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Topological obstructions to fatness

LUIS A FLORIT

WOLFGANG ZILLER

Alan Weinstein showed that certain characteristic numbers of any Riemannian sub-
mersion with totally geodesic fibers and positive vertizontal curvatures are nonzero.
In this paper we explicitly compute these invariants in terms of Chern and Pontrjagin
numbers of the bundle. This allows us to show that many bundles do not admit such
metrics.

53C20, 57R20, 57R22

There are few known examples of compact Riemannian manifolds with positive sectional
curvature; see Ziller [22] for a survey. All of them, apart from some rank one symmetric
spaces, can be viewed as the total space of a Riemannian submersion, in some cases
an orbifold submersion; see Florit and Ziller [7]. The fact that the homogeneous
ones also have totally geodesic fibers motivated A Weinstein [19] to study Riemannian
submersions with totally geodesic fibers and positive vertizontal curvatures, ie, sectional
curvatures of planes spanned by a vector tangent to a fiber and a vector orthogonal to it.
He called such fiber bundles fat, and showed that this much weaker condition already
imposes strong restrictions.

Fat circle bundles are in one-to-one correspondence with symplectic manifolds and
hence well understood. Therefore, we will restrict ourselves to bundles whose fiber
dimension is bigger than one, which in turn implies that the dimension of the base must
be divisible by 4.

Let G! P
�
! B2m be a G –principal bundle with G a compact connected Lie group

endowed with a biinvariant metric h ; i, and B a compact connected manifold. Given
a principal connection � with curvature form �, we say that � is u–fat if

�u D h�. � ; � /;ui is nondegenerate on H;

where H is the horizontal space of � and u lies in the Lie algebra g of G . For a
connection metric on P (see Section 1) this condition is equivalent to requiring that
the sectional curvatures spanned by the action field generated by u and any horizontal
vector is positive. In particular, fatness is independent of the metrics on the base and
fiber.
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If fatness holds for all 0¤ u 2 g we say that � is fat, or simply the principal bundle
is fat. If it holds for all u¤ 0 in a subset s� g, we say that the principal connection
is s–fat, or that s is fat. Observe that if u is fat, so are all vectors in its adjoint orbit
o D AdG.u/. Following Weinstein, we consider the homogeneous AdG –invariant
polynomial qoW g!R defined as

qo.˛/D

Z
G

hAdg.u/; ˛i
m dg:

By Chern–Weil theory, there exists a closed 2m–form !o on B2m such that ��!o D

qo.�/. By o–fatness, the form hAdg.u/;�i
m is everywhere nonzero on H and thus

!o is a volume form on B2m . Therefore, the characteristic number
R

B !o is nonzero
and we call it the Weinstein invariant associated to o.

Our main purpose is to compute these invariants for the classical Lie groups, obtaining
explicit topological obstructions to fatness in terms of Chern (or Pontrjagin) numbers.
This will allow us to derive several applications.

The simplest case is the torus T n for which we obtain a lower bound on the Betti
numbers of the base.

Theorem 1 Let T n! P ! B2m be a fat principal bundle. Then, the Betti numbers
of B2m satisfy b2i � n for all 1� i �m� 1.

Denote by ck 2H 2k.B;Z/ and pk 2H 4k.B;Z/ the Chern and Pontrjagin classes,
and by e 2H 2n.B;Z/ the Euler class when G D SO.2n/. In the case of U.2/ and
SO.4/, Weinstein invariants have rather simple expressions.

Theorem 2 Let G! P ! B2m be a fat principal bundle.

(a) If G D U.2/, then cm
1

and .c2
1
� 4c2/

m=2 are nonzero and have the same sign,
and

m=2X
jD0

�
mC 1

2j C 1

�
t2j c

m�2j
1

.c2
1 � 4c2/

j
¤ 0 8 t 2R:

(b) If G D SO.4/, then .p1C 2e/m=2 and .p1� 2e/m=2 are nonzero and have the
same sign, and

m=2X
jD0

�
mC 2

2j C 1

�
t2j .p1� 2e/m=2�j .p1C 2e/j ¤ 0 8 t 2R:

Geometry & Topology, Volume 15 (2011)



Topological obstructions to fatness 893

For Lie groups with rank.G/ > 2 the formulas become more complicated, eg in the
case of U.n/ we obtainX
n��1������m�0

mY
iD1

.nCm�i��i/! det
�
��iCj�i.y/

�
1�i;j�m

det.c�iCj�i/1�i;j�m¤0

for all 0 ¤ y D .y1; : : : ;yn/, with
P
�i D m, where �i stands for the elementary

symmetric polynomial of degree i in n variables. Observe that special consequences
are cm

1
¤ 0 for y D .1; : : : ; 1/ and det.cj�iC1/1�i;j�m ¤ 0 for y D .1; 0; : : : ; 0/.

Similar formulas hold for the other classical Lie groups; see Theorem 2.3.

We use these invariants as follows. Given a G–principal bundle P , the Weinstein
invariants define homogeneous polynomials in rank.G/ variables once we parametrize
the adjoint orbits o � g in terms of a maximal abelian subalgebra t � g, by writing
oD AdG.y/ for y 2 t. The coefficients of these multivariable polynomials are Chern
numbers of P , and fatness implies that they have no nonzero real roots. It is thus in
general difficult to express the nonvanishing of the Weinstein invariants in terms of the
Chern numbers alone. But in some cases this is possible. For example, we have the
following which applies, in particular, to base manifolds with b4.B

2m/D 1.

Corollary 1 Let G ! P ! B2m be a principal bundle, where G D U.2/ or G D

SO.4/. Suppose there exists r 2 R such that c2
1
� 4c2 D rc2

1
¤ 0 if G D U.2/, or

p1C 2e D r.p1� 2e/¤ 0 for G D SO.4/. Then all Weinstein invariants are nonzero
if and only if r > 0.

A natural context where partial fatness appears is for associated bundles. Given H �G a
closed subgroup, we have the associated bundle by G=H !P �G G=H DP=H !B .
A connection metric on this fiber bundle can be described in terms of a principal
connection on P . The vertizontal curvatures of such a connection metric are positive
if and only if the principal connection on P is h?–fat. It turns out that any fat bundle
is associated to some principal bundle in this way.

Perhaps the most natural examples of associated bundles are the sphere bundles. In the
real case, we conclude from Theorem 2.3 the following.

Corollary 2 A sphere bundle with totally geodesic fibers and positive vertizontal
curvatures satisfies det.pj�iC1/1�i;j�m=2 ¤ 0, where 2m is the dimension of the
base.

We will see that if the sphere bundle is the sphere bundle of a complex or quaternionic
vector bundle, we obtain a one parameter family of obstructions instead of a single one.
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Derdziński and Rigas [5] showed that the only S3 bundle over S4 which admits a fat
connection metric is the Hopf bundle. For S7 bundles over S8 this is still an open
problem. Such bundles S7!Mk;l ! S8 are classified by two arbitrary integers k; l

such that p2 D 6.k� l/ and eD kC l . Using the obstructions for quaternionic sphere
bundles and Corollary 2, we will show:

Corollary 3 The sphere bundles S7!Mk;l ! S8 , where either k D l or .k; l/D
.8r; 4r/, r 2 Z, do not admit a fat connection metric. In particular, for k D l D 1, it
follows that T1S8! S8 does not admit a fat connection metric.

Similarly, we will see that T1CP4!CP4 admits no fat connection metric. For fat
S3 –fiber bundles over CP2 we have the following.

Corollary 4 The only two S3 –fiber bundles over CP2 that may admit a fat connection
metric are the complex sphere bundles with c2

1
D 9 and c2 D 1 or 2. In particular,

T1CP2!CP2 does not have a fat connection metric.

Bérard-Bergery classified in [1] the fat fiber bundles which are homogeneous. A family
of such examples are the fiber bundles over the Grassmannian of 2–planes in CnC1 ,

U.2/=S1
p;q! U.nC 1/=U.n� 1/ �S1

p;q!G2.C
nC1/;

where S1
p;q D fdiag.zp; zq/ 2 U.2/ W z 2 S1g. The fiber is the lens space S3=ZpCq

when pC q ¤ 0. He showed that the bundle has a homogeneous fat connection metric
if and only if pq > 0. We will show that the homogeneity property can be dropped:

Corollary 5 The above fiber bundles with pq � 0 admit no fat connection metric.

For general U.2/=S1
p;q fiber bundles we have:

Corollary 6 If U.2/=S1
p;q ! P ! B2m is a fat bundle, then .c2

1
� 4c2/

m=2 ¤ 0.
Moreover, if .p; q/¤ .1; 1/ and c2

1
D r.c2

1
�4c2/ for some r 2R, then the nonvanishing

of the Weinstein invariants is equivalent to

r > �

�
1� cos. �

mC1
/

1C cos. �
mC1

/

��
pC q

p� q

�2

:

The above fat bundles over G2.C
nC1/ show that Corollary 6 is sharp, since for nD 2

these bundles are associated to the same principal bundle U.2/ ! SU.3/ ! CP2

which has r D�1=3.
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In Section 1 we collect various facts about fat fiber bundles and the algebra of symmetric
polynomials and Schur functions. These turn out to be central in converting the integrals
into polynomials in Chern and Pontrjagin numbers. In Section 2 we derive the general
form of Weinstein invariants for all classical Lie groups and for G2 . In Section 3 we
concentrate on the case of G D T n; U.2/ and SO.4/, while in Section 4 we discuss
sphere bundles. In Section 5 we prove a stronger version of the reduction conjecture
stated by the second author [21] for normal subgroups, namely, no fat vector exists
in h? if the structure group reduces to a normal subgroup with Lie algebra h. Finally,
in Section 6 we relate our obstructions to some of the fat bundles in [1] by computing
their Weinstein invariants. Throughout the paper we will provide several additional
applications.

Acknowledgements We would like to thank N Wallach for helpful conversations.

Both authors were partially supported by CNPq-Brazil and the second one by a grant
from the National Science Foundation.

1 Preliminaries

We first recall Weinstein’s definition of fatness of a fiber bundle and his basic topological
obstruction to fatness; see Weinstein [19] and Ziller [21].

