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Deformed Hamiltonian Floer theory,
capacity estimates and Calabi quasimorphisms

MICHAEL USHER

We develop a family of deformations of the differential and of the pair-of-pants
product on the Hamiltonian Floer complex of a symplectic manifold .M; !/ which
upon passing to homology yields ring isomorphisms with the big quantum homology
of M . By studying the properties of the resulting deformed version of the Oh–
Schwarz spectral invariants, we obtain a Floer-theoretic interpretation of a result of
Lu which bounds the Hofer–Zehnder capacity of M when M has a nonzero Gromov–
Witten invariant with two point constraints, and we produce a new algebraic criterion
for .M; !/ to admit a Calabi quasimorphism and a symplectic quasistate. This
latter criterion is found to hold whenever M has generically semisimple quantum
homology in the sense considered by Dubrovin and Manin (this includes all compact
toric M ), and also whenever M is a point blowup of an arbitrary closed symplectic
manifold.

53D40, 53D45

1 Introduction

The three-point genus zero Gromov–Witten invariants of a closed symplectic man-
ifold .M; !/ can be organized in such a way as to give a product �0 on the ho-
mology H�.M Iƒ!/ of M where ƒ! is a certain Novikov ring. The resulting ring
.H�.M; ƒ!/;�0/, called the (undeformed) quantum homology of .M; !/, has become
a fundamental tool of modern symplectic topology, in part due to the existence of the
Piunikhin–Salamon–Schwarz ring isomorphism [49] from the quantum homology to
Hamiltonian Floer homology with its pair-of-pants product.

From the early days of physicists’ conception of quantum homology (see Witten [64,
page 323; 65, Section 3]) it was anticipated that �0 would be just one member of a
whole family of quantum products �� , with the deformation parameter � varying in the
homology of M ,1 each of which has its structure constants given by an �–dependent
formula involving counts of genus-zero pseudoholomorphic curves. As Kontsevich and

1Our convention will be that, if dim M D 2n , � is an element of
Ln�1

iD0 H2i.M Iƒ
0
!/ for a certain

subring ƒ0
! <ƒ! containing C (see Section 1.4(c) below).
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1314 Michael Usher

Manin [34] demonstrated, the composition law which was used by Ruan and Tian [54]
to prove the existence and associativity of the small quantum product �0 also establishes
the corresponding facts for all of the �� ; the family of rings f.H�.M Iƒ!/;��/g (or
some other structure carrying equivalent information) is known in the literature as the
big quantum homology of .M; !/.

While much interesting work has been done relating to the rich algebraic and geometric
structure intrinsic to the big quantum homology (see for instance Manin [41]), the big
quantum homology does not seem to have had many external applications to problems in
symplectic topology. In this paper we provide some such applications. The applications
have in common the following outline: one shows that a symplectic manifold satisfies
some desirable property if there is some � such that the ring .H�.M; ƒ!/;��/ obeys
a certain condition, and then argues that the condition is satisfied for some �. Since the
rings .H�.M; ƒ!/;��/ are typically not mutually isomorphic, the freedom to vary �
allows one to prove more results than would be available if one confined oneself to
using undeformed .�D 0/ quantum homology.

Our applications concern problems in Hamiltonian dynamics, and we bring big quantum
homology to bear on these problems by connecting it to Hamiltonian Floer theory. In
particular, we prove:

Theorem 1.1 Let �2
Ln�1

iD0 H�.M Iƒ
0
!/. For generic Hamiltonians H W S1�M!R

we may construct an R–filtered, �–deformed Hamiltonian Floer complex�
CF.H /D

S
�2R CF�.H /; @�;H

�
with the following properties:

(i) .@�;H /2 D 0, and where HF.H /� DH�.CF.H /; @�;H / is the resulting homol-
ogy, there is an isomorphism ˆPSS

�;H
W H�.M; ƒ!/! HF.H /� .

(ii) For generic pairs .H;K/, where H˙KW S1�M!R denotes the concatenation
of H and K (see Section 1.4(g)), there is a pair-of-pants product
�Floer
� W CF.H /˝CF.H /!CF.H˙K/ which is a chain map with respect to the

differentials @�;� , restricts for each �;� 2R to a map CF�.H /˝CF�.H /!

CF�C�.H˙K/, and whose induced map on homology �Floer
� fits into a commu-

tative diagram

H�.M Iƒ!/˝H�.M Iƒ!/

��
��

ˆPSS
�;H
˝ˆPSS

�;K // HF.H /�˝HF.K/�
�Floer
���

H�.M Iƒ!/
ˆPSS
�;H ˙K // HF.H˙K/�:

For proofs of the various statements in Theorem 1.1, see Corollary 3.7 and Proposi-
tions 3.11 and 3.12.
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Theorem 1.1 allows one to define deformed versions �.aIH /� of the Oh–Schwarz
spectral invariants [57; 46] in a standard way: where a 2 H�.M Iƒ!/ and H is
suitably nondegenerate, �.aIH /� is the infimal filtration level of a chain representing
the homology class ˆPSS

�;H
a. One can show that these invariants satisfy a number of

properties similar to familiar properties from the undeformed case; see Proposition 3.13
for a list of several of these. Among these properties we mention in particular that
�.aI � /� extends by continuity to arbitrary continuous functions H W S1�M !R, and
that we have a triangle inequality

(1) �.a�� bIH˙K/� � �.aIH /�C �.bIK/�:

The spectral invariants of most Hamiltonians are difficult to compute, so (1) is an
important tool in understanding them; since the sort of information conveyed by (1)
changes whenever the quantum multiplication �� changes, we can begin to see how
it may be useful to study the spectral invariants for all values of the deformation
parameter �, rather than just those for �D 0 as has been done in the past.

Let us now discuss our applications.

1.1 Hofer–Zehnder capacity

The �1 –sensitive Hofer–Zehnder capacity of the closed symplectic manifold .M; !/

may be expressed as

cıHZ.M; !/

Dsup
�

max H �min H

ˇ̌̌̌
H W M !R; all contractible periodic orbits of the

Hamiltonian vector field XH of period � 1 are constant

�
:

While it often holds that cıHZ.M; !/ D 1, the case when cıHZ.M; !/ < 1 is of
considerable interest, for instance because it implies the Weinstein conjecture for
contact (or indeed stable) hypersurfaces of M . Using the deformed Hamiltonian Floer
complexes, we give a new proof of the following theorem of Lu (see also Hofer and
Viterbo [30] and Liu and Tian [38] for earlier related results).

Theorem 1.2 (Lu [40, Corollary 1.19]) Suppose that .M; !/ has a nonzero Gromov–
Witten invariant of the form

hŒpt�; a0; Œpt�; a1; : : : ; aki0;kC3;A

where A 2H2.M IZ/=torsion and a0; : : : ; ak are rational homology classes of even
degree. Then

cıHZ.M; !/� hŒ!�;Ai:
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1316 Michael Usher

We prove this Theorem below as Corollary 4.3. Strictly speaking Lu’s result is (at
least superficially) a bit more general, for instance because it allows for descendant
insertions and does not require the ai to have even degree; however I am not aware of
any examples of manifolds satisfying Lu’s hypotheses but not those of Theorem 1.2.
As seen in [40, Theorem 1.21], the estimate provided by Theorem 1.2 is sharp for M

equal to a product
Qk

iD1 CPni with any split symplectic form which is a multiple of
the standard one on each factor.

Our proof of Theorem 1.2 brings it into the purview of Hamiltonian Floer theory. In
fact, we deduce Theorem 1.2 from part (ii) of the following Theorem 1.3 about the
deformed spectral invariants, which is new even in the undeformed case �D 0 (though
an important special case appears in Usher [62]). As notation, if H W S1�M !R is a
smooth function, xH W S1�M !R denotes the time-reversed Hamiltonian xH .t;m/D

�H.t; �t
H
.m//, whose flow is inverse to that of H .

Theorem 1.3 Fix C > 0 and � 2
Ln�1

iD0 H2i.M Iƒ!/ and suppose that one of the
following two conditions holds:

(i) There are a; b 2H�.M Iƒ!/ n f0g such that, for all autonomous H W M !R,

.�.a;H /� � �ŒM �.a//C .�.b; xH /� � �ŒM �.b//� C:

(ii) Where Œpt� is the standard generator of H0.M IC/, for all H W M !R,

�.Œpt�IH /�C �.Œpt�I xH /� � �C:

Then the �1 –sensitive Hofer–Zehnder capacity of .M; !/ obeys the bound

cıHZ.M /� C:

Theorem 1.3 is proven below as Corollary 4.1; we refer there for the definition of
the quantity �ŒM �.a/ 2R[f�1g, noting here only that �ŒM �.a/ is finite if and only
if a 2 H�.M Iƒ!/ has a nontrivial component in H2n.M Iƒ!/. Thus whenever
a; b 2H�.M Iƒ!/ each have nontrivial components in H2n.M Iƒ!/ and there holds
a universal bound �.aIH /�C �.bI xH /� � C 0 we obtain an explicit finite bound for
the Hofer–Zehnder capacity of .M; !/.

We obtain Theorem 1.2 from Theorem 1.3 by using the assumed nonzero Gromov–
Witten invariant to find a value (indeed an open dense set of values) �2

Ln�1
iD0 H2i.M IC/

so that Œpt��� a0 has a nontrivial component in H2n.M Iƒ!/; the triangle inequality
and a standard duality property (Proposition 3.13(vii)) of the spectral invariants allow
one to use this to obtain an estimate as in (ii) of Theorem 1.3. Here it is essential to
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consider the deformed products �� and not just �0 . This point is obvious when the
number kC 3 of insertions in the assumed Gromov–Witten invariant is larger than 3,
since in that case the invariant is unseen by �0 whereas it does contribute to �� for
most values of �. In fact it is useful to allow � to vary even in the case that kC3D 3,
since if one considered only � D 0 the possibility would remain that the invariant
would be cancelled by invariants coming from other classes in H2.M IZ/, whereas
one can show that there are always some values of � for which such cancellation does
not occur.

1.2 Calabi quasimorphisms

Beginning with [12], work of Entov and Polterovich and others has shown that, on some
symplectic manifolds, the asymptotic spectral invariant z�H 7! limk!1 �.eIH

˙k/0=k

(for H normalized and e a well-chosen idempotent with respect to the quantum multipli-
cation �0 ) defines (after multiplication by a constant) a so-called Calabi quasimorphism
�e;0 on the universal cover eHam.M; !/ of the Hamiltonian diffeomorphism group.2

Thus �e;0 is a homogeneous quasimorphism (ie a map which fails to be a homomor-
phism by a uniformly bounded amount and is a homomorphism when restricted to
cyclic subgroups) which, on the subgroup given by the flows generated by Hamiltonians
supported in any given displaceable open subset, coincides with the classical Calabi
homomorphism of Banyaga [1, Proposition II.4.1]. Moreover, in this case the formula
�e;0.H /D limk!1 �.eI kH /0=k defines a function �e;0W C.M /!R satisfying the
axioms of a symplectic quasistate, as defined in Entov and Polterovich [13]. These
constructions have had many interesting applications, eg to the structure of eHam.M; !/

and to rigidity properties of subsets of M ; see for instance Entov and Polterovich [12;
15] and Entov, Polterovich and Zapolsky [16].

For any � 2
Ln�1

iD0 H2i.M Iƒ
0
!/, we will denote by QH.M; !/� the commutative

algebra .Hev.M Iƒ!/;��/ given by restricting �–deformed quantum multiplication
to even-dimensional homology.

After establishing basic properties of the deformed spectral invariants as described in
Proposition 3.13, we extend the arguments of Entov and Polterovich [12; 13; 14] and
Usher [61] to obtain the following theorem, which summarizes results of Section 5:

Theorem 1.4 Let .M; !/ be a closed symplectic manifold, � 2
Ln�1

iD0 H2i.M Iƒ
0
!/,

and e 2 QH.M; !/� with e �� e D e .
2In this paper we only discuss Calabi quasimorphisms on eHam.M; !/ ; we do not address the interest-

ing question of whether these can be arranged to descend to Ham.M; !/ . Thus in what follows a “Calabi
quasimorphism on M ” should be understood as being defined on eHam.M; !/ .
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(i) Suppose that, for some C > 0 we have an estimate

(2) �.eIH /�C �.eI xH /� � C

for all H W S1 �M ! R. Then the functions �e;�W eHam.M; !/ ! R and
�e;�W C.M /!R given by

�e;�.z�H /D� vol.M /
�.eIH ˙k/�

k
; �e;�.H /D lim

k!1

�.eI kH /�

k

define respectively a Calabi quasimorphism and a symplectic quasistate. The
quasimorphism �e;� obeys the stability property of Entov, Polterovich and
Zapolsky [16, (3)].

(ii) Suppose that we have a direct sum decomposition (of algebras)

QH.M; !/� D F ˚A

where F is a field. Then an estimate (2) holds with e equal to the identity in the
field summand F .

Note the similarity of the criteria denoted (i) in, respectively, Theorem 1.3 and
Theorem 1.4. In particular, if e 2 QH.M; !/� is an idempotent which contains a non-
trivial component in H2n.M Iƒ!/, we find that an estimate �.eIH /�C�.eI xH /� �C

simultaneously gives rise to two deep and quite distinct conclusions about Hamiltonian
dynamics on .M; !/: a bound on the �1 –sensitive Hofer–Zehnder capacity on the one
hand, and the existence of a Calabi quasimorphism and a symplectic quasistate on the
other. In light of Theorem 1.4(ii), if QH.M; !/� is semisimple (ie decomposes as a
finite direct sum of fields), then at least one of the multiplicative identities in the field
summands will satisfy these conditions, since the sum of these multiplicative identities
is ŒM �.

Of course, Theorem 1.4(ii) begs the question of under what circumstances a decom-
position QH.M; !/� D F ˚ A with F a field exists. In the later sections of the
paper we make a detailed study of this matter. To any deformation class .M; C/ of
symplectic manifolds we introduce a “universal quantum coefficient ring” RM and
an RM –algebra ARM

and define (see Definition 6.5 and the end of Section 7.2)
what it means for .M; C/ to have “generically field-split big quantum homology” in
terms of the properties of this algebra ARM

. Since it is also of interest to know when
QH.M; !/� satisfies the stronger condition of being semisimple (for instance results of
Entov and Polterovich [15] show that semisimplicity leads to stronger rigidity results in
some contexts than does the property of having a field direct summand), we also define
a notion of .M; C/ having “generically semisimple big quantum homology.” Using
methods from scheme theory, we show:
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Theorem 1.5 If .M; !/ is a closed symplectic manifold with ! belonging to the
deformation class C , the following are equivalent:

(i) .M; C/ has generically field-split (resp. generically semisimple) big quantum
homology.

(ii) There is � 2
Ln�1

iD0 H2i.M Iƒ
0
!/ such that the deformed quantum homology

QH.M; !/� splits as a direct sum F ˚A where F is a field (resp. splits as a
finite direct sum of fields).

(iii) There is an open dense set U �
Ln�1

iD0 H2i.M IC/ such that QH.M; !/� splits
as a direct sum F ˚A where F is a field (resp. splits as a finite direct sum of
fields) whenever � 2 U .

See Theorem 7.8 for a slightly more specific version of this theorem and its proof.

To illustrate that the equivalent conditions in Theorem 1.5 are far from vacuous, we
mention:

Theorem 1.6 (i) The deformation class of any closed symplectic toric manifold
has generically semisimple big quantum homology.

(ii) The deformation class of the blowup at a point of any closed symplectic manifold
has generically field-split big (and also small) quantum homology.

Consequently, any closed symplectic toric manifold and any blowup of any closed sym-
plectic manifold at a point admit a Calabi quasimorphism and a symplectic quasistate.

Proof As noted in Section 7.3.4, part (i) follows directly from a theorem of Iritani [33]
and Theorem 7.15. Part (ii) is proven as Theorem 7.16.

Part (ii) of Theorem 1.6 generalizes a result of McDuff (which appears in Entov
and Polterovich [14]) which produces a Calabi quasimorphism on the blowup of any
nonuniruled symplectic manifold. Meanwhile (i) generalizes results that have been
proven for a variety of toric Fano manifolds; in particular in Ostrover and Tyomkin [48]
and Fukaya, Oh, Ohta and Ono [22], it is shown that if M is toric and Fano then
QH.M; !/0 is semisimple for generic choices of the toric symplectic form ! . However
Theorem 1.6 does not require any Fano condition, and also does not require the
symplectic form to be chosen generically.

Let us emphasize some aspects of Theorem 1.5. First of all, note that it shows that,
as soon we can obtain a single � giving rise to a Calabi quasimorphism �e;� via
Theorems 1.5 and 1.4, there are in fact uncountably many such �. It is natural to
ask whether these quasimorphisms are the same. We do not prove any results in this
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direction here, but note that work of Fukaya, Oh, Ohta and Ono [20, Theorem 1.10]
completed while this article was under review shows that, in certain toric cases, an
uncountable subset of these quasimorphisms can be seen to be linearly independent
by means of their interactions with Lagrangian Floer theory. Meanwhile it is also
possible for the Calabi quasimorphisms �e;� to change as one varies the idempotent e :
examples of such behavior (with �D 0) have been found for certain symplectic forms
on CP2#CP2 in Ostrover and Tyomkin [48, Corollary F] and on S2�S2 in Eliashberg
and Polterovich [11].

We also point out that our criterion for the existence of a Calabi quasimorphism
on eHam.M; !/ depends only on the deformation class of ! . If we had confined
ourselves to the case � D 0 we could not have expected to obtain a deformation-
invariant criterion, since the algebraic structure of QH.M; !/0 can be surprisingly
sensitive to deformations of ! . For example, in [48, Section 5] Ostrover and Tyomkin
produce a toric Fano 4–fold M such that QH.M; !/0 fails to be semisimple when !
is the monotone toric symplectic form but is semisimple for generic toric symplectic
forms ! . Calculations in Bayer and Manin [3, Proposition 3.5.5] suggest that a similar
phenomenon occurs for the manifold obtained by blowing up CP2 at 5 or more points.
However, by changing the question from, “Is QH.M; !/0 semisimple (or field-split)?”
to “Does there exist � such that QH.M; !/� is semisimple (or field-split)?” we evade
such issues.

