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Ricci flow on open 3–manifolds and positive scalar curvature
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We show that an orientable 3–dimensional manifold M admits a complete riemann-
ian metric of bounded geometry and uniformly positive scalar curvature if and only if
there exists a finite collection F of spherical space-forms such that M is a (possibly
infinite) connected sum where each summand is diffeomorphic to S2 � S1 or to
some member of F . This result generalises G Perelman’s classification theorem
for compact 3–manifolds of positive scalar curvature. The main tool is a variant of
Perelman’s surgery construction for Ricci flow.

53C21, 53C44, 57M50

1 Introduction

Thanks to G Perelman’s proof [20; 22; 21] of W Thurston’s Geometrisation Conjecture,
the topological structure of compact 3–manifolds is now well understood in terms of the
canonical geometric decomposition. The first step of this decomposition, which goes
back to H Kneser [16], consists in splitting such a manifold as a connected sum of prime
3–manifolds, ie 3–manifolds which are not nontrivial connected sums themselves.

It has been known since early work of J H C Whitehead [30] that the topology of open
3–manifolds is much more complicated. Directly relevant to the present paper are
counterexamples of P Scott [26] and the third author [18] which show that Kneser’s
theorem fails to generalise to open manifolds, even if one allows infinite connected
sums.

Of course, we need to explain what we mean by a possibly infinite connected sum. If
X is a class of closed 3–manifolds, we will say that a 3–manifold M is a connected
sum of members of X if there exists a locally finite graph G and a map v 7! Xv
which associates to each vertex of G a copy of some manifold in X , such that by
removing from each Xv as many 3–balls as vertices incident to v and gluing the
thus punctured Xv ’s to each other along the edges of G , one obtains a 3–manifold
diffeomorphic to M . This is equivalent to the requirement that M should contain
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a locally finite collection of pairwise disjoint embedded 2–spheres S such that the
operation of cutting M along S and capping-off 3–balls yields a disjoint union of
3–manifolds which are diffeomorphic to members of X .1

Note that restricting this definition to finite graphs and compact manifolds yields a
slightly nonstandard definition of a connected sum. In the usual definition of a finite
connected sum, one has a tree rather than a graph. It is well-known, however, that the
graph of a finite connected sum (in the sense of the previous paragraph) can be made
into a tree at the expense of adding extra S2�S1 factors. The more general definition
we have chosen for this paper seems more natural in view of the surgery theory for
Ricci flow. It can be shown that the two definitions are equivalent even when the graph
is infinite; however, having a tree rather than a graph is only important for issues of
uniqueness, which will not be tackled here.

The above-cited articles [26; 18] provide examples of badly behaved open 3–manifolds,
which are not connected sums of prime 3–manifolds. From the point of view of Rie-
mannian geometry, it is natural to look for sufficient conditions for a riemannian metric
on an open 3–manifold M that rule out such exotic behaviour. One such condition
was given by the third author in the paper [17]. Here we shall consider riemannian
manifolds of positive scalar curvature. This class of manifolds has been extensively
studied since the seminal work of A Lichnerowicz, M Gromov, B Lawson, R Schoen,
S-T Yau and others (see eg the survey articles of Gromov [9] and J Rosenberg [23]; see
also the recent paper of S Chang, S Weinberger and G Yu [2] which contains results
closely related to ours).

Let .M;g/ be a riemannian manifold. We denote by Rmin.g/ the infimum of the scalar
curvature of g . We say that g has uniformly positive scalar curvature if Rmin.g/ > 0.
Of course, if M is compact, then this amounts to insisting that g should have positive
scalar curvature at each point of M .

A 3–manifold is spherical if it admits a metric of positive constant sectional curvature.
M Gromov and B Lawson [10] have shown that any compact, orientable 3–manifold
which is a connected sum of spherical manifolds and copies of S2�S1 carries a metric
of positive scalar curvature. Perelman [22], completing pioneering work of Schoen and
Yau [24] and Gromov and Lawson [11], proved the converse.

In this paper, we are mostly interested in the noncompact case. We say that a riemannian
metric g on M has bounded geometry if it has bounded sectional curvature and
injectivity radius bounded away from zero. It follows from the Gromov–Lawson
construction that if M is a (possibly infinite) connected sum of spherical manifolds and

1See below for the precise definition of capping-off.
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copies of S2 �S1 such that there are finitely many summands up to diffeomorphism,
then M admits a complete metric of bounded geometry and uniformly positive scalar
curvature. We show that the converse holds, generalising Perelman’s theorem:

Theorem 1.1 Let M be a connected, orientable 3–manifold which carries a complete
riemannian metric of bounded geometry and uniformly positive scalar curvature. Then
there is a finite collection F of spherical manifolds such that M is a connected sum of
copies of S2 �S1 or members of F .

In fact, the collection F depends only on bounds on the geometry and a lower bound
for the scalar curvature (cf Corollary 11.1).

Our main tool is R Hamilton’s Ricci flow. Let us give a brief review of the analytic
theory of Ricci flow on complete manifolds. The basic short time existence result is
due to W-X Shi [27]: if M is a 3–manifold and g0 is a complete riemannian metric
on M which has bounded sectional curvature, then there exists " > 0 and a Ricci
flow g. � / defined on Œ0; "/ such that g.0/D g0 , and for each t , g.t/ is also complete
of bounded sectional curvature.

For brevity, we say that a Ricci flow g. � / has a given property P if for each time t ,
the riemannian metric g.t/ has property P . Hence the solutions constructed by Shi
are complete Ricci flows with bounded sectional curvature. This seems to be a natural
setting for the analytical theory of Ricci flow.2

Uniqueness of complete Ricci flows with bounded sectional curvature is due to B-
L Chen and X-P Zhu [5].

We shall provide a variant of Perelman’s surgery construction for Ricci flow, which
has the advantage of being suitable for generalisations to open manifolds. Perelman’s
construction can be summarised as follows. Let M be a closed, orientable 3–manifold.
Start with an arbitrary metric g0 on M . Consider a maximal Ricci flow solution
fg.t/gt2Œ0;Tmax/ with initial condition g0 . If Tmax D C1, there is nothing to do.
Otherwise, one analyses the behaviour of g.t/ as t goes to Tmax and finds an open subset
��M where a limiting metric can be obtained. If � is empty, then the construction
stops. Otherwise the ends of � have a special geometry: they are so-called "–horns.
Removing neighbourhoods of those ends and capping-off 3–balls with nearly standard
geometry, one obtains a new closed, possibly disconnected riemannian 3–manifold.
Then one restarts Ricci flow from this new metric and iterates the construction. In order
to prove that finitely many surgeries occur in any compact time interval, Perelman

2However, there have been attempts to generalise the theory beyond this framework; see eg Xu [31]
and Simon [28].
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makes crucial use of the finiteness of the volume of the various riemannian manifolds
involved.

When trying to generalise this construction to open manifolds, one encounters several
difficulties. First, the above-mentioned volume argument breaks down. Second, a
singularity with �DM could occur, ie there may exist a complete Ricci flow with
bounded sectional curvature defined on some interval Œ0;T / and maximal among
complete Ricci flows with bounded sectional curvature, such that when t tends to T ,
g.t/ converges to, say, a metric of unbounded curvature xg . Then it is not known
whether Ricci flow with initial condition xg exists at all, and even if it does, the usual
tools like the maximum principle may no longer be available. One can imagine, for
example, an infinite sequence of spheres of the same radius glued together by necks
whose curvature is going to infinity. In this situation .M; xg/ would have no horns to
do surgery on.

In order to avoid those difficulties, we shall perform surgery before a singularity appears.
To this end, we introduce a new parameter ‚, which determines when surgery must be
done (namely when the supremum Rmax of the scalar curvature reaches ‚). We do
surgery on tubes rather than horns. Furthermore, we replace the volume argument for
nonaccumulation of surgeries by a curvature argument: the key point is that at each
surgery time, Rmax drops by a definite factor (which for convenience we choose equal
to 1=2). This, together with an estimate on the rate of curvature blow-up, is sufficient
to bound from below the elapsed time between two consecutive surgeries.

The idea of doing surgery before singularity time is not new: it was introduced by
R Hamilton in his paper [12] on 4–manifolds of positive isotropic curvature. Our
construction should also be compared with that of G Huisken and C Sinestrari [14] for
Mean Curvature Flow, where in particular there is a similar argument for nonaccumula-
tion of surgeries. Needless to say, we rely heavily on Perelman’s work, in particular
the notions of �–noncollapsing and canonical neighbourhoods.

Our construction should have other applications. In fact, it has already been adapted
by H Huang [13] to complete 4–dimensional manifolds of positive isotropic curvature,
using work of B-L Chen, S-H Tang and X-P Zhu [4] in the compact case.

Remaining informal for the moment, we provisionally define a surgical solution as
a sequence of Ricci flow solutions f.Mi ;gi.t//gt2Œti ;tiC1� , with 0 D t0 < � � � < ti <

� � � 6 C1 discrete in R, such that MiC1 is obtained from Mi by splitting along a
locally finite collection of pairwise disjoint embedded 2–spheres, capping-off 3–balls
and removing components which are spherical or diffeomorphic to R3 , S2 � S1 ,
S2 �R, RP3#RP3 or a punctured RP3 . If MiC1 is nonempty, we further require
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that Rmin.giC1/> Rmin.gi/ at time tiC1 . The formal definition of surgical solutions
will be given in Section 2.

The components that are removed at time tiC1 are said to disappear. If all components
disappear, that is if MiC1 D∅, we shall say that the surgical solution becomes extinct
at time tiC1 . In that case, it is straightforward to reconstruct the topology of the original
manifold M0 as a connected sum of the disappearing components (cf Proposition 2.6
below). Since R3 , S2 �R and punctured RP3 ’s are themselves connected sums of
spherical manifolds (in fact infinite copies of S3 and RP3 ), the upshot is that M0 is a
connected sum of spherical manifolds and copies of S2 �S1 .

A simplified version of our main technical result follows.

Theorem 1.2 Let M be an orientable 3–manifold. Let g0 be a complete riemannian
metric on M which has bounded geometry. Then there exists a complete surgical
solution of bounded geometry defined on Œ0;C1/, with initial condition .M;g0/.

When in addition we assume that g0 has uniformly positive scalar curvature, we get
(from the maximum principle and the condition that surgeries do not decrease Rmin )
an a priori lower bound for Rmin which goes to infinity in finite time. This implies that
surgical solutions given by Theorem 1.2 are automatically extinct. As a consequence,
any 3–manifold satisfying the hypotheses of Theorem 1.1 is a connected sum of
spherical manifolds and copies of S2 �S1 . However, we also need to prove finiteness
of the summands up to diffeomorphism. Below we state a more precise result, which
will suffice for our needs.

Definition 1.3 We say that a riemannian metric g1 is "–homothetic to some riemann-
ian metric g2 if there exists �>0 such that �g1 is "–close to g2 in the C Œ"�1�–topology.
A riemannian metric which is "–homothetic to a round metric (ie a metric of constant
sectional curvature 1) is said to be "–round.

Theorem 1.4 For all �0;T > 0 there exists Q; � > 0 such that if .M0;g0/ is a
complete riemannian orientable 3–manifold which has sectional curvature bounded in
absolute value by 1 and injectivity radius greater than or equal to �0 , then there exists a
complete surgical solution defined on Œ0;T �, with initial condition .M0;g0/, sectional
curvature bounded in absolute value by Q and injectivity radius greater than or equal to
� and such that all spherical disappearing components have scalar curvature at least 1,
and are 10�3 –round or diffeomorphic to S3 or RP3 .

Let us explain why this stronger conclusion implies that there are only finitely many
disappearing components up to diffeomorphism. By definition, nonspherical disap-
pearing components belong to a finite number of diffeomorphism classes. Now by the
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Bonnet–Myers theorem, 10�3 –round components with scalar curvature at least 1 have
diameter bounded above by some universal constant. Putting this together with the
bounds on sectional curvatures and injectivity radius, the assertion then follows from
Cheeger’s finiteness theorem [3].

Remark 1.5 There is an apparent discrepancy between Theorems 1.2 and 1.4 in that
in the former, the surgical solution is defined on Œ0;C1/ whereas in the latter it is
only defined on a compact interval. However, Theorem 1.2 can be formally deduced
from Theorem 1.4 (cf Remark 2.12 at the end of Section 2).

Throughout the paper, we use the following convention:

All 3–manifolds considered here are orientable.

Here is a concise description of the content of the paper: In Section 2, we give some
definitions, in particular the formal definition of surgical solutions, and show how to
deduce Theorem 1.1 from Theorem 1.4. The remainder of the article (except the last
section) is devoted to the proof of Theorem 1.4. In Section 3, we discuss Hamilton–Ivey
curvature pinching, the standard solution and prove the Metric Surgery Theorem, which
allows to perform surgery. In Section 4, we recall some definitions and results on
�–noncollapsing, �–solutions and canonical neighbourhoods and fix some constants
that will appear throughout the rest of the proof.

In Section 5, we introduce the important notion of .r; ı; �/–surgical solutions. These
are special surgical solutions satisfying various estimates, and with surgery performed
in a special way, according to the construction of Section 3. We state an existence
theorem for those solutions, Theorem 5.6, which implies Theorem 1.4. Then we reduce
Theorem 5.6 to three propositions, called A, B, and C. Sections 6 through 10 are
devoted to the proofs of Propositions A, B, C, together with some technical results that
are needed in these proofs. For the sake of brevity, we omit proofs or parts of proofs
which are very close to the compact, irreducible case tackled in the monograph of the
authors with M Boileau and J Porti [1] and focus on the differences.

