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Trees of cylinders and canonical splittings

VINCENT GUIRARDEL

GILBERT LEVITT

Let T be a tree with an action of a finitely generated group G . Given a suitable
equivalence relation on the set of edge stabilizers of T (such as commensurability,
coelementarity in a relatively hyperbolic group, or commutation in a commutative
transitive group), we define a tree of cylinders Tc . This tree only depends on the
deformation space of T ; in particular, it is invariant under automorphisms of G if T

is a JSJ splitting. We thus obtain Out.G/–invariant cyclic or abelian JSJ splittings.
Furthermore, Tc has very strong compatibility properties (two trees are compatible if
they have a common refinement).

20E08; 20F65, 20F67, 20E06

1 Introduction

In group theory, a JSJ splitting of a group G is a splitting of G (as a graph of groups)
in which one can read any splitting of G and which is maximal for this property; see
Sela [28], Rips and Sela [25], Dunwoody and Sageev [8], Fujiwara and Papasoglu [11],
Bowditch [1], and the authors’ papers [12; 15; 17]. One needs to place restrictions on
allowed edge groups, for instance one defines an abelian JSJ splitting by restricting
to splittings over abelian groups. One sometimes considers relative JSJ splittings, by
restricting to splittings in which certain subgroups are required to be elliptic.

In general, JSJ splittings are not unique, and there is a whole space of JSJ splittings
called the JSJ deformation space; see Forester [10] and the authors’ paper [17]. A
deformation space [9; 14] is the set of all splittings whose elliptic subgroups are
prescribed (one usually also adds constraints on edge groups). A typical example of a
deformation space is Culler and Vogtmann’s Outer Space [7]. Splittings in the same
deformation space are related by a finite sequence of simple moves [9; 14; 6].

JSJ deformation spaces being canonical, they are endowed with a natural action of
Out.G/. As they are contractible [5; 14], this usually gives homological information
about Out.G/ (see eg [7]).
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However, deformation spaces of splittings, including JSJ deformation spaces, may also
have some bad behaviour. For instance the action of Out.G/ may fail to be cocompact;
the deformation space may even fail to be finite dimensional.

Much more satisfying is the case when one has a canonical splitting rather than just
a canonical deformation space. Such a splitting is invariant under automorphisms;
in other words, it is a fixed point for the action of Out.G/ on the deformation space
containing it. A typical example is the virtually cyclic JSJ splitting of a one-ended
hyperbolic group G constructed by Bowditch [1] from the topology of the boundary
of G . Having such a splitting gives much more precise information about Out.G/ (see
Sela [28] and the second author’s paper [20]).

The goal of this paper is to introduce a general construction producing a canonical
splitting (called the tree of cylinders) from a deformation space D . Rather than splittings
(or graphs of groups), we think in terms of trees equipped with an action of G . We
always assume that G is finitely generated.

The construction starts with a class E of allowed edge stabilizers, endowed with an
admissible equivalence relation (see Definition 3.1). The main examples are commen-
surability, coelementarity and commutation (see Examples A, B and C below, and
Sections 3.1 to 3.7). All trees are assumed to have edge stabilizers in E .

Given a tree T 2D , the equivalence relation on edge stabilizers partitions edges of T

into cylinders. An essential feature of an admissible relation is that cylinders are
connected (they are subtrees of T ). By definition, the tree of cylinders of T is the
tree Tc dual to the covering of T by its cylinders (see Definition 4.3).

Theorem 1 The tree of cylinders Tc depends only on the deformation space D
containing T .

Moreover, the assignment T 7! Tc is functorial: any equivariant map T ! T 0 induces
a natural cellular map Tc! Tc

0 (mapping an edge to an edge or a vertex).

We often say that Tc is the tree of cylinders of the deformation space. It is Out.G/–
invariant if D is.

Examples Consider the graph of groups pictured on the left of Figure 1 (edge groups
are infinite cyclic and attached to the boundary of punctured tori). Its fundamental
group G is hyperbolic, and the splitting depicted is a cyclic JSJ splitting. Its tree of
cylinders is the splitting pictured on the right. It belongs to the same deformation space,
but it is Out.G/–invariant; in particular, it has a symmetry of order 3 (it is the splitting
constructed by Bowditch [1]).
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Figure 1: A JSJ splitting of a hyperbolic group and its tree of cylinders
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Figure 2: A JSJ splitting of a toral relatively hyperbolic group and its tree of cylinders

Now consider the graph of groups �1 pictured on the left of Figure 2. Its fundamental
group G is a torsion-free toral relatively hyperbolic group. The splitting depicted is
again a cyclic JSJ splitting, but no splitting in its deformation space D is Out.G/–
invariant (there exist elements t in the Z2 vertex group of the splitting �2 pictured
on the right such that twisting by t around an edge of �2 defines an automorphism
having no fixed point in D ). The tree of cylinders of D , which is Out.G/–invariant, is
the Bass–Serre tree of �2 . It does not belong to the same deformation space, because
of the vertex with group Z2 .

A basic property of Tc is that it is dominated by T : every subgroup which is elliptic
(ie fixes a point) in T is elliptic in Tc . But, as in the case of Culler and Vogtmann’s
Outer Space, it may happen that Tc is trivial. For the construction to be useful, one has
to be able to control how far Tc is from T , the best situation being when Tc and T

belong to the same deformation space (ie Tc dominates T ). One must also control
edge stabilizers of Tc , as they may fail to be in E .

Here are the main examples where this control is possible.

Example A G is a hyperbolic group, E is the family of two-ended subgroups of G

and � is the commensurability relation.

More generally, G is hyperbolic relative to parabolic subgroups H1; : : : ;Hn , the
class E consists of the infinite elementary subgroups, and � is the coelementarity
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relation (A�G is elementary if A is virtually cyclic or is contained in a conjugate of
some Hi , and A�B if and only if hA;Bi is elementary); one only considers trees in
which each Hi is elliptic.

Example B G is torsion-free and CSA (centralizers of nontrivial elements are abelian
and malnormal; for instance, the group considered in Figure 2 is CSA), E is the class
of nontrivial abelian subgroups and � is the commutation relation (A� B if and only
if hA;Bi is abelian).

Example C G is torsion-free and commutative transitive (centralizers of nontrivial
elements are abelian), E is the set of infinite cyclic subgroups of G and � is the
commensurability relation.

Theorem 2 Let G and E be as in Example A (resp. B). Let T be a tree with edge sta-
bilizers in E , and assume that parabolic subgroups (resp. noncyclic abelian subgroups)
are elliptic in T . Then

(1) Tc has edge stabilizers in E ;

(2) Tc belongs to the same deformation space as T ;

(3) Tc is almost 2–acylindrical.

A tree is k –acylindrical [27] if any segment I of length > k has trivial stabilizer. If
G has torsion, we use the notion of almost acylindricity: the stabilizer of I is finite.

In general, edge stabilizers of Tc may fail to be in E . In this case, we also consider
the collapsed tree of cylinders Tc

� , obtained from Tc by collapsing all edges whose
stabilizer is not in E .

Theorem 3 Let G and E be as in Example C. Let T be a tree with infinite cyclic
edge stabilizers, such that solvable Baumslag–Solitar subgroups of G are elliptic in T .

Then Tc
� , Tc and T lie in the same deformation space, and Tc

� is 2–acylindrical.

Parabolic, abelian or Baumslag–Solitar subgroups as they appear in the hypotheses
of Theorems 2 and 3 are always elliptic in Tc . If one does not assume that they are
elliptic in T , they are the only way in which the deformation spaces of T and Tc

�

differ (see Section 6 for precise statements).

In general, the deformation space of Tc
� may be characterized by the following maxi-

mality property: Tc
� dominates any tree T 0 such that T dominates T 0 and cylinders
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of T 0 are bounded (Proposition 5.12). In many situations, one may replace boundedness
of cylinders by acylindricity in the previous maximality statement (see Section 6).

Our results of Section 6 may then be interpreted as describing which subgroups must
be made elliptic in order to make T acylindrical. This is used in [18] to construct
(under suitable hypotheses) JSJ splittings of finitely generated groups, using acylindrical
accessibility.

Theorems 2 and 3 produce a canonical element in the deformation space of T . In
particular, this provides canonical Out.G/–invariant JSJ splittings.

Theorem 4 Let G be hyperbolic relative to H1; : : : ;Hn . Assume that G is one-
ended relative to H1; : : : ;Hn . There is an elementary (resp. virtually cyclic) JSJ tree
relative to H1; : : : ;Hn which is invariant under the subgroup of Out.G/ preserving
the conjugacy classes of the Hi ’s.

The group G is one-ended relative to H1; : : : ;Hn if there is no nontrivial tree with
finite edge stabilizers in which each Hi is elliptic.

When G is a one-ended hyperbolic group, Theorem 4 yields the tree constructed by
Bowditch [1].

Theorem 5 Let G be a one-ended torsion-free CSA group. There exists an abelian
(resp. cyclic) JSJ tree of G relative to all noncyclic abelian subgroups, which is Out.G/–
invariant.

In particular, one gets canonical cyclic and abelian JSJ splittings of toral relatively
hyperbolic groups, including limit groups. See Bowditch [1], Bumagin, Kharlampovich
and Miasnikov [2], Paulin [24] Scott and Swarup [26] and Papasoglu and Swenson [23]
for other constructions of canonical JSJ splittings. As evidenced by the example on
Figure 2, Theorems 4 and 5 do not hold for nonrelative JSJ splittings.