Algebraic geometers have been studying a notion of generically semisimple big quantum
homology for some time (see eg Dubrovin [9], Manin [41] and Bayer [2]), and we
show in Section 7.3.3 that our notion is equivalent to theirs.3 This effectively answers a
question raised by Entov and Polterovich [14, Remark 3.2] as to whether semisimplicity
in the sense studied there (which in our language amounts to the semisimplicity of
QH.M; !/0 ) can be deduced from generic semisimplicity in the algebraic geometry
sense. As stated, the answer is evidently negative, since the Ostrover–Tyomkin example
has generically semisimple quantum homology but fails to have QH.M; !/0 semisim-
ple. On the other hand, from the standpoint of applications this paper shows that generic
semisimplicity suffices for the constructions for which Entov and Polterovich employed
the semisimplicity of QH.M; !/0 .

3As alluded to in Section 7.3.3, different authors use different coefficient rings in the algebraic geometry
literature when discussing quantum homology, and in some cases it is assumed that certain power series
defining the structure constants converge; however in any event our results show that the resulting notions
of generically semisimple big quantum homology are equivalent on their common domains of definition, a
fact which seems to be familiar to algebraic geometers.
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1.3 Summary of the paper, with additional remarks about the deformed
Hamiltonian Floer complexes

In Section 2, we review the definition of the deformed quantum rings .H�.M; !/;��/.

Section 3 develops deformed Hamiltonian Floer theory. Thus to a suitably nondegener-
ate Hamiltonian H and a deformation parameter �2

Ln�1
iD0 H2i.M Iƒ

0
!/ we associate

an R–filtered Floer complex .CF.H /; @�;H /. We also define continuation maps
.CF.H�/; @�;H�/! .CF.HC/; @�;HC/; Piunikhin–Salamon–Schwarz-type maps [49]
ˆPSS
�;H
W CM.f Iƒ!/!CF.H / and ‰�;H W CF.H /!CM.f Iƒ!/ where CM.f Iƒ!/

is the Morse complex; and a pair-of-pants product �Floer
� WCF.H /˝CF.K/!CF.H˙K/.

The deformations are especially easy to describe when � 2H2n�2.M Iƒ
0
!/. For exam-

ple, whereas matrix elements for the ordinary Floer differential @0;H count certain cylin-
ders uW R�S1!M with rational weights �.u/, for �2H2n�2.M Iƒ

0
!/ we choose a

closed 2–form � Poincaré dual to � and form the deformed differential @�;H by instead
counting these cylinders with weight �.u/ exp.

R
R�S1 u��/. Similar modifications are

made to obtain deformed versions of the standard continuation and PSS maps and the
pair-of-pants product. The various standard identities involving these maps (for example
the facts that .@�;H /2D 0 and that the other maps are chain maps with respect to @�;H )
then follow from the standard arguments together with Stokes’ theorem and the fact
that the chosen 2–form � is closed. This approach to “twisting” the Hamiltonian Floer
complex, though quite simple and useful (it alone would suffice for our applications in
many though not all cases—in particular it is enough to yield Calabi quasimorphisms on
all point blowups and on all toric Fano manifolds), does not seem to have been used on
closed symplectic manifolds before.i However, in the context of the symplectic cohomol-
ogy of Liouville domains the approach has been used by Ritter [51], and it is also similar
to the use of “B –fields” in Lagrangian Floer theory (see Fukaya [19] and Cho [6]). Note
that in these other contexts (and also in a similarly deformed version of Morse homology,
where one integrates closed one-forms over gradient flowlines) the resulting homology
does depend on the deformation parameter �, whereas in our case it does not, perhaps
surprisingly at first glance. This independence can be explained by the facts that, first,
the �–deformed homology will be independent of the Hamiltonian H by a standard
continuation argument, and second, for a small, time-independent H , all of the gradient
flow cylinders can be arranged to degenerate to lines, over which the 2–form � integrates
trivially, so that � does not affect the differential. On the other hand � does affect the
pair-of-pants product, which unavoidably involves genuinely 2–dimensional objects.

For more general � 2
Ln�1

iD0 H2i.M Iƒ
0
!/, the differential and the other maps on

CF.H / are further deformed by the imposition of incidence conditions corresponding
to the higher-codimension components of �. Some subtleties arise here because the
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fact that the moduli spaces have codimension-one boundary leads one to need to use
the same chains for the incidence conditions at each marked point (rather than just
homologous ones as in Gromov–Witten theory) in order for the maps to satisfy the
appropriate identities, which in turn causes potential transversality problems as the
marked points approach each other. However such issues are readily handled by using
the same machinery (the fiber product construction for Kuranishi structures) that is used
by Fukaya, Oh, Ohta and Ono [21] to deal with similar (and indeed in some cases more
difficult) matters in the construction of Lagrangian Floer theory with bulk deformations.
Our use of these sorts of deformations in Hamiltonian Floer theory appears to be new,
though Fukaya, Oh, Ohta and Ono arrived at this technique independently [20]. For
the benefit of readers who lack fluency in [21], we also provide a construction of the
deformed Floer complexes in the semipositive case which does not rely on Kuranishi
structures; due to the aforementioned transversality problems for the relevant fiber
products this does require some work, most of which is consigned to Appendix A.
However, it is still our opinion that the approach based on [21] is the most appropriate
framework for these sorts of constructions. The reader should see [20] for a more
thorough development of this approach, including a relation to Lagrangian Floer theory.

In any event, after constructing these maps, we find that the �–deformed Hamiltonian
Floer theory behaves in much the same way as the undeformed version, except that its
multiplicative structure on homology is isomorphic via the appropriate PSS maps to the
�–deformed quantum ring structure. In particular we can construct spectral invariants in
the usual way and prove that they satisfy standard properties as laid out in Section 3.4.

Section 4 contains the applications discussed above which obtain Hofer–Zehnder
capacity estimates by means of the behavior of the deformed spectral invariants. We
use arguments depending on the construction of S1 –equivariant Kuranishi structures
on moduli spaces associated to the Floer differentials and the PSS maps (similarly to
what was done by Fukaya and Ono [23] and Liu and Tian [37] to prove the Arnold
conjecture; see also the proof of Oh [45, Theorem IV] for a case closely related to ours);
the polyfold theory of Hofer, Wysocki and Zehnder [31] should eventually provide
a preferable framework for such arguments. With current technology, as we explain
in Remark 3.16, the use of S1 –equivariant Kuranishi structures can be avoided only
under a rather strong assumption on the first Chern class of the manifold. The results
of Section 4 are not used elsewhere in the paper.

Section 5 establishes Theorem 1.4, thus reducing the existence of a Calabi quasimor-
phism on eHam.M; !/ to the statement that, for some � 2

Ln�1
iD0 H2i.M Iƒ

0
!/, the

commutative algebra QH.M; !/� satisfies an algebraic condition.

The last two sections of the body of the paper are much more algebraic, oriented toward
the goal of finding equivalent conditions to that identified in Section 5. Section 6
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is pure commutative algebra, devoted mainly to a theorem about sets of equivalent
conditions under which the spectral cover map Spec A ! Spec R associated to a
finite R–algebra A either has an unramified point in its domain or else has a point
in its range over which all points in the fiber are unramified. The final Section 7
connects this to the problem at hand, reformulating big quantum homology as an
algebra ARM

over a ring RM (as alluded to earlier, RM and ARM
are, unlike

QH.M; !/� , symplectic deformation invariants). For a deformation parameter �, the
�–deformed quantum homology is then recovered as the tensor product ARM

˝RM
ƒ!

associated to an appropriate homomorphism ��W RM !ƒ! . The sets of equivalent
conditions identified in Section 6 are seen to in turn be equivalent in this context to
the existence of an � such that QH.M; !/� , respectively, has a field direct summand
or is semisimple. The nice behavior of our algebraic conditions under base change
(Proposition 6.6) enables us to move between coefficient systems with ease, leading
to results such as Theorem 1.5. Throughout Section 7 we discuss both big and small
quantum homology;4 while this in principle does not lead to greater generality since
if our algebraic conditions hold for small quantum homology then they also hold for
big quantum homology, the small quantum homology is easier to compute since it
only involves 3–point Gromov–Witten invariants, and so our conditions can be easier
to check for small quantum homology. At the end of Section 7 we verify that one-
point blowups always have generically field-split small (and hence also big) quantum
homology, drawing on results of Gathmann [24], Hu [32] and Bayer [2] about the
Gromov–Witten invariants of blowups.

Finally, in Appendix A, we outline the proof of the result from Section 3.2.2 which
underlies our construction in the semipositive case of the deformed Floer complexes for
classes � 2

Ln�1
iD0 H2i.M Iƒ

0
!/ which are not of codimension two. This is included

only to provide a more self-contained treatment for readers who prefer to avoid relying
on the more sophisticated constructions of Fukaya, Oh, Ohta and Ono [21].

Acknowledgements I am grateful to the organizers of the MSRI Workshop on Sym-
plectic and Contact Topology and Dynamics (March 2010) and of the Chern Institute
Conference on Symplectic Geometry and Physics (May 2010) for the opportunity to
present some of this work as it was in preparation. I also thank K Fukaya, Y-G Oh, and
K Ono for telling me about their related (and independent) joint work with Ohta [20],
and L Polterovich for interesting comments. The Stacks Project [58] was helpful to me
as I prepared Section 6.

4In our language, the small quantum homology corresponds to the deformations obtained by allowing
� to vary only in H2n�2.M Iƒ

0
!/ ; this differs from some references which have small quantum homology

correspond just to �D 0 .
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1.4 Some conventions

There are multitudes of different conventions in the literature used for signs, coefficient
rings and so forth for the various characters in our story; for this reason it seems prudent
to collect some of our conventions in one place for the reader’s convenience (though
the reader will generally be reminded of these as they become relevant).

(a) .M; !/ always denotes a closed symplectic manifold, and S1 DR=Z.

(b) A “Hamiltonian” is a smooth function H W S1 �M ! R. The Hamiltonian
vector field of H is the time dependent vector field XH D XH .t; � / defined
by �XH .t;� / D�d.H.t; � //. (NB: The negative sign is contrary to my usage in
previous papers.)

(c) The Novikov ring associated to ! is the generalized formal power series ring

ƒ! D

� X
g2�!

agT g

ˇ̌̌̌
ag 2C; .8C > 0/.#fg j ag ¤ 0;g < C g<1/

�
�! D Im.h!; � iW �2.M /!R/:where

Thus ƒ! is “completed upward.” The subring ƒ0
! is defined by� X

g2�!

agT g
2ƒ!

ˇ̌̌̌
ag ¤ 0) g � 0

�
:

(d) The Floer complex of a (suitably nondegenerate) Hamiltonian H has underlying
module

CF.H /D

� X
Œ
;v�2 zP.H /

aŒ
;v�Œ
; v�

ˇ̌̌̌
.8C < 0/

.#fŒ
; v� j aŒ
;v� ¤ 0;AH .Œ
; v�/ > C g<1/

�
:

Thus CF.H / is, unlike ƒ! , “completed downward.”

(e) Algebraic structures such as CF.H / and the quantum rings .H�.M; ƒ!/;��/

will be graded by Z=2Z, not Z. Correspondingly, there is no “degree-shifting
element” such as that denoted q in Entov and Polterovich [14].

(f) Any ring whose name begins with the initials QH (such as QH.M; !/� ) cor-
responds only to the even-degree part of the quantum homology (and thus is
commutative and, in light of (e) above, is ungraded). When we wish to include
both even and odd degree elements we will directly refer to H�.M; ƒ!/.
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(g) Hamiltonians H;KW S1 �M !R are composed via the “concatenation” oper-
ation

H˙K.t;m/D

(
�0.t/H.�.t/;m/ 0� t � 1=2;

�0.t � 1=2/K.�.t/;m/ 1=2� t � 1;

for a suitable smooth monotone surjection �W Œ0; 1=2�! Œ0; 1�. In particular the
time-one maps are related by

�1
H ˙K D �

1
K ı�

1
H :

(h) A fixed parameter � will determine a certain natural number m and cycles
c1; : : : ; cm such that ci has dimension 2d.i/, as explained in Section 3. The
letter I will typically refer to an element .i1; : : : ; ik/ of f1; : : : ;mgk for some
k 2N . For a previously chosen set collection of elements zi 2ƒ

0
! .1� i �m/

we will write

zI D zi1
� � � zik

:

ı.I/D

kX
jD1

.2n� 2� 2d.ij //:Also,

(This latter number is interpreted as the codimension associated to a certain set
of incidence conditions associated to I .)

2 Quantum homology I

To fix notation, we now review the definition of the deformed quantum ring structures
�� on a closed 2n–dimensional symplectic manifold .M; !/. These structures will be
viewed from a different perspective in Section 7.

Where �! D fhŒ!�;Ai jA 2 Im.�2.M /!H2.M IZ//g �R;

the Novikov ring associated to .M; !/ is

ƒ! D

� 1X
iD1

aiT
gi

ˇ̌̌̌
ai 2C;gi 2 �! ; .8C > 0/

�
#.f i j ai ¤ 0;gi < C g/ <1

��
where T is a formal variable. It is not difficult to check that ƒ! is a field (see for
instance Hofer and Salamon [29, Theorem 4.1]).
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The Novikov ring has a distinguished subring ƒ0
! �ƒ! , defined by

ƒ0
! D

�X
i

aiT
gi 2ƒ!

ˇ̌̌̌
.8i/.gi � 0/

�
:

An easy exercise shows that there is a well-defined map

expW ƒ0
!!ƒ0

!

defined by the usual Taylor series

exp.a/D
1X

kD0

ak

k!

and satisfying the identity

exp.aC b/D exp a exp b

(on the other hand, for a more general element a 2 ƒ! , the formal sum
P

ak=k!

typically does not give a well-defined element of ƒ! ).

For each � 2
Ln�1

iD0 H2i.M Iƒ
0
!/, we will now define an �–deformed quantum mul-

tiplication �� , which makes H�.M; ƒ!/ into a ƒ! –algebra. Our reason for only
considering even-dimensional classes � is that it will allow us to obtain an algebra
which is commutative by restricting �� to the even-dimensional part of H�.M; ƒ!/.
Additionally, orientation-related issues would make it difficult to obtain results such as
Corollary 3.7 below if we did not require � to be even-dimensional.

Given a class A 2H2.M IZ/ and classes a1; : : : ; ak 2H�.M Iƒ
0
!/ with k � 3, let

ha1; : : : ; aki0;k;A

denote the Gromov–Witten invariant from Ruan and Tian [54], Fukaya and Ono [23],
Liu and Tian [36] and Ruan [53] enumerating (in the appropriate virtual sense) genus
zero J –holomorphic curves uW S2!M representing A with k freely varying marked
points z1; : : : ; zk such that u.zi/ 2Ni , where J is a generic almost complex structure
compatible with ! and the Ni are generic cycles representing the ai . (Recall that this
invariant is multilinear in the ai , so may be expressed in terms of invariants in which
each inserted homology class is homogeneous.) Let fc1; : : : ; cr g be a homogeneous
basis for H�.M IQ/, with Poincaré dual basis fc1; : : : ; cr g (ie ci \ cj D ı

j
i where \

is the Poincaré intersection pairing). The operation ��W H�.M Iƒ!/˝H�.M Iƒ!/!
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H�.M Iƒ!/ is then obtained by extending linearly from the formula

(3) x �� y D
X

A2H2.M IZ/

1X
kD0

1

k!

rX
jD1

hx;y; cj ; �; : : : ; �„ ƒ‚ …
k

i0;kC3;AT hŒ!�;Aicj :

The reader may verify the fact that the above formula does indeed give a well-defined
element of H�.M Iƒ!/; in any event this follows from what is done later in Section 7.
As seen in Kontsevich and Manin [34, Section 4], the fact that �� is associative follows
from properties of Gromov–Witten invariants (in particular the composition law) that
are proven in [54] and elsewhere.

If we write �D �D C �
0 where �D 2H2n�2.M Iƒ

0
!/ and �0 2

Ln�2
iD0 H2i.M Iƒ

0
!/,

the divisor axiom5 for Gromov–Witten invariants shows that

x �� y D
X

A2H2.M IZ/

1X
kD0

1

k!

rX
iD1

hx;y; cj ; �
0; : : : ; �0„ ƒ‚ …

k

i0;kC3;A exp.�D \A/T hŒ!�;Aicj :

In particular if � 2H2n�2.M Iƒ
0
!/ we simply have

x �� y D
X

A2H2.M IZ/

rX
jD1

hx;y; cj i0;3;A exp.�\A/T hŒ!�;Aicj :

3 Hamiltonian Floer theory and its deformations

We fix our notation and conventions for Hamiltonian Floer theory. Let H W S1�M!R
be a smooth function (here and below the circle S1 will be identified with R=Z). Our
convention will be that the (time-dependent) Hamiltonian vector field XH associated
to H is given by

�XH .t;� /! D�d.H.t; � //:

This is consistent with the convention generally used in the papers of Entov and
Polterovich, but opposite to that used by Oh and by the present author in earlier papers;
various signs appearing below will accordingly differ from those in corresponding
results from those papers.

The Hamiltonian isotopy generated by the vector field XH will be denoted f�t
H
gt2R

(with �0
H

equal to the identity). The path f�t
H
g0�t�1 determines an element in

eHam.M; !/, denoted z�H .

5Recall that the divisor axiom (see McDuff and Salamon [44, Proposition 7.5.6]) asserts that if ckC1 2

H2n�2.M IQ/ then one has the relation hc1; : : : ; ck ; ckC1i0;kC1;A D .ckC1 \A/hc1; : : : ; cki0;k;A .
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Let L0M be the space of contractible loops in M , and

AL0M D
f.
; v/ j 
 2 L0M; vW D2!M; vj@D2 D 
 g

.
; v/� .
 0; v0/, 
 D 
 0 and
R

D2 v�! D
R

D2 v0�!
:

(In this paper the Hamiltonian Floer complex will be treated as just Z2 –graded; since
we do not impose a Z–grading, we will not incorporate the first Chern class of M into
the definition of AL0M as is often done.)

