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Moduli spaces and braid monodromy types
of bidouble covers of the quadric

FABRIZIO CATANESE

MICHAEL LÖNNE

BRONISLAW WAJNRYB

Bidouble covers � W S!Q WDP 1�P 1 of the quadric are parametrized by connected
families depending on four positive integers a; b; c; d . In the special case where
b D d we call them abc –surfaces.

Such a Galois covering � admits a small perturbation yielding a general 4–tuple
covering of Q with branch curve � , and a natural Lefschetz fibration obtained from
a small perturbation of the composition p1 ı� .

We prove a more general result implying that the braid monodromy factorization
corresponding to � determines the three integers a; b; c in the case of abc –surfaces.
We introduce a new method in order to distinguish factorizations which are not stably
equivalent.

This result is in sharp contrast with a previous result of the first and third author,
showing that the mapping class group factorizations corresponding to the respective
natural Lefschetz pencils are equivalent for abc–surfaces with the same values of
aC c; b . This result hints at the possibility that abc–surfaces with fixed values
of aC c; b , although diffeomorphic but not deformation equivalent, might be not
canonically symplectomorphic.

14J15; 14J29, 14J80, 14D05, 53D05, 57R50

Introduction

Bidouble covers of the quadric are smooth projective complex surfaces S endowed
with a (finite) Galois covering � W S !Q WD P1 �P1 with Galois group .Z=2Z/2 .

More concretely, they are defined by a single pair of equations

z2
D f.2a;2b/.x0;x1Iy0;y1/

w2
D g.2c;2d/.x0;x1Iy0;y1/
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where we shall assume for simplicity that a; b; c; d 2N�3 , and the notation f.2a;2b/

denotes that f is a bihomogeneous polynomial, homogeneous of degree 2a in the
variables x and of degree 2b in the variables y .

These surfaces are simply connected and minimal of general type, and they were intro-
duced by the first author [5] in order to show that the moduli spaces M�;K 2 of smooth
minimal surfaces of general type S with �.S/ WD �.OS /D �, K2

S
DK2 , need not

be equidimensional or irreducible. (The study of the corresponding closed components
of the moduli space was pursued by the first author [6] and by Manetti [24; 25].)

Given in fact our four integers a; b; c; d 2 N�3 , considering the so-called natural
deformations of these bidouble covers, defined by equations1

z2
D f.2a;2b/.x0;x1Iy0;y1/Cw ˆ.2a�c;2b�d/.x0;x1Iy0;y1/

w2
D g.2c;2d/.x0;x1Iy0;y1/C z ‰.2c�a;2d�b/.x0;x1Iy0;y1/

one defines a bigger open subset N0a;b;c;d of the moduli space, whose closure N0a;b;c;d
is an irreducible component of M�;K 2 , where

�D 1C .a� 1/.b� 1/C .c � 1/.d � 1/C .aC c � 1/.bC d � 1/

K2
D 8.aC c � 2/.bC d � 2/:and

In general our knowledge about the moduli spaces M�;K 2 is rather scanty, even if
we make the drastic restriction only to consider the subset M00

�;K 2 corresponding to
isomorphism classes ŒS � of simply connected minimal surfaces. M�;K 2 is a quasipro-
jective variety, with a finite number of connected components, and M00

�;K 2 is a union
of connected components of M�;K 2 .

For a surface S with ŒS � 2M00
�;K 2 there are (by Freedman’s theorem [16]) at most two

topological types, according to the parity of the intersection form qS W H
2.S;Z/! Z.

If qS is even (ie, Im.qS /� 2Z/ then S is orientedly homeomorphic to a connected
sum of copies of P1 �P1 and copies of a K3 surface Y (possibly taken with reversed
orientation); if qS is odd (Im.qS / 6� 2Z/ then S is orientedly homeomorphic to a
connected sum of copies of P2 and copies of P2 with reversed orientation.

Thus the topology of S does not give sufficient information in order to distinguish the
connected components N�M00

�;K 2 . Note that if N is such a connected component
and S;S 0 are minimal surfaces with ŒS �; ŒS 0� 2N (we then simply say that S;S 0 have
the same deformation type), then, by the classical theorem of Ehresmann [15], there
exists an orientation preserving diffeomorphism ‰W S 0! S carrying the canonical
class c1.KS / to the canonical class c1.KS 0/.

1In the following formula, a polynomial of negative degree is identically zero.
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In [7] (see also [9]) the first author showed that to each such surface S one can associate
a symplectic manifold .S; !/, unique up to symplectomorphism, and such that the
de Rham class of ! equals c1.KS /. Moreover, it was shown that this symplecto-
morphism class, called “canonical symplectomorphism class”, is an invariant of the
connected component N.

The so-called Manetti surfaces yield examples (see Manetti [26] and Catanese [9; 8])
of surfaces S;S 0 lying in distinct connected components of M�;K 2 but having the
same canonical symplectomorphism class.

Whether this also occurs for M00
�;K 2 is an interesting open question, especially mo-

tivated by the results of Catanese and Wajnryb [12], where the families Na;b;c of
the so-called abc–surfaces, essentially a partial closure of N0a;b;c;b , were shown to
provide examples of simply connected surfaces S;S 0 belonging to distinct connected
components (Na;b;c , resp. NaCk;b;c�k ) of M00

�;K 2 , yet diffeomorphic through a dif-
feomorphism preserving the orientation and the canonical class. (For more general
discussions concerning the topological, differentiable and symplectic structures we
refer the reader to Freedman [16], Donaldson [13; 14], Friedman and Morgan [17],
Catanese [8], Auroux and Smith [4], Gompf [18], Auroux and Katzarkov [2] and
Gompf and Stipsicz [19].)

The starting point was that a partial closure Na;b;c;d of N0a;b;c;d , obtained by allowing
the base to be a more general Segre–Hirzebruch surface and allowing the bidouble
covers to have also du Val singularities, is, under suitable numerical conditions on
a; b; c; d , an irreducible connected component of M�;K 2 .

Then it was proven in [12] that if S is an abc–surface (this means that bDd ), and S 0 is
an a0b0c0–surface, then S and S 0 are diffeomorphic if and only if bDb0; aCcDa0Cc0 .
The diffeomorphism between S and S 0 was obtained as a consequence of a classical
theorem of Kas on the diffeomorphism type of differentiable Lefschetz fibrations.
Here, the holomorphic map z'W S!P1 , obtained as the composition of � W S!P1�P1

with the first projection, admits a small differentiable perturbation which yields a natural
symplectic Lefschetz fibration 'W S!P1 . The bulk of the proof was to show that ' , '0

are isomorphic differentiable Lefschetz fibrations according to the criterion of Kas.

Kas [21] shows indeed that the isomorphism class of a differentiable Lefschetz fibration
of genus g � 2 is completely determined by the equivalence class of its monodromy
factorization in the mapping class group, for the equivalence relation generated by
Hurwitz equivalence and by simultaneous conjugation.

Here, the mapping class group monodromy factorization of a Lefschetz fibration is the
sequence of positive Dehn twists associated to a quasi-basis of the fundamental group
�1.P

1�fbig; b0/, whose conjugacy classes yield the local monodromies.
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The change of quasi-basis of the fundamental group �1.P
1 � fbig; b0/ leads to the

Hurwitz equivalence of factorizations, while simultaneous conjugation accounts for the
possible different choices of an (orientation preserving) diffeomorphism of the fibre
over the base point b0 with a standard Riemann surface of genus g .

On the other hand, the mapping class group monodromy factorization of this Lefschetz
fibration is nothing else than the homomorphic image of the braid monodromy factoriza-
tion which corresponds to the branch curve �� P1�P1 of a symplectic perturbation
of � and to its first projection onto P1 , and which has factors in the braid group of
the sphere Brn (where n is the vertical degree of �), which is presented as follows:

Brn D

*
�1; : : : ; �n�1

ˇ̌̌̌
ˇ̌ �i�j D �j�i ; if ji � j j> 1

�i�iC1�i D �iC1�i�iC1

�1 � � � �n�1�n�1 � � � �1 D 1

+

Determining whether these braid monodromy factorizations are equivalent would have
been the clue to deciding about the existence of a diffeomorphism between S;S 0

commuting with the Lefschetz fibrations '; '0 , and yielding a canonical symplecto-
morphism.

Our main result says however that such a diffeomorphism cannot exist, by showing
that the corresponding braid monodromy factorizations are not m-equivalent, in the
terminology introduced by Auroux and Katzarkov in [2]. They used the relation of m-
equivalence in order to obtain invariants of symplectic 4–manifolds. The m-equivalence
relation is obtained by allowing not only Hurwitz equivalence and simultaneous conju-
gation, but also creation/cancellation of admissible pairs of a positive and of a negative
node, where a node (and then also the corresponding full twist ˇ ) is said to be admissible
if the inverse image of the node inside the ramification divisor consists of two disjoint
smooth branches.

We propose here to use the more informative name “stable equivalence” instead of
m-equivalence.

With this terminology we prove the following Main Theorem:

Theorem 0.1 The braid monodromy factorizations associated to an abc–surface S

and to an a0b0c0–surface S 0 are not stably equivalent, except in the trivial cases aD a0 ,
b D b0 , c D c0 or aD c0 , b D b0 , c D a0 or aD c D b0 , a0 D c0 D b .

The result relies on a complete description of the braid monodromy factorization class
associated to �: this is given in Theorem 3.5, which proves indeed much more than
what we need for the present purposes.
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We state here a simpler byproduct of the cited result, namely:

Theorem 0.2 There is a braid monodromy factorization of the curve � associated to
a bidouble cover S of type a; b; c; d whose braid monodromy group H � Br4.bCd/ is
generated, unless we are in the cases

.I/ c D 2a and d D 2b or .II/ aD 2c and b D 2d

by the following powers of the half-twists appearing in the figure below: �ai
; �ci

for
i D 1; : : : 2b� 1, �b{

; �d{
for { D 1; : : : ; 2d � 1, �2

p2b
; �2

q2d
; �s; �

3
u0 and �3

u00 .

� �
��

� �
r r rrrr
r r rrrr

D00
2d

D00
2d�1

D001 B001 B00
2b�1

B00
2b

D0
2d

D0
2d�1

D0
1 B01 B0

2b�1
B0

2b

� � �

� � �

� � �

� � �

q2d q2d�1
q1

p1
p2b�1 p2b

b2d�1 b2d�2 b1 u0 a1 a2b�2 a2b�1

d2d�1 d2d�2 d1 u00 c1 c2b�2 c2b�1

s

The factorization is such that

(1) each (˙)full-twist factor is of type p or q ,

(2) the weighted count of (˙)full-twist factors of type p yields 8ab� 2.ad C bc/,

(3) the weighted count of (˙)full-twist factors of type q yields 8cd � 2.ad C bc/.

The above result shows that the braid monodromy group H depends only upon the
numbers b and d , provided for instance that we have nonvanishing of the respective
numbers 8ab � 2.ad C bc/, 8cd � 2.ad C bc/, or provided that we are in the case
b D d .

A fortiori if the groups H are the same for different choices of .a; b; c; d/ then the
fundamental groups �1.Q n�/ are isomorphic.

This forces us to look more carefully into the problem of distinguishing classes of
factorizations, and for this reason, later on, we introduce a technical novelty which
consists in finding a new effective method for disproving stable-equivalence.

The method goes as follows: assume that we consider a group G and a factorization of
the identity in G

˛1 ı � � � ı˛m D 1
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and a set B of elements ǰ 2 G . We define stable-equivalence of factorizations
with respect to B simply by considering the equivalence relation generated by Hur-
witz equivalence, simultaneous conjugation and creation/cancellation of consecutive
factors ǰ ıˇ

�1
j .