Let � W M !B be a fiber bundle with fiber F , and metrics on M and B such that � is
a Riemannian submersion. Let H and V denote the horizontal and vertical subbundles
of TM . If the fibers of � are totally geodesic, the sectional curvature of a vertizontal
2–plane, ie a plane spanned by a vertical vector U and horizontal vector X is equal to
kAU Xk2 , where AW H�H! V is the O’Neill tensor and hAU Y;X i D �hAX Y;U i.
In particular, these curvatures are automatically nonnegative. According to Weinstein,

� W M ! B is called fat if AX U ¤ 0 for all 0¤X 2H; 0¤ U 2 V;

or, equivalently, when all vertizontal sectional curvatures are positive.

We first consider the case where the fiber bundle � W P ! B is a G –principal bundle
and the horizontal spaces are G–invariant. The horizontal distribution can then be
described in terms of a principal connection � W TP ! g as H D ker � , where g is
the Lie algebra of G . With the aid of a metric on the base and a left invariant metric
on G , � defines a so called connection metric on P by declaring H and V to be
orthogonal, endowing H with the pull back of the metric on the base, and V with the
chosen left invariant metric on G . If we endow P with such a connection metric and
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�W TP �TP ! g is the curvature form of � , Weinstein observed that fatness of � can
be rewritten as:

.1:1/ For each 0¤ y 2 g; �y WD h�. � ; � /;yi is a nondegenerate 2–form on H;

where we have chosen an auxiliary biinvariant metric h � ; � i on G . This is indeed an
immediate consequence of 2�.AX Y / D ��.X;Y /. In particular (1.1) implies that
fatness is independent of the metrics on the base and fiber, ie, it only depends on the
principal connection itself. We thus simply say that the principal connection � , or P

by abuse of language, is fat. Furthermore, if s� g is a subset, we will say that � is
s–fat if �y is nondegenerate for all 0¤ y 2 s. Also observe that if a vector y 2 g is
fat, the whole adjoint orbit AdG.y/ consists of fat vectors since �Adg.y/ D g�.�y/.
Hence we can assume that y lies in a maximal abelian subalgebra t� g.

Observe that for each fat vector y 2 g we have a nonvanishing vector field Zy on the
unit sphere of H given by hZy.X /;Y iD�y.X;Y /, and if fy1; : : : ;yr g is a basis of a
fat subspace V � g, the vector fields Zy1

; : : : ;Zyr
are pointwise linearly independent.

By the well known Radon–Hurwitz formula V –fatness thus implies:

.1:2/ If dim B D .2aC1/24bCc with 0� c � 3, then dim V � 2c
C 8b� 1:

In particular,

.1:3/ If dim V � 2; 4; 8; then 4j dim B; 8j dim B; 16j dim B; respectively:

Notice that the adjoint orbit of V may contain a linear subspace of larger dimension,
in some cases all of g, which gives further restrictions.

We define the Weinstein invariants as follows, where we assume that G and B are
compact and connected. For each adjoint orbit o� g, we write oD AdG.y/ for y 2 t.
For k2N[f0g, the homogeneous AdG –invariant polynomial qk

y Dqk
o W g!R given by

.1:4/ qk
o .˛/D

Z
G

hAdg.y/; ˛i
k dg

defines a closed 2k –form !o on B2m via ��!o D qk
o .�/. By Chern–Weyl theory,

Œwo� 2H 2k.B;R/ represents a characteristic class of the bundle. Now suppose that
k Dm is half the dimension of the base and write qo D qm

o . If o is fat, �m
y ¤ 0 is a

volume form on H . Thus, if G is connected, hAdg.y/;�i
m is nowhere zero and has

constant sign when g varies along G , and the integral qo.�/ is nonzero on H . Hence
!o is a volume form of B2m , in particular B2m is orientable, and the characteristic
number

R
B !o is nonzero. We call this characteristic number the Weinstein invariant

associated to o, and our main goal is to express it explicitly in terms of Chern and
Pontrjagin numbers. This will allow us to obtain various applications.
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Observe that, for a circle bundle, fatness is equivalent to ! being a symplectic form
on the base, where ! is given by �D ��w . Thus, the only Weinstein invariant is the
symplectic volume. For any other fat fiber bundle, by (1.3) we have that 4 divides the
dimension of the base. Therefore, we always assume that m is even.

For convenience, we use the same notation for an AdG –invariant polynomial on g,
for its restriction to a maximal abelian subalgebra t � g, and for the corresponding
characteristic class. Recall that the Chern classes ci 2H 2i.B;Z/ are defined by the
AdU.n/–invariant polynomials ci.A/, with

det.I C tA/D
X

i

ci.A/t
i ; A 2 u.n/;

and the Pontrjagin classes pi2H 4i.B;Z/ by the AdO.n/–invariant polynomials pi.A/,
with

.1:5/ det.I C tA/D
X

i

pi.A/t
2i ; A 2 o.n/:

For even rank, we also have the Euler class e 2H 2n.B;Z/ given by the AdSO.2n/–
invariant Pfaffian

e.A/D Pf.A/; A 2 o.2n/;

where Pf2.A/D det.A/. Again, by abuse of notation, we also use the same symbol for
the quaternionic Pontrjagin classes pi 2 H 4i.B;Z/ given by the AdS.n/–invariant
polynomials pi.A/ as in (1.5), but for A2sp.n/. As it is well known, these polynomials
form a basis of the set of all AdG –invariant polynomials in the case of a classical Lie
group G , the only relations being e2 D pn in the case of G D SO.2n/ and c1 D 0 for
G D SU.n/. Thus each Weinstein invariant is a polynomial in these basic classes, ci ,
pi and e , evaluated on the fundamental cycle ŒB�.

Now, as a function of o D AdG.y/, qo D qy becomes a polynomial in y 2 t Š Rn ,
with coefficients being Chern or Pontrjagin numbers. By definition they are invariant
under the Weyl group W D N.T /=T . We use the following standard forms for t:
for u.n/ and sp.n/ we have tD fi diag.y1; : : : ;yn/ W y 2Rng, while for so.2nC 1/

and so.2n/ we have tD fdiag.y1J; : : : ;ynJ / W y 2Rng, where J stands for the basic
2 � 2 skew symmetric matrix. We will denote both the vector and its coordinates
by y D .y1; : : : ;yn/ 2 t. Since all Weyl groups of the classical Lie groups contain
the permutation group, qy can be expressed in terms of the elementary symmetric
polynomials �i.y/D �i.y1; : : : ;yn/. We will choose the biinvariant metric on G in
such a way that the canonical basis in Rn Š t is orthonormal.
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To obtain the invariants it was important for G to be a connected compact Lie group.
We claim that the obstructions also hold for nonconnected groups. To see this we lift
the bundle to a certain cover of the base whose structure group reduces to a connected
Lie group. Let � DG=Go be the component group of the Lie group, on which G acts
naturally. Let xB be a connected component of f.b; 
 / j b 2 B; 
 2 �g and define
the cover ˛W xB! B by ˛..b; 
 //D b . This induces the pull back bundle ˛�.P /D
f.x; b; 
 / 2 P � xB j �.x/ D bg on which G acts via g.x; b; 
 / D .xg�1; b;g
 /.
There now exists a reduction xP D f.x; b; e/g � ˛�.P / which is preserved by Go .
The connection � on P pulls back to a connection x� on xP and its curvature x� still
satisfies the property that x�y is a nondegenerate 2–form on H for all 0¤ y 2 g. Thus,
if xqo.˛/ D

R
Go
hAdg.y/; ˛i

m dg , we have xqo.x�/ D x��.x!o/ with x!o a volume form
on xB , and x!o D ˛

�.!o/. Therefore, !o is also a volume form and
R

B !o ¤ 0.

We now study how Weinstein invariants behave for coverings. Let zG be a finite cover of
a connected Lie group G , GD zG=� , and assume that P has a cover 'W zP!P which
is a zG –principal bundle. Due to the fact that � is a subgroup of the center of G , (1.4)
is invariant under � and therefore the Weinstein invariants for zP are precisely the ones
for P multiplied by the order of � . Moreover, observe that a principal connection �
on P is fat if and only if '�� on zP is fat.

Similarly, if G!G=�DG� is a covering, a G principal bundle P!B induces a G�

principal bundle P=�!B . If � is a fat connection on P , there exists a connection ��

on P=� whose pullback is � since � is a subgroup of the center. Again, �� is fat if
� is fat and the Weinstein invariants are the same up to a constant.

Finally, if G is a product group, G D G1 �G2 , or a local product G D G1 �G2 D

.G1 �G2/=� , then from (1.4) we get, up to a factor,

.1:6/ q.y1;y2/.˛1; ˛2/D

mX
iD0

�
m

i

�
qi

y1
.˛1/q

m�i
y2

.˛2/;

where qk
yj

are given by (1.4) for each Gj (we know they are nonzero only for k Dm).
In particular, if we change the biinvariant metric on G by multiplying by a constant ci

on each factor Gi , the Weinstein invariants change by a constant as well, once we
replace .˛1; ˛2/ by .c1˛1; c2˛2/, and its nonvanishing is thus independent of the
choice of biinvariant metrics.

We now discuss the case of a fiber bundle � W M ! B with fiber F , where we allow
a general Riemannian submersion with totally geodesic fibers. The fiber bundle � is
associated to a G –principal bundle � W P!B via M DP�GF , where G acts on P on
the right and on F on the left, Œ.p; h/�D f.pg;g�1h/ W g 2Gg, and � can be regarded
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as the projection onto the first factor. Choose a principal connection � W TP ! g, a
metric on F invariant under the action of G and a metric on B . The horizontal space
at p 2 P given by Hp D ker �p defines a horizontal space at x D Œ.p; h/� 2M via
HŒ.p;h/� D Œ.Hp; 0/�. We now define a metric on M by pulling back the metric on B

with � , by declaring the fibers to be orthogonal to H , and choosing the metric on
��1.b/' F W p! Œ.p; h/�; p 2 ��1.b/, to be the given metric on F . In this metric,
� is a Riemannian submersion with totally geodesic fibers isometric to F , and any
Riemannian submersion with totally geodesic fibers arises in this fashion for some
principal bundle; see Ziller [21] and Gromoll and Walschap [9] for details. Notice also
that, in contrast to Weinstein [19], this metric does not require a choice of metrics on G

or P . The metrics described as above are often called connection metrics of the fiber
bundle.