P .H /D f 
 2 L0M j P
 .t/DXH .t; 
 .t//gDefine

zP .H /D f Œ
; v� 2AL0M j 
 2 P .H /g:and

Thus zP .H / is the set of critical points of the action functional

AH .Œ
; v�/D�

Z
D2

v�!C

Z 1

0

H.t; 
 .t// dt:

Assume that H is nondegenerate in the usual sense that, for each p 2 Fix.�1
H
/, the

linearization dp�
1
H
W TpM ! TpM does not have 1 as an eigenvalue. We then have a

map

�W zP .H /! f˙1g

�.Œ
; v�/D sign det.Id�dp�
1
H /:defined by

As an abelian group, the Floer complex of H is then defined by

CF.H /D

� X
Œ
;v�2 zP.H /

aŒ
;v�Œ
; v�

ˇ̌̌̌
aŒ
;v� 2C; .8C 2R/.#fŒ
; v� j aŒ
;v� ¤ 0;AH .Œ
; v�/ > C g<1/

�
:

We thus have CF.H /D CFev.H /˚CFodd.H /

where CFev.H /D

� X
Œ
;v�2 zP.H /

aŒ
;v�Œ
; v� 2 CF.H /

ˇ̌̌̌
aŒ
;v� ¤ 0) �.Œ
; v�/DC1

�

and CFodd.H /D

� X
Œ
;v�2 zP.H /

aŒ
;v�Œ
; v� 2 CF.H /

ˇ̌̌̌
aŒ
;v� ¤ 0) �.Œ
; v�/D�1

�
:

For any g 2 �! choose an arbitrary Ag 2 �2.M / such that hŒ!�;Agi D g . Then
CF.H / has the structure of a ƒ! module, via the action�X

aiT
gi

�
�

�X
bŒ
;v�Œ
; v�

�
D

X
aibŒ
;v�Œ
; v # Ag�:
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Note that ƒ! and CF.H / are completed in the “opposite directions”; this is an artifact
of the negative sign in the formula for AH .

3.1 Homotopy classes of cylinders

Let H˙W S
1�M !R be two nondegenerate Hamiltonians and let 
�; 
C 2P .H˙/.

Define �2.

�; 
C/ to be the set of path components of the space of C 0 maps

uW Œ�1;1��S1!M obeying u.f˙1g�S1/D 
˙ .

Let uW R�S1!M be a C 1 map such that (where s is the R–variable on R�S1 )

u.s; � /! 
˙ uniformlyI

@u

@s
.s; � /! 0 in L2

I

@u

@t
.s; � /!XH˙

in L2 as s!˙1:

Then u extends continuously to a map uW Œ�1;1��S1!M with u.f˙1g�S1/D


˙ , so that u represents some class C 2 �2.

�; 
C/.

Write

�2
cl.M Iƒ

0
!/D

� 1X
iD1

�iT
gi

ˇ̌̌̌
�i 2�

2.M IC/; d�i D 0; 0� gi%1; gi 2 �!

�
:

It is a straightforward consequence of Stokes’ theorem that, if � 2�2.M IC/ is any
closed complexified 2–form on M , the quantity

R
R�S1 u�� (which is easily seen to

be finite by our asymptotic assumptions) depends only on the homotopy class C and
not on the representative u. Accordingly, for C 2 �2.


�; 
C/ and for � 2�2.M IC/
with d� D 0 we denote Z

C

� WD

Z
R�S1

u��

where u is any representative of C as described above. Consequently, for any � 2
�2

cl.M; ƒ0
!/ and any 
˙ 2 P .H /, C 2 �2.


�; 
C/, we have a well-defined valueZ
C

� D

1X
iD1

�Z
C

�i

�
T gi 2ƒ0

! :

Given three periodic orbits 
0; 
1; 
2 we have a “concatenation” map

�2.
0; 
1/��2.
1; 
2/! �2.
0; 
2/

.C�;CC/ 7! C� # CC
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where C� # CC is the equivalence class of a map wW Œ�1;�1��S1!M defined
(for the sake of definiteness) as follows. Let u; vW Œ�1;1��S1!M be arbitrary
representatives of, respectively, C� and CC , and define wW Œ�1;1��S1!M by

w.s; t/D

(
u.� log.�s/; t/ s � 0;

v.log.s/; t/ s � 0

(here we’ve extended the natural logarithm to a continuous map logW Œ0;1�! Œ�1;1�;
the definition is consistent at s D 0 since by assumption u.1; � /D v.�1; � /D 
1 ).

Evidently, if � 2�2.M Iƒ0
!/, C� 2 �2.
0; 
1/;CC 2 �2.
1; 
2/, then

(4)
Z

C�#CC

� D

Z
C�

� C

Z
CC

�:

Another important map on �2.

�; 
C/ is the Maslov map

x�W �2.

�; 
C/! Z:

To define it, let C 2�2.

�; 
C/ and let uW Œ�1;1��S1 be an arbitrary representative

of C . Since 
� is by assumption contractible, choose any disc vW D2 !M with
vj@D2 D 
� . Glue the negative end of u to the boundary of v along 
� to form a new
disc u # vW D2!M , now with u # vj@D2 D 
C . Now define

x�.C /D �CZ.

C; v # u/��CZ.


�; v/:

Here the Conley–Zehnder index �CZ is defined as usual (see Salamon [55, Section 2]):
for 
 2 P .H / and vW D2 !M with vj@D2 D 
 , symplectically trivialize v�TM

over D2 , and let �CZ.
; v/ be the Conley–Zehnder index (in the sense of Robbin and
Salamon [52, Remark 5.4]) of the path of symplectic matrices which represent the
linearizations dp�

t
H

in terms of this trivialization. The quantity x�.C / is easily seen to
be independent of the various choices involved and to obey

x�.C�#CC/D x�.C�/C x�.CC/ .C� 2 �2.
0; 
1/;CC 2 �2.
1; 
2//:

3.2 Differentials

An S1 –family J D fJtgt2S1 of !–compatible almost complex structures on M

induces an S1 –family of metrics and hence an L2 metric on AL0M in a standard way.
The negative gradient flow equation for the action functional AH with respect to this
metric asks for a map uW R�S1!M obeying

(5) x@J ;H u WD
@u

@s
CJ.t;u.s; t//

�
@u

@t
�XH .t;u.s; t//

�
D 0:
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For a fixed 
�; 
C 2 P .H / and C 2 �2.

�; 
C/ write6

�M.
�; 
C;C /D

8̂<̂
:uW R�S1

!M

ˇ̌̌̌
ˇ̌̌ x@J ;H uD 0;

R
R�S1

ˇ̌
@u
@s

ˇ̌2
<1;

u.s; � /! 
˙ as s!˙1;

Œu�D C 2 �2.

�; 
C/

9>=>; :
Where R acts by s–translation, let

M.
�; 
C;C /D �M.
�; 
C;C /=R:

This latter space has a standard Gromov compactification CM.
�; 
C;C / (by broken
trajectories and sphere bubbles), and in Fukaya and Ono [23, Theorem 19.14] this
compactification CM.
�; 
C;C / is endowed with an oriented Kuranishi structure
with corners, of dimension x�.C /� 1; moreover as C varies the various Kuranishi
structures are compatible with gluing maps in an appropriate sense made precise in [23,
Addendum 19.16] (see also Liu and Tian [37, Section 4] for an alternative construction).
In particular, if x�.C /D 1 the zero set of a generic multisection sC associated to this
Kuranishi structure consists of finitely many points each with a corresponding rational
multiplicity, and the sum of these rational multiplicities gives a value which we denote

js�1
C .0/j:

(See Fukaya, Oh, Ohta and Ono [21, Appendix A] for a general introduction to
Kuranishi structures. Very briefly, a Kuranishi structure on a compact space Z identifies
a neighborhood Up of each p 2 Z with a quotient by a finite group �p of the
zero locus of some �p –equivariant smooth map spW Vp ! Ep where the smooth
manifold with corners Vp and the finite-dimensional vector space Ep both carry �p –
actions. The multisection sC amounts to the data of suitably compatible multivalued
perturbations s0pi

of spi
for certain specially chosen pi (as in [21, Lemma A1.11])

such that the Upi
cover Z , with each s0pi

transverse to zero (so that s0pi
vanishes at

just finitely many points when the virtual dimension is zero). [21, Definition A1.27]
then prescribes multiplicities at each point in the vanishing locus, and what we denote
by js�1

C
.0/j is the sum of these multiplicities.)

Readers who do not like Kuranishi structures but are willing to restrict themselves to
the case where .M; !/ is strongly semipositive (ie for any A 2 �2.M / with 2� n�

hc1.TM /;Ai< 0 we have
R
A ! � 0) can instead follow the constructions of Hofer and

Salamon [29]. Provided that the pair .J;H / belongs to a suitable residual set the space
M.
�; 
C;C / will be a an oriented manifold of dimension x�.C /� 1, consisting in
the case that x�.C /D 1 of finitely many points; what we denote by js�1

C
.0/j should

6To avoid clutter we are omitting J and H from the notation for �M.
�; 
C;C / ; we hope this will
not cause confusion.
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then be interpreted as the signed number of points in M.
�; 
C;C /. (The section sC

can in this context be regarded as the restriction of the operator x@J ;H to the space of
cylinders representing C 2 �2.


�; 
C/.)

The standard Floer differential is the operator @0W CF.H / ! CF.H / obtained by
extending linearly from the formula

@0Œ

�; v��D

X

C2P.H /

X
C2�2.


�;
C/;
x�.C /D1

js�1
C .0/jŒ
C; v�#C �:

(Here and below the notation Œ
C; v�#C � is to be interpreted in the obvious way
using concatenation; of course since the equivalence relation defining elements Œ
; v�
of zP .H / is much weaker than homotopy the assignment C 7! Œ
C; v�#C � will be
many-to-one.)

3.2.1 Small deformations We consider additionally a whole family of Floer differ-
entials, @� , where � takes values in the set �2

cl.M Iƒ
0
!/ of closed Novikov-ring valued

2–forms. For � D
P

i �iT
gi 2�2

cl.M; ƒ0
!/ and any 
˙ 2 P .H /, C 2 �2.


�; 
C/,
we have a well-defined valueZ

C

� D

1X
iD1

�Z
C

�i

�
T gi 2ƒ0

! :

For any such � , we then set

@� Œ

�; v��D

X

C2P.H /

X
C2�2.


�;
C/;
x�.C /D1

js�1
C .0/j exp

�Z
C

�
�
Œ
C; v�#C �:

Said differently, for each cylinder u counted by the Floer boundary operator, if u is
ordinarily (with respect to the standard boundary operator @0 ) counted with weight
�.u/, we instead count u with weight �.u/ exp

R
R�S1 u�� 2ƒ0

! .

Proposition 3.1 If � 2�2
cl.M; ƒ0

!/, then @2
�
D 0.

Proof This follows from the standard argument (together with Stokes’ theorem as
manifested in the formula (4)). Indeed, for Œ
�; v�� 2 zP .H /, @2

�
Œ
�; v�� is a formal

sum of generators Œ
C; vC� where 
C 2P .H / and �CZ.

C; vC/��CZ.


�; v�/D 2.
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The coefficient on Œ
C; vC� is equal toX
C2�2.


�;
C/;R
C !D

R
D2 v

C�!�
R
D2 v

��!

X

2P.H /

X
C�2�2.


�;
 /;

CC2�2.
;

C/;

C�#CCDC;
x�.C˙/D1

js�1
C�
.0/jjs�1

CC
.0/j exp

�Z
C�

�
�

exp
�Z

CC

�
�
;

which in turn is, by (4), equal to

(6)
X

C2�2.

�;
C/;R

C !D
R
D2 v

C�!�
R
D2 v

��!

exp
�Z

C

�
� X

2P.H /

X
C�2�2.


�;
 /;

CC2�2.
;

C/;

C�#CCDC;
x�.C˙/D1

js�1
C�
.0/jjs�1

CC
.0/j:

But as in Fukaya and Ono [23, Lemma 20.2], for each C 2 �2.

�; 
C/ appearing

in the sum, the multisection sC associated to the 1–dimensional oriented Kuranishi
structure on CM.
�; 
C;C / has

@s�1
C .0/D

[

;C�;CCW

C�#CCDC

s�1
C�
.0/� s�1

CC
.0/:

So since the sum of the multiplicities of the points of @s�1
C
.0/ is zero it follows that

the sum in (6) is zero.

(In the semipositive case where one does not use Kuranishi structures the same argument
works, as in [29, Theorem 5.1]: for C 2 �2.


�; 
C/ the space M.
�; 
C;C / has a
compactification which is an oriented manifold with boundary equal to[


;C�;CCW
C�#CCDC

M.
�; 
;C�/�M.
; 
C;CC/;

which again causes the sum in (6) to be zero.)

All of the boundary operators @� as � varies are different; however one can show7 that
if �; � 0 are cohomologous then the complexes built from @� ; @� 0 are isomorphic in the
category of R–filtered chain complexes. Thus we have introduced a way of deforming
the standard Floer complex .CF.H /; @0/ by a class in H 2.M Iƒ0

!/, or equivalently
(by Poincaré duality) by a class in H2n�2.M Iƒ

0
!/. In what follows the boundary

operator denoted @� above will instead be called @PDŒ��;H . Presently, these deformed

7using arguments similar to those in the proof of Usher [63, Lemma 3.8]—we omit the proof since we
will not need to use the statement
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boundary operators will be generalized to the case where PDŒ� � is replaced by a more
general even-dimensional homology class.

3.2.2 Big deformations This generalization entails counting Floer trajectories which
obey certain incidence conditions, but requires more subtle technical arguments than
one might initially imagine. Conceptually, the relevant technical hurdles form a proper
subset of the technical hurdles overcome in the construction of A1–algebras associated
to appropriate Lagrangian submanifolds in Fukaya, Oh, Ohta and Ono [21], so we
could just appeal to that work. In the interests of not limiting the audience of this part
of the paper to those with a working knowledge of [21], though, we provide a more
self-contained description which in the case where .M; !/ is strongly semipositive
does not make any use of Kuranishi structures. If .M; !/ is not strongly semipositive
then one of course will need Kuranishi structures or something similar to deal with
multiple covers of spheres of negative Chern number, but at least in principle one could
use constructions just at the level of Fukaya and Ono [23] rather than [21].

Let us first give an indication of the basic strategy, with some explanations of where
the novel technical issues arise. Suppose for simplicity that we wish to deform the
boundary operator by a class � D f�ŒN � where f W N !M is a smooth map of a
closed, 2d –dimensional manifold N , where 2d � 2n� 4. The plan is to construct

@�;H D

1X
kD0

1

k!
@�;H ;k ;

where, as a first (inaccurate) approximation, each @�;k counts (modulo reparametriza-
tion) solutions u to (5) having k freely varying marked points z1; : : : ; zk with incidence
conditions u.zi/ 2 f .N /: in fiber product notation, we wish to count elements of the
spaces

(7)
�� �M.
�; 
CIC /� .R�S1/k

�
.ev1;:::;evk/

�.f;:::;f /N k
�ı

R

where evi denotes evaluation at the i –th marked point: evi.u; z1; : : : ; zk/ D u.zi/.
The astute reader will already have noticed a transversality problem in (7) occurring
when k � 2 and when two of the marked points zi collide. One way of dealing with
such transversality problems is to use the fiber product construction for Kuranishi
structures, as described in [21, Section A1.2], but we will also describe a more direct
approach.

Note that in Gromov–Witten theory, one can avoid these sorts of transversality problems
by, instead of requiring that u.zi/2f .N / for all i , requiring that u.zi/2fi.N / where
the various fi.N / are in general position with respect to each other. However in the
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Floer-theoretic context this strategy will not work, essentially because Floer theory
involves moduli spaces have that boundary of codimension 1 rather than 2, so that
varying the constraint cycle N in a one-parameter family will typically cause the
operations to change. If we apply the typical gluing argument to a chain of two Floer
trajectories each obeying one incidence constraint on the cycle N , then we are led
to considering Floer trajectories with two incidence conditions both on N , which is
not equivalent to considering Floer trajectories with incidence conditions on different
cycles homologous to N . This suggests that, in order to ensure that @�;H ı @�;H D 0,
the operator @�;H ;2 should enumerate elements of a space such as the k D 2 version
of (7); however, as noted earlier, this space suffers from transversality problems.

Thus, in defining the operators @�;H ;k , there are two competing issues to address: on
the one hand we wish the @�;H ;k to be suitably compatible with the gluing arguments
that are typically used to show that Floer differentials have square zero, while on
the other hand we need to maintain transversality as marked points approach each
other. While the preceding two paragraphs suggest that these goals are in tension, it
is reasonable to expect that the problem can be solved: the former issue relates to
behavior when marked points are far away from each other, while the latter relates to
behavior when marked points are near to each other, so one can hope to resolve both
issues simultaneously. We now set about fulfilling this hope.

For any positive integer k , we have an evaluation map

evk W C
0.R�S1;M /� .R�S1/k !M k

which figures in (7). Our basic strategy is to (simultaneously for all k ) modify these
maps evk to maps �evk with respect to which the fiber products as in (7) can be made
transverse, while preserving the appropriate compatibility under gluing of cylinders. We
construct �evk along the following lines. For a smooth positive function ˇW R! .0;1/

with ˇ.s/! 0 as s!˙1, for 1� i � k define �ˇ;i W .R�S1/k !R by

(8) �ˇ;i..s1; t1/; : : : ; .sk ; tk//D

i�1X
jD1

ˇ.si � sj /:

Then where f �
V
g�2R denotes the flow of a suitable vector field V , we will set, for a map

uW R�S1!M and an element EzD .z1; : : : ; zk/D ..s1; t1/; : : : ; .sk ; tk//2 .R�S1/k ,

(9) �evk.u; Ez/D
�
u.z1/;  

�ˇ;2.Ez/

V
.u.z2//; : : : ;  

�ˇ;k.Ez/

V
.u.zk//

�
:

Thus the evaluation map at the i –th marked point is modified by flowing along the
vector field V by an amount dependent on the locations of all previous marked points
relative to the i –th one. (As �ˇ;1.Ez/D 0 we have omitted it from the notation above.)
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Remark 3.2 Here is an intuitive description of why this approach can be expected
to address the issues described above. Consider first the issue mentioned earlier of
nontransversality as marked points approach each other. Notice that the definition (8)
of the functions �ˇ;i ensures that, if Ez 2 .R�S1/k has zi1

D zi2
where i1 < i2 , then

�ˇ;i2
.Ez/ > �ˇ;i1

.Ez/. Thus whereas the original fiber product (7) would have had an
excess-dimensional stratum in which the (equal) marked points z1 and z2 are both
mapped to the same point on f .N /, by replacing evk with �evk we force z1 and z2 to
be connected to different points on f .N / by prescribed-length flowlines of the vector
field V as z1 and z2 approach each other (at least as long as they are not mapped to
zeros of V , as we will arrange), and this will (for generic choices of the auxiliary data)
prevent the diagonals in .R�S1/k from contributing problematic additional strata.