Scott and Swarup have constructed in [26] a canonical splitting over virtually polycyclic
groups. We show in [16] that their splitting coincides (up to subdivision) with the
tree of cylinders of the JSJ deformation space (with � being commensurability; see
Section 3.2).

In a forthcoming paper [19], we will use trees of cylinders to study some automorphism
groups. In particular, we will use Theorem 4 to characterize relatively hyperbolic
groups with infinite outer automorphism group (see also Carette [3] for the case of
hyperbolic groups) and we will show that the splitting of Theorem 4 has the largest
modular group.
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Another important feature of the tree of cylinders is compatibility. A tree T is a
refinement of T 0 if T 0 can be obtained from T by equivariantly collapsing a set of
edges. Two trees are compatible if they have a common refinement. Refinement is
a notion much more rigid than domination: any two trees in Culler and Vogtmann’s
Outer Space dominate each other, but they are compatible if and only if they lie in a
common simplex.

Theorem 6 Let G be finitely presented and one-ended. Assume that E and � are as
in Examples A, B or C.

If T is a JSJ tree over subgroups of E , then Tc is compatible with every tree with edge
stabilizers in E (in which parabolic subgroups are elliptic in Example A).

More general situations are investigated in Section 8. We show in [18] that under
the hypotheses of Theorem 6 the tree Tc

� is maximal (for domination) among trees
which are compatible with every other tree. In other words, Tc

� belongs to the same
deformation space as the JSJ compatibility tree defined in [18].

The paper is organized as follows. After preliminaries, we define admissible equivalence
relations and give examples (Section 3). In Section 4 we define the tree of cylinders.
Besides the geometric definition sketched earlier, we give an algebraic one using elliptic
subgroups and we show Theorem 1 (Corollary 4.10 and Proposition 4.11). In Section 5
we give basic properties of Tc . In particular, we show that most small subgroups of G

which are not virtually cyclic are elliptic in Tc . We also study boundedness of cylinders
and acylindricity of Tc

� , we show .Tc
�/c
�D Tc

� , and we prove the maximality property
of Tc

� . Section 6 gives a description of the tree of cylinders in the main examples
and proves Theorems 2 and 3 (they follow from Propositions 6.1, 6.3, 6.5). Section 7
recalls some material about JSJ splittings and proves the existence of canonical JSJ
splittings as in Theorems 4 and 5. In Section 8 we study compatibility properties of
the tree of cylinders and we prove Theorem 6 (it follows from Assertions (1) and (3)
of Corollary 8.4 and Assertion (2) of Theorem 8.6).

2 Preliminaries

In this paper, G will be a fixed finitely generated group.

Two subgroups A and B are commensurable if A \B has finite index in both A

and B . We denote by Ag the conjugate g�1Ag . The normalizer N.A/ of A is the
set of g such that Ag DA. Its commensurator Comm.A/ is the set of g such that g

commensurates A (ie Ag is commensurable to A). The subgroup A is malnormal if
Ag \A¤ f1g implies g 2A.
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If � is a graph, we denote by V .�/ its set of vertices and by E.�/ its set of nonoriented
edges.

A tree always means a simplicial tree T on which G acts without inversions. Given a
family E of subgroups of G , an E –tree is a tree whose edge stabilizers belong to E .
We denote by Gv or Ge the stabilizer of a vertex v or an edge e .

A tree T is nontrivial if there is no global fixed point, minimal if there is no proper
G –invariant subtree. An element or a subgroup of G is elliptic in T if it has a global
fixed point. An element which is not elliptic is hyperbolic. It has an axis on which it
acts as a translation.

A subgroup A consisting only of elliptic elements fixes a point if it is finitely generated,
a point or an end in general. If a finitely generated subgroup A is not elliptic, there is
a unique minimal A–invariant subtree.

A group A is slender if A and all its subgroups are finitely generated. A slender group
acting on a tree fixes a point or leaves a line invariant (setwise); see Dunwoody and
Sageev [8].

A subgroup A is small if it has no nonabelian free subgroups. As in [18], we could
replace smallness by the following weaker property: whenever G acts on a tree, A

fixes a point, or an end, or leaves a line invariant.

A tree T dominates a tree T 0 if there is an equivariant map f W T ! T 0 . Equivalently,
any subgroup which is elliptic in T is also elliptic in T 0 . Having the same elliptic
subgroups is an equivalence relation on the set of trees, the equivalence classes are
called deformation spaces [9; 14].

An equivariant map f W T ! T 0 between trees preserves alignment if x 2 Œa; b� H)

f .x/ 2 Œf .a/; f .b/�. Equivalently, f is a collapse map: it is obtained by collapsing
certain edges to points. In particular, f does not fold.

We say that T is a refinement of T 0 if there is a collapse map f W T ! T 0 . Two trees
T and T 0 are compatible if they have a common refinement.

3 Admissible relations

Let E be a class of subgroups of G , stable under conjugation. It should not be stable
under taking subgroups (all trees of cylinders are trivial if it is), but it usually is
sandwich-closed: if A�H � B with A;B 2 E , then H 2 E . Similarly, E is usually
invariant under Aut.G/.
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Definition 3.1 An equivalence relation � on E is admissible if the following axioms
hold for any A;B 2 E :

(1) If A� B , and g 2G , then Ag � Bg .

(2) If A� B , then A� B .

(3) Let T be an E –tree. If A � B , and A, B fix a; b 2 T respectively, then for
each edge e � Œa; b� one has Ge �A� B .

More generally, one can require (3) to hold only for certain E –trees. In particular,
given subgroups Hi , we say that � is admissible relative to the Hi ’s if (3) holds for
all E –trees T in which each Hi is elliptic.

Note that, given a subfamily E 0 � E , stable under conjugation, the restriction of �
to E 0 is admissible.

When proving that a relation is admissible, the only nontrivial part usually is axiom (3).
The following criterion will be useful:

Lemma 3.2 If � satisfies (1), (2) and axiom (3’) below, then it is admissible.

(3’) Let T be an E –tree. If A� B , and A;B are elliptic in T , then hA;Bi is also
elliptic in T .

Proof We show axiom (3). Let c be a vertex fixed by hA;Bi. Since Œa; b� �
Œa; c�[ Œc; b�, one may assume e � Œa; c�. One has A�Ge because A fixes Œa; c�, so
that Ge �A by axiom (2).

The lemma applies in a relative setting, with (3’) restricted to trees in which each Hi

is elliptic.

Given an admissible relation � on E , we shall associate a tree of cylinders Tc to any
E –tree T . If � is only admissible relative to subgroups Hi , we require that each Hi

be elliptic in T .

Here are the main examples to which this will apply.

3.1 Two-ended subgroups

Let E be the set of two-ended subgroups of G (a group H is two-ended if and only
if some finite index subgroup of H is infinite cyclic). Commensurability, defined
by A� B if A\B has finite index in both A and B , is an admissible equivalence
relation.

Geometry & Topology, Volume 15 (2011)
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Axiom (1) is clear. If A;B are two-ended subgroups with A� B , then A has finite
index in B , so (2) holds. If A;B 2 E are commensurable and fix points a; b 2 T ,
then A \ B fixes Œa; b�. If e � Œa; b�, then A \ B � Ge (with finite index), and
Ge �A\B �A.

Commensurability is admissible also on the set of infinite cyclic subgroups.

3.2 Commensurability

This class of examples generalizes the previous one. We used it in [16].

Let E be a conjugacy-invariant family of subgroups of G such that

� any subgroup A commensurable with some B 2 E lies in E ;
� if A;B 2 E are such that A� B , then ŒB WA� <1.

As in the previous example, one easily checks that commensurability is an admissible
equivalence relation on E .

For instance, E may consist of all subgroups of G which are virtually Zn for some
fixed n, or all subgroups which are virtually polycyclic of Hirsch length exactly n.
The classes of edge groups ZK considered by Dunwoody and Sageev in [8] also fit
into this example.

3.3 Coelementarity (splittings relative to parabolic groups)

Let G be hyperbolic relative to finitely generated subgroups H1; : : : ;Hn . Recall that
a subgroup of G is parabolic if it is contained in a conjugate of an Hi , elementary if it
is finite, or two-ended, or parabolic. If every Hi is slender (resp. small), the elementary
subgroups are the same as the slender (resp. small) subgroups.

We need the following standard fact (see for instance [22, Lemma 2.5, Theorem 4.3]).

Lemma 3.3 Any infinite elementary subgroup H is contained in a unique maximal
one, E.H /. This subgroup is two-ended or conjugate to an Hi .

Let E be the class of infinite elementary subgroups of G . Let � be the coelementarity
relation, defined by saying that A;B 2 E are coelementary if and only if hA;Bi is
elementary.

Lemma 3.4 Coelementarity is an equivalence relation on E .

Proof We have to prove transitivity. If hA;Bi and hB;C i are elementary, since B is
infinite, E.hA;Bi/DE.hBi/DE.hB;C i/, so hA;B;C i�E.hBi/ is elementary.
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Coelementarity is admissible relative to the Hi ’s. Indeed, let us show axiom (3’),
assuming that each Hi is elliptic in T . The group hA;Bi is elementary. It is clearly
elliptic if it is parabolic. If it is two-ended, then it contains A with finite index, so is
elliptic in T because A is elliptic.

3.4 Coelementarity (arbitrary splittings)

We again assume G is hyperbolic relative to finitely generated subgroups H1; : : : ;Hn ,
and E is the family of infinite elementary subgroups. If we want to define a tree of
cylinders for any E –tree T , without assuming that the Hi ’s are elliptic in T , we need
� to be admissible (not just relative to the Hi ’s).

