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A Milnor–Wood inequality
for complex hyperbolic lattices in quaternionic space

OSCAR GARCÍA-PRADA

DOMINGO TOLEDO

We prove a Milnor–Wood inequality for representations of the fundamental group of
a compact complex hyperbolic manifold in the group of isometries of quaternionic
hyperbolic space. Of special interest is the case of equality, and its application to rigid-
ity. We show that equality can only be achieved for totally geodesic representations,
thereby establishing a global rigidity theorem for totally geodesic representations.

22E40; 53C26

1 Introduction

The purpose of this paper is to prove a Milnor–Wood inequality for representations
of the fundamental group of a compact complex hyperbolic manifold in the group
of isometries of quaternionic hyperbolic space. Of special interest is the case of
equality, and its application to rigidity. We show that equality can only be achieved
for totally geodesic representations, thereby establishing a global rigidity theorem for
totally geodesic representations. We point out the recent papers of Kim, Pansu and
Klingler [16] and Klingler [17], where closely related local rigidity theorems for totally
geodesic representations are proved.

To explain our results, let m� 2 and let � � SU.m; 1/ be a cocompact, torsion-free
lattice. Then X D �nBm is a compact complex manifold covered by the unit ball
Bm � Cm . (We will write either Bm or H m

C for the complex hyperbolic m–space,
which is the symmetric space of SU.m; 1/.) The space of invariant two forms on Bm

is one-dimensional. Choose a generator ! D !Bm to represent the Chern class of the
tautological line sub-bundle. This is a Kähler form for Bm and descends to a Kähler
form !X on X . Let

v.X /D

Z
X

!m
X :

Then v.X / is a positive integer, proportional to the volume of X . In terms of char-
acteristic numbers and other invariants of X , v.X /D .�1/mT .X / where T .X / is
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the Todd genus of X , in other words, by the Hirzebruch–Riemann–Roch theorem,
v.X /D .�1/m�.X;OX /.

Let H n
H be the quaternionic hyperbolic space of quaternionic dimension n, with group

of isometries Sp.n; 1/. The space of invariant four-forms on H n
H is one-dimensional.

We choose a nonzero form ˛ in this space, and normalize it by requiring that its restric-
tion to a totally geodesic complex hyperbolic subspace H m

C D Bm is the form !2
Bm ,

where !Bm is as above.

Let �W �! Sp.n; 1/ be a representation. Using the above definitions, we can assign to
it a characteristic number c.�/ as follows. Let f W Bm!H n

H be a smooth equivariant
map (which exists and is unique up to equivariant homotopy). Then f �˛ is an invariant
form on Bm , so it descends to a form on X . We then define c.�/ by

c.�/D

Z
X

!m�2
X ^f �˛ :

Our main result is the following theorem:

Theorem 1.1 (1) jc.�/j � v.X /.

(2) If equality holds, � is a totally geodesic representation.

By a totally geodesic representation we mean that there is a totally geodesic H m
C �H n

H
so that the image of the representation lies in the subgroup G � Sp.n; 1/ that preserves
this H m

C and that the equivariant map f , which can be assumed to have image in
this H m

C , is a totally geodesic isometric embedding.

In group-theoretic terms, note that the subgroup G of Sp.n; 1/ that leaves Bm �H n
H

invariant is of the form G1 � G2 where G1 is isomorphic to SU.m; 1/ and G2 is
isomorphic to the compact group U.1/�Sp.n�m/, the centralizer of G1 in Sp.n; 1/.
To say that � is a totally geodesic representation is the same as saying that the image
of � lies in such a subgroup G1�G2 , and, splitting �D�1��2 , that �1 is conjugate to
the inclusion � � SU.m; 1/. In particular, a totally geodesic representation is faithful.

Since the characteristic number c.�/ is a topological invariant, therefore invariant under
deformation, we obtain the following local rigidity theorem:

Corollary 1.2 Let �W � ! Sp.n; 1/ be a totally geodesic representation. Then any
deformation �t of � is a totally geodesic representation.