Section 11 deals with generalisations of Theorem 1.4. One of them is an equivariant
version, Theorem 11.3, which implies a classification of 3–manifolds admitting metrics
of uniformly positive scalar curvature whose universal cover has bounded geometry.
We note that equivariant Ricci flow with surgery in the case of finite group actions on
closed 3–manifolds has been studied by J Dinkelbach and B Leeb [8]. We follow in
part their discussion; however, things are much simpler in our case, since we are mainly
interested in the case of free actions. We also give a version of Theorem 5.6 with extra
information on the long time behaviour. This may be useful for later applications.
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2 Surgical solutions

Let M be a possibly noncompact, possibly disconnected (orientable) 3–manifold.

2.1 Definitions

Definition 2.1 Let I � R be an interval. An evolving Riemannian manifold is a pair
f.M.t/;g.t//gt2I where for each t , M.t/ is a (possibly empty, possibly disconnected)
manifold and g.t/ a riemannian metric on M.t/. We say that it is piecewise C1 –
smooth if there exists J � I , which is discrete as a subset of R, such that the following
conditions are satisfied:

(i) On each connected component of I nJ , t 7!M.t/ is constant, and t 7! g.t/ is
C1 –smooth.

(ii) For each t0 2 J , M.t0/ D M.t/ for any t < t0 sufficiently close to t0 and
t ! g.t/ is left continuous at t0 .

(iii) For each t0 2 J n fsup Ig, t ! .M.t/;g.t// has a right limit at t0 , denoted
.MC.t0/;gC.t0//.

A time t 2 I is regular if t has a neighbourhood in I where M. � / is constant and
g. � / is C1 –smooth. Otherwise it is singular.

Definition 2.2 We say a piecewise C1 –smooth evolving Riemannian 3–manifold
f.M.t/;g.t//gt2I is a surgical solution of the Ricci Flow equation

(1)
dg

dt
D�2 Ricg.t/

if the following statements hold:

(i) Equation (1) is satisfied at all regular times.
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(ii) For each singular time t we have Rmin.gC.t//�Rmin.g.t//.

(iii) For each singular time t there is a locally finite collection S of disjoint embedded
2–spheres in M.t/ and a manifold M 0 such that:
(a) M 0 is obtained from M.t/ nS by capping-off 3–balls;
(b) MC.t/ is a union of connected components of M 0 and g.t/D gC.t/ on

M.t/\MC.t/;
(c) Each component of M 0 nMC.t/ is spherical or diffeomorphic to R3 ,

S2 �S1 , S2 �R, RP3#RP3 or a punctured RP3 .

A component of M 0 nMC.t/ is said to disappear at time t . See Figure 1. The surgical
solution is extinct if M.t/D∅ for some t .

An evolving riemannian manifold f.M.t/;g.t//gt2I is complete (resp. has bounded
geometry) if for each t 2 I such that M.t/¤∅, the riemannian manifold .M.t/;g.t//

is complete (resp. has bounded geometry).

M.t/

S2

S2

B3

M.t0/

M 0

MC.t0/

disappearing
components

dg
dt
D�2 Ricg.t/

dg
dt
D�2 Ricg.t/

Figure 1

Geometry & Topology, Volume 15 (2011)



Ricci flow on open 3–manifolds and positive scalar curvature 935

2.2 Deduction of Theorem 1.1 from Theorem 1.4

The purpose of this section is to explain how to deduce Theorem 1.1 from Theorem 1.4.
For this, we need a result about the evolution of Rmin in a surgical solution. For
convenience, we take the convention that Rmin.t/ is C1 if M.t/ is empty.

Proposition 2.3 Let .M. � /;g. � // be a complete 3–dimensional surgical solution
with bounded sectional curvature defined on an interval Œ0;T /. Assume Rmin.0/� 0.
Then

Rmin.t/�
Rmin.0/

1� 2tRmin.0/=3
:

Proof Follows from the evolution equation for scalar curvature, the maximum principle
for complete Ricci flows of bounded curvature [7, Corollary 7.45] and the assumption
that the minimum of scalar curvature is nondecreasing at singular times of surgical
solutions.

Corollary 2.4 For every R0>0 there exists T DT .R0/ such that the following holds.
Let .M. � /;g. � // be a complete 3–dimensional surgical solution defined on Œ0;T �,
with bounded sectional curvature, and such that Rmin.0/�R0 . Then .M. � /;g. � // is
extinct.

We now recall the definition of capping-off 3–balls to a 3–manifold.

Definition 2.5 Let M;M 0 be 3–manifolds. Let S be a locally finite collection of
embedded 2–spheres in M . One says that M 0 is obtained from M nS by capping-off
3–balls if there exists a collection B of 3–balls such that M 0 is the disjoint union

M 0
D .M nS/

G
B;

where each S 2 S has a tubular neighbourhood V �M such that V n S has two
connected components V�;VC and there exists B�;BC 2 B such that V� tB� and
VC tBC are 3–balls in M 0 . Conversely, each B 2 B is included in such a 3–ball
of M 0 .

Note that it is implicit in the above definition that there is an orientation preserving
diffeomorphism, say ��W @B�!S�@V� , such that identifying @B� to the correspond-
ing boundary of V� one obtains a 3–ball. From Smale [29], the differentiable structure
of M 0 does not depend of the above diffeomorphisms. Moreover, if M 0 and M 00 are
obtained from M nS by capping off 3–balls, one can choose the diffeomorphism from
M 0 to M 00 to be the identity on M \M 0 DM \M 00 .

We shall need the following topological lemma:

Geometry & Topology, Volume 15 (2011)
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Proposition 2.6 Let X be a class of closed 3–manifolds. Let M be a 3–manifold.
Suppose that there exists a finite sequence of 3–manifolds M0;M1; : : : ;Mp such that
M0 DM , Mp D∅, and for each i , Mi is obtained from Mi�1 by splitting along a
locally finite collection of pairwise disjoint, embedded 2–spheres, capping off 3–balls,
and removing some components which are connected sums of members of X . Then
each component of M is a connected sum of members of X .

Proof We prove the result by induction on p . The case p D 1 is immediate from the
definition of a connected sum.

Supposing that the proposition is true for some p , we consider a sequence M0;M1; : : : ;

MpC1 such that M0 DM , MpC1 D∅, and for each i , Mi is obtained from Mi�1

by splitting along a locally finite collection of 2–spheres, capping off 3–balls, and
removing some components which are connected sums of members of X . By the
induction hypothesis, M1 is a connected sum of members of X .

Let S be the collection of 2–spheres involved in the process of turning M0 into M1 .
Let B be the collection of capped-off 3–balls. Let S 0 be the collection of 2–spheres
involved in the connected sum decomposition of M1 . If B \ S 0 is empty, then the
spheres of S 0 actually live in M0 , and the union of S and S 0 splits M0 into prime
summands homeomorphic to members of X . This observation reduces our proof to
the following claim:

Claim S 0 can be made disjoint from B by an ambient isotopy.

Let us prove the claim. For each component Bi of B , we fix a 3–ball B0i contained
in the interior of Bi and disjoint from S 0 , and a collar neighbourhood Ui of @Bi in
M1 nBi . Since fBig is locally finite, we may ensure that the Ui ’s are pairwise disjoint.
Choose an ambient isotopy of M1 which takes B0i onto Bi and Bi onto Bi [Ui for
each i . Then after this ambient isotopy, S 0 is still locally finite, and is now disjoint
from B .

To see why these results imply Theorem 1.1, take a 3–manifold M and a complete
metric g0 of bounded geometry and uniformly positive scalar curvature on M . By
rescaling if necessary we can assume that the bound on the curvature is 1. From
the positive lower bound on Rmin.g0/ we get an a priori upper bound T for the
extinction time of a surgical solution, using Corollary 2.4. Applying Theorem 1.4,
we get numbers Q; � and a surgical solution .M. � /;g. � // with initial condition
.M;g0/ defined on Œ0;T � satisfying the two additional conditions. This solution
is extinct, and as we have already explained in the introduction, the disappearing
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components are connected sums of spherical manifolds and copies of S2 �S1 , the
summands belonging to some finite collection which depends only on the bounds on
the geometry. Let X be the collection of prime factors of the disappearing components.
Let 0D t0 < t1 < t2 < � � �< tp D T be a set of regular times of .M. � /;g. � // such that
there is exactly one singular time between each pair of consecutive ti ’s. The conclusion
of Theorem 1.1 now follows from Proposition 2.6 applied with Mi DM.ti/.

2.3 More definitions

Notation Let n� 2 be an integer and .M;g/ be a riemannian n–manifold.

For any x 2 M , we denote by Rm.x/W ƒ2TxM ! ƒ2TxM the curvature oper-
ator, and jRm.x/j its norm, which is also the maximum of the absolute values of
the sectional curvatures at x . We let R.x/ denote the scalar curvature of x . The
infimum (resp. supremum) of the scalar curvature of g on M is denoted by Rmin.g/

(resp. Rmax.g/).

We write d W M �M ! Œ0;1/ for the distance function associated to g . For r > 0

we denote by B.x; r/ the open ball of radius r around x . Finally, if x;y are points
of M , we denote by Œxy� a geodesic segment connecting x to y . This is a (common)
abuse of notation, since such a segment is not unique in general.

For closeness of metrics we adopt the conventions of [1, Section 2.1].

Definition 2.7 Let f.M.t/;g.t//gt2I be a surgical solution and t 2 I . If t is sin-
gular, one sets Mreg.t/ WDM.t/\MC.t/ and denotes by Msing.t/ its complement,
ie Msing.t/ WDM.t/ nMreg.t/DM.t/ nMC.t/. If t is regular, then Mreg.t/DM.t/

and Msing.t/D∅.

At a singular time, connected components of Msing.t/ belong to three types:

(i) components of M.t/ which are disappearing components of M 0 ;

(ii) closures of components of M.t/ nS which give, after being capped-off, disap-
pearing components of M 0 ;

(iii) embedded 2–spheres of S .

In particular, the boundary of Msing.t/ is contained in S .

Definition 2.8 We say that a pair .x; t/2M �I is singular if x 2Msing.t/; otherwise
we call .x; t/ regular.

Definition 2.9 Let t0 be a time, Œa; b� be an interval containing t0 and X be a subset
of M.t0/ such that for every t 2 Œa; b/, we have X �Mreg.t/. Then the set X � Œa; b�

is unscathed. Otherwise, we say that X is scathed.
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Remark 2.10 (1) In the definition of “unscathed”, we allow the final time slice
to contain singular points, ie we may have X \Msing.b/ ¤ ∅. The point is that if
X � Œa; b� is unscathed, then t 7! g.t/ evolves smoothly by the Ricci flow equation on
all of X � Œa; b�.

(2) Assume that X � Œa; b� is scathed. Then there is t 2 Œa; b/ and x 2 X such
that x …Mreg.t/. Assume that t is closest to t0 with this property. If t > t0 then
x 2Msing.t/ and disappears at time t unless x 2 @Msing.t/ or if the component of
Msing.t/ which contains x is a sphere S 2 S . If t < t0 , then x 2MC.t/ nMreg.t/ is
in one of the 3–balls that are added at time t .

Notation For t 2 I and x 2M.t/ we use the notation Rm.x; t/, R.x; t/ to denote the
curvature operator and the scalar curvature respectively. For brevity we set Rmin.t/ WD

Rmin.g.t// and Rmax.t/ WDRmax.g.t//.

We use dt . � ; � / for the distance function associated to g.t/. The ball of radius �
around x for g.t/ is denoted by B.x; t; �/.

For the definition of closeness of evolving riemannian manifolds, see [1, Section 2.2].

Definition 2.11 Let t0 2 I and Q > 0. The parabolic rescaling with factor Q at
time t0 is the evolving manifold f. SM .t/; xg.t//g where SM .t/DM.t0C t=Q/, and

xg.t/DQ g

�
t0C

t

Q

�
:

Remark 2.12 Theorem 1.2 follows by iteration of Theorem 1.4 via parabolic rescal-
ings. Indeed, one easily obtains from Theorem 1.4, that given �0;Q0;T >0 there exists
Q; � > 0 such that given T0 > 0 and any complete riemannian orientable 3–manifold
.M0;g0/ with sectional curvature in absolute value 6 Q0 and injectivity radius > �0 ,
there exists a complete surgical solution .M. � /;g. � // defined on ŒT0;T0CT �, with
initial condition .M.T0/;g.T0//D .M0;g0/, and with sectional curvature in absolute
value 6 Q and injectivity radius > � . Applying inductively this finite time existence
result proves Theorem Theorems 1.2. In the sequel, we focus on proving Theorem 1.4.

3 Metric surgery

3.1 Curvature pinched toward positive

Let .M;g/ be a 3–manifold and x 2M be a point. We denote by �.x/��.x/� �.x/
the eigenvalues of the curvature operator Rm.x/. By our definition, all sectional
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curvatures lie in the interval Œ�.x/; �.x/�. Moreover, �.x/ (resp. �.x/) is the maximal
(resp. minimal) sectional curvature at x . If C is a real number, we sometimes write
Rm.x/� C instead of �.x/� C . Likewise, Rm.x/� C means �.x/� C .

It follows that the eigenvalues of the Ricci tensor are equal to �C�, �C� , and �C� ;
as a consequence, the scalar curvature R.x/ is equal to 2.�.x/C�.x/C �.x//.

For evolving metrics, we use the notation �.x; t/, �.x; t/, and �.x; t/, and corre-
spondingly write Rm.x; t/� C for �.x; t/� C , and Rm.x; t/� C for �.x; t/� C .

Definition 3.1 Let � be a nonnegative function. A metric g on M has �–almost
nonnegative curvature if Rm� ��.R/.

Now we consider a family of positive functions .�t /t>0 defined as follows. Set
st WD e2=.1C t/ and define �t W Œ�2st ;C1/ �! Œst ;C1/ as the reciprocal of the
function s 7! 2s.ln.s/C ln.1C t/� 3/.

Following J Morgan and G Tian [19], we use the following definition.