Lemma 3.5 Suppose that each Hi is finitely-ended (ie Hi is finite, virtually cyclic,
or one-ended). Then coelementarity is admissible on E .

Note that Hi is finitely-ended if it is small (does not contain F2 ).

Proof We show axiom (3), with T any E –tree (Hi is not required to be elliptic). Let
H DE.hA;Bi/ be the maximal elementary subgroup containing both A and B (see
Lemma 3.3). It is two-ended or conjugate to an infinite Hi .

If H fixes a point c 2 T , we argue as in the proof of Lemma 3.2. If H is two-ended,
it contains A with finite index and therefore fixes a point in T . Thus, we can assume
that H is one-ended and does not fix a point in T . As H is finitely generated, there is
a minimal H –invariant subtree TH � T .

The segment Œa; b� is contained in Œa; a0�[ Œa0; b0�[ Œb0; b� where a0 (resp. b0 ) is the
projection of a (resp. b ) on TH . If e � Œa; a0�, one has A � Ge since A fixes
Œa; a0�, so that A � Ge . The same argument applies if e � Œb; b0�. Finally, assume
e � Œa0; b0�� TH . Since H is one-ended, the subgroup of H stabilizing e is infinite,
so is in E . Thus Ge � .Ge \H /�H �A. Axiom (3) follows.

3.5 Commutation

Recall that G is commutative transitive if the commutation relation is a transitive
relation on G n f1g (ie nontrivial elements have abelian centralizers). For example,
torsion-free groups which are hyperbolic relative to abelian subgroups are commutative
transitive.

Let G be a commutative transitive group, and let E be the class of its nontrivial abelian
subgroups.
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Lemma 3.6 The commutation relation, defined by A � B if hA;Bi is abelian, is
admissible.

Proof It is an equivalence relation because of commutative transitivity. Axioms (1)
and (2) are clear. We show axiom (3’) (see Lemma 3.2). If hA;Bi does not fix a point
in T , the fixed point sets of A and B are disjoint, and hA;Bi contains a hyperbolic
element g . Being abelian, hA;Bi then acts by translations on a line (the axis of g ).
But since A and B are elliptic, hA;Bi fixes this line pointwise, a contradiction.

We will also consider a more restricted situation. Note that, in a commutative transitive
group, any nontrivial abelian subgroup is contained in a unique maximal abelian
subgroup, namely its centralizer.

Definition 3.7 G is CSA if it is commutative transitive, and its maximal abelian
subgroups are malnormal.

Since CSA is a closed property in the space of marked groups, � –limit groups for �
torsion-free hyperbolic are CSA (see Sela [29]); also see Champetier [4] for wilder
examples.

3.6 Finite groups

Let q � 1 be an integer. Let E be the family of all subgroups of G of cardinality q . It
is easily checked that equality is an admissible equivalence relation on E . This example
will be used in [19].

3.7 The equivalence relation of a deformation space

Lemma 3.8 Let E be any conjugacy-invariant family of subgroups of G . The equiva-
lence relation generated by inclusion is admissible relative to E .

Proof We have to show axiom (3) holds, under the additional hypothesis that all groups
of E are elliptic in T . Since A�B , we can find subgroups A0DA;A1; : : : ;AnDB

in E where Ai ;AiC1 are nested (one contains the other). Let u0 D a;u1; : : : ;un D b

be points of T fixed by A0; : : : ;An respectively. Let i be such that e� Œui ;uiC1�, and
assume for instance that Ai�AiC1 . Then Ai fixes e , so Ai�Ge and Ge�Ai�A.

In particular, let D be a deformation space (or a restricted deformation space in the
sense of Definition 3.12 of [14]). The relation generated by inclusion is admissible on
the family E consisting of generalized edge groups of reduced trees in D (see Section 4
of [14]).
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4 The basic construction

Let � be an admissible equivalence relation on E . We now associate a tree of cylin-
ders Tc to any E –tree T . If � is only admissible relative to subgroups Hi , we require
that each Hi be elliptic in T .

4.1 Cylinders

Definition 4.1 Let T be an E –tree (with each Hi elliptic in T in the relative case).

Define an equivalence relation �T on the set of (nonoriented) edges of T by: e �T e0

if and only if Ge � Ge0 . A cylinder of T is an equivalence class Y . We identify Y

with the union of its edges, a subforest of T .

A key feature of cylinders is their connectedness:

Lemma 4.2 Every cylinder is a subtree.

Proof Assume that Ge � Ge0 . By axiom (3), any edge e00 contained in the arc
joining e to e0 satisfies Ge � Ge0 � Ge00 , thus belongs to the same cylinder as e

and e0 .

Two distinct cylinders meet in at most one point. One can then define the tree of
cylinders of T as the tree Tc dual to the covering of T by its cylinders, as in [13,
Definition 4.8]:

Definition 4.3 The tree of cylinders of T is the bipartite tree Tc with vertex set
V .Tc/D V0.Tc/tV1.Tc/ defined as follows:

(1) V0.Tc/ is the set of vertices x of T belonging to (at least) two distinct cylinders.

(2) V1.Tc/ is the set of cylinders Y of T .

(3) There is an edge "D .x;Y / between x 2 V0.Tc/ and Y 2 V1.Tc/ if and only
if x (viewed as a vertex of T ) belongs to Y (viewed as a subtree of T ).

Alternatively, one can define the boundary @Y of a cylinder Y as the set of vertices
of Y belonging to another cylinder, and obtain Tc from T by replacing each cylinder
by the cone on its boundary.

It is easy to see that Tc is indeed a tree [13]. Here are a few other simple observations.

If E 0 � E , and T is an E 0–tree, its tree of cylinders as an E 0–tree (with respect to the
restricted admissible relation) is the same as Tc .
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The group G acts on Tc without inversions. It follows from [13, Lemma 4.9] that Tc

is minimal if T is minimal. But Tc may be a point, for instance if all edge stabilizers
of T are trivial.

Any vertex stabilizer Gv of T fixes a point in Tc : the vertex v of V0.Tc/ if v belongs
to two cylinders, the vertex Y of V1.Tc/ if Y is the only cylinder containing v . In
other words, T dominates Tc .

A vertex x 2 V0.Tc/ may be viewed either as a vertex of T or as a vertex of Tc ; its
stabilizer in Tc is the same as in T . The stabilizer of a vertex in V1.Tc/ is the (global)
stabilizer GY of a cylinder Y � T ; it may fail to be elliptic in T (for instance if Tc

is a point and T is not), so Tc does not always dominate T . This will be studied in
Sections 5 and 6.

Let us now consider edge stabilizers. We note:

Remark 4.4 Edge stabilizers of Tc are elliptic in T , and they always contain a group
in E : if "D .x;Y / and e is an edge of Y incident on x , then G" �Ge .

However, edge stabilizers of Tc are not necessarily in E . For this reason, it is convenient
to introduce the collapsed tree of cylinders:

Definition 4.5 Given an E –tree T , the collapsed tree of cylinders Tc
� is the E –tree

obtained from Tc by collapsing all edges whose stabilizer is not in E .

4.2 Algebraic interpretation

We give a more algebraic definition of Tc , by viewing it as a subtree of a bipartite
graph Z defined algebraically using only information on E , �, and elliptic subgroups
of T . This will make it clear that Tc only depends on the deformation space of T

(Corollary 4.10). We motivate the definition of Z by a few observations.

If Y � T is a cylinder, all its edges have equivalent stabilizers, and we can associate
to Y an equivalence class C 2 E=�. We record the following for future reference.

Remark 4.6 Given an edge "D .x;Y / of Tc , let e be an edge of Y adjacent to x

in T . Then Ge is a representative of the class C and is contained in G" DGx \GY .
If G" belongs to E , then it is in C by axiom (2) of admissible relations. In particular,
if all edge stabilizers of Tc are in E , then .Tc/c D Tc . Also note that GY represents C
if GY 2 E .
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Depending on the context, it may be convenient to think of a cylinder either as a set
of edges of T , or a subtree Y of T , or a vertex of Tc , or an equivalence class C .
Similarly, there are several ways to think of x 2 V0.Tc/: as a vertex of T , a vertex
of Tc , or an elliptic subgroup Gx .

If x is a vertex of T belonging to two cylinders, then its stabilizer Gx is not contained
in a group of E : otherwise all edges of T incident to x would have equivalent stabilizers
by axiom (2), and x would belong to only one cylinder.

More generally, let v be any vertex of T whose stabilizer is not contained in a group
of E . Then Gv fixes v only, and is a maximal elliptic subgroup. Conversely, let H be
a subgroup which is elliptic in T , is not contained in a group of E , and is maximal for
these properties. Then H fixes a unique vertex v and equals Gv .

Definition 4.7 Given an E –tree T , let Z be the bipartite graph with vertex set
V .Z/D V0.Z/tV1.Z/ defined as follows:

(1) V0.Z/ is the set of subgroups H which are elliptic in T , not contained in a
group of E , and maximal for these properties.

(2) V1.Z/ is the set of equivalence classes C 2 E=�.

(3) There is an edge " between H 2V0.Z/ and C 2V1.Z/ if and only if H contains
a group of C .

As previously observed, V0.Z/ may be viewed as the set of vertices of T whose
stabilizer is not contained in a group of E .

It also follows from the previous observations that there is a natural embedding of
bipartite graphs j W Tc ! Z : for v 2 V0.Tc/, we define j .v/ D Gv 2 V0.Z/; for
Y 2 V1.Tc/, with associated equivalence class C , we define j .Y /D C 2 V1.Z/. Note
that j is well defined on E.Tc/ since adjacent vertices of Tc have adjacent images
in Z by Remark 4.6.