Bérard-Bergery showed in [2] that the holonomy group of a fat fiber bundle acts
isometrically and transitively on the fibers. Since the holonomy group is contained
in G , G acts transitively on the fibers as well. Hence we can assume that F DG=H

for some subgroup H and M D P �G G=H D P=H . If h? � g is the orthogonal
complement of the Lie algebra h of H with respect to our fixed auxiliary biinvariant
metric on G , Weinstein showed:

The connection metric on � W M DP �G G=H !B is fat if and only if � is h?�fat:

That is, �u is nondegenerate on H for all 0 ¤ u 2 h? . Notice that this is again
independent of the G–invariant metric on F D G=H and the metric on B , in other
words, it only depends of the principal connection. Therefore, fatness of � implies
the nonvanishing of the Weinstein invariants of the G –principal bundle associated to
any 0 ¤ y 2 h? , and we write these in terms of the characteristic numbers of the
G –principal bundle.

If the left action of G on G=H extends to an action of G0 with G=H DG0=H 0 , one
can view, as above, the metric on M induced by � as the metric induced by the
unique extension of the principal connection � to a connection � 0 on P 0 D P �G G0 .
Furthermore, it follows that if � is fat then � 0 is fat as well. Indeed, on P � P 0 ,
� D � 0jP and thus � D �0jP , in particular, �0jP has values in g � g0 and using
the identification TF D g? ' g0? it follows that � is h?–fat if and only if �0jP
is h0?–fat. Thus the possible principal bundles are all extensions of the holonomy
bundle and the principal connection is the uniquely defined extension of the tautological
principal connection of the holonomy bundle. Nevertheless, the Weinstein invariants
depend on the particular choice of the principal bundle, a fact that we will be able to
exploit in certain situations.
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1.1 Symmetric polynomials and Schur functions

Fix a positive integer n 2 N . A base of the algebra of symmetric polynomials in
xD .x1; : : : ;xn/ is indexed by partitions �D .�1; : : : ; �n/2Nn

0
D .N[f0g/n , where

� is nonincreasing, ie, �i � �iC1 . Denote by

Km D f� 2Nn
0 W �1 � � � � � �n; j�j Dmg

the set of partitions of degree m, where for each � 2Nn
0

we set j�j D
Pn

jD1 �j . We
also set �!D �1! � � ��n! and x� D x

�1

1
� � �x

�n
n for x 2 Rn . We use the convention

Km D∅ if m is not an integer. For k 2N0 we also denote by k D .k; : : : ; k/ 2Nn
0

and k�D .k�1; : : : ; k�n/. The notation �� 
 means that �i � 
i for all i . We say
that � is even (resp. odd) if each �i is even (resp. odd). The partition �0 conjugate
to � 2Km is the partition �0 2Nm

0
defined as �0i D #fj W �j � ig, 1� i �m. Since

�0 � n, the set of conjugate partitions to Km is

K0m D f� 2Nm
0 W n� �1 � � � � � �m; j�j Dmg:

A basic property of the conjugated partitions is that �00D � for �2Km , so K
00

mDKm .
For � 2K0m , we denote by n�� the partition .n��m; n��m�1; : : : ; n��1/.

Associated with each � 2Nn
0

there is an alternant A� defined by

.1:7/ A�.x/D det.x�ji /D
X
�2Sn

sign.�/x��:

By definition one has A�� D sign.�/A� for all � in the permutation group Sn of n

elements. Since A� D 0 when � has repeated indexes, a nonvanishing A� can be
written, up to sign, as A�C� for � 2Km , where mD j�j � n.n� 1/=2 and

�D �n WD .n� 1; n� 2; : : : ; 1; 0/:

As a special case we have the Vandermonde determinant

�.x/ WDA�.x/D det.xj�1
i /D

Q
i<j .xi �xj /:

Since, for any partition �, A�C�.x/D 0 if xi D xj for some i ¤ j , we have that �
divides A�C� . This allows us to define the degree m homogeneous symmetric Schur
polynomial

S� WDA�C� =�; � 2Km:

The complete homogeneous symmetric polynomial of degree m in n variables is
defined as

hm D hm.x/ WD
X
j�jDm

x�;
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Topological obstructions to fatness 901

and we set h�D
Q

i h�i
for any partition �. The elementary symmetric polynomials are

�m WD

X
j�jDm; ��1

x�:

There is a simple relation between these polynomials given by

.1:8/ h0 D 1;

rX
jD0

.�1/j�j hr�j D 0 8 r � 1;

where we set �m D 0 for m > n or m < 0 (cf Macdonald [12, (2.6 0 )] or Fulton and
Harris [8]). It follows that fh0; h1; : : : ; hng is another basis of the algebra of symmetric
polynomials. Moreover, one has

hm D det.�j�iC1/1�i;j�m 8m 2N

(cf [12, page 20]). For the special cases nD 2 or x3D � � � D xnD 0 we also have that

.1:9/ hm D
1

2m

Œm=2�X
jD0

�
mC 1

2j C 1

�
�

m�2j
1

.�2
1 � 4�2/

j :

Indeed, by definition, hmD .x
mC1
1
�xmC1

2
/=.x1�x2/. If we consider x1 and x2 for-

mally as the roots of x2��1xC�2D0 and apply the binomial theorem one obtains (1.9).

Remark 1.10 Because of (1.8), when E is a complex vector bundle, hm represents
the m–Chern class cm.�E�/ of the formal negative of the dual of E .

We summarize now the main properties of Schur functions that will be needed.

Proposition 1.11 We have the following properties of Schur functions S�.x1; : : : ;xn/

for � 2Km :

(a) S� D det.h�iCj�i/1�i;j�n .

(b) S� D det.��0
i
Cj�i/1�i;j�m , where �0 2K0m is the conjugate partition of �.

(c) S� D �m for �D .1; : : : ; 1; 0; : : : ; 0/, where there are m 1’s.

(d) S� D hm D det.�j�iC1/1�i;j�m for �D .m; 0; : : : ; 0/.

(e) S� D �
�n
n Sz� , where z�D ���n1.

(f) S0 D 1.

(g) S�.e1/D 1 for �D .m; 0; : : : ; 0/ and 0 for any other partition �.

(h) S�.e1C te2/D
Pm�k

iDk t i , if �D .m�k; k; 0; : : : ; 0/, 0� k � Œm=2�, and 0 for
any other partition �.

Geometry & Topology, Volume 15 (2011)



902 Luis A Florit and Wolfgang Ziller

Proof All statements are immediate consequences of the well known Jacobi–Trudi
identities (a) and (b) (see [12, (3.4) and (3.5)]).

We will see in the next section that Weinstein invariants can be explicitly written in
terms of Schur functions and then, by part (b) of Proposition 1.11, in terms of Chern
and Pontrjagin numbers.

2 Weinstein invariants for the classical groups

Assume G is connected. To convert the integral in (1.4) into a sum, we use a formula
due to Harish-Chandra (see Warner [18, Theorem 3.2.1.3]):

tr�.y/�.x/

Z
G

ethAdg.y/;xi D

X
w2W

det.w/ ethwx;yi; t 2R;

which holds after multiplying the biinvariant metric with a suitable constant. Here,
W denotes the Weyl group of G , � the product of the positive roots of .g; t/, r the
number of positive roots, ie, 2r D dim G � rank.G/, and x;y 2 tŠRn . Comparing
Taylor series expansions in t , we have from (1.4) that

�.x/�.y/qk
o .x/D

k!

.kC r/!

X
w2W

det.w/hwx;yikCr

D k!
X
w2W

det.w/
X

j�jDkCr

1

�!
.wx/�y�

D

X
j�jDkCr

k!

�!
y�

X
w2W

det.w/.wx/�;

with k 2N , � 2Nn
0

. Therefore,

�.x/�.y/qk
o .x/D

X
j�jDkCr

k!

�!
y� L�.x/;.2:1/

L�.x/ WD
X
w2W

det.w/.wx/�:where

We now compute the polynomials qk
y , y 2 t, for the classical groups in terms of Schur

functions. Since they are AdG –invariant we only need to describe their restriction to t.
Recall that Kr is empty if r is not an integer, and we set a sum over the empty set to
be zero.
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Proposition 2.2 Let G be one of the classical groups with Lie algebra g and tŠRn

the Lie algebra of a maximal torus of G . Then, up to a positive constant which only
depends on G , we have the following expressions for qk

y W t! R for each y 2 t and
k 2N W

(a) If G D U.n/ or SU.n/, then

qk
y .x/D

X
�2Kk

k!

.�C�/!
S�.y/S�.x/:

(b) If G D O.2n/;O.2nC 1/;SO.2nC 1/ or S.n/, then

qk
y .x/D

X
�2Kk=2

k!

.2.�C�/C�/!
S�.y

2/S�.x
2/;

where � D 0 for G D O.2n/ and � D 1 otherwise.

(c) If G D SO.2n/, then

qk
y .x/D

X
�2Kk=2

k!

.2.�C�//!
S�.y

2/S�.x
2/

C

X
�2K.k�n/=2

k!

.2.�C�/C1/!
�n.y/S�.y

2/�n.x/S�.x
2/:

Proof We proceed case by case since the actual expressions in (2.1) involve the
structure of the Lie algebra of G .

G D U.n/. The Weyl group W D Sn acts on t as the permutation group Sn of n

elements. Furthermore, r D n.n� 1/=2, �.x/D�.x/ and L�.x/D A�.x/. Since
L� D 0 if there are two repeated integers in � we obtain from (2.1) that

�.x/�.y/qk
y .x/D

X
���2Kk

k!

�!

X
�2Sn

y��L��.x/D
X

���2Kk

k!

�!
A�.y/A�.x/;

which proves Proposition 2.2 (a) for the unitary group.

G D SU.n/. Identifying the maximal torus of SU.n/ with fx 2Rn W �1.x/D 0g, the
same formula as for U.n/ holds simply taking into account that �1.x/D �1.y/D 0,
since the Weyl group and the roots of SU.n/ coincide with those of U.n/.