Definition 3.2 Let I � Œ0;1/ be an interval, t0 2 I and fg.t/gt2I be an evolving
metric on M . We say that g. � / has curvature pinched toward positive at time t0 if
for all x 2M we have

R.x; t0/> � 6

4t0C 1
;(2)

Rm.x; t0/> ��t0
.R.x; t0//:(3)

We say that g. � / has curvature pinched toward positive if it has curvature pinched
toward positive at each t 2 I .

Remark that if jRm.g.0//j � 1, then g. � / has curvature pinched toward positive at
time 0. Next we state a result due to Hamilton and Ivey in the compact case. For a
proof of the general case, see [6, Section 5.1].

Proposition 3.3 (Hamilton–Ivey pinching estimate) Let a; b be two real numbers
such that 0 � a < b . Let .M; fg.t/gt2Œa;b�/ be a complete Ricci flow with bounded
curvature. If g. � / has curvature pinched toward positive at time a, then fg.t/gt2Œa;b�
has curvature pinched toward positive.
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3.2 The standard solution

Let us recall the definition of standard initial metric we used in [1]. This metric is the
initial condition of the standard solution. The functions f;u below are chosen in [1,
Section 7.1].

Definition 3.4 Let d�2 denote the round metric of scalar curvature 1 on S2 .

The standard initial metric is the riemannian manifold S0 D .R3; xg0/, where the
metric xg0 is given in polar coordinates by

xg0 D e�2f .r/gu ;

gu D dr2
Cu.r/2d�2 :where

We also define Su WD .R3;gu/. The origin of R3 , which is also the centre of spherical
symmetry, will be denoted by p0 .

In particular, .B.0; 5/; xg0/ has positive sectional curvatures (see [1, Lemma 7.1.2]),
and the complement of B.0; 5/ is isometric to S2 � Œ0;C1/.

Ricci flow with initial condition S0 has a maximal solution defined on Œ0; 1/, which is
unique among complete flows of bounded sectional curvature [22]. This solution is
called the standard solution.

3.3 The metric surgery theorem

The standard "–neck is the riemannian product S2�.�"�1; "�1/, where the S2 factor
is round of scalar curvature 1. Its metric is denoted by gcyl . We fix a basepoint � in
S2 � f0g.

Definition 3.5 Let .M;g/ be a riemannian 3–manifold and x be a point of M .
A neighbourhood N � M of x is called an "–neck centred at x if .N;g;x/ is
"–homothetic to .S2 � .�"�1; "�1/;gcyl;�/.

If N is an "–neck and  W N"!N is a parametrisation, ie a diffeomorphism such
that some rescaling of  �.g/ is "–close to gcyl , then the sphere  .S2�f0g/ is called
a middle sphere of N .

We recall a lemma from [1] which allows to fix a universal constant "0 .
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Lemma 3.6 [1, Lemma 3.2.2] There exists "0 > 0 such that the following holds. Let
" 2 .0; 2"0�. Let .M;g/ be a riemannian 3–manifold. Let y1;y2 be points of M . Let
U1�M be an "–neck centred at y1 with parametrisation  1W S

2�.�"�1; "�1/!U1

and middle sphere S1 . Let U2 � M be a 10"–neck centred at y2 with middle
sphere S2 . Call � W U1! .�"�1; "�1/ the composition of  �1

1
with the projection of

S2 � .�"�1; "�1/ onto its second factor.

Assume that y2 2 U1 and j�.y2/j � .2"/
�1 . Then the following conclusions hold:

(i) U2 is contained in U1 .

(ii) The boundary components of @U2 can be denoted by SC;S� in such a way that

�.S�/� Œ�.y2/� .10"/�1
� 10; �.y2/� .10"/�1

C 10� ;

�.SC/� Œ�.y2/C .10"/�1
� 10; �.y2/C .10"/�1

C 10� :

(iii) The spheres S1;S2 are isotopic in U1 .

Definition 3.7 Let ı; ı0 be positive numbers. Let g be a riemannian metric on M .
Let .U;V;p;y/ be a 4–tuple such that U is an open subset of M , V is a compact
subset of U , p 2 Int V , y 2 @V . Then .U;V;p;y/ is called a marked .ı; ı0/–almost
standard cap if there exists a ı0–isometry  W B.p0; 5C ı

�1/! .U;R.y/g/, sending
B.p0; 5/ to Int V and p0 to p . One calls V the core and p the tip.

Theorem 3.8 (Metric surgery) There exist ı0 > 0 and a function ı0W .0; ı0� 3 ı 7!
ı0.ı/ 2 .0; "0=10� tending to zero as ı! 0, with the following property:

Let � be a nondecreasing, positive function; let ı � ı0 ; let .M;g/ be a riemannian 3–
manifold with �–almost nonnegative curvature, and fNig be a locally finite collection
of pairwise disjoint ı–necks in M . Let M 0 be a manifold obtained by cutting M

along the middle spheres of the Ni ’s and capping off 3–balls.

Then there exists a riemannian metric gC on M 0 such that:

(i) gC D g on M 0\M ;

(ii) For each connected component B of M 0 nM , there exist p 2 Int B and y 2 @B

such that .N 0 [ B;B;p;y/ is a marked .ı; ı0.ı//–almost standard cap with
respect to gC , where N 0 is the “half” of N adjacent to B in M 0 ;

(iii) gC has �–almost nonnegative curvature.

Remark 3.9 In the application of the above theorem, MC will be a submanifold
of M 0 .
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Proof On M 0\M we set gC WD g . On the added 3–balls we define gC as follows.
Let N �M be one of the ı–necks of the collection, and let S be its middle sphere. By
definition there exists a diffeomorphism  W S2�.�ı�1; ı�1/�!N and a real number
� > 0 such that k ��g�gcylk< ı in the C Œı�1�–norm (see [1] for the details). Note
that for each y 2 N we have that �=R.y/ is ı0–close to 1 for some universal ı0.ı/
tending to zero with ı .

Define NC WD .S
2� Œ0; ı�1//, ie NC is the right half of the neck. Let †�M 0 nM

be the 3–ball that is capped-off to it and ˆW @† �! @NC be the corresponding
diffeomorphism. Our goal is to define gC on † in such a way that .NC[ˆ†;gC/ is
a .ı; ı0.ı//–almost standard cap with �–almost nonnegative curvature.

Let us introduce more notation. For 0� r1 � r2 , we let C Œr1; r2� denote the annular
region of R3 defined by the inequations r1 � r � r2 in polar coordinates. Observe
that for all 3� r1 < r2 , the restriction of gu to C Œr1; r2� is isometric to the cylinder
S2 � Œr1; r2� with scalar curvature 1. We consider B WD B.0; 5/� Su .

Set V� WD .S
2�.�2; 0�/ and VC WD .S

2�Œ0; 2//. Restrict  on S2�.�2; ı�1/ to
V�[NC , where S2�.�2; ı�1/ is now considered as the annulus C.3; 5Cı�1/�Su .
See Figure 2.

N

Su0

NCN�

3 5 7 5C ı�1

 

V� VC

S

Figure 2

Let xg WD  �.�g/ be the pulled-back rescaled metric on C.3; 5C ı�1/. Note that
kxg�guk< ı on this set and that xg has �–almost nonnegative curvature.

On B.0; 5C ı�1/ we define in polar coordinates (see Figure 3)

xgC WD e�2f .�guC .1��/xg/D �xg0C .1��/e
�2f
xg

where �W Œ0; 5C ı�1�! Œ0; 1� is a smooth function satisfying8̂<̂
:
�� 1 on Œ0; 3�;

�0 < 0 on .3; 4/;

�� 0 on Œ4; 5C ı�1�:
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N

0

S NC

3 5 7

 

xg

VC

xg0 xg .B.0; 5C ı�1/; xgC/

Figure 3

Note that 8̂<̂
:
xgC D xg0 on B.0; 3/;

xgC D e�2f xg on C Œ4; 5�;

xgC D xg on C Œ5; 5C ı�1/:

Finally set (
gC WD . 

�1/�.��1xg/D g on NC;

gC WD �
�1xgC on B.0; 5/:

Let p be the origin and y be an arbitrary point of @B . There remains to show that
..NC [ j@B

B;B;p;y/;gC/ is a .ı; ı0.ı//–almost standard cap, and has �–almost
nonnegative curvature. It suffices clearly to consider gC on B , or xgC on B.0; 5/.
This is tackled by the following proposition [1, Proposition 7.2.2], applied to xg and
the rescaled pinching function s 7! ��1�.�s/:

Proposition 3.10 There exists ı1 > 0 and a function ı0W .0; ı1� �! .0; "0=10� with
limit zero at zero, having the following property: let � be a nondecreasing positive
function, 0< ı � ı1 and xg be a metric on C.3; 5/� R3 , with �–almost nonnegative
curvature, such that kxg�gukCŒı�1� < ı on C.3; 5/. Then the metric

xgC D e�2f .�guC .1��/xg/

has �–almost nonnegative curvature, and is ı0.ı/–close to xg0 on B.0; 5/.

Setting ı0 WD ı1 completes the proof of Theorem 3.8.

4 �–Noncollapsing and canonical neighbourhoods

4.1 �–Noncollapsing

Let f.M.t/;g.t//gt2I be an evolving riemannian manifold. We say that a pair .x; t/
is a point in spacetime if t 2 I and x 2M.t/. For convenience we denote by M
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the set of all such points. A (backward) parabolic neighbourhood of a point .x; t/ in
spacetime is a set of the form

P .x; t; r;��t/ WD f.x0; t 0/ 2M j x0 2 B.x; t; r/; t 0 2 Œt ��t; t �g:

In particular, the set P .x; t; r;�r2/ is called a parabolic ball of radius r .

A parabolic neighbourhood P .x; t; r;��t/ is unscathed if B.x; t; r/� Œt ��t; t � is
unscathed. In this case P .x; t; r;��t/D B.x; t; r/� Œt ��t; t �.

Definition 4.1 Fix �; r > 0. We say that .M. � /;g. � // is �–collapsed at .x; t/
on the scale r if for all .x0; t 0/ 2 P .x; t; r;�r2/ one has jRm.x0; t 0/j � r�2 , and
vol B.x; t; r/ < �rn . Otherwise, .M. � /;g. � // is �–noncollapsed at .x; t/ on the
scale r .

We say that .M. � /;g. � // is �–noncollapsed on the scale r if it is �–noncollapsed on
this scale at every point of M.

4.2 Canonical neighbourhoods

Definition 4.2 Let .M;g/ be a riemannian 3–manifold and x be a point of M . We
say that U is an "–cap centred at x if U is the union of two sets V;W such that
x 2 Int V , V is diffeomorphic to B3 or RP3nB3 , SW \V D @V , and W is an "–neck.
A subset V as above is called a core of U .

Let " > 0, C >> "�1 , f.M.t/;g.t//gt2I be an evolving riemannian manifold and
.x0; t0/ be a point in spacetime.

Definition 4.3 We call cylindrical flow the manifold S2�R together with the product
flow on .�1; 0�, where the first factor is round, normalised so that the scalar curvature
at time 0 is identically 1. We denote this evolving metric by gcyl.t/.

Definition 4.4 An open subset N � M.t0/ is called a strong "–neck3 centred at
.x0; t0/ if there is a number Q > 0 such that .N; fg.t/gt2Œt0�Q�1;t0�;x0/ is un-
scathed and after parabolic rescaling with factor Q at time t0 , N is "–close to
.S2 � .�"�1; "�1/; fgcyl.t/gt2Œ�1;0�;�/.

Remark 4.5 Let Q> 0, and consider the flow .S2 �R;Qgcyl.tQ
�1// restricted to

.�Q; 0�. Then for every x 2 S2 �R and every " > 0, the point .x; 0/ is the centre of
a strong "–neck.

3We use “strong neck‘’ to denote a subset of M.t0/ , rather than a subset of spacetime as other
authors do.
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We recall that "–round means "–homothetic to a metric of positive constant sectional
curvature (cf Definition 1.3).

Definition 4.6 Let U � M.t/ be an open subset and x 2 U such that R.x/ WD

R.x; t/>0. One says that U is an .";C /–canonical neighbourhood centred at .x; t/ if:

(A) U is of a strong "–neck centred at .x; t/, or

(B) U is an "–cap centred at x for g.t/, or

(C) .U;g.t// has sectional curvatures > C�1R.x/ and is diffeomorphic to S3 or
RP3 , or

(D) .U;g.t// is "–round,

and if moreover, the following estimates hold in cases (A), (B), (C) for .U;g.t//: There
exists r 2 .C�1R.x/�1=2;CR.x/�1=2/ such that:

(i) B.x; r/� U � B.x; 2r/;

(ii) The scalar curvature function restricted to U has values in a compact subinterval
of .C�1R.x/;CR.x//;

(iii) If B.y; r/� U and if jRmj � r�2 on B.y; r/ then

(4) C�1 <
vol B.y; r/

r3
I

(iv) jrR.x/j< CR.x/3=2 ;

(v) j�R.x/C 2jRic.x/j2j< CR.x/2 ;

(vi) jr Rm.x/j< C jRm.x/j3=2 :

Remark 4.7 In case (D), Estimates (i)–(vi) hold except maybe (iii) (consider eg lens
spaces).

(i) implies that diam U is at most 4r , which in turn is bounded above by a function
of C and R.x/.

(iii) implies that vol U is bounded from below by C�1R.x/�3=2 .

Estimate (v) implies the following scale-invariant bound on the time-derivative of R

(at a regular time):

(5)
ˇ̌̌̌
@R

@t
.x; t/

ˇ̌̌̌
< CR.x; t/2:

We call (";C /–cap any "–cap of .M;g/ which satisfies (i)–(vi).

In cases (C) and (D), U is diffeomorphic to a spherical manifold.
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Cases (C) and (D) are not mutually exclusive.

