the finite set of strata of B and .ƒi/1�i�N be the partition of ƒ
defined as follows: ƒ1 is the set of elements of ƒ corresponding to closed (ie minimal)
strata in B , and the other ƒi ’s are defined inductively for i � 2 by the expression

ƒi D

(
� in ƒ n .ƒ1[ � � � [ƒi�1/ such that @B� �

i�1[
jD1

[
�2ƒj

B�

)
:

For 1� i �N , we put Si D
Si

jD1

S
�2ƒj

B� . The Si ’s are closed subsets of B . Let
ƒ1Df�1; : : : ; �kg. For �1 sufficiently small, we can pick pairwise �1 –neighbourhoods
of Z above the B�i

’ s (1 � i � k ). We denote their union by W1 . Then pr2.W1/ is
a neighbourhood of S1 in B . Let V be a relatively compact neighbourhood of S1

in pr2.W1/. If ƒ2 D f�1; : : : ; �lg, we can find by Lemma 7.3 some compact sub-
sets K1; : : : ;Kl of B�1

; : : : ;B�l
and �2 –neighbourhoods �1; : : : ; �l of Z above

K1; : : : ;Kl (where 0��2��1 ) such that for 1� i � l , xB�i
�V [Ki and �i .W1jV .

If �2 is small enough, we can assume that the �i ’s are pairwise disjoint. If we replace
W1 by W1jV and if we put W2 D

` l
iD1�i , then pr2.W1/ is still a neighbourhood

of S1 in B and pr2.W1 [W2/ is a neighbourhood of S2 in B . Besides, W2 . W1 .
To construct W3 , we add the strata in ƒ3 and so on.

We now turn to the construction of relative integrable complex structures. If we take
a covering .Wi/1�i�N of Z given by Lemma 7.4, each Wi (more generally each
�–neighbourhood of Z above a compact subset of a stratum of B ) is endowed with
a canonical relative integrable complex structure, but these various structures do not
match on the intersections Wi\Wj . This is why it is necessary to use a gluing argument.
We start by some preliminaries.

Let E be any finite-dimensional real vector space of even dimension 2k . If J .E/
is the set of complex structures on E , J .E/ is a homogeneous space isomorphic
to GL.2k;R/=GL.k;C/, so it is a submanifold of End.E/. We define a subset J

of the vector bundle End.TX / by JD
`

x2X J .TxX /. Then J is a differentiable
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manifold and the projection pW J // X is a smooth fibration. Besides, the almost-
complex structure J of X is a smooth section of this fibration. For " > 0 and x in X ,
we put J".TxX / D

˚
M in J .TxX / such that kM � J.x/kg < "

	
and we define

J" D
`

x2X J".TxX /. For any " > 0, J" is a neighbourhood of the image of J in J.
Furthermore, since X is compact, there exists "0 > 0 such that for every " smaller
than "0 , J" is a smooth fibration whose fiber is diffeomorphic to an Euclidean ball.

Let � be a positive real number strictly smaller than r . For x in X and t in Œ0; 1�, we
define ut W Bg.x; �/ // Bg.x; t�/ by ut .x/.p/ D expg.x/

�
t expg.x/

�1.p/
�
. For

any y in Bg.x; �/, there is a canonical isomorphism �t .x;y/ between TyX and
Tut .x/.y/X obtained via the differential of expg.x/ from the canonical isomorphism
between Texpg.x/

�1.y/.TxX / and Tt expg.x/
�1.y/.TxX /. Since X is compact, there

is a positive constant A� depending only on � such that lim�!0 A� D 1, and for
every x in X , every y in Bg.x; �/ and every t in Œ0; 1�, k�t .x;y/kg � A� and
k�t .x;y/

�1kg � A� . If x is in X and t in Œ0; 1�, let zJ be an almost-complex
structure on Bg.x; t�/; if t D 0, we take the convention that zJ is a complex structure
on TxX . Then we can define a rescaled almost-complex structure Rt . zJ / on Bg.x; �/

by the formula

8y 2Bg.x; �/; 8h2TyX; Rt . zJ /.y/.h/D�t .x;y/
�1
�
zJ
�
ut .x/.y/

��
�t .x;y/.h/

��
:

Then, for every t in Œ0; 1� and every almost-complex structures zJ0 and zJ1 on Bg.x; t�/,
we have

kRt . zJ1/�Rt . zJ0/kC 0;g;Bg.x; �/
�A2

� k
zJ1�

zJ0kC 0;g;Bg.x; t�/
:

Remark that if zJ is an almost-complex structure on Bg.x; t�/, then Rt . zJ /Dut .x/
� zJ

if t > 0, and Rt . zJ /D expg.x/�
�
zJ .x/

�
if t D 0. Thus, if t > 0 and zJ is integrable

or if t D 0, then Rt . zJ / is integrable.