Then refined invariants of the stable equivalence class of the above factorization are
obtained as follows:

(1) Let H be the subgroup of G generated by the ˛i ’s and let yH be the subgroup of G

generated by the ˛i ’s and by the ǰ ’s (in our case, H will be called the monodromy
group, and yH the stabilized monodromy group).

Then yH is a first invariant.

(2) Let C be the set of conjugacy classes A in the group H , and let yC be the set
of conjugacy classes yA in the group yH , so that we have a natural map C! yC , with
A 7! yA.

Write yC as a disjoint union yCC[ yC�[ yC0 , where yC0 is the set of conjugacy classes of
elements a 2 yH which are conjugate to their inverse a�1 , and where yC� is the set of
the inverse conjugacy classes of the classes in yCC .

(3) Associate to the factorization ˛1 ı � � � ı ˛m D 1 the function sW yCC ! Z such
that s.c/, for c 2 yCC , is the algebraic number of occurrences of c in the sequence of
conjugacy classes of the j̨ ’s (ie, an occurrence of c�1 counts as �1 for s.c/).

The function sW yCC! Z is our second and most important invariant.

Remark 0.3 The calculation of the function sW yCC ! Z presupposes however a
detailed knowledge of the group yH . For this reason it will be convenient to find some
coarser derived invariant.

Substrategy I Assume that we can write f˛1; : : : ; ˛mg as a disjoint union A1[A2[

D[A0
1
[A0

2
, such that the set Aj ; j D 1; 2; is contained in a conjugacy class Aj �H

and the set A0j ; j D 1; 2; is contained in the conjugacy class A�1
j � H . Assume

that the elements in A1 [A2 are contained in a conjugacy class C in G such that
C \ C�1 D ∅ but that the set D is disjoint from the union C [ C�1 of the two
conjugacy classes of G .

If we then prove that �A1¤
�A2 (this of course implies A1¤A2 ) we may assume without

loss of generality that �A1; �A2 2
yCC , and then the unordered pair of positive numbers

.js. �A1/j; js. �A2j/ is our derived numerical invariant of the factorization (and can easily
be calculated from the cardinalities of the four sets as .jjA1j � jA01jj; jjA2j � jA02jj/.
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Substrategy II This is the strategy to show that �A1 ¤
�A2 and goes as follows.

Assume further that we have a subgroup zH � yH and a group homomorphism �W zH!†

such that �.B/D 1. Assume also that the following key property holds.

Key property For each element j̨ 2Aj �H there is an element z̨j 2 zH such that

j̨ D z̨
2
j ;

and moreover that this element is unique in zH (a fortiori, it will suffice that this element
is unique in G ).

Proving that �.z̨1/ is not conjugate to �.z̨2/ under the action of �.H /D �. yH /�†

shows finally that ˛1 is not conjugate to ˛2 in yH , since if there is h 2 yH such that
˛1 D h�1˛2h, then z̨2

1
D ˛1 D .h

�1 z̨2h/2 , whence z̨1 D h�1 z̨2h, a contradiction.

In our concrete case, we are able to determine the braid monodromy group H , and
we observe that, since we have a so-called cuspidal factorization, all the factors ˛i

belong to only four conjugacy classes in the group G (the classes of �1 , �2
1

, ��2
1

, �3
1

in the braid group), corresponding geometrically to vertical tangencies of the branch
curve, respectively nodes and cusps. Three of these classes are positive and only one is
negative (the one of ��2

1
).

We shall see that the nodes belong to conjugacy classes A1;A2;A
�1
1
;A�1

2
�H , the

positive nodes belonging to A1[A2 , and we shall show, using a representation � of a
certain subgroup zH of “liftable” braids (ie, braids which centralize the monodromy
homomorphism, whence are liftable to the mapping class group of the curve associated
to the monodromy homomorphism) into a symplectic group † with Z=2 coefficients,
that the classes �A1; �A2 are distinct in yH .

Moreover, since these are positive classes in the braid group, we decree that these are
classes in CC .

We are then able to easily calculate the above function for these two conjugacy classes,
ie, the pair of numbers .s. �A1/; s. �A2//.

This new method and the above results represent the first positive step towards the
realization of a more general program set up by Moishezon [27; 28] in order to produce
braid monodromy invariants which should distinguish the connected components of a
moduli space M�;K 2 .

Moishezon’s program is based on considering (assume here for simplicity that KS is am-
ple) a general projection ‰mW S!P2 of a pluricanonical embedding ˆmW S!PPm�1

and the braid monodromy factorization corresponding to the (cuspidal) branch curve Bm

of ‰m .
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An invariant of the connected component of the moduli space is then given by the
equivalence class (for Hurwitz equivalence plus simultaneous conjugation) of this braid
monodromy factorization. Moishezon [29], and later Moishezon and Teichner [30],
calculated a coarser invariant, namely the fundamental group �1.P

2�Bm/.

This group turned out to be not overly complicated, and in fact, as shown in many cases
by Auroux, Donaldson, Katzarkov and Yotov [1], it tends to give no extra information
beyond the one given by the topological invariants of S (such as �;K2 ).

Auroux and Katzarkov showed that, for m� 0, the stable-equivalence class of the
above braid monodromy factorization determines the canonical symplectomorphism
class of S , and conversely.

As we have already remarked, in the case of abc–surfaces the braid monodromy groups
are determined by b (up to conjugation), hence the fundamental groups �1.Q n�/

are isomorphic for a fixed value of b .

So, Moishezon’s technique produces no invariants.

There remains the problem of understanding stable-equivalence classes of pluricanonical
braid monodromy factorizations: let us try to describe here how this could be done in
our case.

Define pW S ! P2 as the morphism p obtained as the composition of � W S ! Q

with the embedding Q ,! P3 followed by a general projection P3 Ü P2 .

In the even more special case of abc–surfaces such that a C c D 2b , the m–th
pluricanonical mapping ˆmW S ! PPm�1 has a (non-generic) projection given by the
composition of p with a Fermat type map �r W P2! P2 (given by �r .x0;x1;x2/D

.xr
0
;xr

1
;xr

2
/ in a suitable linear coordinate system), where r WDm.2b� 2/.

Let B be the branch curve of a generic perturbation of p . Then the braid mono-
dromy factorization corresponding to B can be calculated from the braid monodromy
factorization corresponding to �.

We hope, in a sequel to this paper, to be able – relying on methods of the second
author [22; 23] – to determine this braid monodromy factorization: to determine whether
these braid monodromy factorizations are equivalent, respectively stably-equivalent,
for abc–surfaces such that aC c D 2b might be much harder.

The problem of calculating the braid monodromy factorization corresponding to the
(cuspidal) branch curve Bm starting from the braid monodromy factorization of B has
been addressed, in the special case mD 2, by Auroux and Katzarkov [3]. Iteration of
their formulae, which should in theory lead to the calculation of the braid monodromy
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factorization corresponding to the (cuspidal) branch curve Bm (in the case, sufficient for
applications, where m is a sufficiently large power of 2) might however be intractable
in practice.

Here are the contents of the article.

Section 1 is devoted to making precise the concept of a perturbation of � . In fact, it
will be shown that a dianalytic perturbation suffices, ie, one corresponding to a covering
given by equations where ˆ;‰ are either holomorphic or antiholomorphic in each
single variable x , y .

The invariants of the branch curve � (genus, degree, number of nodes, cusps and
vertical tangents) are computed.

Section 2 is devoted to the description of the braid monodromy group H of �, and to
the conjugacy classes in H of the factors of the braid monodromy factorization. The
computation is based on a degeneration of the branch curves to real curves ff D 0g,
fg D 0g which are each the union of horizontal lines with the graph of a rational
function: this type of degeneration seems to be very suitable also for writing short
proofs of existing results.

Section 3 is based on the classical correspondence between 4–tuple covers and triple
covers, given by the surjection S4!S3 whose kernel is the Klein group .Z=2/2 .

We obtain a corresponding triple cover and a resulting homomorphism of its mapping
class group to the symplectic group acting on the Z=2 homology.

This homomorphism sends the “extra” factors ǰ to the identity and transforms the
Dehn twists ˛i corresponding to the nodes of � to Picard Lefschetz transformations
which are shown to be not conjugated under the image of the monodromy group.

1 Perturbed simple bidouble covers

Consider the direct sum V of two complex line bundles L1˚L2 on a compact complex
manifold X , and the subset Z of V defined by the pair of equations

z2
D f .x/Cwˆ.x/

w2
D g.x/C z‰.x/

where f;g are respective holomorphic sections of the line bundles L˝2
1
;L˝2

2
(we

shall also write f 2 H 0.OX .2L1//;g 2 H 0.OX .2L2//, denoting by L1;L2 the
associated Cartier divisors), and where, for the time being, ˆ is a differentiable section
of L˝2

1
˝L˝�1

2
, ‰ is a differentiable section of L˝2

2
˝L˝�1

1
.
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Lemma 1.1 Assume that the two divisors ff D 0g and fg D 0g are smooth and
intersect transversally. Then, for jˆj � 1, j‰j � 1, Z is a smooth submanifold of
V , and the projection � W V !X induces a finite covering Z!X of degree 4, with
ramification divisor (ie, critical set) R WD f4zw D ˆ‰g, and with branch divisor (ie,
set of critical values) �D fı.x/D 0g, where

�
1

16
ı D�f 2g2

�
9

8
fg.ˆ‰/2C .‰/2f 3

C .ˆ/2g3
C

27

162
.ˆ‰/4:

Proof Z is locally defined by two complex valued functions which are holomorphic
polynomials in z and w . If we compactify the rank two vector bundle to a P2

C –bundle,
and homogenize the equations to

z2
D f .x/u2

Cwuˆ.x/

w2
D g.x/u2

C zu‰.x/;

we see that Z is fibrewise the complete intersection of two degree two equations, and
it does never intersect the line at infinity fu D 0g, whence we get fibrewise a zero
dimensional subscheme Zx of length 4.

The fibre subscheme is smooth (if and only if it consists of 4 distinct points) exactly
when the Jacobian determinant 4zw�ˆ‰¤ 0: This shows that outside of R we have
a local diffeomorphism between Z and X .

In the case where ˆ� 0; ‰� 0; Z is a smooth (complex) submanifold, by the implicit
function theorem, if and only if the two divisors ff D 0g and fg D 0g are smooth and
intersect transversally.

If jˆj � 1, j‰j � 1, by uniform continuity on compact sets, the real Jacobian matrix
has still rank 4, thus Z is still a real submanifold. The equation of the branch divisor �
is obtained eliminating z; w from the above three equations (see [11]).

Remark 1.2 Assume that Z is a smooth submanifold. Then R is smooth at the points
p 2Z where the fibre Zx has multiplicity � at most two.

Also � is smooth at a point x such that the fibre Zx consists of three distinct points.

Proof Since p 2R, the multiplicity �� 2. If equality holds, the fibre is the spectrum
of CŒt �=.t2/, hence by Nakayama’s lemma the local ring is generated by three elements,
two elements x1;x2 from OX and an affine linear form v.z; w/.

It follows that Z is locally biholomorphic to a hypersurface defined by v2D '.x1;x2/.
Hence Z is smooth if and only if RD f.x1;x2; v/jv D '.x1;x2/D 0g is smooth.
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If the fibre Zx consists of three distinct points, then there is only one point of the
fibre which is in R, and there the fibre has multiplicity two. Hence locally � D

f.x1;x2/j'.x1;x2/D 0g and therefore it is smooth.

We want to analyse now the singularities that � has, for a general choice of ˆ;‰ . In
view of the above remark, it suffices to consider points x such that either

(I) there is only one point p 2R above it, and with multiplicity 3 or 4, or

(II) the fibre Rx consists of two points with multiplicity 2.