Being the centre of an .";C /–canonical neighbourhood is an open property in spacetime:
if U � M.t/ is unscathed on .t � ˛; t C ˛/ for some ˛ > 0, then there exists a
neighbourhood � of .x; t/ such that any .x0; t 0/ 2 � is the centre of an .";C /–
canonical neighbourhood. In case (A), one can use the same set N D U and factor
Q, but change the parametrisation so that the basepoint � is sent to x rather than x0 .
Case (B) is similar. Cases (C), (D) are obvious.

The same argument shows that being the centre of an .";C /–canonical neighbourhood
is also an open property with respect to a change of metric in the C Œ"�1�–topology.

4.3 Fixing the constants

In order to fix the constants, we recall some results of Perelman on �–solutions and
the standard solution.

Theorem 4.8 For all ">0 there exists CsolDCsol."/ such that if .M; fg.t/gt2.�1;0�/

is a 3–dimensional �–solution, then every .x; t/ 2M � .�1; 0� is the centre of an
.";Csol/–canonical neighbourhood.

Proposition 4.9 There exists �st>0 such that the standard solution is �st –noncollapsed
on all scales.

Proposition 4.10 For every ">0 there exists Cst."/>0 such that if .x; t/ is a point in
the standard solution such that t >3=4 or x 62B.p0; 0; "

�1/, then .x; t/ has an .";Cst/–
canonical neighbourhood. Moreover there is an estimate Rmin.t/ > constst.1� t/�1

for some constant constst > 0.

Let Kst be the supremum of the sectional curvatures of the standard solution on Œ0; 4=5�.
As in [1, Lemma 4.3.5.] we have:

Lemma 4.11 For all " 2 .0; 10�4/ there exists ˇ D ˇ."/ 2 .0; 1/ such that the
following holds.

Let a; b be real numbers satisfying a< b< 0 and jbj� 3=4, let .M;g. � // be a surgical
solution defined on .a; 0�, and x 2M be a point such that:

� R.x; b/D 1;
� .x; b/ is the centre of a strong ˇ"–neck;
� P .x; b; .ˇ"/�1; jbj/ is unscathed and satisfies jRmj � 2Kst .

Then .x; 0/ is the centre of a strong "–neck.
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Now we can define our constants. Recall that the constant "0 has been fixed thanks
to Lemma 3.6. Let ˇ WD ˇ."0/ be the constant given by Lemma 4.11. Finally, define
C0 WDmax.100; 2Csol."0=2/; 2Cst.ˇ"0=2//.

Definition 4.12 Let r > 0. An evolving riemannian manifold f.M.t/;g.t//gt2I

has property .CN/r if for all .x; t/ 2M, if R.x; t/ � r�2 , then .x; t/ admits an
."0;C0/–canonical neighbourhood.

Definition 4.13 Let � > 0. An evolving riemannian manifold f.M.t/;g.t//gt2I has
property .NC/� if it is �–noncollapsed on all scales less than 1.

5 .r; ı; �/–Surgical solutions

5.1 Cutoff parameters and .r; ı/–surgery

Theorem 5.1 (Cutoff parameters) For all r; ı > 0, there exist h2 .0; ır/ and D> 10

such that if .M. � /;g. � // is a complete surgical solution of bounded curvature defined
on an interval Œa; b�, with curvature pinched toward positive and satisfying .CN/r , then
the following holds:

Let t 2 Œa; b� and x;y; z 2 M.t/ such that R.x; t/ � 2=r2 , R.y; t/ D h�2 , and
R.z; t/�D=h2 . Assume there is a curve  connecting x to z via y , such that each
point of  with scalar curvature in Œ2C0r�2;C0

�1Dh�2� is the centre of an "0 –neck.
Then .y; t/ is the centre of a strong ı–neck.

This will be proved in Section 6. In the sequel we fix functions .r; ı/ 7! h.r; ı/ and
.r; ı/ 7!D.r; ı/ with the above property. We set ‚ WD 2Dh�2 . This number will be
used as a curvature threshold for the surgery process.

Definition 5.2 We say that two real numbers r; ı are surgery parameters if 0<r<10�3

and 0< ı <min."0; ı0/ (where ı0 is the constant from Theorem 3.8). The associated
cutoff parameters are h WD h.r; ı/, D WDD.r; ı/ and ‚ WD 2Dh�2 .

From now on, we fix a function ı0W .0; ı0� �! .0; "0=10� as in the metric surgery
theorem. A marked .ı; ı0.ı//–almost standard cap will be simply called a ı–almost
standard cap. An open subset U of M is called a ı–almost standard cap if there exist
V , p and y such that .U;V;p;y/ is a ı–almost standard cap.
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Definition 5.3 Fix surgery parameters r; ı and let h;D; ‚ be the associated cutoff
parameters. Let f.M.t/;g.t//gt2I be an evolving riemannian manifold. Let t0 2 I

and .MC;gC/ be a (possibly empty) riemannian manifold. We say that .MC;gC/ is
obtained from .M. � /;g. � // by .r; ı/–surgery at time t0 if the following conditions
are satisfied:

(i) MC is obtained from M.t0/ by cutting along a locally finite collection of disjoint
2–spheres, capping off 3–balls, and possibly removing some components that
are spherical or diffeomorphic to R3 , S2�R, RP3nfptg, RP3#RP3 , S2�S1 .
In addition, a spherical manifold U can only be removed if it is contained in
M.t0/, and .U;g.t0// is "–round and satisfies R� 1.

(ii) For all x 2MC nM.t0/, there exists a ı–almost standard cap .U;V;p;y/ in
MC , such that:
(a) x 2 V ;
(b) y 2M.t0/;
(c) R.y; t0/D h�2 ;
(d) .y; t0/ is the centre of a strong ı–neck.

(iii) Rmax.g.t0//D‚, and if MC ¤∅, then Rmax.gC/�‚=2.

Definition 5.4 Fix surgery parameters r; ı and let h;D; ‚ be the associated cutoff
parameters. Let I � Œ0;1/ be an interval and f.M.t/;g.t//gt2I be a surgical solution.
We say that it is an .r; ı/–surgical solution if it has the following properties:

(i) It has curvature pinched toward positive and satisfies R.x; t/ � ‚ for all
.x; t/ 2M.

(ii) For every singular time t02I , .MC.t0/;gC.t0// is obtained from .M. � /;g. � //

by .r; ı/–surgery at time t0 .

(iii) Condition .CN/r holds.

Let � > 0. An .r; ı/–surgical solution which in addition satisfies Condition .NC/�
will be called an .r; ı; �/–surgical solution.

5.2 Existence theorem for .r; ı; �/–surgical solutions

Theorem 1.4 is implied by the following result:

Theorem 5.5 For every �0 > 0 and T � 0, there exist r; ı; � > 0 such that for any
complete riemannian 3–manifold .M0;g0/ with jRmj � 1 and injectivity radius at
least �0 , there exists an .r; ı; �/–surgical solution defined on Œ0;T � satisfying the initial
condition .M.0/;g.0//D .M0;g0/.
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Theorem 5.5 is itself a special case of the following result, which has the advantage of
being suitable for iteration:

Theorem 5.6 For every Q0; �0 > 0 and all 0� TA < T� , there exist r; ı; � > 0 such
that for any complete riemannian 3–manifold .M0;g0/ which satisfies jRmj �Q0 , has
injectivity radius at least �0 , has curvature pinched toward positive at time TA , there
exists an .r; ı; �/–surgical solution defined on ŒTA;T�� satisfying the initial condition
.M.TA/;g.TA//D .M0;g0/.

Note that in the statement of Theorem 5.5 the assumption of almost nonnegative
curvature is not necessary since it is automatic. We shall prove Theorem 5.6 directly.

Our next aim is to reduce Theorem 5.6 to three results, called Propositions A, B, C,
which are independent of one another.

Proposition A There exists a universal constant xıA > 0 having the following prop-
erty: let r; ı be surgery parameters, a; b be positive numbers with a < b , and
f.M.t/;g.t//gt2.a;b� be an .r; ı/–surgical solution. Suppose ı�xıA and Rmax.b/D‚.

Then there exists a riemannian manifold .MC;gC/ obtained from .M. � /;g. � // by
.r; ı/–surgery at time b , and in addition satisfies:

(i) gC has �b –almost nonnegative curvature;

(ii) Rmin.gC/�Rmin.g.b//.

Remark 5.7 The manifold MC may be empty. In this case, the second assertion in
the conclusion follows from the convention Rmin.∅/DC1.

Proposition B For all Q0; �0; � > 0 there exist r D r.Q0; �0; �/ < 10�3 and
xıB D xıB.Q0; �0; �/ > 0 with the following property: let ı � xıB , 0 � TA < b

and .M. � /;g. � // be a surgical solution defined on ŒTA; b� such that g.TA/ satisfies
jRmj �Q0 and has injectivity radius at least �0 .

Assume that .M. � /;g. � // satisfies Condition .NC/�=16 , has curvature pinched to-
ward positive, and that for each singular time t0 , .MC.t0/;gC.t0// is obtained from
.M. � /;g. � // by .r; ı/–surgery at time t0 .

Then .M. � /;g. � // satisfies Condition .CN/r .

Proposition C For all Q0; �0>0 and all 0�TA<T� there exists �D�.Q0;�0;TA;T�/

such that for all 0< r < 10�3 there exists xıC D xıC .Q0; �0;TA;T�; r/ > 0 such that
the following holds.
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For all 0 < ı � xıC and b 2 .TA;T��, every .r; ı/–surgical solution defined on
ŒTA; b/ such that g.TA/ satisfies jRmj � Q0 and has injectivity radius at least �0 ,
satisfies .NC/� .

Remark 5.8 The formulation of Proposition B, and its use below, are somewhat
different in [1]. In the compact case, it is fairly easy to prove that the .CN/r property
is open with respect to time (see [1, Lemma 5.3.2]). This is not the case here.

Proof of Theorem 5.6 assuming Propositions A, B, C We start with two easy lem-
mas. The first one allows to control the density of surgery times by the surgery
parameters.

Lemma 5.9 Let r; ı be surgery parameters. Let f.M.t/;g.t//gt2I be an .r; ı/–
surgical solution. Let t1 < t2 be two singular times. Then t2 � t1 is bounded from
below by a positive number depending only on r; ı .

Proof We can suppose that M. � / is constant and g. � / is smooth on .t1; t2�. Since
Rmax.t2/D ‚ we can choose a point x 2M.t2/ such that R.x; t2/ � Rmax.t2/� 1.
Since Rmax.gC.t1// � ‚=2, there exists tC 2 Œt1; t2� maximal such that we have
limt!tC;t>tC R.x; t/D‚=2. In particular, .x; t/ admits an ."0;C0/–canonical neigh-
bourhood for all t 2 .tC; t2�. Integrating inequality (5) on .tC; t2� gives a positive lower
bound for t2� tC depending only on ‚, hence only on r; ı .

The second one says that .NC/� is a closed condition:

Lemma 5.10 Let .M. � /;g. � // be a surgical solution defined on an interval .a; b�,
x 2M.b/ and r; � > 0. Suppose that for all t 2 .a; b/, x 2M.t/ and .M. � /;g. � // is
�–noncollapsed at .x; t/ on all scales less than or equal to r . Then it is �–noncollapsed
at .x; b/ on the scale r .

Its proof is identical as that of [1, Lemma 4.1.4.].

Let Q0; �0>0 and 0�TA<T� . Proposition C gives a constant �D�.Q0;�0;TA;T�/.
Proposition B gives constants r; xıB depending on � . We can assume r�2 > 12Q0 .
Then apply Proposition C again to get a constant xıC . Set ıDmin.xıA; xıB; xıC /. Without
loss of generality, we assume that � � �st .

From r; ı we get the cutoff parameters h;D; ‚.

Let .M0;g0/ be a riemannian manifold which has �A –almost nonnegative curvature,
satisfies Rmin.g0/��6=.4TAC1/, jRmj �Q0 , and has injectivity radius at least �0 .
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Let X be the set of ordered pairs .b; f.M.t/;g.t//gt2ŒTA;b// consisting of a num-
ber b 2 .TA;T�� and an .r; ı; �/–surgical solution such that .M.TA/;g.TA// D

.M0;g0/. We first show that X is nonempty. By standard results on the Ricci flow
(see eg [7, Lemma 6.1]) there exists a complete Ricci flow solution g. � / defined on
ŒTA;TA C .16Q0/

�1�, such that g.TA/ D g0 and jRmj 6 2Q0 on the interval. By
Proposition 3.3, g. � / has curvature pinched toward positive on ŒTA;TAC .16Q0/

�1�.
As R 6 12Q0 < r�2 < ‚, g. � / satisfies Property (i) of an .r; ı/–surgical solution,
and Properties (ii), (iii) are vacuously satisfied. By Proposition C, it satisfies .NC/� on
the interval. Hence g. � / is a .r; ı; �/–surgical solution on ŒTA;TAC .16Q0/

�1�.

The set X has a partial ordering defined by .b1; .M1. � /;g1. � ///� .b2; .M2. � /;g2. � ///

if b1 � b2 and .M2. � /;g2. � // is an extension of .M1. � /;g1. � //.

We want to use Zorn’s lemma to prove existence of a maximal element in X . In
order to do this, we consider an infinite chain, i. e. an infinite sequence of num-
bers TA < b1 < b2 < � � � bn < � � � < T� and of .r; ı; �/–surgical solutions defined
on the intervals ŒTA; bn/, and which extend one another. In this way we get an
evolving manifold f.M.t/;g.t//g defined on ŒTA; b1/, where b1 is the supremum
of the bn ’s. By Lemma 5.9, the set of singular times is a discrete subset of R,
so f.M.t/;g.t//gt2ŒTA;b1/ is an .r; ı; �/–surgical solution, thus a majorant of the
increasing sequence.