For convenience, we have stated our results in terms of the groups SU.m; 1/ and
Sp.n; 1/ that do not act effectively on the corresponding symmetric spaces. We could
easily modify our statements in terms of the quotient groups that act effectively.
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Question It is natural to ask for examples of representations � where 0< c.�/<v.X /.
In the case mD 2 we can construct such examples by taking two ball quotients X , Y

with a surjective holomorphic map f W X ! Y with 0 < deg.f / < v.X /=v.Y /

(these exist; see the second author’s paper [24]) and a totally geodesic representation
�0W �1.Y /! Sp.n; 1/. Then the composition �0 ıf�W �1.X /! Sp.n; 1/ satisfies the
desired inequality. But these representations do not give satisfactory examples, because,
even though the representation is not totally geodesic, its image still leaves invariant a
totally geodesic H 2

C �H n
H . Thus the real question is: are there representations that

satisfy 0 < c.�/ < v.X / and whose image does not leave any geodesic H m
C � H n

H
invariant?

We recall that the classical Milnor–Wood inequality concerns representations of sur-
face groups in SL.2;R/ from Milnor [22] or Top.S1/ from Wood [25]. It has been
generalized to representations of surface groups in groups of isometries of Hermitian
symmetric spaces, and the case of equality has received much attention; see Bradlow,
Garcá-Prada and Gothen [3; 4], Burger, Iozzi and Wienhard [6] and Garcá-Prada,
Gothen and Mundet i Riera [12]. It is harder to prove such inequalities for representa-
tions of fundamental groups of higher dimensional manifolds. For representations of
fundamental groups of our � ’s into SU.n; 1/ there is the rigidity result of Corlette [10],
on which our result is modeled. The global rigidity result proved in this paper is related
to the cited local rigidity results of Kim, Pansu and Klingler as Corlette’s rigidity result
is related to the local rigidity theorem of Goldman and Millson [13]. For some recent
work on higher dimensional domains, see Besson, Courtois and Gallot [2], Bucher and
Gelander [5], Koziarz and Maubon [20; 21] and references in these papers.

Question A very natural question is whether there is a Milnor–Wood inequality for
representations of lattices in Sp.1; 1/, (equivalently, representations of fundamental
groups of constant curvature four-manifolds), in Sp.n; 1/; n> 1. It is conjectured that,
in analogy with the second author’s paper [23], a sharp inequality exists, and that the
case of equality characterizes the totally geodesic representations. A suggestive local
rigidity result compatible with this conjecture has been proved by Kim and Pansu [15].

Acknowledgements The first author was partially supported by Ministerio de Ciencia
e Innovación (Spain) Grant MTM2007-67623. The second author was supported by
National Science Foundation Grant DMS-0600816.
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2 Quaternionic hyperbolic space and its twistor space

Let us write H for the quaternions and HnC1 for a right - quaternionic vector space
of quaternionic dimension nC 1. We will use the quaternionic hermitian forms

hH
0 .X;Y /D xx1y1C � � �C xxnynC xxnC1ynC1;

hH.X;Y /D xx1y1C � � �C xxnyn� xxnC1ynC1

on HnC1 , where X D .x1; : : : ;xnC1/; Y D .y1; : : : ;ynC1/2HnC1 . The quaternionic
projective space HPn is the manifold of right quaternionic lines in HnC1 . The group
Sp.nC 1/ of right quaternionic linear isometries of hH

0
acts transitively on it (by left

multiplication by suitable quaternionic matrices) and the line .0; : : : ; 0; 1/ has isotropy
group Sp.n/�Sp.1/, thus HPn D Sp.nC 1/=Sp.n/�Sp.1/.

The quaternionic hyperbolic space H n
H is the open subset of HPn consisting of those

right-quaternionic lines L on which the form hH is negative: hH.X;X / < 0 for all
X 2L. It is a homogeneous space for the group Sp.n; 1/ of right quaternionic linear
maps that preserve the form hH , and the isotropy group of the line .0; : : : ; 0; 1/ is
again Sp.n/�Sp.1/. We will write H n

H for the quaternionic hyperbolic space. Thus
H n

H D Sp.n; 1/=Sp.n/�Sp.1/.