At the same time, these perturbations of the evaluation maps are compatible with the
gluing maps that arise in the standard proofs that the Floer differential has square zero.
This is essentially because of the fact that ˇ.s/!0 as s!˙1, so that distinct marked
points on the domain do not influence each other in the limit as the distance between
them approaches infinity. Somewhat more precisely, a typical end of one of these moduli
spaces involves a sequence of Floer trajectories u.n/W R�S1!M splitting into two
trajectories u˙W R�S1!M , with the marked points z

.n/
1
D .s

.n/
1
; t
.n/
1
/; : : : ; z

.n/

k
D

.s
.n/

k
; t
.n/

k
/ distributing themselves among the two components; write i�

1
< � � � < i�

l�
for the indices in f1; : : : ; kg of the marked points which limit to points on the domain
of u� , and iC

1
< � � �< iC

lC
for those indices corresponding to marked points which limit

to points on the domain of uC . Thus for some T
.n/
C ;T .n/

� 2R with T
.n/
C �T .n/

� !1

there will be
zi�

1
; : : : ; zi�

l�
; z

i
C

1

; : : : ; z
i
C

lC

2R�S1

such that, where for T 2R �T W R�S1!R�S1 denotes the map .s; t/ 7! .sCT; t/,
we have u.n/ ı �T n

˙
! u˙ uniformly on compact subsets, and

��1

T
.n/

˙

.z
.n/

i˙
j

/! z
i˙
j

:

Note in particular that
s
.n/

ij
C � s

.n/
il
� !1

as n!1 for each j ; l . Consequently, in view of the definition (8), we will have for
each j D 1; : : : ; l˙ ,

�ˇ;j .zi˙
1

; : : : ; z
i˙
l
˙

/D lim
n!1

�
ˇ;i˙
j

.z
.n/
1
; : : : ; z

.n/

k
/:

Again, this statement can roughly be interpreted as meaning that our perturbations to
the incidence conditions behave compatibly under gluing of broken trajectories, as is
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required for the usual statement that one-dimensional spaces of unparametrized Floer
trajectories have boundaries given by unions of products of zero-dimensional spaces of
trajectories and that therefore the boundary operator squares to zero.

We now begin to make these statements more precise. By Thom [59, Théorème II.29],
we may fix once and for all a basis for

Ln�2
jD0 H2j .M IQ/, say with m elements, each

member of which may be represented by an embedding fi W Ni!M where Ni is a
closed smooth oriented manifold, say of dimension 2d.i/ (1 � i � m). We should
emphasize that we consider the fi to be chosen at the very outset of the construction
(before, for instance, we have chosen a Hamiltonian or an almost complex structure),
and we will not really make a full investigation of the extent to which our constructions
are independent of fi up to appropriate isomorphism. At least at the level of the
homology ring, our main results do imply such independence; however we do not
address (and do not need to address) whether a different choice of the fi would give
rise to different deformed spectral invariants.8

Definition 3.3 A Hamiltonian H W S1 �M ! R is strongly nondegenerate if, for
each p 2 Fix.�1

H
/,

� the linearization dp�
1
H
W TpM ! TpM does not have 1 as an eigenvalue, and

� the orbit f�t
H
.p/ j t 2 Œ0; 1�g is disjoint from each submanifold fi.Ni/.

A standard argument shows that the space of strongly nondegenerate H is residual in
the C l –topology for any 2� l �1.

Let J l denote the space of S1 –families of !–compatible almost complex structures
of class C l . Let gW M ! R be a Morse function g all of whose critical points are
disjoint from the various fi.Ni/. For a positive integer l let V l denote the space of
C l gradient-like vector fields V for g—in other words, those V for which there are
coordinate charts near each critical point of g in terms of which V vanishes linearly,
while dg.V / < 0 on the complement of the critical points of g . Thus if V 2 V l then
V has no nontrivial periodic orbits, and zero locus of V is precisely the set Crit.g/ of
critical points of g , which in particular is disjoint from each fi.Ni/. For V 2 V l let
f �

V
g�2R denote the flow generated by V .

Meanwhile fix a strongly nondegenerate Hamiltonian H0 , and let Hl denote a small
ball around H0 in the space of C lC1 Hamiltonians H W S1 �M !R which coincide
to order two with H0 at the 1–periodic orbits of XH0

. Finally choose a Banach

8In the version of this construction that appears in Fukaya, Oh, Ohta and Ono [20], a result stating that
the deformed spectral invariants depend only on the homology class � appears as Theorem 7.7(2).
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space . zB; k � k/ of functions R!R which is dense in L2 and all of whose elements
belong to C1.RIR/ (for definiteness let us follow Floer [17, Section 5] and use for zB
the completion of C1

0
.RIR/ with respect to a norm of the form

P1
kD0 �kk � kCk

for sufficiently rapidly decreasing �k , with �0 D 1) and let B denote the space of
functions of the form ˇ.s/D e�s2

.1Cf .s// for f 2 zB with kf k< 1. Thus B has an
obvious identification with an open set in a Banach space and so is a Banach manifold;
moreover all of its elements are smooth, positive functions ˇW R! .0; 2/ which decay
in Gaussian fashion at ˙1.

The data of V 2 V l and ˇ 2 B give rise to functions �ˇ;i W .R � S1/k ! R and�evk W C
0.R�S1/k � .R�S1/k !M k as in (8) and (9) above.

Write Al D J l �Hl � J l � B , equipped with the topology coming from the C l

topology on the first three factors and the topology mentioned in the previous paragraph
on the last factor, and let A D

T1
lD2 Al , with the topology coming from the C1–

topology on the first three factors. Thus each Al is a Banach manifold and A is a
Frechet manifold.

Given aD .J;H;V; ˇ/2Al , 
�; 
C2P .H /, C 2�2.

�; 
C/ and ID .i1; : : : ; ik/2

f1; : : : ;mgk (where k 2 Z�0 ), let�Ma.
�; 
C;C INI /

D

�
.u; Ez; n1; : : : ; nk/

2 �M.
�; 
C;C /� .R�S1/k �

kY
jD1

Nij

ˇ̌̌̌ �evk.u; z1; : : : ; zk/

D .fi1
.n1/; : : : ; fik

.nk//

�
:

Again, the map �evk is determined by ˇ and V via (9).

Note that since the functions �ˇ;i W .R�S1/k !R of (8) obey

�ˇ;i.�T .z1/; : : : ; �T .zk//D �ˇ;i.z1; : : : ; zk/;

the spaces �Ma.
�; 
C;C INI / admit R–actions induced by translation of the domain.
These R–actions are free except in the degenerate case where 
� D 
C , k D 0, and
C 2 �2.


�; 
�/ is the trivial homotopy class. Let

Ma.
�; 
C;C INI /D �Ma.
�; 
C;C INI /=R:

Recalling that the dimension of the manifold Ni is 2d.i/ where d.i/ � n� 2, for
I D .i1; : : : ; ik/ 2 f1; : : : ;mg

k let

ı.I/D

kX
jD1

.2n� 2� 2d.ij //:
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We have:

Proposition 3.4 Assume that .M; !/ is strongly semipositive. Then there is a residual
subset Areg �A such that for each aD .J;H;V; ˇ/ 2Areg the following holds:

(i) Each moduli space �Ma.
�; 
C;C INI / is a union of a smooth oriented man-
ifold of dimension x�.C /� ı.I/ together with spaces which are contained in
smooth manifolds of dimension at most x�.C /� ı.I/� 2.

(ii) When x�.C /� ı.I/D 1, the quotient Ma.
�; 
C;C INI / consists of finitely
many points; we denote the oriented number of these points by js�1

C;I
.0/j.

(iii) When x�.C /�ı.I/D2, the quotient Ma.
�; 
C;C INI / has a compactification
which is a smooth oriented 1–manifold with boundary @Ma.
�; 
C;C INI /

given by

(10)
a


;C�;CCW
C�#CCDC

� a
S�f1;:::;kg

Ma.
�; 
;C�INJ�.I;S//�M
a.
; 
C;CCINJC.I;S//

�
:

Here for I D .i1; : : : ; ik/ 2 f1; : : : ;mg
k and S � f1; : : : ; kg (say with #S D l )

we denote by J�.I;S/ the element of f1; : : : ;mgl consisting of the entries im
with m 2 S (taken in order) and by JC.I;S/ the element of f1; : : : ;mgk�l

consisting of the entries im with m 2 f1; : : : ; kg nS .

The proof of Proposition 3.4 is outlined in Appendix A; the basic scheme of the proof is
fairly standard but there are some tricky details to address regarding various strata in the
compactifications of the moduli spaces. To connect (iii) above to Remark 3.2, the set S

corresponds to what would be denoted there by f i�
1
; : : : ; i�

l�
g; thus S corresponds to

the set of marked points which fall onto the first component of a broken trajectory,
while f1; : : : ; kg nS corresponds to those which fall onto the last component.

To generalize to the nonsemipositive case (in which one has problems arising from the
bubbling of multiply covered spheres of negative Chern number), one can put Kuranishi
structures with boundary and corners on the Gromov–Floer compactifications of the
moduli spaces Ma.
�; 
C;C INI / using the techniques of Fukaya and Ono [23].
Alternately, and we would say somewhat more naturally (though it requires more
machinery), one can use the constructions of Kuranishi structures on (unperturbed)
fiber products from Fukaya, Oh, Ohta and Ono [21]. Choose any strongly nondegenerate
Hamiltonian H and an S1 –family J of !–compatible almost complex structures. For

�; 
C 2 P .H / and C 2 �2.


�; 
C/, denote�Mk.

�; 
C;C /D �M.
�; 
C;C /� .R�S1/k :
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Where again R acts on each factor by translation of the first variable, we have a quotient

Mk.

�; 
C;C /D �Mk.


�; 
C;C /=R

whose compactification CMk.

�; 
C;C /, carries an oriented Kuranishi structure

with corners (this can be shown by adapting the construction of [21, Section 7.1]
from the Lagrangian to the Hamiltonian context). Moreover, we have evaluation maps
ev1; : : : ; evk W CMk.


�; 
C;C /!M (evi is given by evaluating at the i –th marked
point; in other words, for Œu; z1; : : : ; zk � in the dense subset Mk.


�; 
C;C / we have
evi.Œu; z1; : : : ; zk �/D u.zi/) which are weakly submersive (see [21, Definition A1.13]
for the definition), in view of which, for any I D .i1; : : : ; ik/, there is (as explained in
[21, Section A1.2]) an oriented Kuranishi structure with corners on the fiber product

M.
�; 
C;C INI / WD CMk.

�; 
C;C /.ev1;:::;evk/ �.fi1

;:::;fik
/ .Ni1

� � � � �Nik
/:

Where I D .i1; : : : ; ik/, this Kuranishi structure has dimension

dimM.
�; 
C;C INi1
; : : : ;Nik

/D x�.C /� 1� ı.I/;

and just as in Proposition 3.4(iv) the codimension-one stratum of its boundary consists
of the interior of

(11)
a


;C�;CCW
C�#CCDC

� a
S�f1;:::;kg

M.
�; 
;C�INJ�.I;S//�M.
; 
C;CCINJC.I;S//

�
;

where the notation J˙.I;S/ has the same meaning as in (10).

In the case that x�.C /D 1C ı.I/, let sC;I denote the multisection associated to the
Kuranishi structure on M.
�; 
C;C INI /, and let js�1

C;I
.0/j denote the sum of the

rational multiplicities of the points of the (zero-dimensional) vanishing locus of sC;I .

With this preparation regarding the relevant moduli spaces, we can now explain how
to deform the standard Floer differential by a general homology class of even codi-
mension. Recall that at the outset of the construction we have specified smooth
embeddings fi W Ni!M (i D 1; : : : ;m) of smooth 2d.i/–dimensional manifolds Ni

such that the classes ci D fi�ŒNi � represent a basis for
Ln�2

iD0 H2i.M IQ/. For any
� 2

Ln�1
iD0 H2i.M Iƒ

0
!/, let � 2�2

cl.M Iƒ
0
!/ be Poincaré dual to the degree–.2n�2/

component of �, and write the lower-dimensional part of � as

��PDŒ� �D
mX

iD1

zici 2

n�2M
iD0

H2i.M Iƒ
0
!/
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(so zi 2ƒ
0
! ). For any I D .i1; : : : ; ik/ 2 f1; : : : ;mg

k , let

zI D zi1
� � � zim

:

Either choose .J;H;V; ˇ/2Areg as in Proposition 3.4, or choose a strongly nondegen-
erate Hamiltonian H and an S1 –family of almost complex structures J for input into
the Kuranishi structure construction described after Proposition 3.4; in either case this
gives rise to curve counts js�1

C;I
.0/j. Given two elements Œ
�; v��; Œ
C; vC� 2 zP .H /,

consider the expression

(12) h@�;H Œ
�; v��; Œ
C; vC�i

D

1X
kD0

 X
C2�2.


�;
C/W

Œ
C;vC�DŒ
C;v�#C �

X
I2f1;:::;mgk W
x�.C /Dı.I /C1

1

k!
js�1

C;I .0/j exp
�Z

C

�
�
zI

!

Proposition 3.5 Only finitely many nonzero terms appear in the sum defining (12).
Consequently we may define an endomorphism

@�;H W CF.H /! CF.H /

by extending ƒ! –linearly from

@�;H Œ
�; v��D
X

Œ
C;vC�2 zP.H /

h@�;H Œ
�; v��; Œ
C; vC�iŒ
C; vC�:

Proof The condition that Œ
C; vC� D Œ
C; v�#C � is equivalent to the statement
that

R
C ! D

R
D2 v

C�! �
R

D2 v
��! . A standard computation shows that any element

of M.
�; 
C;C / has energy precisely equal to AH .Œ

�; v��/�AH .Œ


C; vC�/ DR
C !C

R 1
0 .H.t; 


�.t//�H.t; 
C.t/// dt . Gromov–Floer compactness then implies
that there are just finitely many homotopy classes C 2 �2.


�; 
C/ with
R

C ! DR
D2 v

C�! �
R

D2 v
��! which have M.
�; 
C;C /¤¿. Thus there are only finitely

many C which contribute nonzero terms in (12).

Let �0 be the maximal value of x�.C / over these finitely many C . For any k and
I � f1; : : : ;mgk contributing to (12) we have ı.I/ � �0 � 1. But we also have
ı.I/ � 2k since each d.ij / � n � 2, so all nonzero terms appearing in (12) have
k � 1

2
.�0� 1/. Since the union of the sets f1; : : : ;mgk for these values of k is finite,

this shows that there are only finitely many possible choices of I which can contribute
a nonzero term to (12). This completes the proof that the right hand side of (12) is a
finite sum.

It quickly follows that @�;H Œ
�; v�� is a well-defined element of CF.H /; the relevant
finiteness condition is satisfied by the standard Gromov–Floer compactness argument,

Geometry & Topology, Volume 15 (2011)



1342 Michael Usher

owing to the fact that an element of M.
�; 
C;C / has energy AH .Œ

�; v��/ �

AH .Œ

C; vC�/. It is easy to see that we have @�;H .T gŒ
�; v��/D T g@�;H Œ
�; v��

for any g 2 �! , from which it follows that @�;H may be extended to a ƒ! –linear
operator on CF.H /.

Proposition 3.6 Given 
�; 
C 2 P .H /, C 2 �2.

�; 
C/, and k 2N , we have

(13)
kX

k�D0

X

2P.H /

X
C�2�2.


�;
 /;

CC2�2.
;

C/;

C�#CCDC

X
J�2f1;:::;mg

k� ;

JC2f1;:::;mg
k�k� ;

x�.C˙/Dı.J˙/C1

zJ�zJC

k�!.k�k�/!
js�1

C�;J�
.0/jjs�1

CC;JC
.0/jD0:

Proof Since the number of subsets of cardinality k� in f1; : : : ;kg is k!=.k�!.k�k�/!/,
the sum is equivalent to

1

k!

X

;C�;CC

X
J�;JC;S

zJ�zJC js
�1
C�;J�

.0/jjs�1
CC;JC

.0/j

where 
;C�;CC satisfy the same constraints as in (13), and where J�;JC are required
to be tuples of elements of f1; : : : ;mg of combined length k and S is a subset of
f1; : : : ; kg of cardinality equal to the length of the tuple J� .

Now the assignment .I;S/ 7! .J�.I;S/;JC.I;S/;S/ (notation as in (10)) is a bijec-
tion from the set ˚

.I;S/ j I � f1; : : : ;mgk ;S � f1; : : : ; kg
	

to the set of data .J�;JC;S/ as in the inner sum above, and if we have J˙.I
0;S 0/D

J˙.I;S/ then
zI D zJC.I;S/zJ�.I;S/ D zI 0 :

So the sum reduces to

1

k!

X
I2f1;:::;mgk

zI

X
S�f1;:::;kg

X

;C�;CC

js�1
C�;J�.I;S/

.0/jjs�1
CC;JC.I;S/

.0/j:

But by (10) the inner two sums, for any given I , enumerate with multiplicity the points
on the boundary of s�1

C;I
.0/, and so for each I the coefficient on zI is equal to zero.

Corollary 3.7 For any � 2�2
cl.M Iƒ

0
!/ and any c D

P
zici as above we have

.@�;H /2 D 0:
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Proof Denote the left hand side of (13) by rk.
�; 
C;C /. It is straightforward to see
that, in the sum defining .@�;H /2Œ
�; v��, the coefficient on Œ
C; vC� is

1X
kD0

1

k!

X
C2�2.


�;
C/;R
C !D

R
D2 v

C�!�
R
D2 v

��!

exp
�Z

C

�
�
rk.
�; 
C;C /:

So the corollary follows directly from the fact that each rk.

�; 
C;C / D 0 by

Proposition 3.6.

3.3 Other maps on the Floer complexes

For �;H as in the previous section (together with appropriate auxiliary data which are
suppressed from the notation), the data

c�;H D . zP .H /! P .H /;AH ; !; @
�;H /

comprise the structure of a “filtered Floer–Novikov complex” in the sense of Usher [60;
61], with Floer chain complex equal to CF.H / and boundary operator @�;H (since we
only consider a Z2 –grading, the grading and degree in the definition in [61] can just
be set equal to zero). Following those references, for any c D

P
cŒ
;v�Œ
; v� 2 CF.H /

we set

(14) `.c/DmaxfAH .Œ
; v�/ j cŒ
;v� ¤ 0g:

Also, for � 2R, let

CF�.H /D f c 2 CF.H / j `.c/� �g:

In the standard case � D 0, there are a variety of maps that can be defined on the
Floer complexes which formally count solutions to appropriate modifications of the
Floer equation (5). These maps have straightforward analogues when the deformation
parameter � is nontrivial; loosely speaking, the maps simply need to be modified in
the same way that the standard differential is modified. Our discussion will use the
framework of Kuranishi structures on fiber products of [21]. In the strongly semipositive
case one can instead use the approach described in Section 3.2.2 to achieve transversality
for the relevant fiber products in a more direct way; we omit the details of this, as the
arguments are essentially identical to those in Section 3.2.2. At least after restricting to
appropriate residual subsets of spaces of auxiliary data, this approach would give rise in
the strongly semipositive case to “Kuranishi-structure-free” proofs of all of the results
in the rest of Section 3 except for Theorem 3.15 (regarding Theorem 3.15, which is
used only for the results of Section 4 and not for the other main results of the paper;
see Remark 3.16).
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3.3.1 Continuation maps For example, given �, let H�;HCW S
1�M !R be two

strongly nondegenerate Hamiltonians, let zH W R�S1 �M !R be a smooth function
such that zH jfsg�S1�M DH� for s <�1 and zH jfsg�S1�M DHC for s > 1, and also
(for reasons that will become apparent later) choose an additional smooth function
KW R�S1 �M !R having support in Œ�1; 1��S1 �R.

