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Galois actions on homotopy groups of algebraic varieties

JONATHAN P PRIDHAM

We study the Galois actions on the £—adic schematic and Artin—-Mazur homotopy
groups of algebraic varieties. For proper varieties of good reduction over a local
field K, we show that the £—adic schematic homotopy groups are mixed represen-
tations explicitly determined by the Galois action on cohomology of Weil sheaves,
whenever £ is not equal to the residue characteristic p of K. For quasiprojective
varieties of good reduction, there is a similar characterisation involving the Gysin
spectral sequence. When £ = p, a slightly weaker result is proved by comparing the
crystalline and p—adic schematic homotopy types. Under favourable conditions, a
comparison theorem transfers all these descriptions to the Artin—-Mazur homotopy
groups 7'(X ) ®5 Q.

Introduction

In [2], Artin and Mazur introduced the étale homotopy type of an algebraic variety. This
gives rise to étale homotopy groups n,é‘(X , X); these are pro-finite groups, abelian for
n>2,and ni’t(X , X) is the usual étale fundamental group. In [49, Section 3.5.3], Toén
discussed an approach for defining £—adic schematic homotopy types, giving £—adic
schematic homotopy groups @, (X, X); these are (pro-finite-dimensional) Q¢ —vector
spaces when n > 2. In [33], Olsson introduced a crystalline schematic homotopy type,
and established a comparison theorem with the p—adic schematic homotopy type.

Thus, given a variety X defined over a number field K, there are many notions of
homotopy group:

e for each embedding K < C, both classical and schematic homotopy groups of
the topological space X¢;

¢ the étale homotopy groups of X z;

e the {—adic schematic homotopy groups of X z;

* over localisations K, of K, the crystalline schematic homotopy groups of Xk, .
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However, despite their long heritage, very little was known even about the relation
between étale and classical homotopy groups, unless the variety is simply connected.

The étale and £—adic homotopy types carry natural Galois actions, and the main aim of
this paper is to study their structure. In many respects, the analogous question for X¢
has already been addressed, with Katzarkov, Pantev and Toén [22] and the author [34]
describing mixed Hodge structures on the classical and real schematic homotopy types.

In [37], the author introduced a new approach to studying nonabelian cohomology and
schematic homotopy types of topological spaces. Its primary application was to transfer
cohomological data (in particular mixed Hodge structures) to give information about
homotopy groups. The bulk of this paper is concerned with adapting those techniques
to pro-simplicial sets. This allows us to study Artin—-Mazur homotopy types of algebraic
varieties, and to translate Lafforgue’s Theorem and Deligne’s Weil Il theorems into
statements about homotopy types. We thus establish arithmetic analogues of the results
of [34], with Galois actions replacing mixed Hodge structures.

The main comparison results are Proposition 1.39 (showing when étale homotopy
groups are pro-finite completions of classical homotopy groups), Theorem 3.40 (de-
scribing £—adic schematic homotopy groups in terms of étale homotopy groups), and
Proposition 7.26 (comparing p—adic and crystalline homotopy groups).

If X is smooth or proper and normal, then Corollary 6.7 shows that the Galois actions
on the £—adic schematic homotopy groups are mixed, with Remark 6.9 indicating when
the same is true for étale homotopy groups. Corollaries 6.11 and 6.16 then show how
to determine £—adic schematic homotopy groups of smooth varieties over finite fields
as Galois representations, by recovering them from cohomology groups of smooth Weil
sheaves, thereby extending the author’s paper [38] from fundamental groups to higher
homotopy groups, and indeed to the whole homotopy type. Corollaries 7.4 and 7.36 give
similar results for £—adic and p-adic homotopy groups of varieties over local fields.

The structure of the paper is as follows.

In Section 1, we recall standard definitions of pro-finite homotopy types and homotopy
groups, and then establish some fundamental results. Proposition 1.29 shows how
Kan’s loop group can be used to construct the pro-finite completion X ofa space X,
and Proposition 1.39 describes homotopy groups of X.

Section 2 reviews the pro-algebraic homotopy types of [37], with the formulation of
multipointed pro-algebraic homotopy types from [34], together with some new material
on hypercohomology.

We adapt these results in Section 3 to define nonabelian cohomology of a variety
with coefficients in a simplicial algebraic group over Q. The machinery developed
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in [37] applies to give a pro—Qy—algebraic homotopy type, which is a nonnilpotent
generalisation of the QQy—homotopy type of Weil II (see Deligne [5]). Its homotopy
groups are {—adic schematic homotopy groups, and Theorem 3.40 gives conditions
for relating these to étale homotopy groups. Explicitly, if w1 X is algebraically good
(see Definition 3.35), and the higher homotopy groups have finite rank, then the higher
homotopy groups of the pro—Qy—algebraic homotopy type are just Jr,e;tX ®7 Q. For
complex varieties, we also compare the pro-algebraic homotopy types associated to the
étale and analytic topologies.

Section 4 contains technical results showing how to extend the machinery of Section 3
to relative and filtered homotopy types. The former facilitate p—adic Hodge theory,
while the latter are developed in order to study quasiprojective varieties. We also
explore what it means for a pro-discrete group to act algebraically on a homotopy type.
In Section 5, we investigate properties of homotopy types endowed with algebraic
Galois actions.

In Section 6, the techniques of [38] for studying Galois actions on algebraic groups then
extend the finite characteristic results of the author in [35] to nonnilpotent and higher pro—
Qg —algebraic homotopy groups. The results are similar to [34], substituting Frobenius
actions for Hodge structures. Over finite fields, Theorem 6.10 uses Lafforgue’s Theorem
and Deligne’s Weil Il theorems to show that the pro—Q,—algebraic homotopy type of
a smooth projective variety is formal — this means that it can be recovered from cup
products on cohomology of local systems. For quasiprojective varieties, Corollary 6.15
establishes a related property we call quasiformality, which is analogous to Morgan’s
description of the rational homotopy type [31] in terms of the Leray spectral sequence.

Section 7 then addresses the same question, but over local fields. In unequal characteris-
tic, smooth specialisation suffices to adapt results from finite characteristic for varieties
with good reduction. In equal characteristic, we show how pro—Q,—algebraic homotopy
types relate to the framework of p-adic Hodge theory. Proposition 7.26 is a reworking
of Olsson’s nonabelian p—adic Hodge theory, and this has various consequences for
Galois actions on Artin-Mazur homotopy types (Theorems 7.28-7.35). Explicitly, the
homotopy type becomes formal as a Galois representation only after tensoring with the
ring BZ. . of Frobenius-invariant periods, which means that the Hodge filtration is the
only really new structure on the relative Malcev homotopy type (Remarks 7.37(2)).
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1 Pro-finite homotopy types

Definition 1.1 Let S be the category of simplicial sets, and take sGpd to consist
of those simplicial objects in the category of groupoids whose spaces of objects are
discrete (ie sets, rather than simplicial sets).

Let Top denote the category of compactly generated Hausdorff topological spaces.

Definition 1.2 Given G € sGpd, we define 79G to be the groupoid with objects
Ob G, and morphisms (7oG)(x, y) = oG (x, »).

Definition 1.3 A map f: X — Y in Top is said to be a weak equivalence if it gives
an isomorphism moX — oY on path components, and for all x € X, the maps
Tn(f): (X, x) = m, (Y, fx) are all isomorphisms.

We give S the model structure of Goerss and Jardine [11, Theorem V.7.6]; in particular,
amap f: X — Y in S is said to be a weak equivalence if the map | f|: | X| — |Y|
of topological spaces is so, where |- | is the realisation functor of [11, Section 1.2].
Likewise, for x € Xy we write 7,(X, x) := m,(| X, x).

A map f: G — H in sGpd is a weak equivalence if the map 710G — moH is an
equivalence, and for all objects x € Ob G, the maps 7,(G(x, x)) = 7, (H(fx, fXx))
are all isomorphisms.

For each of these categories, we define the corresponding homotopy categories Ho(S),

Ho(Top), Ho(sGpd) by localising at weak equivalences.

Note that there is a functor from Top to S which sends X to the simplicial set
Sing(X), = Homryp(|A"], X).

This is right adjoint to realisation, and these functors are a pair of Quillen equivalences,
so become quasi-inverse on the corresponding homotopy categories. From now on, we
will thus restrict our attention to simplicial sets.

Definition 1.4 Given G € sGpd, define the category Sg of G—spaces to consist
of simplicial representations of G. Explicitly, X € Sg consists of X(a) € S for
each a € Ob G, together with maps G(a, b) x X (b) — X(a), satisfying the obvious
associativity and unit axioms.
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Definition 1.5 Recall from [11, Section V.4] that for G € sGpd, the G—space WG
is defined by

W)= []  Gulx.yn) X Gt (W2 Y1) X ... x G(1. yo)
YnsesY0EOD G

with operations

(0ign.0i—18n—1,-- - i <n,
i(gn> gn—1,---,80) = (008n—i)&n—i—1>&n—i—2--- - »&0)
(0ngn-On—18n—1----.01&1) i =n,

0i(gn> &n—1,--->80) = (0i&n,0i—18&n—1:- - -»008n—i>1d, En—i—1,-- -, &0)>
and for h € Gn(Z,x) and (g}‘h gn—l, e ’gO) € (WG)(X)7

h(gn, 8&n—1,---, gO) = (hgl’h 8&n—1,--- 7g0)'
Note that WG (x) is contractible for each x € Ob G.

Definition 1.6 As in Goerss and Jardine [11, Chapter V.7], there is a classifying space
functor W: sGpd — S, given by WG = G\WG, the coinvariants of the G —action.
This has a left adjoint G: S — sGpd, Dwyer and Kan’s loop groupoid functor [7], and
these form a pair of Quillen equivalences, so give equivalences Ho(S) ~Ho(sGpd). The
objects of G(X) are Xy, and for any x, y € X, the geometric realisation |G(X)(x, y)|
is weakly equivalent to the space of paths from x to y in | X|. These functors have the
additional properties that oG (X) = 7| X | (the fundamental groupoid), ¢ (]| WG|) =
710G, m(G(X)(x,x)) = my+1(|X|, x) and 7,1 (WG|, x) = 71,(G(x, x)). This
allows us to study simplicial groupoids instead of topological spaces.

Definition 1.7 If X €S, then a local system is just a representation of the groupoid
wr X, ie a functor 7y X' — Gp from the fundamental groupoid to the category of
groups. As in [11, Section VI.5], homotopy groups form a local system , X', whose
stalk at x is 7, (X, X).

1.1 Pro-simplicial L -groupoids
Definition 1.8 Given a set L of primes, we say that an L—group is a finite group G for

which only primes in L divide its order. We define an L—groupoid to be a groupoid H
for which H(x, x) is an L—group for all x € Ob H.
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Definition 1.9 Given a category C, recall that the category pro(C) of pro-objects in C
has objects consisting of filtered inverse systems {4y} in C, with

Homy,oc) ({4}, {Bg}) = limlim Home (A, Bp).
B «
Remark 1.10 A discrete topological space is just a set. Given a pro-set { Xy}, we can
thus take the limit 1<i_111a Xy in the category of topological spaces. This functor gives a
faithful embedding of pro(Set) into topological spaces, so Liila X is discrete if and
only if {X,} lies in the essential image of Set — pro(Set). We will thus refer to the
essential image of Set — pro(Set) as the discrete objects.

In fact, pro-sets endow a topological structure which cannot be detected by weak
equivalences, which is why shape theory is modelled using the category pro(S), as in
Isaksen [19].

Definition 1.11 Given a groupoid G and a set L of primes, define Gt € pro(Gpd)
by requiring that Gt be the completion of G with respect to all L—groupoids H .
In other words, G"L is an inverse system of L—groupoids, with a canonical map
G — G"L inducing isomorphisms

Hom(G"t, H) — Hom(G, H)
for all L—groupoids H .

In particular, Ob G2 = Ob G and G"L(x, x) is the pro—L completion of the group
G(x, x) (in the sense of Friedlander [10, Section 6]). If L is the set of all primes, we
write G := G L, so @(x, x) is the pro-finite completion of G(x, x) (in the sense of
Serre [47, Section 1]).

Note that G"L is a pro—L—groupoid in the sense of Definition 1.9. However, beware
that a pro-groupoid can be isomorphic to a pro— L—groupoid without actually being an
inverse system of L—groupoids, since {I'y}yer = {T'a}a>a, forany ag € 1.

Definition 1.12 Say that a simplicial groupoid I' is a simplicial L—groupoid if T'; is
an L—groupoid for all 7. Denote the category of such groupoids by SGde.

Definition 1.13 Given a groupoid I', define a disconnected normal subgroupoid
K <T to consist of subgroups K(x) <T'(x,x) forall xeObT", with a K(x)a~'e K(y)
forall a e I'(y, x).
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Note that disconnected normal subgroupoids K <1 I' are in one-to-one correspondence
with isomorphism classes of surjections f: I' — H for which Ob f: ObT" — Ob H
is an isomorphism. The equivalence is given by setting H(x, y) = '(x, y)/K(y) =
K(x)\I'(x, ), and conversely by setting K(x) :=ker(f: I'(x,x) = H(fx, fx)).

Definition 1.14 Given I' € sGpd, define a simplicial disconnected normal subgroupoid
K < T to consist of disconnected normal subgroupoids K, <1 ', closed under the
operations 0;, 0;j .

Definition 1.15 Given I" € sGpd, define T~ € pro(sGpdL) to be the inverse sys-
tem {I'/K}g, where K ranges over the poset of all simplicial disconnected normal
subgroupoids K <1 I' for which '/ K is a simplicial L—groupoid.

Given I' = {I'y}o € pro(sGpd), define 'L € pro(sGpdL) by

I =lim )L,
lim

o

where the limit is taken in pro(sGpdZ). This corresponds to saying that L is the
pro-object {I'y /Ko } (4, k,,) indexed by pairs (a, Ky), for Ky <1 Ty .
Lemma 1.16 For I" € pro(sGpd) and A € pro(sGpdX), the canonical map

Hompm(stdL)(F/\L, A) = Homyyo(spa)y (T, 4)
is an isomorphism.
Proof By the definition of morphisms in pro-categories, it suffices to prove this
when 4 € sGpdL. Then A is cofinite in both pro(sGpdZ) and pro(sGpd) (ie

Hom(l(i_r_na [y, A) = l_ir_>l’la Hom([y, A) for filtered inverse systems {[y}q), SO we
may also assume that I € sGpd.

Now, for any morphism f: I' — A, the image H is a simplicial L—groupoid of the
form H =T'/K, for K < T a disconnected normal subgroupoid. Therefore

HOmstd(F, A) = lir_)nHomstd (F/K, A) = Hompro(std) (F/\L, A)’
K

as required. O

Lemma 1.17 For I" € pro(sGpd), the pro—L —groupoid (I'*L), is just the pro—L
completion of T',.
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Proof Given A4 € Gde, define A% (not to be confused with AM) to be the
simplicial groupoid on objects Ob A with

A (x, p); = A(x, y)Bn,

with 9;: (A%n); — (A2n);_; coming from 87: Ai™! — A’  and oj coming from
o/: ATt1 5 Al Then A% is clearly an L—groupoid, and has the key property that

Hom,gpa(T, A%") = Homgpa (T, A)
forall I'.
Taking colimits extends this to all I € pro(sGpd), and then
Any ~
Hompro(stdL) (F/\L ) A ) = HomprO(Gde) ((F/\L )l’l ) A) .
but the left-hand side is just
Hompro(std) (F’ AA”) = Hompro(Gpd) (Fn s A) ’
so (I'AL), is the pro— L completion of Ty, |
Definition 1.18 Given X = {X,} € pro(S), define the category of local systems on X

to be the direct limit (over « ) of the categories of local systems on X (in the sense of
Definition 1.7).

Remark 1.19 Our motivation for working with pro(S) comes from [10, Definition
4.4], which associates an object X € pro(S) to each locally Noetherian simplicial
scheme X . Finite local systems on X then correspond to finite locally constant étale
sheaves on X .

Definition 1.20 Given a pro-simplicial set X', and amap 7y X — I" to a pro-groupoid
with discrete objects, define the covering system X by
X(a) := X xpr B(T |a) € pro(S)

for @ € Ob I, noting this is equipped with a natural associative action I'(a, b) x X (a)—
X (b) in pro(S). Here, B is the nerve functor (equal to W in this context), and T" | a
denotes the slice category of morphisms in I" with target a.

Definition 1.21 Given 7y X — T as above, with a continuous representation S of I'
in pro-sets (ie S(a) € pro(Set) for a € ObI", equipped with an associative action
I'(a,b) x S(a) — S(b) of pro-sets), define the cosimplicial set C*( X, .S) by

c” (X, S) = Homl",pro(Set) ()?n ’ S)
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From now on, local systems will be abelian unless stated otherwise.

Definition 1.22 Given X = {X,} € pro(S) and a local system M on Xpg define
cohomology groups by

H*(X. M) := lim H* (X M),

o

where H* (X4, —) is cohomology with local coefficients, and we also write M for the
pullbacks of M to Xy and to X . Given G € pro(sGpd), set H*(G, —) :=H*(WG, —).

Note that the cosimplicial complex C*(X, M) extends [11, Section VI.4] to pro-spaces,
and that H*(X, M) = H*(C*(X, M)), the cohomology groups with local coefficients.

Definition 1.23 Given X € pro(S) with X discrete, and an inverse system M =
{M;}ien of local systems on X , define the continuous cohomology groups H* (X, M)
as follows. First form the cosimplicial complex C*(X, M) := l(i_r_nC' (X, M;), for C*
as in Definition 1.21, then set

H*(X, M) :=H*"(C*(X, M)),
noting that this agrees with Definition 1.22 when M; = M for all i .
Remark 1.24 Observe that there is a short exact sequence
0— 1(1311H"—1 (X. M;) — H"(X, M) — limH" (X, M;) — 0,

so H" (X, M) =~ 1<£1 H" (X, M;) whenever the inverse system {H"~1 (X, M;)}; satisfies
the Mittag—Leffler condition (for instance if the groups are finite).

When working with the étale homotopy type X, we will usually apply this construction
to Zg—local systems {M; = M/{'};. In that case, the exact sequence above becomes
the comparison between étale cohomology and Jannsen’s continuous étale cohomology
(see Example 3.18 for details).

Lemma 1.25 Given X € S and an inverse system M = {M;};eN of local systems
on X, there is an isomorphism

* . ) ~ *
H (X,l(ll_nM,) ~H*(X,M).
Proof As in Definition 1.22, H* (X, l(lr_n M;) is cohomology of the complex
lim C* (X, Mj) = C*(X. lim M;),
n ] . —_— 1 . — 1 . —_— n
but C (X,I(E1M,) = Homge (X5, h(Ln M;) = h(r_nHomSet(X,,, M;))=C"(X, M),

as required. |
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We will occasionally refer to groups and groupoids as “discrete”, to distinguish them
from topological (or simplicial) groups and groupoids. As in Remark 1.10, we regard a
pro-groupoid as a kind of topological groupoid, so “discrete” will indicate that both
simplicial and pro structures are trivial.

Definition 1.26 Given a set L of primes, say that a pro-groupoid G with discrete
object set is (L, n)—good if for all G —representations M in abelian L—groups, the
canonical map

dar: H(GMN, M) — H (G, M)

is an isomorphism for all i < n and an inclusion for i =n + 1. When L is the set of
all primes, we say that G is n—good. Observe that any inverse system of (L, n)-good
groupoids is (L, n)—good. Say that G is L—good if itis (L, n)—good for all n.

Lemma 1.27 Free groups are L —good for all L.

Proof Let F = F(X) be a free group generated by a set X, and let " := F/L. By
the argument of [47, I, Section 2.6, Exercise 1(a)], it suffices to show that H*(T", M') —
H*(F, M) is surjective for all discrete I'—representations M in abelian L—groups.
Since F is free, H*(F, M) = 0 for n > 1, so it only remains to establish surjectivity
forn=1.

This amounts to showing that every derivation o: F — M factors through I'. The
derivation gives rise to a map 8: F — M x G, for some finite L —torsion quotient G
of F. Since M x G is an L—group, B factors through I". O

Examples 1.28 (1) L-groups are L—good.

2 If 1 > F - T — Il — 1 is an exact sequence of groups, with F and II
L—-good, FAL — 'L injective, and H?(F, M) finite for all finite L —torsion
I'-modules, then I" is L—-good.

(3) All finitely generated nilpotent groups are L—good for all L.

(4) The fundamental group of a compact Riemann surface is L —good for all L.

Proof (2) This is essentially [47, I, Section 2.6, Exercise 2(c)].
(3) Express I' as a successive extension of finite groups and Z, then apply (2).

(4) Choose a smooth complex projective curve C of genus g > 0, with 71 (C) =T.

It suffices to show that for all finite L—torsion I'*L —representations M , the map
H*(T", M) — H;(C, M)

t

is an isomorphism.
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Letting C be the universal étale pro—L cover of C, this is equlvalent (by the Serre
spectral sequence) to showing that H* (C Fp) =T, forall pe L. C is the inverse
limit all finite L—covers C' — C, glvmg
Hét(é’ Fp) = Lﬂ] Hét(C/, Fp).
C/
which can only be nonzero for i =0, 1, 2.
Note that JTl(C )= ker(F — I'AL). Thus the pro—L completion 71 (C )ab Loof the

abelianisation of 7y (C ) must be 0, or we would have a larger pro— L quotient of r
than T*L . Hence Hét(C,IFp) =0 forall peL.

We now adapt the proof of Schmidt [45, Proposition 15]. Since any curve C’ has a
cover C” of degree p, with the map H2 (C’ Fp) — H2 (C” Fp) thus being 0, we
deduce that H (C Fp) =0, which completes the proof. m|

Proposition 1.29 For any X € S, the canonical morphism
X > W(GX))

in pro(S) induces an isomorphism (7 s X))t — s W (G(X)L) of pro-groupoids, and
has the property that for all finite abelian (7 X )t —representations M in L—groups,
the canonical map

H*(W(G(X)"), M) — H*(X, M)
is an isomorphism.
Proof The statement about fundamental groupoids is immediate, since completion
commutes with taking quotients. Now, observe that
H"(W(G(X)"t), M) = H"(G(X)"E, M),
tautologically from Definition 1.22.

It thus suffices to show that the simplicial groupoid G(X) is L-good, in the sense
that H*(G(X), M) = H*(G(X)"t, M) for all oG (X)L —representations in abelian
L—groups M . This is equivalent to showing that for all x € Xy, the simplicial groups
G(X)(x,x) are L—good. This will follow if the groups G,(x,x) are all L—good,
because there is a spectral sequence

HY(Gp, M) = HPT4(G, M).

Since the groups G, (x, x) are all free, this then follows from Lemma 1.27. O
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Given a property P of groups, we will say that a groupoid I" locally satisfies P if the
groups ['(x, x) satisfy P, forall x e ObT.

Definition 1.30 Define pro(S)s to be the full subcategory of pro(S) consisting of
pro-spaces X for which X is discrete (as in Remark 1.10, so Xy is a set, not just a
pro-set).

Define SL to be the full subcategory of pro(S)s consisting of spaces X for which
the groups 7, (X, x) are all pro—L—groups. If L is the set of all primes, we write
S:=SA L,

Definition 1.31 A morphism f: X — Y in pro(S); is said to be an Artin-Mazur weak
equivalence if mg X — moY is an isomorphism, and the maps 7, (X, x) — 7, (Y, fx)
are pro-isomorphisms for all # > 1 and all x € Xj.

Define Ho(pro(S)s) and Ho(S”Z) by formally inverting all Artin-Mazur weak equiv-
alences.

In [19], Isaksen established a model structure on pro(S) with the right properties for
modelling pro-homotopy types. In particular, [19, Corollary 7.5] shows that a morphism
in pro(S)s is a weak equivalence in pro(S) if and only if it is an Artin—-Mazur weak
equivalence.

Proposition 1.32 Fix N €[1,00], and let f: X — Y be a morphism in pro(S)s such
that (ny X)" — (Y )L is a pro-equivalence of pro-groupoids, with the property
that for all abelian (nyY )L —representations M in L—groups, the map

H'(f): H"(Y,M) - H" (X, M)

is an isomorphism for all n < N and injective forn = N + 1. Then for all Z € S"L
with m; Z =0 fori > N (resp.i > N + 1), the map

S Hompgg(pro(s)5) (Vs Z) — Homggo(pro(s) ;) (Xs Z)
is an isomorphism (resp. an inclusion).
Proof First observe that if M is a ¢ (Y)"L —representation in abelian pro—L groups,

we can express it as an inverse system { My} of 7y (Y )-representations in L—groups.
Then the complex C*(Y, M) of M —cochains is given by

C*(Y. M) = RIm C*(Y, My,).

o
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This implies that for all such M, the map H*( f): H*(Y, M) — H"(X, M) is an
isomorphism for all » < N, and injective for n = N 4 1.

Now consider the Moore—Postnikov tower [11, Definition VI.3.4] P,Z of a fibrant
replacement for Z. The pro-equivalence on 7y gives the required isomorphism if
Z = P Z, and we can proceed by induction.

Assume that we have a homotopy class of maps X — P, Z, for n < N . The obstruction
to lifting this to a homotopy class of maps X — P,4Z lies in H*"2(X, m,4,Z),
and if nonempty, the latter homotopy class is a principal H*T1(X, 7,1 Z)-space. As
Tpi1Z is a pro— L—group, the isomorphism H”T1(Y, —) = H*T1(X, —) and the in-
clusion H*T2(Y, —) — H"T2(X, —) (resp. the inclusion H*+1(Y, —) — H"*1(X, —))
mean that the pro-homotopy class of lifts ¥ — P, 41 Z is similarly determined (resp.
embeds into the class of lifts X — P, 2 ), completing the inductive step.

Since the map Z — Py Z (resp. Z — Py +1Z) is an Artin—Mazur weak equivalence,
this completes the proof for N < oco. In the case N = oo, the analysis above gives an
isomorphism

1 HomHO(pro(S),;)(Y, Llr_n PyZ) — HomHo(pro(S)s)(Xv 1<an PnZ);
n
since the canonical map Z — Lﬂln P, Z is an Artin—Mazur weak equivalence, this
completes the proof. a

Corollary 1.33 The inclusion functor S — pro(S)s has a homotopy left adjoint,
which we denote by X ~> XL . This has the property that for X € S, X" ~ X .

Proof Proposition 1.29 and Proposition 1.32 imply that for X € S, the object XL :=
W (G(X)"t) € SN has the required properties. Given an inverse system X = { Xy},
set XM = lim(Xo)"E o

Remarks 1.34 Comparing with [10, Theorem 6.4 and Corollary 6.5], we see that this
gives a generalisation of Artin and Mazur’s pro— L homotopy type [2] to unpointed
spaces. Their context for pro-homotopy theory was formulated slightly differently,
in terms of pro(Ho(S)), which is not very well-behaved. See [19] for details of the
comparison.