The algebra of Sp.n; 1/–invariant differential forms on H n
H is isomorphic to the algebra

of Sp.nC 1/–invariant differential forms on HPn , thus to the cohomology of HPn ,
which is a truncated polynomial algebra on a single generator ˛ of dimension 4. Our
normalization for ˛ makes it correspond to an integral generator for the cohomology
of HPn with suitable positivity properties.

We have an isomorphism C2nC2 Š HnC1 obtained by letting i 2 C act on HnC1

by right multiplication by the quaternion i . Explicitly, the complex coordinates
z1; : : : ; zn1

; w1; : : : ; wnC1 on C2nC2 are related to the quaternionic coordinates x1;

: : : ;xnC1 by xl D zlCjwl for lD1; : : : ; nC1. In terms of these complex coordinates
the quaternionic Hermitian forms decompose as

hH
0 .X;Y /D hC

0 .X;Y /C jaC
0 .X;Y /;

hH.X;Y /D hC.X;Y /C jaC.X;Y /;

where hC
0

and hC are complex Hermitian forms (conjugate linear in the first argument,
complex linear in the second) and aC

0
; aC are complex bilinear alternating forms, in

fact, complex symplectic forms, on C2nC2 . Explicitly, in terms of xl D zl C jwl and
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yl D ul C j vl , we have

(1) hC
0 .X;Y /D

nC1X
1

.xzlul C xwlvl/ and aC
0 .X;Y /D

nC1X
1

.zlvl �wlul/:

The forms hC.X;Y / and aC.X;Y / are obtained by changing the sign of the .nC1/–st
summand in the above formulas to the opposite sign, so

hC.X;Y /D

nX
1

.xzlul C xwlvl/� .xznC1unC1C xwnC1vnC1/;(2)

aC.X;Y /D

nX
1

.zlvl �wlul/� .znC1vnC1�wnC1unC1/:(3)

We obtain a natural map � W CP2nC1!HPn by assigning to a complex line l the
right quaternionic line L it generates. This map is a fibration with fiber the complex
projective line CP1 . We let Dn D ��1.H n

H/. This is the open subset of CP2nC1

consisting of complex lines in C2nC2 Š HnC1 on which the form hC is negative.
This inclusion gives Dn the structure of a complex manifold, that fibers over the real
manifold H n

H with fiber CP1 , and is called the twistor space of H n
H . These fibers

are complex submanifolds of Dn . A complex line l 2 CP2nC1 on the fiber over a
quaternionic line L2H n

H (thus l�L) is the same as a right H–linear and hC isometric
complex structure JL on L, namely the complex structure that is right multiplication
by i on l and right multiplication by �i on the hC –orthogonal complement of l .

As homogenous spaces we have Dn D Sp.n; 1/=Sp.n/�U.1/ while

CP2nC1
D Sp.nC 1/=Sp.n/�U.1/:

We have the commutative diagram:

Dn � CP2nC1

�
??y ??y�

H n
H � HPn

The vertical bundle V D ker.d�/ � TDn tangent to the fibers of the projection is a
C1 sub-bundle of TDn . It has a unique Sp.n; 1/–invariant complement H , called
the horizontal bundle, which is a holomorphic sub-bundle of TDn . In terms of the
canonical description of T CP2nC1 as Hom.S;CP2nC1�C2nC2=S/, where S is the
tautological line sub-bundle of the trivial bundle CP2nC1 �C2nC2 , the sub-bundle H
is the restriction to Dn of Hom.S;S?/, where S? is the orthogonal complement
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of S with respect to the complex symplectic form aC of (3). Note that Hom.S;S?/
is a holomorphic contact structure on CP2nC1 , invariant under the group Sp.aC/.

Definition 2.1 Given x 2Dn , a linear subspace W �Hx is called an integral element
if for all X;Y 2W , the vertical component ŒX;Y �V D 0.

Observe that this definition makes sense because, given any two vector fields X;Y

in H , the value of ŒX;Y �V at x depends only on the values of X and Y at x . The
geometric meaning of integral element is that, if M �Dn is a horizontal submanifold,
in other words, an integral submanifold of H , and x 2M , then TxM � Hx is an
integral element.