Definition 1.3 A point x is said to be a trivial singularity of � if it is either a point
where f DˆD 0, or a point where g D‰ D 0.

Z is said to be mildly general if

.#/ at any point where f D ˆD 0, we have g �‰ ¤ 0, and symmetrically at any
point where g D‰ D 0, we have f �ˆ¤ 0.

Lemma 1.4 If Z is mildly general, case (II) occurs exactly for the trivial singularities
of �. Moreover, case (I) occurs only for points p 2R with w.p/z.p/¤ 0, and never
leads to a point of Zx of multiplicity 4.

Proof Observe that over a trivial singularity, for instance with f DˆD 0, we have
z D 0, and the fibre consists of two distinct points of R if Z is mildly general, since
g.x/¤ 0.

Conversely, if we have a point p 2Rx with z.p/D 0 and w.p/¤ 0, then g.x/¤ 0,
and ˆ‰.x/D 0 since 4zw�ˆ‰.x/D 0.

If ˆ.x/D 0 we have a trivial singularity, for f D z2�ˆw also vanishes at p .

If instead ˆ.x/¤ 0, then the equation f D z2�ˆw singles out only one value for
w with z D 0, and there is no other point p0 2Rx . In fact p0 ¤ p , p0 2Rx implies
w.p0/ D 0, contradicting g.x/ ¤ 0 (recall that ‰.x/ D 0!). Thus this case cannot
occur.

We argue similarly for the case w.p/D 0 and z.p/¤ 0.

Claim The case where w.p/D 0D z.p/D 0 cannot occur for a point p 2Rx .

Otherwise we would have f .x/D g.x/Dˆ‰.x/D 0 contradicting the hypothesis
that Z is mildly general.

We can finally consider the case w.p/z.p/¤ 0, hence ˆ‰.x/¤ 0.
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We can write our two local equations as

w D
1

ˆ.x/
.z2
�f .x//

.z2
�f .x//2� z‰.x/ˆ.x/2�g.x/ˆ.x/2 D 0:

The form of the second equation implies that the sum of the four roots equals 0.

Hence we conclude that not all the four roots are equal, otherwise we would have
z D 0 as fourtuple root, implying that f .x/Dˆ.x/‰.x/D g.x/ˆ.x/D 0, whence
we would have a trivial singularity, contradicting w.p/z.p/¤ 0. The last assertion is
then proven.

Assume that there are two roots of multiplicity 2, thus our equation would have the form
.z� a/2.zC a/2 , ie .z2� a2/2 . Then the coefficient of z would vanish, contradicting
ˆ‰.x/¤ 0.

Lemma 1.5 If Z is mildly general, and jˆj � 1, j‰j � 1, the singular points of �
which are not the trivial singularities of �, ie, those coming from case (I), occur only
for points p 2Zx of multiplicity 3 which lie over arbitrarily small neighbourhoods of
the points with f .x/D g.x/D 0.

Proof By the previous lemma, we are looking for points x where ˆ‰.x/¤ 0, and
where the equation

.z2
�f .x//2� z ‰.x/ˆ.x/2�g.x/ˆ.x/2 D 0

has a triple root a. Then the above monic equation has the form

.z� a/3.zC 3a/D z4
� 6a2z2

C 8a3z� 3a4:

Comparing the coefficients, we obtain

�8a3
D‰.x/ˆ.x/2

f .x/D 3a2:

Whence, for jˆj� 1, j‰j� 1, also jaj� 1, therefore also jf .x/j� 1; by symmetry
we also obtain jg.x/j � 1 and our assertion is proven.

We want to describe more precisely the singularities of � in the case where X is a
complex surface.
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Proposition 1.6 Assume that X is a compact complex surface, that the two divisors
ff D 0g and fg D 0g are smooth and intersect transversally in a set M of m points.
Then, for jˆj � 1, j‰j � 1, and for Z mildly general, Z is a smooth submanifold
of V , and the projection � W V!X induces a finite covering Z!X of degree 4, with
smooth orientable ramification divisor R WD f4zw Dˆ‰g, and with branch divisor �
having as singularities precisely

(1) 3m cusps lying (in triples) in an arbitrarily small neighbourhood of M , and
moreover,

(2) the trivial singularities, which are nodes if the curve ff D 0g intersects fˆD 0g

transversally, respectively if the curve fg D 0g intersects f‰ D 0g transversally.

Proof Since we showed that Z is smooth, by Remark 1.2 it follows that R is smooth,
except possibly for the points of type (I).

But in a neighbourhood of a point with f .x/D g.x/D 0, R is a small differentiable
deformation of the nodal holomorphic curve R0 defined ( for ˆ.x/� 0; ‰.x/� 0)
by the equation 4zw D 0; z2 D f .x/; w2 D g.x/.

Working locally at a point where f .x/D g.x/D 0, we may assume that f .x/;g.x/
are local holomorphic coordinates .x1;x2/ so that Z is defined by

x1 D z2
�wˆ; x2 D w

2
� z‰;

where z; w are local coordinates and ˆ;‰ do not vanish.

As it was shown in [11, Section 3], in a new system of coordinates we may assume
without loss of generality ˆ�‰ � �, where � is a small nonzero constant.

Thus R is smooth, and it is orientable being diffeomorphic to the holomorphic curve
that one gets for ˆ.x/� ��‰.x/.

We argue then as in [11] and we find that � has exactly three cusps as singularities for
�� 1.

For the case (2) of the trivial singularities, it suffices to observe that the equation of �
is given by

�f 2g2
�

9

8
fg.ˆ‰/2C .‰/2f 3

C .ˆ/2g3
C

27

162
.ˆ‰/4:

At a point where f DˆD 0, and where g ¤ 0; ‰ ¤ 0, if we assume that f;ˆ give a
local diffeomorphism to a neighbourhood of the origin in C2 , the equation becomes of
order two, and with leading term �f 2g2.0/C .ˆ/2g3.0/, thus it defines an ordinary
quadratic singularity.
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Since R is orientable, it follows that if the trivial singularities of � are nodes, then the
intersection number of the two branches is ˙1; the local self-intersection number is
exactly equal to C1 when the two orientations of the two branches combine to yield
the natural (complex) orientation of X .

We are going now to calculate the precise number of singularities, and of the positive,
respectively negative nodes of � in the special case we are interested in, namely, of a
perturbed bidouble cover of the quadric.

Definition 1.7 Given four integers a; b; c; d 2N�3 , the so-called dianalytic pertur-
bations of simple bidouble covers are the 4–manifolds defined by equations

z2
D f.2a;2b/.x0;x1Iy0;y1/Cwˆ.2a�c;2b�d/.x0;x1Iy0;y1/

w2
D g.2c;2d/.x0;x1Iy0;y1/C z‰.2c�a;2d�b/.x0;x1Iy0;y1/

where f;g are bihomogeneous polynomials of respective bidegrees .2a; 2b/,

.2c; 2d/, and where ˆ;‰ are polynomials in the ring

CŒx0;x1;y0;y1; Sx0; Sx1; Sy0; Sy1�;

bihomogeneous of respective bidegrees .2a� c; 2b�d/, .2c� a; 2d � b/ (the ring is
bigraded here by setting the degree of Sxi equal to .�1; 0/ and the degree of Syi equal
to .0;�1/).

We choose moreover ˆ;‰ to belong to the subspace where all monomials are either
separately holomorphic or antiholomorphic, ie, they admit no factor of the form xi Sxj

or of the form yi Syj .

Remark 1.8 Indeed we shall pick ˆ (resp. ‰ ) to be a product

ˆDˆ1.x/ˆ2.y/;

where ˆ1 is a product of linear forms, either all holomorphic or all antiholomorphic,
and similarly for ˆ2 (resp. for ‰1 , ‰2 ).

Under this condition, at a point where ˆ vanishes simply, we get

ˆD unit �ˆ1 or ˆD unit �ˆ2:

As explained in [8, pages 134–135] to an antiholomorphic homogeneous polynomial
P .Sx0; Sx1/ of degree m we associate a differentiable section p of the tensor power L˝m

of the tautological (negative) subbundle, such that p.x/ WD P .1; xx/ inside a big disc
B.0; r/ in the complex line having centre at the origin and radius r .
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We shall make the following assumptions on the polynomials f;g; ˆ;‰ :

(1) The algebraic curves C WD ff D 0g and D WD fg D 0g are smooth.

(2) C and D intersect transversally at a finite set M contained in the product
B.0; r/2 and at these points both curves have nonvertical tangents.

(3) For both curves C and D the first projection on P1 is a simple covering and
moreover the vertical tangents of C and D are all distinct.

(4) The associated perturbation is sufficiently small and mildly general.

(5) The trivial singularities are nodes with nonvertical tangents, contained in B.0; r/2 .

(6) The cusps of � have nonvertical tangent.

Consider the branch curve � of the perturbed bidouble cover. Then the defining
equation ı is bihomogeneous of bidegree .4.aC c/; 4.bC d//.

We proved that � has exactly k WD 12.ad C bc/ cusps, coming from the m WD

4.ad C bc/ points of the set M D C \D .

If ˆ;‰ are holomorphic, then � has exactly

� WD 4.2abC 2cd � ad � bc/

(positive) nodes.

In general, this number � equals the difference �C��� between the number of positive
and the number of negative nodes.

In fact the nodes of � occur only for the trivial singularities.

A trivial singularity f DˆD 0 yields a node with the same tangent cone as

f 2
�ˆ2

�g.0/:

By Remark 1.8 we may assume that there are local holomorphic coordinates f; ŷ such
that either

ˆD unit � ŷ or ˆD unit � ŷ :

In the first case we get the tangent cone of a holomorphic node, hence a positive node,
in the second case we get the tangent cone of an antiholomorphic node, hence a negative
node.

Lemma 1.9 The number tf of vertical tangents for the curve C is tf D 4.2ab� a/,
while the number tg of vertical tangents for the curve D is tg D 4.2cd � c/. For a
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general choice of ˆ;‰ , the number t of vertical tangents of � equals tD2tfC2tgCm.
The genus of the Riemann surface R equals

g D 1C 16.aC c/.bC d/� 4.aC bC cC d/� k � �;

where k WD 3mD 12.ad C bc/ is the number of cusps of � and � WD �C� �� is the
number of nodes of �, counted with sign.

Proof The curve C has bidegree .2a; 2b/ thus its canonical divisor has degree
2g.C /�2D2a.2b�2/C2b.2a�2/D8ab�4a�4b . The first projection has degree 2b ,
thus by Hurwitz’ formula the number of ramification points is 2g.C /�2C4b . Since the
morphism is simple, the number tf of vertical tangent equals the number of ramification
points; similarly for D .

In the case where ˆ� 0; ‰ � 0; the ramification curve R0 has m double points, and
is composed of two double covers of C [D , branched on the set of double points.

Therefore, if g is the genus of R,

2g� 2D 2.2g.C /� 2/C 2.2g.D/� 2/C 4m

D 16ab� 8a� 8bC 16cd � 8c � 8d C 16.ad C bc/

D 16.aC c/.bC d/� 8.aC bC cC d/:

Now, the first projection yields a map pW R!P1
C of degree 4.bCd/, thus the formula

for t is again an application of Hurwitz’ formula since pjR is finite (the map from �

to P1
C being finite, for ˆ;‰ sufficiently small).

The surface R is smooth orientable, and p has only a finite number of critical values.
Thus p is oriented, and indeed a ramified covering. For general ˆ;‰; it has simple
ramification only, with distinct critical values. Hence the number of critical values is
given by

2g� 2C 8.bC d/D 16.aC c/.bC d/� 8.aC c/

D 2tf C 2tgC 16.ad C bc/

D 2tf C 2tgC 4m

D 2tf C 2tgCmC k:

We conclude observing that the number of critical values equals the number k of
(nonvertical) cusps plus the number t of vertical tangents.