G D SO.2n/. Here, W D Sn �Zn�1
2

acts on t as the permutation group and by an
even change of signs, and r D n.n� 1/. Observe that L� D 0 if � contains both an
even and an odd index or when two indexes are repeated, and L�D 2n�1A� otherwise.
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On the other hand we have L2�.x/ D L�.x
2/ D 2n�1A�.x

2/ and L2�C1.x/ D

�n.x/L�.x
2/D 2n�1�n.x/A�.x

2/. Therefore,

�.x/�.y/qk
y .x/D

X
j�jDkCr; � even or odd

k!

�!

X
�2Sn

y��L��.x/

D

X
���2Kk=2

k! 2n�1

.2�/!
A�.y

2/A�.x
2/

C �n.x/�n.y/
X

���2K.k�n/=2

k! 2n�1

.2�C1/!
A�.y

2/A�.x
2/:

We immediately get Proposition 2.2 (c) up to a factor 2n�1 since for SO.2n/ we have
�.x/D�.x2/.

G D SO.2nC 1/. Here, W D Sn �Zn
2

acts on t as the permutation group and by
arbitrary sign changes, and r D n2 . Thus, L� D 0 if � contains an even index, and
L2�C1.x/ D �n.x/L�.x

2/ D 2n�n.x/A�.x
2/. Since �.x/ D �n.x/�.x

2/, we get
Proposition 2.2 (b) for SO.2nC 1/ up to a factor 2n .

G D O.2nC �/, � D 0; 1. These groups share a maximal torus with SO.2nC �/.
However, we cannot apply Harish-Chandra’s formula directly, since the orthogonal
group is not connected. Write G D G0 [ g0G0 where G0 D SO.2nC �/ and g0 D

diag.�1; 1; : : : ; 1/ 2G nG0 . From (1.4) we get

qk
y .x/D

Z
G

hAdg.y/;xi
k dg D yqk

y .x/C yq
k
y

�
Adg0.x/

�
;

where yqk
y .x/D

R
G0
hAdg.y/;xi

k dg . Since Adg0 preserves S�.x
2/ and changes the

sign of �n.x/, Proposition 2.2 (b) and (c) for SO.2nC �/ imply Proposition 2.2 (b)
for the orthogonal group up to a factor 2nC� .

G D S.n/. The symplectic group S.n/ shares with U.n/ the same maximal torus.
The Weyl group acts on it in the same way as the one of SO.2nC 1/, but �.x/ D
2n�n.x/�.x

2/. Therefore, the expression differs from the one for SO.2nC 1/ only
by a 2n factor.

We now have all the ingredients needed to express Weinstein invariants in terms of
Chern and Pontrjagin numbers. Recall that for any fat fiber bundle where the fibers are
different from S1 the dimension of the base must be divisible by 4.

Theorem 2.3 Let G be one of the classical groups and t Š Rn a maximal abelian
subalgebra of its Lie algebra. Let G ! P ! B2m be a G–principal bundle and an
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element y 2 t that is fat. Taking into account that in all statements the indexes i; j of
the matrices run over 1� i; j � r for � 2K0r , we have:

(a) If G D T n , then � nX
iD1

yici

�m

¤ 0;

where c1; : : : ; cn 2H 2.B;Z/ are the Chern classes of P .

(b) If G D U.n/ or SU.n/, thenX
�2K 0m

.n��C�m/! det
�
��iCj�i.y/

�
det.c�iCj�i/¤ 0;

where ck 2H 2k.B;Z/ is the k –th Chern class of P , with �1.y/D 0 and c1D 0

for G D SU.n/.

(c) If G D O.2n/;O.2nC 1/;SO.2nC 1/ or S.n/, thenX
�2K 0

m=2

.2.n��C�m=2/C�/! det
�
��iCj�i.y

2/
�

det.p�iCj�i/¤ 0;

where pk 2 H 4k.B;Z/ is the k –th Pontrjagin class of P , with � D 0 for
G D O.2n/ and � D 1 otherwise.

(d) If G D SO.2n/, thenX
�2K 0

m=2

2.n��C�m=2//!

.2�.mC2n/=2/!
det
�
��iCj�i.y

2/
�

det.p�iCj�i/

C e
X

�2K 0
.m�n/=2

.2.n��C�.m�n/=2/C1/

.2�.mCn/=2C 1/
�n.y/ det

�
��iCj�i.y

2/
�
det.p�iCj�i/¤ 0;

where e 2H 2n.B;Z/ is the Euler class of P .

Proof For the torus, the Weyl group W is trivial and we simply get, using Fubini and
(1.4), that

qo.x/D

� nX
iD1

yixi

�m

;

which gives us part (a).

Using that �00 D � 2 Km and Proposition 1.11 (b), the other cases are direct conse-
quences of Proposition 2.2 for k Dm, writing the expressions in terms of conjugate
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partitions, and using that �mCn!D .�C�/!.n��0C�m/! and hence .2�mCnC �/!D

.2.�C �/C �/! .2.n��0C �m/C �//!. Indeed, this follows from the fact that

f�i Cn� i W 1� i � ng[ fnC j ��0j � 1 W 1� j �mg D f0; 1; 2; : : : ;mC n� 1g;

with the union being disjoint; see [12, (1.7)].

Remark 2.4 Weinstein invariants for G DG2 . Our methods apply to all Lie groups,
and not only to the classical ones. For example, regard G D G2 as a subgroup
of SO.7/, with its maximal torus being the subset of the maximal torus of SO.7/
such that x1 C x2 C x3 D 0. It is convenient to write 3si D 2xi � xj � xk with
fi; j ; kg D f1; 2; 3g and notice that s1 C s2 C s3 D 0. The positive roots are given
by si , 1 � i � 3 and sj � sk , j < k , and so �.s/ D �3.s/�.s/. The Weyl group
W DS3�Z2 acts by permutations and simultaneous sign change on the si ’s. Therefore,
L�.s/ D .1C .�1/j�j/

P
�2S3

sign.�/.�s/� and L�� D sign.�/L� for all � 2 S3 .
So, taking into account that �1.y/D �1.s/D 0,

qo.s/D .�.y/�.s//
�1

X
�2KmC3

2 m!

.�C �/!
A�C�.y/A�C�.s/

D

X
�2KmC3

2 m!

.�C �/!

S�.y/

�3.y/

S�.s/

�3.s/
:

These invariants can be written in terms of �2.s/2H 4.B;Z/ and �3.s
2/2H 12.B;Z/

which form a base of the AdG2
–invariant polynomials. Indeed, since �1.s/ D 0,

�1.s
2/D�2�2.s/ and �2.s/

2 D �2.s
2/; see eg [11].

3 First applications

In this section we prove Theorem 1 and Theorem 2, and provide several applications of
the explicit expressions of the Weinstein invariants to the case of low rank groups. In
the process, we generalize and prove some of the corollaries stated in the Introduction.

3.1 G D T n

In this subsection, we provide the proof of Theorem 1 in the Introduction by means of
a well-known algebraic result in the theory of isometric rigidity of submanifolds.

Let ˇW V �V 0!W be a bilinear map between real vector spaces. For y 2 V 0 , define
ˇy W V !W as ˇy.x/Dˇ.x;y/. The set RE.ˇ/Dfy2V 0 W rankˇy� rankˇz;8z2V 0g

is clearly open and dense in V 0 . The following result is essentially contained in
Moore [14].
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Lemma 3.1 One has ˇz.kerˇy/� Imˇy for all y 2 RE.ˇ/; z 2 V 0 .

Proof If t is small, tzCy 2 RE.ˇ/. Then, It D ImˇtzCy converges to I0 D Imˇy

as t! 0. But if x 2 kerˇy , ˇz.x/D ˇtzCy.t
�1x/ 2 It for all t small, t ¤ 0. Hence,

ˇz.x/ 2 Imˇy .

Proof of Theorem 1 Fix n; s 2N , and let V �H s.B;R/ be a subspace satisfying
ck ¤ 0 for all c 2 V n f0g. Consider the map ˛W V �H s.r�1/.B;R/!H sr .B;R/
given by ˛.c; b/Dc b , where the product is the cup product of the de Rham cohomology
ring of B . We have:

Claim If b 2 RE.˛/ and r < k , the map ˛bW V !H sr .B;R/ is a monomorphism.

To prove the Claim, take w 2 ker˛b � V . By Lemma 3.1 we have that wr D

˛wr�1.w/ 2 Im˛b . Hence, there is v 2 V such that wr D vb . But then wrC1 D

vbw D˙v˛b.w/D 0. Since w 2 V , we get w D 0 and the Claim is proved.

Theorem 1 is now a consequence of the above Claim applied to the linear subspace
V n �H 2.B;R/ spanned by the Chern classes of the bundle, ie by the pull back of
H 2.BT n/ under the classifying map.

3.2 G D U.n/

The general expression of the Weinstein invariants involves several determinants and
hence are difficult to use. But for certain vectors y 2 g it can be simplified. It is thus
useful to express the nonvanishing of the invariants for some particular cases in a more
explicit way.

Proposition 3.2 Let P be a y–fat U.n/–principal bundle over a compact mani-
fold B2m for y 2 t� u.n/. Denoting hk D det.cj�iC1/1�i;j�k we have the following:

(a) If y D .1; : : : ; 1/, then cm
1
¤ 0.

(b) If y D .1; 0; : : : ; 0/, then hm ¤ 0.

(c) If y D .1C t; 1; : : : ; 1/, then

mX
kD0

�
mC n� 1

nC k � 1

�
tkcm�k

1 hk ¤ 0:
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(d) If y D .1; t; 0 : : : ; 0/, then

m=2X
kD0

�
mC 2n� 3

nC k � 2

��m�kX
iDk

t i

�
.hkhm�k � hk�1hm�kC1/¤ 0:

In particular, restrictions (c) for t D �n and (d) for t D �1 also apply for SU.n/–
principal bundles.

Proof Part (a) follows directly from the definition of the Weinstein invariant (1.4)
since qo.˛/D

R
Ghy; ˛i

m dg D
R

G t r.˛/m dg D cm
1

.

For part (b) apply Proposition 2.2 (a) to oD AdU.n/.e1/. Using Proposition 1.11 (g)
and (d) we obtain

qy D
.n� 1/!m!