Hence we can apply Zorn’s lemma. Let .bmax; .M. � /;g. � /// 2 X be a maximal
element. Its scalar curvature lies between �6 and ‚, so it is bounded independently
of t . Its curvature is pinched toward positive so the sectional curvature is also bounded
independently of t . Using the Shi estimates, we deduce that all derivatives of the
curvature are also bounded at time bmax . This allows to take a smooth limit and extend
.M. � /;g. � // to a surgical solution defined on ŒTA; bmax�, with Rmax.bmax/ � ‚.
Condition .NC/� is still satisfied on this closed interval by Lemma 5.10. Hence we
can apply Proposition B, which implies that Property .CN/r is satisfied on ŒTA; bmax�.
We thus obtain an .r; ı; �/–surgical solution on the closed interval ŒTA; bmax�.

To conclude, we prove by contradiction that bmax D T� . Assume that bmax < T� and
consider the following two cases:

Case 1 Rmax.bmax/ < ‚.

Applying Shi’s short time existence theorem for Ricci flow with initial metric g.bmax/,
we can extend g. � / to a complete smooth Ricci flow with bounded curvature defined
on an interval ŒTA; bmaxC˛/ for some ˛ > 0. By Proposition 3.3 the extension satisfies
the hypothesis that the curvature is pinched toward positive.
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Lemma 5.11 There exists ˛0 2 .0; ˛� such that Condition .NC/�=16 holds for
fg.t/gt2ŒTA;bmaxC˛0/ .

Proof Let x 2 M.bmax/, t 2 .bmax; bmax C ˛
0/ and � 2 .0; 10�3/ be such that

jRmj � ��2 on P .x; t; �;��2/. Choosing ˛0 small enough, we can ensure that
B.x; bmax; �=2/�B.x; t; �/ and moreover, P .x; bmax; �=2;��

2=4/�P .x; t; �;��2/.
It follows that jRmj � 4��2 on P .x; bmax; �=2;��

2=4/. Since .CN/� is satisfied up
to time bmax , we deduce that vol B.x; bmax; �=2/� �.�=2/

3 . Again by proper choice
of ˛0 , volg.t/B.x; bmax; �=2/ is at least half of vol B.x; bmax; �=2/. Hence

vol B.x; t; �/� volg.t/B.x; bmax; �=2/�
1

2
vol B.x; bmax; �=2/�

�

16
�3:

Setting M.t/ WD M.bmax/ for t 2 .bmax; bmax C ˛0/, we obtain a surgical solu-
tion f.M.t/;g.t//gt2ŒTA;bmaxC˛0/ satisfying assumptions of Proposition B. It follows
that Condition .CN/r is satisfied on ŒTA; bmax C ˛

0/. Integrating inequality (5) on
Œbmax; bmax C ˛

0/, one obtains Rmax < ‚ on this interval for ˛0 > 0 small enough.
We thus have that f.M.t/;g.t//gt2ŒTA;bmaxC˛0/ is an .r; ı/–surgical solution. By
Proposition C, it is an .r; ı; �/–surgical solution. This contradicts maximality of bmax .

Case 2 Rmax.bmax/D‚.

Proposition A yields a riemannian manifold .MC;gC/. If MC is empty, then the
construction stops. Suppose MC ¤∅. Applying Shi’s short time existence theorem
for Ricci flow on MC with initial metric gC , we obtain a positive number ˛ and
a complete smooth Ricci flow with bounded curvature fg.t/gt2.bmax;bmaxC˛/ on MC
whose limit from the right as t tends to bmax is equal to gC . By Proposition 3.3 it has
curvature pinched toward positive.

Lemma 5.12 There exists ˛0 2 .0; ˛� such that Condition .NC/�=16 holds on the
interval ŒTA; bmaxC˛

0/.

Proof Let x 2M.bmax/, t 2 .bmax; bmaxC˛
0/ and � 2 .0; 10�1/ be such that jRmj �

��2 on P .x; t; �;��2/. If B.x; t; �=2/ is unscathed and stays so until bmax , then we
can repeat the argument used to prove Lemma 5.11. Otherwise it follows from the
assumption � � �st and properties of almost standard caps.

Setting M.t/ WDMC for t 2 .bmax; bmaxC˛
0/, we obtain a surgical solution

f.M.t/;g.t//gt2ŒTA;bmaxC˛0/ satisfying assumptions of Proposition B. It follows that
Condition .CN/r is satisfied on ŒTA; bmaxC˛

0/. Since Rmax.gC/�‚=2, we obtain
by integrating (5) on .bmax; bmaxC ˛

0/, that Rmax < ‚ on this interval for ˛0 small
enough. We thus have that f.M.t/;g.t//gt2ŒTA;bmaxC˛0/ is an .r; ı/–surgical solution.
By Proposition C, it is an .r; ı; �/–surgical solution. Again this contradicts the assump-
tion that bmax should be maximal.
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6 Choosing cutoff parameters

In this section, we give some technical results necessary to prove Theorem 5.1. Their
statements are nearly identical to those of the corresponding results of [1, Chapter 6],
surgical solutions replacing Ricci flow with bubbling-off. The proofs are also almost
identical, the minor adaptations being made precise below.

6.1 Bounded curvature at bounded distance

We shall need the following well-known consequence of curvature pinching:

Proposition 6.1 Let .Uk ;gk. � /;�k/ be a sequence of pointed evolving metrics
defined on intervals Ik � RC , and having curvature pinched toward positive. Let
.xk ; tk/ 2 Uk � Ik be a sequence such that .1C tk/R.xk ; tk/ goes to C1. Then the
sequence xgk WDR.xk ; tk/g.tk/ has the following properties:

(i) The sequence Rmin.xgk/ tends to 0.

(ii) If .Uk ; xgk ;�k/ converges in the pointed C2 sense, then the limit has nonnegative
curvature operator.

We also recall:

Lemma 6.2 [1, Lemma 3.3.2] Let " 2 .0; 10�1�. Let .M;g/ be a riemannian 3–
manifold, N � M be an "–neck, and S be a middle sphere of N . Let Œxy� be a
geodesic segment such that x;y 2M nN and Œxy�\S ¤ ∅. Then the intersection
number of Œx;y� with S is odd. In particular, if S is separating in M , then x;y lie in
different components of M nS .

We summarise the conclusion of Lemma 6.2 by saying that N is traversed by the
segment Œxy�.

Corollary 6.3 Let " 2 .0; 10�1�. Let .M;g/ be a riemannian 3–manifold, U �M

be an "–cap and V be a core of U . Let x;y be points of M nU and Œxy� a geodesic
segment connecting x to y . Then Œxy�\V D∅.

As for Ricci flow with bubbling-off, we then have:

Theorem 6.4 (Curvature-distance) For all A;C > 0 and all " 2 .0; 2"0�, there
exist QDQ.A; ";C / > 0 and ƒDƒ.A; ";C / > 0 with the following property. Let
I � Œ0;C1/ be an interval and f.M.t/;g.t//gt2I be a surgical solution with curvature
pinched toward positive. Let .x0; t0/ 2M be such that:
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(i) R.x0; t0/�Q;

(ii) For each point y 2 B.x0; t0;AR.x0; t0/
�1=2/, if R.y; t/ � 2R.x0; t/, then

.y; t/ has an .";C /–canonical neighbourhood.

Then for all y 2 B.x0; t0;AR.x0; t0/
�1=2/, we have

R.y; t0/

R.x0; t0/
�ƒ:

Proof It suffices to redo the proof of [1, Theorem 6.1.1], with the following minor
differences:

� In Step 1, to control the injectivity radius, one can use property (iii) in the
definition of .";C /–canonical neighbourhoods, as the canonical neighbourhood
considered is not "–round.

� In Step 2, to prove that Œx0
k
y0

k
� is covered by strong "–necks, one has to rule out

closed canonical neighbourhoods. This is clear by the curvature ratio properties.
Then use Corollary 6.3 instead of [1, Lemma 3.3.2].

6.2 Existence of cutoff parameters

For the convenience of the reader, we restate Theorem 5.1.

Theorem 6.5 (Cutoff parameters) For all r; ı > 0, there exist h2 .0; ır/ and D> 10

such that if .M. � /;g. � // is a complete surgical solution of bounded curvature defined
on an interval Œa; b�, with curvature pinched toward positive and satisfying .CN/r , then
the following holds:

Let t 2 Œa; b� and x;y; z 2 M.t/ such that R.x; t/ � 2=r2 , R.y; t/ D h�2 , and
R.z; t/�D=h2 . Assume there is a curve  connecting x to z and containing y , such
that each point of  with scalar curvature in Œ2C0r�2;C0

�1Dh�2� is the centre of a
"0 –neck. Then .y; t/ is the centre of a strong ı–neck.

Proof The proof is almost the same as for [1, Theorem 6.2.1], arguing by contradiction.
We only need to adapt Step 1.

Fix constants r >0; ı >0, sequences hk!0, Dk!C1, a sequence .Mk. � /;gk. � //

of surgical solutions satisfying the above hypotheses, and sequences tk > 0, xk ;yk ;

zk 2M such that R.xk ; tk/� 2r�2 , R.zk ; tk/�Dkh�2
k

, and R.yk ; tk/D h�2
k

. Let
k be a curve from xk to zk such that yk 2 k , whose points of scalar curvature in
Œ2C0r�2;C0

�1Dh�2� are centre of "0 –neck. Finally assume that .yk ; tk/ is not the
centre of a strong ı–neck.
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Consider the sequence . SMk. � /; xgk. � // defined by the following parabolic rescaling

xgk.t/D h�2
k gk.tk C th2

k/ :

In order to clarify notation, we shall put a bar on points when they are involved
in geometric quantities computed with respect of the metric xgk . Thus for instance,
we have R.xyk ; 0/ D 1. The contradiction will come from extracting a converging
subsequence of the pointed sequence . SMk. � /; xgk. � /; xyk ; 0/ and showing that the limit
is the cylindrical flow on S2 �R, which implies that for k large enough, yk is the
centre of some strong ı–neck, contradicting our hypothesis.

Step 1 . SMk.0/; xgk.0/; xyk/ subconverges in the pointed C1 sense to .S2 �R;g1/
where g1 is a product metric of nonnegative curvature operator and scalar curvature
at most 2.

Proof First we control the curvature on balls around xyk . Since R.yk ; tk/ goes to C1,
Theorem 6.4 implies that for all � > 0, there exists ƒ.�/ > 0 and k0.�/ > 0 such
that xgk.0/ has scalar curvature bounded above by ƒ.�/ on B.xyk ; �/ for k � k0.�/.
Moreover, by Assumption (iii) of the definition of canonical neighbourhoods, xgk. � /

is C0
�1 –noncollapsed at .yk ; 0/. Indeed R.yk ; tk/D hk

�2
2 Œ2C0r�2;C0

�1Dh�2�,
hence yk is the centre of a "0 –neck. Thus we can apply Gromov’s compactness
theorem to extract a converging subsequence with regularity C 1;˛ .

Let us prove that for large k , the ball B.xyk ; �/ is covered by "0 –necks. Recall that
gk.tk/ satisfies

jrRj< C0R3=2;

at points covered by canonical neighbourhoods. Take a point y such that R.y; tk/�

2C0r�2 and integrate the previous inequality on the portion of Œyky� where R �

2C0r�2 . An easy computation yields

(6) d.xy; xyk/�
1

hk

2

C0

�
r
p

2C0

� hk

�
> � ;

for k larger than some k1.�/� k0.�/. It follows that the scalar curvature of gk.tk/ is
at least 2C0r�2 on B.xyk ; �/ for every integer k�k1.�/. It follows that xk …B.xyk ; �/

and that B.xyk ; �/ is covered by ."0;C0/–canonical neighbourhoods. On the other
hand, for k larger than some k2.�/, we have R.xy; 0/ 6 ƒ.�/ < C0

�1Dh�2 for all
xy 2B.xyk ; �/. It follows that  \B.xyk ; �/ is covered by "0 –necks. As zk …B.xyk ; �/,
it follows that B.xyk ; �/ is contained in the union U�;k of these necks: indeed, every
segment coming from xyk and of length less than � lies there.

Now by the .CN/r assumption, these necks are strong "0 –necks. The scalar curvature
on B.xyk ; �/ being less than ƒ.�/ for k > k0 , we deduce that on each strong neck,
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xgk.t/ is smoothly defined on Œ�1=.2ƒ.�//; 0�, and has curvature bounded above
by 2ƒ.�/. Hence for each � > 0, the parabolic balls P

�
xyk ; 0; �;�1=.2ƒ.�//

�
are

unscathed, with scalar curvature bounded above by 2ƒ.�/ for all k � k2.�/. Since
gk. � / has curvature pinched toward positive, this implies a uniform control of the
curvature operator there.

Hence we can apply the local compactness theorem for Ricci flow [1, Theorem C.3.3].
Up to extracting, . SMk.0/; xgk.0/; xyk/ converges to some complete noncompact pointed
riemannian 3–manifold . SM1; xg1; xy1/. By Proposition 6.1, the limit has nonnegative
curvature operator.

Passing to the limit, we get a covering of SM1 by 2"0 –necks. Then Proposition 7.6
shows that SM1 is diffeomorphic to S2�R. In particular, it has two ends, so it contains
a line, and Toponogov’s theorem implies that it is the metric product of some (possibly
nonround) metric on S2 with R.

As a consequence, the spherical factor of this product must be 2"0 –close to the round
metric on S2 with scalar curvature 1. Hence the scalar curvature is bounded above by
2 everywhere. This finishes the proof of Step 1.

Henceforth we pass to a subsequence, so that . SMk.0/; xgk.0// satisfies the conclusion
of Step 1.

The rest of the proof is the same as for [1, Theorem 6.2.1].

7 Proof of Proposition A

7.1 Piecing together necks and caps

Definition 7.1 An "–tube is an open subset U �M which is equal to a union of
"–necks, and whose closure in M is diffeomorphic to S2�I , S2�R or S2�Œ0;C1/.