Remark 1.10 (1) Observe that the fact that pW R!P1
C has a finite number of critical

points implies immediately that p is finite, since there is then a finite set in P1
C such

that over its complement we have a covering space. Thus p is orientation preserving
and each noncritical point contributes positively to the degree of the map p .
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(2) Consider now a real analytic 1–parameter family Z.�/ such that the perturbation
terms ˆ�; ‰�! 0. Then we have a family of ramification points Pi.�/ which tend to
the ramification points of p0W R0! P1

C . For R0 , a double cover of C [D , we have
2tf ramification points lying over the tf vertical tangents of C , 2tg ramification points
lying over the tg vertical tangents of D , whereas the m nodes of R0 are limits of 4

ramification points, three cusps and a simple vertical tangent. This is the geometric
reason why t D 2tf C 2tgCm; it also tells us where to look for the vertical tangents
of �.

In the next section we shall also consider the curves C and D as small real deformations
of reducible real curves with only nodes (with real tangents) as singularities: according
to the classical notation, these will be called improper nodes.

Moreover, we shall also consider real polynomials ˆ;‰; such that the trivial singulari-
ties are also given by real points. By the results of [11], from the perturbation of each
proper node of C [D , ie, of a point of M D C \D , we shall obtain a real vertical
tangent, a real cusp, and two imaginary cusps.

2 The basic model

In this section we will provide a model with some choices of f;g; ˆ;‰ to which the
reasoning of the previous chapter applies. In particular they are explicit enough to collect
a lot of geometric information and to determine the braid monodromy factorization in
the sequel.

Let us begin with real polynomials f � and g� defining nodal curves C� , respec-
tively D� .

For the sake of simplicity we replace here bihomogeneous polynomials f .x0;x1Iy0;y1/

by their restrictions to the affine open set x0 D 1;y0 D 1 and write f .x;y/ for
f .1;xI 1;y/.

We let f � WD f1 � � � f2b defining fi WD y � 2i for i D 2; : : : ; 2b but setting

f1 WD .y � 2/

2aY
iD1

.x� 2i/C

2a�1Y
iD1

.x� 2i � 1/;

and we define similarly g� WD g1 � � �g2d setting gi D yC 2i for i=2; : : : ; 2d except
that we set

g1 WD .yC 2/

2cY
iD1

.xC 2i/�

2c�1Y
iD1

.xC 2i C 1/:

See Figure 1 for an example.
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Figure 1: Real part of C� (bold) and D� (dashed) in case .a; b; c; d/D .1; 2; 2; 1/

Remark 2.1 Note that the equations of f1 and g1 are chosen in such a way that their
zero sets are graphs of rational functions zf1 , respectively zg1 , of x which, regarded as
maps from C to C , preserve the real line. Moreover, zf1 preserves both the upper and
lower halfplane, while zg1 exchanges them.

In fact, zf1 has no critical points on P1
R and

deg. zf1jP1
R
/W P1

R! P1
R D 2aD deg. zf1/;

and similarly for zg1 .

Next we define a real analytic 1–parameter family of dianalytic perturbation terms ˆ�
and ‰� introducing the following notation:

ˆ.2a�c;0/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

2a�cY
jD1

.x� 4a� 2j / if 2a� c;

c�2aY
jD1

.xx� 4a� 2j / if 2a< c:

ˆ.0;2b�d/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

2b�dY
jD1

.y � 4b� 2j / if 2b � d;

d�2bY
jD1

.xy � 4b� 2j / if 2b < d:
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‰.2c�a;0/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

2c�aY
jD1

.xC 4cC 2j / if 2c � a;

a�2cY
jD1

.xxC 4cC 2j / if 2c < a:

‰.0;2d�b/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

2d�bY
jD1

.yC 4d C 2j / if 2d � b;

b�2dY
jD1

.xxC 4d C 2j / if 2d < b:

ˆ� WD �ˆ.2a�c;2b�d/ D �ˆ.2a�c;0/ˆ.0;2b�d/:

‰� WD �‰.2c�a;2d�b/ D �‰.2c�a;0/‰.0;2d�b/:

See Figure 2 for an illustration.

Figure 2: Zero sets of ˆ (dashed) and ‰ (dotted) added

Given f � , consider the polynomial f Wf �Ccf , where cf is a small constant; likewise
consider g W g�C cg . Adding these small constants to the respective equations of C�

and D� we get polynomials f and g which define smooth curves C and D . We have
more precisely:

Proposition 2.2 If the constants cf , cg , � are chosen sufficiently small, the polyno-
mials f;g; ˆ;‰ thus obtained satisfy the following list of hypotheses (cf page 365) for
r > 8.aC bC cC d/:
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(1) The algebraic curves C D ff D 0g and D D fg D 0g are smooth.

(2) C and D intersect transversally at a finite set M contained in the bidisc B.0; r/2

and at these points both curves have nonvertical tangents.

(3) For both curves C and D the first projection on P1 is a simple covering and
moreover the vertical tangents of C and D are all distinct.

(4) The associated perturbation is mildly general.

(5) The trivial singularities of � are nodes with nonvertical tangents, contained in
B.0; r/2 .

(6) The cusps of � have nonvertical tangent.

Proof Property (1) follows obviously from Bertini’s theorem, since we have pencils
without base points.

Property (2) follows since the conditions are open conditions which hold for the nodal
curve C� and D� , as we shall show in Lemma 2.3 below.

By the same lemma the critical values for C�[D� are distinct, hence property (3)
is proven if we show that the two vertical tangents arising from each improper node
do not map to the same critical value. If this were the case, the local degree of the
projection would be 4 and not 2.

To prove property (4) that the associated perturbation is mildly general, it suffices – by
definition and continuity – to note that no three of the functions f �;g�; ˆ;‰ have a
common zero.

With Proposition 1.6 we deduce from (4) that the trivial singularities are nodes, which
yields the first part of (5). Moreover the local analysis in the proof of Proposition 1.6
shows that the two tangents at the node are close to the tangent to C [D at that point.
So the second part of (5) follows by continuity, since the points of C� [D� with
vertical tangents are not on the zero sets of ˆ and ‰ .

For (6), as shown in [11, Section 3], and already used in Proposition 1.6, we may
assume that f;g are local coordinates U;V , and that ˆ;‰ are small constants �1; �2 .
So the local equation of � is

�U 2V 2
�

9

8
U Vc2

C c2V 3
CU 3

C
27

162
c4;

where c is the ratio �1=�2 Dˆ=‰ .

Following the proof in [11, Section 3], we set c D �3 , and see that setting U D �4u0 ,
V D �4v0 the equation becomes

�u2
0v

2
0 �

9

8
u0v0c2

C c2v3
0 Cu3

0C
27

162
:

Geometry & Topology, Volume 15 (2011)



Moduli spaces and braid monodromy types of bidouble covers of the quadric 371

Then the directions of the tangent at the three cusps in the coordinates .U;V / are
nonconstant functions of c .

Hence for a general choice of the ratio c between ˆ.0/ and ‰.0/ these tangents are
not vertical.

Lemma 2.3 The critical values of the vertical projection of C�[D� are all distinct
and real. Moreover,

.�/ C� and D� intersect transversally at a finite set M� contained in the bidisc
B.0; r/2 and at these points both curves have nonvertical tangents

Proof Each critical point is a singular point of the union C� [D� since the com-
ponents of these curves are horizontal sections. Given two components of C�[D�

we can easily check that the number of real points in their intersection equals the
intersection number of these two components. Hence all singularities are real, they are
nodes, and moreover all critical values are real.

Recall now that each component of C� except ff1 D 0g is a horizontal line, and
similarly for D� we have only the component fg1 D 0g which is not a horizontal
line. Hence the nodes are of three types: type C , where ff1 D 0g meets a horizontal
component of D� , mixed type, where f1D g1D 0, and type D , where g1D 0 meets
a horizontal component of C� .

A vertical line through a point of mixed type cannot contain points of type C , nor D ,
so we have to exclude that a vertical line contains a point of type C and a point of
type D . But we simply observe that a point of type C has positive abscissa, while a
point of type D has negative abscissa.

To prove .�/ we note again that all singularities are nodes and we check from the
equations that their coordinates are bounded by 8.aCbCcCd/. Since all components
of C�[D� map biregularly to the base, no component has a vertical tangent.

We introduce now a geometric system of paths in the C–line with coordinate x (this
is the part not at infinity of the target space P1 of the vertical projection):

�;�; .�; �/ 2 V D VC[V�;

VC D
(
.�; �/

ˇ̌̌̌
1� � � 4a;

(
1< � � 2b if � odd

�2d � � � �1 if � even

)
;where

V� D
(
.�; �/

ˇ̌̌̌
1� �� � 4c;

(
1� � � 2b if � odd

�2d � � < �1 if � even

)
;respectively,
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correspond to the singular points of C�[D� : VC corresponds to those with positive
abscissa, V� corresponds instead to those with negative abscissa.

Observe in fact that the number of positive critical values is 2a.2bC 2d � 1/ and thus
equals the cardinality of VC .

The set VC , respectively V� , is ordered lexicographically according to j�j and � , and
these orderings correspond each to the total order of the critical values on the real line
given by the absolute value.

The total order of V is then determined by requiring that elements in VC precede those
in V� .

The �;� ’s are a system of simple paths based at the origin, following each other in
counterclockwise order, each �;� going around (again in a counterclockwise way) the
corresponding critical value.

In fact we can choose the paths with � positive to lie in the upper half plane except in a
neighbourhood of the critical value (lying on the positive real line) which they encircle.
Similarly the paths with � negative can be chosen to lie in the lower half plane except
in a neighbourhood of the critical value (lying on the negative real line) which they
encircle. See Figure 3.

q q q q q q q q q q q q q q q qq q q q q q q q q q q q q qg gpppeg ppp

Figure 3: The geometric system for the curve of Figure 1

To explain the choice of the index set in more detail let us observe some restrictions
for the y–coordinate function on the different components of C� [D� when the
x–coordinate is restricted to be real and positive: it is constant of value 2i , resp. �2j

for the components defined by fi resp. gj with i; j > 1 and bounded between �1

and �2 for the component defined by g1 . It is real or infinity for the component C1

defined by f1 and is monotone increasing outside of the poles.

Since the y –coordinate on C1 takes value in Œ2; 3� for xD 0, we can precisely describe
in which order the other components are intersected by C1 as x increases.

First C1 intersects the other components C2; : : : ;C2b of C� in this order at points
labelled by .1; 2/; : : : ; .1; 2b/; then the x–coordinate crosses a pole of f1 and y

changes sign.
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Next C1 intersects the components D2d ; : : : ;D1 of D� in this order at points labelled
by .2;�2d/; : : : ; .2;�1/.

After that the y coordinate changes sign again, and the same pattern of intersections
repeats itself over and over till the y –coordinate finally tends to 2 as the x–coordinate
tends to infinity.

We can finally summarize how our choice of the index set relates to this sequence of
intersections:

� a critical value with � > 0 corresponds to an intersection with C1 ,

� each time the y –coordinate changes sign, � is incremented by one,

� a critical value with � positive corresponds to an intersection with the component
defined by f� ,

� a critical value with � negative corresponds to an intersection with the component
defined by g�� .

Of course the situation over the negative real line can be described similarly and we
have:

� a critical value with � negative corresponds to an intersection point with the
component defined by g1 ,

� each time the y–coordinate changes sign over a negative real x , the absolute
value of the index � is incremented by one.

In the reference fibre over the origin the roots of f � are real and positive, in fact the
root of fi is 2i for i > 1 and between 2 and 3 for i D 1. Similarly the roots of g�

are real and negative, the root of gj is �2j except for g1 when the root is between
�2 and �1.