�!.mC n� 1/!
hm

and hence qy ¤ 0 is equivalent to hm ¤ 0.

To prove (c) we use (1.4), part (a), the proof of (b) and Fubini to obtain

qy.˛/D

Z
G

�
h.e1C � � �C en/; ˛iC the1; ˛i

�m
dg

D

mX
kD0

�
m

k

�
.n� 1/!k!

�!.kC n� 1/!
tkcm�k

1 hk ;

qy.˛/D
.n� 1/!k!m!

�!.mC n� 1/!

mX
kD0

�
mC n� 1

nC k � 1

�
tkcm�k

1 hk :and thus

This proves part (c).

Finally, to prove (d), by Proposition 2.2 (a) and Proposition 1.11 (h), we have

qy D

X
�

m!

.�C�/!
S�.y/S�.x/

for �D .m�k; k; 0; : : : ; 0/; k D 0; : : : ;m=2. Proposition 1.11 (a) and (h) then imply

qy.˛/D
.n� 1/!.n� 2/!m!

�!.mC 2n� 3/!

m=2X
kD0

�
mC 2n� 3

nC k � 2

�
tkcm�k

1 hk :

which finishes our proof.
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3.3 G D U.2/

We now derive a formula for the Weinstein invariants for G D U.2/ which is simpler
than the one obtained from Proposition 3.2 in the case of n D 2. This in particular
proves Theorem 2 for G D U.2/.

Proposition 3.3 Let U.2/! P ! B2m be a principal bundle. If y D .1;�1/ is fat
then .c2

1
� 4c2/

m=2 ¤ 0, while if y D .1C t; 1� t/ is fat for some t 2R then

.3:4/
m=2X
jD0

�
mC 1

2j C 1

�
t2j c

m�2j
1

.c2
1 � 4c2/

j
¤ 0:

Proof We have 2–fold covers �1W S
1�SU.2/!U.2/; .z;A/! zA and �2W U.2/!

S1 � SO.3/, obtained by dividing by ˙ Id. All 3 have the same polynomials qy . The
restrictions of �2 ı�1 to S1 and SU.2/ are both 2 fold covers. On the maximal torus
level we clearly have .�2 ı �1/�.a; b/ D .2a; 2b/ and .�1/�.a; b/ D .aC b; a� b/.
Thus .�2/�.s; t/D .sC t; s � t/. Now for the Chern class polynomials of U.2/ we
have c1 D sC t and c2 D st and thus c2

1
� 4c2 D .s � t/2 . Hence c1 becomes the

Euler class for the S1 factor in S1 �SO.3/ and c2
1
� 4c2 the Pontrjagin class p1 for

SO.3/. For the Weinstein polynomials of S1 we have qk
y D ykck

1
and for SO.3/,

using Proposition 2.2 (b), qk
y D .2=.k C 1//ykp

k=2
1

if k is even and 0 otherwise.
Since .�2/�.1C t; 1� t/D .2; 2t/, (1.4) and Fubini imply

qy.˛/D

m=2X
jD0

�
m

2j

�
c

m�2j
1

2m

2j C 1
t2j .c2

1 � 4c2/
j

D
2m

mC 1

m=2X
jD0

�
mC 1

2j C 1

�
t2j c

m�2j
1

.c2
1 � 4c2/

j :

The case of y D .1;�1/ follows by considering y=t D .1=t C 1; 1=t � 1/ and letting
t !1 in (3.4).

As we observed in Section 1, if P ! B is a .1C t; 1 � t/–fat U.2/ bundle, then
P=f˙ Idg ! B is a .1; t/–fat S1 �SO.3/ bundle and the claim follows.

Remark 3.5 The proof shows that c2
1
� 4c2 is the first Pontrjagin class of the

SO.3/ D U.2/=Z.U.2// bundle P=Z.U.2//, and c1 the Euler class of the circle
bundle P=SU.2/.

As a consequence, we obtain the following result. The assumption is eg satisfied when
b4.B

2m/D 1. This also proves Corollary 1 for U.2/.
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Corollary 3.6 Let U.2/!P!B2m be a principal bundle for which c2
1
D r.c2

1
�4c2/

for some r 2R. We then have:

(a) If .c2
1
� 4c2/

m=2 D 0, all Weinstein invariants vanish.

(b) If .c2
1
�4c2/

m=2¤0 and rD0, there is exactly one adjoint orbit whose Weinstein
invariant vanishes.

(c) If .c2
1
� 4c2/

m=2 ¤ 0 and r < 0, there are exactly m=2 adjoint orbits whose
Weinstein invariants vanish.

(d) If .c2
1
� 4c2/

m=2 ¤ 0 and r > 0, no Weinstein invariant vanishes.

In particular, if the bundle is fat, then .c2
1
� 4c2/

m=2 ¤ 0 and r > 0.

Proof We use Proposition 3.3. For r D 0, the vector y D .1; 1/, ie t D 0, is clearly
not fat. If t ¤ 0, (3.4) is equivalent to .c2

1
� 4c2/

m=2 ¤ 0. For r ¤ 0 we obtain
.c2

1
� 4c2/

m=2 ¤ 0 when t D 0. When t ¤ 0 we note that

.1C z/kC1
� .1� z/kC1

D 2z

Œk=2�X
jD0

�
kC 1

2j C 1

�
z2j

8z 2C; k 2N:

Hence the vector y D .1C t; 1� t/, t ¤ 0, is fat if and only if

.3:7/ .
p

r C t/mC1
¤ .
p

r � t/mC1:

If r > 0 this is satisfied for all t 2R. If, on the contrary, r < 0, then one easily sees
that there are exactly m=2 positive values of t that satisfy the equality in (3.7), and
thus y D .1C t; 1� t/ cannot be fat. Notice also that y and .1� t; 1C t/ lie in the
same adjoint orbit.

We point out that it is easy to state and prove similar results to both Proposition 3.3
and Corollary 3.6 for m odd.

For the proof of Corollary 6, let s be the Lie algebra of S1
p;q , where we can assume

p � 1 and q � p by reversing the roles of p and q or the orientation of the circle.
Since sDR .p; q/, a straightforward computation shows that

.3:8/ AdU.2/.s
?/DR

[
t�jpCqj

AdU.2/.p� qC t;p� q� t/:
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Proof of Corollary 6 If qD pD 1, we simply get from (3.4) that .c2
1
�4c2/

m=2¤ 0.
If q ¤ p , by (3.8) we need (3.4) for t � j.pC q/=.p� q/j. This is equivalent to (3.7)
for t � j.pC q/=.p� q/j, which is in turn easily seen to be equivalent to

r > �

�
1� cos. �

mC1
/

1C cos. �
mC1

/

��
pC q

p� q

�2

:

Remark 3.9 In particular, if mD 2, s?–fatness implies that c2
1
D r.c2

1
� 4c2/ with

3r > �..pC q/=.p� q//2 . In [21] the results in [5] were applied to such lens space
bundles as well. It was shown that, for some orientation of the bundle, PC WDP=SU.2/
is fat and for P� WDP=Z.U.2/ we have jp1.P�/j<..pCq/=.p�q//2p1.PC/. Since
p1.PC/D c2

1
and p1.P�/D c2

1
� 4c2 or vice versa, Corollary 6 for mD 2 and the

result in [21] complement each other. In particular, if p C q D 0, no fat principal
connection exists, while for any other pair p; q there exist fat lens space bundles over
CP2 ; see Section 6.

The analysis of the Weinstein invariants is easy when the dimension of the base is
small:

Fat U.2/–bundles over 8–dimensional manifolds For mD 4 and yD .1C t; 1� t/

we get from Proposition 3.3 (a) that .c2
1
� 4c2/

2t4C 10c2
1
.c2

1
� 4c2/t

2C 5c4
1
¤ 0 for

all t 2 R, while for y D .1;�1/ we have .c2
1
� 4c2/

2 ¤ 0. Therefore, no Weinstein
invariant vanishes if and only if

5.c2
1.c

2
1 � 4c2//

2 < c4
1.c

2
1 � 4c2/

2

c4
1 ; .c

2
1 � 4c2/

2 and c2
1.c

2
1 � 4c2/ don’t vanish and have the same sign.or

3.4 G D SO.4/

As for the U.2/ case, for SO.4/ we can provide a simpler expression for the invariants.
In particular, this proves Theorem 2 for SO.4/.

Proposition 3.10 Let SO.4/!P!B2m be a principal bundle. If .1;�1/ is fat then
.p1C 2e/m=2 ¤ 0, while if .1C t; 1� t/ is fat for some t 2R, we have

m=2X
jD0

�
mC 2

2j C 1

�
t2j .p1� 2e/m=2�j .p1C 2e/j ¤ 0:
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Proof As in the proof of Proposition 3.3 we have 2–fold covers �1W S.1/�S.1/!
SO.4/; .q1; q2/!fv!q1vq�1

2
g using multiplication of quaternions and �2W SO.4/!

SO.3/�SO.3/, obtained by dividing by � Id. The restrictions of �2 ı�1 to each S.1/
factor are again 2 fold covers and hence .�2 ı�1/�.a; b/D .2a; 2b/. We also have
.�1/�.a; b/D .aCb; a�b/ and thus .�2/�.s; t/D .sC t; s� t/. Since p1 D s2C t2

and e D st it follows that p1˙ 2e D .s˙ t/2 are the Pontrjagin classes of the two
SO.3/ factors. We thus have

qy.˛/D 2m

m=2X
kD0

�
m

2k

�
2

m� 2kC 1
.p1� 2e/m�2k 2

2kC 1
t2k.p1C 2e//k

which, up to a factor 2mC2=..mC1/.mC2// is the expression in Proposition 3.10.

Remark 3.11 The proof shows that p1˙2e is the first Pontrjagin class of the SO.3/D
SO.4/=SU.2/˙ principal bundles P=SU.2/� , where SU.2/� and SU.2/C are the
two normal subgroups of SO.4/.

With the same argument as in the proof of Corollary 3.6 we easily prove the following,
which in particular generalizes Corollary 1 for SO.4/.