A vertex H 2 V0.Z/ is a stabilizer Gv for a unique v 2 T . It is in j .Tc/ if and only
if v belongs to two cylinders. A vertex C 2 V1.Z/ is in j .Tc/ if and only if some
representative of C fixes an edge of T .

Proposition 4.8 Assume that the action of G on T is minimal and nontrivial, and that
Tc is not a point. Then j .Tc/ is the set of edges and vertices of Z which are contained
in the central edge of a segment of length 5 of Z .

Proof The action of G on Tc is minimal (see above) and nontrivial, so any edge
of Tc and of j .Tc/ is the central edge of a segment of length 5. The converse is an
immediate consequence of items (1), (3), (4) of the following lemma.
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Lemma 4.9 (1) A vertex v 2 V1.Z/ belongs to j .Tc/ if and only if v has valence
at least 2 in Z .

(2) If x 2 T and Gx 2 V0.Z/ is adjacent to j .Y / 2 j .Tc/, then x 2 Y .
(3) An element of V0.Z/ belongs to j .Tc/ if and only if it has at least 2 neighbours

in j .Tc/.
(4) An edge of Z lies in j .E.Tc// if and only if its endpoints are in j .V .Tc//.

Proof In statements (1), (3) and (4), the direct implications are clear.

(1) Consider C 2 V1.Z/ of valence at least 2. It has representatives A � Gx and
B � Gx0 with x;x0 distinct points of T . By axiom (3) of admissible relations, all
edges in Œx;x0� have stabilizer in C . This shows C 2 j .V1.Tc//.

(2) Consider Gx 2 V0.Z/ adjacent to C D j .Y / 2 V1.Z/ for some cylinder Y of T .
Then C has a representative A � Gx . Let e be an edge of Y , so that A � Ge . By
axiom (3), the cylinder Y contains the arc joining e to x , so x 2 Y .

(3) If Gx 2 V0.Z/ is adjacent to j .Y / and j .Y 0/, then x 2 Y \Y 0 by statement (2),
so x 2 V0.Tc/, and Gx 2 j .V0.Tc//.

(4) Let j .x/ and j .Y / be vertices of j .Tc/ joined by an edge of Z . Then x 2 Y by
statement (2), so x and Y are joined by an edge in Tc .

Corollary 4.10 If T;T 0 are minimal nontrivial E –trees belonging to the same de-
formation space, there is a canonical equivariant isomorphism between their trees of
cylinders.

Proof The key observation is that the graph Z is defined purely in terms of the elliptic
subgroups, which are the same for T and T 0 . The corollary is trivial if Tc ;Tc

0 are
both points. If Tc is not a point, then V1.Z/ contains infinitely many vertices of
valence � 2. As shown above (statement (1) of Lemma 4.9), this implies that Tc

0 is
not a point, and the result follows directly from Proposition 4.8.

4.3 Functoriality

There are at least two other ways of proving that Tc only depends on the deformation
space of T . One is based on the fact that any two trees in the same deformation space
are connected by a finite sequence of elementary expansions and collapses [9]. One
checks that these moves do not change Tc .

Another approach is to study the effect of an equivariant map f W T ! T 0 on the trees
of cylinders. We always assume that f maps a vertex to a vertex, and an edge to a
point or an edge path. If T 0 is minimal, any f is surjective. We say that f is cellular
if it maps an edge to an edge or a vertex.
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Proposition 4.11 Let T;T 0 be minimal E –trees, and f W T ! T 0 an equivariant map.
Let Tc ;Tc

0 be the trees of cylinders of T and T 0 . Then f induces a cellular equivariant
map fc W Tc! Tc

0 . This map does not depend on f , and is functorial in the sense that
.f ıg/c D fc ıgc .

Corollary 4.10 easily follows from this proposition. The proposition may be proved by
considering the bipartite graph Z , but we give a geometric argument.

Proof We may assume that Tc
0 is not a point.

Lemma 4.12 Consider an equivariant map f W T ! T 0 . For each cylinder Y � T ,
the image f .Y / is either a cylinder Y 0 of T 0 or a point p0 2 T 0 .

Proof If an edge e0 of T 0 is contained in the image of an edge e � Y , then Ge0

contains Ge , hence is equivalent to Ge by axiom (2). This shows that f .Y /, if not a
point, is contained in a unique cylinder Y 0 . Conversely, if e0 is an edge of Y 0 , then any
edge e such that e0 � f .e/ satisfies Ge �Ge0 hence is in Y . Thus Y 0 D f .Y /.

We say that a cylinder Y is collapsed if f .Y / is a point p0 2 T 0 . We claim that
such a p0 belongs to two distinct cylinders of T 0 , so represents an element of V0.Tc

0/.
Consider the union of all collapsed cylinders, and the component containing Y . It
is not the whole of T , so by minimality of T it has at least two boundary points.
These points belong to distinct noncollapsed cylinders whose images are the required
cylinders containing p0 .

Also note that, if x 2 T belongs to two cylinders, so does f .x/. This is clear if x

belongs to no collapsed cylinder, and follows from the previous fact if it does.

This allows us to define fc on vertices of Tc , by sending x 2V0.Tc/ to f .x/2V0.Tc
0/,

and Y 2 V1.Tc/ to Y 0 2 V1.Tc
0/ or p0 2 V0.Tc

0/. If .x;Y / is an edge of Tc , then
fc.x/ and fc.Y / are equal or adjacent in Tc

0 .

We may describe fc without referring to f , as follows. The image of x 2 V0.Tc/ is
the unique point of T 0 fixed by Gx . The image of Y is the unique cylinder whose edge
stabilizers are equivalent to those of Y , or the unique point of T 0 fixed by stabilizers
of edges of Y . Functoriality is easy to check.

Remark 4.13 Note that, if two edges .x1;Y1/ and .x2;Y2/ of Tc are mapped by fc

onto the same edge of Tc
0 , then Y1 D Y2 . In particular, if the restriction of f to each

cylinder is either constant or injective, then fc preserves alignment.
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5 General properties

5.1 The deformation space of Tc

We fix E and an admissible relation �. We have seen that T always dominates Tc :
any vertex stabilizer of T fixes a point in Tc . Conversely, Tc has two types of vertex
stabilizers. If v 2 V0.Tc/, then its stabilizer is a vertex stabilizer of T , and Gv … E
(see Section 4.2). On the other hand, the stabilizer GY of a vertex Y 2 V1.Tc/ may
fail to be elliptic in T . This means that Tc is not necessarily in the same deformation
space as T .

There are various ways to think of GY . It consists of those g 2 G that map the
cylinder Y to itself. If e is any edge in Y , then GY is the set of g 2 G such that
gGeg�1 �Ge . If C is the equivalence class associated to Y , then GY is the stabilizer
of C for the action of G by conjugation on E=�.

In Sections 3.1 and 3.2, the group GY is the commensurator of Ge , for any e � Y .
In Sections 3.3 and 3.4, it is the maximal elementary subgroup containing Ge . In
Section 3.5, it is the normalizer of the maximal abelian subgroup A containing Ge (it
equals A if G is CSA). In Section 3.6, it is the normalizer of Ge .

We first note:

Lemma 5.1 If T is minimal, then GY acts on Y with finitely many orbits of edges.

Proof By minimality, there are finitely many G–orbits of edges in T . If two edges
of Y are in the same orbit under some g 2G , then g preserves Y , so they are in the
same orbit under GY .

Proposition 5.2 Given T , the following statements are equivalent:

(1) Tc belongs to the same deformation space as T .

(2) Every stabilizer GY is elliptic in T .

(3) Every cylinder Y � T is bounded.

(4) No cylinder contains the axis of a hyperbolic element of G .

Proof We have seen (1),(2). If Y is bounded, then GY fixes a point of T (the
“center” of Y ). If GY fixes a point, then Y is bounded by Lemma 5.1. This shows
(2),(3).

The implication (3))(4) is clear. For the converse, assume that Y is an unbounded
cylinder. We know that GY does not fix a point. If all its elements are elliptic, then
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GY fixes an end of Y . Any ray going out to that end maps injectively to Y=GY ,
contradicting Lemma 5.1. Thus GY contains a hyperbolic element g . Being g–
invariant, Y contains the axis of g .

Proposition 5.3 Assume that any two groups of E whose intersection is infinite are
equivalent. Let H be a subgroup of G which is not virtually cyclic and is not an infinite,
locally finite, torsion group.

If H is small, or commensurates an infinite small subgroup H0 , then H fixes a point
in Tc .

The hypothesis on E is satisfied in Sections 3.1 to 3.6, with the exception of 3.2.
Conversely, we will see in Section 6 that, in many examples, groups which are elliptic
in Tc but not in T are small.

Besides small groups, the proposition applies to groups H which act on locally finite
trees with small infinite stabilizers, for instance generalized Baumslag–Solitar groups.
It also applies to groups with a small infinite normal subgroup, such as fundamental
groups of Seifert fibered spaces.

Proof The result is clear if H fixes a point of T . If not, we show that H preserves a
subtree Y0 contained in a cylinder. This cylinder will be H –invariant.

First suppose that H is small. If H preserves a line `, then Ge \H is the same for
all edges in that line. If Ge \H is infinite, then ` is contained in a cylinder and one
can take Y0D `. If Ge\H is finite, then H is virtually cyclic, which is ruled out. By
smallness, the only remaining possibility is that H fixes a unique end of T .