We define now arcs in the reference fibre, contained in the upper half-plane and
connecting two roots according to the following labelling:

�i;j W

8̂<̂
:

i D 1; j > 1 between roots of f1; fj

i > 0; j < 0 between roots of fi ;gjj j

i < 0; j D�1 between roots of g1;gjij

and subject to the following rule: for each fixed i (resp. j ) the arcs �i;j follow each
other in counterclockwise order without intersecting outside of the end points, and
otherwise two such arcs intersect transversally and in at most one point.

These arcs are thus determined up to an isotopy fixing a neighbourhood of infinity.
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Proposition 2.4 The braid monodromy factorization for the curve C� [D� with
respect to the geometric basis �;� can be given in terms of the mapping classes ˇi;j ,
the half-twists associated to the arcs �i;j , in the following form:

�;� 7!

(
ˇ2

1;�
if � > 0;

ˇ2
�;�1

if � < 0:

Proof Since all critical points on C�[D� for the vertical projection are nodes, the
mapping class associated to any element �;� of the geometric system is necessarily a
full twist on some arc between two roots.

These two roots are in fact the endpoints of �1;� , resp. ��;�1 – depending on the sign
of � – due to the way the index pair .�; �/ remembers the two components which
intersect at the critical value encircled by �;� .

It thus remains to prove that the mapping class associated to �;� can be obtained from
an arc in the upper half plane.

Let us consider the case � > 0. Then we specify the geometric loop �;� as follows: a
simple arc in the upper half plane, which will be called the “tail”, connecting the base
point with a point on the real line, which we shall call the “fork point”, followed by
a circle around the critical value corresponding to .�; �/ run once counterclockwise
before the loop goes back along the tail.

When �;� runs the circle around the critical value we get a mapping class in the fibre
over the fork point of �;� which is obviously the full twist on the straight real arc
connecting the roots associated to the two components of C�[D� which intersect at
the critical point.

Along the tail of �;� all roots stay fixed for the horizontal components, the root
associated to g1 D 0 moves in the lower half plane, the root associated to f1 D 0

moves in the upper half plane, cf Remark 2.1.

We may thus associate continuously to each point x on the tail of �;� an arc �x in
the fibre Fx over x , such that the mapping class associated to �;� truncated at x is
given by the full twist on �x .

In fact this arc can be chosen to be the straight arc except for x on �;� close to the
origin, because for x D 0 we would get the straight arc through other roots.

By continuity also the arc associated to x D 0 may be chosen to lie in the upper half
plane and it is thus isotopic to �1;� , as we wanted to show.

The argument in the case � < 0 is the same.
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We have now reached a point where we can draw the first two consequences concerning
the braid monodromy homomorphism associated to the vertical projection of the branch
curve �.

By continuity we may deduce first the following claim about the mapping classes
associated to the divisor � along the paths �;� . To state it properly let Ai;j be
respective closed neighbourhoods of the arcs �i;j , each containing, among the roots of
f �g� , only the two roots which form the endpoints of �i;j .

Proposition 2.5 Let � be defined as in Proposition 2.2 and choose sufficiently small
constants so that it moreover lies in a sufficiently close neighbourhood of C� [D� .
Then the following holds true:

(1) Each �;� encircles all critical values of p1W �! P1 which tend to the corre-
sponding critical value of C�[D� .

(2) The mapping class associated to �;� is supported on Ai;j if ˇ2
i;j is the mapping

class associated in the case of the nodal curve C�[D� .

Of course we will henceforth tacitly assume to be in the situation of the above proposi-
tion.

The other consequence is that all mapping classes associated to the paths �;� are given
by braids lying in a distinguished subgroup of the braid group. To define this subgroup
consider the 2–cable homomorphism Brn to Br2n , which associates to each braid a
corresponding braid with doubled strands, for example, as in the figure:

7!

2.1 Definition

Define the 2–cable homomorphism for each braid Pi.t/ (i D 1; : : : ; n) as the braid
Qj .t/ (j D 1; : : : ; 2n) with Q2i.t/ WD Pi.t/, Q2iC1.t/ WD Pi.t/C � , for �� 1, so
that 4� <mint2Œ0;1�;i¤j jPi.t/�Pj .t/j.

Define the subgroup CBrn � Br2n of 2- cable braids to be the subgroup generated by
the image of the 2–cable homomorphism, and by the half-twists inside each cable (ie,
a standard half twist involving Q2i.0/;Q2iC1.0/, which remain at distance � ).
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The half-twists inside the cables generate a free abelian normal subgroup of rank n, thus
leading, via the 2–cable homomorphism, to a representation of CBrn as the semidirect
product

CBrn Š Zn Ì Brn :

Here Zn WD h�1C2iiiD0;:::;n�1 and Brn WD h�
0
j ijD1;:::;n�1 , where

� 0j WD �2j�2j�1�2jC1�2j :

Lemma 2.6 The braid monodromy associated to � maps the homotopy class of any
path �;� to the subgroup CBrn of Br2n .

Moreover the braid monodromy associated to C�[D� along �;� is the image of the
above through the natural projection CBrn! Brn .

(Note that n now is the vertical degree of C� [D� , while the vertical degree of �
is 2n.)

Proof Braids in CBrn can be realized as braided ribbons, where each doubled strand
is considered as the boundary of a twisted ribbon. Along any path �;� the braid
associated to � can be extended to a ribbon: we simply connect each pair of roots
regenerating from a single point of C [D by a straight arc and observe that such arcs
never intersect, since the roots of C and D stay sufficiently away from each other
along �;� .

The second assertion is obvious.

In the next step we investigate the local braid monodromy factorizations in more detail
for the regenerations of proper and improper nodes of C�[D� .

In the case of a proper node we get a cusp-cluster, four critical points of which three
are cusps and the last is a vertical tangency point. In the case of an improper node we
get a cluster of vertical tangents, four critical points, all of which are vertical tangency
points.

The braid monodromy for the regeneration into a cusp-cluster has been thoroughly
investigated before in [11], where the braid monodromy factorization type has been
determined up to Hurwitz equivalence and simultaneous conjugation.2

We take this investigation over again in order to determine the Hurwitz equivalence
class of the factorization from the datum of the product of the factors.

2The factorization was explicitly described for a particular choice of coordinates .x;y/ . However,
any other coordinate change, yx D F.x/ , yy D G.x;y/ , induces another description of the fibre bundle
induced by p.x;y/ WD x on the complement of � . This results into a Hurwitz equivalence (action of the
base diffeomorphism F ) followed by a simultaneous conjugation (action of the diffeomorphism G on the
reference fibre).
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Proposition 2.7 The braid monodromy factorization of a (regenerated) cusp-cluster
with product �3

2
�1�3�2�

2
1
�2

3
is Hurwitz-equivalent to the factorization

�3
2 ı �1�3�2�

�1
3 ��1

1 ı �
3
1 ı �

3
3 :

Proof By the results of [11] the two factorizations are equivalent up to Hurwitz-
equivalence and simultaneous conjugation. Since these two operations commute
the braid monodromy factorization of our cusp-cluster is Hurwitz equivalent to a
factorization

.�3
2 /

ı .�1�3�2�

�1
3 ��1

1 / ı .�3
1 /

ı .�3

3 /


where, as usual, ˇ WD ˇ�1:

Since Hurwitz equivalence does not change the product of a factorization, it follows
that  is in the centralizer of the braid �3

2
�1�3�2�

2
1
�2

3
.

From the work of Gonzales-Meneses and Wiest [20] we may read off two elements,
�4 WD �1�2�3�1�2�1 and ��1

1
�2�1 , which generate this centralizer.

To prove our claim it thus suffices to give a Hurwitz equivalence between the factor-
ization given in the above formula and its conjugates by ��1

1
�2�1 , respectively �4 .

Below we first give expressions for the two respective conjugated factorizations using
the fact that ��4

i D �4�i .

.�3
2 /
��1

1
�2�1ı.�1�3�2�

�1
3 ��1

1 /�
�1
1
�2�1 ı .�3

1 /
��1

1
�2�1 ı .�3

3 /
��1

1
�2�1

D .�3
2 /
�2�1�

�1
2 ı .�1�

�1
2 �3�2�

�1
1 /�

�1
1
�2�1 ı .�3

1 /
��1

1
�2 ı .�3

3 /
��1

1
�2

D .�3
2 /
�2�1 ı .�3/

��1
1
�2�1�1�

�1
2 ı ��1

1 �2�
3
1�
�1
2 �1 ı .�

3
3 /
��1

1
�2

D �3
1 ı .�3/

��1
1
��1

1
�2�2�1 ı ��2

1 �3
2�

2
1 ı .�

3
3 /
��1

1
�2

D �3
1 ı .�3/

��2
1
�2

2 ı .�3
2 /
��2

1 ı .�3
2 /
��1

1
��1

3

.�3
2 /
�4 ı .�1�3�2�

�1
3 ��1

1 /�4 ı .�3
1 /
�4 ı .�3

3 /
�4 D �3

2 ı �3�1�2�
�1
1 ��1

3 ı �
3
3 ı �

3
1

Finally we show that these two elements are in fact in the same Hurwitz-equivalence
class by performing elementary Hurwitz operations and rewriting of the factors. Here
the notation �.i iC1/ is employed to denote a simple Hurwitz move affecting the
positions i and i C 1.

�3
2 ı �1�3�2�

�1
3 ��1

1 ı �
3
1 ı �

3
3

�.23/ �
3
2 ı �

3
1 ı .�1�3�2�

�1
3 ��1

1 /�
�3
1 ı �3

3

D �3
2 ı �

3
1 ı �

�2
1 �3�2�

�1
3 �2

1 ı �
3
3
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�.12/ �
3
1 ı .�

3
2 /
��3

1 ı ��2
1 �3�2�

�1
3 �2

1 ı �
3
3

�.23/ �
3
1 ı �

�2
1 �3�2�

�1
3 �2

1 ı .�
3
2 /
��2

1
�3�
�1
2
��1

3
�2

1
��3

1 ı �3
3

D �3
1 ı �

�2
1 �3�2�

�1
3 �2

1 ı .�
3
2 /
�3�
�2
1
��1

2
��1

3
��1

1 ı �3
3

�.34/ �
3
1 ı �

�2
1 �3�2�

�1
3 �2

1 ı �
3
3 ı .�

3
2 /
��3

3
�3�
�2
1
��1

2
��1

3
��1

1

D �3
1 ı �

�2
1 �3�2�

�1
3 �2

1 ı �
3
3 ı .�

3
1 /
��2

3
��2

1
��1

2
��1

3
�2

D �3
1 ı �

�2
1 �3�2�

�1
3 �2

1 ı �
3
3 ı .�

3
1 /
��2

3
��2

1
�3�
�1
2
��1

3

D �3
1 ı �

�2
1 �3�2�

�1
3 �2

1 ı �
3
3 ı .�

3
1 /
��1

3
��1

1
��1

1
��1

2

D �3
1 ı �

�2
1 �3�2�

�1
3 �2

1 ı �
3
3 ı .�

3
2 /
��1

1
��1

3

D �3
1 ı �

�2
1 �3�2�

�1
3 �2

1 ı �
3
3 ı .�

3
3 /
��1

1
�2

�.23/ �
3
1 ı .�

3
3 /
��2

1
�3�2�

�1
3
�2

1 ı ��2
1 �3�2�

�1
3 �2

1 ı .�
3
2 /
��1

3
��1

1

D �3
1 ı .�

3
3 /
��2

1
�3�2 ı ��2

1 �3�2�
�1
3 �2

1 ı .�
3
2 /
��1

3
��1

1

D �3
1 ı .�

3
2 /
��2

1 ı ��2
1 �3�2�

�1
3 �2

1 ı .�
3
2 /
��1

3
��1

1

D �3
1 ı �

�2
1 �3

2�
2
1 ı .�2/

��2
1
�3 ı .�3

2 /
��1

3
��1

1

�.23/ �
3
1 ı .�2/

��2
1
�3

2
�2

1
��2

1
�3 ı ��2

1 �3
2�

2
1 ı .�

3
2 /
��1

3
��1

1

D �3
1 ı .�2/

��2
1
�2

2
�2�3 ı .�3

2 /
��2

1 ı .�3
2 /
��1

3
��1

1

D �3
1 ı .�3/

��2
1
�2

2 ı .�3
2 /
��2

1 ı .�3
2 /
��1

1
��1

3

�3
2 ı �1�3�2�

�1
3 ��1

1 ı �
3
1 ı �

3
3

�.34/ �
3
2 ı �1�3�2�

�1
3 ��1

1 ı �
3
3 ı �

3
1

Comparison now shows that we got the same elements.