Where fJ.s; t/g.s;t/2R�S1 is a family of !–compatible almost complex structures
with @J

@s
D 0 for jsj large, for C 2 �2.


�; 
C/ let N .
�; 
C;C; zH ;K/ denote the
space of finite energy solutions uW R�S1!M which represent C and obey

(15)
�
@u

@s
�XK .s; t;u.s; t//

�
CJ.s; t;u.s; t//

�
@u

@t
�X zH .s; t;u.s; t//

�
D 0:

As in [23, Section 20; 21, Chapter 7], the compactification CN .
�; 
C;C; zH ;K/ ad-
mits a Kuranishi structure with corners. The compactification CNk.


�; 
C;C; zH ;K/

of the space Nk.

�; 
C;C; zH ;K/DN .
�; 
C;C; zH ;K/� .R�S1/k also admits

such a structure, and the evaluation maps ev1; : : : ; evk W CNk.

�; 
C;C; zH ;K/!M

are weakly submersive. Recalling the maps fi W Ni ! M that were fixed above
Definition 3.3, it follows that for any I D .i1; : : : ; ik/ 2 f1; : : : ;mg

k the fiber product

Nk.

�; 
C;C; zH ;KINI /

D CNk.

�; 
C;C; zH ;K/.ev1;:::;evk/ �.fi1

;:::;fik
/ .Ni1

� � � � �Nik
/

has a Kuranishi structure with corners, with dimension x�.C /�ı.I/. Letting s zH ;K ;C;I

be the associated multisection, define

ˆ
�; zH ;K

W CF.H�/! CF.HC/

by extending ƒ! –linearly from

(16) ˆ
�; zH ;K

Œ
�; v��

D

X

C2P.HC/

X
C2�2.
�;
C/

1X
kD0

1

k!

X
I2f1;:::;mgk ;
x�.C /Dı.I /

js�1
zH ;K ;C;I

.0/j exp
�Z

C

�
�
zI Œ


C; v�#C �:

Some words are in order regarding why the formal sum right hand side of (16) validly
defines an element of CF.H /. Remark first of all that a direct computation shows that,
where

E.u/D

Z
R�S1

ˇ̌̌̌
@u

@s
�XK .s; t;u.s; t//

ˇ̌̌̌2
Js;t

ds dt
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and f zH ;KgD!.X zH ;XK /, any solution u to (15) with Œ
C; v�#u�D Œ
C; vC� obeys

(17) AH�.Œ

�; v��/�AHC.Œ


C; vC�/

DE.u/�

Z
R�S1

�
@ zH

@s
.s; t;u.s; t//�

@K

@t
.s; t;u.s; t//�f zH ;Kg.s; t;u.s; t//

�
ds dt:

Write

CC. zH ;K/D

Z 1
�1

Z 1

0

max
f.s;t/g�M

�
@ zH

@s
.s; t; � /�

@K

@t
.s; t; � /�f zH ;Kg.s; t; � /

�
ds dt

(note that the integrand is supported in Œ�1; 1��S1 by the construction of zH and K ).
Then (17) shows that, given Œ
�; v��; Œ
C; vC�, any cylinder u solving (15) with
u.s; � /!
˙ as s!˙1 and Œ
C; v�#u�D Œ
C; vC� obeys E.u/�AH�.Œ


�; v��/�

AHC.Œ

C; vC�/CCC. zH ;K/. Gromov–Floer compactness consequently shows that

there can be just finitely many homotopy classes C 2 �2.

�; 
C/ which contribute

to the coefficient of Œ
C; vC� in the formula (16) for ˆ
�; zH ;K

Œ
�; v��. So, as was
the case with the boundary operator, the fact that ı.I/ � 2k shows that, since the
only pairs .C; I/ appearing in (16) have x�.C /D ı.I/, the coefficient on any given
Œ
C; vC� in the expression for ˆ

�; zH ;K
Œ
�; v�� is a sum over just finitely many

C; k; I and so is a well-defined element of ƒ0
! . Moreover, for any given m 2 R

and Œ
�; v�� 2 zP .H /, any cylinder u which contributes to a nonzero coefficient
in ˆ

�; zH ;K
Œ
�; v�� on some Œ
C; vC� with AHC.Œ


C; vC�/ � m necessarily has
E.u/� CC. zH ;K/CAH�.Œ


�; v��/�m. Consequently Gromov–Floer compactness
implies that there can be just finitely many Œ
C; vC� with AHC.Œ


C; vC�/�m which
appear with nonzero coefficient in ˆ

�; zH ;K
Œ
�; v��. This establishes the Novikov

finiteness condition for the right hand side of (15), and so justifies the definition of the
ƒ! –linear map ˆ

�; zH ;K
W CF.H�/! CF.HC/.

Moreover, the map ˆ
�; zH ;K

is a chain map (with respect to the differentials @�;H˙ );
this follows from a consideration of the boundaries of one-dimensional moduli spaces
Nk.


�; 
C;C; zH ;KINI / in much the same way as in the proof that .@�;H /2 D 0.

Observe also that, since we always have E.u/� 0, the estimate (17) shows that, for
all c 2 CF.H�/,

(18) `.ˆ
�; zH ;K

c/� `.c/CCC. zH ;K/:

Thus, on the filtered subcomplexes CF�.H�/ of CF.H�/, ˆ�; zH ;K
restricts as a map

ˆ
�; zH ;K

W CF�.H�/! CF�CCC. zH ;K /.HC/:
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A noteworthy special case is that in which the two Hamiltonians H˙ are normalized (ieR
M H˙.t; � /!

nD 0 for all t ) and induce paths f�t
H˙
gt2Œ0;1� in Ham.M; !/ which are

homotopic rel endpoints. In this case, as is done in Usher [63, page 20], we may choose
zH W R�S1 �M ! R so that the f�t

zH .s;� /g (�1 � s � 1) realize a homotopy from
f�t

H�
g to f�t

HC
g with each zH .s; � / normalized. If we then define K.s; t; � /W M !R

to be the unique mean zero function so that d
ds
.�t
zH .s;� /.p//DXK.s;t;� /.�

t
zH .s;� /.p//

for all p , it will hold that

@ zH

@s
.s; t; � /�

@K

@t
.s; t; � /�f zH ;Kg.s; t; � /D 0

(this is a well-known consequence of Banyaga [1, Proposition I.1.1] and the normaliza-
tion condition on H and K ).

So in this special case we have CC. zH ;K/ D 0, and so ˆ
�; zH ;K

W CF�.H�/ !
CF�.HC/. We can equally well construct a similar map in the opposite direction,
and then an exact reproduction of the proof of [63, Lemma 3.8] shows the following:

Proposition 3.8 Given a closed symplectic manifold .M; !/ and an element � 2Ln�1
iD0 H2i.M Iƒ

0
!/, let z� 2 eHam.M; !/ be represented by strongly nondegenerate,

normalized Hamiltonians H˙W S
1 �M !R. Then for a suitable choice of zH ;K , the

chain map
ˆ
�; zH ;K

W .CF.H�/; @�;H�/! .CF.HC/; @�;HC/

is an isomorphism of chain complexes which, for each � 2R, restricts as an isomor-
phism

CF�.H�/
� // CF�.HC/:

3.3.2 PSS isomorphisms The Piunikhin–Salamon–Schwarz isomorphism [49] from
Morse homology to Floer homology can likewise be adapted to the deformed complexes
.CF.H /; @�;H /. Given �2

Ln�1
iD0 H2i.M Iƒ

0
!/, choose a suitably generic pair consist-

ing of a Morse function f W M !R and a Riemannian metric g on M (with the stable
and unstable manifolds of f transverse both to each other and to the maps fi W Ni!M ).
The data .f;g/ determine a Morse complex CM.f Iƒ!/D

P
p2Crit.f /ƒ!hpi, with

differential @f counting negative gradient flowlines in the standard way.

For H a strongly nondegenerate Hamiltonian, the usual PSS map ˆPSS
0;H
W CM.f Iƒ!/!

CF.H / enumerates “spiked planes” comprising a half-infinite negative gradient flowline
�W .�1; 0�!M for f and a finite-energy map vW C!M obeying, with respect to
the standard polar coordinates r; � on C ,

(19) r
@v

@r
CJ.rei� ; v.rei� //

�
@v

@�
�
ˇ.r/

2�
XH .�=2�; v.rei� //

�
D 0
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with �.0/ D v.0/ where ˇW Œ0;1/ ! Œ0; 1� is a smooth monotone function with
ˇ.r/ D 0 for r < 1=2 and ˇ.r/ D 1 for r > 1. A straightforward modification of
this map along the lines of the construction of @�;H produces a deformed PSS map
ˆPSS
�;H
W CM.f Iƒ!/! CF.H /, as follows.

Given 
 2 P .H /, write �2.
 / for the set of relative homotopy classes of discs
uW D2 !M with vj@D2 D 
 . If C 2 �2.
 /, write x�.C / D �CZ.
;u/ where u is
any disc representing C . A finite-energy map vW C!M which obeys (19) and has
v.rei� /! 
 .�=2�/ as r !1 determines a class Œv� 2 �2.
 / (by rescaling the radial
coordinate to Œ0; 1/ and compactifying). For C 2 �2.
 /, let

MPSS
k .
;C /D f.v; Ez/ 2Map.C;M /�Ck

j v satisfies (19); Œv�D C g

and write its standard compactification as CMPSS
k
.
;C /, with evaluation maps evi

(1� i �k ) at the i –th marked point. Thus an element of CMPSS
k
.
;C / amounts to the

data of a tree consisting of a solution of (19) and some number (possibly zero) of pseu-
doholomorphic spheres and Floer trajectories, with total homotopy class C , together
with k marked points distributed among the domains of the various components.

Define e0WMPSS
k
.
;C / ! M by e0.v; Ez/ D v.0/ (and also use the notation e0

for the extension to the compactification CMPSS
k
.
;C /), and, for p 2 Crit.f /, let

jpW W
u.p/!M denote the inclusion of the unstable manifold of p . The appropriate

spaces of spiked planes can then be written as

MPSS
k .
;C Ip;NI /

D CMPSS
k .
;C /.e0;ev1;:::;evk/ �.jp;fi1

;:::;fik
/ .W

u.p/�Ni1
� � � � �Nik

/:

This fiber product has a Kuranishi structure of dimension x�.C /C indf .p/� n� ı.I/

where indf .p/ denotes the Morse index of the critical point p . Where sC;p;I is the
corresponding multisection, the PSS map ˆPSS

�;H
W CM.f Iƒ!/! CF.H / is defined by

extending ƒ! –linearly from

ˆPSS
�;H p D

1X
kD0

1

k!

X

2P.H /;
C2�2.
 /

X
I2f1;:::;mgk ;

x�.C /Cindf .p/DnCı.I /

js�1
C;p;I .0/j exp

�Z
C

�
�
zI Œ
;C �;

where of course
R

C � denotes the integral of the closed ƒ0
! –valued 2–form � over

any disc with boundary 
 representing the homotopy class C . The fact that the right
hand side of the above formula validly defines an element of CF.H / follows by an
argument very similar to that used earlier to establish the corresponding fact for the
continuation map ˆ

�; zH ;K
.
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In the other direction, one gets a similar map ‰PSS
�;H
W CF.H /! CM.f Iƒ!/ formally

enumerating configurations consisting of a finite-energy solution vW .C[f1g/nf0g!M

of the equation

(20) r
@v

@r
CJ.rei� ; v.rei� //

�
@v

@�
�
ˇ.r�1/

2�
XH .�=2�; v.rei� //

�
D 0

and a negative gradient flowline �W Œ0;1/!M for f , with �.0/D v.1/, v.rei� /!


 .�=2�/ as r ! 0 for some 
 2 P .H /, and such that v obeys appropriate incidence
conditions. Where, for p 2 Crit.f /, 
 2 P .H /, I � f1; : : : ;mgk , and C 2 �2.
 /,
we let xsC;p;I be the multisection associated to the Kuranishi structure on the space of
such configurations asymptotic to 
 , such that the map xv.rei� /D v.r�1ei� / repre-
sents C 2 �2.
 /, and obeying the incidence conditions corresponding to I , the map
‰PSS
�;H
W CF.H /! CM.f Iƒ!/ takes the form

‰PSS
�;H .Œ
;u�/

D

X
p2Crit.f /

1X
kD0

1

k!

X
C;p;I W

�x�.C /�indf .p/D�nCı.I /

jxs�1
C;p;I .0/j exp

�
�

Z
C

�
�
zI T

R
D2 u�!�

R
C !p:

(Note that, if v is a solution as above contributing to the term corresponding to
C 2 �2.
 /, then

R
D2 u�!�

R
C ! is the integral of ! over a sphere obtained by gluing

the capping disc u to the solution v along 
 , so that this quantity does belong to �! ).

The following summarizes some properties of the PSS maps:

Proposition 3.9 For suitable choices of auxiliary data involved in the construction of
the deformed PSS maps, the following properties hold:

(i) Both

ˆPSS
�;H W .CM.f Iƒ!/; @f /! .CF.H /; @�;H /

‰PSS
�;H W .CF.H /; @�;H /! .CM.f Iƒ!/; @f /and

are chain maps, which respect the Z2 –gradings of the respective complexes.

(ii) If H�;HC are two strongly nondegenerate Hamiltonians and if zH ;K are data as
in Section 3.3.1, resulting in a continuation map ˆ

�; zH ;K
W .CF.H�/; @�;H�/!

.CF.HC/; @�;HC/, the maps

ˆPSS
�;HC

and ˆ
�; zH ;K

ıˆPSS
�;H�
W .CM.f Iƒ!/; @f /! .CF.HC/; @�;HC/

are chain homotopic.
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(iii) The compositions ‰PSS
�;H
ıˆPSS

�;H
W .CM.f Iƒ!/; @f /! .CM.f Iƒ!/; @f / and

ˆPSS
�;H
ı‰PSS

�;H
W .CF.H /; @�;H /! .CF.H /; @�;H / are each chain homotopic to

the identity.

(iv) For x D
P1

iD1 xipiT
gi 2 CM.f Iƒ!/ (where pi 2 Crit.f /;xi 2C;gi 2 �! )

write

�.x/Dmaxf�gi j xi ¤ 0g:

`.ˆPSS
�;H x/� �.x/C

Z 1

0

max
M

H.t; � / dt;Then

where ` is defined in (14).

(v) For c 2 CF.H /,

`.c/� �.‰PSS
�;H c/C

Z 1

0

min
M

H.t; � / dt:

Proof Properties (i) and (ii) follow from standard gluing and cobordism arguments
as in Piunikhin–Salamon–Schwarz [49] and Lu [39]; the only new feature is the
presence of incidence conditions, which are handled in the same way as in the proof
that .@�;H /2 D 0. (The grading property is a straightforward consequence of the
definitions (in particular see the second displayed equation of Robbin and Salamon
[52, Remark 5.4]), taking into account that ı.I/ is always even.)

Consider the composition ‰PSS
�;H
ıˆPSS

�;H
. A gluing argument as in [49; 39, Proposi-

tion 4.6] shows that this composition is equal to a map � xH W CM.f Iƒ!/!CM.f Iƒ!/
given by

(21) � xH p

D

X
q2Crit.f /

1X
kD0

1

k!

X
A2�2.M /

X
I2f1;:::;mgk ;

2hc1.M /;AiCindf .p/�indf .q/Dı.I /

n. xH Ip; q;A; I/zI exp
�Z

C

�
�
T
R

C !q:

Here the rational number n. xH Ip; q;A; I/ formally enumerates triples .��;u; �C/
where

� ��W .�1; 0�!M , �CW Œ0;1/!M are negative gradient flowlines of f with
��.�/! p as � !�1 and �C.�/! q as � !1;

� uW C[ f1g!M is a solution to x@J ; xH uD 0 which represents A in �2.M /

and satisfies incidence conditions corresponding to I , for a suitable Hamiltonian
perturbation xH which vanishes near 0 and 1;

� u.0/D ��.0/ and u.1/D �C.0/.
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Meanwhile, a standard cobordism argument shows that the chain homotopy class of the
map � xH is independent of the Hamiltonian perturbation xH . Moreover, a cobordism
argument also shows that the chain homotopy class of � xH is unchanged if we replace
the cycles fi W Ni !M used for the incidence conditions I D f i1; : : : ; ikg with an
arbitrary family of choices

f.˛I
1 ; : : : ; ˛

I
k / j I 2 f1; : : : ;mg

k ; k � 0g

so that for each I; j the cycle ˛I
j represents the same homology class cij as does fij .

In particular, we can choose xH D 0, in which case the spherical component u of the
triple .��;u; �C/ is required to be J –holomorphic. There is then an S1 –action on the
relevant moduli spaces (induced by rotating the sphere) and as in Lu [39, Proposition
4.7] and Fukaya and Ono [23, page 1036], the fact that this action is locally free on all of
the spaces except those corresponding to a topologically trivial u implies that only the
class AD 0 2 �2.M / contributes nontrivially to �0 , and the only contributions come
from constant maps uW S2 !M to points x of the intersections W u.p/\W s.q/

(which have dimension indf .p/�indf .q/). Moreover, the point x must meet the cycles
˛I

1
; ˛I

k
; if these latter are mutually transverse to each other and to the W u.p/;W s.q/

(as we may and do choose them to be) this imposes a condition of codimension

kX
jD1

.2n� 2d.ij //D ı.I/C 2k:

So since the only terms in (21) corresponding to AD 0 have indf .p/� indf .q/D ı.I/
the only contributions to �0 (for these choices of the ˛I

j ) have k D 0, and so just as
in [49; 39, Proposition 4.7] we find that the map �0 is the identity.