Corollary 3.12 Let SO.4/! P ! B2m be a principal bundle for which p1C 2e D

r.p1� 2e/ for some r 2R. Then one of the following holds:

(a) If .p1� 2e/m=2 D 0, then all Weinstein invariants vanish.

(b) If .p1 � 2e/m=2 ¤ 0 and r D 0, then there is exactly one adjoint orbit whose
Weinstein invariant vanishes.

(c) If .p1�2e/m=2 ¤ 0 and r < 0, then there are exactly m=2 adjoint orbits whose
Weinstein invariant vanishes.

(d) If .p1� 2e/m=2 ¤ 0 and r > 0, then no Weinstein invariant vanishes.

In particular, if the bundle is fat, then .p1� 2e/m=2 ¤ 0 and r > 0.

Remark 3.13 In contrast to the U.2/ case, it is easy to see that s?–fatness implies
full so.4/–fatness for the Lie algebra s of S1

p;q � SO.4/. In fact, even t?–fatness
implies so.4/–fatness, since t� AdSO.4/.t

?/. Actually, the latter property seems to
hold for all semisimple Lie groups of rank > 1.

From the dimension restriction it follows that for a fat SO.4/ bundle dim B must be
divisible by 8. In the lowest dimensional case we have:
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Fat SO.4/–bundles over 8–dimensional manifolds When nD 2 and mD 4, Propo-
sition 3.10 for y D .1C t; 1� t/ gives

.3:14/ 3.p1� 2e/2C 10t2.p1� 2e/.p1C 2e/C 3t4.p1C 2e/2 ¤ 0 8t 2R;

while for y D .1;�1/ we have .p1C2e/2 ¤ 0. Thus, no Weinstein invariant vanishes
if and only if

25.p2
1 � 4e2/2 < 9.p1C 2e/2.p1� 2e/2;

.p1�2e/2; .p1C2e/2 and .p1C2e/.p1�2e/ don’t vanish and have the same sign.
or

3.5 G D SU.3/

We analyze one further case of rank 2 groups, those with G D SU.3/, in order to
illustrate the difficulties one faces for other Lie groups if one wants to express the
restrictions for full fatness purely in terms of characteristic numbers. By (1.2), the lowest
dimensional case is already dim B D 32. Here, the invariants for SU.3/ reduce to

c2
2

�
.511t12

C3066t11
C8814t10

C15965t9
C21798t8

C25128t7
C26583t6

C25128t5
C21798t4

C15965t3
C8814t2

C3066tC511/c6
2

C
�
1917t12

C11502t11
�15876t10

�184815t9
�498150t8

�757188t7
�834867t6

�757188t5
�498150t4

�184815t3
�15876t2

C11502tC1917
�
c2

3c3
2

C729.t4
C2t3

�6t2
�7tC1/.t4

C11t3
C21t2

C11tC1/.t4
�7t3

�6t2
C2tC1/c4

3

�
¤ 0;

for all 0� t � 1. Here we can restrict ourselves to t � 1 since if t is a root, then 1=t

also is a root. In particular, c2
2
.15c4

3
�21c2

3
c3

2
Cc6

2
/ and c2

2
.729c4

3
C1917c2

3
c3

2
C511c6

2
/

do not vanish and have the same sign.

Now, if c2
3
D rc3

2
, we write the above as a.t/r2Cb.t/rCc.t/¤ 0. It is easy to see that

the function r�.t/D .�b�
p

b2� 4ac/=2a has only one essential singularity in Œ0; 1�
at t0 Š 0:12920428615, for which limt!t

C

0
r�.t/DC1 and limt!t�

0
r�.t/D�1.

Therefore, the function r�.t/ for t 2 Œ0; t0/ [ .t0; 1� takes values in .�1; r2� [

Œr1;C1/, where r2 D r�.0/ D .�71 � 9
p

37/=54 Š �2:3286 and r1 WD r�.1/ D

.15309�
p

202479021/=21870. The same argument for rC.t/D.�bC
p

b2� 4ac/=2a

allows us to conclude:

Full fatness and c2
3 D rc3

2 implies that � 0:30102106Š r0 < r < r1 Š 0:0493593;

where r0 WD rC.0/D .�71C 9
p

37/=54.
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A particular interesting case are SU.3/=T 2 fiber bundles since this is one of the
positively curved Wallach flag manifolds. But t?–fatness coincides with full su.3/–
fatness since it is easy to check that AdSU.3/.t

?/D su.3/. Hence we also have that
for any circle S1

p;q � SU.3/ that s?–fatness implies full fatness.

4 Fat sphere bundles

In this section we compute the Weinstein invariants for sphere bundles with positive
vertizontal sectional curvatures, and provide applications related to partial fatness. We
will exclude fat S1 –fiber bundles which are simply in one-to-one correspondence with
symplectic manifolds.

4.1 Real sphere bundles

Regard an arbitrary sphere bundle with totally geodesic fibers of dimension k � 2 as
the associated bundle to a principal bundle O.kC1/! P ! B2m ,

Sk
! P 0 D P �O.kC1/ O.kC1/=O.k/! B2m:

Recall that P 0 has positive vertizontal curvatures if and only if P is so.k/?–fat. In
this situation, since AdO.kC1/.so.k/

?/DR AdO.kC1/.e1/, Proposition 1.11 together
with Proposition 2.2 (b) and (c) yield

qso.k/?.x/D hm=2.x
2/D det.pj�iC1/1�i;j�m=2 ¤ 0:

This proves Corollary 2. In particular, the Weinstein invariant is independent of the
dimension of the fibers and for m� 8 reduces to:

dim.B/ hm=2 ¤ 0

4 p1 ¤ 0

8 p2 ¤ p2
1

12 p3 ¤ 2p1p2�p3
1

16 p4 ¤ p4
1
� 3p2

1
p2C 2p1p3Cp2

2

We point out that for orientable bundles, ie, G D SO.kC 1/, the same formulas hold,
since the term containing the Euler class vanishes.

4.2 Complex sphere bundles

A sphere bundle of dimension 2n�1�3, whose underlying vector bundle has a complex
structure, can be viewed as associated to a principal bundle U.n/! P ! B2m ,

S2n�1
! P 0 D P �U.n/ U.n/=U.n�1/! B2m:
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Then P 0 has positive vertizontal curvatures if and only if P is u.n�1/?–fat. Since
AdU.n/.u.n�1/?/DR

S
t�0 AdU.n/.e1C te2/, Proposition 3.2 (d) gives

.4:1/
Œm=2�X
kD0

�
mC 2n� 3

nC k � 2

��m�kX
iDk

t i

�
.hkhm�k � hk�1hm�kC1/¤ 0 8t � 0;

where hk D det.cj�iC1/1�i;j�k . In particular, for t D 0 we obtain that

det.cj�iC1/1�i;j�m ¤ 0:

For complex S3 fiber bundles over a 4–dimensional manifold, ie nDmD 2, fatness
implies that c2

1
.1C t C t2/ � c2.1 � t/2 ¤ 0 for all t � 0, which one easily sees

is equivalent to c2
1
D sc2 with s < 1 or s > 4. We can combine this information

with the results obtained in [5] for general 3–sphere bundles over a 4 dimensional
base. It was shown there that there exists an orientation of the bundle such that
one of the SO.3/ principal bundles among P˙ WD P=SU.2/� , say PC , is fat and
jp1.P�/j<p1.PC/. If the sphere bundle is a complex sphere bundle, one has, for some
choice of orientation, p1.PC/D c2

1
and p1.P�/D c2

1
� 4c2 . The above obstruction

implies that c2
1
D r.c2

1
� 4c2/ with 3r > �1 which thus complements [5].

Proof of Corollary 4 In [4; 21] it was shown that the only 3–sphere bundles over CP2

that can possibly admit a fat connection metric are the complex vector bundles with
characteristic classes .c2

1
; c2/D .1; 1/ or .9; k/, with k D 1; 2; 3; 4. Thus combining

both obstructions, it follows that only the sphere bundles with .c2
1
; c2/ D .9; 1/ or

.9; 2/ could possibly admit fat connection metrics. The bundle with .c2
1
; c2/D .9; 3/

corresponds to the tangent bundle of CP2 .

For S5 fiber bundles over 8–dimensional manifolds we have

.t4
Ct3
Ct2
CtC1/c4

1�3.t4
C1/c2

1c2C.2 t�1/.t�2/.1Ct/2c1c3C.t
2
�tC1/2c2

2 ¤ 0;

for all t � 0, while for S7 fiber bundles the Weinstein invariants are

.4:2/ .t4
C t3
C t2
C t C 1/c4

1 C .2t4
� 3t3

� 13t2
� 3t C 2/c1c3C .t � 1/4c2

2

� .3t2
C 4t C 3/.t � 1/2c2

1c2� .t
4
� 4t3

� 4t2
� 4t C 1/c4 ¤ 0 8t � 0:

In particular, for B8 DCP4 , the Chern classes of the tangent bundle are ci D
�
5
i

�
xi

for a generator x 2H 2.B;Z/, and thus .14t4C 119t3C 219t2C 119t C 14/x4 ¤ 0.
But this polynomial has two real roots in Œ�1; 0�, and hence T1CP4!CP4 admits
no fat connection metric. Notice that, since the sphere bundle T1CPn!CPn with
n ¤ 1; 2; 4 has no fat connection metric already for dimension reasons, and using

Geometry & Topology, Volume 15 (2011)



916 Luis A Florit and Wolfgang Ziller

Corollary 4, it follows that only the unit tangent bundle over CP1 has a fat connection
metric.

4.3 Quaternionic sphere bundles

A sphere bundle of dimension 4n � 1 � 3, whose underlying vector bundle has a
quaternionic structure, can be seen as an associated bundle to a principal bundle
S.n/! P ! B2m ,

S4n�1
! P 0 D P �S.n/ S.n/=S.n�1/! B2m:

Then, P 0 has positive vertizontal curvatures if and only if P is sp.n�1/?–fat. Since
AdS.n/.sp.n�1/?/DR

S
t2R AdS.n/.e1C te2/ we conclude that

m=4X
kD0

�
mC 4n� 6

2nC 2k � 3

��m=2�kX
sDk

t2s

�
.hm=2�khk � hm=2�kC1hk�1/¤ 0 8t 2R;

where hk D det.pj�iC1/1�i;j�k , with the pi ’s being the quaternionic Pontrjagin
classes. In particular for t D 0 we get det.pj�iC1/1�i;j�m=2 ¤ 0. For n D 1, we
simply obtain p

m=2
1
¤ 0 while, for n� 2, the principal bundle must be sp.2/� sp.n/

fat and hence 32 divides m.