Since this paper was first written, an alternative pro-finite completion functor has been
developed by Quick [42]. However, the category of pro-finite homotopy types in [42]
is larger than ours, because for its pro-spaces X, the pro-set mo X is pro-finite rather
than discrete. The pro-finite completion functor thus differs from ours in that it also
takes the pro-finite completion of the set o X .
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An important feature of [42] is the existence of a model structure for pro-finite spaces,
and this raises the question of whether there is a model structure on pro(stdL ), and
how the respective model structures compare. The most likely solution is that there
is a fibrantly cogenerated model structure on pro(stdé), where stdé is the full
subcategory of stdL consisting of simplicial groupoids with finite object set. For
this model structure, the cogenerating fibrations should be morphisms in stdé which
are fibrations in sGpd, possibly with some additional Artinian condition analogous to
[40, Theorem 2.14]. The right adjoint pro(stdé) — pro(sGpd¥) should then induce
a fibrantly cogenerated structure on the latter, while the functor W from pro(stdJli—_)
to simplicial pro-finite sets should be a right Quillen equivalence when L is the set of
all primes.

1.2 Comparing homotopy groups

We now investigate when we can describe the homotopy groups of XL in terms of
the homotopy groups of X .

Lemma 1.35 If A is a finitely generated abelian group, then for n > 2, completion of
the Eilenberg—Mac Lane space is given by K(A,n)"t = K(A™,n).

Proof By Proposition 1.32, we need to show that the maps
H*(K(A™:,n), M) — H*(K(A,n), M)

are isomorphisms for all abelian L—groups M . By considering the spectral sequence
associated to a filtration, it suffices to consider only the cases M =1IF,, for p € L.

If A = A"x A", then K(4A,n) = K(A',n) x K(A",n), so H*(K(4,n),Fp) =
H*(K(A'.n),F,) @ H*(K(A"”,n),Fp). The structure theorem for finitely generated
abelian groups therefore allows us to assume that 4 = Z/q, for ¢ a prime power or 0.

Now, if ¢ is neither zero nor a power of p, then H"(K(A4,n),F,) = 0 for r > 0;
since A™L is a quotient of A, we also get H" (K(A"L,n),Fp) = 0. If ¢ = p°, then
A = A, making isomorphism automatic.

If g=0,then A =7, A" =[]yer Z¢, and H (K(Zy¢,n),Fp) = 0 for r > 0 and
£ # p. We need to show that

H*(K(Zp,n),F,) - H*(K(Z,n),Fp)

is an isomorphism, or equivalently that K(Z,n)"» = K(Z,,n). This follows from
[43, Theorem 1.5]. O
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Proposition 1.36 Take a morphism f: X — Y in pro(S)s such that (myX)"t —
(mpY )L is a pro-equivalence of pro-groupoids. Then the following are equivalent:

(1) For all abelian (7yY )L —representations M in L—groups, the map
H*(f): H*(Y,M) — H" (X, M)

is an isomorphism for all n < N and injective forn = N + 1.

(2) The map
T (f): n (X, x) = mn (YL, f)

is a pro-isomorphism for n < N and a pro-surjection forn = N + 1.

In particular, a pro-groupoid G with discrete object set is (L, N)—good if and only if
n((BG)*) =0

forall2<n<N.

Proof The key observation is that we have the isomorphism Homgyo(pro(s)s) (Y PrnZ) =
Homgygpro(s)s) (PnY, PnZ), which is deduced from the corresponding result for S.
Thus Proposition 1.32 implies that

PN(X") — Py(Y7E)
becomes an isomorphism in Ho(pro(S)s), while
PNy 1(X"E) = Py (Y7F)

is an epimorphism. Since isomorphisms in Ho(pro(S)s) are just Artin-Mazur weak
equivalences, this completes the “only if” part.

For the converse, note that the hypothesis is equivalent to saying that the homotopy
fibre F of f"L: X" — YL is N —connected, by looking at the long exact sequence
of homotopy groups. Thus H/(F, A) = 0 for all 0 < j < N and all abelian L—
groups A. For any 7, Y "L —representation M in abelian L—groups, the Leray spectral
sequence

H (Y H/ (F, M)) = HY (X, 71 M)

forces the maps H (YL, M) — H' T/ (XL, M) to be isomorphisms for i < N and
injective for i = N 4+ 1, as required.

The final statement is given by taking X = BG and Y = B(G"L). |
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Lemma 1.37 If f: X — Y is a morphism in pro(S)g for which the map
”n(f): T[n(X’ X) - ﬂn(Y’ fy)

is a pro-isomorphism for n < N and a pro-surjection for n = N + 1, then the map
nn(f) nn(XAL7 X) - nn(YAL, fy)

is a pro-isomorphism for n < N and a pro-surjection forn = N + 1.

Proof The proof of Proposition 1.36 adapts to show that for any 7 ¢Y -representation M,
the maps H!(Y, M) — H!(X, M) are isomorphisms for i < N and injective for
i = N + 1. Thus the hypotheses of Proposition 1.36 are satisfied, giving the required
results. O

Definition 1.38 Given a group-valued representation H of a groupoid I (ie a functor
from I to the category of groups), recall from [37, Definition 2.15] that the semidirect
product H I is a groupoid with objects Ob(H xI") =Ob(I") and has (H xI")(x, y) =
Hy xI'(x, ).

Proposition 1.39 Fix X € S. If 7,(X, x) is finitely generated for alln < N , and if
the image of (X, x) — Aut(m, (X, x) ® Fp) is L—torsion foralln < N, all p € L,
and all x € X, then there is an exact sequence

AN+1(XN x) — ay 41 ((Bmi (X, x))"E)

nN(X’X)AL _>7TN(XAL?X) —>7TN((BT[1(X’X))AL) -

= m(X X)) —— my (X x) ——— my (B (X, X)) —— 0.

Hence if in addition 7ty X is (L, N +1)—good (resp. (L, N)—good), then the natural
map

T (X)) — 700 (X F)
is a pro-isomorphism for all n < N (resp. a pro-isomorphism for all n < N and a
pro-surjection forn = N ).

Proof We adapt the argument of [37, Theorem 1.58]. Let {X ()}, be the Postnikov
tower for X'. We will prove the proposition inductively for the groups X (7). Thanks to
Lemma 1.37, we may replace X with X (/V), so may assume that the groups (X, x)
are finitely generated for all n. Write I" := 77 X .
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For n = 1, X(1) is weakly equivalent to By X, so (BryX)" ~ X(1)"t and
mn(X(1),x) =0 for all n > 2, making the exact sequence above immediate.

Now assume that X (n — 1) satisfies the inductive hypothesis, and consider the fibration
X(n) - X(n —1). This is determined up to homotopy by a k-invariant [11, Sec-
tion VI.5] k € H*T1(X(n — 1), m,(X)). Since m,(X) ® [Fp is a finite-dimensional
'L —representation for all p € L, the group A := m,(X)"L is an inverse limit of
finite T*L —representations. Now, the element

k e H"M N (X(n—1), A) @ H"TH (X (n — 1)L, A)

comes from a map
G(X(n—1)" - (N"'A[-n])x T,

where N ™! denotes the denormalisation functor [52, 8.4.4] from chain complexes to
simplicial complexes (the Dold—Kan correspondence).

Let L A be the chain complex with A concentrated in degrees n,n—1,and d: (LA), —
(L A),—; the identity, and define G to be the pullback of this map along the surjection
N7'LAXT — (N~!A[—n]) x T of simplicial locally pro-finite L —torsion groupoids.
This gives an extension

N7 Al —n]—> G — G(X(n—1))"L.
Applying W gives the fibration
WN Al —n] > WG — X(n— D"

in pro(S), corresponding to the k-invariant f*x € H*(X (n — ll’\L, A) for the map
f: X(n—1) — X(n— 1)L . This in turn gives a map X (n) — WG, compatible with
the fibrations.

The long exact sequence of homotopy applied to the map WG — X (n — 1)t shows
that 77, (WG, x) = mp (X (n—1)"L) for all m # n,n+ 1, and gives an exact sequence

0= Tyt 1(WG, X) = mpp1 (X (n— 1))
— A(X) > 1,(WG,x) = (X (n— 1)) = 0.

The inductive hypothesis shows that 7, (X(n — 1)"L) = m,,((Bm1 (X, x))"L) for
m > n+ 1, so we deduce that there is a long exact sequence

= (X (1), )N —— (WG, x) —= i ((Brry (X, X)) — -+

= (X (n), )N —— (WG, x) — m2((Bri (X, x))M) — 0.
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As WG e SML | it will therefore suffice to show that F: G(X (1))t — G is a weak

equivalence. We now apply the Hochschild—Serre spectral sequence, giving

H? (X (n— 1), HY(N " A[l —n], M)) = H? (G(X (n — D), HI(N ™" A[1 =], M)
= HPT9(G, M).

Similarly H?(X(n—1),HI(E(n),V)) = H?T4(X(n),V),

for all 'L —representations M in abelian L—groups, where E(n) is the fibre of

X(n)—> X(n-1).

Now, E(n) is a K(m,(X),n)-space, and WN ' A[l —n] is a K(A4,n)—space. By

Lemma 1.35, it follows that E(n) — W N ! A[1 —n] is pro— L completion, giving an

isomorphism of cohomology with coefficients in M . Thus F induces isomorphisms
on homology groups, hence must be a weak equivalence by Proposition 1.32.

Finally, if T is (L, m)—good, Proposition 1.36 shows that 7, ((BT')"t, x) = 0 for all
l<n<m. |

2 Review of pro-algebraic homotopy types

Here we give a summary of the results from [37; 34]. The motivation for these is
that they provide a framework to transfer information about local systems and their
cohomology to statements about homotopy types. Fix a field k£ of characteristic zero.

2.1 Pro-algebraic groupoids

Given a local system V of finite-dimensional k£ —vector spaces on a topological space
X, we can form the affine k—scheme Iso(Vy, V,) of isomorphisms of stalks, for each
pair of points x, y € X . These combine to form a kind of groupoid G whose objects
are the points of X . This is the motivating example of a pro-algebraic groupoid; in
this case it comes equipped with a canonical groupoid homomorphism 7 X — G (k).

For the general case, we now recall some definitions from [37, Sections 2.1-2.3].

Definition 2.1 Define a pro-algebraic groupoid G over a field k to consist of the
following data:

(1) A discrete set Ob(G).
(2) For all x, y € Ob(G), an affine scheme G(x, y) (possibly empty) over k.

(3) A groupoid structure on G, consisting of a multiplication morphism m: G(x, y)x
G(y,z) — G(x,z), identities Speck — G(x,x) and inverses G(x,y) —
G(y, x), satisfying associativity, identity and inverse axioms.
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Note that a pro-algebraic group is just a pro-algebraic groupoid on one object. We
say that a pro-algebraic groupoid is reductive (resp. pro-unipotent) if the pro-algebraic
groups G(x,x) are so for all x € Ob(G). An algebraic groupoid is a pro-algebraic
groupoid for which the G(x, y) are all of finite type.

If G is a pro-algebraic groupoid, let O(G(x, y)) denote the global sections of the
structure sheaf of G(x, y).

Remark 2.2 The terminology “pro-algebraic groupoid” follows the characterisation
of pro-algebraic groups in Deligne, Milne, Ogus and Shih [6, Chapter II]. A linear
algebraic group is an affine group scheme of finite type, and there is an equivalence of
categories between affine group schemes and pro-objects in linear algebraic groups. A
more accurate term for pro-algebraic groupoids would thus be “linear pro-algebraically
enriched groupoids”.

Definition 2.3 Given morphisms f, g: G — H of pro-algebraic groupoids, define a
natural isomorphism n between f and g to consist of morphisms

Nx: Speck — H(f(x), g(x))
for all x € Ob(G), such that the following diagram commutes, for all x, y € Ob(G):

Gy LN B ()

g(x,y)l l‘ﬂy

H(g(x), g(») — H(f(x),g(»)).

[If we reversed our order of composition in Definition 2.1, this would be the same as a
natural transformation of functors of categories enriched in affine k —schemes.]

A morphism f: G — H of pro-algebraic groupoids is said to be an equivalence if there
exists a morphism g: H — G such that fg and g f are both naturally isomorphic to
identity morphisms. This is the same as saying that for all y € Ob(H), there exists
x € Ob(G) such that H( f(x), y)(k) is nonempty (essential surjectivity), and that for
all x1,x, € Ob(G), G(x1,x2) = H(f(x1), f(x2)) is an isomorphism.

Definition 2.4 Given a pro-algebraic groupoid G, define a finite-dimensional linear
G —representation to be a functor p from G to the category of finite-dimensional
k—vector spaces, respecting the algebraic structure. Explicitly, this consists of a
set {Vx}xeon(g) of finite-dimensional k—vector spaces, together with morphisms
pxy: G(x,y) — Hom(V),, V) of affine schemes, respecting the multiplication and
identities.
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A morphism f: (V, p) = (W, 0) of G-representations consists of fy € Hom(Vy, Wy)
such that

fx O0xy = Pxy© fy3 G(x,y) — Hom(Vy, Wy)-

Definition 2.5 Given a pro-algebraic groupoid G, define the reductive quotient G
of G by setting Ob(G™%) = Ob(G), and

G™(x, ) = G(x, »)/Ru(G (3, 1)) = Ru(G(x, ))\G(x, »),

where Ry (G (x, x)) is the pro-unipotent radical of the pro-algebraic group G(x, x). The
equality arises since if /' € G(x, y), g € Ru(G(y, ), then fgf ™1 €Ru(G(x,Xx)), s0
both equivalence relations are the same. Multiplication and inversion descend similarly.
Observe that G™? is then a reductive pro-algebraic groupoid. Representations of G4
correspond to semisimple representations of G, since k is of characteristic 0.

Definition 2.6 Recall from [6, Definition II.1.7] that a tensor category C is said to be
rigid if it has an internal Hom—functor Hom, satisfying

o Hom(X,Y)® Hom(X',Y') = Hom(X X', Y ® Y’') and
e (XVY)YxX forall X €C,

where XY = Hom(X, 1), with 1 the unit for ®.

Definition 2.7 Recall from [6, Section I1.2] that a neutral Tannakian category over k
is a k-linear rigid abelian tensor category C, equipped with a faithful exact tensor
functor w (the fibre functor) from C to the category of finite-dimensional k—vector
spaces.

In [37, Section 2.1], this was extended to multifibred Tannakian categories, which have
several exact tensor functors {wx }xes , jointly faithful in the sense that Hom(U, V') —
[lyes Hom(oxU, wx V).

A Tannakian subcategory D C C is a full subcategory closed under the formation of
subquotients, direct sums, tensor products, and duals.

Tannakian duality [6, Theorem II.2.11] then states that for any neutral Tannakian
category (C,w) over a field, there is a canonical equivalence between C and the
category of finite-dimensional representations of a unique affine group scheme G.
Explicitly, G is the scheme of tensor automorphisms of w.

If C is multifibred, with a set .S of fibre functors, we form a pro-algebraic groupoid G
on objects S by setting G(x, y) to be the affine scheme of tensor isomorphisms
from wy to w,. This gives a canonical equivalence between C and the category of
finite-dimensional G —representations, with wy being pullback along the inclusion
{x}—=>G.
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Definition 2.8 Let AGpd denote the category of pro-algebraic groupoids over &, and
observe that this category contains all limits.

Lemma 2.9 Consider the functor G +— G(k) from AGpd to Gpd, the category of
abstract groupoids. This has a left adjoint, the algebraisation functor, denoted T" > T'?2,
which is determined by the finite-dimensional linear representations of I".

Proof The algebraisation functor can be given explicitly by setting Ob(I")¥2 = Ob(I"),
and

F"‘lg(x, y) = I‘(x,x)'“llg s F'(.x) I'(x,y),

where I'(x, x)2 is the pro-algebraic (or Hochschild—-Mostow) completion of the group
['(x,x) [17], and X xC Y is the quotient of X x ¥ by the relation (gx, y) ~ (x, gy)
for geG.

Alternatively, the finite-dimensional linear representations of I' (as in Definition 2.4)
correspond to those of T2 (if the latter exists). These form a multifibred Tannakian
category (with one fibre functor for each object of I'), so Tannakian duality provides
unique pro-algebraic groupoid G with the same finite-dimensional representations as I".
For any pro-algebraic groupoid H and any groupoid homomorphism I' — H(k), we
then have a functor from H -representations to I' representations, and thus a unique
compatible morphism G — H, so I'¥¢ >~ G. |

Example 2.10 The motivating example for this setup is when I' = ¢ X', the fundamen-
tal groupoid of a topological space. Then (7 X )3l2 is the pro-algebraic groupoid corre-
sponding to the multifibred Tannakian category of local systems of finite-dimensional
k —vector spaces on X . The fibre functors are given by V — V. Likewise, (X yred
is the object corresponding to the Tannakian category of semisimple local systems.

Definition 2.11 Given a pro-algebraic groupoid G, and U = {Ux } xeob(G) @ collection
of pro-algebraic groups parametrised by Ob(G), we say that G acts on U if there are
morphisms Uy X G(x, y) = U, of affine schemes, satisfying the following conditions:

(1) (uv)xg=(uxg)(vxg), lxg=1and (u xg=(uxg)~', for geG(x,y)
and u,v € Uy.
2) ux(ghy=w=g)xhand ux1=u,for geG(x,y),heG(y,z) and u € Uy.

If G acts on U, we construct G x U as in Definition 1.38.
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Definition 2.12 Given a pro-algebraic groupoid G, define the pro-unipotent radical
Ry (G) to be the collection Ry(G)x = Ry(G(x, x)) of pro-unipotent pro-algebraic
groups, for x € Ob(G). G then acts on R,(G) by conjugation, ie

ukxg:=g 'ug,

for u e Ry(G)x, g € G(x, ).
Now assume that the field & is of characteristic 0.

Proposition 2.13 For any pro-algebraic groupoid G, there is a Levi decomposition
G = G™ x Ry(G), unique up to conjugation by Ry(G).

Proof [37, Proposition 2.17]. O

2.2 The pro-algebraic homotopy type of a topological space

We now recall the results from [37, Section 2.4]. The motivation here is that we wish
to study the whole homotopy type, not just fundamental groupoids. This will involve
working with the loop groupoid, which is a simplicial groupoid, so we need a simplicial
framework.

Definition 2.14 Given a simplicial object G, in the category of pro-algebraic group-
oids, with Ob(G,) constant, define the fundamental groupoid 7y(Ge) of Ge to have
objects Ob(G), and for x, y € Ob(G), set mo(G)(x, y) to be the coequaliser

01

Gi(x.y)____Go(x, y)—=mo(G)(x,y)
do

in the category of affine schemes. Thus 7¢(G) is a pro-algebraic groupoid on objects

Ob(G), with multiplication inherited from Gy.

Definition 2.15 Define a pro-algebraic simplicial groupoid to consist of a simplicial
complex Ge of pro-algebraic groupoids, such that

(1) Ob(G,) is constant, and

(2) forall x € Ob(G), G(x, x)e € SAGP, ie the maps G,(x, x) — mo(G)(x, x) are
pro-unipotent extensions of pro-algebraic groups.

We denote the category of pro-algebraic simplicial groupoids by sAGpd.
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For any G,o € sAGpd and x € Ob(G.), observe that Ge(x, x) is a simplicial affine
group scheme, so has homotopy groups 7,(Ge(x, x)). That these are also affine group
schemes follows from the standard characterisation

Tn(Ge(x,x)) = Ha(NGe(x, x), o)
of homotopy groups of simplicial groups.

Lemma 2.16 There is a model structure on sAGpd in which a morphism f: Ge — H,
is

(1) aweak equivalence if the map 7o (f): 7wo(Ge) — 1o (Has) is an equivalence of pro-
algebraic groupoids, and the maps 7w, ( f, x): my(Ge(x, X)) = mn(He(f X, [ X))
are isomorphisms for all n and for all x € Ob(G);

(2) afibration if the morphism N,(f): N(G(x,x))n — N(H(x, x)), of normalised
groups is surjective for all n > 0 and all x € Ob(G), and [ satisfies the path-
lifting condition that for all x € Ob(G), y € Ob(H), and h € Hy(fx, y)(k),
there exists z € Ob(G), g € Go(x, z)(k) with fg = h. Equivalently, this says
that G(k) — H (k) is a fibration in the category of simplicial groupoids.

Proof This is [37, Theorem 2.25]. O

We define Ho(sAGpd) to be the localisation of sAGpd at weak equivalences.

There is a forgetful functor (k): sAGpd — sGpd, given by sending Ge to Ge(k). This
functor has a left adjoint Ge > (G4)2. We can describe (G,)2 explicitly. First let
(mo(G))¥® be the pro-algebraic completion of the abstract groupoid 74(G), then let
(G%2),, be the relative Malcev completion (defined in [13] for pro-algebraic groups) of
the morphism

Gn = (10(G))™e.

In other words, G, — (G¥¢), i) (o(G))™¢ is the universal diagram with f a pro-
unipotent extension.

Proposition 2.17 The functors (k) and (=) give rise to a pair of adjoint functors

]Lalg
Ho(sGpd) _ L~ Ho(sAGpd),
(k)

with LYG(X) = G(X)¥¢, forany X € S and G as in Definition 1.6.

Proof [37, Proposition 2.26] shows that the functors are a Quillen pair, so the statement
follows from the observation that all objects in sAGpd are fibrant, making (k) its own
derived right Quillen functor. Since G(X) is cofibrant, L¥G(X) = G(X)%e. o
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The reason that we need to take L.%2 in the Proposition is that (—)¥£ is not an exact
functor, so only preserves weak equivalences between cofibrant objects (which roughly
correspond to free simplicial groupoids). In Examples 2.24, we will see examples of
discrete groups I' for which the map L¥¢I" — I'¥!2 is not a weak equivalence.

Definition 2.18 Given a simplicial set (or equivalently a topological space), define
the pro-algebraic homotopy type of X over k to be the object

G( X)alg

in Ho(sAGpd), where G(X) is the loop groupoid of Definition 1.6. Define the pro-
algebraic fundamental groupoid by wy(X) := mo(G(X )dlg) | Note that o(G2) is
the pro-algebraic completion of the fundamental groupoid 7¢(G).
We then define the higher pro-algebraic homotopy groups @y (X) (as @y X —represen-
tations) by

wn(X) 1= 701 (G(X)™),
where 7,(G) is the representation x — 7,(G(x, x)), for x € Ob(G).

Remark 2.19 We can interpret G(X)¥2 as the classifying object for nonabelian
cohomology. Given G € sAGpd, we can define H! (X, G) to be the homotopy class
of maps G(X)™¢ — G, which is just [X, WG (k)]. When G is just a linear algebraic
group, this recovers the usual definition of the set H! (X, G) of classes of G—torsors
on X. When A is a simplicial finite-dimensional vector space (regarded as a simplicial
algebraic group), this definition gives

H! (X, A) =H! (X, N4),

hypercohomology of the normalised complex associated to A.

2.3 Relative Malcev homotopy types

Definition 2.20 Assume we have an abstract groupoid G, a reductive pro-algebraic
groupoid R, and a representation p: G — R(k) which is an isomorphism on objects
and Zariski-dense on morphisms (ie p: G(x, y) — R(k)(px, py) is Zariski-dense for
all x,y € ObG). Define the Malcev completion (G, p)M¥ (or GPMa! or GR-Mal)
of G relative to p to be the universal diagram

G — (G, pMi 2 R,

with p a pro-unipotent extension, and the composition equal to p. Explicitly, the
objects are Ob(G, p)M? = Ob G and

(G, M (x, y) = (G(x, x), M xF9) G(x, y).
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If G and R are groups, observe that this agrees with the usual definition (of [13]).

If o: G — R(k) is any Zariski-dense representation (ie essentially surjective on ob-
jects and Zariski-dense on morphisms) to a reductive pro-algebraic groupoid (in most
examples, we take R to be a group), we can define another reductive groupoid R
by setting ObR = ObG, and E(x, y) = R(ox,0y). This gives a representation
o X — R satisfying the above hypotheses, and we define the Malcev completion
of G relative to o to be the Malcev completion of G relative to p. Note that R—>R
is an equivalence of pro-algebraic groupoids.

Definition 2.21 Given a Zariski-dense morphism p: 7y X — R(k), let the Malcev
completion G(X, p)M? of X relative to p be the pro-algebraic simplicial group
(G(X), p)M2 . Observe that the Malcev completion of X relative to (X yed s just
G(X)¥2. Let wor(X, oM = 7,G(X, p)M and @, (X, oM = 7, G(X, p)M.
Note that 77 ((X, p)M2) is the relative Malcev completion of p: mrX — R(k).

Beware that the relative Malcev completion of X is defined by completing a loop
space for X, rather than X itself. However, Theorem 2.74 will give other equivalent
formulations of the homotopy type, effectively by completing a covering space for X .

Lemma 2.22 Let f: X — Y be a morphism in S for which the map
7n(f): n(X) = p(Y)

is an isomorphism for n < N and a surjection for n = N + 1, and take a Zariski-dense
morphism p: wgY — R(k). Then the map

@u(f): @a(X, po IV — @y (Y, o)
is an isomorphism for n < N and a surjection forn = N + 1.
Pl.‘OOf As in the proof of Lemma 1.37, for any 7sY —representation M , the maps
H' (Y, M) — H' (X, M) are isomorphisms for i < N and injective for i = N + 1.
Now, [37, Proposition 4.37] gives a convergent Adams spectral sequence
EL(X) = (Lie—p (' (X, O(RN)prg = @prga1 (X, po /HM,

in the category of pro-finite-dimensional vector spaces, where H denotes reduced
cohomology, Liey is the free graded Lie algebra functor, and O (R) is the local system
of Definition 2.75. Since E’}q (X)) — E;q(Y) is an isomorphism for p +¢ < N and
surjective for p + g = N, the result follows. |
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Definition 2.23 Say that a groupoid I' is n—good with respect to a Zariski-dense
representation p: ' — R(k) to a reductive pro-algebraic groupoid if for all finite-
dimensional T'»"Ma _representations V', the map

H/(TPM V) > H (T, V)

is an isomorphism for all i < n and an inclusion for i =n + 1. Say that I" is good
with respect to p if it is n—good for all 7.

See Lemma 3.36 for alternative criteria to determine when a groupoid is #7—good.

Examples 2.24 By [37, Examples 3.20], finite groups, free groups, finitely generated
nilpotent groups and fundamental groups of compact Riemann surfaces are all good
with respect to all Zariski-dense representations. Superrigid groups (such as SL3(Z))
give examples of groups which are not good with respect to any real (or complex)
representations. This is because I'®-M2l = R in these cases, but H*(I', R) # R.