The proof that ˆPSS
�;H
ı‰PSS

�;H
W .CF.H /; @�;H /! .CF.H /; @�;H / is chain homotopic

to the identity is just the same as that outlined in [49; 39] (note that to complete this
outline one needs to incorporate the gluing analysis of Oh and Zhu [47]): using the
appropriate gluing and cobordism arguments one finds that ˆPSS

�;H
ı‰PSS

�;H
is chain

homotopic to the map that in the notation of Section 3.3.1 would be denoted ˆ�; zH ;0 ,
with zH .s; t;m/DH.t;m/. But this latter map is the identity as in Fukaya and Ono
[23, (20.7)], since with the exception of the “trivial cylinders” u.s; t/D 
 .t/ all of the
cylinders which might contribute to it are members of orbits of free R–actions and so
do not arise in zero-dimensional moduli spaces. This completes the proof of part (iii).

As for (iv), note that in order for Œ
; v� to appear with nonzero coefficient in ˆPSS
�;H

p there
must exist a solution uW C!M to (19) asymptotic to 
 having

R
C u�! D

R
D2 v

�! .
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In this case a computation gives

AH .Œ
; v�/D�

Z
C

u�!C

Z 1

0

H.t; 
 .t// dt

D�E.u/C

Z 1

0

Z 1
0

ˇ0.r/H.t;u.re2�it // dr dt

�

Z 1

0

max
M

H.t; � / dt;

where we’ve used the facts that
R1

0 ˇ0.r/ dr D 1 and that E.u/ WD
R

C

ˇ̌
@u
@r

ˇ̌2
r dr d�

is nonnegative. Bearing in mind that the expression exp.
R

C �/zI belongs to ƒ0
! , so

that its action on CF.H / does not increase the value of `, this implies that, for any
p 2 Crit.f /, we have

`.ˆPSS
�;H p/�

Z 1

0

max
M

H.t; � / dt;

and then (iv) follows from obvious properties of the function `.

The proof of (v) is similar: For a term T gp to appear in ‰PSS
�;H

Œ
;u� there must be a
solution vW .C[f1g/ n f0g !M of (20), asymptotic to 
 as jzj ! 0, and havingZ

.C[f1g/nf0g
v�! D�

Z
D2

u�!Cg

For such a solution we findZ
.C[f1g/nf0g

v�!

DE.v/�

Z 1

0

H.t; 
 .t// dt �

Z 1

0

Z 1
0

d

dr

�
ˇ.r�1/

�
H.t; v.re2�it // dr dt

� �

Z 1

0

H.t; 
 .t// dt C

Z 1

0

min
M

H.t; � / dt:

Hence we obtain

g �

Z
D2

u�! �

Z 1

0

H.t; 
 .t// dt C

Z 1

0

min
M

H.t; � / dt

D�AH .Œ
;u�/C

Z 1

0

min
M

H.t; � / dt;

and then from the definitions of ‰�;H ; `; � we see that for any c 2 CF.H /,

�.‰�;H c/� `.c/�

Z 1

0

min
M

H.t; � / dt:
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3.3.3 Pair of pants products We now discuss the deformed versions of the pair-of-
pants product on Floer homology. We continue to regard as fixed the class � 2Ln�1

iD0 H2i.M Iƒ
0
!/ and the representing chains fi W Ni ! M and 2–form � 2

�2
cl.M Iƒ

0
!/.

In general, if H W S1�M !R is any Hamiltonian and if �W Œ0; 1�! Œ0; 1� is a smooth
monotone function with �.0/D 0, �.1/D 1, and �0.0/D �0.1/, define

H�.t;m/D �0.t/H.�.t/;m/:

Note that contractible 1–periodic orbits of XH� are just reparametrizations of con-
tractible 1–periodic orbits of XH , in view of which H� is strongly nondegenerate
if and only if H is. Since H and H� represent the same element of eHam.M; !/, if
H (hence also H� ) is normalized and strongly nondegenerate then the �–deformed
Floer complexes of H and H� are isomorphic as R–filtered chain complexes by
Proposition 3.8.

Fix a smooth monotone function �W Œ0; 1=2�! Œ0; 1� such that �.0/D 0, �.1=2/D 1,
and �0 vanishes to infinite order at both t D 0 and t D 1=2. Given smooth functions
H;KW S1 �M !R, define H˙KW S1 �M !R by

H˙K.t;m/D

(
�0.t/H.�.t/;m/ 0� t � 1=2;

�0.t � 1=2/K.�.t � 1=2/;m/ 1=2� t � 1:

The choice of � ensures that H˙K is well-defined and smooth; also, if H and K are
normalized then so is H˙K .

Be given two Hamiltonians H;KW S1 �M !R. For some small � > 0, we assume
that H.t; � /DK.t; � /D 0 for jt j � � ; this can be achieved by replacing H;K with
H�;K� as defined above for some �W Œ0; 1�! Œ0; 1� as above whose derivative vanishes
identically on Œ0; ��[ Œ1� �; 1�. We assume that H;K , and H˙K are each strongly
nondegenerate; a standard argument shows that this condition holds for generic pairs
.H;K/. We now explain the definition of the pair-of-pants product

�
Floer
� W CF.H /˝CF.K/! CF.H˙K/;

carefully arranging the details so that the product will behave well with respect to
the filtrations on the complexes. The construction of course closely resembles that in
Schwarz [57, Section 4.1], but we phrase it a bit differently, working always in terms
of an explicit smooth trivialization of the relevant bundles in order to facilitate the
introduction of incidence conditions.
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Let † denote the thrice-punctured sphere, and let †0�† be the compact submanifold
with boundary obtained by deleting from † small punctured-disc neighborhoods of
the punctures.

C0

�

0

1� �

0

C2

1� �

0

�
C1

A0

B

A1

Figure 1: The surface †0 , decomposed into annuli A0;A1 and a square
B . The thrice-punctured sphere † is obtained by adding cylindrical ends
.�1; 0��C0; .�1; 0��C1; Œ0;1/�C2 .

As in Figure 1, express †0 as a union of disjoint annuli A0;A1 Š Œ0; 1��S1 and a
square B Š Œ0; 1�� Œ0; 1�. For i D 0; 1 let ti be the angular (S1 DR=Z) coordinates
on the annuli A0;A1 ; values of the ti at certain points are indicated in the figure.
Consider the manifold †0 �M with projection p2W †0 �M !M , equipped with
the symplectic form !0 defined by

!0jA0�M D p�2! � d.H.t0; � / dt0/

!0jA1�M D p�2! � d.K.t1; � / dt1/

!0jB�M D p�2!:

Because of our assumption that H.t; � /DK.t; � /D 0 for jt j � � , the above definitions
of !0 are consistent on the overlaps .Ai \B/�M .

For any parametrization of the third boundary component C2 of †0 by a coordinate
t22R=Z with orientation and basepoint t2D0 as in the figure, the restriction !0jC2�M

will take the form
!0jC2�M D p�2!Cˇ.t2/^ dt2

where ˇW R=Z!�1.M /. By considering the horizontal distribution .TM /?!0 , one
finds that we will have ˇ.t2/D�d..H˙K/z�.t; � // for some reparametrizing function
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z�W Œ0; 1�! Œ0; 1�; indeed, we may and do choose the parametrization of C2 so that z�
is the identity and so

!0jC2�M D ! � d..H˙K/.t2;m/ dt2/:

Accordingly, where we view the thrice-punctured sphere † as obtained from †0 by
attaching cylindrical ends yCi D .�1; 0��Ci (i D 0; 1, where Ci D f0g �S1 �Ai )
and yC2 D Œ0;1/�C2 to the three boundary components C0;C1;C2 of †0 we may
define a closed 2–form y! 2�2.†�M / by

y!j†0�M D !0

y!j yC0
D p�2! � d.H.t; � / dt/

y!j yC1
D p�2! � d.K.t; � / dt/

y!j yC2
D p�2! � d..H˙K/.t; � / dt/:

Let H� T .†�M / be the y!–orthogonal complement of the vertical bundle TM �

T .†�M /. Thus we have a splitting T .†�M /DH˚TM ; given v 2 T .†�M /

write vvt for the component of v in the TM summand. Notice that it is a direct
consequence of the construction of y! that

(22) if vvt D 0 then �v y! D 0:

Let j W T†! T† be the standard complex structure and choose a smooth family
fJzgz2† of !–compatible almost complex structures on M , such that for z D .si ; ti/

on the ends yCi Š .�1; 0��S1 or Œ0;1/�S1 we have J.si ;ti / D J i
ti

for some one-
periodic families J i

t (i D 0; 1; 2). Given uW †! M , define U W †! † �M by
U.z/D .z;u.z//, and define the energy E.u/ as the integral of the 2–form eu on †
whose value eu.z/ 2 ^

2T �z † at z 2† is given by choosing a basis fe1; e2g for Tz†

with e2 D je1 , letting e1; e2 2 T �z † be the dual basis, and putting

eu.z/D
1
2

�
!..U�e1/

vt ;J.U�e1/
vt /C!..U�e2/

vt ;J.U�e2/
vt /
�

e1
^ e2:

Where again U.z/D .z;u.z// for uW †!M , if we have, for each z 2†; v 2 Tz†,

(23) J.U�v/
vt
D .U�j v/

vt ;

then (using (22)) if e1; e2 2 Tz† with e2 D je1 , we have

.U �y!/z D y!.U�e1;U�e2/e
1
^ e2
D y!..U�e1/

vt ; .U�e2/
vt /e1

^ e2
D eu.z/;

and hence

(24)
Z
†

U �y! DE.u/� 0 if E.u/ <1 and (23) holds:

Geometry & Topology, Volume 15 (2011)



Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms 1355

Now for a suitable zeroth order term Y , the equation (23) can be rewritten directly as
an equation for a map uW †!M of the form

duCJz.u/ ı du ı j CY .z;u/D 0:

Along the cylindrical ends yCi , one finds more specifically that (23) is equivalent to a
standard Floer equation:

@u

@s
CJ 0

t .u.s; t//

�
@u

@t
�XH .t;u.s; t//

�
D 0 on yC0

@u

@s
CJ 1

t .u.s; t//

�
@u

@t
�XK .t;u.s; t//

�
D 0 on yC1

@u

@s
CJ 2

t .u.s; t//

�
@u

@t
�XH ˙K .t;u.s; t//

�
D 0 on yC2:

In particular, a finite-energy solution u to (23) will necessarily be asymptotic to some

0 2 P .H / as s!�1 in yC0 ; to some 
1 2 P .K/ as s!�1 in yC1 ; and to some

2 2 P .H˙K/ as s!C1 in yC2 . Given such 
0; 
1; 
2 , let �2.
0; 
1I 
2/ denote
the set of relative homotopy classes of maps uW †!M with these asymptotics. If for
i D 0; 1 we choose discs vi W D

2!M with vi j@D2 D 
i , for any P 2 �2.
0; 
1I 
2/

we obtain a relative homotopy class of discs v0 # P # v1 bounding 
2 by gluing in the
obvious way.

Lemma 3.10 If uW † ! M represents P 2 �2.
0; 
1I 
2/ then where U.z/ D

.z;u.z// we haveZ
†

U �y! DAH .Œ
0; v0�/CAK .Œ
1; v1�/�AH ˙K .Œ
2; v0 # P # v1�/:

Proof Cap off the cylindrical ends yCi of † by discs Di (identified with fz2C[f1g j
jzj � 1g for i D 0; 1 and with fz 2 C [ f1g j jzj � 1g for i D 2) to form a copy
of S2 . Extend the form y! on †�M to a form z! on S2 �M by, where .r; 2� t/

are polar coordinates and ˇW Œ0; 1�! Œ0; 1� is a smooth monotone function equal to 0

for s < 1=3 and to s > 2=3, putting z!jD0�M D ! � d.ˇ.r2/H.t; � / dt/, z!jD1�M D

! � d.ˇ.r2/K.t; � / dt/, and z!jD2�M D ! � d.ˇ.r�2/H˙K.t; � / dt/.

Now for p 2M the map fpW S
2! S2�M defined by fp.z/D .z;p/ is easily seen

to haveZ
S2

f �p z! D

Z 1

0

H.t;p/ dt C

Z 1

0

K.t;p/ dt �

Z 1

0

.H˙K/.t;p/ dt D 0:
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Let v2W D2!M be any map such that, where I W D2!D2 is the orientation-reversing
diffeomorphism re2�it 7! r�1e2�it , the composition v2 ıI W D2!M represents the
relative homotopy class v0 # P # v1 in �2.
2/. The map zU W S2! S2 �M obtained
by combining the map U on † with the maps Vi W z 7! .z; vi.z// on Di for i D 0; 1; 2

has its projection to M homotopic to 0, soZ
S2

zU �z! D

Z
S2

f �p z! D 0:

But
Z

S2

zU �z! D

Z
†

U �y!C

Z
D0

V �0 .! � d.ˇ.r2/H.t; � / dt//

C

Z
D1

V �1 .! � d.ˇ.r2/K.t; � / dt//

C

Z
D2

V �2 .! � d.ˇ.r�2/H˙K.t; � / dt//

D

Z
†

U �y!�AH .Œ
0; v0�/�AK .Œ
1; v1�/CAH ˙K .Œ
2; v0 #P #v1�/;

as follows from an application of Stokes’ theorem.

Given P 2 �2.
0; 
1I 
2/, choose an arbitrary representative u of P and arbitrary
capping discs v0; v1W D

2!M for 
0; 
1 and set

x�.P /D �CZ.
2; v0 # u # v1/��CZ.
0; v0/��CZ.
1; v1/� n:

(This is easily seen to be independent of the choices of v0; v1 ). By Schwarz [56,
Theorem 3.3.11], at any finite energy solution u of (23) which represents the class
P 2 �2.
0; 
1I 
2/, the linearization of (23) is Fredholm of index x�.P /. Thus in the
usual way one obtains a Kuranishi structure with corners of dimension x�.P /C 2k on
the compactified moduli space CMk.
0; 
1; 
2;P / of such solutions with k marked
points, and, for I D .i1; : : : ; ik/ a Kuranishi structure with corners of dimension
x�.P /� ı.I/ on the fiber product

M.
0; 
1; 
2;P INI /DCMk.
0; 
1; 
2;P /.ev1;:::;evk/�.fi1
;:::;fik

/ .Ni1
�� � ��Nik

/:

Then where the associated multisections are denoted sP;I , the pair-of-pants product

�
Floer
� W CF.H /˝CF.K/! CF.H˙K/
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is defined by extending linearly from

Œ
0; v0��
Floer
� Œ
1; v1�

D

1X
kD0

1

k!

X

22P.H ˙K /;

P2�2.
0;
1I
2/

X
I2f1;:::;mgk ;
x�.P/Dı.I /

js�1
P;I .0/j exp

�Z
P

�
�
zI Œ
2; v0 # P # v1�:

We have:

Proposition 3.11 (i) �Floer
� is a chain map (with respect to the differential

@�;H ˝ 1C .�1/j�j1˝ @�;K

on the domain and @�;H ˙K on the range).

(ii) For �;� 2R, �Floer
� restricts as a map

�
Floer
� W CF�.H /˝CF�.K/! CF�C�.H˙K/:

Proof The first item follows by a standard gluing argument as in [56], combined
with the same analysis of incidence conditions as in the proof that .@�;H /2 D 0. The
second item follows from (24) and Lemma 3.10: indeed, M.
0; 
1; 
2;P INI / is
empty unless there is a representative of P which obeys (23), in which case (24) and
Lemma 3.10 show that

AH ˙K .Œ
2; v0 # P # v1�/�AH .Œ
0; v0�/CAH .Œ
1; v1�/:

The conclusion then follows directly from the definitions of �� and of the filtration.

Now consider, for generic Morse functions f;g; h, the composition

CM.f Iƒ!/˝CM.gIƒ!/
ˆPSS
�;H
˝ˆPSS

�;K // CF.H /˝CF.K/
�Floer
�

ss
CF.H˙K/

‰PSS
�;H ˙K

// CM.hIƒ!/:

A gluing argument shows that this map �Morse
� D‰PSS

�;H ˙K
ı�Floer

� ı .ˆPSS
�;H
˝ˆPSS

�;K
/ is

obtained by extending linearly from (for p 2 Crit.f /; q 2 Crit.g/)

p �Morse
� q

D

1X
kD0

1

k!

X
A2�2.M /;
r2Crit.h/

X
I2f1;:::;mgk ;

2c1.A/Cindf .p/Cindg.q/�indh.r/D2nCı.I /

nL.p; qI r;A; I/ exp
�Z

A

�
�
zI T

R
A !r:
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s Here nL.p; qI r;A; I/ enumerates solutions uW S2!M to an equation x@J ;LuD 0

for a suitable Hamiltonian perturbation L, which represent the class A 2 �2.M /, pass
through the unstable manifolds W u.pIf /;W u.qIg/ and the stable manifold W s.r I h/

and additionally satisfy incidence conditions corresponding to I D .i1; : : : ; ik/.

Now, a cobordism argument shows that the chain homotopy class of such a map is
independent of the Hamiltonian perturbation L, so the map on homology is unaffected
if we replace L in the above description by 0. The homologies of the Morse complexes
CM. � Iƒ!/ are of course canonically isomorphic to H�.M Iƒ!/, and so arguing as
in Piunikhin–Salamon–Schwarz [49, Section 5] we find that, on homology, the map
�Morse
� induces the map H�.M Iƒ!/˝H�.M Iƒ!/!H�.M Iƒ!/ which sends an

element a˝ b to the sum

X
kD0

1

k!

bX
jD1

X
A2�2.M /

X
I2f1;:::;mgk

ha; b; cj ; zi1
ci1
; : : : ; zik

cik
i0;kC3;A exp

�Z
C

�
�
T
R
A !cj

D

X
kD0

1

k!

bX
jD1

X
A2�2.M /

ha; b; cj ; �; : : : ; �i0;kC3;AT
R
A !cj ;

where fcj g
b
jD1

is a basis for H�.M Iƒ!/ with dual basis fcj g and where we recall
that recall that by definition � D PDŒ� �C

Pm
iD1 zici . But the last formula above is

precisely that for the �–deformed quantum product �� on H�.M Iƒ!/. This proves9:

Proposition 3.12 Where the homology of the complex .CF.H /; @�;H / is denoted by
HF.H /� , the map ˆPSS

�;H
W H�.M Iƒ!/!HF.H /� on homology induced by the chain

map ˆPSS
�;H
W CM.f Iƒ!/! CF.H / is an isomorphism of ƒ! –modules. Furthermore,

where �Floer
� is induced on homology by �Floer

� , we have a commutative diagram

H�.M Iƒ!/˝H�.M Iƒ!/

��

��

ˆPSS
�;H
˝ˆPSS

�;K // HF.H /�˝HF.K/�

�Floer
�

��
H�.M Iƒ!/

ˆPSS
�;H ˙K // HF.H˙K/�:

(Of course, the first sentence already follows from Proposition 3.9(iii), and shows that,
module-theoretically but not ring-theoretically, HF.H /� is independent of both H

and �.)