The groups G D S.n/�S for S D S1;S D S.1/ also act on S4n�1 by .A; z/ � v D
Avz�1 . Then, S4n�1 D S.n/� S=H for H D S.n� 1/��S . Thus AdG.h

?/ D

R
S

0�t�1 AdG.e1� te2; t � 1/, and, using Fubini, we get the Weinstein invariants

m=2X
iD0

Œm=4�i=2�X
kD0

 �
m

2i

��
m� 2i C 4n� 6

2nC 2k � 3

�

�

�
.t � 1/2i

m=2�i�kX
sDk

t2s

�
wi.hm=2�i�khk � hm=2�i�kC1hk�1/

!
¤ 0

for all 0� t � 1, where w D c2
1

for S D S1 and w D p1 for S D S.1/.

Proof of Corollary 3 S7 bundles over S8 are constructed by gluing two copies of
D8 � S7 along the boundary S7 � S7 via .u; v/! .u;ukvul/, where u; v are unit
Cayley numbers, and k; l 2 Z. This defines the sphere bundle S7!Mk;l ! S8 . In
[16] it was shown that the characteristic classes of this sphere bundle are p2D 6.k� l/,
e D .k C l/. The restriction for real sphere bundles already implies Corollary 3 for
k D l . If the bundle is a sphere bundle of a quaternionic vector bundle, we just saw that
it cannot be fat for dimension reasons. We will now determine which bundles Mk;l

carry a complex structure since any quaternionic vector bundle is also a complex one.
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From the usual relationship between Chern and Pontrjagin classes of a complex vector
bundle it follows that p2D 2c4 and c4D e . Thus a necessary condition is that k D 2l .
Admitting a complex structure is the same as a reduction of the structure group from
SO.8/ to U.4/ and since bundles over S8 are classified by their gluing map along the
equator, we need to determine the image of i�W �7.U.4//! �7.SO.8//. For this we
use the long homotopy sequence of the fibration

U.4/! SO.8/! SO.8/=U.4/D SO.8/=SO.6/SO.2/DG2.R
8/;

where the last equality is due to one of the low dimensional isometries of simply
connected symmetric spaces. Now, G2.R

8/ is the base of another fibration, S1!

V2.R
8/!G2.R

8/, with total space the Stiefel manifold of 2–frames, and they thus
have the same homotopy groups. The low dimensional homotopy groups of the
Stiefel manifolds are well known; see eg Paechter [15]. In particular, �7.G2.R

8//D

Z˚Z2; �8.G2.R
8//DZ2˚Z2 and for the homotopy groups of the Lie groups (see

eg Mimura and Toda [13]) we have �7.U.4//D Z and �7.SO.8//D Z˚Z with a
basis of the latter given by the gluing map. Thus i� is injective, and by the above its
image lies in ZD f.2l; l/; l 2Zg. Since �6.U.4//D 0, the cokernel of i� is Z˚Z2

and hence Im.i�/D f.2l; l/; l eveng. We conclude that the complex vector bundles
are precisely the ones with k D 2l for l even. Notice that in this case (4.2) does not
give a contradiction to fatness.

Among the complex sphere bundles, the ones that carry a quaternionic structure are the
ones for which l is divisible by four. To see this, consider the long exact sequence in
homotopy of S.2/! SU.4/! S5 . Since �7.S

5/D Z2 and �8.S
5/D Z24 [10], it

follows that the map from �7.S.2//D Z to �7.SU.4//D Z is multiplication by two.
This finishes our proof.

5 Topological reduction

In [21] it was conjectured that if a G–principal bundle admits a fat connection, then
the structure group of the bundle cannot be reduced to any proper subgroup H �G

(where one does not assume that the reduced bundle admits a fat connection). We make
here the stronger conjecture that this already holds when the G –principal connection
is y –fat for some y 2 h? . In this section we show that this is in fact true when H is a
connected normal subgroup of G . This shows that partial fatness, in some cases, can
be used to show that the structure groups cannot be reduced.

A G–principal bundle � W P ! B is classified via its classifying map �G W B! BG ,
where BG D E=G is the classifying space of the Lie group G . The characteristic
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classes can then be viewed as pull backs of cohomology classes in H�.BG ;Z/. If
the structure group of P reduces, ie, if there exists a submanifold P 0 � P invariant
under a subgroup H �G , then the H –principal bundle P 0 is called a reduction of P

and we have P D P 0 �H G . We have another classifying map for P 0 , �H W B!BH ,
and clearly �G D Bi ı �H , where Bi W BH ! BG is induced by the inclusion map
i W H ! G . Thus, if x 2H�.BG ;Z/ is a characteristic class with B�i .x/D 0, then
��

G
.x/D 0 as well. In some cases we can use the nonvanishing of certain characteristic

numbers for a fat principal bundle to show that a reduction to H cannot exist. A special
case is the following result:

Theorem 5.1 Let G!P!B be a principal bundle, and H �G a connected normal
subgroup with Lie algebra h. If the bundle reduces to H , then the Weinstein invariant
associated to y vanishes for all y 2 h? . In particular, there are no fat vectors in h? .

Proof Since H is normal, h is an ideal and thus h? is also an ideal. Therefore, G D

H �H 0 for some normal subgroup H 0�G . Since H�H 0 is a finite cover of H �H 0 , both
have the same rational cohomology and hence the classifying spaces also have the same
cohomology. The map induced by the inclusion BH DBH�feg!BH�H 0DBH �BH 0

clearly sends the characteristic classes coming from the cohomology of BH 0 to 0. Thus
the Weinstein invariant associated to any y 2 h? vanishes because of (1.6).

Remark 5.2 If rank.H /D rank.G/, then the kernel of B�i W H
�.BG/!H�.BH / is

trivial (see Borel [3]), and thus the above method cannot be applied. Clearly, the bigger
the rank difference, the larger the kernel. On the other hand, the bigger rank.G/ is, the
more difficult it is to understand the multivariable polynomials defining the Weinstein
invariants.

6 Examples of homogeneous fat fiber bundles

Apart from the case G D SO.2/, where fatness is in one-to-one correspondence with
symplectic forms on the base B , the known examples of fat bundles all arise as
homogeneous bundles from inclusions H �G �L,

G=H !L=H
�
�!L=G D B:

The metrics on L=H and L=G are chosen to be L invariant, ie induced by a left
invariant metric on L, invariant under right translations by G . If we assume that in the
metric on the Lie algebra l of L the subspaces h?\g and g?� l (defined with respect
to a biinvariant metric) are orthogonal to each other, Bérard-Bergery showed in [1] that
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the projection is a Riemannian submersion with totally geodesic fibers. Furthermore,
the submersion is fat if and only if ŒX;Y �¤ 0 for all nonvanishing X 2 h?\ g and
Y 2 g? . In addition, Bérard-Bergery classified all such homogeneous fat bundles.

The above homogeneous bundle � is associated to the G principal bundle

G!L
�
�!L=G;

since L �G G=H D L=H . If G and H have a normal connected subgroup K in
common, and thus G DK �G0 and H DK �H 0 , we can also choose the G0–principal
bundle

G0 DG=K!L=K
�
�!L=G;

since L �K �G0 G
0=H 0 D L=K �G0 .G

0=H 0/. The obstructions will be expressed in
terms of the characteristic numbers qy for y 2 h? (resp. y 2 h0? ) of the G (resp.
G=K ) principal bundle.

Example 1 (Lens space bundles) Given the inclusion of groups

U.n� 1/S1
p;q � U.n� 1/U.2/� U.nC 1/; n� 2;

with S1
p;q D diag.zp; zq/� U.2/, we obtain the fiber bundle over the complex Grass-

mannian of 2–planes in CnC1 , G2.C
nC1/D U.nC 1/=U.n� 1/U.2/,

U.n� 1/U.2/=U.n� 1/S1
p;q! U.nC 1/=U.n� 1/S1

p;q!G2.C
nC1/;

with fiber U.2/=S1
p;q D SU.2/=fdiag.zp; zq/: zpCq D 1g, which is the lens space

S3=ZpCq when pC q ¤ 0. By changing the order and replacing z by xz if necessary,
we can assume that p � q and p � 0 with gcd.p; q/ D 1. Bérard-Bergery showed
in [1] that this bundle if fat, when both the total space and the base are equipped with a
homogeneous metric, if and only if pq > 0. We will show now that for pq � 0 there
is no fat principal connection (not necessarily homogeneous), which will provide a
proof of Corollary 5.

The above bundle can be considered to be associated to the U.2/ principal bundle

.6:1/ U.2/! U.nC 1/=U.n� 1/!G2.C
nC1/;

and for the proof of Corollary 5 we need its first and second Chern classes. The
cohomology ring of the base has been computed in [3] and is given by

H�.G2.C
nC1/;Z/D .ZŒ�1; �2�˝ZŒx�1; : : : ; x�n�1�/=ZŒz�1; : : : ; z�nC1�;

where the �i ’s are the symmetric polynomials in t1; t2 , the x�i ’s the symmetric poly-
nomials in t3; : : : ; tnC1 and the z�i ’s the symmetric polynomials in t1; : : : ; tnC1 . Fur-
thermore, c1 D x�1.t1; t2/D t1C t2 and c2 D x�2.t1; t2/D t1t2 are the Chern classes of
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the canonical 2–plane bundle �1 over G2.C
nC1/ which sends a point into the 2–plane

defining it. Similarly, xc1; : : : ; xcn�1 are the Chern classes of the canonical .n�1/–plane
bundle �2 over G2.C

nC1/ which sends a point into the .n� 1/–plane orthogonal to it.
Thus we can also express the cohomology ring as ZŒc1; c2�˝ZŒxc1; : : : ; xcn�1� divided
by the relationships

.1C c1C c2/[ .1Cxc1C; : : : ;Cxcn�1/D
QiDn�1

iD1 .1C ti/D 1;

which can be regarded as the product formula for the trivial bundle �1˚ �2 . Since
�1 D U.nC 1/ �U.n�1/U.2/ C2 D U.nC 1/=U.n� 1/ �U.2/ C2 , c1; c2 are also the
Chern classes of the U.2/ bundle (6.1).