By a pseudo-Hermitian metric on a complex manifold M with complex structure J

we mean a nondegenerate inner product (not necessarily positive definite) on each
tangent space that is invariant under J . By a pseudo-Kähler metric we mean a pseudo-
Hermitian metric whose associated .1; 1/ form is closed.

Lemma 2.2 (1) The space Dn has an indefinite pseudo-Kähler metric g which is
Sp.n; 1/–invariant and which is negative definite on V , is positive definite on H ,
and V and H are g–orthogonal.

(2) Let !Dn be the .1; 1/ form associated to g . Then ��˛ D !2
Dn C dˇ for some

Sp.n; 1/–invariant 3–form ˇ .

Proof To prove the first part, note that �hC is a positive Hermitian metric on the
tautological sub-bundle S over Dn . The form .i=.2�//@x@ log.�hC/ is the pullback of
a form !Dn on Dn , the Chern form of S . It is a closed, Sp.n; 1/–invariant .1; 1/–form
on Dn which is easily checked to be negative on V and positive on H . (Alternatively,
since the canonical bundle of Dn is a positive multiple of S (as Sp.n; 1/–homogeneous
bundles on Dn ), one can quote (4.23) of Griffiths and Schmid [14] for the signature of
this form.)

The form !Dn is then the .1; 1/ form of an indefinite Kähler metric g on Dn that has
all the asserted properties. This proves the first assertion.

Now we prove the second assertion. Whenever a group G acts on a space A, let us write
AG for the subspace of G –invariant elements. If A denotes the algebra of differential
forms, then the cohomology of invariant forms on Dn , H�.A.Dn/Sp.n;1/; d/ (where
d is the usual exterior derivative) is the same as the relative Lie-algebra cohomology
H�.sp.n; 1/; sp.n/˚u.1/;R/. Similarly, the cohomology H�.A.CP2nC1/Sp.nC1/; d/

of Sp.n C 1/–invariant forms on CP2nC1 is the same as the relative Lie algebra
cohomology H�.sp.nC 1/; sp.n/˚ u.1/;R/.
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With our choice of definitions for Sp.n; 1/ and Sp.nC 1/, we get that the complexifi-
cation of sp.n; 1/ is the algebra sp.aC/ of infinitesimal isometries of the symplectic
form aC of (3) on C2nC2 , while the complexification of sp.nC 1/ is the similarly
defined algebra sp.aC

0
/ of (1). These two algebras do not coincide, but are conjugate in

sl.2nC2;C/, say by conjugating by the linear isomorphism of C2nC2 that reverses the
sign of the last coordinate and is the identity on all the others. This isomorphism is the
identity on the complexified subalgebras denoted sp.n/˚u.1/, hence induces an isomor-
phism between the relative Lie algebra cohomologies H�.sp.aC/; .sp.n/˚u.1//C;C/
and H�.sp.aC

0
/; .sp.n/˚u.1//C;C/, hence an isomorphism of the complexifications

H�.A.Dn/Sp.n;1// ˝ C and H�.A.CP2nC1/Sp.nC1// ˝ C . By compactness, the
second computes the cohomology H�.CP2nC1;C/. It follows that the real vector
space H 4.A.Dn/Sp.n;1// is one-dimensional, hence ��˛D c !2

DnCdˇ for some real
constant c and some invariant 3–form ˇ . Restricting to a totally geodesic Bn and
recalling the normalization of ˛ , we see that c D 1, and the lemma is proved.

Remark Observe that the space A2.Dn/Sp.n;1/ is two-dimensional, and its subspace
of closed forms is one-dimensional, spanned by the form !Dn . This can easily be
checked by fixing x 2Dn and using the isomorphism

A�.Dn/Sp.n;1/
!ƒ�.TxDn/Sp.n/�U.1/

Šƒ�.Vx˚Hx/
Sp.n/�U.1/;

where the first map is given by restriction. It is not hard to see that

ƒ2.Vx˚Hx/
Sp.n/�U.1/

Šƒ2.Vx/
U.1/
˚ƒ2.Hx/

Sp.n/�U.1/;

and that each summand is one-dimensional. Since there are no invariant one-forms and
the second cohomology is one-dimensional, it follows that the space of closed forms
is one dimensional, and necessarily spanned by !Dn of Lemma 2.2. Equivalently,
the space of invariant Hermitian metrics on Dn is two-dimensional, and the space of
invariant pseudo-Kähler metrics is one-dimensional, consisting of nonzero multiples of
the metric g of Lemma 2.2.