In the case of a regeneration into a cluster of vertical tangents we have to understand first
the braid monodromy factorization type up to Hurwitz equivalence and simultaneous
conjugation.

Proposition 2.8 The braid monodromy factorization associated to a cluster of tangents
corresponding to an improper node is given by

�2�3�
�1
2 ı �1�2�

�1
1 ı �2�3�

�1
2 ı �1�2�

�1
1

up to Hurwitz equivalence and simultaneous conjugation.
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Proof Without loss of generality, we assume that we have an improper node of C� .

We may take a coordinate change not altering the x coordinate such that the local equa-
tion of C� is u.x;y/.y2�x2/D 0, where u.x;y/¤ 0 (we also have g�.x;y/¤ 0).

Consider first a small perturbation with ‰ D 0: then the branch curve is given by

f �
2
g�

2
�g�

3
ˆ2
D g�

2
.f �

2
�g�ˆ2/D 0:

The vertical tangents can be located from the nonunit factor.

@

@y
.f �

2
�g�ˆ2/D 0”

@

@y
..y2
�x2/2�g�u�2ˆ2/D 0

” 2y.y2
�x2/D

@

@y
.g�u�2ˆ2/

To simplify the equations we take a local model based on an apt choice of ˆ with
.g�u�2ˆ2/� �2 , where � is a small constant, which makes the right hand side vanish.
The two equations have solutions y D 0 and x4 D �2 , which leads to four solutions
close to .0; 0/.

Then it is not hard to see that the same braid monodromy factorization is obtained from
the model

.y2
�x2

� �/.y2
�x2

C �/D 0

for which the factorization is as claimed.

The actual perturbation � of C� [ D� is linked to the above through a path of
perturbations which constantly have four vertical tangency points at the cluster. So
the local fibration does not change and therefore also the equivalence class of braid
monodromy factorization for Hurwitz equivalence and simultaneous conjugation stays
the same.

Proposition 2.9 Suppose that a braid monodromy factorization of a cluster of tangents
is Hurwitz plus conjugation equivalent to the factorization given by

.��1
1 �2�1/ ı .�

�1
2 �3�2/ ı .�

�1
1 �2�1/ ı .�

�1
2 �3�2/:

Then the two factorizations are equivalent via Hurwitz equivalence and simultaneous
conjugation by a power of �1 if and only if their products are equal.

Proof Again we deduce immediately that their products are equal if and only if the
first factorization is Hurwitz equivalent to the given one via conjugation by some braid
centralizing the product.
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The product is however .�4�
�2
1
��2

3
/2 and by [20] its centralizer is generated by �4

and �1 .

This immediately shows that the given equivalence preserves the product.

In the other direction, in order to prove our claim it thus suffices to give a Hurwitz
equivalence between the factorization of the claim and its conjugate by �4 .

We first give the expression for this conjugate factorization using that �4�i�
�1
4
D�4�i .

.��1
1 �2�1/

�4 ı .��1
2 �3�2/

�4 ı .��1
1 �2�1/

�4 ı .��1
2 �3�2/

�4

D .��1
3 �2�3/ ı .�

�1
2 �1�2/ ı .�

�1
3 �2�3/ ı .�

�1
2 �1�2/

We finish providing an elementary chain of transformations, obtained using only
Hurwitz equivalence, simultaneous conjugation by �2

1
and rewriting of factors, which

leads from the factorization of the claim to its conjugate by �4 .

.��1
1 �2�1/

�2
1 ı .��1

2 �3�2/
�2

1 ı .��1
1 �2�1/

�2
1 ı .��1

2 �3�2/
�2

1

D .�1�2�
�1
1 / ı .��1

2 �3�2/
�2

1 ı .��1
1 �2�1/

�2
1 ı .��1

2 �3�2/
�2

1

�.12/.34/ .�
�1
2 �3�2/

�1�2�
�1
1
�2

1 ı .�1�2�
�1
1 / ı .��1

2 �3�2/
�1�2�

�1
1
�2

1 ı .�1�2�
�1
1 /

D .��1
2 �3�2/

�1�2�1 ı .�1�2�
�1
1 / ı .��1

2 �3�2/
�1�2�1 ı .�1�2�

�1
1 /

D .��1
2 �3�2/

�2�1�2 ı .�1�2�
�1
1 / ı .��1

2 �3�2/
�2�1�2 ı .�1�2�

�1
1 /

D .�3/
�2�1 ı .�1�2�

�1
1 / ı .�3/

�2�1 ı .�1�2�
�1
1 /

D .�3/
�2 ı .�1�2�

�1
1 / ı .�3/

�2 ı .�1�2�
�1
1 /

D .�2�3�
�1
2 / ı .�1�2�

�1
1 / ı .�2�3�

�1
2 / ı .�1�2�

�1
1 /

D .��1
3 �2�3/ ı .�

�1
2 �1�2/ ı .�

�1
3 �2�3/ ı .�

�1
2 �1�2/

Corollary 2.10 In the situation of the above proposition the two factorizations are
equivalent up to Hurwitz equivalence and creation/deletion of admissible pairs.

Proof It suffices to show that simultaneous conjugation by �2
1

can be induced by
Hurwitz moves and creation/deletion of admissible pairs. This can be done as follows:

��1
1 �2�1 ı �

�1
2 �3�2 ı �

�1
1 �2�1 ı �

�1
2 �3�2

�c �
�2
1 ı �

2
1 ı �

�1
1 �2�1 ı �

�1
2 �3�2 ı �

�1
1 �2�1 ı �

�1
2 �3�2

� ��2
1 ı .�

�1
1 �2�1/

�2
1 ı .��1

2 �3�2/
�2

1 ı .��1
1 �2�1/

�2
1 ı .��1

2 �3�2/
�2

1 ı �2
1

� ��2
1 ı �

2
1 ı .�

�1
1 �2�1/

�2
1 ı .��1

2 �3�2/
�2

1 ı .��1
1 �2�1/

�2
1 ı .��1

2 �3�2/
�2

1

�d .�
�1
1 �2�1/

�2
1 ı .��1

2 �3�2/
�2

1 ı .��1
1 �2�1/

�2
1 ı .��1

2 �3�2/
�2

1 :
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A braid monodromy factorization is associated to the branch curve � once we fix a
geometric system of paths for the critical values of � in the base and a system of arcs
between the roots in the reference fibre F0 .

Concerning the geometric system of paths, we shall construct them later as a “regen-
eration” of the old system of paths �;� : ie given a path �;� we shall determine a
sequence of consecutive paths – actually four of them – in the new system, having the
same tail, and such that their product is homotopic to �;� . In particular, the choice for
these paths will be a local one around the critical values for C�[D� .

The choice of the local factorization of each �;� corresponds to a choice inside
the Hurwitz equivalence class of the braid factorization whose product is the braid
associated to �;� .

We shall now concentrate on the systems of arcs.

3 Proof of the factorization theorem

Proposition 3.1 Up to homotopy in small discs containing pairs D0i ;D
00
i or B0| ;B

00
|

the punctured fibre F0 is given in the following picture:

c r r rrrr
r r rrrr

D00
2d

D00
2d�1

D00
1

B00
1

B00
2b�1

B00
2b

D0
2d

D0
2d�1

D01 B01 B0
2b�1

B0
2b

� � �

� � �

� � �

� � �

The monodromy � of the perturbed bidouble cover, with respect to the origin, is given by

!D0
j
7! .12/; !B0

j
7! .13/;

!D00
j
7! .34/; !B00

j
7! .24/;

where !P is any simple closed path around P not crossing the imaginary axis iR�F0 .

Proof As we remarked before, in the unperturbed Galois cover case we have real
points Di , B| , only, the Di ’s with positive real coordinate, the Bj ’s with negative
real coordinate.
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And the monodromy is .12/.34/, resp. .13/.24/ for paths which do not cross the
imaginary axis.

The deformation then splits each branch point into two, hence the corresponding
monodromies (which are transpositions) must be .12/ and .34/, resp. .13/ and .24/

(which commute). After a suitable homotopy the points are in the positions given by
the picture.

Referring to the above figure we introduce the following notation for a system of arcs,
which are uniquely determined (up to homotopy) by their endpoints and the property
that they are monotonous in the real coordinate and do not pass below any puncture; ie,
if they share the real coordinate with a puncture they have larger imaginary coordinate.

pi W B0i ;B
00
i q{ W D0{ ;D

00
{

aij W B0i ;B
0
j b{| W D0{ ;D

0
|

cij W B00i ;B
00
j d{| W D

00
{ ;D

00
|

u0i| W B
0
i ;D
0
| u00i| W B

00
i ;D

00
|

(See Figure 4 below representing u0
1j

and u00
1j

.)

Remark 3.2 We can safely assume that any such arc is fully contained in one of the
previously defined closed sets Ai;j (neighbourhood of the arc �i;j ).

Proposition 3.3 The braid monodromy factorization associated to � and to a subsys-
tem of paths refining �;� is given by

�a1i
ı �2

p1
�c1i

��2
p1
ı �a1i

ı �2
p1
�c1i

��2
p1
; if � > 0 and i D � > 0;(1)

�b1j
ı �2

q1
�d1j

��2
q1
ı �b1j

ı �2
q1
�d1j

��2
q1
; if � < 0 and j D�� > 0;(2)

up to Hurwitz equivalence and simultaneous conjugation by some power of �2
p1

in
case (1), resp. by �2

q1
in case (2).

Proof The proofs of both cases are the same modulo an appropriate exchange of
indices, so we consider the first case only.

Since the paths refine �;� the associated mapping classes are supported on A1;i for
i D � , by .3/ of Proposition 2.5.

Hence by Proposition 2.8 the factorization coincides with the factorization of the claim
up to simultaneous conjugation by a mapping class (of this disc) supported on A1;i .
The products (ie, the product of the factorization (1), and the product of the factorization
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we are looking for, yielding the braid monodromy associated to �;� ) are therefore
equal up to that conjugation.

To proceed we have to get more information about the second product: being associated
to the path �;� it belongs to the subgroup CBrn of Br2n by Lemma 2.6.

Next, the product belongs to the subgroup of braids which are supported on A1;i . This
subgroup is generated by �a1i

; �c1i
; �p1

; �pi
and we can easily determine a presentation

of its intersection with CBrn :

h�p1
; �pi

; �4 WD �a1i
�2

p1
�c1i

�2
pi
j �p1

�pi
D �pi

�p1
; �4�p1

D �pi
�4; �4�pi

D �p1
�4i

Again by Lemma 2.6 we know the image of the product under the quotient map
CBrn! Brn to be a full twist. Since both �p1

and �pi
belong to the kernel of that

map we deduce now that this product can be written as �2
4
�k

p1
�k0

pi
with kC k 0 D�8

to match the total degree, which is 4.