The above relationships imply the recursive formula

xck D�c1xck�1� c2xck�2; k � 1;

where we set xc0 D 1 and xc�1 D xcn D xcnC1 D � � � D 0. Notice that this is the same
relationship as (1.8) once we replace �1 by �c1 and �2 by c2 . We can thus expresses
the Chern classes xci in terms of ci , as in the proof of (1.9), and obtain

xck D .�1=2/k
Œk=2�X
jD0

�
mC 1

2j C 1

�
c

k�2j
1

.c2
1 � 4c2/

j ; k � 1:

If the lens space bundle is fat, the relationship xcmD 0 for mD 2n�2 then contradicts
(3.4) for t D 1. But by (3.8), (3.4) is required for all t � j.pC q/=.p� q/j, and so we
must have j.pC q/=.p� q/j> 1, or equivalently, pq > 0, as claimed in Corollary 5.

In the lowest dimensional case n D 2, the total space is the Aloff–Wallach space
SU.3/=S1

p;q with embedding S1
p;q D diag.zp; zq;xzpCq/, where the bundle is not

only fat, but has positive sectional curvature when pq > 0. The metric is obtained
from the biinvariant metric on SU.3/ by shortening in the direction of U.2/ D
fdiag.A; det xA/; A 2U.2/g. There are 3 such metrics corresponding to embeddings of
U.2/ in different coordinates and by changing the embedding, and replacing z to xz
if necessary, any Aloff–Wallach space with pq.pC q/¤ 0 has a lens space fibration
with pq > 0. From the above, it follows that for the other two fibrations there exists
no fat connection metric whatsoever. If n> 2, though, there is only one such fibration.

It is interesting to observe that, for all n > 2, the total space admits a metric with
positive curvature on an open and dense set if pq < 0 (see Wilking [20]), and a metric
with nonnegative curvature and positive at one point if pq � 0 (see Tapp [17]). But
these are Riemannian submersion metrics with respect to different fibrations, where
the intermediate group G in the description above is replaced by U.n/U.1/. They are
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now fibrations over CPn with fiber a lens space

U.n/U.1/=U.n� 1/S1
p;q D U.n/=U.n� 1/ �Zq D S2n�1=Zq:

If q ¤ 0, there exists a metric with the above properties on the total space, such that
the projection onto CPn is a Riemannian submersion. But the fibers are not totally
geodesic. Notice also that already from the dimension restriction (1.2) it follows that
these bundles cannot have a fat connection metric if n> 2.

There exists another fat lens space fibration coming from the inclusions

K �S1
p;q �K �S.1/�S1

�Q�S1;

where B4m DQ=K �S.1/ is a quaternionic symmetric space and S1
p;q � S.1/�S1 is

embedded with slope .p; q/. Recall that a symmetric space is called quaternionic if
S.1/ acts via the Hopf action on the tangent space of the foot point. Furthermore, in
the irreducible case, each simple Lie group Q gives rise to exactly one such a space.
The above inclusions induce the fibration

K�S.1/�S1=K�S1
p;q!Q�S1=K�S1

p;q!Q�S1=K�S.1/�S1
DQ=K�S.1/DB4m;

with fiber S.1/�S1=�S1
p;q D S.1/=f�p W � 2 S1; �q D 1g, ie, a lens space S3=Zq .

Notice that we can assume p ¤ 0 since otherwise the circle acts ineffectively on the
total space and the base. Furthermore, if qD 0, base and total space are a product with
the circle in S.1/�S1 and hence in both cases the bundle clearly has no fat principal
connection. Bérard-Bergery showed that this lens space bundle is fat if and only if
pq ¤ 0.

Combining both families of examples, one sees that there exist fat lens space bundles
over CP2 for all S1

p;q when pCq ¤ 0. In [21] it was shown that for pCq D 0 there
exists no fat connection metric.

Example 2 (An SO.4/ principal bundle) Consider the SO.4/ principal bundle

.6:2/ SO.4/!G2!G2=SO.4/:

Bérard-Bergery showed that this bundle is su.2/?
˙

fat where SU.2/˙ are the two normal
subgroups of SO.4/ corresponding to the image of S3�feg and feg�S3 under the two
fold cover S3�S3!SO.4/. Thus the associated bundles G2�SO.4/SO.4/=SU.2/˙D
G2=SU.2/˙!G2=SO.4/ are both fat SO.3/D SO.4/=SU.2/˙ principal bundles.
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We now compute p1 and e of the SO.4/ bundle (6.2). For this we use the Borel
method which we now recall. We have a commutative diagram

G //

��

G

��
G=H //

�H

��

E

��
BH

Bi

// BG

where i is the inclusion i W H !G . Thus the left hand side G principal bundle is the
pull back of the universal bundle on the right. The differentials in the universal spectral
sequence are well known and the ones in the left hand side fibration are induced by
naturality as soon as we know the map in cohomology B�i W H

�.BG/! H�.BH /.
The map 'H is the classifying map of the H principal bundle H !G!G=H which
can be determined by the edge homomorphism in the spectral sequence and this will
then give us the values of the characteristic classes of the H principal bundle.

In order to compute B�i , we let TG � G and TH �H be maximal tori and use the
commutativity of the diagram:

BH
Bi

//

BjH
��

BG

BjG
��

BTH
Bi

// BTG

We choose coordinates .t1; : : : ; tn/ of the (integral lattice of the) maximal torus TG �G

and, by abuse of notation, let ti 2 H 1.TG ;Z/ D Hom.�1.G/;Z/ and hence xti 2
H 2.BTG

/ via transgression in the spectral sequence of the universal bundle of TG .
We then have H�.BTG

/DP Œxt1; : : : ;xtn� and B�jG
is injective on the torsion free part of

H�.BG/ with image H�.BTG
/WG , where WG is the Weyl group of G , and similarly

for H . We thus only need to compute B�i W H
�.TG/!H�.TH /, which is easily done.

We now apply all this to G D G2 and H D SO.4/. Additional complications arise
since the cohomology of the groups and their classifying spaces contain torsion. In [6]
it was shown that for both SO.4/ and G2 , the homomorphism B�iG

W H�.BG ;Z/!
H�.BTG

;Z/, after dividing by the torsion groups, is injective with image the Weyl
group invariant subalgebra. For G D SO.4/, if we use the coordinates for TG as in
Section 1, the transgression xxi 2H 2.BT ;Z/DZ˚Z form a basis, and p1D xx

2
1
Cxx2

2

and eD xx1xx2 form a basis of the Weyl group invariant subalgebra. Here p1 and e are
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the universal Pontrjagin and Euler classes. There are elements y1;y2 2H 3.G;Z/D
Z˚ Z such that d3.y1/ D p1 and d3.y2/ D e in the universal spectral sequence
for SO.4/.

The maximal torus of G2 is given by .t1; t2; t3/ with
P

ti D 0 and a basis of the Weyl
group invariant algebra is x D 1

2
�1.xs

2
i / and y D �3.xs

2
i / where si D

1
3
.2ti � tj � tk/.

Since the positive roots are si , 1� i � 3 and sj � sk D tj � tk , j < k , one easily sees
that the roots s3; s1�s2 span a subalgebra isomorphic to the Lie algebra of the (unique)
SO.4/ in G2 . In terms of x1; x2 , the roots are ˙x1˙x2 and hence we can choose
x1D s1; x2D s2 . Thus p1D s2

1
Cs2

2
; eD s1s2 and since xD 1

2
�1.xs

2
i /D s2

1
Cs2

2
Cs1s2

it follows that d4.x/D p1C e in the spectral sequence of the left hand side fibration
in the first diagram. Thus H 4.G2=SO.4/;Z/ D ZŒa� with e D a; p1 D �a and
by Poincaré duality H 8.G2=SO.4/;Z/ D ZŒa2�. Thus p1C 2e D r.p1 � 2e/ with
r D�1=3. Hence the SO.4/ principal bundle cannot be fat. Using (3.14), it follows
that the Weinstein invariant for y D .1C t; 1� t/ is

.9� 10t2
C t4/.p1� 2e/2 ¤ 0;

with zeroes t D ˙1;˙3 and hence the Weinstein invariant is 0 for the two adjoint
orbits with y D .1; 0/ and y D .1;�2/. Notice that the fat bundle by Bérard-Bergery
has y D .1;˙1/. Thus we have:

Corollary 6.3 The principal bundle SO.4/ ! G2 ! G2=SO.4/ has a homoge-
neous connection metric which is .1;˙1/–fat, but admits no y–fat principal con-
nection for y D .1; 0/ or y D .1;�2/. In particular, the associated 3–sphere bundle
S3!G2=SO.3/!G2=SO.4/ does not admit a fat connection metric.

Example 3 (Sphere bundles) All remaining examples of fat homogeneous fibra-
tions in [1] are bundles with fiber Sn or RPn represented as SO.n/=SO.n� 1/ or
SO.n/=O.n� 1/. We describe next a typical case.

The inclusions S.1/S.1/S.n� 2/� S.2/S.n� 2/� S.n/ induce the fibration

S4
!M !G2.H

n/:

The S.2/ principal bundle S.2/!S.n�2/=S.2/!G2.H
n/ has quaternionic Pontrja-

gin classes p1;p2 with H�.G2.H
n/;Z/DZŒp1;p2�=f.1Cp1Cp2/

PiDn�2
iD0 xpiD1g.

If n D 3 the total space is a positive curved Wallach flag manifold with base HP2 .
Thus p2

1
D p2 D 1 in this special case. But as an S4 bundle the structure group is

SO.5/ and the 2–fold cover S.2/! SO.5/ induces a map H�.BSO.5//!H�.BS.2//

which relates the real and quaternionic Pontrjagin classes. Using this, one easily shows
that the real Pontrjagin numbers are p2

1
D 4 and p2 D�3, which is consistent with

the obstruction for fat real sphere bundles described above.
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