We end with another estimate. For any x in X and any t in Œ0; 1�, Rt .J /.x/ D

J.x/. Since X is compact, there exists a positive constant B� depending only on �
such that lim�!0 B� D 0, and for every x in X and every t in Œ0; 1�, we have
kJ �Rt .J /kC 0;g;Bg.x; �/

� B� .

We are ready to prove the essential gluing lemma:

Lemma 7.5 Let ", "0 and � be positive real numbers satisfying the conditions � < r ,
0 < "0 < " � "0 and "0A4

� C B�.A
2
� C 1/ < ", and let W be a �–neighbourhood

of Z above a compact subset K� of a stratum B� of B . If J rel
0 and J rel

1 are two
relative integrable complex structures in Bg; "0.W /, then there exists a smooth family
.J rel

s /0�s�1 of relative integrable complex structures in Bg; ".W / joining J rel
0 and J rel

1 .

Geometry & Topology, Volume 15 (2011)



326 Julien Grivaux

Proof Let zJ rel
0
DR0.J

rel
0 / and zJ rel

1
DR0.J

rel
1 /. Then the families .Rt .J

rel
0 //0�t�1

and .Rt .J
rel
1 //0�t�1 are two smooth families of relative integrable complex structures

on W joining J rel
0 and J rel

1 to zJ rel
0 and zJ rel

1 respectively. Besides, for every t in Œ0; 1�
and i in f0; 1g,

kRt .J
rel
i /�JkC 0;g;W � kRt .J

rel
i /�Rt .J /kC 0;g;W CkRt .J /�JkC 0;g;W

<A2
� "
0
CB�:

Let z"DA2
� "
0CB� , V D pr2.W /\B� and R�W pr2.W / // V be the smooth retrac-

tion associated with W . Since z" is smaller than "0 , Jz" �X ZjV is a smooth fibration
over ZjV whose fiber is diffeomorphic to an Euclidean ball (hence contractible).

The relative integrable complex structures zJ rel
0 and zJ rel

1 define two sections J 0
0

and J 0
1

of the fibration Jz" �X ZjV ; they are given for .x; v/ in ZjV by J 0i .x; v/D
zJ rel
i; v.x/.

Then we can find a smooth family .J 0t /0�t�1 of sections of Jz" �X ZjV joining J 0
0

and J 0
1

. Each J 0t defines a relative integrable complex structure J 0t
rel on W as follows:

for b in pr2.W /, let vDR�.b/ and ZjvDfx1; : : : ;xdg. Then WbD
`d

iD1 Bg.xi ; �/

and J 0t
rel is equal to R0.J

0
t .xi ; v// on Bg.xi ; �/. Note that zJ rel

i D J 0i
rel for i D 0; 1.

Besides,

kJ 0t
rel
�JkC 0;g;W �kJ

0
t
rel
�R0.J /kC 0;g;W CkR0.J /�JkC 0;g;W <A2

� z"CB� <":

Thus we have found a piecewise smooth family of relative integrable complex structures
in Bg; ".W / joining J rel

0 and J rel
1 . This family can be made smooth by reparametriza-

tion.

We can now finish the proof of Proposition 2.13. Fix " and "0 which satisfy the
conditions 0 < "0 < " � "0 . If d is the number of strata of B and � is a positive
real number, we define a sequence ."i/1�i�d by "1 D "0 and, for 1 � i � d � 1,
"iC1 DA4

� "i CB�.A
2
�C 1/. Then we can find �0 > 0 such that for every � smaller

than �0 , the "i ’s are strictly smaller than " for 1 � i � d and B� is strictly smaller
than "0 . We pick such an �0 and take a covering .Wi/1�i�N of Z satisfying the
conditions of Lemma 7.3. Each open subset Wi is endowed with a relative integrable
complex structure J rel

i such that kJ rel
i �JkC 0;g;Wi

< "0 .

Since W2 . W1 , W1\W2 is a finite disjoint union of �2 –neighbourhoods of Z (where
�2 � �0 ) above compact subsets of the strata of B . The relative integrable complex
structures J rel

1 and J rel
2 being in Bg; "1

.W1\W2/, there exists by Lemma 7.5 a smooth
family .J rel

t /1�t�2 in Bg; "2
.W1\W2/ joining J rel

1 and J rel
2 .