Next, we need to describe the totally geodesic embeddings of complex hyperbolic
space BmDH m

C in quaternionic hyperbolic space H n
H . See Besse [1] (for HPn , with

similar results for H n
H ), the thorough treatment of geodesic subspaces in Chen and

Greenberg [9], or the discussion in Carlson and Toledo [8] for details. The result is that
any totally geodesic Bm in H n

H for m � 2 is obtained as follows: First m � n and
there exists an .mC1/–dimensional right quaternionic subspace V �HnC1 so that the
restriction of Re.hH/ to V has signature .4m; 4/, and there exists a right quaternionic
linear complex structure J on V which preserves hH and so that the embedding
of Bm in H n

H consists of those right quaternionic lines in V that are invariant under J .
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(If mD 1 this construction produces totally geodesic B1 ’s, but not all, because H 1
H is

the same as real hyperbolic 4–space and B1 is the same as the real hyperbolic plane.
Real hyperbolic 4–space has many more totally geodesic real hyperbolic planes than
the ones arising in this way.)

These totally geodesic Bm ’s in H n
H have very canonical horizontal lifts to Dn that we

now describe. First, consider the case mD n. Given a totally geodesic Bn�H n
H , there

is a right H–linear complex structure J on HnC1 preserving hH so that Bn consists
of all the J –invariant lines. Consider the isomorphism HnC1ŠC2nC2 as before, with
i acting by right quaternion multiplication. Taking account of the Hermitian forms,
it is more accurate to use the notation H.n;1/ ŠC.2n;2/ , which we use from now on.
Let V denote the i –eigenspace of J acting on C.2n;2/ . It easy to check that Vj is
the �i –eigenspace of J , that we have a direct sum decomposition C.2n;2/ D V ˚Vj

into hC –orthogonal and aC –isotropic subspaces so that the restriction of hC to each
subspace has signature .n; 1/. Passing to complex projectivization of negative lines,
we obtain two holomorphic embeddings of Bn in Dn , each projecting (under right
quaternionic projectivization) to the original geodesic embedding of Bn in H n

H (each
projection being holomorphic with respect to each of two conjugate complex structures).
Moreover, since each of the eigenspaces V;Vj is aC –isotropic, it follows easily that
each of these embeddings of Bn in Dn is horizontal. In fact, each of these two Bn ’s
is a Legendrian submanifold (integral element of maximum dimension) of the contact
structure (horizontal sub-bundle H) of Dn .

Note that each of these two embeddings is fixed by the element of Sp.n; 1/ that is right
multiplication by i on V and by �i on Vj . If follows (and we explain in more detail
below) that each is a totally geodesic submanifold of Dn in the Sp.n; 1/–invariant
pseudo-Kähler metric g defined in Lemma 2.2. Note also that the restriction of !Dn

to each Bn coincides with the Kähler form !Bn .

Finally, if m< n, we use the same construction with a suitable H.m;1/ �H.n;1/ . As
remarked above, in case mD 1 we do not obtain all geodesic embeddings B1 �H n

H
in this way, but we do obtain a special class of embeddings, namely the ones covered
by holomorphic horizontal geodesic embeddings of B1 in Dn .