9To be precise we are implicitly using here the fact that the map H�.M Iƒ!/! HF.H / induced on
homology by the PSS chain map is independent of the Morse function used; this can be established by a
standard continuation-type argument that is left to the reader.
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3.4 Spectral invariants

For �2
Ln�1

iD0H2i.M Iƒ
0
!/ and a strongly nondegenerate Hamiltonian H W S1�M!R,

we have constructed the chain complex .CF.H /; @�;H / and a PSS isomorphism
ˆPSS
�;H
W H�.M Iƒ!/! HF.H /� to the homology HF.H /� of .CF.H /; @�;H /. Ac-

cordingly, for such data H; �, and for any class a 2H�.M Iƒ!/ n f0g, we may define
the �–deformed spectral invariant

�.aIH /� D inff`.c/ j c 2 CF.H /; Œc�DˆPSS
�;H a 2 HF.H /�g:

The finiteness of �.aIH /� follows from Proposition 3.13(iii) below (or, on more
general grounds, one could appeal to Usher [60, Theorem 1.3]).

Let us also introduce some notation pertaining to H�.M Iƒ!/. First a general element
a 2H�.M Iƒ!/ can be written as aD

P
g2�!

agT g where each ag 2H�.M IC/,
and we put

�.a/Dmaxf�g j ag ¤ 0g

(just as was done at the chain level in Proposition 3.9(iv)). Also, for aD
P

g2�!
agT g ,

b D
P

g2�!
bgT g , put

….a; b/D
X

g2�!

ag \ b�g

where \ denotes the Poincaré intersection pairing. It follows from standard properties
of Gromov–Witten invariants that

….a�� b; ŒM �/D….a; b/;

independently of �.

Recall also the definition of the Hofer norm on the space of continuous functions
H W S1 �M !R:

kHk D

Z 1

0

.max H.t; � /�min H.t; � // dt:

Proposition 3.13 The spectral invariants �. � I � /� have the following properties, for
any a; b 2H�.M Iƒ!/ n f0g:

(i) If r W S1!R is a smooth function then

�.aIH C r/� D �.aIH /�C

Z 1

0

r.t/ dt;

where .H C r/.t;m/DH.t;m/C r.t/.
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(ii) If H and K are both strongly nondegenerate, then

�.aIH /� � �.aIK/� �

Z 1

0

max
M
.H �K/.t; � / dt:

Consequently if H and K are both normalized then

j�.aIH /� � �.aIK/�j � kH �Kk;

and so the function �.aI � /� extends by continuity (with respect to k � k) to the
set of continuous H W S1 �M ! R such that each H.t; � / has mean zero for
all t , and then to all continuous H W S1 �M !R by (i) above.

(iii) �.a/C
R 1

0 min H.t; � / dt � �.aIH /� � �.a/C
R 1

0 max H.t; � / dt for all H 2

C.S1 �M;R/.

(iv) If H is strongly nondegenerate, there is c 2 CF.H / such that �.aIH /� D `.c/.

(v) If H and K both represent the same element in eHam.M; !/ and are both
normalized, then

�.aIH /� D �.aIK/�:

(vi) For any H;K 2 C.S1 �M;R/,

�.a�� bIH˙K/� � �.aIH /�C �.bIK/�:

(vii) Where xH .t;m/D�H.t; �t
H
.m// (so that �t

xH
D .�t

H
/�1 ), we have

�.aI xH /D� inff�.xIH / j….x; a/¤ 0g:

(viii) If � 2 Symp.M; !/ is any symplectomorphism then �.��aIH ı ��1/��� D

�.aIH /� .

Proof Since, in light of the results proven so far, most of these properties follow by
straightforwardly adapting arguments that are well-known in the �D 0 case (see eg
Oh [46]), we just briefly indicate the ingredients of the proofs.

(i) is an immediate consequence of the definitions, since replacing H by H C r does
not affect the Floer differential or the PSS map, and affects the function ` by addition
of
R 1

0 r.t/ dt . The first sentence of (ii) follows from Proposition 3.9(ii) combined
with the estimate (18) applied to the continuation map ˆ zH ;0;�

with zH .s; t;m/ D

ˇ.s/K.t;m/C .1�ˇ.s//H.t;m/ where ˇW R! Œ0; 1� is smooth and monotone with
ˇ.s/ D 0 for s < �1 and ˇ.s/ D 1 for s > 1. The second sentence of (ii) follows
from the first by interchanging the roles of H and K and then using the fact that a
mean-zero function cannot have a positive global minimum.
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(iii) follows directly from Proposition 3.9(iv)–(v), together with an approximation
argument via (ii) in case H is not strongly nondegenerate (the first inequality also uses
that ‰PSS

�;H
ıˆPSS

�;H
is the identity).

(iv) is a special case of the main result of [60].

As for (v), by continuity we may reduce to the case that H and K are both strongly
nondegenerate. But in that case the statement follows directly from Proposition 3.8
together with the naturality statement Proposition 3.9(ii).

In (vi), by continuity we may assume that H;K , and H˙K are all strongly nondegen-
erate (since generic pairs .H;K/ have this property). Moreover by (v) we can reduce
to the case that H.t; � / D K.t; � / D 0 for jt j < � where � > 0. But in that case the
result follows from Proposition 3.11 and Proposition 3.12.

Now consider (vii). The pairing …W H�.M Iƒ!/˝H�.M Iƒ!/!C is, for a suitably
generic Morse function f , induced on homology by the pairing

…Morse
W CM.�f Iƒ!/˝CM.f Iƒ!/!C X

g2�! ;
p2Crit.f /

ag;pT gp

!
˝

 X
g2�! ;

q2Crit.f /

bg;qT gq

!
7!

X
g2�! ;

p2Crit.f /

a�g;pbg;p:

(Of course we use here the fact that Crit.f /D Crit.�f /.)

Meanwhile, since elements of zP . xH / are precisely obtained from elements of zP .H / by
orientation reversal, and since formal negative gradient flowlines of A xH are equivalent
to formal negative gradient flowlines of AH with both s and t coordinates reversed10

the Floer complex .CF. xH /; @�;
xH / is the opposite complex to the Floer complex

.CF.H /; @�;H / in the sense defined in Usher [61]. For Œ
; v� 2 P .H / write Œx
 ; xv� 2
zP . xH / for the generator obtained by reversing the orientations of both 
 and v . Then,

as in [61, Section 1.4], we have a pairing

…Floer
W CF. xH /˝CF.H /!C

defined by

…Floer
� X
Œ
;v�2 zP.H /

aŒx
 ;xv�Œx
 ; xv�;
X

Œı;w�2 zP.H /

bŒı;w�Œı; w�

�
D

X
Œ
;v�2 zP.H /

aŒx
 ;xv�bŒ
;v�:

10Hence the integrals of 2–forms are the same, not opposite to each other, over the corresponding
flowlines.
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Now the spiked planes counted by the map ˆ�; xH W CM.�f Iƒ!/!CF. xH / are equiv-
alent to those counted by the map ‰�;H W CF. xH /! CM.f Iƒ!/, in view of which
one obtains the adjoint relation

…Morse.d; ‰�;H c/D…Floer.ˆ�; xH d; c/ .c 2 CF.H /; d 2 CM.�f Iƒ!//:

Consequently, where …Floer
W HF. xH /� ˝HF.H /� ! C is the pairing on homology

induced by …Floer , we find, for x; a 2H�.M Iƒ!/,

….x; a/D….x; ‰�;H .ˆ�;H a//D…Floer.ˆ�; xH x; ˆ�;H a/:

Consequently (vii) follows from the definition of � and [61, Corollary 1.3].

Finally, (viii) is a consequence of standard naturality properties of the construction
of � .

For z� 2 eHam.M; !/, a 2H�.M Iƒ!/ n f0g, � 2
Ln�1

iD0 H2i.M Iƒ
0
!/, define

c.aI z�/� D �.aIH /� where H W S1 �M !R is normalized and z� D z�H :

(By Proposition 3.13(v) the right hand side is independent of the choice of H with
z�H D z� .)

Proposition 3.14 Suppose that H W S1 �M ! R is a Hamiltonian with support
contained in a set of form S1 �S where S �M is a displaceable compact subset (ie
there is KW S1 �M !R with �1

K
.S/\S D¿). Suppose also that a 2H�.M Iƒ!/

obeys a�� aD a. Then

lim
k!1

c.aI z�
k

H /�

k
D
�
R 1

0

R
M H.t; � /!nR
M !n

:

Proof Given Proposition 3.13, the proof is essentially identical to that of Entov and
Polterovich [12, Proposition 3.3]. Namely, if K is as in the statement and is strongly
nondegenerate (as we can arrange, since the condition �1

K
.S/\S D¿ is an open one

on K ) one finds using Proposition 3.13(ii),(iv) that �.aI .sH ˙k/˙K/� is independent
of s , and hence that (by Proposition 3.13(i))

c.aI z�K ı z�
k

H /� D c.aI z�K /� � k

R 1
0

R
M H.t; � /!nR

M !n
:

Since the triangle inequality Proposition 3.13(vi) shows

jc.aI z�K ı z�
k

H /� � c.aI z�
k

H /�j � c.aI z�K /�C c.aI z�
�1

K /�;

the result follows.
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Typically, the spectral invariants �.aIH /� are difficult to compute. However, we will
now discuss an important exception. Let H W M ! R be a smooth function (which
we view as a time-independent Hamiltonian). Following the terminology in Usher
[62, Definition 4.3], we will call H slow if all contractible periodic orbits of the
Hamiltonian vector field XH having period at most 1 are constant, and flat if, at all
critical points p 2 Crit.H /, every periodic orbit of period at most 1 of the linearized
flow .�t

H
/�W TpM ! TpM is constant.

Also, given a class a 2H�.M Iƒ!/, write

aD

� X
g2�!

agT g

�
ŒM �C a0

where a0 2
L2n�1

iD0 Hi.M Iƒ!/, and set

�ŒM �.a/Dmaxf�g j ag ¤ 0g

(said differently, �ŒM �.a/D �.a� a0/).

The following generalizes Oh [45, Theorem IV] and Usher [62, Proposition 4.1], which
apply when �D 0 and aD ŒM �. The result plays an important role in the results of
the following Section 4, though it is not used for the other main theorems of this paper.

Theorem 3.15 Let H W M ! R be a slow autonomous Hamiltonian, and suppose
a 2H�.M Iƒ!/ n f0g. Then

�.aIH /� �max H C �ŒM �.a/:

In particular,

if �ŒM �.a/D �.a/, then �.aIH /� Dmax H C �.a/:

Proof The second sentence follows from the first together with Proposition 3.13(iii).

By [62, Theorem 4.5], our slow autonomous Hamiltonian H may be arbitrarily well-
approximated in C 0 norm by an autonomous Hamiltonian which is slow, flat, and
Morse; a further arbitrarily small perturbation yields an autonomous Hamiltonian which
is additionally strongly nondegenerate (which, given the “slow” property, just means
that its critical points miss the images of the fixed maps fi W Ni !M ). So by the
continuity statement Proposition 3.13(ii), it suffices to prove the theorem under the
assumption that H is slow, flat, Morse, and strongly nondegenerate.

Since H is slow, P .H / consists of the critical points of H , and for q 2 P .H / D

Crit.H / the set �2.q/ of relative homotopy classes of discs with boundary mapping
to q can be identified with �2.M /. Since H is flat, for A2�2.M / the corresponding
element Aq 2 �2.q/ has x�.Aq/D n� indH .q/C 2c1.A/.
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Choose a Morse function f W M !R having a unique local (and global) maximum at
a point p0 such that H.p0/Dmax H , and consider the PSS map

ˆPSS
�;H W CM.f Iƒ!/! CF.H /;

constructed using a family of almost complex structures fJ.rei� /grei�2C which is
independent of the angular coordinate � . This map is given by, for p 2 Crit.f /,

(25) ˆPSS
�;H p D

1X
kD0

1

k!

X
q2Crit.H /;A2�2.M /

X
I2f1;:::;mgk ;

indf .p/�indH .q/C2c1.A/Dı.I /

js�1
A;p;I .0/j exp

�Z
C

�
�
zI Œp;A�

Recall here that sA;p;I is the multisection associated to the Kuranishi structure on the
fiber product

MPSS
k .q;AIp;NI /DCMPSS

k .q;A/.e0;ev1;:::;evk/�.jp;f1;:::;fk/.W
u.p/�Ni1

�� � ��Nik
/

where CMPSS
k
.q;A/ is the compactification of the space of perturbed-holomorphic

planes with k marked points representing A and asymptotic to q ; thus a general
element of CMPSS

k
.q;A/ has one plane component and possibly a variety of other

components, each of which is either a cylindrical solution to the Floer equation for H

or is a J.r/–holomorphic sphere for some r .

Now MPSS
k
.q;AIp;NI / has an S1 –action given by angular rotation of each of the

plane and cylinder components of the domain. Just as in Fukaya and Ono [23,
Mainlemma 22.4], the fixed locus of this action is isolated; away from the fixed
locus the action is locally free, and so one can construct a Kuranishi structure of
dimension �1 on the quotient of the complement of the fixed locus and lift it to
MPSS

k
.q;AIp;NI / in order to deduce that, for suitable choices of the multisection

sA;p;I , the quantity js�1
A;p;I

.0/j receives contributions only from the fixed locus of
the S1 action on MPSS

k
.q;AIp;NI / (ie the locus for which all planar or cylindrical

components are independent of the angular coordinate). An object in this fixed locus
is equivalent to the data of: a solution xW Œ0;1/!M of rx0.r/D�ˇ.r/rH.x.r//

such that x.0/ 2W u.pIf / (corresponding to the C–component); some number of
negative gradient flowlines of H (corresponding to the cylindrical components); and
some number of spherical bubbles; all subject to appropriate incidence conditions. Now
a dimension count11 shows that, after perturbing by a generic multisection, all of the
spherical components will be constant (which forces A D 0 since the nonspherical
components are S1 –independent), that we must have kD 0 (so I D¿; the point is that

11This count uses the fact that the appropriate expected dimension is indf .p/� indH .q/C 2c1.A/�

ı.I/ , which depends on the fact that H is flat; if H were not flat then some of the conclusions that we
are drawing here would be false.
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now that the spiked planes map to 1–dimensional objects in M they will not satisfy
nontrivial incidence conditions) and that there will be no cylindrical components.

Consequently (25) simplifies to

ˆPSS;�p D
X

qWindf .p/�indH .q/D0

m.p; q/Œq; 0�;

where the number m.p; q/ enumerates pairs consisting of: a negative gradient flowline
yW .�1; 0�!M for f with y.t/! p as t !�1; and a solution xW Œ0;1/!M

to rx0.r/D�ˇ.r/rH.x.r// with x.r/! q as r !1 and x.0/D y.0/.

Now if pD p0 (the common global maximum of f and H ) the only such pair .y;x/
has both y and x equal to the constant map to p0 , and as in Oh [45, page 14] we obtain
m.p0;p0/D 1. On the other hand if p ¤ p0 , since the only solution xW Œ0;1/!M

with x.r/! p0 as r !1 is the constant map to p0 , if m.p;p0/ ¤ 0 we would
require a negative gradient flowline y for f asymptotic at �1 to p with y.0/D p0 ,
which is impossible since p0 is a maximum for f . Thus

m.p;p0/D

(
1 p D p0;

0 p ¤ p0:

We now prove the theorem. If �ŒM �.a/ D �1 the statement is vacuous, so assume
�ŒM �.a/ 2R. Since p0 is the unique local (and global) maximum of f , the class a is
represented by an element of the form

T ��ŒM �.a/�0p0C

X
p2Crit.f /;p¤p0

�pp;

where �0 D
P

g2�!
agT g 2 ƒ0

! has a0 ¤ 0, and where �p 2 ƒ! . Consequently,
ˆPSS
�;H

a 2 HF.H /� is represented by an element of the form

c D T ��ŒM �.a/�0Œp0; 0�C

�
terms involving q 2 P .H /

with q ¤ p0

�
:

Evidently we have `.c/� �ŒM �.a/CH.p0/.

Now any representative of ˆPSS
�;H

a will take the form cC@�;H d for some d 2CF.H /.
Just as in the proof of [45, Theorem 5.1] (and similarly to the situation with the PSS
map above), for a suitable choice of multisection the differential @�;H will only receive
contributions from Floer cylinders which are independent of the S1 –variable, ie from
negative gradient flowlines of H . But (other than a constant flowline, which has the
wrong index) there are no negative gradient flowlines for H asymptotic at C1 to
the maximum p0 , and so the coefficient on p0 in @�;H d is zero. Consequently the
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coefficient on Œp0; 0� in cC@�;H d is, independently of d , equal to T ��ŒM �.a/�0 , and
so we have, for all d ,

`.cC @�;H d/� �ŒM �.a/CH.p0/:

This immediately implies the theorem.

Remark 3.16 Removing the dependence on Kuranishi structures in Theorem 3.15 is
a somewhat more delicate matter than for the other results in this paper. The proof
of Theorem 3.15 relies on an argument that, if the Hamiltonian and almost complex
structure are taken independent of time, moduli spaces of spiked discs underlying the
PSS maps admit an action of S1 , and that therefore only spiked discs which are fixed
by this S1 action will appear in zero-dimensional moduli spaces if these spaces are
cut out transversely. If one does not want to use Kuranishi structures to achieve this
transversality, then one can adapt Theorem 7.4 of Floer, Hofer and Salamon [18] to
argue that time-independent H and J can be chosen so that the spaces are cut out
transversely except at multiply covered spiked discs. However, this is useful only if the
expected dimension of a space of simple discs underlying a space of multiply covered
discs never has expected dimension which is both positive and larger than the expected
dimension associated to the multiply covered discs. One can check that this can be
arranged provided that the minimal Chern number of .M; !/ is at least n. Thus under
this latter topological condition (which of course is stronger than strong semipositivity)
one can dispense with Kuranishi structures in the proof of Theorem 3.15 using the
techniques from Section 3.2.2; however in greater generality Kuranishi structures (or
something similar) do seem to be needed.