Proposition 7.2 Let " 2 .0; 2"0�. Let .M;g/ be a connected, orientable riemannian
3–manifold. Let X be a closed, connected subset of M such that every point of X

is the centre of an "–neck or an "–cap. Then there exists an open subset U � M

containing X such that either

(i) U is equal to M and diffeomorphic to S3 , S2 � S1 , RP3 , RP3#RP3 , R3 ,
S2 �R or a punctured RP3 , or

(ii) U is a 10"–cap, or

(iii) U is a 10"–tube.
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Proof First we deal with the case where X is covered by "–necks.

Lemma 7.3 If every point of X is the centre of an "–neck, then there exists an open
set U containing X such that U is a 10"–tube, or U is equal to M and diffeomorphic
to S2 �S1 or S2 �R.

Proof Let x0 be a point of X and N0 be a 10"–neck centred at x0 , contained in an "–
neck U0 , also centred at x0 . If X �N0 we are done. Otherwise, since X is connected,
we can pick a point x1 2X \N0 and a 10"–neck N1 centred at x1 , with x1 arbitrarily
near the boundary of N0 . By Lemma 3.6, an appropriate choice of x1 ensures that
N1 � U0 and the middle spheres of N0 and N1 are isotopic. In particular, the closure
of N0[N1 is diffeomorphic to S2 � I , so N0[N1 is a 10"–tube.

If X � N0 [N1 then we can stop. Otherwise, we pick a 10"–neck N2 centred at
some point x2 near the boundary component of N1 that does not lie in N0 , and iterate
the construction as long as possible. Three cases may occur.

Case 1 The construction stops with some 10"–tube N0 [ � � � [Nk containing X .
Then we are done.

Case 2 The construction stops with some 10"–tube N0[ � � � [Nk such that adding
another neck NkC1 does not produce a 10"–tube.

This can only happen if NkC1 \ N0 is non empty. In this case, by adjusting the
centre xkC1 of NkC1 , we can ensure that N0; : : : ;NkC1 cover M and that the
intersection of NkC1 and N0 is topologically standard. In this case, M fibers over
the circle with fiber S2 . Since M is orientable, it follows that M is diffeomorphic to
S2 �S1 .

Case 3 The construction can be iterated forever.

In this case, the union U of all Nk ’s is a 10"–tube.

Claim The frontier of U is connected, equal to the boundary component of xN0 which
does not lie in N1 .

We prove the claim by contradiction. If it is not true, then we can pick two points
x;y 2 X , each one being close to a distinct component of the frontier of U . Since
U \X is connected, we can find a path  connecting x to y in U \X . Now  is
compact, so it can be covered by finitely many 10"–necks, each of which is contained
in some "–neck. We thus obtain a finite collection of "–necks which cover U . Hence
U is relatively compact. This shows that the scalar curvature is bounded on U . Hence
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each Nk has a definite size, and adding each Nk to N0; : : : ;Nk�1 adds definite volume.
It follows that vol U is infinite, which is a contradiction. This proves the claim.

We continue the proof of Lemma 7.3. If U contains X , then we are done. Otherwise,
we pick a point x�1 2N0\X close to the frontier, and choose a neck N�1 centred at
x�1 . We perform the same iterated construction as before. At each stage, we have a
10"–tube N�k [ � � � [N�1[U whose frontier is connected. Hence the analogue of
Case 2 above cannot occur. If the construction stops, then we have found a 10"–tube
containing X . Otherwise the union V of all Nk ’s for k 2 Z is a 10"–tube. Repeating
the argument used to prove the claim, we see that the frontier of V is empty. Since M

is connected, it follows that V DM Š S2 �R.

To complete the proof of Proposition 7.2, we need to deal with the case where there
is a point x0 2 X which is the centre of an "–cap C0 . By definition of a cap, some
collar neighbourhood of the boundary of C0 is an "–neck U0 . If X 6� C0 , pick a
point x1 close to the boundary of C0 . If x1 is the centre of a 10"–neck N1 , then we
apply Lemma 3.6 again to find that C1 WD C0[N1 is a 10"–cap. Again we iterate this
construction until one of the following things occur:

Case 1 The construction stops with a 10"–cap containing X .

Case 2 The construction stops with a 10"–cap Ck D C0 [ � � � [ Nk and a point
xkC1 near its frontier, such that xkC1 is the centre of a 10"–cap C whose boundary
is contained in Ck . Then Ck [ C equals M and is diffeomorphic to S3 , RP3 or
RP3#RP3 .

Case 3 The construction goes on forever. Then the same volume argument as in the
proof of the above Claim shows that the union of all C 0

k
s is M . Thus M itself is a

10"–cap, diffeomorphic to R3 or a punctured RP3 .

Putting X DM , we obtain the following corollary:

Theorem 7.4 Let " 2 .0; 2"0�. Let .M;g/ be a connected, orientable riemannian
3–manifold. If every point of M is the centre of an "–neck or an "–cap, then M is
diffeomorphic to S3 , S2 �S1 , RP3 , RP3#RP3 , R3 , S2 �R or a punctured RP3 .

Here is another consequence of Proposition 7.2:

Corollary 7.5 Let " 2 .0; 2"0�. Let .M;g/ be an orientable riemannian 3–manifold.
Let X be a closed submanifold of M such that every point of X is the centre of an
"–neck or an "–cap. Then one of the following conclusions holds:
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(i) M is diffeomorphic to S3 , S2 � S1 , RP3 , RP3#RP3 , R3 , S2 � R or a
punctured RP3 .

(ii) There exists a locally finite collection N1; : : : ;Np of 10"–caps and 10"–tubes
with disjoint closures such that X �

S
i Ni .

Proof We apply Proposition 7.2 to each connected component of X . If Case (i) of
the required conclusion does not hold, then we have found a locally finite collection of
10"–caps and 10"–tubes which cover X . By merging some of them if necessary, we
can ensure that they have disjoint closures.

Finally, we have a more precise result when there are just necks:

Proposition 7.6 Let "2 .0; 2"0�. Let .M;g/ be an open riemannian 3–manifold such
that every point of M is the centre of an "–neck. Then M is diffeomorphic to S2�R.

This follows immediately from the proof of Lemma 7.3.

7.2 Proof of Proposition A

Recall the statement:

Proposition A There exists a universal constant xıA > 0 having the following prop-
erty: let r; ı be surgery parameters, a; b be positive numbers with a < b , and
f.M.t/;g.t//gt2.a;b� be an .r; ı/–surgical solution. Suppose ı�xıA and Rmax.b/D‚.

Then there exists a riemannian manifold .MC;gC/ obtained from .M. � /;g. � // by
.r; ı/–surgery at time b , and in addition satisfies:

(i) gC has �b –almost nonnegative curvature;

(ii) Rmin.gC/�Rmin.g.b//.

Throughout this section we shall work in the riemannian manifold .M.b/;g.b//. In
particular all curvatures and distances are taken with respect to this metric.

Let G (resp. O , resp. R) be the set of points of M.b/ of scalar curvature less than 2r�2

(resp. 2 Œ2r�2; ‚=2/, resp. �‚=2).

For brevity, we call cutoff neck a strong ı–neck centred at some point of scalar
curvature h�2 . Note that cutoff necks are contained in O , and have diameter and
volume bounded by functions of h; ı–alone.
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Lemma 7.7 There exists a locally finite collection fNig of pairwise disjoint cutoff
necks such that any connected component of M.b/n

S
i Ni is contained in either G[O

or R[O .

Proof By Zorn’s Lemma, there exists a maximal collection fNig of pairwise disjoint
cutoff necks. Such a collection is automatically locally finite, eg because if K is
any compact subset, all cutoff necks that meet K are contained in the h.2ı�1C1/–
neighbourhood of K , which has finite volume.

Suppose that some component X of M.b/ n
S

i Ni contains at least one point x 2 G
and one point z 2 R. Since X is a closed subset of M.b/, there exists a geodesic
path  in X connecting x to z .

Claim The intersection of  and @X is empty.

Proof of the claim First observe that if y is a point of @X , then y has a canonical
neighbourhood U . This neighbourhood cannot be a cap, because then U would contain
the whole of X , which would imply that X �O . Hence U is a neck.

If such a point y belonged to  , then by Lemma 6.2 the neck U would be traversed
by  . This contradicts the fact that  �X .

In order to apply Theorem 5.1, one has to prove the following:

Claim Each point of  with scalar curvature in Œ2C0r�2;C0
�1Dh�2� is the centre of

some "0 –neck.

Proof of the claim Let y 2  be such a point. By the curvature assumptions, y is
the centre of a ."0;C0/–canonical neighbourhood U , disjoint from x and z . Hence
U cannot be a closed manifold. It remains to rule out the ."0;C0/–cap case. We
argue by contradiction. Assume that U is an ."0;C0/–cap. Then U DN [C , where
N is a "0 –neck, N \ C D ∅, xN \ C D @C and y 2 Int C . For simplicity dilate
the metric by a factor such that the scalar curvature of N is close to 1. Denote
by S the middle sphere of N . The curve  is clearly not minimizing in U . In
particular if x0 (resp. z0 ) is an intersection point of  with S lying between x and y

(resp. y and z ), then d.x0; z0/ � diam.S/ << 2"0
�1 < d.x0;y/C d.y; z0/. The

geodesic segment Œx0z0�� U is not contained in X , otherwise this would contradict
the minimality of  in X . Hence there exists p 2 Œx0; z0�\ @X . By definition of X ,
the corresponding component of @X is a boundary component of some neck Ni . Let
us prove that  intersects Ni , which is a contradiction. Denote by Si

C the above
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boundary component of Ni , and note that d.Si
C;S/ < diam.S/. Let N 0 be a 10"0 –

subneck of Ni which admits Si
C as a boundary component, and p0 2N 0 be its centre.

Then d.p0;S/ < diam.S/C .10"0/
�1 < .4"0/

�1 . It follows from Lemma 3.6 that S 0

is isotopic to S in N . In particular  intersects S 0 .

Let y be a point of  of scalar curvature h�2 . Theorem 5.1 yields a cutoff neck N

centred at y . Any ı–neck meeting N has to be traversed by  , so N is disjoint from
the Ni ’s. This contradicts maximality of fNig.

Having established Lemma 7.7, we prove Proposition A. Let fNig be a collection of
cutoff necks given by that lemma. Applying Theorem 3.8, we obtain a Riemannian
manifold .M 0;gC/. By construction, the components of M 0 fall into two types. Either
they have curvature less than ‚=2, or they are covered by canonical neighbourhoods.
Applying Theorem 7.4, we may safely throw away the components of the second type,
obtaining the manifold .MC;gC/. We remark that the operation cannot decrease Rmin

(in fact Rmin.gC/ is equal to Rmin.g.b// unless MC is empty, in which case it is
equal to C1). Thus the proof of Proposition A is complete.

8 Persistence

Notation If .M. � /;g. � // is a piecewise C1 evolving manifold defined on some
interval I � R and Œa; b�� I , we call restriction of g to Œa; b� the evolving manifold

t 7!

(
.MC.a/;gC.a// if t D a;

.M.t/;g.t// if t 2 .a; b�:

We shall still denote by g. � / the restriction. Given .x; t/ 2M, r > 0 and �t > 0 we
define the forward parabolic neighbourhood P .x; t; r; �t/ as the set

P .x; t; r; �t/D f.x0; t 0/ 2M j x0 2 B.x; t; r/; t 6 t 0 6 t C�tg:

When we consider a restriction of g. � / to some Œa; b�� I , the parabolic neighbourhood
P .x; a; r; �t/ will be defined using the ball B.x; a; r/ of radius r with respect to the
metric gC.a/.

A parabolic neighbourhood P .x; t; r; �t/ is said to be unscathed if x0 2Mreg.t
0/ for

all x0 2 B.x; t; r/ and t 0 2 Œt; t C�t/. Otherwise it is scathed.

Given two surgical solutions .M. � /; ;g. � // and .M0. � /;g0. � //, we say that an
unscathed parabolic neighbourhood P .x; t; r; �t/ of .M. � /;g. � // is "–close to
another unscathed parabolic neighbourhood P .x0; t; r0; �t/ of .M0. � /;g0. � // if
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.B.x; t; r/;g. � // is "–close to .B.x0; t; r0/;g0. � // on Œt; t C �t � . We say that
P .x; t; r; �t/ is "–homothetic to P .x0; t0; r0; ��t// if it is "–close after a parabolic
rescaling by �.

The goal of this section is to prove the following technical theorem:

Theorem 8.1 (Persistence of almost standard caps) For all A > 0, � 2 Œ0; 1/ and
yr > 0, there exists xı D xıper.A; �; yr/ with the following property. Let .M. � /;g. � // be
a surgical solution defined on some interval Œa; b�, which is a .r; ı/–surgical solution
on Œa; b/, with r > yr and ı > xı . Let t0 2 Œa; b/ be a singular time and consider
the restriction of .M. � /;g. � // to Œt0; b�. Let p 2 .M.t0/;g.t0// be the tip of some
ı–almost standard cap of scale h. Let t1 � min.b; t0C �h2/ be maximal such that
P .p; t0;Ah; t1� t0/ is unscathed. Then the following holds:

(i) The parabolic neighbourhood P .p; t0;Ah; t1 � t0/ is A�1 –homothetic to the
neighbourhood P .p0; 0;A; .t1� t0/h

�2/.

(ii) If t1 <min.b; t0C �h2/, then B.p; t0;Ah/�Msing.t1/ disappear at time t1 .

Remark 8.2 In [1], the conclusion in the last case was that B.p; t0;Ah/�Msing.t1/.

Before giving the proof of the theorem, we summarize some technical results from [1,
Chapter 8].

Let T0 be a positive real number. Let M0D .X0;g0. � /;p0/ (the model) be a complete
3–dimensional Ricci flow defined on Œ0;T0� such that the quantity

ƒ.N / WD max
X0�Œ0;T0�

f jr
p Rmj j 0� p �N g

is finite for all N 2 N.