If Ge \H is infinite for some edge e , we let � be the ray joining e to the fixed end.
The assumption on E implies that � is contained in a cylinder Y0 . This cylinder is
H –invariant since h�\ � is a ray for any h 2H .

If all groups Ge \H are finite, there are two cases. If H contains a hyperbolic
element h, the action of H on its minimal subtree TH is an ascending HNN extension
with finite edge groups. It follows that TH is a line and H is virtually cyclic. If every
element of H is elliptic, consider any finitely generated subgroup H0 �H . It fixes
both an end and a point, so it fixes an edge. We conclude that H0 is finite, so H is
locally finite. This is ruled out.

Now suppose that H commensurates a small subgroup H0 . If H0 preserves a
unique line or fixes a unique end, the same is true for H and we argue as before.
If H0 fixes a point x 2 T , let Y0 be the convex hull of the orbit H : x . Any seg-
ment I � Y0 is contained in a segment Œhx; h0x� with h; h0 2 H , and its stabilizer
contains hH0h�1 \ h0H0h0�1 which is commensurable to H0 hence infinite. The
assumption on E implies that Y0 is contained in a cylinder.
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Remark 5.4 Assume that there exists C such that any two groups of E whose
intersection has order > C are equivalent. The same proof shows that locally finite
subgroups are elliptic in Tc .

5.2 The collapsed tree of cylinders Tc
�

Recall that the collapsed tree of cylinders Tc
� is the tree obtained from Tc by collapsing

all edges whose stabilizer is not in E (Definition 4.5).

Proposition 5.5 Cylinders of Tc
� have diameter at most 2.

Proof This follows from Remark 4.6: if in E , the stabilizer of an edge .x;Y / of Tc

belongs to the equivalence class C associated to Y .

We say that E is sandwich-closed if A�H � B with A;B 2 E implies H 2 E . All
families considered in Sections 3.1 through 3.6 have this property.

Sandwich-closedness has the following consequence. If " is an edge of Tc such that
G" is contained in a group of E , then G" 2 E . This follows from Remark 4.4, which
asserts that G" contains a group of E .

Lemma 5.6 Assume that E is sandwich-closed. Given an equivariant map f W T !T 0 ,
the cellular map fc W Tc!Tc

0 of Proposition 4.11 induces a cellular map fc
�W Tc

�!Tc
0� .

Proof If " is an edge of Tc which is collapsed in Tc
� , its image by fc is a point or

an edge "0 with G" �G"0 . The group G" is not in E , but by Remark 4.4 it contains an
element of E . Sandwich-closedness implies G"0 … E , so "0 is collapsed in Tc

0� . This
shows that the natural map Tc! Tc

0� factors through Tc
� .

A subtree X � T of diameter exactly 2 has a center v 2 V .T /, and all its edges
contain v . We say that X is complete if it contains all edges around v , incomplete
otherwise.

Proposition 5.7 Assume that E is sandwich-closed. Let T be a minimal E –tree.

(1) Every cylinder of Tc
� has diameter exactly 2. No stabilizer of an incomplete

cylinder of Tc
� lies in E .

(2) Conversely, assume that all cylinders of T have diameter exactly 2, and GY … E
for all incomplete cylinders Y � T . Then Tc

� D T .
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Proof It follows from Proposition 5.5 that any cylinder Z of Tc
� has diameter at

most 2, and is obtained from the ball of radius one around some Y 2 V1.Tc/ by
collapsing all edges with stabilizer outside E . It is incomplete if and only if at least
one edge is collapsed. Note that the cylinders Y � T and Z � Tc

� have the same
stabilizer GY DGZ .

We show that Z has diameter exactly 2. Otherwise Z consists of a single edge. The
corresponding edge "D .v;Y / of Tc is the unique edge incident on Y with G" 2 E , so
G"DGY (otherwise, one would obtain other edges by applying elements of GY nG" ).
By minimality of Tc , there exist other edges "0 incident on Y . They satisfy G"0 … E ,
and G"0 �GY 2 E contradicts sandwich-closedness.

If Z is an incomplete cylinder of Tc
� , at least one edge " of Tc incident on Y is

collapsed in Tc
� , so G" … E . As above, sandwich-closedness implies GY … E . This

proves (1).

To prove (2), we shall define an isomorphism gW Tc
�!T . We denote by vY the center

of a cylinder Y of T . Let f W Tc ! T be the map sending Y 2 V1.Tc/ to vY 2 T ,
sending v 2 V0.Tc/ to v 2 T , and mapping the edge "D .v;Y / to Œv; vY �. Note that
Œv; vY � is an edge if v ¤ vY , and is reduced to a point otherwise.

We first prove that an edge " of Tc is collapsed by f (ie vD vY ) if and only if G" … E .
If G" … E , sandwich-closedness implies that " is collapsed, since T is an E –tree.
Conversely, if " D .v;Y / is collapsed, then vY D v 2 V0.T /, so vY lies in several
cylinders of T . This implies that Y is incomplete, so GY … E . Since GY is contained
in GvY

DGv , one has G" DGY … E .

It follows that f factors through a map gW Tc
�! T which maps edge to edge (without

collapse). By minimality, g is onto. There remains to prove that g does not fold. If
two edges of Tc

� have the same image, they belong to the same cylinder. But g is
injective on each cylinder since .v;Y / is mapped to Œv; vY �.

Corollary 5.8 Let E be sandwich-closed. For any minimal E –tree T , one has
.Tc
�/c
� D Tc

� .

Proposition 5.9 Assume that GY fixes a point of T whenever there is an edge
"D .x;Y / of Tc whose stabilizer is not in E . Then Tc and Tc

� belong to the same
deformation space. Moreover, given Y , at most one edge "D .x;Y / of Tc is collapsed
in Tc

� ; it satisfies G" DGY .

Proof Let " D .x;Y / be an edge of Tc such that G" … E . It suffices to prove that
G" DGY and that G"0 2 E for every edge "0 D .x0;Y / with x0 ¤ x .
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By assumption, GY fixes a point in T , hence a point v 2 Y . If x ¤ v , let e be the
initial edge of the segment Œx; v�. Then G"DGx\GY �Gx\Gv �Ge . On the other
hand, Ge fixes x and leaves Y invariant, so Ge � G" . We conclude G" D Ge 2 E ,
a contradiction. Thus x D v , and " D .x;Y / is the only edge incident to Y with
stabilizer not in E . Moreover, since GY fixes x , we have G" DGY \Gx DGY .

Corollary 5.10 If Tc is in the same deformation space as T , then so is Tc
� , and

therefore .Tc
�/c D Tc by Corollary 4.10.

Remark 5.11 Suppose that E is sandwich-closed and that, for any A2E , any subgroup
containing A with index 2 lies in E . Then the hypothesis of Proposition 5.9 is always
satisfied when GY is small. To see this, we suppose that GY is not elliptic in T and
we show G" 2 E . If GY fixes an end of T , its subgroup G" , being elliptic, fixes an
edge. Since G" contains a group in E , sandwich-closedness implies G" 2 E . If GY

acts dihedrally on a line, some subgroup of G" of index at most 2 fixes an edge, so
G" 2 E .

Recall that cylinders of Tc
� have diameter at most 2. We show that Tc

� is maximal for
this property.

Proposition 5.12 Assume that E is sandwich-closed. If T 0 is any E –tree dominated
by T , and cylinders of T 0 are bounded, then T 0 is dominated by Tc

� .

Proof By Proposition 5.2 and Corollary 5.10, the tree Tc
0� belongs to the same

deformation space as T 0 . Lemma 5.6 shows that Tc
� dominates Tc

0� , hence T 0 .

5.3 Acylindricity

We now consider acylindricity in the sense of Sela. Recall [27] that a tree is k –
acylindrical if the stabilizer of any segment of length > k is trivial. It is acylindrical
if it is k –acylindrical for some k . To handle groups with torsion, we say that T is
almost k –acylindrical if the stabilizer of any segment of length > k is finite.

Proposition 5.13 Assume that any two groups of E whose intersection is infinite are
equivalent. Let T be any E –tree.

(1) The tree Tc
� is almost 2–acylindrical.

(2) If cylinders of T are bounded (resp. of diameter � k ), then T is almost acylin-
drical (resp. almost k –acylindrical).
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Recall that the hypothesis on E is satisfied in Sections 3.1 to 3.6, with the exception of
3.2. The next section will provide examples where the converse to Assertion (2) holds.

Proof The first statement follows from the second one and Proposition 5.5.

Since there are only finitely many orbits of cylinders, consider k such that cylinders
have diameter at most k . Any segment I of length kC 1 contains edges in distinct
cylinders. By the assumption on E , the stabilizer of I is finite.

We also note:

Lemma 5.14 Let H be small, not virtually cyclic, not locally finite. Then H is
elliptic in any almost acylindrical tree T .

Proof The hypotheses on H are the same as in Proposition 5.3, and the proof is
similar. If H is not elliptic in a tree T , it acts on a line with infinite edge stabilizers,
or it fixes a unique end and some edge stabilizer is infinite. Both are impossible if T

is almost acylindrical.

6 Examples

We now study specific examples. In most cases, we show that Tc
� is equal to Tc (or at

least in the same deformation space), and we describe how far the deformation space
of Tc is from that of T .

Recall that T always dominates Tc . They are in the same deformation space if and
only if, for every cylinder Y , the group GY is elliptic in T . Note that, if all groups
in E are infinite, any virtually cyclic GY is elliptic in T because by Remark 4.4 it
contains some Ge (with finite index).