We now explain what we mean by horizontal totally geodesic complex submani-
folds of Dn . We consider a complex manifold .M;J / with a pseudo-Hermitian
metric g (by which we mean a pseudo-Riemannian metric g which is J –invariant:
g.JX;J Y /D g.X;Y / for all tangent vectors X;Y ) and a metric complex connec-
tion r (not necessarily torsion-free), meaning that rJ D 0 and rgD 0. Let N �M

be a complex submanifold which is never isotropic, in the sense that for all x 2 N ,
TxN contains no null vectors for g . Then N is said to be totally geodesic if TN is
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invariant under r . This means that for all vector fields X;Y tangent to N , rX Y is
also tangent to N . An equivalent formulation is in terms of the second fundamental
form ˛.X;Y /, defined by ˛.X;Y /D .rX Y /? , where ? denotes the g–orthogonal
complement. If TN contains no null vectors, then N is totally geodesic if and only if
˛ D 0. Note that if r has torsion, then ˛.X;Y / need not be symmetric in X and Y .

We list the main properties that we need of the above embeddings.

Lemma 2.3 (1) Each of the embeddings Bm �Dn just described is a component
of the fixed point set in Dn of an element of Sp.n; 1/.

(2) In particular, each such embedding is totally geodesic with respect to any pair
.g;r/ of Sp.n; 1/–invariant pseudo-Hermitian metric g and metric connec-
tion r .

(3) For any pair .g;r/ as above, every horizontal holomorphic embedding of Bm

in Dn that is totally geodesic in the sense of vanishing second fundamental form,
is one of the embeddings described above.

Proof Fix m� n. Each of the embeddings in question is equivalent under Sp.n; 1/
to the embedding of Bm in Dn resulting from the embedding

.z1; : : : ; zm; zmC1/! .z1; : : : ; zm; 0; : : : ; 0; zmC1/

of C.m;1/ in H.n;1/ . We still use the quaternionic and related complex coordinates
xl D zl C jwl in H.n;1/ Š C.2n;2/ . The image of Bm is a component of the fixed
point set of the element

.x1; : : : ;xnC1/! .ix1; : : : ; ixm;�xmC1; : : : ;�xn; ixnC1/

of the isotropy subgroup Sp.n/ �U.1/ � Sp.n; 1/. (There is one other component
in Dn , the �i eigenspace. The �1 eigenspace is disjoint from Dn .) This proves the
first part of the Lemma.

If g is any invariant pseudo-Hermitian metric on Dn , then, by the discussion in
Lemma 2.2, the restriction of g to H is definite, thus horizontal submanifolds contain
no null vectors for g . The above definition of totally geodesic submanifolds and
characterization in terms of second fundamental form holds. If M is a component of
the fixed point set of a map that preserves g and r , then no normal vector to the fixed
point set is fixed, thus the second fundamental form ˛.X;Y / must be fixed, thus ˛D 0,
and M is totally geodesic. This reasoning applies to our embeddings and proves the
second assertion of the Lemma.

Now take a pair .g;r/ as in the second part, and a holomorphic horizontal embedding
of Bm in Dn with vanishing second fundamental form. Such an embedding is uniquely
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determined by its tangent space at one point. But it is easy to check that there is one of
our special embeddings tangent to each complex (meaning invariant under the complex
structure J of Dn ) integral element of Hx . Since the tangent space of every horizontal
complex submanifold of Dn is a complex integral element, our construction has found
all holomorphic horizontal embeddings that are totally geodesic in the usual differential-
geometric sense.

3 Schwarz lemma for horizontal holomorphic maps

A holomorphic map F W Bm!Dn is called horizontal if for all x 2Bm , dF.TxBm/�

HF.x/ . It is well known that horizontal holomorphic maps satisfy a Schwarz Lemma;
see Carlson, Müller-Stach and Peters [7] and Griffiths and Schmid [14]. In addition
to the well-known inequality, we need a discussion of the case of equality. Since
we could not find any discussion in the literature of the precise result we need, we
prove the Schwarz Lemma in some detail. We follow the method of [7], which in
turn follows Kobayashi [18]. Both [7; 14] use a definite Hermitian metric on Dn

which is necessarily not Kähler, and its Chern connection. In order to relate equality to
totally geodesic maps we find it more convenient to use the pseudo-Kähler metric of
Lemma 2.2 and its Levi-Civita connection. The two give of course equivalent results
for horizontal holomorphic maps as we explain later.