The final fact to be exploited is that the two products are conjugate inside the group
generated by �a1i

; �c1i
; �p1

; �pi
.

The first product can be shown to be equal to �2
4
��4

p1
�pi

�4 since the two elements
�p1

and �pi
commute, while conjugation by �4 exchanges them. Since moreover the

element �2
4

is central we get conjugation equivalences

�2
4�

k
p1
�k0

pi
��2

4�
�4
p1
�pi

�4
H) �k

p1
�k0

pi
� ��4

p1
�pi

�4

But closing the braid on both sides we get a four component link for the right hand
side, which consists of two unlinked copies of the .4; 2/ torus link.

This soon implies that, since the braids are conjugate, k and k 0 are both even, hence
the left hand side consists of the unlinked union of a .k; 2/ torus link with a .k 0; 2/
torus link.

The nonzero linking numbers on the right are equal to 2, while the nonzero linking
numbers on the left are equal to jkj=2; jk 0j=2.

Again since the braids are conjugate and the linking numbers are invariant under
conjugation we conclude from jkj D jk 0j D 2 and kC k 0 D�4 that k D k 0 D�2, so
both products are equal.

So finally we may invoke Proposition 2.9 and we are left only with the ambiguity of a
conjugation by a power of �p1

.

This power must however have an even exponent, since the group of liftable braids is
left invariant by conjugation by �2

p1
, while conjugation by �p1

carries �a1i
outside of

the subgroup of liftable braids.
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� � �
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1j
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1j

si1

Figure 4: Representatives of certain arcs of type u0 , u00 and s

To state our next claim we need to introduce some further arcs si| contained the
corresponding discs Ai| . They are determined by fact that the relative position of si|

to u0i| and u00i| (cf Figure 4) is the same as the relative position of s to u0 and u00 in
Figure 5 below.

Proposition 3.4 Suppose � and � have opposite sign. Then the braid monodromy
factorization associated to � and to a subsystem of paths refining �;� is given by

�3
ui|
ı �si|

ı �3
u0

i|

ı �3
u00

i|

where

(
i D 1; j D�� if � > 0;

i D �; j D 1 if � < 0;

up to Hurwitz equivalence. In particular there is a distinguished refining subsystem of
paths such that the associated factorization is precisely the one given above.

Proof Since the paths refine �;� , by Proposition 2.5 (3) the factors are supported
on Ai;j , which is a topological disc containing four roots, B0i ;B

00
i ;D

0
j ;D

00
j . Locally

the divisor � is a regeneration of a node between the two components C and D ,
thus by the results of Catanese and Wajnryb [11] the factorization coincides with the
factorization of the claim up to Hurwitz equivalence and simultaneous conjugation.
Hence also their products coincide up to conjugation.

These products are both contained in CBrn , cf Lemma 2.6, and map to the same braid
ˇ2

i;j under the quotient map CBrn! Brn . Hence they coincide up to conjugation by
elements in the subgroup generated by the half-twists on the arcs pi and qj . Since
these half-twists are central in CBrn , the products do in fact coincide.

Therefore we may invoke Proposition 2.7 to deduce that the factorization is Hurwitz
equivalent to the one given in the claim.

In particular the Hurwitz action on the factors is induced by the Hurwitz action on
the subsystem of paths, thus we may pick the subsystem of paths in the Hurwitz orbit
which maps to the given factorization.
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Theorem 3.5 The factorization is a product of factorizations�
f̌ ı .�

˙2
p1
ı � � � ı �˙2

p1
/„ ƒ‚ …

j2b�d j factors

ı f̌g

�
ı � � �

„ ƒ‚ …
2a repetitions

ı .�˙2
p1
ı � � � ı �˙2

p2b
/ ı � � �„ ƒ‚ …

j2a�cj repetitions

ı

�
ˇgf ı .�

˙2
q1
ı � � � ı �˙2

q1
/„ ƒ‚ …

j2d�bj factors

ıˇg

�
ı � � �

„ ƒ‚ …
2c repetitions

ı .�˙2
q1
ı � � � ı �˙2

q2d
/ ı � � �„ ƒ‚ …

j2c�aj repetitions

where the sign of the exponents 2 is constant inside a pair of brackets and is the sign of
the number which determines the number of factors, ie .2b�d/ resp. .2a�c/, .2c�a/

or .2d � b/, and where the ˇ ’s further decompose as products of factorizations

f̌ D f̌;2 ı � � � ı f̌;2b; f̌g D f̌g;2d ı � � � ı f̌g;1;

ˇg D ˇg;2 ı � � � ıˇg;2d ; ˇgf D ˇgf;2b ı � � � ıˇgf;1;

based on elementary factorizations each having four factors

f̌;i D �a1i
ı �2

p1
�c1i

��2
p1
ı �a1i

ı �2
p1
�c1i

��2
p1
; f̌g;j D �

3
u1j
ı �s1j

ı �3
u0

1j

ı �3
u00

1j

;

ˇg;j D �b1j
ı �2

q1
�d1j

��2
q1
ı �b1j

ı �2
q1
�d1j

��2
q1
; ˇgf;i D �

3
ui1
ı �si1

ı �3
u0

i1

ı �3
u00

i1

:

The elementary factorizations originate in the regeneration of nodes of the branch curve
of the corresponding bidouble Galois-cover.

Proof Consider first the set of critical values for the vertical projection of �. They
are either arbitrarily close to the critical values of the vertical projection of C�[D�

or they are images of the nodes of � and thus are real.

We choose an associated system of paths in the base such that
(1) the paths associated to positive critical values of nodes belong to the upper half

plane,
(2) the paths associated to negative critical values of nodes belong to the lower half

plane,
(3) the paths associated to the four critical values which regenerate from a node of

C�[D� refine the path �;� associated to the value of that node.

We have still the choices of elements in the Hurwitz orbits of subsystems refining each
path �;� . We use these choices to adjust the system of paths using Proposition 3.3
and Proposition 3.4 and we succeed to get the elementary factorizations, at least up to
the conjugations mentioned in Proposition 3.3.
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The mapping classes associated to the other paths are obviously full twists. We have to
handle the problem that there may be critical values corresponding to different critical
points: this happens if and only if there are nodes coming from vertical components
of ˆ;‰ .

We can handle this difficulty adding a constant to ˆ, resp. ‰ . This resolves the problem
except for the case that the divisor is not ample, ie, if 2b D d or 2b D d .

In this case we take a local differentiable perturbation at the nodes.

We pass now to consider the conjugacy classes of the braids appearing in the braid
monodromy factorization, in order to prove Theorem 0.2.

Lemma 3.6 All full-twists of type p and q are admissible.

Proof The arc of type pi is homotopic to the union of two paths D0
i
; D00

i
in the

positive half plane. By Proposition 3.1 we see that the monodromies around the two
ends are disjoint transpositions, hence the full-twist on pi is admissible. The same
argument yields the claim for q| .

3.1 Generators of mapping class groups

Lemma 3.7 If aij ; ajk ; aik are the sides of a topological triangle taken in positive
order, then

�aij
�aj k
D �aj k

�aik
:

Proof This is easily seen from the identity �1�2 D �2.�
�1
2
�1�2/ in the braid group

Br3 which maps homomorphically onto the group generated by �aij
; �aj k

; �aik
via

�1 7! �aij
; �2 7! �aj k

; ��1
2 �1�2 7! �aik

:

Lemma 3.8 The following subgroups of the braid group Br4.bCd/ are identical:

h�a1;2
; �a2;3

; : : : ; �an�1;n
i; h�a1;2

; : : : ; �a1;n
i; h�aij

; 1� i; j � ni;

Proof By the relation in Lemma 3.7 a group containing �aij
; �aj k

also contains �aik

for any triple i; j ; k . Hence the second group contains all �aij
’s, and one can prove

inductively that the first group contains �a13
; : : : ; �a1n

, hence the second group.
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Lemma 3.9 If aij ; ajk ; akl and ail are the sides of a topological quadrangle taken in
positive order and aik ; ajl are its diagonals so that aij ; ajk ; aik and aij ; ajl ; ail are
sides of topological triangles taken in positive order, then

�aij
�aj l

�aik
D �aj l

�aik
�akl

:

Proof This is easily obtained from the identity

�1.�
�1
3 �2�3/.�

�1
2 �1�2/D .�

�1
3 �2�3/.�

�1
2 �1�2/�3

() ��1
3 �1�2�3�1�2�

�1
1 D ��1

3 �2�3�1�2�
�1
1 �3

() �1�2�1�3�2�
�1
1 D �2�1�3�2�3�

�1
1

() �2�1�2�3�2 D �2�1�2�3�2

in the braid group Br4 , which is homomorphically mapped onto the group generated
by aij ; ajk ; akl and ail with

�1 7! �aij
; �2 7! �aj k

; �3 7! �akl
; ��1

2 �1�2 7! �aik
; ��1

3 �2�3 7! �aj l
:

Lemma 3.10 The full-twists of type p , resp. of type q are conjugate via twists of
type a and c , resp. b and d .

Proof Given pi ;piC1 we may apply Lemma 3.9, since B0i ;B
00
i ;B

0
iC1

;B00
iC1

are the
vertices of a topological quadrangle with alternate sides pi ;piC1 and ai;iC1; ci;iC1 .

The same argument works for qi ; qiC1 with bi;iC1; di;iC1 .

A similar argument works for the following:

Lemma 3.11 The twists of type s (resp. u, u0 or u00 ) are conjugate via twists of type
a; b; c; d .

3.2 Deducing the theorem from the propositions

Proof of Theorem 0.2 The proof consists of three parts.

We start showing both inclusions between the braid monodromy group and the group H

given in the claim; then we perform the weighted count of full-twists and their inverses.

For the first two claims we use the braid monodromy factorization appearing in
Theorem 3.5.

We show preliminarily that all generators of H belong to the braid monodromy group
of such a factorization.

All full-twists of type p1 and q1 belong to the braid monodromy group, by Theorem
3.5 and by our numerical assumptions.
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Then the elementary factorizations f̌;i and ˇg;j show that also �a1i
; �c1i

, resp.
�b1{

; �d1{
belong to the braid monodromy group.

In view of Lemma 3.8 therefore all half-twists in G of type a; b; c; d belong to the
braid monodromy group.

The elementary factorization f̌g;1 guarantees that also the elements �s; �u0 ; �u00 belong
to the braid monodromy group.

Concerning the other full-twists of type p and q , they are in the braid monodromy
group by virtue of Lemma 3.10.

For the reverse inclusion we have to show that H contains all factors of the factorization
appearing in Theorem 3.5.

For the half twists of type a; b; c; d this is immediate from Lemma 3.8. For the full
twists of type p; q it then follows from Lemma 3.10. Therefore also the half twists of
type s and the cubes of half twists of type u;u0;u00 are in H by Lemma 3.11.

Last we have to perform the weighted count of full-twists of types p and q .

It is equal to the weighted count of intersections of f with ˆ, resp. g with ‰ , which
in turn is simply the algebraic intersection number of each pair of divisors. Hence

#p D .2a; 2b/ : .2a� c; 2b� d/ D 4ab� 2ad C 4ba� 2bc

#q D .2c; 2d/ : .2c � a; 2d � b/D 4cd � 2cbC 4dc � 2da:

4 Proof of the conjugacy theorem

In this last section we are going to prove that the conjugacy classes of �2
p and �2

q are
different in the stabilised braid monodromy group yH ; cf [10] for an alternative proof.

We rely on the unicity of the “roots” �p and �q and on the following proposition:

Proposition 4.1 The elements �p and �q are not yH –conjugate in the braid group G ,
ie there is no yh 2 yH such that yh�p D �q

yh.