We also show that Tc
� , which is almost 2–acylindrical by Proposition 5.13, is maximal

for this property: it dominates any almost acylindrical tree which is dominated by T .
This is because, in the examples, groups which are elliptic in Tc

� but not in T are
small, and Lemma 5.14 applies. Describing the deformation space of Tc

� may thus
be interpreted as finding which subgroups must be made elliptic in order to make T

almost acylindrical. One may ask in general whether a maximal almost acylindrical
tree dominated by a given T always exists.
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6.1 Relatively hyperbolic groups

Proposition 6.1 Let G be hyperbolic relative to H1; : : : ;Hn . Let � be coelementar-
ity, as in Section 3.3. Let T be a tree with infinite elementary edge stabilizers, such
that each Hi is elliptic in T .

(1) Edge stabilizers of Tc are infinite elementary, so Tc
� D Tc .

(2) Tc belongs to the same deformation space as T . In particular, it has the same
nonelementary vertex stabilizers as T .

(3) Tc is almost 2–acylindrical (and dominates any almost acylindrical tree which
is dominated by T ).

Proof Let "D .x;Y / be an edge of Tc . Here GY is the maximal elementary subgroup
containing Ge , for any edge e of Y . This shows that G" is elementary. It is infinite
because it contains an element of E (Remark 4.4).

To prove (2), we must show that every GY is elliptic in T . If parabolic, GY is elliptic
by assumption. If virtually cyclic, it is elliptic by a remark made above (it contains
some Ge with finite index). Assertion (2) follows (its second half is a general fact [14,
Corollary 4.4]).

Assertion (3) now follows from Proposition 5.13 (the parenthesized statement is trivial
in this case).

If we do not assume that Hi is elliptic in T , we get:

Proposition 6.2 Let G be hyperbolic relative to finitely generated one-ended sub-
groups H1; : : : ;Hn . Let � be coelementarity, as in Section 3.4. Let T be a tree with
infinite elementary edge stabilizers.

(1) Edge stabilizers of Tc are infinite elementary, so Tc
� D Tc .

(2) T and Tc have the same nonelementary vertex stabilizers. A subgroup is elliptic
in Tc if and only if it is elliptic in T , or parabolic. In particular, Tc is in the
same deformation space as T if and only if every parabolic subgroup is elliptic
in T .

(3) Tc is almost 2–acylindrical. If the Hi ’s are small, then Tc dominates any almost
acylindrical tree T 0 which is dominated by T .

Proof It is still true that every GY is a maximal elementary subgroup (so (1) holds),
but a parabolic GY may now fail to be elliptic in T . As pointed out at the beginning
of the section, every virtually cyclic GY is elliptic in T .
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If Gv is a nonelementary vertex stabilizer of T , then v belongs to two cylinders
(otherwise Gv would be contained in some GY ), so Gv is a vertex stabilizer of Tc .
The converse is clear since a nonelementary vertex stabilizer of Tc fixes a vertex of
V0.Tc/, so is a vertex stabilizer of T .

To prove (2), there remains to show that each Hi is elliptic in Tc . If it is not elliptic
in T , there is an edge e with Ge \Hi infinite (recall that Hi is one-ended). In
particular, Ge �Hi . The associated equivalence class C is invariant under conjugation
by elements of Hi , so Hi preserves the cylinder containing e hence is elliptic in Tc .

Acylindricity again follows from Proposition 5.13. The second part of (3) holds provided
every Hi is elliptic in T 0 , in particular if Hi is small by Lemma 5.14.

6.2 Abelian splittings of CSA groups

Proposition 6.3 Let G be a torsion-free CSA group. Let E (nontrivial abelian groups)
and � (commutation) be as in Section 3.5. Let T be an E –tree.

(1) Edge stabilizers of Tc are nontrivial and abelian, so Tc
� D Tc .

(2) T and Tc have the same nonabelian vertex stabilizers. A subgroup is elliptic in
Tc if and only if it is elliptic in T or is a noncyclic abelian group. In particular,
Tc is in the same deformation space as T if and only if every noncyclic abelian
subgroup of G is elliptic in T .

(3) Tc is 2–acylindrical and dominates any acylindrical E –tree T 0 which is domi-
nated by T .

Proof If Y 2 V1.Tc/ is a cylinder, its stabilizer GY is the set of g 2 G such that
gGeg�1 commutes with Ge , for e any edge of Y . By the CSA property, GY is
the maximal abelian subgroup containing Ge (if g 2GY , then gGeg�1 and Ge are
contained in the same maximal abelian subgroup A, and g 2 A by malnormality).
Conversely, a noncyclic abelian subgroup acts on T with nontrivial edge stabilizers
and therefore leaves some cylinder invariant. As in the previous proof, nonabelian
vertex stabilizers are the same for T and Tc .

Assertions (1) and (2) follow from these observations. The vertex stabilizers of Tc are
the nonabelian vertex stabilizers of T , the noncyclic maximal abelian subgroups, and
possibly cyclic subgroups which are elliptic in T .

The tree Tc is 2–acylindrical by Proposition 5.13. A group H which is elliptic in Tc

but not in T is abelian and noncyclic, hence elliptic in T 0 by Lemma 5.14. Assertion (3)
follows.

We also note the following result, which gives a converse to the second assertion of
Proposition 5.13:
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Proposition 6.4 Let G , E and T be as in Proposition 6.3. The following are equiva-
lent:

(1) Every noncyclic abelian subgroup is elliptic.

(2) Cylinders of T are bounded (equivalently, Tc is in the same deformation space
as T ).

(3) T is acylindrical.

(4) No nontrivial element of G fixes a line.

Proof We have just seen (1),(2). Proposition 5.13 gives (2))(3), and obvi-
ously (3))(4). To prove (4))(2), suppose that Y is an unbounded cylinder. By
Proposition 5.2, it contains the axis of a hyperbolic element g . Let e be an edge
contained in that axis, and A the maximal abelian subgroup containing Ge . Since
gGeg�1 commutes with Ge , the CSA property implies g 2A. Thus Ge fixes the axis,
contradicting (4).

6.3 Cyclic splittings of commutative transitive groups

The relation � now is commensurability, as in Section 3.1, so GY is the commensurator
of Ge if e is an edge of a cylinder Y .

For s¤ 0, denote by BS.1; s/ the solvable Baumslag–Solitar group ha; t j tat�1D asi.
It is commutative transitive if and only if s ¤�1. Note that BS.1; 1/D Z2 .

Proposition 6.5 Let G be torsion-free and commutative transitive. Let E be the class
of infinite cyclic subgroups of G , and let � be commensurability as in Section 3.1. Let
T be an E –tree.

(1) Tc
� and Tc are in the same deformation space.

(2) Every noncyclic vertex stabilizer of T is a vertex stabilizer of Tc and Tc
� , and

every other noncyclic vertex stabilizer of Tc
� is isomorphic to some BS.1; s/.

Every subgroup isomorphic to BS.1; s/ is elliptic in Tc and Tc
� . In particular,

Tc and Tc
� belong to the same deformation space as T if and only if every

subgroup of G isomorphic to a BS.1; s/ is elliptic in T .

(3) Tc
� is 2–acylindrical and dominates any acylindrical E –tree which is dominated

by T .

Proof We note the following algebraic facts, whose proof is left to the reader. Let
Z �H be an infinite cyclic subgroup of a commutative transitive torsion-free group,
and let A be the centralizer of Z . Then Z � A � Comm.Z/ � N.A/. If A D Z ,
then Z is malnormal.
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Consider a cylinder Y � T , and a vertex v 2 Y . All edge stabilizers Ge , for e � Y ,
are commensurable, hence have the same centralizer A by commutative transitivity.
By the previous remark, one has A � GY � N.A/ since GY is the commensurator
of Ge .

Lemma 6.6 Assume that Gv \ GY is noncyclic. Then GY fixes v , and only v .
Moreover,

(1) if Y is the only cylinder containing v , then GY DGv and no edge of Tc incident
to the vertex Y 2 V1.Tc/ gets collapsed in Tc

� ;

(2) if v belongs to two cylinders, the edge "D .v;Y / of Tc is collapsed in Tc
� (the

vertex Y “disappears” in Tc
� ).

Proof We first show that Gv \ A is noncyclic. Assume that Gv \ A is cyclic,
necessarily infinite since it contains Ge for e an edge of Y adjacent to v . By the
initial note above, Gv \A is malnormal in Gv , so Gv \GY D Gv \A is cyclic, a
contradiction.

Since Gv \A is noncyclic, v is its unique fixed point. It is also the unique fixed point
of A (which centralizes Gv \A), and of GY �N.A/.

The “moreover” is clear: the only collapsible edge of Tc incident to Y is .v;Y /, which
exists if and only if v belongs to two cylinders.

By Proposition 5.9, the lemma implies that Tc and Tc
� belong to the same deformation

space. Moreover, any vertex stabilizer H of Tc
� which is not a vertex stabilizer of T

equals GY for some cylinder Y such that Gv \GY is cyclic for every vertex v 2 Y .
The group GY acts on Y with all edge and vertex stabilizers infinite cyclic. Since
it is commutative transitive, it is easy to see that GY must be isomorphic to Z or a
BS.1; s/ (otherwise GY contains F2 �Z or ha; b j am D bni with m; n � 2; such
groups are not commutative transitive). Conversely, any BS.1; s/ is elliptic in Tc by
Proposition 5.3.