Corollary 8.3 (Persistence of the model in dimension 3) Let A > 0, there exists
�D�.M0;A/>A with the following property. Let f.M.t/;g.t//gt2Œ0;T � be a surgical
solution with T � T0 . Suppose that:

(a) .M. � /;g. � // has curvature pinched toward positive;

(b) j@R=@t j � C0R2 at any .x; t/ with R.x; t/> 1.

Let p 2M.0/ and t 2 .0;T � be such that:

(c) B.p; 0; �/ is ��1 –close to B.p0; 0; �/�X0 ;

(d) P .p; 0; �; t/ is unscathed and jRmj6ƒ.ŒA�C 1/ there.

Then P .p; 0;A; t/ is A�1 –close to P .p0; 0;A; t/.

Geometry & Topology, Volume 15 (2011)



Ricci flow on open 3–manifolds and positive scalar curvature 963

Proof The proofs of [1, Corollary 8.2.2 and 8.2.4] work for surgical solutions.

Proof of Theorem 8.1 Consider as model the standard solution X0 WD .S0;g0. � /;p0/

restricted to Œ0; � �. Let us assume for simplicity that T � t0C�h2 , so that t1D t0C�h2 .
For any nonnegative integer N , we now set

ƒN D max
S0�Œ0;��

f jr
p Rmj; jRjI 0� p �N g:

In the sequel we consider the restriction of .M. � /;g. � // to Œt0; b� and we define

xg.t/ WD h�2g.t0C th2/ for t 2 Œ0;minf�; .b� t0/h
�2
g�:

Note that xg. � / satisfies Assumptions (a) and (b) of Corollary 8.3. Indeed, it is readily
checked that the curvature pinched toward positive property is preserved by the parabolic
rescaling, since t0 > 0 and h�2 > 1. On the other hand, if g. � / satisfies .CN/r on
Œ0; b/, it follows easily by a continuity argument that any .x; b/ with R.x; b/>2r.b/�2

satisfies the estimate j@R=@t j6 C0R2 at .x; b/. After rescaling by h.b/�2 >> 2r�2 ,
this property holds at points with scalar curvature above 1.

Fix A> 0 and set � WD �.M0;A/. By the definition of an ı–almost standard cap, the
ball Bxg.p; 0; 5C ı

�1/ is ı0–close to B.p0; 0; 5C ı
�1/� S0 . Let Tmax 2 Œ0; � � be the

maximal time such that Pxg.p; 0;A;Tmax/ is unscathed. By closeness at time 0 one
has jRxgj � 2ƒ0 on Bxg.p; 0; ı

�1/.

Now for t 2 Œ0;min..4ƒC0/
�1; �/� such that Pxg.p; 0; �; t/ is unscathed, we have

jRxgj � 4ƒ0 on Pxg.p; 0; �; t/ by the time derivative estimate on the scalar curvature.
Using the pinching assumptions, we deduce jRmxg j �ƒ00 on the same neighbourhood.

Set T�2 WD min.�; .4ƒ0C0/
�1; .4ƒ0

0
/�1/. The above curvature bound gives, for

t �min.�;T�2/,
1

2C
�
xg.t/

xg.0/
� 2C

on Bxg.p; 0; ı
�1/, for some C D C.�/. In particular, for all x 2 Bxg.p; 0; �/ and

all 0 < t � min.�;T�2/, the point .x; t/ is not the centre of a ı–neck because
dxg.t/.x;p/� 2Cdxg.0/.x;p/� 2C� and the length of a ı–neck at time t is larger than
1=2ı�1R.x; t/�1=2 � .4ıƒ0/

�1 > 4C� , if ı is small enough.

This implies that Pxg.p; 0; �; t/ is unscathed if t �min.T�2;Tmax/. Indeed, if not, there
exists t 0 < t such that Pxg.p; 0; �; t

0/ is unscathed but Bxg.p; 0; �/\Msing.t
0/ ¤ ∅.

If Bxg.p; 0; �/ is not contained in Msing.t
0/, then it must intersect a surgery sphere

of S.t 0/, which is the middle sphere of a ı–neck centred at .x; t 0/. The above estimate
rules out this possibility. Hence Bxg.p; 0;A/� Bxg.p; 0; �/�Msing.t

0/ for t 0 < Tmax .
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This is impossible by assumption. Remark that if B.p; 0; �/\Msing.t/¤∅ the same
arguments shows that B.p; 0; �/ is contained in Msing.t/ and disappears at time t .

We can now apply Corollary 8.3, so Pxg.p; 0; �1; t/ is ��1
1

–close to P .p0; 0; �1; t/

for all t � min.T�2;Tmax/. If T�2 � Tmax we are done. Otherwise by closeness
we have that jRmxg j and jRxgj are no greater than 2ƒ0 on Pxg.p; 0; �1;T�2/. Then
jRxgj � 4ƒ0 on Pxg.p; 0; �1;min.2T�2;Tmax// where �1 D �.M0; �2/ and �2 > 0.
We then iterate the above argument, which terminates in finitely many steps, as in [1,
Corollary 8.2.2]. If Tmax < � , then Conclusion (ii) follows from the previous remark.
This finishes the proof of Theorem 8.1.

9 Proof of Proposition B

Let us recall the statement of Proposition B:

Proposition B For all Q0; �0; � > 0 there exist r D r.Q0; �0; �/ < 10�3 and
xıB D xıB.Q0; �0; �/ > 0 with the following property: let ı � xıB , 0 � TA < b

and .M. � /;g. � // be a surgical solution defined on ŒTA; b� such that g.TA/ satisfies
jRmj �Q0 and has injectivity radius at least �0 .

Assume that .M. � /;g. � // satisfies Condition .NC/�=16 , has curvature pinched to-
ward positive, and that for each singular time t0 , .MC.t0/;gC.t0// is obtained from
.M. � /;g. � // by .r; ı/–surgery at time t0 .

Then .M. � /;g. � // satisfies Condition .CN/r .

In order to prove Proposition B, we argue by contradiction. Suppose that some fixed
numbers Q0; �0; � > 0 have the property that for all r 2 .0; 10�3/ and xıB > 0

there exist counterexamples. Then we can consider sequences rk ! 0, ık ! 0, and
a sequence of .rk ; ık ; �/–surgical solutions .Mk. � /;gk. � // on Œ0; b/ which satisfy
Condition .NC/�=16 , have curvature pinched toward positive, and such that for each sin-
gular time t0 , .Mk;C.t0/;gk;C.t0// is obtained from .M. � /;g. � // by .r; ı/–surgery
at time t0 , but .CN/rk

fails for some tk . This last assertion means that there exists
xk 2Mk.tk/ such that

Qk WDR.xk ; tk/� r�2
k ;

and yet .xk ; tk/ does not have a ."0;C0/–canonical neighbourhood.

By a standard point-picking argument (see [15, Lemma 52.5]), we may choose the
sequence of bad points .xk ; tk/ and Hk!C1 such that for all t 2 Œtk �HkQ�1

k
; tk �

and x 2Mk.t/, if R.x; t/� 2Qk then .x; t/ has a ."0;C0/–canonical neighbourhood.
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Without loss of generality, we assume that

ık � xı

�
k; 1�

1

k
; rk

�
(the right-hand side being the parameter given by the Persistence Theorem 8.1). We
need a preliminary lemma.

Lemma 9.1 (Parabolic balls of bounded curvature are unscathed) For all K>0; �>0

and � >0 there exists an integer k0Dk0.K; �; �/ such that for all k > k0 , if jRm j6 K

on Bxgk
.xk ; 0; �/� .��; 0� then Pxgk

.xk ; 0; �;��/ is unscathed.

Proof Arguing by contradiction, fix k and assume that there exist zk 2Bxgk
.xk ; 0; �/

and sk 2 Œ��; 0/ such that zk …Mreg.sk/. As zk exists after sk , there is an added
cap V in MC.sk/ such that zk 2 V . We can take sk to be maximal satisfying this
property, ie the set Bxgk

.xk ; 0; �/� .sk ; 0� is unscathed. Then we argue as in the proof
of [1, Lemma 9.2.1], using the persistence Theorem 8.1.

From this point on, the proof of Proposition B is almost identical to that of the corre-
sponding proposition in [1] and hence omitted.

10 Proof of Proposition C

We recall the statement:

Proposition C For all Q0; �0>0 and all 0�TA<T� there exists �D�.Q0;�0;TA;T�/

such that for all 0< r < 10�3 there exists xıC D xıC .Q0; �0;TA;T�; r/ > 0 such that
the following holds.

Let 0 < ı 6 xıC and b 2 .TA;T��, and .M. � /;g. � // be a .r; ı/–surgical solution
defined on ŒTA; b/ such that g.TA/ satisfies jRmj 6 Q0 , has injectivity radius at
least �0 , �A –almost nonnegative curvature and satisfies Rmin.g0/ � �6=.4TAC 1/.
Then g. � / satisfies .NC/� .

Standard estimates on Ricci flow (see eg [7, Lemma 6.1]) imply that the solution
is smooth on ŒTA;TA Cminfb; 2�4Q�1

0
g� with jRmj 6 2Q0 (if ı is small enough

compared to Q0 ). By usual comparison arguments, one deduces that there exists a
constant �norm depending only on the normalisation of the initial condition, ie Q0; �0 ,
such that .M. � /;g. � // satisfies .NC/�norm on ŒTA;TAC 2�4Q�1

0
�.

We set �0 WDmin.�norm; �sol=2; �st=2/.
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10.1 Preliminaries

Let vk.�/ denote the volume of a ball of radius � in the model space of constant
sectional curvature k and dimension 3.

Let � > 0. One says that a Riemannian ball B.x; �/ is �–noncollapsed if jRm j6 ��2

on B.x; �/ and if vol B.x; �/ > ��3 . Similarly, a parabolic ball P .x; t; �;���2/ is
�–noncollapsed if jRm j6 ��2 on P .x; t; �;���2/ and vol B.x; t; �/> ��3 .

We recall the following elementary lemma from [1, Section 10.1].

Lemma 10.1 (i) If B.x; �/ is �–noncollapsed, then for every �0 2 .0; �/, B.x; �0/

is C�–noncollapsed, where C WD v0.1/=v�1.1/. The same property holds for
P .x; t; �0;��02/� P .x; t; �;��2/.

(ii) Let r; ı be surgery parameters and g. � / be an .r; ı/–surgical solution. Assume
that P0 D P .x0; t0; �0;��

2
0
/ is a scathed parabolic neighbourhood such that

jRmj6 ��2
0

on P0 . Then P0 is e�12�st=2–noncollapsed.

Remark 10.2 (1) From (i), we deduce that in order to establish noncollapsing at
some point .x; t/ on all scales � 1, it suffices to do it on the maximal scale
�� 1 such that jRmj � ��2 on P .x; t; �; ��2/. This observation will be useful
later.

(2) If some metric ball B.y; �/ is contained in a .";C0/–canonical neighbour-
hood which is not "0 –round and satisfies jRmj 6 ��2 , then B.y; �/ is C�1

0
–

noncollapsed on the scale � by inequality (4) (cf Definition 4.6)

10.2 The proof

We turn to the proof of Proposition C. Since it is similar in many ways to that of
Proposition C of [1], we omit some details. The main differences lie in the formalism
since we work with surgical solutions rather than Ricci flows with bubbling-off. The
possible noncompactness of the manifold does not create any additional difficulty. An
important technical point is that the list of possible canonical neighbourhoods is larger
than in [1], which accounts for some differences near the end of the proof.

Let Mreg be the set of regular points in spacetime. This is an open, arcwise connected
4–manifold. Likewise we let Msing be the set of singular points in spacetime. Let
 W Œt0; t1�!

S
t M.t/ be a map such that  .t/ 2M.t/ for every t . Let xt 2 Œt0; t1�.

Here we adopt the convention that MC.t/DM.t/ if t is regular.
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Definition 10.3 One says that  is continuous at xt if there is � > 0 such that:

(1) t !  .t/ 2M.xt/ on Œxt � �;xt/ and is left continuous at xt ;

(2) t !  .t/ 2MC.xt/ on �xt ;xt C �� and has a right limit at xt denoted C.xt/;

(3) Assume xt < t1 . If  .xt/ 2Mreg.xt/, then  .xt/D C.xt/ under the identification
of Mreg.xt/ and M.xt/\MC.xt/; if  .xt/ 2 S � S , then  .xt/D C.xt/ under the
identification of S and the corresponding component of @M \MC.xt/.

In particular, if  .xt/ 2Msing.xt/ nS for xt < t1 , it is not continuous at xt . Indeed,  .xt/
disappears at time xt .

We say that  is unscathed if  .t/2Mreg.t/ for all t 2 Œt0; t1/. Otherwise  is scathed.

Let .x0; t0/ be a point, and �0 2 .0; 1� be a radius such that jRmj � ��2
0

on P0 WD

P .x0; t0; �0;��
2
0
/.

We make the following reduction: by Lemma 10.1 and 10.2(1), we assume that �0 � 1

is maximal with the above property, and that P0 is unscathed.

As before we set B0 WD B.x0; t0; �0/.

10.3 The case �0 > r=100

Lemma 10.4 Let yr ; �;ƒ be positive numbers. Then there exists xı D xı.yr ; �;ƒ/ > 0

with the following property. Let .M. � /;g. � // be an .r; ı/–surgical solution on an
interval I D Œa; aC�� with ı 6 xı and r > yr on I . Let .x0; t0/ 2M � I and �0 > yr
be such that P0 WD P .x0; t0; �0;��

2
0
/�M � I is unscathed and jRm j � ��2

0
on P0 .

Let  be a continuous spacetime curve defined on Œt1; t0� with t1 2 Œ0; t0� and such that
 .t0/D x0 and  is scathed. Then Lt0�t1

. /�ƒ.

Here Lt0�t1
denotes the L–length based at .x0; t0/, that is

Lt0�t1
. /D

Z t0

t1

p
t0� t

�
R. .t/; t/Cj P .t/j2g.t/

�
dt:

Proof See the proof of [1, Lemma 10.3.1].