Theorem 2.25 If X is a topological space with fundamental groupoid I", equipped
with a Zariski-dense representation p: I' — R(k) to a reductive pro-algebraic groupoid
for which

(1) T is (N+1)—good with respect to p,
(2) mn(X,—) is of finite rank for all 1| <n < N, and

(3) the T" —representation 1, (X, —) ®z k is an extension of R-representations (ie a
rPMal_representation) forall 1 <n < N,
then the canonical map
n(X. =) @z k — @ (XPM, )
is an isomorphism forall 1 <n < N .
Proof When N = oo, this is [37, Theorem 3.21], but the same proof gives the
conclusion above if we only assume that " is (N +1)—good (while still requiring the

other conditions to hold for all n). For arbitrary N, and X as above, this means that
the N —th stage X (V) in the Postnikov tower for X gives isomorphisms

ma(X, =) ®z k — wu(X(N)PM )
forall 1 <n < N,since m; X(N) =0 fori > N, while m; X(N) =m; X fori < N.

Applying Lemma 2.22 to the morphism X — X (/N) now completes the proof. |
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2.4 Cohomology and hypercohomology
2.4.1 Simplicial groupoids
Definition 2.26 For a simplicial groupoid Te, a cosimplicial T'e—representation con-

sists of the following:

(1) a I'—representation V" for all n, with g-d'v = 9"((3;g) - v), for g € Ty 1,
veVn;

(2) operations 9’, o' making V*(x) into a cosimplicial complex for each x € Ob T,
satisfying the additional conditions that

g (0'v) =9'((¥ig)-v) h-(0'v) =0'((0ig)v)
for g € Tyy1(x, ), h € Tymi(x, ), vE V().
Remark 2.27 1If I'e = G(X), then we can think of a cosimplicial ['e—representation as
being a kind of hyperlocal system on X . As we will see below, these give a sufficiently

large category to recover cohomology, but objects with constant cosimplicial structure
are still just local systems.

Definition 2.28 Given a simplicial groupoid I's and a cosimplicial I'e-represen-
tation V', define the cosimplicial complex C*(I"s, V') by

Cn (F., V) - Homrn ((WF.)n, Vn),

for the functor W from Definition 1.5, with operations (9? f)(x) = 81, (f(9ix)) for
x € (WTle)u41,and (o' f)(x) = 0},(f(01x)) for x € (WTa)y—1.

Then define hypercohomology groups H’ (T, V') by H!(Te, V) = H'C(I, V). If V

is a wol'e—representation, regard V' as a cosimplicial I'e—representation (with constant

cosimplicial structure) and write H! (T's, V) := H! (T, V).

Lemma 2.29 If T’ is a simplicial groupoid and V' a myl'e —representation, then
H'(T., V) =H (WT,, V).

Proof Observe that 7o(Is) x'* (WT,) is the universal covering system of W T,.

Since V is a mgl'e—representation,

Homp, (WT4)n, V) = Homy,r, (7oTe) X" (WT4)p, V)

= Hom, zr((WTe),. V).

50 C*(Te, V) = C*(WT,, V) (as defined in Definition 1.21), which gives the result. O
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Lemma 2.30 If T, is a simplicial groupoid and V a cosimplicial I"s —representation,
then there is a convergent spectral sequence

H'(To. H/ (V) = H*/(L.. V),
where H’ (V) is the oT's —representation given by setting H* (V) (x) to be cohomol-
ogy of the cosimplicial complex V(x), for all x € ObT,.

Proof Form the filtration {F,V}, of V by setting F,V to be the image of the n—
skeleton sk” V — V'; F,V is the subcomplex of V' generated under the operations 9*
by V=", and its Dold—Kan normalisation is given by

NV i<n,
N(F, V) =3dN"V i=n+1,
0 i>n+2.

Note that the condition gdv = 9*((9;g)v implies that F,,V is I'e—equivariant. Also
note that £,V / F,_1V is quasi-isomorphic to the denormalisation DH"(V')[—n]. The
spectral sequence associated to this filtration is thus

H'*/ (T, DH/ (V)[—/]) = H'T/ (T, V).

Let Ko :=ker(I's — moTs); since H/ V is a o' —representation, there is a bicosim-
plicial complex

C*P := Homy,(r,) (Ka\(WTe)a. DPH/ (V)[- j)).
with H"(Te, DH’ (V)[—j]) = H"(diag C).

By the Eilenberg—Zilber Theorem [52, Theorem 8.5.1], N diag C is quasi-isomorphic
to the total complex of Homy,r, (N Z(Ke\WT,),H’ (V)[—/]), therefore H"(C) =
H"~J/(G,H/(V)), and the spectral sequence becomes

H(Te, H/ (V)) = H*/ (T, V). o

Lemma 2.31 Given a weak equivalence f: I'e — Ae of simplicial groupoids, and a
cosimplicial T"s —representation V , the map

f* H* (A, V) —» H*(Te, f71V)

is an isomorphism.

Proof Lemma 2.30 gives a morphism of convergent spectral sequences, so we may
assume that V' is a mgAe-representation. Since W f: W, — WA, is a weak
equivalence of simplicial sets, Lemma 2.29 completes the proof. |
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Lemma 2.32 Given a simplicial group I'e, a cosimplicial T"s —representation V and a
simplicial abelian group A, the simplicial abelian group

Tot(V ® A)

has a canonical T'e—action, where Tot: SA 'S is the total space functor of [11,
Chapter VIII], originally defined in [3, Chapter X].

Proof Given X € S® and K € S, define e(X, K) € S2 by e(X, K)" := (X")Kn,
with obvious cosimplicial operations. Note that Tot(e(X, K)) = Tot(X)X .

The T'e—action on V is the same as a cosimplicial map f: V — e(V, T,), so we have
maps

V@Al e(V.T)®A—e(V& AT,

thus a map Tot(V ® A) — Tot(V ® A)'* . This is equivalent to a map T'exTot(V ® A) —
Tot(V ® A) of simplicial sets, and the argument above adapts to show that this action
is associative. |

In order to simplify the definitions and exposition, we will now take I'e to be simplicial
group, although everything can be extended to simplicial groupoids.

Definition 2.33 For a simplicial group e, a simplicial I'e—representation consists
of a simplicial abelian group A4, together with a I',—action on A, for all n, com-
patible with the simplicial operations. Let s Rep(I's) be the category of simplicial
I'e—representations.

Note that Lemma 2.32 provides us with examples of simplicial I'¢—representations
constructed from cosimplicial I'e—representations. Also note that for any simplicial I'e—
representation V, taking duals levelwise gives a cosimplicial T's—representation V'
given by (VV)" = (V,)V.

Lemma 2.34 Given a simplicial group T's, there is a cofibrantly generated model
structure on s Rep(Il's), in which a morphism f: A — B is

(1) a weak equivalence if the maps m;(f): n;(A) — m;(B) are isomorphisms for
all i ;

(2) afibration if the underlying map in S is a fibration, or equivalently if the maps
N;i(f): Ni(A) — N;(B) on the Dold—Kan normalisation are surjective for all
i>0.
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Proof The forgetful functor from s Rep(I's) to simplicial sets preserves filtered direct
limits and has a left adjoint F(S) = Z(T'e x S). Thus for any finite object I € S, the
object FI is finite in s Rep(I's), so a fortiori permits the small object argument. The
model structure on S is cofibrantly generated by finite objects, so [16, Theorem 11.3.2]
gives the required model structure on s Rep(Ts). |

Lemma 2.35 We may characterise hypercohomology groups by
H' (T, V) = Homyo(san(ra)) (Z, Tot(V @z N ' Z[~i])).
Proof We first note that Z[W T,] is a cofibrant replacement for Z, so for a simplicial
abelian group 4,
RHom xp, ) (Z, Tot(V ®z A)) = Homg gy (Z[W T], Tot(V @z A));
as observed in the proof of Lemma 2.32,
Hom, ,, (Z[WT,], Tot(V ®z A)) = Tot(e(V ®z A, WT,)),
S0 Homy s, r,y (Z[WT.], Tot(V ®z A)) == Tot(e(V ®z A, WTs)'™).

Now, e(V®z A, WI's)!* is given in simplicial level by C*(Te, V ®z A,). When A,
is free and finitely generated, this becomes C*(Te, V) ®7 A,. Taking A = N "1 Z[—i]
thus gives

Homyo sab(ra)) (Z. Tot(V @z N ™' Z[—i]))
=~ moRHomy ) (Z. Tot(V ®z N ™' Z[—i]))
>~ Tot(C*(Te, V) ®z N "' Z[—i]).

Given a cosimplicial simplicial abelian group B, the normalisation N Tot B is equiva-
lent to the good truncation in nonnegative chain degrees of the product total complex
Totl N¢NB of the binormalisation of B (which is a cochain chain complex). Thus

7o Tot(C*(To, V) ®7 N~ Z[—i]) = Ho Totl l(N.C* (T, V)) ®7 Z[—i]).

and Totn((NCC‘ (Te, V)) ®7 Z[—i]) is just the complex N.C*(Te, V') turned upside
down and shifted i places, so

Ho Tot!l(N,C* (T, V)) ®7 Z[—i]) = H N.C*(Ts, V) = H (Is, V),

as required. O

The following is an analogue of the Leray spectral sequence, and will play a key role
in Theorem 3.32.
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Proposition 2.36 Given a surjection I'e — A, of simplicial groups with kernel B,
and a cosimplicial T's—representation V', there is a canonical convergent spectral
sequence

H (Ae, H/(B.,V)) = H'T/(T.. V),

which we refer to as the Hochschild—Serre spectral sequence.
Proof Given T € sAb(A.) and U, W € sAb(T"s), we have an isomorphism

This defines a right Quillen functor sAb(Ae)°PP x sAb(I"e)°PP x sAb(I"s) — S; since
any cofibrant ' —representation is cofibrant as a Be-representation, the isomorphism
above gives an equivalence

R Homg ap(a,) (7. RHOom 5y, (U, W) > RHom sy ) (T Q% U, W).
In particular,

RHomg spr,)(Z, W) =~ RHomgap(a,)(Z, RHom p, g,y (Z, W)).

Setting W = Tot(V ®z N ~'Z[—n]), this gives an isomorphism

H"(Te, V) = H"C®*(As,C*(Bs, V)),
so the morphism C®(Te, V') — C*(As, C*(Bs, V)) is a quasi-isomorphism, and the
result now follows from Lemma 2.30. a

2.4.2 Simplicial pro-algebraic groupoids

Definition 2.37 Given G € sAGpd, define a cosimplicial G —representation to be
an O(G)—comodule V in cosimplicial k—vector spaces. Thus we have cosimplicial
complexes V(x) for all x € Ob G, together with a coassociative coaction V(x) —

OG)(x,y)@V(y).

Note that the category of cosimplicial G —representations is opposite to the category
sFDRep(G) of pro-finite-dimensional simplicial G —representations from [37, Sec-
tion 1.5].

Definition 2.38 Given G € sAGpd and a cosimplicial G —representation V', define
the cosimplicial complex C*(G, V) by

C"(G.V) = O((WG)n) &% V",

for the functor W from Definition 1.5, with operations ¢’ ® 9" and o’ @ 0.
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Then define hypercohomology groups H'(G, V) by H (G, V) =HIC(G, V). If V is
a oG —representation, regard V' as a cosimplicial G -representation (with constant
cosimplicial structure) and write H: (G, V) := H!(G, V).

Now, [37, Example 1.45] ensures that H! (G, V)Y = H; (G, V") in the notation of [37,
Definition 1.48]. In particular, this means that hypercohomology groups of G are an
invariant of the homotopy type of G.

Proposition 2.39 A morphism f: G — K of pro-algebraic simplicial groupoids is a
weak equivalence if and only if

(1)  f(Ru(G)) <Ry(K), with the quotient map
Gred — Kred

an equivalence, and

(2) for all finite-dimensional irreducible K —representations V , the maps
H'(f): H(K,V) —H(G, f*V)

are isomorphisms for all i > 0.
Proof This is [37, Corollary 1.55], adapted from groups to groupoids. |

Note that the analogue of Lemma 2.32 for pro-algebraic simplicial groupoids thus
ensures that weak equivalences induce isomorphisms on hypercohomology.

Lemma 2.40 For a cofibrant pro-algebraic simplicial group G (for the model structure
of Lemma 2.16), and a finite-dimensional wyG —representation V', the cohomology
group H' (G, V) is isomorphic to the homotopy class of maps G — G x (N "'V [1—i))
in the model category sAGpd| G .

Proof Consider the morphism k — O(G), and let the cokernel be C. As in the proof
of [37, Proposition 1.50], C is fibrant as a cosimplicial G —representation. Likewise,
V ® O(G) and V ® C are both fibrant, so H*(G, V') is cohomology of the cone
complex of

vV ®%0(G)—>Velc
Now, V ®% O(G) is just V', so we need to describe V ®% C .

Letting E := O(G)Y, we see that CV is the kernel of E — k. Elements 6 of
|4 ®g C" are then just morphisms 6: (CV), — V satisfying a(gc) = ga(c), for
g€Gy,ce(CY)y,. Thereisamap E — CV givenby a+ a—1, so § composed

Geometry & Topology, Volume 15 (2011)



Galois actions on homotopy groups of algebraic varieties 533

with this gives a linear morphism 60’: E, — V, satisfying 0'(ga) = g0'(a) + 6'(g)
for g € Gy,.

Regarding E, as an affine scheme, there is a morphism G, — Ej, so we see that 0
corresponds to a derivation 6’: G, — V. Since derivations G — V are just morphisms
G — G x V over G, the statement now follows from the description of the path object
in sAGpd from [37, Lemma 2.29]. O

Lemma 2.41 If ' is a cofibrant simplicial groupoid (eg G(X) for X € S), and V is
a finite-dimensional JTOF.R Ml —representation, then the map

H* (F.R,Mal’ V) — H*(T., V)
is an isomorphism.

Proof This is implicit in [37, Section 1.5.3]. Replacing I'e with a disjoint union
of simplicial groups, Lemma 2.40 gives that H*(F.R Mal V') is the homotopy class
of maps from XM o TRMal o (N=1y[1 —i]) over XM Since any map from
Fiﬂg to a pro-unipotent extension of R factors through rX Mal this is the same as the

homotopy class of maps from T'2€ to TEMal o (N=1V[1 —i]) over TEMal,

The Quillen adjunction of Proposition 2.17 then shows that this is equivalent to the
homotopy class of maps from I's to T'ex (N ! V[1—i]) in the slice category sGpd| T,
which is just H (T, V). ad

Note if we have I'e € sGpd and G € sAGpd together with a morphism f: ['e — G (k)
of simplicial groupoids, then every cosimplicial G —representation V naturally gives
rise to a cosimplicial 'e—representation f*V. For any coalgebra C, every C—
comodule is a nested union of finite-dimensional comodules. Thus every cosimplicial
G —representation V is a filtered direct limit li_r)na Vo of levelwise finite-dimensional
cosimplicial G -representations, and we tweak the construction of pullbacks slightly
by regarding f™*V as the ind-object (ie filtered direct system) { /*Vy} of levelwise
finite-dimensional cosimplicial I'e—representations. We then define C*(T, f*V) :=
li_n)la C*(Te, f*Vy), and H*(Te, f*V) := H*C*(Ts, [*V) = 1i_n>1a H*(Te, f*Vy).

Also note that the category of cosimplicial G —representations is opposite to the category
sFDRep(G) of [37, Section 1.5].

Lemma 2.42 Given a cofibrant simplicial groupoid I's and a cosimplicial O(F.R ’Mal) -

comodule V, the canonical map
H*(F.R’Mal, V) —>H*(F., V)

induced by the morphism o — .’ 1s an isomorphism.
(induced by th hism WTe — W(ITEMY) jsan i hi
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Proof By Lemma 2.30 and its analogue for sAGpd, we have convergent spectral
sequences

H (T, H/ (V)) = H'"/ (., V)
H (G, H/ (V)) = H'T/(G, V).

For ind-finite-dimensional (G —representations U , the maps H (G, U) — H! (T, U)
are isomorphisms by Lemma 2.41, so the maps H' (G, H/ (V)) — H!(I's, H/ (V)) are
isomorphisms, making the morphism of spectral sequences an isomorphism. O

Theorem 2.43 Take a fibration f: (X, x)— (Y, y) (of pointed connected topological

spaces) with connected fibres, and set F := f~1(y). Take a Zariski-dense representa-

tion p: w1 (X, x) — R(k) to a reductive pro-algebraic group R, let K be the closure of

p(m1(F,x)),and set T := R/K . If the monodromy action of 1(Y, y) on H*(F, V)

factors through @ (Y, y)TM2! for all K —representations V , then G(F, x)%-Mal jg the

homotopy fibre of G(X, x)®Mal . G(y, y)T-Mal,

Proof This is [34, Theorem 3.10], which uses Lemma 2.42 to show that
H*(G(F,x)" M, 0(K))

and cohomology H*(F, O(K)) of the homotopy fibre F are both

H*(G(X, x), O(R) ® oy O(G(Y, y) ™M) = H/ (F, O(K)). m
2.5 Equivalent formulations
Fix a reductive pro-algebraic groupoid R.
2.5.1 Lie algebras

Definition 2.44 Recall that a Lie coalgebra C is said to be conilpotent if the iterated
cobracket A,: C — C®" is 0 for sufficiently large n. A Lie coalgebra C is ind-
conilpotent if it is a filtered direct limit (or, equivalently, a nested union) of conilpotent
Lie coalgebras.

Definition 2.45 Recall from [37, Definition 5.8] that for any k—algebra A, we define
N4(R) to be opposite to the category of R-representations in ind-conilpotent Lie
coalgebras over A, and denote the contravariant equivalence by C — C".

Note that there is a continuous functor A (R) — N4(R) given by CV > (C ®; A)V.
We denote this by g+ g&A.
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Remark 2.46 Observe that g € N, "4(R) can be regarded as an object of the category
Aff4(R) of R-representations in affine A—schemes, by regarding it as the functor

g(B) = HomA,R(gv’ B)v

for B € Alg,(R) := A ] Alg(R). In fact, g(B) is then a Lie algebra over B, so
the Campbell-Baker—Hausdorff formula defines a group structure on g(B), and the
resulting group is denoted by exp(g)(B). Thus exp(g) is an R-representation in affine
group schemes over A4 (ie a group object of Aff4(R)).

Definition 2.47 Write sy (R) for the category of simplicial objects in N, 4(R). A
weak equivalence in sN. "4(R) is a map which gives isomorphisms on cohomology
groups of the duals (which are just A-modules). We denote by Ho(s/\A/' 41(R)) the
localisation of s/ (R) at weak equivalences.

For k = A, we will usually drop the subscript, so N (R) := J\A/'k (R), and so on.

Definition 2.48 Define £(R) to be the full subcategory of AGpd| R consisting of
those morphisms p: G — R of pro-algebraic groupoids which are pro-unipotent exten-
sions. Similarly, define s€(R) to consist of the pro-unipotent extensions in sAGpd| R,
and Ho(s€(R)«) to be full subcategory of Ho(Ob R | sAGpd) on objects sE(R).

Definition 2.49 Given a pro-algebraic groupoid R, define the category sP4(R) to
have the same objects as sA4(R), with morphisms given by

R
Homgp(ry(a. 1) =exp( [ mob(x)) x5 Homyy, () (@ ).
x€0b R

where h{f (the Lie subalgebra of R—invariants in hy) acts by conjugation on the
set of homomorphisms. Composition of morphisms is given by (u, ) o (v, g) =

(o f(v), fog).
The following is a key comparison result, which will be used in Proposition 2.76 and
Theorem 3.30 as a step towards reformulating Malcev homotopy types in terms of

Godement resolutions.

Proposition 2.50 For any reductive pro-algebraic groupoid R, the categories
Ho(s€(R)«) and sP(R) are equivalent.

Proof This is part of [37, Theorem 4.41], adapting [37, Proposition 3.15] to the
unpointed case. The proof just exploits the Levi decomposition of Proposition 2.13.
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Explicitly, the functor maps g € s/P(R) to the simplicial pro-algebraic group given in
level n by R X exp(g,). Given a morphism

R
(. f)eexp( [] moh(x)) xO™) Hompq(en(ry (0. h).
x€Ob R

lift u to # € [[,cop g €XP(Ho(x)), and construct the morphism
adg o(R xexp(f)): Rxexp(g) = Rxexp(h)

in sE(R), where for a € (R x exp(h))(x, y), we set adz(a) =u(x)-a-u(y)~'. O

Definition 2.51 We can now define the multipointed Malcev homotopy type of X rela-
tive to p to be the image of G(X, p)M? in Ho(s& (ﬁ)*), or equivalently R, G (X, p)Ma
in sP(ﬁ). Define the unpointed Malcev homotopy type of X relative to p to be the
image of G(X, p)M in Ho(s&€(R)).

Since R — R is an equivalence of groupoids, there is an equivalence Ho(s€(R)) —
Ho(s&(R)), so may discard some basepoints to give an object of s7P(R) (or equivalently
of Ho(s€(R)«)) whenever p is surjective on objects.

2.5.2 Chain Lie algebras

Definition 2.52 Let dg./v 4 be opposite to the category of nonnegatively graded ind-
conilpotent cochain Lie coalgebras over A. Define dg/i\/' 4(R) to be the category
of R-representations in dgNy. For k = A, we will usually drop the subscript, so
dg/\Af(R) = dg./\A/'k (R), and so on.

The following is [37, Lemma 5.9]:

Lemma 2.53 There is a closed model structure on d g/V "4(R) in which a morphism
frg—bis
(1) a fibration whenever the underlying map fV: Y — gV of cochain complexes
over A is injective in strictly positive degrees;

(2) a weak equivalence whenever the maps H' ( fV): H! (hY) — H(g") are isomor-
phisms for all i .

Remark 2.54 It follows from the construction in [37, Lemma 5.9] that for cofibrant
objects g € dg/V (R) (taking A to be a field), gV is freely cogenerated as a graded Lie
coalgebra. Thus g¥[—1] is a positively graded strong homotopy commutative algebra
without unit (in the sense of [26, Lectures 8 and 15]), and a choice of cogenerators
on gV is the same as a positively graded Eoo (also known as Co,) algebra — this is an
aspect of Koszul duality.
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Definition 2.55 We say that a morphism f: g — b in dg./\A/' (R) is free if there exists
a (pro-finite-dimensional) sub— R-representation V C b such that h is the free pro-
nilpotent graded Lie algebra over g on generators V.

Proposition 2.56 (Minimal models) For every object g of d g/\A/ (R), there exists a
free chain Lie algebra m with d = 0 on the abelianisation m/[m, m], unique up to
nonunique isomorphism, together with a weak equivalence m — g.

Proof [37, Proposition 4.7]. O

The significance of this result is that, together with Proposition 2.50, it allows us to
reformulate Malcev homotopy types in terms of extra structure on cohomology groups,
since (m/[m, m]), is dual to H**1(g, k).

Definition 2.57 Let dg’P(R) be the category with the same objects as dg/\A/' 4(R),
and morphisms given by

R
Homggp(r) (g, h) =eXP( I1 Hob(X)) xP00) Homy, e 5, () (9 )-
x€0b R

where h(lf (the Lie subalgebra of R—invariants in ho) acts by conjugation on the
set of homomorphisms. Composition of morphisms is given by (u, /) o (v,g) =

(uo f(v), fog).
Proposition 2.58 There is a normalisation functor N : sN, 4(R) — dg/\A/' "4(R) such
that
H;(Ng) = i (9).
giving equivalences Ho(s/i\fA (R)) ~ Ho(dg/\AfA (R)), and sP4(R) ~ dgP4(R).

Proof This is essentially [37, Propositions 4.12 and 5.11], adapted as in [34, Theo-
rem 3.28]. O

2.5.3 Cosimplicial algebras

Definition 2.59 Let ¢ Alg(R) be the category of R-representations in cosimplicial
k—algebras.
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Proposition 2.60 There is a simplicial model category structure on ¢ Alg(R), in which
amap f: A— B is

(1) a weak equivalence if H ( f): H: (4) — H*(B) is an isomorphism in Rep(R)
forall i;

(2) a fibration if f*(x): A'(x) — B'(x) is a surjection for all x € Ob(R) and all i .
Proof This is [37, Proposition 3.26], adapting [49, Section 2.1]. O

Definition 2.61 Let ¢ Alg(R)« be the category of R-representations in cosimplicial
k —algebras, equipped with an augmentation to [[, <o, g O(R)(x,—). This inherits
a model structure from ¢ Alg(R). Denote the opposite category by s Aff(R)s =
[Iieon g R(x,—) s Aff(R), where the coproduct is taken in the category of affine
schemes.

Definition 2.62 Given representations V, W € Rep(R), define

V ®% W := Homgep(r)(k, V ® W).

Definition 2.63 Given A €c Alg(R) and g € sN (R), define the Maurer—Cartan space
MC(4, G) to consist of sets {wy,}n>0, with w, € exp(4"T1®~Rg,), such that

8i+1wn_1 i >0,
diwon = 1 0 -1

(0" wp—1) - (0°wy—1) i =0,
oiwop =0 T wyy,
ooa)n =1,

where exp(A"T1®Rg,,) is the group with underlying set the Lie algebra A"+ ®g,_;,
with multiplication given by the Campbell-Baker—Hausdorff formula.

Definition 2.64 Given A € c Alg(R) and g € sN (R), define the gauge group
Gg(4.9) <1, exp(A"®Rg,) to consist of those g satisfying

dign=0"gn—1 ¥i>0,

0ign=0'gnt1 Vi.

This has an action on MC(A4, g) given by

(g *)n = (dogn+1) wn- (g, ).
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Definition 2.65 Let ¢ Alg(R)¢« be the full subcategory of ¢ Alg(R)« whose objects
satisfy H(A4) = k. Let Ho(c Alg(R)o«) be the full subcategory of Ho(c Alg(R)ox)
with objects in ¢ Alg(R)o«. Let s Aff(R)o« be the category opposite to ¢ Alg(R)ox,
and Ho(s Aff(R)g«) opposite to Ho(c Alg(R)ox).-

Definition 2.66 Given a topological space X, and a sheaf & on X, define
C'"x.%):= [] TqA"./™'%).
filA =X

Together, these form a cosimplicial complex C*(X, %).
2.5.4 Cochain algebras

Definition 2.67 Define DG Alg(R) to be the category of R-representations in non-
negatively graded cochain k-algebras, and let dg Aff(R) be the opposite category.