Proof The idea is to show that there is a homomorphism h yH ; �p; �qi !†, such that
the images of �p; �q are not conjugate under the image y� of yH .

The group yH consists of liftable braids for the simple 4W1 covering X0! F0 Š P1

branched at 4.bC d/ points associated to the covering monodromy homomorphism
�1.P

1 � pts/!S4 , but �p and �q do not lift, so † can not be taken to be related
with this covering.

Consider instead the composed map �1.P
1 � pts/!S4!S3 , and the associated

3W1 covering Y0! F0 , then the elements of yH and �p; �q lift.
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In particular we can take †DSp.H1.Y0;Z=2//. Since half twists map to transvections,
full twist map to the identity in †, hence the image y� of yH is the same as the image �
of H . It thus suffices to show, that the images of �p and �q are not conjugate under
the image � of H .

Since �p and �q map to transvections on vectors vp; vq 2 H1.Y0;Z=2/ the claim
follows from the following claim, which is going to be proven in Proposition 4.10:

Claim vp and vq belong to different orbits for the � –action on H1.Y0;Z=2/.

� �
��

� �
r r rrrr
r r rrrr

D00
2d

D00
2d�1

D00
1

B00
1

B00
2b�1

B00
2b

D0
2d

D0
2d�1

D0
1

B0
1

B0
2b�1

B0
2b

� � �

� � �

� � �

� � �

q2d q2d�1
q1

p1
p2b�1 p2b

b2d�1 b2d�2 b1 u0 a1 a2b�2 a2b�1

d2d�1 d2d�2 d1 u00 c1 c2b�2 c2b�1

s

Figure 5: Isotoped generators

Let us first consider in more detail the corresponding geometrical properties of the two
coverings of F0 .

The branched covering X0! F0 is associated with a map �1.F0��j0/!S4 . We
define a further branched covering Y0! F0 by means of the induced homomorphism
�1.F0��j0/!S3 using the natural surjection S4!S3 with kernel given by the
Klein four-group.

For a simple 4–covering, taken an arc connecting two branch points, the minimal power
of the corresponding half twist which is liftable is

(1) one, if the two associated transpositions of the local monodromies are equal,

(2) two, if they are disjoint,

(3) three, if they do not commute.

We recall from Theorem 0.2, that (1) applies for arcs of type a; b; c; d; s , that (2)
applies for types p; q and (3) applies for type u.

Considering now the associated simple 3–covering we note that each arc in the base
between branch points has a preimage, which consists of either

(i) a single arc containing both ramification points, or

(ii) a cycle containing both ramification points and a residual arc,
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depending on whether the local monodromies with respect to a base point on the arc
yield two different or two equal transpositions.

In fact since every branch point corresponds to a transposition in monodromy, the
product of two can only be a 3–cycle or trivial in case of a simple branched cover of
degree 3.

Since in case (ii) the half twist on the arc lifts to a diffeomorphism of the 3–covering
and in case (i) only the cube of the half twist does, we have the following implications:

case (1) for X0 H) case (ii) for Y0

case (2) for X0 H) case (ii) for Y0 (If the cube and the square lift,
then so does the half twist itself.)

case (3) for X0 H) case (i) for Y0

In particular only the arcs ui belong to the first case, while all others, of types
a; b; c; d;p; q; s , belong to the second case.

For the following discussion we need cycles on Y0 and their intersection pairings. We
denote by zv the cycle in the preimage of an arc v in the second class.

Lemma 4.2 For the Z=2–valued intersection pairing h ; i of cycles on Y0 ,

hzv1; zv2i �2 #.v1\ v2/;

if v1 ¤ v2 and v1; v2 2 fai ; bi ; c{ ; d{ ;pj ; qj ; sg.

Proof It suffices to prove that there is a bijection of points of zv1\ zv2 with points of
v1\ v2 given by the restriction of the projection map.

Each branch point has two preimages, a ramification point and a point, where the
map is unramified, but it is always the ramification point which belongs to a cycle in
the preimage of any arc from that branch point. A pair of cycles zv1; zv2 meets in the
ramification point if v1; v2 meet in the branch point. Hence two arcs share a branch
point if and only if they share the corresponding ramification point.

All ordinary points have three preimages. But a cycle in the preimage of an arc contains
either none or two of those. Hence either one or two of the preimages of an intersection
between two arcs are shared by their corresponding cycles on Y0 .

Observe that the only pairs of arcs which meet in a point which is not a branch point
are s and one of a1; d1;p1; q1 .

First we consider the four local monodromies with respect to a base point at the
intersection of s and p1 along their segments. These monodromies are identical if and
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only if the cycles zs and zp1 meet in two points. If so, we could conclude by isotopy
that the two monodromies associated to u0 must be the same. Since on the contrary u0

belongs to class i), we have proved that #zs\ zp1 D 1.

For s and a1 we have the same argument and we conclude for s and q1 resp. d1 by
symmetry.

Lemma 4.3 A basis of H1.Y;Z=2/ is given by

za3; : : : ; za2b�1; zp2b; zc2b�1; : : : ; zc1; zs; zb1; : : : ; zb2d�1; zq2d ; zd2d�1; : : : ; zd2:

Proof From the previous lemma we can deduce that the intersection matrix for
the given elements is tridiagonal with diagonal entries 0 and entries in the secondary
diagonals all equal to 1. Hence the intersection form on these elements is nondegenerate
and thus the elements are linearly independent.

On the other hand by the Riemann–Hurwitz formula their number

4bC 4d � 4D 2b� 3C 1C 2b� 1C 1C 2d � 1C 1C 2d � 2

equals the dimension of H1.Y;Z=2/ since

e.Y0/D 3 � 2� 4b� 4d

H) b1.Y0/D 2� e D 4bC 4d � 4:

Lemma 4.4 There is a quadratic form q on H1 such that

(1) q.w/D 1 for all elements of the basis given in Lemma 4.3,

(2) the intersection pairing coincides with the induced symmetric form:

hzv1; zv2i D hzv1; zv2iq WD q.zv1C zv2/Cq.zv1/Cq.zv2/:

Proof Obviously the quadratic form associated with the matrix Q meets both require-
ments, if the diagonal element are given by Qii D 1 and the off-diagonal element are
given by Qij D 0 if i > j and Qij D hzvi ; zvj i if i < j .

We consider the subgroup zH of the braid group generated by the braid monodromy
group and by the half twists on the arcs pj ; qj .

Lemma 4.5 All elements of zH considered as isotopy classes of homeomorphisms of
.F0; �j0/ can be lifted to isotopy classes of homeomorphisms of Y .
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Proof An element is liftable if and only if its induced map on the natural homomor-
phism is the identity. Since elements of the braid monodromy group stabilise the natural
homomorphism to S4 , they stabilise also its composition with S4!S3 .

Half-twists on arcs pi and qi do not stabilise the natural homomorphism to S4 ,
but they exchange disjoint transpositions. However such pairs are identified under
S4!S3 , hence also the additional elements lift.

We consider next the action of � via the mapping class group of Y on the first homology
of Y with Z=2 coefficients preserving the natural symplectic form.

Note that the preimage in Y of some arc in F0 contains a simple closed curve if and
only if the half-twist on that arc lifts to Y .

Lemma 4.6 The image of zH in Sp H1.Y IZ=2/ is generated by the symplectic
transvection on all the classes of H1 which are represented by simple closed curves
mapping to the arcs a; b; c; d; q;p; s .

Proof Since Y ! F is a simple triple cover, any arc either lifts to an arc in Y or
the union of an arc with a simple closed curve. In the first case the third power of the
corresponding half twist lifts, but its lift is the half twist on the preimage and therefore
isotopic to the identity.

In the second case the corresponding half twist lifts to the product of the half twist on
the arc and a Dehn twist on the circle. The former is isotopic to the identity but the
latter acts by a symplectic transvection by the class of the circle.

Hence it suffices to take all transvection associate to circles in the lifts of the arcs
needed to generated � .

Lemma 4.7 If q is a quadratic form on a Z=2–vector space such that h ; iq is the
corresponding symmetric bilinear form, then q.w/D 1 implies q.Twz/�2 q.z/.

Proof By assumption either hw; ziq or hw; ziqCq.w/ is even, hence

q.Twz/�2 q
�
zChw; ziqw

�
�2 q.z/Cq

�
hw; ziqw

�
C
�
z; hw; ziqw

�
�2 q.z/Chw; ziq

�
q.w/Chw; ziq

�
�2 q.z/:

Lemma 4.8 If q.w/�2 0 and hw; ziq �2 1, then q.Twz/�2 q.z/C 1.

Proof By the same computation as above but with hw; ziq and hw; ziq C q.w/
both odd.
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Proposition 4.9 The transvections associated to q2b and p2d are not conjugate under
the group � generated by the transvections on the elements ai ; bi ; ci ; di ; s .

Proof We work with the basis of H1 given in Lemma 4.3

za3; za4; : : : ; za2b�1; zp2b; zc2b�1; : : : ; zc2; zc1; zs; zb1; zb2; : : : ; zb2d�1; zq2d ; zd2d�1; : : : ; zd3; zd2

and the quadratic form qW H1! Z=2 of Lemma 4.4, which is nontrivial on all basis
elements.

By straightforward computation by looking at the intersection number, we get for the
remaining elements a1; a2; d1 :

za1 D za3Cza5C � � �C za2b�1Czc2b�1C � � �C zc3Czc1

za2 D za4Cza6C � � �C za2b�2C zp2bCzc2b�2C � � �C zc4Czc2Czs

C zb2C
zb4C � � �C

zb2d�2C zq2d C
zd2d�2C � � �C

zd4C
zd2

zd1 D
zb1C

zb3C � � �C
zb2d�1C

zd2d�1C � � �C
zd5C

zd3

q.a1/D 1; q.a2/D 0; q.d1/D 1

Let us denote by ıp the element of the dual basis, which evaluates nontrivial on p2b

and let us introduce a function

�W H1.Y;Z=2/! Z=2; x 7! ıp.x/Cq.x/:

Next we note that this function is invariant under the action of � , since it is under the
transvections associated to any one of the elements w given in the statement of this
proposition:

�.Twx//D ıp.Twx/Cq.Twx/

D ıp.x/Chx; wiıp.w/Cq.x/Cq
�
hx; wiw

�
C
�
x; hx; wiw

�
D ıp.x/Cq.x/Chx; wi

�
ıp.w/Cq.w/Chx; wi

�
D �.x/

The product on the right in the second but last step has factors of either parity, since
ıp.w/Cq.w/D 1 due to

ıp.w/D

(
1 for w D a2;

0 else;
q.w/D

(
0 for w D a2;

1 else:

Since �.q/D q.q/C ıp.q/D 1C 0D 1 and �.p/D q.p/C ıp.p/D 1C 1�2 0 the
two elements q;p are not contained in the same � –orbit.
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394 Fabrizio Catanese, Michael Lönne and Bronislaw Wajnryb

Proposition 4.10 No full twist on any arc pi is conjugate in the braid monodromy
group to a full twist on any arc qj .

Proof Suppose to the contrary that there is a pair pi ; qj such that the corresponding
full twist are conjugate under some ˇ from the braid monodromy group.

Then ˇ maps pi to qj or vice versa. In particular also the half-twists on pi and qj

are conjugate under ˇ in the braid monodromy group.

But then the transvections associated to p and q are conjugate under the symplectic
transformation associated to ˇ . That is in contradiction to what we proved earlier, so
our claim must be true.
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(S Akbulut, D Auroux, T Önder, editors), Int. Press, Somerville, MA (2010) 58–98
MR2655304

[11] F Catanese, B Wajnryb, The 3–cuspidal quartic and braid monodromy of degree 4
coverings, from: “Projective varieties with unexpected properties”, (C Ciliberto, A V
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