Let V be a relatively compact open subset of pr2.W1/. If V is large enough, the
open sets .W1jV ;W2; : : : ;WN / still satisfy the conditions of Lemma 7.3. Let � be a
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smooth function from pr2.W1[W2/ to Œ1; 2� such that �� 1 on xV and supp.��2/ is
relatively compact in pr2.W1/. Then we define a relative integrable complex structure
zJ rel in Bg; "2

.W1jV [W2/ by the formula zJ rel
b D J rel

�.b/;b for b in V [ pr2.W2/. The
same argument can be used to glue zJ rel and J rel

3 together, and so on. Finally, we get
a relative integrable complex structure in Bg; "N

.W /, where W is a neighbourhood
of Z in X �B . Thus Bg; " is nonempty.

We now prove the connectedness of Bg; " for 0 < " � "0 . Let J rel
0 and J rel

1 be
two relative integrable structures in Bg; ".W /, where W is a neighbourhood of the
incidence set Z in X �B . We put "0 D kJ rel

0 �J rel
1 kC 0;g;W . As we did previously,

we can find �0 > 0 such that for every positive � smaller than �0 , the "i ’s are strictly
smaller than " for 1 � i � d C 1. For this �0 , we take a covering .Wi/1�i�N of Z

satisfying the conditions of Lemma 7.3 such that each Wi is contained in W . Then for
each i , J rel

0 jWi
and J rel

1 jWi
are elements of Bg; "1

.Wi/, so that, by Lemma 7.5, there
exists a smooth family .J rel

i; t /0�t�1 in Bg; "2
.Wi/ joining J rel

0 jWi
and J rel

1 jWi
. Using

exactly the same methods as before, we can glue the families f.J rel
i; t /0�t�1g1�i�N

together and get a smooth family in Bg; "NC1
. �W / joining J rel

0 to J rel
1 , where �W is a

neighbourhood of Z in X �B .

The weak contractibility follows from the connectedness of Bg; " over the bases B�Sp .
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Sciences de Paris (1960) 21–25 MR0124968

[32] B Malgrange, Ideals of differentiable functions, Tata Institute of Fund. Research Studies
in Math. 3, Tata Inst. of Fund. Research, Bombay (1967) MR0212575

[33] J Milnor, On the cobordism ring �� and a complex analogue. I, Amer. J. Math. 82
(1960) 505–521 MR0119209

[34] H Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces,
Ann. of Math. .2/ 145 (1997) 379–388 MR1441880

[35] H Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Series
18, Amer. Math. Soc. (1999) MR1711344

[36] S P Novikov, Topological invariance of rational classes of Pontrjagin, Dokl. Akad.
Nauk SSSR 163 (1965) 298–300 MR0193644

[37] Z Qin, W Wang, Hilbert schemes and symmetric products: a dictionary, from: “Orbi-
folds in mathematics and physics (Madison, WI, 2001)”, (A Adem, J Morava, Y Ruan,
editors), Contemp. Math. 310, Amer. Math. Soc. (2002) 233–257 MR1950950

[38] Y Ruan, The cohomology ring of crepant resolutions of orbifolds, from: “Gromov-
Witten theory of spin curves and orbifolds”, (T J Jarvis, T Kimura, A Vaintrob, editors),
Contemp. Math. 403, Amer. Math. Soc. (2006) 117–126 MR2234886

[39] I Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. USA 42
(1956) 359–363 MR0079769

[40] I R Shafarevich, Basic algebraic geometry. 1. Varieties in projective space, second
edition, Springer, Berlin (1994) MR1328833 Translated from the 1988 Russian edition
and with notes by M Reid

Geometry & Topology, Volume 15 (2011)



330 Julien Grivaux

[41] A S Tikhomirov, The variety of complete pairs of zero-dimensional subschemes of an
algebraic surface, Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997) 153–180 MR1609203

[42] B Uribe, Orbifold cohomology of the symmetric product, Comm. Anal. Geom. 13
(2005) 113–128 MR2154668

[43] C Voisin, On the Hilbert scheme of points of an almost complex fourfold, Ann. Inst.
Fourier (Grenoble) 50 (2000) 689–722 MR1775365

[44] C Voisin, On the punctual Hilbert scheme of a symplectic fourfold, from: “Symposium
in Honor of C. H. Clemens (Salt Lake City, UT, 2000)”, (A Bertram, J A Carlson, H
Kley, editors), Contemp. Math. 312, Amer. Math. Soc. (2002) 265–289 MR1941585

Centre de Mathématiques et Informatique, UMR CNRS 6632 (LATP), Université de Provence
39 rue Frédéric Joliot-Curie, 13453 Cedex 13 Marseille, France

jgrivaux@cmi.univ-mrs.fr
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