Lemma 2.68 There is a closed model structure on D G Alg(R) in which a morphism
f:A— Bis
(1) a weak equivalence if H!( f): H:(A) — H!(B) is an isomorphism in Rep(R)
forall i;
(2) afibration if f': A* — B' is a surjection for all i ;

(3) acofibration if it has LLP with respect to all trivial fibrations.
Proof This is standard (see eg [23, Proposition 4.1]). O

Definition 2.69 Define DGAIg(R)« to be the category of R-representations in non-
negatively graded cochain k-—algebras, equipped with an augmentation to
[lxeop g O(R)(x,—). This inherits a model structure from DGAIg(R). Define
dg Aff(R)« to be the category opposite to DGAIg(R)x.

Let DGAIg(R)o« be the full subcategory of DG Alg(R), whose objects A satisfy
HO(A) = k. Let Ho(DGAIg(R)+)o be the full subcategory of Ho(DGAlg(R)«) on
the objects of DG AIlg(R)g. Let dg Aff(R)¢« and Ho(dg Aff(R)«)o be the opposite
categories to DG AIlg(R)o« and Ho(DGAIg(R)«)g, respectively.

Proposition 2.70 There is a denormalisation functor D: DG Alg(R) — ¢ Alg(R)
such that
H'(DA) = H'(A).

This is a right Quillen equivalence, with left adjoint D*, so gives an equivalence
Ho(c Alg(R)) ~ Ho(DGAIlg(R)).

Proof This is [37, Proposition 4.27]. O
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Definition 2.71 Given a cochain algebra A € DG Alg(R), and a chain Lie algebra
g € dg/N (R), define the Maurer—Cartan space by

MC(4, g) := {a) € @A”“@Rgn |do + 1w, 0] = 0}.
n

Definition 2.72 Given A€ DGAIg(R) and gedg/\Af (R), we define the gauge group by
Gg(4,g) = exp(l_[ A”@Rgn).
n

Define a gauge action of Gg(A4, g) on MC(4, g) by

gw) =g 0-g7 ' —(dg)-g7".

Definition 2.73 Recall that the Thom-Sullivan (or Thom—Whitney) functor Th from
cosimplicial algebras to DG algebras is defined as follows. Let Q(|A”|) be the DG
algebra of rational polynomial forms on the n—simplex, so

Q(|A"]) = Q[to,...,tn,dto,...,dt,,]/(l —Zti,Zdti),

where #; is of degree 0. The usual face and degeneracy maps for simplices yield
9;: QUA"|)) = QA1) and 0;: Q(|A"]) = Q(]A"1|), giving a simplicial complex
of DGAs. Given a cosimplicial algebra 4, we then set

Th(4) := {a € l_[A” ® Q(A") : Bilan = 0jdp+1, Ujan =0jdy—1 Vi,j}.
n

The following is a major comparison result, which will be used in Theorem 3.30 as
the main step towards reformulating Malcev homotopy types in terms of Godement
resolutions.

Theorem 2.74 We have the following commutative diagram of equivalences of cate-
gories:
Spec D
Ho(dg Aff(R)+)o __ Ho(s Aff(R)x)o

ol =

dgP(R) sP(R),
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with the pair

G
Ho(dg Aff(R)x)o____dgP(R),

w
characterised by the property that

Homyo(dg Afi(R).) (Spec 4, Wg) = Homggp(g)(G(A), g)

= MC(4, g) x5&(4:9) l_[ exp(Hog(x)).
x€0b R

Proof This is [34, Theorem 3.28], which adapts [37, Corollary 4.41] to the pointed
case. The vertical equivalences come from [37, Proposition 3.48], while the horizontal
equivalences are from [37, Theorems 4.39] and Theorem 4.44 or, for a shorter and
more conceptual proof, [39, Theorem 6.23]. The results of [15, 4.1] imply that D and
Th are homotopy inverses. |

Definition 2.75 Recall that O(R) has the natural structure of an R x R-representation.
Since every R-representation has an associated semisimple local system on | BR(k)|,
we will also write O(R) for the R-representation in semisimple local systems on
| BR(k)| corresponding to the R x R-representation O(R). We then define the R—
representation Q(R) in semisimple local systems on X by O(R) := p~ ' O(R).

Proposition 2.76 Under the equivalences of Theorem 2.74, the relative Malcev homo-
topy type G(X)PMa of a topological space X corresponds to

C*(X,0(R)) € c Alg(R),
equipped with its augmentation to [ [,.c y C*(x, O(R)) = [ [ ex O(R)(x,—).

Proof This is essentially the same as [37, Theorem 3.55] (which considers the un-
pointed case). a

Corollary 2.77 Pro-algebraic homotopy types are equivalent to the schematic homo-
topy types of [49], in the sense that the full subcategory of the homotopy category
Ho(sPr) on objects X" is equivalent to the full subcategory of Ho(sAGpd) on ob-
jects G(X)2. Under this equivalence, X" is represented by the simplicial scheme
W G(X)™¢, and pro-algebraic homotopy groups are isomorphic to schematic homotopy

groups.

Proof [37, Corollary 3.57]. O
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Definition 2.78 Given a manifold X, denote the sheaf of real n—forms on X by #{".
Given a real sheaf & on X, write

A"(X,F) :=T(X,F ®g ).

Proposition 2.79 The real Malcev homotopy type of a manifold X relative to
p: mg X — R(R) is given in DGAIg(R) by the de Rham complex A*(X, O(R)),
equipped with its augmentation to [ [,y A®(x, O(R)) = [[,ex O(R)(x.—).

Proof [37, Proposition 4.50]. a

3 Pro-Q,-algebraic homotopy types

The purpose if this section is to transfer the framework of Section 2 to an £—adic setting,
replacing topological spaces with pro-finite spaces (and hence étale homotopy types of
algebraic varieties).

Fix a prime £. Although all results here will be stated for the local field Q, they hold
for any of its algebraic extensions.

3.1 Algebraisation of locally pro-finite groupoids

Definition 3.1 Given a pro-groupoid I' with Ob(I") a discrete set (in the sense of
Remark 1.10), we define the pro-algebraic completion T2 to be the pro—Q,—algebraic
groupoid pro-representing the functor

AGpd — Set
H— HomTopGpd(Fa H(Qy)),

where TopGpd denotes the category of topological groupoids, and H(Qy) is endowed
with the topology induced from Q. Note that this exists by the Special Adjoint Functor
Theorem [28, Theorem V.8.2], with the algebraic groups GL, providing the data for
the solution set condition (by Tannakian duality). Given a set of primes L, define the
L—algebraic completion T'L-212 to be (I'L)2¢_ If P is the set of all primes, we simply
write [al2 ;= [ Pualg,

Remarks 3.2 Since representations with finite monodromy are algebraic there is a
canonical retraction I'L+21¢ — T'AL of pro-algebraic groupoids.

The motivating example for this definition is when I' = JT;’t(X ), the étale fundamental
groupoid of an algebraic variety.
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The following definition is a slight generalisation of [38, Definition 2.1], and extends
Definition 2.20 to pro-groupoids:

Definition 3.3 Given a pro-groupoid I" with Ob(I") discrete, a reductive pro-algebraic
groupoid R over QQg, and a Zariski-dense (ie essentially surjective on objects and
Zariski-dense on morphisms) continuous map

p: T — R(Qy),

where the latter is given the £—adic topology, we define the relative Malcev completion
rL.pMal (op PL.RMaly ¢4 be the universal diagram

rie & Lo, Ly Ry,

where R is the groupoid equivalent to R on objects ObI" (as in Definition 2.20),
with f: TL-P-Mal _ R 4 pro-unipotent extension of pro—Qy —algebraic groupoids, g a
continuous map of topological groupoids, and their composition equal to p.

To see that this universal object exists, we note that this description determines the linear
representations of [ L.p-Mal (45 described in Remarks 3.4). Since these form a multifi-

bred tensor category, Tannakian duality [37, Remark 2.6] then gives a construction of
FL,p,Mal .

Remarks 3.4 By considering groupoid homomorphisms I'*2 — [ [, GL,(Qy), ob-
serve that finite-dimensional linear representations of I'Z22 are just continuous Q,—
representations of 'L,

Finite-dimensional representations of T'Z-?Mal are only those continuous Qg —represen-

tations whose semisimplifications are R-representations. Moreover, if we let R be the
reductive quotient 'L of T L-2g then ['L-ale = L, R.Mal

Definition 3.5 Given an n—dimensional Q,—vector space V, a lattice A in V isa
rank n Zy—submodule A C V.

Lemma 3.6 If I is a pro-finite group, V' an n—dimensional Qg —vector space, and
p: ' = GL(V) a continuous representation (where the latter is given the {—adic
topology) then there exists a lattice A C V such that p factors through GL(A).

Proof Since T is pro-finite, it is compact, and hence p(I") < GL(V') must be compact.
[46, LG 4, Appendix 1, Theorems 1 and 2] show that every compact subgroup of
GL(V) is contained in a maximal compact subgroup, and that the maximal compact
subgroups are of the form GL(A). Explicitly, we choose a lattice Ay C V', then set
A= Zyer p(¥)Ao (with compactness ensuring the sum is finite). |
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Remark 3.7 In particular, when I' = net(X ), this means that finite-dimensional
representations of I'¥2 are smooth Q g—sheaves on X, while finite-dimensional repre-
sentations of I'"™ are semisimple Qg —sheaves. The Zariski-dense map p: I' — R(Qy)
identifies R-representations with a full tensor subcategory of semisimple QQ,—sheaves,
and I'*Mal_representations are Artinian extensions of these semisimple sheaves.

Proposition 3.8 Given a locally pro-finite groupoid I" with discrete objects (as in
Remark 1.10), and a Zariski-dense continuous map

p: It — G(Qp)

to a pro—Q —algebraic groupoid, there is a canonical model Gz, for G over Z, for
which p factors through a Zariski-dense map

PZ,- e — GZ@ (Ze)

Proof Assume that p is an isomorphism on objects (replacing G by an equivalent
groupoid). Let C be the category of continuous I'—representations in finite free Z,—
modules. For each x € Ob T, this gives a fibre functor wy from C to finite free
Z.y—modules.

If we let D be the category of I'—representations in finite-dimensional Q;—vector
spaces, with the fibre functors also denoted by wy , then the category of G —represen-
tations is equivalent to a full subcategory D(G) of D, since p is Zariski-dense. By
Tannakian duality (as in [37, Section 2.1]), there are isomorphisms

G(x, y)(A) = 150% (wx|p(G). @y D(G)) (A),
where Iso® is the set of natural isomorphisms of tensor functors.

Now, by Lemma 3.6, the functor ®Q,: C — D is essentially surjective. Let C(G) be
the full subcategory of C whose objects are those A for which A ® Q is isomorphic
to an object of D(G); these are I'-lattices in G —representations. Define

Gz,(x, y)(A) :=150% (0x|c(G). wylcG)) (A).
observing that this is an affine scheme (since it preserves all limits), with Gz, Q=G

Equivalently, we could set O(Gz,) C O(G) tobe { fLf(p(y)) € Zy Yy €eT}. O

Definition 3.9 Given a finite-dimensional nilpotent Lie algebra u over Q, equipped
with the continuous action of a pro-finite group I' (respecting the Lie algebra structure),
we say that a lattice A C u is admissible if it satisfies the following:
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(1) A is a I'—subrepresentation.

(2) A is closed under all the monomials in the Campbell-Baker—Hausdorff formula

(-t i i+ si)7!
1 a_ b — i=1 ripSigrepsz  ginpsn ,
og(e®-e?) E — E . [a a a ]

lspleearylsy,!

n>0 ri+s;>0
1<i<n

where

ri $1 n Sn

——
R R e A A A A N A AT R

understood to be 0 if s, > 1 orif s, =0 and r,, > 1.

Lemma 3.10 If A C u is an admissible lattice and u € N/, then the image of A under
the exponential map
exp: u — exp(u)

is a pro-finite subgroup.

Proof We may regard exp(u) as being the set u, with multiplication given by the
Campbell-Baker—Hausdorff formula (which has only finitely many terms in this case,
since u is nilpotent). Since A is closed under all the operations in the formula, it is
closed under multiplication. As exp is a homeomorphism, exp(A) is compact and thus
pro-finite. O

3.2 Pro-Q,-algebraic homotopy types

We now proceed as in Section 2.2, extending to a simplicial framework in order to
study the loop groupoid (and hence the whole homotopy type), rather than just the
fundamental groupoid.

Definition 3.11 Given a pro-simplicial groupoid G with Ob(G) a discrete set, we
define the pro-algebraic completion GE*2 € sAGpd to represent the functor
sAGpd — Set
H > Homyropgpd (G, H(Qy)),
where TopGpd denotes the category of topological groupoids. Note that Lemma 1.17

implies that we can compute this levelwise by (GL#2), = (G,)L-2.

Remark 3.12 1t is natural to ask whether G > GL-22 is left Quillen for any suitable
model structure on pro—L simplicial groupoids. This cannot be the case, since the
functor is not even a left adjoint, essentially because Q; is not pro-finite.
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Definition 3.13 Given a pro-simplicial groupoid G with Ob(G) discrete, a reductive
pro-algebraic groupoid R over Q;, and a Zariski-dense continuous map

p: mo(G)™ — R(Qy),

where the latter is given the {—adic topology, we define the relative Malcev completion
GL-PMl e sE(R) CsAGpd| R by (GL-PM), .= (G,)L-PoanMA for ay: Gy — oG
the canonical map.

Note that JTo(GL’p’Mal) = no((;)L,p,MaI.

Lemma 3.14 If the continuous action of a pro-finite group I' on ue € sNg, is
semisimple, then u is the union of its I" —equivariant simplicial admissible sublattices.

Proof Since the action of I' is semisimple, we may take a complement Ve C ue
of [ue, ue] as a simplicial I"—representation. Given a lattice M C V,let g(M) Cu
denote the Z;—submodule generated by M and the operations in the Campbell-Baker—
Hausdorff formula. Since u is nilpotent, it follows that g(A/) is a finitely generated
Z.¢y—module, and hence a lattice in u. By semisimplicity and Lemma 3.6, there exists a
I'—equivariant lattice Ae C Vo. The lattices £7"As C Vo are also then I"—equivariant
for n > 0, so the lattices g(£™"As) C e are all admissible.

It only remains to show that | g({7"A) — u is a surjective map of Lie algebras. This
follows since | J£™"A — u/[u, u] is surjective. |
Lemma 3.15 Given a compact topological space K and a finite-dimensional nilpotent
Q¢ —Lie algebra u, the map

Homs (K, Zy) ®z, u — Homs (K, u)
is an isomorphism.
Proof First observe that the map is clearly injective, since u is a flat Z,-module.

For surjectivity, note that the image of f: K — u must be contained in an admissible
sublattice A C u (by compactness and Lemma 3.14). Now,

Home (K, A) = Homes (K, Zy) Rz, A,

since A is a finite free Z,—module. O

Definition 3.16 Given a continuous representation V' of n}j( in Qg—vector spaces,
recall the standard definition that

H*(X,V):=H"(X,A) ®z, Q.
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for any 7r X —equivariant Z—lattice A C V as in Lemma 3.6, and H* (X, A) as in
Definition 1.23.

Remark 3.17 If X is discrete, note that this is not in general the same as cohomology
H"(X, V%) of the discrete 7y X —representation V% underlying V. However, both
will coincide if H,(G, AY) has finite rank, by the Universal Coefficient Theorem and
Lemma 1.25.

Example 3.18 If X is a locally Noetherian simplicial scheme, we may consider the
étale topological type Xg, € pro(S), as defined in [10, Definition 4.4]. Since (Xg)o is
the set of geometric points of Xy, we may then apply the constructions of this section.
For a finite local system M on X, we have

H*(Xy, M) = H (X, M),
by [10, Proposition 5.9]. For an inverse system M = {M;} of local systems, we have

H* (Xg, M) = H* (lim C§, (X, My) = HE(X, (M),
i
where Cgt is a variant of the Godement resolution and Hzt(X ,(M)) is Jannsen’s
continuous étale cohomology [20]. If the groups Hz‘t(X , M;) satisty the Mittag-Leffler
condition (in particular, if they are finite), then

H* (X, M) = l(iing‘t(X, M;).
l

[10, Theorem 7.3] shows that X € S whenever the schemes X, n are connected and
geometrically unibranched. It seems that this result can be extended to simplicial
schemes (or even simplicial algebraic spaces) for which the homotopy groups n,é,ﬁ (Xn)
satisfy the m4-Kan condition [11, Section IV.4], provided the simplicial set 7 (X ),
given by 7 (X )y, := m(X}), the set of connected components of X}, has finite homotopy
groups.

Proposition 3.19 Take X € pro(S) with X discrete, and a Zariski-dense continuous
map

p: 7 (X)M — R(Qy),
for £ € L, with Ob R = Obns(X). Then G(X)L-PMal jg cofibrant (for the model

structure of Lemma 2.16), the map G(X)L/’p’Mal — G(X)L-PMal js an isomorphism
forall L C L', and

H*(G(X)LPM vy =~ H*(X, p*V).
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Proof Let A < R(Qg) be the image of p. Write { Xy }qer for the inverse system X .
For u € sN(R),

HomsTopGpd(G(X)’\L ,exp(W) X R)g = HomsTopGpd(G(X)AL ,exp(u) X A)a.

Since u € sA(R), the normalisation Nu is bounded in degrees < n, say. This
implies that u = cosk,4+1 u, the (n+1)—coskeleton, or equivalently that any simplicial
morphism Y — u is determined by the maps Y; —u; fori <n+1.

So any morphism f: G(X)"t —exp(u)xA is determined by the maps f;: G(X)l{\" —
exp(u;) X A for i <n+ 1. Now, by Lemma 3.14, exp(ut) x A is the union over all
admissible A-equivariant sublattices A C u of exp(A) x A. Since each G(X )I{\L
is compact, its image in exp(u;) X A must be contained in exp(A;) X A for some
admissible A C u. By choosing A large enough that this holds forall i <n+ 1, we
see that

HomsTopGpd(G(X)AL ,exp(u) X R)R
= lim  Homgropcpa(G (X)L, exp(A) X A)a

—
A Cu admissible
= lim  Hom, pro(Gde)(G(X)’\L ,exp(A) x A)a,

—
A Cu admissible

because pro(GpdL) is a full subcategory of TopGpd. Here, exp(A) x A € pro(sGpdF)
denotes the pro-object {(exp(A)/ exp(£™ A))x A}y, . From now on, we will abuse nota-
tion by writing exp(A /£" A) or even exp(A /£™) for the finite group exp(A)/ exp(£"A).

Now, since A = cosk, 11 A, any morphism f: H — exp(A/€™A)x A is determined
by the maps f; for i <n—+1. As exp(A /€™ A) is levelwise finite, and filtered colimits
commute with finite limits, this means that

Homs pro(Gde)(G(X)AL ) eXP(A) A A)A = Hompro(stdL)(G(X)AL s CXP(A) x A)A

Hence Homgropgpa(G(X)"E, exp(u) x R) g

= h_n)l Hompro(stdL)(G(X), exp(A) X A)A.
A Cu admissible

Under the adjunction G < W, this becomes

1i_r>n Homy,os) (X, W (exp(A) x A) i a-
A Cu admissible

This expression is independent of L, so we have shown G (X )L/’p’Mal — G(X)L.pMal
is an isomorphism for all L C L.
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For p: u— v an acyclic small extension with kernel 7 in s/N'(R), and an admissible
lattice A’ <u, consider the map A"’ — p(A’). This is surjective, and Hx (A'N1)QQ, =
0, since (AM'NT)® Q= 1. As Hy(I) = 0, we may choose a A—equivariant lattice
A'NT <M <1 such that Hy(M /€M) =0. Let A := A’ + M, noting that this is an
admissible lattice (p being small), with the maps A /£" — p(A)/£" all acyclic.

In order to show that G(X)L-»Mal is cofibrant, take an arbitrary map f: G(X) - —
exp(v) x A over p; this must factor through exp(p(A’)) for some admissible lattice
A’ < u, and we may replace A by A’ as above. It therefore suffices to show that the
corresponding map _
f1 X = Wi(exp(p(A)) @A)

in pro(S) lifts to W (exp(A) x A). For each n € N, we have a map

Jn: Xamy = W (exp(p(A)/€") x A),
and these are compatible with the structural morphisms.

We now prove existence of the lift by induction on n. Assume we have g,: Xymn) —
W (exp(A/1™) x A), such that p o g, = f,. This gives a map

(Jn+1:8n)" Xagm) = W exp((p(A)/L"F1) xpay/en (ML) % A).
However, A/¢"T1 — (p(A) /"1 Xp(A)/en (A /L") is an acyclic small extension, so
W (exp(A/€"1) % A) — W (exp((p(A) /L") X pay en (A/E7)) x A)

is a trivial fibration, so we can construct a lift g, 1: Xg41) —> W (exp(A /L") xA).
This completes the proof that G(X)L-*Mal s cofibrant.

Finally, if V is an R—-representation then H"+!(G(X)L-»Mal V) is the coequaliser
of the diagram

— 1
Homg apay (GX)HPMI (N TV [=n])A)
——= Homyagpayr (G (X)EB-PMal N =1y [—p]).
For a A—equivariant lattice A C V, this is the direct limit over m of
e — — 1
Hompro(SJ,WR)(X’ W((N le mA[_n])A x R))
—= Hom_ (7 g) (X W (N~ ~™A[—n]x R)).

Hence

Hn+l (G(X)L’p’Mal, V) ~ li_n)lHi'H—l (X, l_mA) — Hn+1(X, A) ® Qe — Hn+1(X, V),
m

as required. |

Geometry € Topology, Volume 15 (2011)



550 Jonathan P Pridham

Definition 3.20 Given X and p as above, define the relative Malcev homotopy type
Xp,Mal = G(X)P,p,Mal

where P is the set of all primes, noting that this is isomorphic to G(X)L-*-Mal for all
L > £, by Proposition 3.19 and Proposition 2.39.

Define xhae.— gx)lde,
Remark 3.21 Note that if X € S, this definition of Malcev completion differs

slightly from the Malcev homotopy type X *Mal of Definition 2.51, which is given by
G(X)PMal However, the following lemma rectifies the situation.

Lemma 3.22 For X €S and p: ny(X)"t — R(Qy) Zariski-dense and continuous,
there is a canonical map

G(X),D,Mal N G(X)L’p’Mal;
this is a quasi-isomorphism whenever the groups H" (X, V') are finite-dimensional for

all finite-dimensional R -representations V .

Proof Existence of the map is immediate. To see that it gives a quasi-isomorphism,
Proposition 2.39 shows that we need only look at cohomology groups. Given an
R-representation V' corresponding to a local system V over Qy on X, the map on
cohomology groups is

H*(X"L V) - H*(X,V);
this is an isomorphism by Remark 3.17. a

Definition 3.23 Define pro-algebraic (or schematic) and relative homotopy groups by
W (X M) 1= 1 (G(X)EME) and @y (X PM) 1= 7, (G(X) PPN,

Define pro-algebraic (or schematic) and relative fundamental groupoids by
wjf(XAL) = zrf(X)L’alg and sz(X”’Mal) = JT;TY”’M‘H.

Define wy (A? ), Wn ()? ) by the convention that X = XP_for P the set of all primes.

Note that Lemma 3.6 implies that for a locally Noetherian scheme X, finite-dimensional
wy (Xé/t\L)—representations correspond to smooth Qg —sheaves on X .

The following now follow immediately from Proposition 2.39
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Corollary 3.24 A map f: X — Y in pro(S), with Xy, Yy discrete, induces an
isomorphism
fL,alg. XL,alg_) YL,alg

of homotopy types if and only if the following conditions hold:

(1) f* induces an equivalence between the categories of finite-dimensional semisim-
ple continuous Qg —representations of (wy X )"t and (7Y )" .

(2) For all finite-dimensional semisimple continuous Q¢ —representations V of ws Y,
the maps

SEHAY, V) > HY X, f[*V)
are isomorphisms.
Corollary 3.25 Takeamap f: X — Y in pro(S), with Xy, Yy discrete, and with a

Zariski-dense morphism p: (nsY )"t — R(Qy) such that po f: (77 X)" — R(Qy)
is also Zariski-dense. Then f induces an isomorphism

fR,Ma1: XR,Mal — YR,Mal
of homotopy types if and only if for all R—representations V, the maps
f* H*(Y, p*V) = H*(X, f*p*V)
are isomorphisms.
3.3 Equivariant cochains

Proposition 2.79 showed how the schematic homotopy type of a manifold can be
recovered from the de Rham complex with local system coefficients. We will now
establish an analogue for algebraic varieties, involving an étale Godement resolution
with coefficients in smooth QQ—sheaves.

Lemma 3.26 If A is a I" —representation in pro-simplicial groups such that A xT" €
pro(sGpd), then

HomF,pro(S) (1‘7’ WA) = Hompro(S)¢BF(X’ W(A A F)),

for X as in Definition 1.20.

Proof The calculation is essentially the same as for [37, Lemma 3.53]. O
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Definition 3.27 Given an ind-finite rank Z,—local system (ie a filtered direct system
in the category of finite rank Z,-local systems) V = {Vy}4, define

C*(X, V) :=limC*(X, V),

o

where the right-hand side is given in Definition 1.21.

Definition 3.28 Given a pro-algebraic groupoid G over Zg, define O(G) to be the
G x G -representation given by global sections of the structure sheaf of G, equipped
with its left and right G —actions.

Given a representation p: my X — G(Zy), let O(G) be the G-representation in
(ind-finite rank) Zy—local systems on X given by pulling O(G) back along its right
G —action.

Definition 3.29 Given X, L, p, R as in Proposition 3.19, let Rz, be the Z;—model
for R constructed in Proposition 3.8, and set

C*(X, O(R)) :=C*(X, O(Rz,)) ®z, Q.

Theorem 3.30 For X, L, p, R as in Proposition 3.19, the relative Malcev homotopy

type
G(X)LPMa ¢ sAGpd | R

corresponds under the equivalences of Proposition 2.50 and Theorem 2.74 to the R—
representation
C*(X, 0(R))

in cosimplicial k —algebras, equipped with its natural augmentation to

[[Cxom)= ] ORI, -).

x€Xy x€0b R
Proof We need to show that, for u € sA/(R),
Hom; agpayr (G(X)5*M, exp(u) x R)
= Hom, ari(r) (Spec C*(X. O(R)). W (exp(w))).
Adapting the proof of Proposition 3.19, we know that
Homygpayr (G(X)"P M, exp(u) x R)
2= lim Homyro(s) (X, W (exp(A) % Rz, (Z¢))) BR, (Z.¢)»

A
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where the limit is taken over A C u admissible. By Lemma 3.26,

Hompeo(s) (X, W (exp(A)% Rz, (Z1))) BR,, z.) THomp, (z,) pro(s) (X, W exp(A)).

If we regard exp(A) as the Z,—valued points of the group scheme exp(A)(A) :=
exp(A ® A), then this is an affine space, so

Homyo(s) (X, W exp(A)) = Homy arey,, (Spec C* (X, Zg), W exp(A)).