To prove Assertion (2), there remains to show that any noncyclic vertex stabilizer Gv

of T is a vertex stabilizer of Tc and Tc
� . This is clear if v belongs to two cylinders.

If it belongs to a unique cylinder Y , the lemma tells us that Gv D GY is a vertex
stabilizer of Tc and of Tc

� .

Assertion (3) now follows from Proposition 5.13 and Lemma 5.14.

6.4 Commensurability

In our last examples � is again commensurability, but we do not make assumptions
on G , so our results are less precise.
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Proposition 6.7 Let E be the set of two-ended subgroups of G , and � be commensu-
rability, as in Section 3.1. Given an E –tree T , the following are equivalent:

(1) Cylinders of T are bounded (equivalently, Tc is in the same deformation space
as T ).

(2) The commensurator of each edge stabilizer is elliptic in T .

(3) T is almost acylindrical.

(4) No element of infinite order fixes a ray.

Proof (1),(2) is clear because GY D Comm.Ge/ if e � Y . (1))(3) follows from
Proposition 5.13 and (3))(4) is clear.

To prove (4))(1), assume that some cylinder is unbounded. By Proposition 5.2, it
contains the axis Ag of a hyperbolic element g . Let e0 be an edge of Ag , let ei D

gi.e0/, and Hi DGei
. If Hi �Hi˙1 for some i , then Hi fixes a ray, contradicting (4).

If not, we can find h0 2H0 and h2 2H2 not fixing e1 , and hD h0h2 is hyperbolic.
As H0 and H2 are commensurable, there is a finite index subgroup H � H0 \H2

which is normal in both H0 and H2 . Since h normalizes H , the fixed point set of H

contains the axis of h, and (4) does not hold.

Corollary 6.8 For any E –tree T , the tree Tc
� is almost 2–acylindrical and dominates

any almost acylindrical E –tree which is dominated by T .

Proof This follows from Proposition 5.12 and Proposition 5.13.

In Section 3.2, we get:

Proposition 6.9 Let � be the commensurability relation, with E as in Section 3.2.
Let T be an E –tree.

(1) Tc belongs to the same deformation space as T if and only if there exists k such
that any segment I of length > k contains an edge e with the index ŒGe WGI �

infinite.

(2) Assume that edge stabilizers of T are finitely generated. Then Tc belongs to the
same deformation space as T if and only if no group commensurable to an edge
stabilizer fixes a ray.

In particular, Tc belongs to the same deformation space as T when every group in E
is infinite and T is almost acylindrical. But without further hypotheses on E we cannot
claim that Tc

� is almost acylindrical.
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Proof (1) follows from the fact that a segment I is contained in a cylinder if and
only if ŒGe WGI � is finite for every e � I . The proof of (2) is fairly similar to that of
Proposition 6.7, and left to the reader. Finite generation of edge stabilizers is used to
construct the normal subgroup of finite index H .

7 JSJ splittings

7.1 Generalities

We review basic facts about JSJ splittings and JSJ deformation spaces. See our pa-
pers [15; 17] for details.

In order to define JSJ splittings, one needs a family of edge groups which is closed
under taking subgroups. Since E does not always have this property, we introduce the
following substitute.

Definition 7.1 The family E is substable if, whenever G splits over a group A

contained in a group B 2 E , then A 2 E .

Remark 7.2 When we work relative to a family of subgroups (like in Section 3.3),
the splitting of G in the definition should be relative to this family.

Example 7.3 In Sections 3.1, 3.4, 3.5 (with G torsion-free), E is substable if and
only if G is one-ended. In Section 3.2, E is substable if and only if G does not split
over a group having infinite index in a group of E . In Section 3.3, we restrict to relative
splittings, and E is substable if and only if G is one-ended relative to the Hi ’s (ie
there is no nontrivial tree with finite edge stabilizers in which every Hi is elliptic).

We fix E and �, with E substable. All trees are assumed to be E –trees. Strictly
speaking, we consider xE –trees, where xE consists of all groups contained in a group
of E . But substability guarantees that every xE –tree is an E –tree.

A subgroup H � G is universally elliptic if it is elliptic in every tree. A tree is
universally elliptic if all its edge stabilizers are.

A tree is a JSJ tree over E if it is universally elliptic, and maximal for this property: it
dominates every universally elliptic tree. When xE consists of all groups with a given
property (eg abelian, slender, elementary), we use the words abelian JSJ, slender JSJ,
elementary JSJ. . . .

JSJ trees always exist when G is finitely presented, and sometimes when G is only
finitely generated (in particular in the situations studied below). They belong to the
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same deformation space, called the JSJ deformation space over E . If TJ is a JSJ tree,
and T 0 is any tree, there is a tree yT which refines TJ and dominates T 0 .

All these definitions and facts extend to the relative case: given a collection of subgroups,
one only considers trees in which these subgroups are elliptic.

7.2 QH–vertices

A vertex stabilizer of a JSJ tree is flexible if it is not universally elliptic, and does not
belong to xE . A key fact of JSJ theory is that flexible vertex stabilizers often have a
very special form.

Definition 7.4 A vertex stabilizer Gv is a QH–subgroup (and v is a QH–vertex)
if there is an exact sequence 1 ! F ! Gv

�
! † ! 1, where † D �1.S/ is the

fundamental group of a hyperbolic 2–orbifold with boundary. Moreover, each incident
edge stabilizer is conjugate to a subgroup of a boundary subgroup B �Gv , defined as
the preimage under � of �1.C /, with C a component of @S .

In Section 8.3 we will need a description of flexible vertex stabilizers in the following
cases (see [18, Sections 11 and 13] for proofs). Assume that G is one-ended.

� G is torsion-free and CSA. A flexible vertex stabilizer Gv of an abelian JSJ
tree is a QH–subgroup, with S a surface and F trivial: Gv is isomorphic to
†D �1.S/, where S is a compact surface.

� G is hyperbolic relative to slender subgroups. A flexible vertex stabilizer Gv of
a slender JSJ tree is a QH–subgroup, with F finite.

In both cases, every incident edge stabilizer is conjugate to a finite index subgroup of a
boundary subgroup. Boundary subgroups are two-ended, and maximal among small
subgroups of Gv . Every boundary subgroup contains an incident edge stabilizer.

7.3 Canonical JSJ splittings

We now use trees of cylinders to make JSJ splittings canonical (ie we get trees which
are invariant under automorphisms). See [18] for a proof that JSJ splittings exist under
the stated hypotheses, and a discussion of their flexible vertices.

Theorem 7.5 Let G be hyperbolic relative to H1; : : : ;Hn . Assume that G is one-
ended relative to H1; : : : ;Hn . There is an elementary (resp. virtually cyclic) JSJ tree
relative to H1; : : : ;Hn which is invariant under the subgroup of Out.G/ preserving
the conjugacy classes of the Hi ’s.
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Remark 7.6 When Hi is not slender, this allows nonslender splittings. Still, one can
describe flexible subgroups of this JSJ tree as QH–subgroups [18, Section 13].

Proof First consider the case where E is the family of infinite elementary subgroups,
as in Section 3.3. It is substable because G is one-ended relative to the Hi ’s (see
Example 7.3). Let T be an elementary JSJ tree relative to the Hi ’s, and Tc its tree of
cylinders for coelementarity.

By Proposition 6.1, the tree Tc has elementary edge stabilizers and lies in the JSJ
deformation space. It is universally elliptic as its edge stabilizers are either parabolic, or
are virtually cyclic and contain an edge stabilizer of T with finite index (Remark 4.4). It
is invariant under the subgroup of Out.G/ preserving the conjugacy classes of the Hi ’s
because the JSJ deformation space is. The theorem follows.

Now turn to the case where E is the class of infinite virtually cyclic subgroups, still
substable because of one-endedness. We start with a virtually cyclic JSJ tree (relative
to the Hi ’s), we let Tc be its tree of cylinders (for coelementarity, restricted to E ,
not commensurability), and we consider Tc

� obtained by collapsing edges of Tc

whose stabilizer is not virtually cyclic. By Proposition 5.9 and Proposition 6.1, the
trees Tc

� , Tc and T lie in the same deformation space. Moreover, Tc
� is universally

elliptic because its edge stabilizers contain an edge stabilizer of T with finite index
(Remark 4.4). It follows that Tc

� is a canonical JSJ splitting.

A similar argument, using Proposition 6.3, shows:

Theorem 7.7 Let G be a one-ended torsion-free CSA group. There exists an abelian
(resp. cyclic) JSJ tree of G relative to all noncyclic abelian subgroups, which is Out.G/–
invariant.

8 Compatibility

Recall that two trees T and T 0 are compatible if they have a common refinement.
The goal of this section is to show that Tc is compatible with many splittings. In
particular, we show that trees of cylinders of JSJ deformation spaces often are universally
compatible, that is compatible with every E –tree.

This is proved under two different types of hypotheses: in Section 8.2 we assume that
� preserves universal ellipticity (this is true in particular when � is commensurability),
and in Section 8.3 we work in the setting of CSA groups and relative hyperbolic groups.
Theorem 6 follows from Corollary 8.4 and Theorem 8.6
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8.1 A general compatibility statement

We first prove a general compatibility statement, independent of JSJ theory.

Proposition 8.1 Let T;T 0 be minimal E –trees. If T dominates T 0 , then Tc is
compatible with T 0 and Tc

0 .