Let .g;r/ be a pair of invariant pseudo-Hermitian metric and metric connection
on Dn . Assume that gjH is positive definite, and normalize g so that its restriction
to every horizontal geodesic Bm �Dn as in the last section is the metric of constant
holomorphic sectional curvature �1. Moreover, assume that r.0;1/ is the x@–operator
of the complex structure on TDn . Two examples of such a pair are:

(1) The pseudo-Kähler metric of Lemma 2.2, let’s denote this metric by gK and
let’s denote its Levi-Civita connection by rK . Then rK is also the Chern
connection on TDn preserving gK , namely .rK /.0;1/ D x@.

(2) The positive definite metric used in [7; 14] using the Killing form and the
Cartan involution. Let us denote this metric by gC and its corresponding Chern
connection by rC .

Then the restriction of r to Bm is necessarily the canonical connection r on Bm ,
which is both the Levi-Civita connection and the Chern connection, as is the case for
any Kähler metric.

Given such a compatible pair .g;r/, we can define the curvature tensor RDRr in
the usual way, and we can define the horizontal holomorphic sectional curvatures to be
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the numbers R.X;JX;X;JX / defined by

R.X;JX;X;JX /D g.R.X;JX /JX;X / for each X 2H; g.X;X /D 1:

Lemma 3.1 For any compatible pair .g;r/ as just defined, the horizontal holomorphic
sectional curvatures are constant, identically equal to �1.

Proof Let x 2Dn . Then any complex one-dimensional subspace of Hx is the real
span of X;JX for some unit vector X 2 Hx . Since this is the tangent space to a
holomorphic, horizontal totally geodesic embedding of B1 in Dn , we have, by the
usual argument, that the holomorphic sectional curvature in Dn is the same as in B1 ,
namely �1.

Observe that the isotropy group at x 2Dn acts transitively on the complex projective
space of the space Hx , since this action is isomorphic to the action of Sp.n/�U.1/

on CP2n�1 , which is indeed transitive. This already implies that the horizontal
holomorphic sectional curvatures must be constant.

Lemma 3.2 Let .g;r/ be the compatible pair .gK ;rK / of pseudo-Kähler metric
and compatible torsion-free connection. Let M �Dn be a horizontal submanifold. Let
˛W TxM ˝TxM ! TxM? be its second fundamental form. Then ˛.X;Y / 2Hx for
all X;Y;2 TxM .

Proof Observe that if X;Y are horizontal vector fields, then the value of the vertical
component .rX Y /V at x depends just on the values of X;Y at x , thus we get a well
defined tensor Hx ˝Hx ! Vx . If X;Y span an integral element of H , namely, if
XV ;Y V and ŒX;Y �V all vanish (see Definition 2.1), we see that .rX Y /V is symmetric
in X and Y , since the symmetry of the connection r D rK gives

.rX Y /V � .rY X /V D ŒX;Y �V D 0:

Since .rX X /V D 0, we see that .rX Y /V D 0 on all integral elements X;Y .

Suppose that M �Dn is a horizontal submanifold and that ˛ is its second fundamen-
tal form. Then ˛.X;Y / D .rX Y /? D ˛.X;Y /H C ˛.X;Y /V , where ˛.X;Y /V D
.rX Y /V D 0 since X;Y form an integral element of H . Thus ˛.X;Y / 2H .

Theorem 3.3 Let F W Bm!Dn be a horizontal holomorphic map, and let !Bm ; !Dn

be as above. Then F�!Dn � !Bm . Equality holds at every point if and only if F is a
horizontal holomorphic geodesic embedding of Bm in Dn .
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Proof We follow the method explained in [7; 18]. First we treat the case mD 1, to
which the general case is easily reduced.