Since A = A ®§g O(Rz,), we then have

Homg, Zo).pro(s) (X, W exp(A))
= Homy afr(Ry,,) (Spec C* (X, O(Rz,)). W exp(A)).

The map

lim Homy afi(&;,, ) (Spec C* (X, O(Rz,)), W exp(A))
A
— lim Homy afr(g,,, ) (Spec C* (X, O(Rz,)) ® Qq, W exp(A))
A

is clearly injective. However, since there exists an admissible lattice A’ with /7" A C A,
the map must also be surjective. Finally, note that

Homy Aff(RZZ)(SpeC C*(X,0(Rz,)) ® Q, Wexp(A))
= Homy af(g) (Spec C*(X, O(R)), W exp(A ® Qy)),

as required. O

Remarks 3.31 We could use Proposition 2.70 to replace C*(X, O(R)) with aDG alge-
bra, giving a more reassuring analogue of the de Rham algebra used in Proposition 2.79
to govern relative Malcev homotopy types of manifolds. This is the approach taken
by Olsson [33], and when R = 1, it corresponds to Deligne’s Q,—homotopy type [5,
Section V]. However, in the sequel we will work systematically with cosimplicial rather
than DG objects — both approaches being equivalent, the transfer can add unnecessary
complication.

Note that if we take a scheme X', then Proposition 2.76 adapts to show that C*(Xg, V)
is a Godement resolution for the continuous étale cohomology of V. Under the
comparison of Corollary 2.77, this shows that for an algebraic variety X, @alg
agrees with the £—adic homotopy type discussed in [49, Section 3.5.3].

Geometry € Topology, Volume 15 (2011)



554 Jonathan P Pridham

Given any morphism p: @y (X’Zt)red — R to a reductive group, there is a forgetful

functor ,oﬁ: sN (R) — sN (f (X’Et)md). If we write Loy for the derived left adjoint
and p is surjective, then

Ru(G(Xe)* M) = LpgRy (G(Xe)™).

Note that for C a Tannakian subcategory (see Definition 2.6) of FD Rep(w ()’(;)red)
with corresponding groupoid G the homotopy type X¢, of [33, 1.5] is equivalent to
L pgRy (G(X)alg) for p: wf(X yed . G

3.4 Completing fibrations

Observe that the definitions and results of Section 2.4 extend naturally to pro-groupoids
and pro-spaces; we will make use of this extension without further comment.

Theorem 3.32 Take a pro-fibration f: (X,x) — (Y, y) of connected objects in
pro(S) with connected fibres, and set F := f~1(y). Take a Zariski-dense repre-
sentation p: mw1(X,x) — R(Qy) to a reductive pro-algebraic group R, let K be the
Zariski closure of p(mwi(F,x)), and set T := R/K. If the monodromy action of
m1(Y, y) on H*(F, V) factors through wy (Y, y)TM2 for all K —representations V,
then G(F, x)K-Mal js the homotopy fibre of G(X, x)®Mal . G(Y, y)T:Mal,

In particular, there is a long exact sequence

RN w-n(F’ x)K,Mal N wn(X, X)R,Mal N wn(Y, y)T,Mal — Wi (F, x)K,Mal N

- — wy (F, x)K’Mal — (X, x)R’Mal — w1 (Y, y)T’Mal — 1.

Proof We adapt the proof of Theorem 2.43.

First observe that p(7;(F, x)) is normal in 771 (X, x), so K is normal in R, and 7 is
therefore a reductive pro-algebraic group, so (¥, y)T"M2 is well-defined. Next, observe
that since K is normal in R, Ry(K) is also normal in R, and is therefore 1, ensuring
that K is reductive, so (F, x)&-Ma is also well-defined.

Consider the complex O(R)® (1) O(G(Y, y)TMaly of G(X, x)R-Mal_representations,
regarded as a cosimplicial G(X, x)-representation. Since G(F, x) — ker(G(X, x) —
G(Y, y)) is a weak equivalence, the Hochschild—Serre spectral sequence for f (see
Proposition 2.36) with coefficients in this complex is
EY) = H/(G(Y, y),H/(F, O(R)) ®o(r) O(G(Y, y)":M)
= H'*/(G(X, x), O(R) ®o(r) O(G(Y, y)M)).

Geometry & Topology, Volume 15 (2011)



Galois actions on homotopy groups of algebraic varieties 555

Regarding O(R) as a K—representation, H*(F, O(R)) is a @ (Y, y)T"Ma _represen-
tation by hypothesis. Hence H*(F, O(R)) ® o(r) O(G(Y, y)T:Maly s a cosimplicial
G(Y, y)T’Ma] —representation, so
H'(G(Y. y).H/ (F, O(R)) ® o(r) O(G(Y. y)TM)

= H'(G(Y. )™ H/ (F, O(R)) ® o(r) O(G(Y, »)TM),
by Lemma 2.42.

Now, H*(F, O(R)) ® o(ry O(G(Y, y)T"Ma) is a fibrant cosimplicial G(Y, y)T-Mal—
representation, so

H (G(Y, y)TMal HY (F, O(R)) ®o(r) O(G(Y, y)T:Malyy
~ HiF(G(Y, y)TsM*ﬂ’ H/ (F, O(R)) ® o1 O(G(Y, y)T,Mal))
_ {Hf(F, O(R)) ®oryk =H/(F,0(K)) i=0,
0 i #0,
s0 H (G(X.x), O(R) ®ocr) O(G(Y, y)"M) = H/ (F, O(K)).

Now, let F be the homotopy fibre of G(X, x)®-Ma — G(Y, y)T"Mal (which is just the
kernel as this map is surjective), noting that there is a natural map G (F, x)&-Mal . F.
Lemma 2.42 implies that

HY (G(X, x), O(R) ® o) O(G(Y, y)T:Mahy)
= H/(G(X.0)*M O(R) ®o(r) O(G (Y. )™M,

and [37, Theorem 1.51] gives a Hochschild—Serre spectral sequence
H(G(Y, y)"MH/ (F, O(R) ® oy O(G(Y, y)TMY)

— HitJ (G(X, x)R’Mal, O(R) ® (1) O(G(Y, y)T,Mal))'
The reasoning above adapts to show that this spectral sequence also collapses, yielding

H/ (F, 0(K)) = H/ (G(X, x), O(R) ® o(r) O(G(Y, y)TM)).
We have therefore shown that the map G(F, x)K Mal 7 gives an isomorphism
H*(F, O(K)) — H*(G(F,x)* M, 0(K)),

and hence isomorphisms H*(F, V) — H*(G(F,x)X-Md V) for all K-represen-
tations V. Since this is a morphism of simplicial pro-unipotent extensions of K,
[37, Corollary 1.55] implies that G(F, x)X-Mal s F is a weak equivalence. ]

Geometry € Topology, Volume 15 (2011)



556 Jonathan P Pridham

Examples 3.33 Note that we can apply this theorem to fz: Xz — Yz whenever
f: X — Y is geometric fibration in the sense of [10, Definition 11.4]. This includes
smooth projective morphisms, as well as smooth quasiprojective morphisms where
the divisor is transverse to f. The fibre of f; over y will then be equivalent to

/"D

Another source of examples comes from nerves of pro-finite groups. Any surjection
g: I' = A of pro-finite groups gives a pro-fibration BI' — BA, with fibre B(ker g).

Of course, even if f: X — Y is not a pro-fibration, we can take a fibrant replacement.
This will have connected fibres if and only if 71 (X, x) — w1 (Y, y) is surjective, and
the theorem then describes the homotopy fibre of f.

3.5 Comparison with Artin-Mazur homotopy groups
Lemma 3.34 Let f: X — Y be a morphism in pro(S)g for which the map
7n(f): n(X) = mp(Y)

is a pro-isomorphism for n < N and a pro-surjection for n = N + 1, and take a
continuous Zariski-dense morphism p: wyY — R(Qg). Then the map

wn(f): (X, po f)Mal — (Y, P)Mal
is an isomorphism for n < N and a surjection forn = N + 1.
Proof The proof of Lemma 2.22 carries over to this generality. a

Definition 3.35 By analogy with Definition 2.23, say that a locally pro-discrete
groupoid I' is n—good with respect to a continuous Zariski-dense representation
o: I' > R(Qg) to a reductive pro-algebraic groupoid if for all finite-dimensional
»Mal_representations 1, the map

HY(TPM V) — H(T, V)
is an isomorphism for all i < » and an inclusion for i =n + 1. Say that I' is good
with respect to p if it is n—good for all .
If T is (n-)good relative to I'™¢, then we say that I is algebraically (n-)good.
Lemma 3.36 A pro-groupoid I' is N —good with respect to p if and only if for any
finite-dimensional T'°-Mal —representation V, and « € H*(I', V) for n < N, there

exists an injection f: V — W, of finite-dimensional I'°"M _representations, with
f(a) =0eHY (T, Wy).

Proof This is a special case of the results of [41, Section 1.2.3], which adapt directly
from groups to groupoids. |
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Lemma 3.37 Let ' be a locally finitely presented (L, N)—good groupoid and let
p: T"t — R(Qy) be a Zariski-dense representation, with £ € L. Then T is N —good
relative to p: I' — R(Qy) if and only if T"L is N —good relative to p.

Proof Take a finite-dimensional R-representation V. By Lemma 3.22, (BI")?Mal ~
(BT)L-PMal_Gince T is L—good, Proposition 1.36 gives that 7, ((BI')*L) = 0 for
all 1 <n < N. Applying Lemma 3.34 to the morphism (BT')". — B(I'*L), the
observations above show that

ZD’n(BF)’O’Mal — w.n(B(F/\L))L,p,Mal
is an isomorphism for » < N and a surjection for n = N 4 1.

Now, [41, Section 1.2.3] shows that a pro-group G is N —good relative to p if and
only if @w,(BG)LPMd =0 for 1 <n < N, and the same proof adapts to groupoids.
Thus T is N —good relative to p if and only if T'Z is so. |

Examples 3.38 A pro-finite group I is good with respect to a representation p: T —
R whenever any of the following holds:

(1) T is finite, or T2 >~ A"L  for A a finitely generated free discrete group.
(2) 'L =~ A" for A afinitely generated nilpotent discrete group.

(3) 't = A" for A the fundamental group of a compact Riemann surface. In
particular, this applies if I' is the fundamental group of a smooth projective
curve C/k, for k a separably closed field whose characteristic is not in L.

@4 Ifl - F—T —1II —1 is an exact sequence of groups, with F finite and
FAL — T'AL injective, assume that TIL is good relative to R/p(F), where
denotes Zariski closure. Then I' is good relative to p.

Proof Combine Lemma 3.37 with Examples 1.28 and [37, Examples 3.20]. |

Remark 3.39 For an example of an important pro-finite group which is not good
with respect to a representation, note that Sp,(Z¢) is not good with respect to the
natural map p: Spg(Z¢) — Spy(Qy) for g = 2. In fact, w,((B Spg(Zg))p’Mal) ~ Gyg.
This issue arises in [14], considering the pro-finite mapping class group I'g acting
on a genus g curve. The action on cohomology glves amap p: I'g — Sp,(Zy)
with kernel T, the Torelli subgroup, and the map T, bMal_, ker(Fp = Spg) has
kernel G,. Theorem 3.32 allows us to interpret this copy of G, as the image of the
connecting homomorphism @ ((B Spy(Z))PM*) — T, h Mal
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Theorem 3.40 Let L be a set of primes containing £, and take X € pro(S)g with fun-
damental groupoid 7ty X =T, equipped with a continuous Zariski-dense representation
p: T — R(Qy) to a reductive pro-algebraic groupoid. If

(1) (X", —) ®5 Qg is finite-dimensional for all 1 <n < N, and

(2) the T'L —representation 7w, (XL, —) ®z Qg is an extension of R-represen-
tations (ie a L.p.Mal —representation) forall 1 <n < N,

then for each x € X there is an exact sequence

w41 (X PN ) = @y ((BT)EPMA)

TR

— AN (X, X) ®5 Qp — oy (X LPMA y) —— y ((BT) LpMaly — ...

= (XM x) @5 Qp — wry (X BPMA ) —— 7, ((BT) LoPMaly — 0,

In particular, if in addition Tt is (N +1)—good (resp. N —good) with respect to p,
then the canonical map

Tn(X M, =) ®5 Qg — wy (X 1AM
is an isomorphism for all n < N (resp. an isomorphism for all n < N and a surjection

forn=N).

Proof Without loss of generality, we may assume that X is connected, choose a
point x € X, and replace R with the group R(x,Xx). Let (f , X) be the universal
cover of (X, x), and note that we have a homotopy fibration sequence (f ,X) —
(X, x) —» Bmi(X, x), which means that we can apply Theorem 3.32 (after taking a
fibrant replacement for (X, x) — Bm(X, x)). This immediately gives the long exact
sequence

e (X, x) > (X, x)BM s (B (X, x)) M 5 g,y (X, x) KoM

== wp(X.x) = (X, ) My (B (X, x)) M 0,
It therefore suffices to show that
Ta (X", X) ®5 Qp — wy (X5 x)

is an isomorphism for n < N.
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We may assume that X = {1\7& }a 1s an inverse system of fibrant simplicial sets, and
then form the tower {X (n)}, by setting X (n) = {Xq(n)}o, Where {Xy(n)}, the
Moore—Postnikov tower of X, .

Note that if X (V) satisfies the theorem, then we can apply Lemma 3.34 to the morphism
X — X(N),so X will also satisfy the theorem. We now prove by induction on # that
X (n) satisfies the theorem for n < N.

Forn=1, X (1) is contractible, making the long exact sequence automatic. Now,
assume that X (n — 1) satisfies the inductive hypothesis, and consider the pro-fibration
X (n) — X (n—1), with fibre E(n) over x. Properties of the Postnikov tower give
that n,X(n) = m; X forall i <n, with E(n) being a K(mw, X, n)—space.

The long exact sequence of Theorem 3.32 gives w; (E(n)¥8) = w;(X (n)L p-Maly for
i > n, and exact sequences

@i (E(n)"8) — w; (X ()5"8) > m;(X ") @5 Q¢ — wi—1 (E(n)™).

Since E(n) is a K(m, X, n)—space, the problem thus reduces to establishing the the-
orem for the case when X is a K(i,n) space (for n > 2), and R = 1. Unlike [37,
Theorem 1.58], we cannot now immediately appeal to the Curtis convergence theorem
to show that for any pro-discrete abelian group 7 and »n > 2, the map

G(K(w.m)"" — N™H (7 @5 Qu[1 —n])
is a weak equivalence of simplicial unipotent groups.

Instead, observe that we may replace = by 7t, so assume that 7 is a pro—{ group.
Since m ®z, Qg is finite-dimensional, we may write 7 = v ! for v an abelian group
of finite rank. On cohomology, we have maps

(1) H' N ®z, Qel —n]), Q¢) — H*(K(w,n), Qg) — H* (K(v,n), Qp).

By [44, Theorem 1.3.4], the Lie algebra v ® 7 Q[1 — n] is the Qg —homotopy type
of K(v,n). Since 7 ®z, Q; = v ®z Qg, the composite is an isomorphism in (),
while the second map is an isomorphism by Lemma 1.35. Thus the first map is also an
isomorphism, as required.

For the final part, we just note that [41, Section 1.2.3] shows that I" is N —good relative
to p if and only if w,((BT)L-PMaly =0 for 1 <n < N. m|

3.6 Comparison of homotopy types for complex varieties

Let X, be a simplicial scheme of finite type over C. To this we may associate the étale
homotopy type X € pro(S) (as in Example 3.18). There is also an analytic homotopy

Geometry € Topology, Volume 15 (2011)



560 Jonathan P Pridham

type Xan := diag Sing(Xe(C)) € S, where diag is the diagonal functor on bisimplicial
sets. We now compare the corresponding schematic homotopy types.

Lemma 3.41 If G is a pro-algebraic group over Qg, and p: wr(Xa) — G(Qy)
a representation with compact image (for the {—adic topology on G(Qy)), then p
factorises canonically through (X)), giving a continuous representation

e

p: 7wr(Xg) = G(Qy).

Proof It follows from [10, Theorem 8.4] that
T[f(Xét) = ”f(Xan)-

Since G(Qy) is totally disconnected, any compact subgroup is pro-finite, completing
the proof. |

Now, given a reductive pro-algebraic groupoid R, and p: wr(Xc) — R(Qg) with
compact Zariski-dense image, we may compare the relative Malcev homotopy type
XMl of [37, Definition 3.16] with the relative Malcev homotopy type X’ oMal of
Definition 3.20, since both are objects of Ho(sE(R)).

Theorem 3.42 For X, p as above, there is a canonical isomorphism

p,Mal 0,Mal
XOMal o xpMal,

Proof We adapt [10, Theorem 8.4], which constructs a new homotopy type X ¢, and
gives morphisms

Xoo < Xsot = Xan
in pro(S)s, inducing weak equivalences on pro-finite completions. By Lemma 3.22,
Xfr{Mal is quasi-isomorphic to fanp’Mal. By Lemma 1.37, the maps

Xét<—X

s.ét = Xan
are weak equivalences in S. Lemma 3.34 then implies that the maps

X/;p,Mal (_/fs\étp,Mal _))/(\mp,Mal
are quasi-isomorphisms, as required. a
Remarks 3.43 In particular, this shows that there is an action of the Galois group
Gal(C/K) on the relative Malcev homotopy groups (X {f{Mal) whenever X is

defined over a number field K and p is Galois-equivariant. The question of when this
action is continuous will be addressed in Section 5.

Geometry & Topology, Volume 15 (2011)



Galois actions on homotopy groups of algebraic varieties 561

It seems possible that the conditions of Theorem 2.25 might be satisfied in some cases
where those of Theorem 3.40 do not hold, giving @, (X a’f{Mal) =~ 11, (Xan) ®7z Qg , but
no such examples are known to the author.

4 Relative and filtered homotopy types

The aims of this section are twofold. Firstly, we adapt some of the framework of
pro-algebraic homotopy types to work over a base ring, rather than a base field. This
is motivated by the need in Section 7.2 to phrase the étale-crystalline comparison
over variants of Fontaine’s ring Bs of p—adic periods, rather than just over Q.
Secondly, Section 4.3 develops techniques for transferring filtrations systematically
from cochains to homotopy types. These will be used in Sections 6 and 7 to determine
the structure of homotopy types of quasiprojective varieties. This is possible because
the Gysin filtration on homotopy groups (unlike that on cohomology) is not determined
by weights of Frobenius, so imposes further restrictions.

4.1 Actions on pro-algebraic homotopy types

Fix a Qg—algebra A4, and a reductive pro-algebraic groupoid R over Q.

Definition 4.1 Define ¢ Alg,(R) (resp. DGAlg,(R)) to be the comma category
Alc Alg(R) (resp. A} DG Alg(R)), with model structure induced by Proposition 2.60
(resp. Lemma 2.68). Denote the opposite category by s Aff4(R) (resp. dg Aff4(R)).
Likewise, define

cAlgg(R)x:=cAlg4(R)] [[ 4® O(R)(x.-).
x€O0b R
DGAIlg(R)x = DGAlg4(R)| [] A® OR)(x.-).
x€Ob R

and so on.

Observe that the Quillen equivalence of Proposition 2.70 induces Quillen equivalences
between dg Aff4(R)« and s Aff4(R)«, so gives the following equivalence of cate-
gories:
Spec D
Ho(dg Aff4(R)+)____ Ho(s Aff 4(R)«).
R(Spec D*)

Although we do not have a precise analogue of Theorem 2.74 for Ho(dg Aff4(R)«)¢,
we have the following:
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Lemma 4.2 Given X € dg Aff(R)g« and g € dgj\A/(R),

Homypo(dg afis (R)) (X ® 4, Wg® A)

— A~ A~ R A~
~ HomHo(dg/\A/A(R))(G(X)@A’ g® A) x=Pay ®4) l_[ exp(Hog(x)®A).
x€0b R

Proof The proof of [37, Proposition 3.48] adapts to this context. |

4.2 Homotopy actions

Definition 4.3 Given g € sP R, define a group-valued functor Autg(g) on the category
of Qg—algebras by setting

Autg(g)(A) 1= Autep,, () (88 4).
Given G € sE(R), define RAut(G) := Autg(Ry(G)), noting that
RAut(G)(Qy) = Autyo(se(r)). (G)-
For G € sAGpd, set RAut(G) := Autgra (Ry(G)).
Lemma 4.4 If G € s£(R) is such that H (G, V) is finite-dimensional for all i and
all finite-dimensional irreducible R-representations V , then the group-valued functor
RAut(G)

is represented by a pro-algebraic group over Q. The map

RAu(G) - [] []AutrH(G.O(R)(x.-)))

x€ObR i

of pro-algebraic groups has pro-unipotent kernel.

Proof This is a consequence of [37, Theorem 5.13], which proves the corresponding
statement for the group ROut(G) := RAut(G)/ [ [, cob ¢ Ru(G)(x). Since the group
[ Lccob g Ru(G)(x) is pro-unipotent pro-algebraic, the result follows. |

Definition 4.5 Given a pro-algebraic groupoid G, we may extend the automorphism
group Aut(G) to a group presheaf over Q, by setting

Aut(G)(A) := Auty(G Xspec @, Spec A).
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Lemma 4.6 For G € sE(R), there is a group presheaf Aut” (G) over Qg, with the
properties that Aut” (G)(Qy) is the group of automorphisms of G in Ho(Ob G |sAGpd),
and that there is an exact sequence

1 — RAut(G) — Aut"(G) = Aut(R) — 1,
where Aut(R) is given the algebraic structure of Definition 4.5.

If H (G, V) is finite-dimensional for all i and all finite-dimensional irreducible R—
representations V', then « is fibred in affine schemes.

Proof Let R = G™¢, take Y € Ho(dg Aff(R)+) corresponding to G under the
equivalence of Theorem 2.74 and define

Auth(G)(A) ={(f.0): f € Aut(R)(A), 0 € Isoyy(dg aft(R).) (¥ ® A4, fﬁY ® A)}.

We may now take a minimal model m for G(Y) € dgj\Af (R), and observe that
Lemma 4.2 then gives

Hompo(dg aft4 Ry (Y ® 4, 1Y @ A)
2= Hompo(dg aft 4 (R)) (Y ® 4, fAWm® A)

= Homy 10 0 (ry,(G(Y)® A, m@A) xFOA T exp(Hom(x)®4)
x€0b R
= Homy, (g, 57, (ry) M A, mB A4) x84 T exp(Hom(x)&4).
x€O0b R

The proof that « is fibred in affine schemes is now essentially the same as Lemma 4.4,
which deals with the fibre over 1 € Aut(R). a

Definition 4.7 Given a pro-discrete group I', we say a morphism I' = Aut”(G)(Qy)
is algebraic if it factors through a morphism '€ — Aut” (G) of presheaves of groups.

Corollary 4.8 If H: (G, V) is finite-dimensional for all i and all finite-dimensional
irreducible R-representations V' , then a morphism I" — Aut” (G)(Qy) is algebraic
whenever I' — Aut(G™9) is so.

Proof We have I'¥2 — Aut(G™%), so §: ' — (I'¥i2 X Aut(Gred) Auth(G))(Qg). Since
Aut” (G) — Aut(G™) is fibred in affine schemes, the group on the right is pro-algebraic,
so 6 factors through I'®2 as required. O
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If R = G™, observe that there is canonical action of Aut” (G) on the direct sum
D con g H (G, O(R)(x, —)). In fact, we have a homomorphism

B: Aut"(G) — Aut(R) xAut( P v*@. O(R)(x,—)))

x€O0b R

of presheaves of groups.

Lemma 4.9 If H (G, V) is finite-dimensional for all i and all finite-dimensional
irreducible R-representations V', then the kernel of B is a pro-unipotent pro-algebraic

group.

Proof The kernel of f is just the kernel of
RAu(G) —> ] []Autz H(G.O(R)(x.-)).
x€ObR i

which is pro-unipotent by Lemma 4.4. |

4.3 Filtered homotopy types

4.3.1 Commutative algebras

Definition 4.10 Given a Qg—algebra A and a reductive pro-algebraic groupoid R
over Qg, define FDGAIlg,(R) (resp. Fc Alg,(R)) to consist of R—representations B
in nonnegatively graded cochain (resp. cosimplicial) algebras over A4, equipped with
an increasing exhaustive filtration JoB C J; B C--- of B as a DG (resp. cosimplicial)
(R, A)-module, with the property that (J;,B) - (JuB) C Jm+nB. Morphisms are
required to respect the filtration, and we assume that 1 € JoB.

Write FeAlg(R)s = FcAlg(R)| [[ OR)(x.-).
x€Ob R
FDGAIg(R)« := FDGAIg(R)| [[ O®R)(x.-).
x€0b R

where O(R)(x,—) = JoO(R)(x,—).

Given (B, J) € FDGAlg,(R) or Fc Alg4(R), there is a spectral sequence jE;*(B)
associated to the filtration J, with

JEY?(B) = H*T(Gr?,, B).
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Definition 4.11 We regard JET’*(B) as an object of FDGAIlg,(R), with

In(JET*(B))" = @D /E;"" T (B),

r<m

noting that d(Jy,(E()") C Ju_1(E1)" 1.

Definition 4.12 A map f: B — C is a fibration if the maps J, f: J, B — J,C are

all surjective. A map [ is a weak equivalence if the maps JET’*( f): JET’*(B) —
%, % . .

JE{(C) are all isomorphisms.

Lemma 4.13 There are cofibrantly generated model structures on the categories
FcMody(R) and FDG Mody4(R), with the classes of fibrations and weak equiva-
lences above.

Proof First, normalisation gives an equivalence Fc¢Modyg(R) — FDG Mody4(R) of
categories, preserving and reflecting fibrations and weak equivalences. It thus suffices
only to consider FDG Mody4(R)

Let Sy,,m denote the cochain complex consisting of 4 concentrated in degree n,
with JuSum = Sum and Jp—1Spm = 0. Let Dy, denote the cochain complex
consisting of 4 concentrated in degrees n,n — 1 with differential "~ the identity,
JmDnm = Dpm and Jp,_1 Dy = 0. By convention, Dy ,, = 0. Note that there are
natural maps Sy m — Dum.

For a set {V'} of representatives of irreducible R-representations in Q¢ —vector spaces,
define I to be the set of morphisms A ® Sy m @V - AR Dy, V, for n = 0.
Define J to be the set of morphisms 0 > A ® Dy, ® V', for n > 0.