A consequence of the previous lemma is the following result (see [15, Lemmas 78.3
and 78.6] or [1] for more details).

Lemma 10.5 Let yr ; �;ƒ be positive numbers. There exists xı WD xı.yr ; �;ƒ/ with the
following property. Let g. � / be a .r; ı/–surgical solution defined on Œa; aC�� such
that r > yr and ı � xı . Let .x0; t0/ and �0 > yr be such that P0 WD P .x0; t0; �0;��

2
0
/

is unscathed and jRm j � ��2
0

on P0 . Then:
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(i) For all .q; t/ 2M � Œa; aC��, if `.q; t0 � t/ < ƒ, then there is an unscathed
minimising L–geodesic  connecting x0 to q ;

(ii) For all � > 0; minq `.q; �/� 3=2 and is attained.

We come back to the proof of Proposition C. Recall that P0 is unscathed, and satisfies
jRm j � ��2

0
. The arguments of [20, Section 7] apply to unscathed minimising L–

geodesics. In particular, if  .�/D L� exp.x0;t0/
.v/ is minimising and unscathed on

Œ0; �0�, then ��3=2e�`.v;�/J.v; �/ is nonincreasing on Œ0; �0�.

Define

Y .�/ WD fv 2 Tx0
M j L exp.v/W Œ0; � � �!M is minimising and unscathed g :

It is easy to check that � � � 0) Y .�/� Y .� 0/. Then we set

zVreg.�/ WD

Z
Y .�/

��3=2e�`.v;�/J.v; �/ dv :

This function is nondecreasing on Œ0; t0�. One then adapts the proof of �–noncollapsing
in the smooth case, replacing zV by zVreg . The reader is referred to [1, Section 10.3.2]
for details.

10.4 The case �0 6 r=100

Since �0 < 1, the reduction made at the beginning of the proof implies that there exists
.y; t/ 2 xP0 such that jRm.y; t/j D ��2

0
. Hence we have

jRm.y; t/j> r�2 > 106:

Since fg.t/g has curvature pinched toward positive,

R.y; t/> jRm.y; t/j D ��2
0 > 10000r.t/�2:

Hence .y; t/ has an ."0;C0/–canonical neighbourhood U .

If U is not "0 –round, it gives C0 –noncollapsing at .y; t/ (cf 10.2(2)). In the other
case we will need an extra argument.

Case 1 U is not "0 –round.

Let us show that B.x0; t; e
�2�0/� U . This is clear if U is closed, so we only have

to deal with the cases of necks and caps.
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By the curvature bounds on xP0 we have dt .x0;y/ 6 e2�0 and B.x0; t; e
�2�0/ �

B.x0; t0; �0/. If U is an "0 –neck, then dt .y; @ xU / > .2"0/
�1R.y; t/�1=2 . Since

R.y; t/6 6��2
0

, we get

dt .y; @ xU /> .2
p

6"0/
�1�0 > .e2

C e�2/�0 ;

hence B.x0; t; e
�2�0/� U .

If U is an ."0;C0/–cap, write it U DV \W where V is a core. Let  W Œ0; 1�! xB0 be
a minimising g.t0/–geodesic connecting y to x0 . If x0 … V , let s 2 Œ0; 1� be maximal
such that  .s/2 @V . Since  .s/2B0 , we have R. .s/; t/> 6��2

0
and we deduce that

d. .s/; @ xU /� .
p

6"0/
�1�0 . As dt . .s/;x0/6 e2�0 we get B.x0; t; e

�2�0/� U .

Comparing this to inequality (4) in Definition 4.6, we see that

volg.t/B.x0; t; e
�2�0/> C�1

0 .e�2�0/
3 :

By estimates on distortion of distances and volume as in the proof of Lemma 10.1, we
conclude that

volg.t0/B0 > C�1
0 e�18�3

0 :

Case 2 U is "0 –round.

Note that the method of Case 1 applies equally well if U is homeomorphic to S3

or RP3 , so we assume it is not the case.

The only thing we have to do is to prove that there are only finitely many possible
topologies for U . For simplicity of notation we assume .x0; t0/D .y; t/, ie the point
.x0; t0/ has an "0 –round canonical neighbourhood U , and jRm.x0; t0/j � 1000r�2 .

Lemma 10.6 There exists t 0
0
< t0 such that:

� U is unscathed on Œt 0
0
; t0�;

� for every t 2 Œt 0
0
; t0� .U;g.t// is "0 –round;

� letting �0
0

be defined at .x0; t
0
0
/ in the obvious way, we have 2r � �0

0
� r=2.

Proof Let t 00
0
< t0 be minimal such that U is unscathed and for every t 2 Œt 00

0
; t0�,

.U;g.t// is "0 –round and R � r�2 on .U;g.t//. We claim that Rmin D r�2 on

.U;g.t 00
0
//. Indeed by continuity R � r�2 on .U;g.t 00

0
//. Hence .x0; t

00
0
/ has a

canonical neighbourhood V . By continuity, .U;g.t 00
0
// is 2"0 –round, so V D U ;

since we have excluded S3 and RP3 , we deduce that V is in fact "0 –round. Since
"0 –roundness is an open property, it follows that if Rmin > r�2 on .U;g.t 00

0
// then t 00

0

is not minimal. This proves the claim.
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By "0 –roundness, R. � ; t 00
0
/ � r�2 on U and jRm. � ; t 00

0
/j � r�2=6. Therefore

we can find t 0
0
2 .t 00

0
; t0/ such that jRm. � ; t 0

0
/j � r�2 on U and jRmj � r�2 on

P .x0; t
0
0
; r;�r�2/ (comparing with the evolving round metric one can find t 0

0
close

to t 00
0
C

5
4
r2 ). It follows that the maximal radius �0

0
such that jRmj � �0

0
�2 on

P .x0; t
0
0
; �0

0
;��0

0
2
/DW P0 with P0 unscathed, is close to r .

Since �0
0
� r=2 we can argue as in Section 10.3 to get uniform noncollapsing at .x0; t

0
0
/

on the unit scale. As .U;g.t 0
0
// is "0 –homothetic to .U;g.t0// and �0

0
� 2r < 1, we

also have uniform noncollapsing at .x0; t0/ on the unit scale.

11 Generalisations and open questions

11.1 Consequences and generalisations

First we state a finiteness result which follows immediately from Theorem 5.5 and
Corollary 2.4.

Corollary 11.1 Let R0;Q; � be positive numbers. Then the class of prime 3–
manifolds admitting complete riemannian metrics of scalar curvature greater than R0 ,
sectional curvature bounded in absolute value by Q, and injectivity radius greater than
� is finite up to diffeomorphism.

Remark that the primeness hypothesis is necessary: otherwise, one could have, say, a
connected sum of arbitrarily many copies of the same manifold. The key point is that the
geometric bounds considered here do not imply any diameter bound (nor compactness
of the manifold for that matter). Hence Corollary 11.1 is not a purely geometric
finiteness theorem, but rather a mixed geometric-topological finiteness theorem.

Next we discuss an equivariant version of our main technical theorem.

Definition 11.2 Let .M. � /;g. � // be a surgical solution defined on some interval I .
Let � be a group endowed with an action on each M.t/ for t 2 I , which is constant
in between singular times. We say that .M. � /;g. � // is � –equivariant if for each t ,
the action of � on M.t/ is isometric, and for each singular time t , the union of all
2–spheres along which surgery is performed is � –invariant.

Theorem 11.3 Let M be an orientable 3–manifold. Let g0 be a complete riemann-
ian metric on M which has bounded geometry. Let � be a group acting properly
discontinuously on M by isometries for g0 . Then there exists a complete surgical
solution .M. � /;g. � // of bounded geometry defined on Œ0;C1/, with initial condition
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.M.0/;g.0// D .M;g0/, and such that there is for each t a properly discontinuous
action of � on M.t/ such that .M. � /;g. � // is � –equivariant, and such that if t is a
singular time and x a point belonging to some disappearing component, then .x; t/ has
an ."0;C0/–canonical neighbourhood. Furthermore, if the action of � on M is free,
then one can ensure that for each t , the action of � on M.t/ is also free.

Proof We repeat the proof of Theorem 5.6, paying attention to equivariance with
respect to the group � . By the Chen–Zhu uniqueness theorem [5], Ricci flow automat-
ically preserves the symmetries of the original metric, so the only thing to check is that
surgery can be done equivariantly. For this we can apply [8, Lemma 3.9]. Note that
the constant � appearing in that paper is a priori smaller than our "0 . However, it is
easy to check that if we replace "0 by some smaller positive number "0

0
in the proof of

Theorem 5.6 and subsequently the constants ˇ0 and C0 by the appropriate constants
ˇ0

0
and C 0

0
, then the proof goes through without changes.

For the addendum where it is assumed that the action of � is free, there is an additional
point to check: that surgery can be done so that the action of � on the post-surgery
manifold is still free. For simplicity, we are going to explain this in a riemannian
setting, ignoring the issue of strong necks, which is irrelevant here.

Let .X; zg/ be a 3–manifold with an isometric, free, properly discontinuous action of �
and fNig be a � –invariant, locally finite collection of pairwise disjoint ı–necks in X .
Let .Y;g/ be the quotient riemannian manifold X=� .

Suppose first that for each Ni and each nontrivial element  2� we have Ni\NiD∅.
Then the collection fNig projects to a locally finite collection of pairwise disjoint ı–
necks in Y . Hence we can do metric surgery on Y , obtaining a riemannian manifold
.YC;gC/. We then lift the construction, getting a riemannian manifold .XC; zgC/
which on the one hand is obtained from .X; zg/ by metric surgery on fNig, and on the
other hand inherits a free, properly discontinuous, isometric action of � .

Thus we are done unless there exists i and  such that Ni\Ni ¤∅. In this case, Ni

is invariant by  . Since  acts freely, it must act on Ni by an involution, so that Ni

projects to a cap C � Y diffeomorphic to a punctured RP3 . In this case, C contains,
say a 4ı–neck whose preimage in X contains two 4ı–necks interchanged by  . Thus,
up to replacing ı by 4ı , we can apply the construction of the first paragraph.

Corollary 11.4 Let M be a connected, orientable 3–manifold which carries a com-
plete metric g of uniformly positive scalar curvature. Assume that the riemannian
universal cover of .M;g/ has bounded geometry. Then M is a connected sum of
spherical manifolds and copies of S2 �S1 .
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Proof We apply Theorem 11.3 to the universal cover of .M;g/ endowed with the ac-
tion of � WD�1.M /. Let . �M . � /; zg. � // be a surgical solution satisfying the conclusion
of that theorem. By Corollary 2.4, this surgical solution must be extinct. Thus M is a
connected sum of metric quotients of the disappearing components of . �M . � /; zg. � //.
There remains to check that such quotients are themselves connected sums of spherical
manifolds and copies of S2 �S1 .

We use the fact that the disappearing components are covered by canonical neighbour-
hoods, and the action of � on them is isometric. Let X be such a component. Remark
that X is simply connected, since the van Kampen theorem implies that surgery along
2–spheres on a simply connected 3–manifold produces simply connected 3–manifolds.
If X is compact, then by Perelman’s Geometrisation Theorem, X is diffeomorphic to
the 3–sphere, and its quotients are spherical manifolds.

If X is noncompact, then it is diffeomorphic to S2 �R or R3 . In the former case, it
is an exercise in topology (cf [25]) to show that the quotient can only be S2 �R itself,
a punctured RP3 , S2 �S1 or a connected sum of two copies of RP3 .

In the latter case, we obviously need to use the geometry. As in [8, Section 3], we
consider the open subset T consisting of all points that are centres of "0 –necks. Since
X is diffeomorphic to R3 , T is an "0 –tube, and its complement C is the core of an
"0 –cap and diffeomorphic to the 3–ball. By definition, T is automatically invariant by
any isometry. Hence C is also invariant by any isometry. Thus by the Brouwer fixed
point theorem, X does not admit any nontrivial free isometric group action.

Here is a more precise theorem which may be useful for subsequent applications:

Theorem 11.5 There exist sequences rk ; ık ; �k > 0 such that for any complete nor-
malised riemannian 3–manifold .M0;g0/, there exists a surgical solution .M. � /;g. � //

defined on Œ0;C1/, satisfying the initial condition .M.0/;g.0// D .M0;g0/, and
such that for every nonnegative integer k , the restriction of .M. � /;g. � // to Œk; kC 1�

is an .rk ; ık ; �k/–surgical solution.

Moreover, if .M0;g0/ is endowed with a properly discontinuous isometric action of
some group � , then the surgical solution can be made � –equivariant. In addition, if
the action of � on M0 is free, then the action on each M.t/ can be chosen to be free.

This follows from iteration of Theorem 5.6. Indeed, assuming that the parameters
rk ; ık ; �k > 0 are known, we deduce from ‚k WD‚.rk ; ık/ a bound for the sectional
curvature Qk . From this and the �k –noncollapsing property, we deduce a lower bound
for volumes of balls of radius at most Q

�1=2

k
. This gives a lower bound �k for the

injectivity radius of every metric, in particular the metric g.kC 1/.

The addendum about equivariance follows as explained in the proof of Theorem 11.3.
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11.2 Open questions

The first question asks whether the hypotheses of Corollary 11.4 are necessary.

Question Let M be a connected, orientable 3–manifold which admits a complete
riemannian metric of uniformly positive scalar curvature. Is M a connected sum of
spherical manifolds and copies of S2 �S1 ?

Next we consider what happens when we relax the hypothesis on the scalar curvature
from uniform positivity to positivity. This class is significantly wider, eg it includes
S1 �R2 . One could even relax the condition further to nonnegativity.

Question (Problem 27 in [32]) Classify 3–manifolds admitting complete riemannian
metrics of positive (resp. nonnegative) scalar curvature up to diffeomorphism.
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