Proof We have to construct a common refinement yT of Tc and T 0 (compatibility
of Tc with Tc

0 will follow, by the proposition, since T dominates Tc
0 ). Choose a map

f W T ! T 0 as in Section 4.3. For each p 2 V .Tc/, denote by Yp the following subset
of T : the point p if p 2 V0.Tc/, the cylinder defining p if p 2 V1.Tc/. Consider
Zp D f .Yp/� T 0 . By Lemma 4.12, it is either a point or a cylinder of T 0 . Note that
a given edge of T 0 is contained in exactly one Zp .

We obtain yT from Tc by “blowing up” each vertex p to the subtree Zp . Formally, we
define yT as the tree obtained from T1 D

F
p2V .Tc/ Zp as follows: for each edge pq

of Tc , with YpDfxg and Yq a cylinder containing x , add an edge to T1 , the endpoints
being attached to the two copies of f .x/ in Zp and Zq respectively.

The tree Tc can be recovered from yT by collapsing each Zp to a point. We show
that yT is also a refinement of T 0 . Let gW yT ! T 0 be the map defined as being induced
by the identity on T1 , and being constant on each added edge. It preserves alignment
because a given edge of T 0 is contained in exactly one Zp , and g is injective on
each Zp . One therefore recovers T 0 from yT by collapsing the added edges.

8.2 Universal compatibility when � preserves universal ellipticity

As before, we fix E and �, with E substable. All trees are assumed to be E –trees. In
this subsection, we assume that � preserves universal ellipticity in the following sense.

Definition 8.2 The relation � preserves universal ellipticity if, given A;B 2 E with
A� B , the group A is universally elliptic if and only if B is.

For instance, commensurability always preserves universal ellipticity. In the case of
a relatively hyperbolic group G , coelementarity preserves universal ellipticity if one
restricts to trees in which each Hi is elliptic (Section 3.3). Similarly, in Section 3.5,
one has to restrict to trees in which noncyclic abelian subgroups are elliptic (the next
subsection will provide nonrelative results).

Proposition 8.3 Assume that E is substable and � preserves universal ellipticity. If
TJ is a JSJ tree over E , its tree of cylinders is compatible with any E –tree.
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Using Example 7.3, we immediately deduce:

Corollary 8.4 Let G be finitely presented.

(1) Let E be the class of two-ended subgroups as in Section 3.1. If G is one-ended,
the tree of cylinders of the JSJ deformation space over E is compatible with any
tree with two-ended edge stabilizers.

(2) More generally, let E and � be as in Section 3.2. If G does not split over a
subgroup having infinite index in a group of E , the tree of cylinders of the JSJ
deformation space over E is compatible with any E –tree.

(3) Let G be hyperbolic relative to finitely generated subgroups Hi as in Section 3.3,
and assume that G is one-ended relative to the Hi ’s. Then the tree of cylinders
of the elementary JSJ deformation space relative to the Hi ’s is compatible with
any E –tree in which each Hi is elliptic.

Remark 8.5 Finite presentability of G is required only to know that the JSJ deforma-
tion space exists.

Proof of Proposition 8.3 Let T be an E –tree, and let yT be a refinement of TJ which
dominates T (see Section 7.1). Let X be the tree obtained from yT by collapsing
all the edges whose stabilizer is not �–equivalent to an edge stabilizer of TJ . The
collapse map from yT to TJ factors through the collapse map pW yT !X . In particular,
X dominates TJ .

Since TJ is universally elliptic, and � preserves universal ellipticity, X is universally
elliptic. By maximality of the JSJ deformation space, X lies in the JSJ deformation
space. In particular, X and TJ have the same tree of cylinders Xc . We have to show
that Xc is compatible with T .

Let yTc be the tree of cylinders of yT , which is compatible with T by Proposition 8.1
since yT dominates T . Because of the way X was defined, the restriction of pW yT !X

to any cylinder is either constant or injective. By Remark 4.13, pc W
yTc ! Xc is a

collapse map, so Xc is compatible with T .

8.3 Universal compatibility when � does not preserve universal ellipticity

Theorem 8.6 Let G be one-ended.

(1) Suppose G is hyperbolic relative to slender subgroups H1; : : : ;Hn . The tree
of cylinders of the slender JSJ deformation space is compatible with every tree
whose edge stabilizers are slender.
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(2) Suppose G is torsion free and CSA. The tree of cylinders of the abelian JSJ
deformation space is compatible with every tree whose edge stabilizers are
abelian.

The tree of cylinders is defined with E as in Sections 3.4 and 3.5: it consists of all
infinite slender (resp. abelian) subgroups, and � is coelementarity (=co-slenderness) or
commutation (note that each Hi is finitely-ended, so E is admissible by Lemma 3.5).
The family E is substable because G is one-ended, but � does not preserve universal
ellipticity.

Proof Let TJ be a JSJ tree, and Tc its tree of cylinders. If x 2 V0.Tc/, we know
that Gx … E (see Section 4.2). On the other hand GY 2 E if Y 2 V1.Tc/, and edge
stabilizers of Tc belong to E (see Section 6.1 and Section 6.2).

We now show that Tc is universally elliptic. Let "D .x;Y / be an edge. Let e � Y be
an edge of TJ adjacent to x . We have Ge �G" �Gx . If Gx is universally elliptic,
so is G" . Otherwise, Gx is flexible. It is associated to a 2–orbifold S as described in
Section 7, and Ge has finite index in a boundary subgroup B . Since B is the unique
maximal small subgroup of Gx containing Ge , it also contains G" . Thus Ge has finite
index in G" , and G" is universally elliptic because Ge is.

Given any E –tree T , we now construct a common refinement yT of Tc and T by
blowing up Tc as in the proof of Proposition 8.1. There are several steps.

Step 1 We first define a Gp –invariant subtree Zp � T , for p a vertex of Tc .

If p 2 V0.Tc/, the group Gp is not in E . Consider its action on T . It fixes a unique
point, or it is a flexible vertex group of TJ and has a minimal invariant subtree in T

(because it is finitely generated). We define Zp as that point or subtree.

If p 2 V1.Tc/, then Gp belongs to E . The cylinder of TJ defining p corresponds
to an equivalence class C 2 E=� (which contains Gp ) as in Section 4.2. If this class
corresponds to a cylinder of T (ie if there is an edge of T with stabilizer equivalent
to Gp ), we define Zp as that cylinder. If not, we now show that Gp fixes a point of T ;
this point is necessarily unique (otherwise, there would be a cylinder), and we take it
as Zp .

Recall that Gp is in E , hence is abelian or slender. If it does not fix a point in T ,
it fixes an end or preserves a line. Furthermore, it contains a subgroup Ge , for e an
edge of TJ . This subgroup is elliptic in T because TJ is universally elliptic. Being
contained in Gp , the group Ge fixes an end or preserves a line in T , so some subgroup
of index at most 2 of Ge fixes an edge of T . The stabilizer of this edge is equivalent
to Ge , hence to Gp . It yields a cylinder associated to C , a contradiction.
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Step 2 We now explain how to attach edges of Tc to T1D
F

p2V .Tc/ Zp . Let "Dpq

be an edge, with p 2V0.Tc/ and q 2V1.Tc/. We show that G" fixes a unique point x"

in Zp , and this point x" belongs to Zq ; we then attach the endpoints of " to the copies
of x" in Zp and Zq .

Note that G" is elliptic in T (because Tc is universally elliptic), and preserves Zp

and Zq . If Zp is not a point, then Gp is flexible, so is an extension F!Gp!†. As
explained above, G" is contained in a boundary subgroup B0 �Gp with finite index.

We consider the action of Gp on its minimal subtree Zp � T . Every boundary
subgroup B �Gp contains some Ge with finite index (with e an edge of TJ ), hence
acts elliptically. Being normal and finite, the group F acts as the identity, so there
is an induced action of † on Zp . For that action, boundary subgroups of † are
elliptic, and edge stabilizers are finite or two-ended because they are slender (resp.
abelian). This implies that B0 , hence also G" , fixes a unique point x" of Zp (see [21,
Theorem III.2.6] for the case of surface groups; the extension to an orbifold group is
straightforward, as it contains a surface group with finite index).

We now show x" 2Zq . If not, G" fixes the initial edge e of the segment joining x" to
its projection onto Zq . The stabilizer of e is equivalent to Gq because Ge �G" �Gq ,
and Zq was defined as the cylinder containing e , so it contains x" .

Step 3 We can now construct yT by gluing edges of Tc to T1 as in the proof of
Proposition 8.1. It refines Tc , and there is a natural map gW yT ! T which is constant
on all the edges corresponding to the edges of Tc , and which is isometric in restriction
to each Zp . To show that it is a collapse map, it suffices to see that Zp and Zp0

(viewed as subtrees of T ) cannot have an edge e in common if p;p0 are distinct
vertices of Tc .

We assume they do, and we reach a contradiction. Let ep �
yT be the copy of e in Zp .

Then Gep
� Ge . One has Gep

2 E because E is substable, and Axiom (2) implies
Ge �Gep

. Similarly, Ge �Ge0
p

. This also shows that yT is an E –tree.

Note that p and p0 cannot both belong to V1.Tc/, as Zp and Zp0 then are points or
distinct cylinders of T . We may therefore assume p 2V0.Tc/. Let " be the initial edge
of the segment Œp;p0�� Tc . By connectedness of cylinders, the segment joining ep

to ep0 is contained in a cylinder of yT . Since this segment contains the edge of yT
corresponding to ", we have G" � Gep

. Thus hG";Gep
i is a small subgroup of Gp ,

and therefore is contained with finite index in a boundary subgroup B . By [21], Gep

fixes a unique point of Zp , contradicting the fact that Gep
fixes ep .
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