Now Hom gp G Mod (R) (A ® Spm ® V, M) =Hompg(V, JnZ" M)
Hom Fp G Mod (R) (A ® Dum ® V, M) = Hompg(V, J, M" 1),
soamap f: M — N in FDG Modg(R) is then I —injective when
Iud"= 22 g Xd JnziN.f Z'M

is surjective, for all m,n, and J—injective when

T M1 ER Ju N1

is surjective for all n. Thus I —injectives are trivial fibrations, and J—injectives are
fibrations.
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Since Sy,m = Dy+1,m/Sn+1,m,the map 0— Dy, ,, is a composition 0 — Sy — Dy m
of pushouts of maps in /, so maps in J are all /—cofibrations. Since maps in J are
all weak equivalences, we have satisfied the conditions of [18, Theorem 2.1.19,] giving
the model structure claimed. O

Lemma 4.14 In the category FDG Mod(R) = FDG Modg, (R), all objects V are
cofibrant.

Proof Given V € FDG Modg, (R), it will suffice to show that Jo V' is cofibrant, and
that all the maps J,,—1V — J,, V are cofibrations, since V = lir_)n JnV . To do this,
we will show that these maps are transfinite compositions of pushouts of generating
cofibrations.

Now, since all R-representations are semisimple, we may choose decompositions
gr] V= M" @ N" ® dN"!, with dM" = 0. By semisimplicity, we may also
lift the R-modules M’ N? to M, N' C J,,V. Now d M C J,u_1V, so the map
Jm_1V — JuV is a pushout of @,(Syrim @ M") = @, (Dniim @ M") &
D, (Dnt1,m ® N ), and hence a cofibration. Since this argument also applies to
0 — JoV, we deduce that V is cofibrant. O

Proposition 4.15 There is a cofibrantly generated model structure on FDGAIg4(R)
(resp. Fc Alg4(R)), for which a morphism is a fibration or weak equivalence whenever
the underlying morphism in FDG Mody4(R) (resp. Fc Mod4(R)) is so (in the model
structure of Lemma 4.13).

Proof The forgetful functor FDGAlg4(R) — FDG Mod4(R) (resp. Fc Alg4(R) —
FcMody(R)) preserves filtered colimits and has a left adjoint, the free algebra functor.
Since the free algebra functor maps trivial generating cofibrations to weak equivalences,
we may apply [16, Theorem 11.3.2], which gives the required cofibrantly generated
model structure. The generating cofibrations and trivial cofibrations are given by
the images under the free algebra functor of the generating cofibrations and trivial
cofibrations in FDG Mod4(R) (resp. Fc Mod4(R)). O

4.3.2 Lie algebras

Definition 4.16 Define FAy (R) to be opposite to the category F Ny (R)°PP of R—
representations in ind-conilpotent (see Definition 2.44) Lie coalgebras C over A4,
equipped with an exhaustive increasing filtration JoC C J{C C ---, of C as an
(R, A)—module, with the property that V(J,C) C >, ., —,(JmC) ® (J,C), for V
the cobracket. Morphisms are required to respect the filtration.
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Similarly, Fd g/\Af "4(R) is opposite to the category of R—representations in nonnega-
tively filtered ind-conilpotent Ny—graded cochain Lie coalgebras over A. F SN 4(R)
is the category of simplicial objects in F. N 4(R). When A = Qg, we will usually drop
the subscript A.

Proposition 4.17 There is a closed model structure on Fd g./\Af 4(R) (resp. F sNg (R)),
in which a morphism f: g — b is a fibration or a weak equivalence whenever the
underlying map fV: Y — gV in FDG Mod4(R) (resp. Fc Mod4(R)) is a cofibration
or a weak equivalence.

Proof The proof of [37, Lemma 5.9] carries over to this context. O
4.3.3 Equivalences

Definition 4.18 Define Fc Alg(R)go, (respectively, FDGAIg(R)oo,. ) to be the full
subcategory of Fc Alg,(R)« (respectively, FDGAIlg,(R)+) consisting of objects B
with B®=Qy. Let Fc Alg(R)o+ (respectively, FDGAIg(R)o, ) be the full subcate-
gory consisting of objects weakly equivalent to objects of Fc Alg(R)go, (respectively,
FDGAIg(R)go, ). Define Ho(Fc Alg(R)«)o (respectively, Ho(FDGAIg(R)x)o) to
be the full subcategory of Ho(Fc Alg(R)«) (respectively, Ho(FDGAlg(R)«)) on
objects Fc Alg(R)y, (respectively, FDGAIlg(R)y, ). Denote the opposite category to
Fc Alg(R)go« by F's Aff(R)go«, etc.

Definition 4.19 Given g € Fs/V(R), we define Wg e Fs Aff(R) by

(Wg)(B) := W (exp(Homp mou(r) (8", (B)))) €S
for B € Alg4(R). Here, W is the classifying space functor of Definition 1.6, and exp
denotes exponentiation of a pro-nilpotent Lie algebra to give a pro-unipotent group.
Observe that this functor is continuous, and denote its left adjoint by G: Fs Aff(R) —
FsN(R).
Definition 4.20 Define functors

G
Fdg Aff(R)_T FdgN(R)
w

as follows. For g € F dg/\7 (R), the Lie bracket gives a linear map /\2 g— g. Write
A for the dual A: g¥ — /\2 g, which respects the filtration. This is equivalent to a
map A: g¥[—1] — Symm?(g¥[—1]), and we define

O(Wg) := Symm(g"[—1])
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to be the graded polynomial ring on generators g¥[—1], with a derivation defined on
generators by D :=d + A. The Jacobi identities ensure that D? = 0.

We define G by writing o B[1] for the brutal truncation (in nonnegative degrees) of
B[1], and setting
G(B)" = CoLie(oB[1]),

the free filtered graded Lie coalgebra over QQ;, with differential similarly defined on
cogenerators by D :=d + u, u here being the product on B. Note also that G(B) is
cofibrant for all B.

Definition 4.21 Define the category FsP(R) (resp. FdgP(R)) to have the fibrant
objects of FsN'(R) (resp. Fdg/N'(R)), with morphisms given by

Hompyp(g) (8. ) = Homyy, oy (8.5) x0T exp(ob(x)).
x€Ob R

R
Hom pagp(R) (9. ) = Homy g e )y (@ D) x¥PO0) [T exp(Hob(x)),
x€Ob R

where bé? is the Lie algebra Homyjea(g) (hg - Q¢) = Hom g noacg) (b - Q). acting by
conjugation on the set of homomorphisms.

Theorem 4.22 There is the following commutative diagram of equivalences of cate-
gories:
Spec D
Ho(Fdg Aff(R)«)o ____ Ho(Fs Aff(R)+)o

oo T el
FdgP(R) FsP(R),
N

where N denotes normalisation, D is denormalisation, and Th is the functor of Thom—
Sullivan cochains.

Proof The proof of Theorem 2.74 transfers to this context, making use of Lemma 4.14,
which implies that everything in the image of W is fibrant, as are all objects of
F dgjv (R) and F sN (R). On objects, the functor G is defined by choosing, for any
X € Ho(F's Aff(R)«)o (resp. X € Ho(Fdg Aff(R)«)o) a weakly equivalent object
X' € Fs Aff(R)go (resp. X' € Fdg Aff(R)go), and setting

G(X) = G(X),

for the functor G from Definition 4.20. O
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Although we do not have a precise analogue of this result for Ho(Fdg Aff4(R)) for
general A, we do have the following:

Lemma 4.23 Given X € Ho(Fdg Aff(R)+)o and g € FdgN'(R),
Homyo(Fag aft, (R).) (X ® A, Wg® A)
— ~ A~ R =
= Homy r40 47, (r)) (G (X)®A4, gQ4) x Py ®A4) 1_[ exp(Hog(x)).
x€0b R
Proof The proof of [37, Proposition 3.48] adapts to this context. a

Definition 4.24 We say a filtered cochain algebra (B, J) € FDGAIlg,(R) is quasi-
formal if it is weakly equivalent in FDGAlg,(R) to JET’*(B) (as in Definition 4.11).
We say that a filtered homotopy type is quasiformal if its associated cochain algebra
is so.

4.3.4 Minimal models Let FDG Rep(R) = FDG Modg, (R) be the category of
nonnegatively graded filtered complexes of R-representations.

Definition 4.25 We say that M € FDG Rep(R) is minimal if d(J;wM) C Jyy—1 M
for all m.

Lemma 4.26 For any V € FDG Rep(R), there exists a quasi-isomorphic filtered
subobject M — V', with M minimal.

Proof We prove this by induction on the filtration. Assume that we have constructed
a filtered quasi-isomorphism Jy, f: Ju M — J, V (for m = —1, this is trivial). Pick
a basis v, for H*(gr}{H_1 V), and lift vy to v, € Jy41V. Thus dv), € J,,V, and
[dv),] =0 e H*(J,,V/JmM) = 0. This means that dv), € J,,M + dJ,, V. Choose
ug € J;mV such that dv, —dugy € J,y M , and set Uy 1= v}, — g

Now, [Uq] = ve € H* (gr,{“rl V), so define

I+ M = Iy M & (Vg)a:

this has the properties that dJ,,+1 M C J,, M and H* (gr,{l_H M) ~H* (grrJn_i_1 V),

as required. O

Definition 4.27 We say that a cofibrant object m € F'd g./\A/' (R) (resp. F sN (R)) is min-
imal if (m/[m, m])V (resp. N(m/[m, m])") is minimal in the sense of Definition 4.25.

Proposition 4.28 (Minimal models) Every weak equivalence class in F dg./\A/' (R)
(resp. sN'(R)) has a minimal element m, unique up to nonunique isomorphism.

Proof The proof of [37, Proposition 1.16] adapts to this context, using Lemma 4.26
instead of the corresponding result for DG Rep(R). O
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4.3.5 Homotopy automorphisms

Definition 4.29 Given u € FsN (R), let G = exp(u) x R, and define the group
presheaf of filtered automorphisms by

Auth (G)(A) :={(f.0) : / € Aut(R)(A), 8 € Isopsp, (g (u® A, fFu®A)}.
Define RAut; (G) := ker(Aut® (G) — Aut(R)).

Definition 4.30 Given V € Rep(R) and g € F SN (R), define the spectral sequence
JEX*(Rxexp(g), V) to be the cohomology spectral sequence of the filtered complex

oWg) @RV,
for JoV = V. Thus JE‘ll’b(R x exp(g), V) = H“‘H’(Gr{a oOWg) @R V).

Lemma4.31 Assume that G is as above, and let m € Fs N (R) be a minimal model for
Ru(G). IfH' (G, V) is finite-dimensional for all i and all finite-dimensional irreducible
R -representations V', then the group presheaves

B
Auth/\A/(R) (m) x 1_[ exp(mom(x)) 2 RAuty; (G) —> 1_[ AutR(JE‘IZ’b (G, O(R)))
x€0b R a,b

are all pro-algebraic groups, the maps « and 8 both have pro-unipotent kernels, and f8
is surjective.

Proof The proof of [37, Theorem 5.13] carries over. O
4.3.6 Examples

Definition 4.32 Given B® € DGAlg,(R), we define the good truncation ts« on B by

B" n<m,
(tmB)" :=37Z™(B) n=m,
0 n>m.

Observe that (B®,7) € FDGAIlg4(R).

Definition 4.33 Given a bicosimplicial algebra B**® € cc Alg,(R), we define the

!

associated filtered cosimplicial algebra (rJB <t{B <---) € Fc Alg,(R) by
(7, B)" = (D1, Th B™*)",

for D, Th as in Proposition 2.70. Observe that there is a canonical quasi-isomorphism
diag B** — 1/ B®, where diag denotes the diagonal of a bicosimplicial complex.
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In practice, the only filtered homotopy types which we will encounter come from
morphisms of spaces:

Definition 4.34 Given an algebraic variety X and an ind-constructible £-adic sheaf V
on X, recall (eg from [36, Definition 2.3]) that there is a natural cosimplicial complex

e (V)

of {~adic sheaves on V, with the property that I'(X, 62 (V)) = C (X, V), the Gode-
ment resolution (as in Example 3.18). This construction respects tensor products.

Lemma 4.35 To any morphism j: Y — X of algebraic varieties, and any Q—sheaf &
of algebras on Y as in Definition 4.34, there is associated a canonical filtered homotopy
type CZ,(j,¥) € Ho(Fc¢ Algg,), with the property that JE:’*Cgt(j, ) is the Leray
spectral sequence

JESPCS(j,9) = B (X, R™j,9) — HOP(Y,9),
The associated unfiltered homotopy type is canonically weakly equivalent to Cgt(Y, ).

Proof We have a Qg—sheaf j.€Z (%) of cosimplicial algebras on X', and hence a
bicosimplicial algebra
CL (X, jx€L(F)).
Now, set
JnCL(j.9) =1,,CL (X, jx«6Z(¥)) = diag C, (X, D1, Th 62 (¥)),
as in Definition 4.33, with CZ (X, j«62 (%)) = JoCZ,(j, ) a quasi-isomorphism.
Finally, observe that there is a quasi-isomorphism
C,(Y.9) =T(X, jx€;(¥)) — diag CZ (X, j«€; (F)).
and that gry j«6Z (¥) is quasi-isomorphic to R" j . |
Remark 4.36 There is a similar statement for filtrations on homotopy types coming

from morphisms of topological spaces, using Cech resolutions instead of Godement
resolutions.

Since the construction above is functorial, for any point y € Y, we have a morphism
C;(J, %) — C (idy, &), where id,, is the identity map idy: y — p. Now,

JnC2(idy, #,) = diag C2.(y, Dty ThSy).

Since ¥, has constant simplicial structure, Th¥), =¥y, so Jncgt(idy, Fy) =%y for
all n > 0.
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Definition 4.37 Given a morphism j: Y — X of algebraic varieties and a Zariski-
dense continuous map

p: 7f (V) — R(Qy)

we define the filtered homotopy type (Y?Ma /) to correspond to C,(j,O(R)) €
Fc Alg(R)4, where the augmentation map is the canonical morphism

CL(J,O(R) — [ ] Ci(idy, O(R) = [ O(R)(», ).

yeyYy yeyY

5 Algebraic Galois actions

5.1 Weight decompositions

By a weight decomposition, we will mean an algebraic action of the group G,,. A
weight decomposition on a vector space V' is equivalent to a decomposition V =
D,z WnV, given by A € G, acting as A" on W, V.

Fix a prime p, which need not differ from £. Let Z2 be the pro-algebraic group
over Qg parametrising Z—representations. Since Z is commutative, Z2 is commuta-
tive, so Z48 = 74 x R (Z¥¢), where Z"™ is its reductive quotient. For any unipotent
algebraic group U , this means that Hom(R,(Z¥¢), U) = Hom(Z, U(Qy)) = U(Qy),
so Ry(Z¥2) = G,. Combining these observations gives Z¥¢ = G, x Z™4.

Likewise, let Z¢ be the pro-algebraic group over Qy parametrising continuous 7
representations. Since continuous Z—representations form a full subcategory of Z—
representations, 7% is a quotient of Z¢. The reasoning above adapts to show that
7o = Gy x 2.

Definition 5.1 Given n € Z and a power ¢ of p, recall that an element « € Qg is
said to be pure of weight n if it is algebraic and for every embedding t: Q; < C the
element ¢(«r) has complex absolute value ¢"/2.

Let M, be the quotient of 7™ whose representations p correspond to semisimple
Z—representations for which the eigenvalues of p(1) are all of integer weight with
respect to g. Such representations are called mixed.

Observe that every M, —representation decomposes into “pure” representations, in
which all eigenvalues have the same weight. There is thus a canonical map G,, — My
given by A € G, acting as A" on a pure representation of weight 7.
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Definition 5.2 Define P, to be the quotient of M, whose representations are pure of
weight 0, so Py = My /Gyy,.

Definition 5.3 Given n € Z, an embedding 1: Q; — C and a power ¢ of p, recall
that an element o € Qy is said to be (—pure of weight n if |¢()| = ¢™/2.

Let M, 4 be the quotient of 74 whose representations p correspond to semisimple
Z—representations for which the eigenvalues of p(1) are all of integer (—weight. Note
that My is a quotient of M, 4.

Observe that there is a canonical map G,, — M, 4 given by A € G, acting as A" on
an (—pure representation of weight n, and that this induces the map G,, — M, above.

Definition 5.4 Define P, 4 to be the quotient of M, ; whose representations are pure
of (—weight 0,50 P, g =M, 4/Gy,.

Definition 5.5 Given a pro-algebraic group G, let G° be the connected component of
the identity; if G is the maximal pro-finite quotient of G (parametrising representations
with finite monodromy), then G® = ker(G — G).

Lemma 5.6 If I" is a pro-discrete group, then we may make the identification

120 = fim A%,
am
A

where A runs over A <1 T open of finite index.

Therefore the category of finite-dimensional I'*2:° —representations is the direct limit
li_n>1A FDRep(A) (over A as above) of the categories of finite-dimensional A -represen-
tations.

Proof This is essentially [29, Proposition 2], which deals with the case when I’ is
discrete, and refers to h_r)n A FDRep(A) as the category of virtual I'—representations.

First note that [4g = T, where the pro-finite completion [ of T is characterised by
the property that Homy,o(gp) (I, F) & Homyop) (I', F) for all finite groups F. Thus
[' =T whenever I is pro-finite.

The exact sequence A — I' — I'/A — 1 gives an exact sequence (A)¥2 % [dle
I'/A — 1. Tt suffices to show that « is injective. This follows from the observation

that every finite-dimensional A—representation V' embeds into a finite-dimensional
I"—representation Indg V. |
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Thus if F is a generator for Z, then representations of Z%% are sums of F’-
representations, with morphisms commuting locally with sufficiently high powers
of F.

Observe that we have commutative diagrams

A~ A~

7 —— Z

l l

My —— M,.
Any Z—representation with finite monodromy is pure of weight 0, giving a map
P, — 7. Also note that M, = ker(My; — Z/rZ). Combining these observations
gives:

Lemma 5.7 We have
0 . 0 .
Mp =lim M-, Pp = lim Ppr.

Writing M© := Mlg) and P° := Pl?, there are quotient maps Zred0 s MO — PO,

There are similar results for M, LO =M LOP s PLO = PL0 D

Definition 5.8 We say that a representation of Z2-0 is mixed (resp. pure of weight 0,
resp. t—mixed with integral weights, resp. t—pure) if the action of Z™%? <1 Z2:0 factors
through M° (resp. P°, resp. M, resp. P?).

Lemma 5.9 Observe that the canonical maps G,, — M, are compatible, giving
G — MO, with trivial image in PO, Similarly, we have G, — Mto, with trivial
image in P).

5.1.1 Slope decompositions

Definition 5.10 Define the pro-algebraic group G to be the inverse limit of the étale
universal covering system of G, . This is the inverse system {G,},ecn With G, = G,
and morphisms [s]: Gy, — G, for s € N.

Lemma 5.11 The category of ?G?,;,’ —representations is canonically equivalent to the
category of Q—graded vector spaces.
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Proof A representation of G,, is equivalent to a Z—grading. Given a finite-dimensional
vector space V' with a Q—grading V =@V, let d be the lowest common multiple
of the denominators of the set {A € Q : V # 0}. Then V =,z Vayd - giving a
G —action on V. If we regard this copy of G, as G, this defines a G,,—action.

Now, for any pro-algebraic group G, arbitrary G —representations are nested unions of
finite-dimensional G —subrepresentations. Likewise, every Q—graded vector space can
be expressed as a nested union of finite-dimensional Q—graded vector subspaces, so
the two categories are equivalent. a

Now assume that p = £.

Definition 5.12  Given a power ¢ of p, normalise the p—adic valuation v on Q p by
v(q) = 1. Define the slope of o € Q) to be v(x) € Q.

Lemma 5.13 There is a canonical morphism @,; — 7" corresponding to the functor
sending a Z —representation V to a slope decomposition P Vj, .

Proof Let F be the canonical generator for Z. Given a finite-dimensional semisimple
Z-representation V', we may decompose V ®q, Q p into F'—eigenspaces, and hence
take a decomposition by slopes of the eigenvalues. Since conjugates in @, have the
same slope, this descends to a slope decomposition V = EB)\GQ Vi, asrequired. O

5.2 Potentially unramified actions

Fix aprime p #£{, and take a local field K, with finite residue field & of characteristic p.
Let G := Gal(K/K)¥¢, the pro-algebraic completion of Gal(K/K) over Q.

Definition 5.14 A finite-dimensional continuous Qg —representation of Gal(K /K)
is potentially unramified if there exists a finite extension K’/ K for which the action
of Gal(K/K') is unramified. Say that an arbitrary Q—representation of Gal(K/K)
is potentially unramified if it is a sum of finite-dimensional potentially unramified
representations.

These form a neutral Tannakian category (see Definition 2.7); let GP™ be the corre-
sponding pro-algebraic group. Since Rep(GP™) is a Tannakian subcategory of Rep(G),
GP™ is a quotient of G.

Lemma 5.15 We can write GP" = Gal(k / k)¢ XGal(k/k) Gal(K/K), so G0 =
Gal(k/ k)¥e0 ~ 7220,

Geometry € Topology, Volume 15 (2011)



576 Jonathan P Pridham

Proof A representation G — GL(V) (for V finite-dimensional) is potentially un-
ramified if it annihilates ker(Gal(K/K') — Gal(k/k’)) for some finite Galois ex-
tension K’/ K . In other words, it annihilates ker(Gal(K/K) — Gal(k/k) XGal(k'/ k)
Gal(K’/K)), so is an algebraic representation of Gal(k / k)¢ XGai(k'/ k) Gal(K'/ K).
Thus the category of finite-dimensional GP™ —representations is given by

FD Rep(G™) = lim FD Rep(Gal(k/ k)™ X Gager/ k) Gal(K'/ K))

K/
= FD Rep(lim Gal(k / k)™ X Gaq:/k) Gal(K'/ K))
K/

= FD Rep(Gal(k / k)2 X Gal(E/ 1) Gal(K/K)),
as required.

The final statement is an immediate consequence of Lemma 5.6. |

Definition 5.16 We say that a representation of GP" is mixed (resp. pure of weight 0)
if the resulting action of Z2:0 — 73120 5 50,

5.3 Potentially crystalline actions

Now let £ = p, and take a local field K, with finite residue field k of order ¢ = p/ .
Let G := Gal(K/K)¢, the pro-algebraic completion of Gal(K/K) over Q p. Let
W .= W(k), with fraction field Kg, and let o denote the unique lift of arithmetic
Frobenius ® € Gal(k/ Fp) to 0 € Gal(K['/Qp), for K the maximal unramified
extension of K. Note that the geometric Frobenius of the previous section is F' = /.

Definition 5.17 Say that a finite-dimensional continuous Gal(K /K )—-representation
over Q, is potentially crystalline if there exists a finite extension K’/ K for which
the action of Gal(K/K’) is crystalline. Say that an arbitrary Q p—representation of
Gal(K/K) is potentially crystalline if it is a sum of finite-dimensional potentially
crystalline representations. Note that since unramified representations are automatically
crystalline, all potentially unramified representations are potentially crystalline.

These form a neutral Tannakian category (see Definition 2.7); let GP'S be the cor-
responding pro-algebraic group. Since Rep(GP™) is a full subcategory of Rep(G)
closed under subobjects, GP"'S is a quotient of G.

Definition 5.18 In [9, Section 4], Fontaine defined a ring Beis := Beris(V') of periods
over Q,, equipped with a Hodge filtration and actions of Gal(K/K) and Frobenius,
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and used it to characterise crystalline representations (adapted in Proposition 5.20
below).

In [33, 6.8], Olsson defined a localisation Ecris(V) of Bgis(V) as follows. Fix a

sequence T, of elements of V with 7o = p and r:; 41 = tm forall m > 0. Define

Ap—n to be the sequence (Tn+m)m=>0, and let §,— be the associated Teichmiiller lifting.
Set
Bcris(V) = Bcris(V)[5p_—1"]nZO’

noting that (8,-n-1)? = ép—n.

Definition 5.19 Given a finite-dimensional Gal(K / K)-representation U , set
Dcris,K(U) = (U ®Qp Bcris)Gal(K/K),
Dpcris(U) = 11_1’1)1 Dcris,K/(U),
Bcris,K(U) = (U ®Qp Ecris)Gal(K/K),
5pcris(U) = ll_I)Il 5cris,K’(U),
for K’ ranging over all finite extensions of K. For an arbitrary algebraic Gal(K /K)—

representation U, set
Dpcris(U) = 1112 Dpcris(Ua)v

for U, running over all finite-dimensional subrepresentations, and similarly for 5pcris.

Observe that Spec B is an affine G—scheme over Spec Q, and that the coarse
quotient (Spec Bis)/G° is Spec Ky

Proposition 5.20 An action of G on an affine Q,—scheme Y factors through gperis jf
and only if there exists an affine K'—scheme Z, with

Y xq, Spec Ecris ~7Z X K Spec Ecris
a G®—equivariant map (for trivial G® —action on Z ).

In that case, we necessarily have O 7z = Dypcis(Oy) = Dperis(Oy ) .

Proof If we replace potentially crystalline with crystalline, and K" with Ko, then
this is just [33, Theorem D.3]. Taking the direct limit over finite extensions of K gives
the first expression.

Taking GO —invariants gives Oz = Epcris(@y), but then [33, Remark D.10] shows that
for potentially crystalline representations U, Dpeis(U) = Dperis(U). O
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5.3.1 Frobenius actions Although we do not have a canonical map Z¥¢0 — Gperis,
there is something nearly as strong:

Lemma 5.21 There is a canonical morphism
Zalg,O ®Qp Bgrls - gpcris ®Qp Bgrls

of affine group schemes over the o —invariant subring BZ. of Bes.

cris

Proof Given U € FDRep(GP™), U is crystalline over K’ for some finite extension
K’/ K with residue field k". If |k’/ k| =r and ¢ = p/, then ¢/7 isa K{—linear endo-
morphism of Deyis x’(U). This extends uniquely to give a K" ~linear automorphlsm F,
of Dperis(U) (note that Fy # ¢/, the latter being o — semlhnear)

Now, observe that Dpis(U) is a sum of finite-dimensional £, —representations over Q,,
since Dqyis,x’(U) is finite-dimensional over K’, and hence over Q. This gives us a
o—equivariant Q,—linear action of 7,942 on Dpcm(U ), and hence a o—equivariant
BZ. —linear action on Dpcris (U ) ® Knr Beiis =U ®q,, Beris - We now take the ¢—invariant

Cris
subspace, giving a 7222 ®q, Bgis—actionon U ®q, B

Cl‘lS CI‘lS

If we took a larger extension K”/K with residue field k", then we would have
|k"”/k| = s with r|s. The corresponding K{"—linear automorphism Fy of Dpcris(U)
is given by Fs = F, ,S/ " so gives rise to the same 7,912 _action on Dpeiis(U). This
ensures that the action is functorial in U .