Suppose F W B1 ! Dn is a horizontal holomorphic map. Then for all x 2 B1 ,
dF.TxB1/�HF.x/ , on which the metric gDgK is positive definite and on which the
holomorphic sectional curvature is �1. If we write F�!Dn D u !B1 for a nonnegative
smooth function u on B1 , then, by Lemma 3.2 and the method of [18, Section 2 of
Chapter I, Section 2 of Chapter III] (see also [7, Section 13.4]), we may assume that
u attains its maximum, and a computation of its Laplacian at the maximum gives the
inequality u� 1, hence the desired inequality F�!Dn � !B1

If equality holds at every point, then F is an isometric immersion. Locally F is an
isometric embedding. Let M �Dn be the image of such a local embedding, and let ˛
be its second fundamental form. Since the metric g is pseudo-Kähler, the usual Kähler
identities hold, and we get the formula, for any unit vector X 2 TxM ,

RM .X;JX;X;JX /DRDn

.X;JX;X;JX /� 2g.˛.X;X /; ˛.X;X //;

see Proposition 9.2 of Chapter IX of [19]. Since both holomorphic sectional curvatures
are equal (to �1), we must have g.˛.X;X /; ˛.X;X // D 0. Since, by Lemma 3.2,
˛.X;X / 2H , on which g is positive definite, it follows that ˛.X;X /D 0, hence M

is a horizontal complex totally geodesic submanifold, thus, by Lemma 2.3, it must be
one of our special embeddings. This proves the case mD 1.

To prove the case m> 1, take any x 2 Bm and any complex direction at x and take
the geodesic B1 � Bm through x in this direction.. Restricting F to this B1 we get
the desired inequality. If equality holds for all x and all directions, then every geodesic
B1 �Bm must be geodesically isometrically embedded in Dn , from which we get the
vanishing of the second fundamental form of the embedding of Bm , so the latter is a hor-
izontal holomorphic totally geodesic embedding, hence as described in Lemma 2.3.

Remark A parallel proof, with a somewhat different discussion in the case of equality,
would hold using the definite Hermitian (non-Kähler) metric mentioned above.

4 Proof of Theorem 1.1

Let X D �nBm be a compact manifold and let �W �! Sp.n; 1/ be a representation.
If c.�/D 0 there is nothing to prove. If c.�/¤ 0, then � is a reductive representation,
in fact, its image is Zariski-dense in Sp.n; 1/. The reason is that otherwise its image
lies in a parabolic subgroup P � Sp.n; 1/. Now, parabolic subgroups of Sp.n; 1/ are
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quite special, fitting in a short exact sequence

1!H ! P ! Sp.n� 1/�Sp.1/! 1;

where H is contractible. Since the Chern class of a flat bundle with compact group is
zero we must have c.�/D 0 (see the similar argument in the last paragraph of the proof
of [10, Theorem 6.1]). Then, by Corlette’s existence theorem for harmonic metrics
(equivalently, equivariant harmonic maps) [10, Section 3] (see also [11]), there is an
equivariant harmonic map f W Bm!H n

H . Moreover, since f �˛¤ 0, the rank of f is
at least four. By Theorem 6.1 of [8] (which is a pointwise theorem, and hence applies
to equivariant maps) there is an equivariant horizontal holomorphic map F W Bm!Dn

that lifts f , that is, f D � ıF . Since the form ˇ of Lemma 2.2 descends to a form
on X , we get that, on X , f �˛ is cohomologous to F�!2

Dn . (We do not distinguish
between � –invariant forms on Bm and forms on X , in particular we write either !X

or !Bm as convenient).

Thus we get

c.�/D

Z
X

F�!2
Dn ^!

m�2
X :

Since F�!Dn � !X , we get the inequality. If equality holds, then we must have a
pointwise equality F�!Dn ^!m�2

X
D !m

X
. This in turn implies a pointwise equality

F�!Dn D !X . This standard fact can be seen, for example, from the easily verified
formula

F�!2
Dn ^!

m�2
X D

2

m.m� 1/
T r.ƒ2�/ !m

X ;

where, for each x 2 Bm , � D .dxF /�.dxF /W TxBm! TxBm and .dxF /� denotes
the Hermitian adjoint of dxF W TxBm ! HF.x/ . Since the eigenvalues of � are
nonnegative and (by the inequality part of the Schwarz lemma) at most one, equality
holds if and only if all the eigenvalues are one, which is equivalent to F�!Dn D

!Bm . Thus, by the equality part of Theorem 3.3, F is a totally geodesic horizontal
holomorphic embedding, hence f is a totally geodesic isometric embedding, hence �
is a totally geodesic representation.
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