Given U, V € FDRep(GP™), we have Dicris(U ®q,, V) = Dyperis(U) @ kgr Diperis (V)
compatible with ¢. Choosing K’ so that U, V are both crystalline over K’, we see that
Dyeris (U ®q,, V') is isomorphic t0 Dpeis(U) ® K Dpeiis (V') as an F, —representation.

Hence the 7,%:32 ®Q, B
(U ®Qp crls) ®B (V ®QP Bglg)

For a Q,—algebra A, Tannakian duality says that giving an element g € GP'S(4) is
equivalent to giving A—linear automorphisms gy of U ® A for all GP"' —represen-
tations U, functorial and compatible with tensor products and duals. Therefore the
VA ®Q, Crls—actlons on the representations U ®q,, B, give group homomorphisms
794 (C) — GPeis(C), functorial in BZ, —algebras C, as required. |

—representation (U ®q, V) ®q, B, is isomorphic to

Cris

Definition 5.22 We say that a potentially crystalline representation U is mixed (resp.
pure, resp. L—mixed with integral weights, resp. (—pure) if the action of Z¥20 @ B?.
on U ® BZ; factors through My (resp. Py, resp. M, 4, resp. P, 4). This is equivalent
to saying that the action of Z on Dy is(U) is mixed (resp. pure, resp. (—mixed with

integral weights, resp. (—pure).
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We have the following analogue of a slope decomposition:

Lemma 5.23 There is a canonical morphism @n; — gperis ®q, B of affine group

schemes over BJ. , for G, as in Definition 5.10.

Proof Combine Lemma 5.13 with Lemma 5.21. O

6 Varieties over finite fields

Fix a variety X; over a finite field k, of order ¢ prime to £. Let X := X} ®; k,
for k the algebraic closure of k. There is a Galois action on X, and hence on the
pro-simplicial set X%, and on its algebraisation G(X,)¢. The purpose of this section
is to describe this action as far as possible.

6.1 Algebraising the Weil groupoid

The morphism X — X gives a map of group01ds o JT;tX — net(X %) . Similarly,
there is a map nj‘?‘X = n;t(Spec k) = Gal(k k) = Z.. Denote the canomcal generator
of Gal(k/k) by F, the geometric Frobenius automorphism.

In constructing fundamental groupoids and étale homotopy types, we may use the same
set of geometric points for both X3 and X, so assume that « is an isomorphism on
objects. We then have

n;t(X) = tht(Xk) x5 0.

Definition 6.1 Define the Weil groupoid Wy (Xy) by
Wy (Xk) := 7f'(Xk) x5 Z,
noting that this is a pro-groupoid with discrete objects.
For any scheme Y, note that finite-dimensional representations of wj}ét(Y) =wy ()/’é\t)

correspond to smooth Q—sheaves on Y. We now introduce natural quotients of this
groupoid.

Definition 6.2 Define " ;‘(X ) to be the image of the map we‘(X ) = Wr(X; 0Me,
s0 Wr(Xp)¥e = Yarf!(X) w 228,

Define Ga]wet(X) to be the image of the map wet(X) — wet(Xk) ) wet(Xk) =
Gal(Uet(X ) x Z¢. Note Ga]aret(X ) is a Frobenius- equlvanant quotlent of Wy et(X ) (it
is in fact the quotient on Wthh 7 acts continuously).
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In [38], ", (X,X) was defined to be the universal object classifying continuous
W (X}, x)—equivariant homomorphisms 71 (X, X) = G(Qy) to algebraic groups. In the
terminology of [38, Definition 1.3], " (X, X) is the maximal quotient of w7 (X, X)
on which Frobenius acts algebraically.

Note that these definitions are consistent by [38, Lemma 1.14], which proceeds by
establishing an action of Z¥2 on " (X, X) generated by Frobenius, then showing
that the map Z*¢ x "r; (X, X) — W (X, x)¥¢ is an isomorphism.

It also implies that linear representations of Wwfét(X ) correspond to smooth Qg—
sheaves on X arising as subsheaves of Weil sheaves, while linear representations of
Ga]a‘rj?t(X ) correspond to smooth Qg—sheaves on X arising as subsheaves of pullbacks
of smooth Qg —sheaves on X .
Lemma 6.3 The canonical action of F on ijé‘(X ) factors through a morphism

2" — Aut("w (X))
of group presheaves, for Z2 as in Section 5.1.
Proof Write G = Wwft(X ). H = Wr(X, )¢, and observe that the orbits of F in
Ob G = Ob H are finite, giving a map

7 — Aut(Ob H).

Since Z is pro-finite, we may regard it as the pro-algebraic group Z¢/72:0,

Now, consider the group scheme

N = ]_[ l_[ H(.X,fX),

f€Aut(Ob(H)) x€Ob(H)

with multiplication given by
(fotha) - (f AR = (f - f 1 A ha).
There is a morphism N — Aut(Ob(H)) fibred in affine schemes. Thus

Z: X au(ob(H)) N
is an affine scheme.

Now, F gives a collection of paths F(x) € Wr(Xj)(x, Fx), and thus a map

Z — (Z X aucon(ay) N)(Qo).
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Since the latter is an affine group scheme, this extends to a map Z*€ — 7 x Aut(Ob(H) N .
Finally, observe that the conjugation action of H on G gives a map

N — Aut(G). |

Theorem 6.4 If X, /k is normal, then the action of 7' on Ww;"(X yd factors
through Py (see Definition 5.2), that is, the Frobenius representation O(Ww;‘(X yred)
is a sum of finite-dimensional Galois representations, pure of weight 0.

Moreover Wwft(X yred = Galwft(X yed, so the Z™ action factors through its quo-
tient 7'

Proof Since Z¥€=7"9%xG, (Section 5.1), this amounts to showing that the Frobenius
action factors through Py x G,. We adapt the proof of [38, Theorem 1.11] (to which
we refer the reader for details).

Let T be the set of all isomorphism classes of irreducible representations V of
Wwét(X yed over Qg. Since Wwft(X )4 is reductive, there is an isomorphism of
Wwf‘(X yred Wwf‘(X )ed_representations given on objects (x, ) by

0w (X)™(x. y) ®o, Qe = €D Hom(Vx. ;).
VeT

Suppose V is the smooth sheaf on X corresponding to the representation V. Then
@Dy er Hom(Vy, Vy) corresponds to the smooth sheaf

@ prl_1 vV (X)pr;1 v
VeT
on X xX.

Now, V € T is an irreducible representation of wft(X ) which is a subrepresen-
tation of some Wy (X} )-representation. This is the same as underlying a Wy (Xj/)—
representation for some finite extension k’/k, so V underlies a smooth Weil sheaf
on X .

From Lafforgue’s Theorem ([5, Conjecture 1.2.10], proved in [27, Theorem VII.6 and
Corollary VIL8]), every irreducible smooth Weil sheaf over Qy is of the form

V=PrPeQ,®,

for some mixed sheaf P on X/ . By [5, Theorem 3.4.1 (ii)], every irreducible smooth
t—mixed Weil sheaf is t—pure. Thus the mixed sheaf P is (—pure for all ¢, and hence
pure.

Thus prl_1 VY ®pr2_1 VvV~ prl_1 PY (E{)pr;1 P,

which is a smooth sheaf on Xy x X}/, pure of weight 0.
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Hence OV et(X ) ®q . Q, and hence O("w et(X )4, is a pure Galois represen-
tation of welght 0. Thus the action of Z¢ factors through P, x G, and the discrete
Galois action on wet(X yed descends to a continuous action on we‘(X yed so

Ww_;t(X)red — Galw_jét(X)red‘ O
6.2 Weight decompositions

Now assume that X is either smooth or proper and normal.

Definition 6.5 Define a weight decomposition on a multipointed homotopy type G €
Ho(s€(R)«) to be a morphism

Gm — RAut(G)
of pro-algebraic groups.

Compare this with [37, Definition 5.15], which considers weight decompositions on
unpointed homotopy types, corresponding to outer automorphisms.

Proposition 6.6 If we let R be any Frobenius-equivariant quotient of Wwft(X yred,
then the Galois action on
R ,Mal
Xét
is mixed, giving a canonical weight decomposition. Furthermore, the Frobenius action
extends canonically to a continuous algebraic Gal(k / k)—action.

Proof By Theorem 6.4, the Galois action on R factors through the quotient P, x G,
of Z¥2. By Corollary 4.8, the Gal(k /k) action on Xélf Mal j5 thus algebraic. Since
R is a Py x G,—representation, the Weil sheaf @, o, g O(R)(x) is an arithmetic
sheaf of weight 0. Deligne’s Weil II theorems [5, Corollaries 3.3.4-3.3.6] then imply
that @,.c y H* (X, O(R)(x)) is a mixed Gal(k / k) representation (ie a representation
of My xGg). By Lemma 4.9, we may therefore conclude that the action of 7" on
XRMal factors through M, giving

My — Auth (X RMaly,

Finally, use the map G,, — M, (given after Definition 5.1) to define the weight
decomposition. Since R is pure of weight zero, the G,,—action on R is trivial, giving

Gm — Aut” (Xélf’Mal),

as required. |
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Corollary 6.7 The Galois actions are mixed on the duals wn,(X, R.Mal )V of the
homotopy groups for n = 2, and on the structure sheaves O(w (X} R, Malyy(x, y). In
particular, these objects have canonical weight decompositions.

Proof This is just the observation that there are canonical maps Aut” (X, R.Maly _,
Aut(w, (XRMI x)) and Auth(XR Maly — Aut(O(wyp (X M) (x, y)) of group-
valued presheaves so Proposition 6 6 gives algebraic actions of My x G4 (and hence
Gy, ) on the homotopy groups and fundamental groupoid. a

Remark 6.8 We have shown that @, (X R.Maly g g mixed net(X & )—representation.
In particular, this means that @, (X R Mal x) is a mixed (F x)—representatlon so has a
canonical weight decomposition.

Remark 6.9 If the hypotheses of Theorem 3.40 hold and nft(X ,x) is N —good relative
to R, then Corollary 6.7 implies that the Galois actions on the 75'(X, x) ® 5 Qy are
mixed forn < N.

Alternatively, if it should happen that the Galois action on H" (7§ t(X x), V) is mixed
for all R—representations V' underlying pure net(X &, X)—representations and all n < N,
then Lemma 4.9 (combined with the Adams spectral sequence of [37, Proposition 4.37])
implies that the Galois actions on @y, (B (X, x))®M is mixed for n < N . Provided
the first two hypotheses of Theorem 3.40 hold, the exact sequence of that theorem
would then imply that the Galois actions on Jr,ét(X LX) ® 7 Qy are also mixed.

6.3 Formality

Now assume that X is smooth and proper. Deligne’s Weil II theorems then imply that
D, cx H' (X, O(R)(x)) is pure of weight 7.

Theorem 6.10 For R as in Proposition 6.6, the Malcev homotopy type Xélf Mal ¢
sE(R) is formal, in the sense that it corresponds (under the equivalences of Proposition
2.50 and Theorem 2.74) to the R -representation

HZ (X, O(R))

in cochain algebras, equipped with the unique augmentation map Q, =H°(X, O(R))—
[Liecob r O(R)(x, —). This isomorphism is Galois equivariant.

Proof We need to construct an isomorphism 6: NRy (X Q’Mal) ~ GH;(X ,O(R)) in
dgP(R) (for G as in Definition 4.20), such that

adg: Aut" (X2M) — Aut"(G Spec DHE (X, O(R)) x R)
satisfies adg F' = F'.
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As in Section 4.3.4, take a minimal model m for NR,(X2M) dg N (R). This has
the property that m,, /[m, m], = H**1(X, O(R))".

From the proof of Lemma 4.4, we know that
A~ ,Mal
[1 expHom(x)) x Auty, ¢ (g (mBA) - RAu(X, Maly ()
x€O0b R

is a pro-unipotent extension of pro-algebraic groups.

Likewise, the maps
Aut(R x exp(m)) — Aut” (X’ é’t’Mal)

— {(f.a): f € Aut(R), @ € Iso pgaie(r)(HL(X. O(R)), f*HE(X, O(R)))}
both have pro-unipotent kernels.

So we may lift the map Z*¢ — Aut" (X" o:Mal) 1o give 7€ — Aut(R x exp(m)). This
gives a lift of the weight decomposition G, — RAut( X! Q’Mal) to G, — Aut( Rxexp(m)).
Since m is of strictly negative weights, we may adapt [38, Corollary 1.21] by observing
that O(R x exp(m))/O(R) is of strictly positive weights, and that the weight 0 part
Wo O(R x exp(m)) is just O(R), so we have a Zalg—equivariant decomposition

O(R xexp(m)) = O(R) ® W4+ O(R x exp(m)).

This amounts to giving a 7 —equivariant section of R xexp(m) — R, or equivalently
a Z™2_equivariant Levi decomposition, so we may assume that the Z2 action on
R x exp(m) consists of actions on R and on m.

Let V, :=W_,_1m,, for W as in Section 5.1; since cohomology is pure, we deduce
that V,, — H"t1(X, O(R))Y is an isomorphism, and that m is freely generated as
a Lie algebra by the spaces V,. The differential d on m is then determined by
d: Vy, — m,_1, and weight considerations show that the only nonzero contribution
is Vi = [aqp=n—11Va. V. This is isomorphic to d: m/[m, m] — [m, m]/[m, [m, m]],
so must be dual to the cup product.

Therefore, the choice of lift Z3¢ — Aut(R x exp(m)) has determined an isomorphism
R xexp(m) = RKx exp(GHZt(X ,O(R))), and this is automatically compatible with

the Galois action Z¥¢ — Aut” (R x exp(m)). O

Corollary 6.11 If we let R be any Frobenius-equivariant quotient of "1 e‘(X yred,
then the relative Malcev homotopy groups wet(X R.Mal 'x) can be descnbed in terms
of cohomology as

(X BMI x) = H,_ (GH* (X, O(R))),
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for G as in Definition 4.20. This description is Galois-equivariant. If the conditions of
Theorem 3.40 hold (including goodness), then this also calculates 75'(X, x) ® 5 Qq as
a Galois representation.

6.4 Quasiformality

Let j: X < X be an open immersion of varieties over k, such that locally for the
étale topology, the pair (X, X) is isomorphic to (A x [1; (A% —{0}), A ), for some
d =m+ Y ¢;. Note that this is satisfied when X — X is a normal crossings divisor
(corresponding to the case ¢; = 1 for all 7). It also includes all geometric fibrations
over k in the sense of [10, Definition 11.4].

Definition 6.12 For X, X as above, let 7= X —X, and let D be the closed subscheme
of T of codimension 1 in X . Note that nj‘?t(X ) —> net(X D) is an isomorphism,
and define iy LX) :=m r !(X — D) to be the rame fundamenml groupoid (as in [12,
XII1.2.1.3)).

Define T[} (Xy) similarly, with the tame Weil groupoid ij (Xy) given by
Wi(Xy) =75 (Xy) x5 L.
Let w]’,(X) = nj’, (X)™2, and define Ww} (X) to be the image of w} (X)— Wf (Xr)¥e,

Given a local system V on X, observe that the direct image ixV of V under the
inclusion i: X < X — D is also a local system. We say that V is tamely ramified
along the divisor if i4+V is tamely ramified along D in the sense of [12, Definition
XII1.2.1.1].

Lemma 6.13 Take j as above. If V is a pure smooth Weil sheaf on Y of weight zero,
tamely ramified along the divisor, then R" j,V is pure of weight 2v (in the sense of
[25, Lemma-Definition I11.12.7]).

Proof This is a consequence of the following statements:
(1) RY 4V is pointwise pure of weight 2v.
(2) the canonical map (R” V)Y — R¥#om z(R” j+V,Qy) is an isomorphism.
If 0 > V' — V — V” — 0 is an exact sequence, with the statements holding for V

and V", then observe that they also hold for V, since the long exact sequence must
degenerate.

The statements are local on X . Etale-locally, the pair (X, X) is isomorphic to
(U, U") = (A" x [];(A% —{0}), A?) for d =m+ Y ¢;. We may then reduce to the
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case when V is irreducible on U, and so V = V,, X (), V;, for V; irreducible on
A¢ —{0}. By the Kiinneth formula, we now need only consider the pair (A¢—{0}, A¢).

If V is constant, then the statements follow from the cohomological purity theorem
[30, VL.5.1]. Since the scheme A€ —{0} is simply connected for ¢ > 1, this leaves only
the case ¢ = 1. [25, Lemma 1.9.1] shows that j,V is pure, and local calculations give
R Jj*V =0 for i > 0 (since V is tamely ramified, and is nonconstant irreducible). O

Proposition 6.14 Assume that j: Xj, < X, is a morphism over k , with j ® k as in
Lemma 6.13, for X, proper. If V is a pure smooth Weil sheaf on X of weight zero,
tamely ramified along the divisor, then H (X, R" j, V) is pure of weight i + 2v, for
j: X — X the compactification map.

Proof By [5, Corollary 3.3.4], we know that H' (X, R” j,V) is mixed of weights
<i+2v, since RY .V is pure of weight 2v. Now, Poincaré duality [25, Corollary
I1.7.3] implies that

H'(X.RYj: V)Y = B (X (R j»V)) 2d).
which is mixed of weight < —i — 2v, using the isomorphism
(R”jx V)Y = RHom (R jxV,Qy)
of Lemma 6.13. O
Corollary 6.15 For X as above, and p: wfé‘X — R any Frobenius-equivariant
quotient of ijf (X)™d, the filtered homotopy type (XPM2 j) of Definition 4.37

is quasiformal (in the sense of Definition 4.24). The formality quasi-isomorphism is
equivariant with respect to the Galois action.

Proof This is largely the same as Theorem 6.10. Use the equivalences of Theorem 4.22
to take a filtered minimal model (m, J) € F sN (R) for (XPMal ) The increasing
filtration Jx on m" gives a decreasing filtration J* on m, with J”m,, the annihilator
of J,_;(mV). Note that [J%m, J®m] C J9"Pm and J%m =m.

If we write Auty (R xexp(m)) for the group of filtered automorphisms of R x exp(m),
then similarly to Lemma 4.31, the maps

Auty (R x exp(m)) —> Aut}} (th,Mal) N
{(f,@): f €AUL(R), & €150 ppGaig(r) (HE (X, R* jx O(R)), fHHE (X, R* jO(R))))

both have pro-unipotent kernels.
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We may therefore lift the Galois action Z*¢ — Aut”t (X £:Mal) 10 a filtered automorphism
of Rxexp(m). This gives a lift of the weight decomposition G, — RAut s (X! g’t’Mal),
a unique Galois-equivariant Levi decomposition of R x exp(m), and a weight decom-
position G,, — Auty(m).

Now, (mi)Y ~ Dosb=nii H%(X,R?j,O(R)) =: E"*!, on which J, is the sub-
space of weights <n+7r+1. Thus J” (m@P) is the subspace of weights < —(n+r+1).

Let I'"m be the lower central series on m, so ''m = m and I'"*!lm = [m, "' m].
The weight restrictions on m* show that J” (g, m), = J” (Lieg(m®)),, which is of
weights < —(n +r 4+ s). This implies that J" (I'ym),, is of weights < —(m +r + ).

We now make a canonical choice of generators by setting
W_t+r+1)Vn = W—(n+r+1)ern-

Set V := [[; WiV the weight conditions above show that this has no intersec-
tion with I'ym for s > 1, so the composition ¥V — m — m® is injective. Since
W_(n+,+1)(mab)n =W_(n+r+1)J" (m®),,, the composition is also surjective, so V
is a space of generators for m.

The structure of m is now determined by the differentials d: V;;, - m,_;. As m =
Lie(V) =V x /\2 V x I'3m, weight and filtration considerations show that we must
have the projection d: V;; — (I'sm),—; being 0. The nonzero contributions to d are
Vi = Vu—1, which is dual to d; on E, and V;; = [, p—n_1[Va. Vp], which must be
dual to the cup product. Thus m = G(E), and so Rx exp(m) = Rxexp(G(E)), as
required. O

Corollary 6.16 For X and R as above, we can describe the relative Malcev homotopy
groups w (X R.Mal ) explicitly in terms of the Leray spectral sequence as

Hy—1(GUE).
for JEPY = B2t (X R, 0 (P (x)Lred))

as in Definition 4.11, and G as in Definition 4.20. If the conditions of Theorem 3.40
hold (including goodness), then this also calculates ;' (X, x) ®5 Qg as a Galois
representation.
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7 Varieties over local fields

7.1 Potentially good reduction, £ # p

Let V'’ be a complete discrete valuation ring, with residue ﬁeld_k’ (finite, of charac-
teristic p # £), and fraction field K’ (of characteristic 0). Let k, K be the algebraic
closures of k, K’ respectively, and V' the algebraic closure of V’ in K.

Let Xy = Xpr— Ty be a geometric fibration over V' (in the sense of [10, Definition
11.4]). Assume that we have a subfield K C K’ ancl a scheme Xg /K such that
Xx @k K' = Xy @y K'. We wish to study the Gal(K /K )-action on the homotopy

type X K.é

Recall from [12, Theorem X.2.1] that the map net(X ) —> net(X V’) is an equlvalence.
By ibid. Section XIII.2.10, this generalises to an equlvalence b4 (X ) —> T (X V).
Meanwhile, ibid. Corollary XIII.2.8 implies that the map 7 (X K) — 7 (X V) is an

epimorphism, and ibid. Corollary XIII.2.9 shows Jt}?t(X K)"L — et(X )AL is an
equivalence, where L is any set of prime numbers excluding p.

Proposition 7.1 If V is an £—adic local system on Xi;, tamely ramified along the
divisor (ie coming from a representation of 71} (X3)), then the maps

i¥: H* (X5, V) = H* (X, ixV)
i¥: H* (X5, V) » H* (X, i} V)

are isomorphisms.

Proof In [10, Theorem 11.5], this is proved for net(X )L —representations, for
p € L. The same proof carries over to 7 I L(X, V)—representatlons since the pro—L
hypothesis is only used to restrict the monodromy around the divisor. O

Definition 7.2 Since nlt(Spec V') =~ Gal(k/k’), we may define " (X 77) anal-
ogously to Definition 6.2 as the maximal quotient of w’(X )i == f(X )32 on
which the Frobenius action is algebraic. Define P"wr }(X &) to be the image of

f(X ) — wt (Xj), noting that this is a quotient of wf(X ) on which the
Gal(K/K) —actlon is potentially unramified.

Note that these definitions are independent of the choice of extension V’/V, in the
sense that a finite extension V" / V' would give the same construction.
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Theorem 7.3 Let R be any Frobenius-equivariant reductive quotient of me} (Xg).
Then the Gal(K / K)—action on the homotopy type

I_?,Mal

K ét
is algebraic, potentially unramified (as in Section 5.2) and mixed (Definition 5.16),
giving a canonical Galois-equivariant weight decomposition. It is also quasiformal,
corresponding to the E,—term

PH (X . R?j.O(R)) € FDGAI(R),
a,b

of the Leray spectral sequence for the immersion j: X — X . The formality quasi-
isomorphism is equivariant with respect to the Gal(K / K)—action.

Proof We know that the homotopy type is given by
C;(Xg.O(R)) € c Alg(R).

From the definition of pmw} (Xg), we know that O(R) is the pullback of a local
system on X, so i« O(R) is a local system and i,’;in*@(R) = O(R).

The equivalences of Proposition 7.1 now give quasi-isomorphisms

C:(Xg. O(R)) = C5 (X . irins O(R))
<« C3(Xp.inxO(R)) — C3 (X i iyx O(R)).
compatible with the basepoint augmentation maps.

We may assume that K C K’ is a Galois extension, then observe that the equivalences
above imply that action of Gal(K/K’) is unramified, so the Gal(K/K)™¢ action
factors through Gal(K / K) XGai(k/ k") Gal(lz / k)2 In fact, Proposition 6.6 implies
that the action factors through Gal(K/K) Xcu(&/k’y My, where ¢’ = |k’|, so the
morphism G, — Mqo, =ker(My — Gal(k / k")) provides the weight decomposition.
This is compatible with the Galois action since My’ is commutative (being a quotient
of Z¥¢), so G, lies in the centre of Gal(K/K) XGal(k/ k") My’ -

We may now adapt Corollary 6.15 to see that this is quasiformal, noting that all of the
quasi-isomorphisms above extend naturally to the filtered algebras of Corollary 6.15. O

Corollary 7.4 Let X and R be as above. Then the homotopy groups wﬁt(X ) are
potentially unramified and mixed as Galois representations, giving them a canonical
weight decomposition. They may also be recovered from the Leray spectral sequence,
as in Corollary 6.16.
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Corollary 7.5 If L is a set of primes including £, and
(1) nj‘f’t(X)’\L is (N +1)—good relative to p“rw; (XI/%L),
2) nff(X MY ® 5 Qg is finite-dimensional for all 1 <n < N, and

(3) the action of ker(nﬁt(XIg)’\L — n} (X77)"E) on n,é‘(XI%\L) ®5 Q is unipotent
foralll <n <N,

then the Galois action on nst(X I%L ) ®7 Qg is potentially unramified and mixed, giving
it a canonical weight decomposition. It may also be recovered from the Leray spectral
sequence.

Proof Substitute R = n} (X, I7)L d into Corollaries 7.4 and 6.16 and Theorem 3.40. O
Note that if L does not contain p, then the third condition of the Corollary is vacuous.

7.2 Potentially good reduction, £ = p

7.2.1 Convergent isocrystals Let X, X, V' K, K’ k' etc. be as in the previous
section, but with £ = p. Let W/ = W(k’), the ring of Witt vectors over k', and
Ky, the fraction field of W'; let W™ := W(k), with K{' its fraction field. Choose a
homomorphism o: K’ — K’ extending the natural action of the Frobenius operator
¢ on W(k') C K'. Assume moreover that Ty = Dy, a normal crossings divisor, or
more generally that Dy corresponds to a log structure.

Definition 7.6 Let MF(VXV/, Dy))/K' be the category of filtered convergent F—isocrys-
tals on (X, Dy), as in [50, Section 1] (or [33, 6.9] when K’ is unramified, noting
that the construction extends to ramified rings, as mentioned at the end of [33, 1.14]).

Roughly speaking, an object of MF(V)?V,, D,/ k' consists of an F—isocrystal (E,¢E)
on (X, Di)/ W, together with a filtration Fil' € of € satisfying Griffiths transver-
sality with respect to V¢, where (€, Vg) is the module with logarithmic connection
on (Xg/, Dg/) obtained by base change from the evaluation of E on the p—adic
completion of (Xy~, Dy).

7.2.2 Crystalline étale sheaves We now introduce crystalline étale sheaves, as in
Faltings [8, V(f)] or Andreatta and lovita [1].
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Definition 7.7 We define the category of associations on (Xy+, Dy) to consist of
triples (V, ¢, E), where

(1) V isasmooth Qp—sheaf on Xk,

v
@ EeMRly , (®),

(3) ¢ is an association isomorphism [33, Section 6.13], ie a collection of isomor-
phisms R R
w: VRq, Beis(U) = E(Beis(U))
for U — Xy~ étale, compatible with the filtrations and semilinear Frobenius
automorphisms, and with morphisms over X, so that ¢ becomes an isomorphism
of étale presheaves. Here, Bris (ﬁ ) is formed by applying Fontaine’s construction
to the p—adic completion Uof U.

A morphism f: (V,, E) — (V',//, E’) in the category of associations consists of
a morphism f°: V — V’ and a morphism f°%: E — E’ such that f™ o =
Vo 4 V ¢, Beris(T7) = E'(Beris(0)) for all U.

The following lemma is a counterpart to [8, Lemma 5.5], which gives the corresponding
statements for the forgetful functor from associations to MF(VXV, Dy

Proposition 7.8 The forgetful functor (V, ¢, E)+ 'V from the category of associations
to the category of smooth Qp,—sheaves on Xk is full and faithful. Its essential image
is stable under extensions and subquotients.

Proof Given associations (V, ¢, E), (V',/, E'),note (VV®V, (V) '®/, EVQE')
is another association. Giving a morphism f’ ¢ V — V’ amounts to giving an element
of H*(Xx, VY ®V’), or equivalently a Galois-invariant element of H*(X z, V¥V ® V).
By [8, 5.6], the map

Mt H (X, VY ® V) ®Q,, Beris = Hiyi(Xi/ W, EY @ E') ® k7 Buris

is an isomorphism. Taking Galois-invariant and Frobenius-invariant elements in Fil°,
this gives an isomorphism

)@ HO (X, VY @ V) SUEIKD L EIOHY. (X, /W, EY & E')?,

cris
so there is a unique Frobenius-equivariant morphism f°: E — E’ preserving the
Hodge filtration such that the diagrams
v ®Qp Bcris(ﬁ) — E(Bcris(ﬁ))
F4®0, Bu l / l S5 (Bers (D))
Ay N
\& ®Qp Beis(U) — E/(Bcris(U))
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commute. This shows that the forgetful functor is full and faithful.

To see that the essential image is stable under extensions, observe that extensions
of V by V' are parametrised by elements @ of H!(Xg/, VY ® V’). The isomor-
phisms above then show that ((:¥)™! ® //)(«) is a Frobenius-equivariant element of
Fil® H!. (Xx/ W, EY ® E’), so gives a unique extension of (V,¢, E) by (V',/, E’)
in the category of associations.

Finally, note that the subquotient of an extension is an extension of subquotients, so it
suffices to show that the essential image contains subquotients of semisimple objects.
Since such a subquotient V' of V is isomorphic to a direct summand, we have an
idempotent endomorphism 7 of V with kerw =~ V’. Since the forgetful functor is full,
7 lifts to an idempotent endomorphism 7 of (V, ¢, E), so V' underlies ker 77 . O

Definition 7.9 Say that a smooth Q,—sheaf V on Xk is crystalline if it lies in the
essential image of the forgetful functor from the category of associations.

Proposition 7.10 The fibre functors (V, ¢, E) — Vi make the category of associations
into a multifibred Tannakian category. The corresponding pro-algebraic groupoid
wét(XK/)CriS, is a quotient of wft(XK/). Moreover, wfé‘(XK,/)CriS is the Malcev com-
pletion of n;t(X k) with respect to the reductive quotient wfet(X K )crisred

Proof Associations form a QQ,—linear rigid abelian tensor category, with (V,¢, £) ®
(V. E)=(V®g, V. 1® E®cy, .LE') and (V,i, E)Y = (VY, (HVY,EVY).

By Proposition 7.8, associations are equivalent to the Tannakian subcategory of crys-
talline étale sheaves in Rep(we‘(X k7). Thus the forgetful functor from associations
to smooth Q,—sheaves corresponds to a surjection wC‘(X x) — wet(X %) of pro-
algebraic groupoids (with the same object set).

Mal

For p: nj‘i‘t(X x) — w;’t(X )54 representations of wf‘(X x)PMal are smooth

Qp—sheaves on X which are Artinian extensions of semisimple crystalline étale
sheaves. By Proposition 7.8, this is equivalent to the category Rep(w et(X &)%) of
associations. m|

Definition 7.11 Say that a smooth Q,—sheaf V on Xg is potentially crystalline if
Vx,. is crystalline for some finite extension K’ C K"

7.2.3 Equivariant pro-algebraic fundamental groups

Definition 7.12 Define Cris’K/w;’t( &) to be the image of wf ‘(Xg)— wft(X K7)°S,
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Note that we can also characterise Cris’K/w;‘(X ) as
ker(?zfjét()(K/)Cris — Gal(K /K" = wft(Spec K')eis),
using the right-exactness of pro-algebraic completion. Thus
w}ét(XK/)cris — criS,K’w_fét(XI?) “ Gal(E/K/)cris,
so representations of cris’K/wj‘;’t()( &) correspond to smooth Q,—sheaves on X g arising
as subsheaves of pullbacks of crystalline étale Q,—sheaves on Xg-.
Definition 7.13 Define

pcriswfét(XE) = 1(21 Cris,K//w_fét(XE)’
K

where the limit is taken over all finite Galois extensions K’ C K”'.

Finite-dimensional representations of Pmswf‘(X ) thus correspond to smooth Q,—
sheaves on X arising as subsheaves of pullbacks of potentially crystalline smooth
Qp—sheaves on X .

Since G = LiI_nK/, (Gal(K/K")eris X Gal(K /K") Gal(K/K)), this gives an isomorphism

lim(Gal(K/ K) Xk ) @ (Xx)™) = PTmg (X g) » GP™,
K//

so the Galois action on pcrisw;"(X &) is algebraic and potentially crystalline.
Lemma 7.14 The map wft(X ) = P, (X ) factors through pCﬁSwft(X 7))

Proof Since

Gal(K/K)P" w ™oy (X ig) = lim Gal(K/ K) Xy i 1y @ (Xar),
K//

it suffices to show that the map wy(Xg~) — @y (Xj») factors through wfét(X x)Ss
By looking at representations, this is equivalent to saying that every smooth QQ,—sheaf
on Xy~ pulls back to give a crystalline étale sheaf on Xy~ . This now follows from
[21, 4.1.1], which shows that smooth Q,—sheaves on X, ,» correspond to unit-root
F—lattices on Xy . O

Definition 7.15 Any field extension K’ — K" gives a pullback functor

v_ v_
MF%,, b,k =~ ME%,, p,.)/Kk"
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and we set

v_ i MEYe
MF(x, by == 1mMFly , b,y k7s
K//

where K ranges over all finite field extensions K’ C K”.
Representations of Gal(K /K)Peis:0 x pcriSwét(X &) are just representations of

lim ZD'ft(X K
K//

)CI”IS

so the category of finite-dimensional representations is

hm FD Rep(wy (X &),
K//

Definition 7.16 Making use of the forgetful functor from associations to filtered
convergent F'—isocrystals, the observation above gives us a QQ,—linear functor

DX . : FDRep(Gal(K / K)P1s:0 x Peris s et(XK))—>MF(X_ Dy)/E-

peris*

Say that an object of MF( Xp.Dp)/ K is potentially admissible if it lies in the essential
image of DX

peris *

Spec K
peris

Note that D = Dyperis -

Definition 7.17 Given a G®—equivariant affine scheme Y over Q,, define the affine
scheme Dpeis(Y) over Kgr by

Dpcris(Y) = Spec Dpcris o).
Observe that O(Y') is therefore an ind-object of (ie a sum of objects in) the category

\Y _ _
MF(Spec V.,2)/K -

Proposition 7.18 The category of finite-dimensional DPCHS(pcrls X &))—represen-
tations in potentially admissible objects of MF(Spec V) K 18 equzvalent to the category
of finite-dimensional GP°1is-0 i Peris et( )—representanons which in turn is equiva-
Ient to the category of potentially adm1ss1ble objects of MF( Xy.Dp)/K -

For any point x € X V(K) the associated fibre functor from Dpis (Perisgy et( 7)-
representations to MF(Spec 7,2)/K corresponds under this equivalence to the pullback

X*: MF%,,.p,)/ & = MF(Spec 7.0/ K-
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Proof A Dpcns(pcm et(X & ))-representation V' in potentially admissible objects of
MF(Spec V.2)/K con51sts of potentially admissible objects V(x) € MF (Spec 7,2)/ K for
all x € Ob(Prszr et(X %)), together with coassociative morphisms

V() = V() ® Dperis O w (X ) (x, »))

. vV  _ _
mn MF(Spec V.,2)/K *

Since Dyeris gives an equivalence between GPi:_representations and potentially
admissible objects of MF(Spec 7.2)/ K » the description above shows that it defines the
required equivalence from GPeris:0 p peris et( )—Tepresentations.

Now, Gperis:0  peris et( 7= th” et(X k), so we may apply the functor Dggm

from Definition 7.16, mapping to potentially admissible objects in MF( Xy.Dp)/K By
[8, Lemma 5.5], this functor is full and faithful, so gives us the second equivalence
required. O

Definition 7.19 Define

Isoc((Xz. Dp)/ Ky == lim Isoc((Xy~, Dgr)/ K"
K//

to be the category of isocrystals on lim (X, Dgr)/ K", where the limit is taken
<K
over finite extensions K’ C K”.

Proposition 7.20 The category of finite-dimensional Dpcris(PcriSEU;t(X &) —represen-
tations over K is equivalent to a full subcategory of Isoc((Xg, Dg)/Ky"). This
subcategory is the smallest full abelian subcategory containing the potentially admissible
objects of MF(VXV, Dy)/K-

Proof Write G := Pcriswj‘f‘t(X &)» and let O(G) be the universal G —representation
in smooth @Q,—sheaves on X, as defined in Definition 2.75. Following through the
proof of Proposition 7.18, the functor from Dys(G)—representations in potentially
admissible objects of MF('épec V.2)/K o MF(V)?_, D)/ K is given by

F(A) := A®@P(@ pX . 0(G),

peris

while its inverse is

F* (.SZQ) = llm Hcrls((Xk” Dk//) ‘Sﬁ ® D
K”

0(G)).

peris
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The same formulae define left exact functors F, Fy between the category of finite-
dimensional Dy is(G)-representations and Isoc((Xz, Dy)/K{'). For any point x €
X(K),

F(A)x = A@P(@ D (0(G)y) = A @Pe(@ D1 (0(G)(x,-)) = A(x),
so F is exact.

For any Dpis(G)-representation A,
cris peris peris
K//
=4 ®DPmS(G) Dpcris O(G)
= A.

F*F(A):A®DPCfi>(G)l_ir_>nH0 ((Xgr, Dpr), DX O(G) ® DX. O(G))

Moreover, Fy is right adjoint to F, since a morphism 4 — Fy(s') is equivalent
to a G—equivariant morphism 4 ® Ox ¢ris > A’ ® DI;‘C/riS@(G) of isocrystals, which

is equivalent to a G—equivariant DX . O(G)-linear morphism A ® DI;X 0G) —»

peris cris

A’ @ DX . O(G), which (taking G—invariants) is just a morphism F(A) — s¢’. These

peris
two statements combine to show that F is full and faithful.

Since F is exact, its essential image is an abelian subcategory. Proposition 7.18 ensures
that it contains all potentially admissible objects of MF(V)?V’ D) K> SO We need only
show that anything in the image of F is in the abelian subcategory generated by these
potentially admissible objects.

Given any Dpis(G)-representation A, there exists a canonical embedding 4 —
A ® Dperis(O(G)), which is a sum of objects of MF(VSpec 7.2k~ Thus for some
finite-dimensional subobject U, we have an embedding A < U . Replacing A with
U/A, we get an embedding U/A4 < U’, so A =ker(U — U’), and hence F(A) =
ker(F(U) — F(U")). Since F(U) and F(U’) are potentially admissible objects of
MF(V)?V, Dy)/K> this completes the proof. O

7.2.4 Crystalline homotopy types Fix a Galois-equivariant quotient R of
pcriswfet(X Ig)red, or rather of its full subgroupoid on objects X (K).

Definition 7.21 Let & — €Z. (%) be a choice of functor from isocrystals to cosimpli-
cial sheaves on the log-crystalline site, with the property that €7 . (%) is a resolution
of &, compatible with tensor products, and acyclic for log-crystalline cohomology.
Examples of such a functor are given in [35, page 17], or by denormalising the

construction DR of [33, 4.29.2]. In both cases, the resolution is given by first choosing
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a resolution which is acyclic for the derived functor between crystalline and Zariski
sites (such as denormalisation of the de Rham complex), then taking a Cech resolution.

Define Sis (Y. F) :=T (Y, €:(%)),

CrlS

observing that this construction will also be compatible with tensor products.
Definition 7.22 Define the relative crystalline homotopy type X. kDgns(R) Mal oyer
Dpeiis R to be the pro-algebraic homotopy type in Ho(sE (Dperis R) ) (bver K nr) corre-
sponding under Theorem 2.74 to the Dpis(R)-representation

(X7, D), Dperis O(R))

Crl§ ( pcrls

in cosimplicial K —algebras, equipped with its natural augmentations to

(Spec K&, x* DX

DpcriSO(R) (x ) =C; pcrls@(R))

cris

coming from elements x € X (V).

Lemma 7.23 There is a canonical equivalence between representations of

wf (X /Knr) cns(R)aMa]

cris

and a full subcategory of Isoc((X 0 Dr)/ Ky') . Objects of this category are Artinian
extensions of those isocrystals corresponding under Proposition 7.20 to Dpeis(R)—
representations.

Proof This is [32, Theorem 2.28]. An alternative approach would be to note that the
proof of [35, Theorem 2.9] carries over to nonnilpotent torsors. O

Definition 7.24 For a topos 7T, if €5-() is a canonical cosimplicial 7 —resolution of
a sheaf ¥ of algebras on X', with C3-(X, &) := I'(X, 65-(¥)), then for any morphism
S+ X — Y we have a bicosimplicial algebra C3-(Y, fx65-(¥)), and we define

CH(f.9) :=1"CH(Y, fx€5(¥F)) € Fc Alg,
defined as in Definition 4.33.
Definition 7.25 If we write j for the embedding X < X, define the filtered relative
crystalline homotopy type (Xj .- Ji CriS)DPC"is(R)’NIal over DpqisR to be the filtered

pro-algebraic homotopy type in Ho(s&(Dperis R)«) (over Ki') corresponding under
Theorem 4.22 to the filtered Dpcris(R)—representation

O(R))

crls(]k cris’ pcrls
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in cosimplicial K'—algebras, equipped with its natural augmentations to

Dyeris O(R)(x, =) = Cyis(Spec K, x* Do O(R))

peris

coming from elements x € X (V).

7.2.5 Comparison of homotopy types From now on, let B := B;s(}) and B:=
Beis(V), from Definition 5.18.

Proposition 7.26 For any Galois-equivariant quotient R of P1is et(X yed | there is
a chain of (¢, G°)—equivariant quasi-isomorphisms

R ,Mal D,.is R ,Mal
XK ét ®Q B Xk (]:I“IS ®K(l)1r B

in s Aff 5(R)x.

Proof This amounts to establishing a chain of quasi-isomorphisms
C:(Xg. O(R) ®q, B~ Coy(Xg/ Ky DX O(R) @y B
in ¢ Algg(R)x«

In the notation of [33, 4.29, 5.21], C3, (X% / K§', D[fgns(O)(R)) and CZ (X g, O(R)) are
quasi-isomorphic to the denormalisations of RI’CHS(DPCHS(O) (R)) and GC (@ (R), X(K)),
since denormalisation and Thom—Sullivan are quasi-inverse up to homotopy (as in

Remarks 3.31).

Since the affine group schemes R/Q), and Dypeis(R)/ K" are associated by an iso-
morphism

B ®Qp O(R) ~ B ®KO"T DpcriSO(R)a

the required result is then ibid. 6.15.1, combined with the observation in ibid. Proposition
6.19 that pullback preserves associations, thus ensuring that these associations are
compatible with the augmentation maps coming from basepoints.

The proof of ibid. 6.15.1 proceeds by adapting the isomorphisms on cohomology groups
from [8, 5.6] to quasi-isomorphisms of DG algebras. Since the latter proves that the
cohomological isomorphisms respect cup products, an alternative approach would be
to extend the isomorphisms to quasi-isomorphisms of the minimal E ,—algebras they
underlie. Remark 2.54 would then imply that the corresponding objects in ng\Af (R)
are weakly equivalent. |
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Remark 7.27 When L is a crystalline étale sheaf on Xx and R is the Zariski
closure of the image of JTiét(X ©+X) — GL(Lz) with nilpotent monodromy around
each component of the divisor, then Proposition 7.26 is effectively [33, Theorem
1.7] (replacing “crystalline” with “potentially crystalline” throughout). The nilpotent
hypothesis was needed for Tannakian considerations, which in our case are obviated
by Proposition 7.8.

Theorem 7.28 Given a Galois-equivariant quotient R of P"risw;'t(X ), the Galois
actionon X Il(—el\ial is algebraic and potentially crystalline.

Proof In the notation of Section 5.3, we need to show that the map G — Aut” (X R, Mal)
factors through GP"S . Apply Proposition 5.20 to Proposition 7.26, taking

Y = Aut (XR Mal) X Aut(R) ngl‘lS ,0
with the G° action on Y given by left multiplication.

Now, note that me(gPCfiS Ox R) = Dpesis (GPeris:0y x R, giving a K{'linear map
Ft Diperis (GP:0) x R — Dperis R. In fact,

pcris.O)
b

Dpers (677 = Spec BXr(°~9
so this map just comes from the isomorphism (Dperis O(R)) Ry B = O(R) ®q, B
We now define Z over DpcrisgPCfis’O to be the affine scheme given by

Z(A) = IsOHo(dg Aft4(R)+) (Xg glal ®q, 4. S H(X Bpers R Mal ®ku A)),

for DpcrisO(QPCﬁS’O)—algebras A.

Since GPris:0 s potentially crystalhne we have an isomorphism o: QPC“S 0% Spec B—
(Dpcr,sgpm 0) XSpec K Spec B so the scheme Z Xgpec Ko Spec B can be regarded as
a scheme over GPeris: 0 x Spec B

The G°—equivariant isomorphism of Proposition 7.26 then gives a G°—equivariant
isomorphism
~ R ,Mal R ,Mal
Z(A) = Is0mo(dg atty(R1) X g " ®Q, A, “ﬁXg,gIa ®q, 4).
for any DpcriSO(gpcriS’O) QK E—algebra A, but the right-hand side is just Y (A4),
giving a G®—equivariant isomorphism

7 XK Spec Ecris ~Y XQ, Spec Ecri&

as required. |
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Corollary 7.29 For x, y € X(K), the G°-actions on
(X gy x) and wp (XA (x. )
are potentially crystalline.

Proof This is just the observation that the map
Aut(X g o) = Aut(m (XE 3. ))(Qp)
factors through Aut" (X II(S ’gfal). O

Note that if we set R = 1 and look at the fundamental group, this recovers the
comparison theorem of [48; 51] between pro-unipotent étale and crystalline fundamental
groups.

In fact, we may extend Proposition 7.26 to a filtered version:

Proposition 7.30 For any Galois-equivariant quotient R of Pcriswj;é‘(X I;)red and for
j: X — X, there is a chain of canonical (¢, G®)—equivariant quasi-isomorphisms

: R ,Mal R _ : Dperis (R) ,Mal R
(XI?,ét’ ]I?,ét) ¢ ®QP B~ (Xk,cris’ ]k,cris) pers (R) Mo ®K8r B
in Fs Aff5(R)«.
Proof The proof of Proposition 7.26 adapts. O

Lacking a suitable p—adic analogue of Lafforgue’s Theorem (although [24, Theorem
6.3.4] might provide a viable replacement in some cases), we now impose a purity
hypothesis.

. X . . . .
Assumption 7.31 Assume that Dpcris(O)(R) is an ind-object in the category of (—pure

overconvergent F—isocrystals. Like Definition 6.2, this is equivalent to saying that for
every R-representation V', the corresponding sheaf V on X g can be embedded in the
pullback of a crystalline étale sheaf U on Xk, associated to an ¢t—pure overconvergent
F—isocrystal on (Xy~, D)/ K", for some finite extension K’ C K”. Also note that
this implies that the Frobenius action on Dp.is O(R) is t—pure.

Example 7.32 To see how the hypotheses of Assumption 7.31 arise naturally, assume
that f: Yx — X is a geometric fibration (in the sense of [10, Definition 11.4], for
instance any smooth proper morphism) with connected components, for Y of potentially
good reduction. Let G(x,Zz) be the Zariski closure of the map

T (Xp)(X.2) = [ [Iso(R" 1, Qp)x. R 2 Qp)2).
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so G is a pro-algebraic groupoid on objects X(K), and then set R = G™4. By [8],
R" f Ié?t’*(@ p is associated to R” f]frj:@yl;,cris,

which by [24, Theorem 6.6.2] is t—pure (or if f is not proper, globally (—mixed). Thus
the semisimplifications of the G —representations

X R/ Qp)s

are direct sums of (—pure representations. Since these generate the Tannakian category
of R-representations, the hypotheses are satisfied.

For X € X(K), we may write F:=Y Xf x,% Spec K, and Theorem 3.32 then shows
that the homotopy fibre of

ét\ R ,Mal ét\ R ,Mal
(YI?) — (X I?)

over X is (F%)I’Mal.

Example 7.33 A more comprehensive example would be to let G(x, z) be the Zariski
closure of the map

7 (Xg)(.2) = [ [Iso(R" /g, Qp)x. R" [ Qp)z).
nf

where f ranges over all geometric fibrations of potentially good reduction with con-
nected components, and then to set R := G™Y. The resulting homotopy type (X %)R Mal
would be very close to possible conceptions of a pro-algebraic motivic homotopy type.

Theorem 7.34 Given a Galois-equivariant quotient R of P°is et(X ) satistying
Assumption 7.31, the Galois action on X &- Mal is t—mixed in the sense of Definition 5.22,
giving a canonical weight decomposition’ on X R Mal ® B°.

Proof This is essentially the same as Proposition 6.6. Frobenius gives a canonical
element of Aut(X CﬁngR’Mal). We first show that this is t—mixed of integral weights.
By Lemma 4.9, we need only consider the Frobenius action on cohomology

CI‘IS(( k) Dpcm@(R))

The Leray spectral sequence gives

H2a+b (X—, chs]*

Cris

O(R)) = HYP((Xz. Dp). DX O(R)).

pcrls Cris
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If we write D™ for the normalisation of the n—fold intersection of the local components
of D, and iy: D™ > X for the embedding, then as in [4, 3.2.4.1], there is an
isomorphism

H24 ™ (X5 RS s D O (R) = HEEH (D i e DY O (R) @),
since j« DX Q(R) is associated to a locally constant sheaf on X .

peris

Now, [24, Theorem 6.6.2] combined with Poincaré duality proves that

H2LP (DS, i j DXL O(R) (@)

Ccris

is (—pure of weight b. Thus Lemma 4.9 implies that the Frobenius element of
Aut (X, ng“isR Mal) is | —mixed of integral weights.

We need to show that the composite morphism
Zalg,O N ngris ®Qp B% Auth (Xllgjglal) ®Qp B°
factors through M. By Proposition 7.26,
Aut? (nggfal) ®q, B ~ Aut® (Xclr)ispcrisR,Mal) ®K8‘ Ea’

so the map
741g.0 _ Gperis ®Q, B° — Aut” (XII;:g[al) ®Q, B

factors through M 2. Since B C B, this completes the proof. O

Theorem 7.35 For R as in Theorem 7.34, the filtered homotopy type
(Xl?,ét’ jl?,ét)R’Mal ® B?
is quasiformal, corresponding to the E, —term

JE‘;”’(XI’_;:XM) ® B = P H*?(Xg. R j.O(R)) ® B € FDGAlgps(R),
a,b

of the Leray spectral sequence for the immersion j: X — X, and the formality
isomorphism is equivariant with respect to the Galois action.

The filtered homotopy type (Xg ;. J g ét)R’Mal is also quasiformal, but the formality

isomorphism is not in general Galois-equivariant or canonical.
Proof Since the Galois action is (—mixed in the sense of Definition 5.22, there

is a Galois-equivariant weight decomposition G,, — RAuty (X Il—g’é\fal ® B?), using
Lemma 5.21 and the observation after Definition 5.3. The argument of Corollary 6.15
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now adapts to show that X & ’g/lal ® B¢ is quasiformal, with the formality quasi-
isomorphism equivariant under the Galois action, proving the first part.

In particular this implies that
RAuty (X 21 (B7) — Aut(E}™ (X g ™M) (B7)

is a pro-unipotent extension. Thus the corresponding morphism of pro-algebraic
groups is surjective, which allows to lift the weight decomposition on ET* (X Il—g’Mal)
noncanonically to Ké This decomposition is not necessarily compatible with the
canonical decomposition on X [1; ’glal ® B . The argument of Corollary 6.15 adapted
to this decomposition now shows that X I’;i\f“l is quasiformal. m|

Corollary 7.36 For X and R as above, we can describe the homotopy groups
o (X Ilg’Mal, X) Xspec Q, Spec B explicitly in terms of the Leray spectral sequence as

, R, _ ,
wf,t(XI? Mal’ x)V ®Qp BO’ — Hl’l I(G(JET *(Xlg’,é\:[al))V) ®Qp BU,

for G as in Definition 4.20. Of course, if the conditions of Theorem 3.40 hold (including
goodness), then this also calculates 7, (X g, X) ® 5 B as a Galois representation.

Remarks 7.37 (1) In the case when X is projective and R is a quotient of
Ga]wf (X%), this is essentially the main formality result of [32, Section 4], which
has since been extended to the general projective case in [33, Theorem 7.22],
although Frobenius-equivariance is not made explicit there. The proofs also
differ in that they work with minimal algebras, rather than minimal Lie algebras.

(2) Although at first sight Theorem 7.35 is weaker than Theorem 7.3, it is more
satisfactory in one important respect. Theorem 7.3 effectively shows that relative
Malcev £—adic homotopy types carry no more information than cohomology,
whereas to recover a relative Malcev p-—adic homotopy type from Theorem 7.35,
we still need to identify

(Xl?,ét’ J.I?,ét)R’Ma1 C (XI?,ét’ j[?,ét)R’Mal ® B°.
This must be done by describing the Hodge filtration on (X CQEC“SR Mal J% eris) >
which is not determined by cohomology (since it is not Frobenius-equivariant).
Thus the Hodge filtration is the only really new structure on the relative Malcev

homotopy type. This phenomenon is similar to the formality results for mixed
Hodge structures in [34, Section 2].
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