4 Capacity estimates

Recall that the �1 –sensitive Hofer–Zehnder capacity of the symplectic manifold .M; !/

is, by definition,

cıHZ.M; !/D supfmax H �min H jH W M !R is a slow Hamiltoniang:

We begin with the following easy consequence of Theorem 3.15.

Corollary 4.1 Fix C > 0 and � 2
Ln�1

iD0 H2i.M Iƒ
0
!/ and suppose that one of the

following two conditions holds:

(i) There are a; b 2H�.M Iƒ!/ n f0g such that, for all autonomous H W M !R,

.�.a;H /� � �ŒM �.a//C .�.b; xH /� � �ŒM �.b//� C:
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(ii) Where Œpt� is the standard generator of H0.M IC/, for all H W M !R,

�.Œpt�IH /�C �.Œpt�I xH /� � �C:

Then the �1 –sensitive Hofer–Zehnder capacity of .M; !/ obeys the bound

cıHZ.M /� C:

Proof We need to show that, under either of the given conditions, for any slow
autonomous Hamiltonian H W M !R we have max H �min H � C . Of course for
an autonomous Hamiltonian one has xH D�H , so this is equivalent to showing that
max H Cmax xH � C .

The sufficiency of (i) is then clear from Theorem 3.15, since if H is slow we have

max H Cmax xH � .�.aIH /� � �ŒM �.a//C .�.bI xH /� � �ŒM �.b//� C

by assumption.

Now instead assume (ii). Let H W M ! R be slow, and choose any � > 0. By
Proposition 3.13(vii) we have

�C � � inff �.aI xH /� j….a; Œpt�/¤ 0 g� inff �.bIH /� j….b; Œpt�/¤ 0 g;

so there are a; b with ….a; Œpt�/¤ 0, ….b; Œpt�/¤ 0, and �.aI xH /C�.bIH /� C C � .
But from the definition of the pairing … one sees easily that in order for ….a; Œpt�/¤ 0

one must have �ŒM �.a/� 0. This fact (for both a and b ) together with Theorem 3.15
gives

max H Cmax xH � C C �;

completing the proof since � was arbitrary.

Lemma 4.2 Suppose that .M; !/ admits a nonzero Gromov–Witten invariant of the
form

hŒpt�; a0; Œpt�; a1; : : : ; aki0;kC3;A;

where A 2H2.M IZ/=torsion and a0; : : : ; ak are rational homology classes of even
degree. Then for an open dense set of possible choices of the deformation parameter
� 2

Ln�1
iD0 H2i.M IC/ we have

�ŒM �.Œpt��� a0/� �hŒ!�;Ai:

Proof Since Œpt�\ Œpt�D 0, the class A appearing in the Gromov–Witten invariant
cannot be zero, in view of which none of the classes a0; : : : ; ak can be a multiple of
the fundamental class. Moreover using the divisor axiom we can reduce to the case
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that a1; : : : ; ak 2
Ln�2

iD0H2i.M IQ/. Choose a homogeneous basis �1; : : : ; �N for
the Z–module

Ln�1
iD0H2i.M IZ/=torsion, with �1; : : : ; �s (for some s <N ) a basis

for H2n�2.M IZ/=torsion. Using the multilinearity and symmetry properties of the
Gromov–Witten invariants we can assume that our nonzero Gromov–Witten invariant
takes the form

0¤ hŒpt�; a0; Œpt�; �sC1; : : : ; �sC1„ ƒ‚ …
˛sC1

; : : : ; �N ; : : : ; �N„ ƒ‚ …
˛N

i0;
P

j̨C3;A

for some ˛ D .˛sC1; : : : ; ˛N / 2NN�s .

For Ey D .y1; : : : ;ys/ 2Cs and Ez D .zsC1; : : : ; zN / 2CN�s , write

�. Ey; Ez/D

sX
iD1

yi�i C

NX
iDsC1

zi�i :

Consider the class Œpt���. Ey;Ez/ a0 2H�.M Iƒ!/ as a function of . Ey; Ez/. On expanding
out the formula for Œpt���. Ey;Ez/ a0 and using the symmetry properties of the Gromov–
Witten invariants, one finds that the coefficient on the fundamental class ŒM � is an
expression of the shapeX

g2�!

X
ˇD.ˇsC1;:::;ˇN /2NN�s

fg;ˇ. Ey/z
ˇsC1

sC1
� � � z

ˇN

N
T g

for a certain function fg;ˇ. Ey/ of Ey which is identically zero for all but finitely
many ˇ12; for the particular values g D hŒ!�;Ai and ˇ D ˛ we have� NY

iDsC1

.˛i !/

�
fhŒ!�;Ai;˛. Ey/

D

X
B2H2.M IZ/=tors;
hŒ!�;BiDhŒ!�;Ai

 
hŒpt�; a0; Œpt�; �sC1; : : : ; �sC1„ ƒ‚ …

˛sC1

; : : : ; �N ; : : : ; �N„ ƒ‚ …
˛N

i0;
P

j̨C3;B

�

� sY
kD1

.eyk /�k\B

�!
where \ denotes the Poincaré intersection pairing. Now since f�kg1�k�s forms a
basis for H2n�2.M IZ/=torsion, the map B 7! .�1 \B; : : : ; �s \B/ is injective.
Thus our assumed nonzero Gromov–Witten invariant implies that the coefficient onQs

kD1.e
yk /�k\A in the above sum is nonzero.

12This finiteness statement follows from the dimension axiom for Gromov–Witten invariants; see the
proof of Proposition 7.3 for the argument.
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This proves that the coefficient on T hŒ!�;AiŒM � in the expansion of Œpt���. Ey;Ez/ a0 is a
polynomial in eyi ; zi having a nonzero coefficient multiplying� sY

kD1

.eyk /�k\A

� NY
kDsC1

z
˛i

i :

In particular, since this polynomial is not the zero polynomial, there is an open dense
set of choices of . Ey; Ez/ at which the coefficient on T hŒ!�;AiŒM � does not vanish. It
then follows directly from the definition of �ŒM � that, for . Ey; Ez/ in this open dense set,
we have �ŒM �.Œpt���. Ey;Ez/ a0/� �hŒ!�;Ai.

Corollary 4.3 Suppose that .M; !/ admits a nonzero Gromov–Witten invariant of
the form

hŒpt�; a0; Œpt�; a1; : : : ; aki0;kC3;A;

where A 2H2.M IZ/=torsion and a0; : : : ; ak are rational homology classes of even
degree. Then

cıHZ.M; !/� hŒ!�;Ai:

Proof By Lemma 4.2, choose � 2
Ln�1

iD0 H2i.M IC/ so that 
 WD �ŒM �.Œpt��� a0/�

�hŒ!�;Ai. From the definition of the Poincaré pairing …, one then sees that

….Œpt��� T 
a0; Œpt�/D….T 
 .Œpt��� a0/; Œpt�/¤ 0:

Thus, for any normalized Hamiltonian H , we have by Proposition 3.13(vi), (vii),

�.Œpt�I xH /� D supf��.aIH /� j….a; Œpt�/¤ 0g

� ��.Œpt��� T 
a0IH /� � ��.Œpt�IH /� � �.T

a0I 0/�

(we’ve also used here that, for normalized H and any a; �, �.aIH˙0/� D �.aIH /� ,
which follows from Proposition 3.13(v) and the fact that H˙0 is normalized if H is).

Now recall that a0 is a rational homology class, so �.T 
a0I 0/� D �.T

a0/D�
 by

Proposition 3.13(iii). Thus we obtain, for any H ,

�.Œpt�I xH /�C �.Œpt�IH /� � 
 � �hŒ!�;Ai;

so the desired result follows from Case (ii) of Corollary 4.1.

Remark 4.4 More generally, one could consider the “mixed” invariants that in Ruan
and Tian [54] are denoted by ˆA;!;0.a1; : : : ; ak j b1; : : : ; bl/ (with k � 3); for this
invariant one specifies fixed marked points zi 2 S2 (1� i � k ) and generic representa-
tives ˛i of ai and ǰ of bj and formally enumerates pairs .u; fwj g1�j�l/ consisting

Geometry & Topology, Volume 15 (2011)



1370 Michael Usher

of a pseudoholomorphic representatives uW S2!M of A with u.zi/2˛i , u.wj /2 ǰ

for all i; j . A modification of the proof of Corollary 4.3 shows that, if there is a nonzero
invariant of the form ˆA;!;0.Œpt�; Œpt�; a3; : : : ; ak jb1; : : : ; bl/ (with the classes bj even-
dimensional) then we have the same estimate cıHZ.M; !/� hŒ!�;Ai. The key idea is
to modify the pair-of-pants product �Floer

� W CF.H /˝CF.K/! CF.H˙K/ to a map
�

Floer
�;Ea;I
W CF.H /˝CF.K/! CF.H˙K/ which counts pairs of pants uW †!M like

those in the definition of �Floer
� which additionally satisfy u.zi/ 2 ˛i for 3 � i � k

for some preassigned fixed marked points zi . (On homology, this has the same effect
as composing the pair-of-pants product and the quantum cap actions (as in Piunikhin–
Salamon–Schwarz [49, Example 3.4]) by each of the ai for 3� i � k .) On homology,
one obtains the same type of triangle inequality for the spectral invariants (as in
Proposition 3.13(vi)) for this operation as one does for the pair-of-pants product, as a
result of which the proof of Corollary 4.3 can be extended to this case. Details are left
to the reader.

5 Calabi quasimorphisms

Recall that if G is a group, a quasimorphism on G is a map �W G!R such that there
exists a constant C (called the defect of �) such that, for all g; h 2G , we have

j�.gh/��.g/��.h/j � C:

Proposition 5.1 Let .M; !/ be a closed symplectic manifold, let C > 0, let � 2Ln�1
iD0 H2i.M Iƒ

0
!/, and suppose that e2H�.M; ƒ!/ has the properties that e��eDe

and, for all z� 2 eHam.M; !/,

(26) �.eIH /�C �.eI xH /� � C

for all H W S1 �M ! R. Then the function c.eI � /�W eHam.M; !/! R defined by
c.eI z�/� D �.eIH /� for any normalized H with z�H D z� defines a quasimorphism
with defect at most C .

Proof Since if H and K are normalized then H˙K is also normalized with z�H ˙K D

z�K ı z�H , the triangle inequality Proposition 3.13(vi) immediately gives

c.eI z� ı z /� � c.eI z�/�C c.eI z /�

for all z�; z . On the other hand (26) shows, for all z� ,

c.eI z�/�C c.eI z�
�1
/� � C:
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So for any z�; z ,

c.eI z�/�C c.eI z /� D c.eI z�/�C c.eI z�
�1
ı z� ı z /�

� c.eI z�/�C c.eI z�
�1
/�C c.eI z� ı z /� � C C c.eI z� ı z /�;

proving the proposition.

If .U; !U / is an open symplectic manifold, let Ham.U; !U / denote the group of
diffeomorphisms of U which arise as time-one maps of the vector fields of compactly
supported time-dependent Hamiltonians, and let eHam.U; !U / be the universal cover.
Recall that there is a homomorphism CalU W eHam.U; !U /!R defined by

CalU .z�/

D

Z 1

0

H.t; � /!n for any compactly supported H W S1 �U !R such that z�H D z�:

(In particular, the right hand side is independent of H .) Following Entov and Poltero-
vich [12], we make the following definition:

Definition 5.2 If .M; !/ is a closed symplectic manifold and C > 0, a Calabi
quasimorphism on M is a map �W eHam.M; !/!R such that the following holds:

(i) � is a quasimorphism.

(ii) � is homogeneous: for all z� 2 eHam.M; !/ and l 2 Z we have

�.z�
l
/D l�.z�/:

(iii) If z� D z�H where H W S1�M !R has support contained in S1�U for some
displaceable open set U , then

�.z�/D

Z 1

0

Z
M

H.t; � /!n:

Recall that Banyaga [1, Théorème II.6.1] shows that eHam.M; !/ is perfect, and so
cannot admit any nontrivial homomorphism to R.

The following is an easy generalization of results of [12]:

Proposition 5.3 Suppose that � 2
Ln�1

iD0 H�.M Iƒ
0
!/ and that e 2H�.M; ƒ!/ has

the properties that e �� e D e and, for some C > 0, the estimate

�.eIH /�C �.eI xH /� � C
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holds for all normalized H W S1 �M !R. Then the formula

�e;�.z�/D
�
�

Z
M

!n
�

lim
k!1

c.e; z�
k
/�

k

defines a Calabi quasimorphism �e;�W eHam.M; !/! R on M with defect at most
2C

R
M !n . Also, �e;� obeys the following stability property (cf Entov, Polterovich

and Zapolsky [16, (3)]): If H;KW S1 �M !R are normalized thenZ 1

0

min
M
.H.t; � /�K.t; � // dt �

�1R
M !n

�
�.z�H /��.z�K /

�
�

Z 1

0

max
M
.H.t; � /�K.t; � // dt:

Proof The fact that �e;� is well-defined (ie that the relevant limit always exists)
follows from Proposition 5.1 and standard facts about subadditive sequences (see eg
Pólya and Szegő [50, Problem 99]). Given that �e;� is well-defined, the fact that it
satisfies the homogeneity condition (ii) is trivial. Quite generally (see Calegari [5,
Lemmas 2.21, 2.58]) the homogenization x� of a quasimorphism � is a quasimorphism,
with defect at most twice the defect of �; this establishes condition (i) and the estimate
on the defect for �e;� . The Calabi property (iii) is just a restatement of Proposition 3.14.
Finally, the stability property follows directly by homogenizing Proposition 3.13(ii).

For �2
Ln�1

iD0 H2i.M Iƒ
0
!/, we denote by QH.M; !/� the commutative ƒ! –algebra

whose underlying ƒ! –module is the even-degree homology
Ln

iD0 H2i.M Iƒ!/,
equipped with multiplication given by the deformed product �� .

Proposition 5.4 Suppose that there is a direct sum splitting of algebras QH.M; !/�D

F ˚A, and let e 2 F be the multiplicative identity for the subalgebra F . Then, for
some C > 0, we have

�.eIH /�C �.e; xH /� � C

for all Hamiltonians H W S1 �M !R.

The above three propositions immediately imply:

Corollary 5.5 If there is a direct sum splitting of algebras QH.M; !/� D F ˚A,
then where e is the multiplicative identity in F , the function �e;�W eHam.M; !/!R
defines a Calabi quasimorphism.

Proof of Proposition 5.4 Given what we have already done the argument is essen-
tially a duplicate of one in Entov and Polterovich [12, Section 3]; we include it for
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completeness. First, by [12, Lemma 3.2] there is a constant K such that, for any x 2F ,

�.x/C �.x�1/�K:

Recall from Proposition 3.13(iii) that �.xI 0/� D �.x/. Also, since e �� eD e , for any
a 2QH.M; !/� we have e �� a 2 F with �.e �� aIH /� � �.aIH /�C �.e/. We now
have, making liberal use of Proposition 3.13,

��.eI xH /� D inff�.aIH /� j….e; a/¤ 0g

� ��.e/C inff�.e �� aIH /� j….e �� a; ŒM �/¤ 0g

� ��.e/C inff�.eIH /� � �..e �� a/�1/ j….e �� a; ŒM �/¤ 0g

� ��.e/C �.eIH /� �KC inff�.e �� a/ j….e �� a; ŒM �/¤ 0g:

Since whenever ….x; ŒM �/¤ 0 we have �.x/� 0, we hence obtain

�.eIH /�C �.eI xH /� � �.e/CK;

completing the proof with C D �.e/CK .

Remark 5.6 It follows also that, under the assumptions of Corollary 5.5, the function
��;eW C.M / ! R defined by �.F / D limk!1 �.eI kF /�=k defines a symplectic
quasistate in the sense of Entov and Polterovich [13]; given Proposition 3.13 and
Corollary 5.5 the proof of the quasistate axioms for ��;e is an exact replication
of [13, Section 6].

The remainder of the paper (except the Appendix) will be concerned with studying cir-
cumstances in which the hypothesis of Corollary 5.5 and some other similar conditions
are satisfied.

6 Some algebraic input

In this section all rings are assumed commutative with unit, and a ring morphism
necessarily maps unit to unit. We deliberately do not assume our rings to be Noetherian.
If R is a ring and p 2 Spec R we use the customary notation Rp for the localization
at p (ie .R n p/�1R) and �.p/ for the residue field Rp=.pRp/.

The commutative algebra background that we require is mostly summarized by the
following two-pronged theorem (we imagine that little if any of this will be surprising
to an expert in commutative algebra). For our later purposes, the most important
implications of this theorem are that the subset of Spec R on which the condition
denoted (A3) holds is open and is equal to the subset on which (A4) holds, and similarly
that the subset on which (B3) holds is open and equal to that on which (B4) holds.
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Theorem 6.1 Let R be a ring containing Q as a subfield and let A be a commutative
R–algebra which, considered as an R–module, is finitely generated and free. Denote by
f W Spec A! Spec R the morphism of schemes induced by the unique ring morphism
R!A (sending r to r � 1).

(A) The following are equivalent, for a point p 2 Spec R:
(A1) The morphism f is unramified at every point in f �1.fpg/.
(A2) There exists a field extension �.p/!k such that the map Spec.A˝Rk/!

Spec k induced by the unique ring morphism k!A˝R k is unramified.
(A3) There exists a field extension �.p/! k such that A˝R k decomposes

as a direct sum13 of field extensions of k .
(A4) For every field extension �.p/! k the algebra A˝R k decomposes as a

direct sum of field extensions of k .

Moreover, the set U1 of points p 2 Spec R at which (A1) holds is open in
Spec R.

(B) The following are equivalent, for a point p 2 Spec R:
(B1) There is some q 2 Spec A such that f .q/D p and f W Spec A! Spec R

is unramified at q.
(B2) There exists a field extension �.p/!k such that the map Spec.A˝Rk/!

Spec k induced by the unique ring morphism k!A˝R k is unramified
at some point q 2 Spec.A˝R k/.

(B3) There exists a field extension �.p/ ! k and a direct sum splitting of
k –algebras A˝R k DK˚S where k!K is a field extension.

(B4) For every field extension �.p/ ! k there is a direct sum splitting of
k –algebras A˝R k DK˚S where k!K is a field extension.

Moreover, the set U2 of points p 2 Spec R at which (B1) holds is open in
Spec R.

Proof of Theorem 6.1 We begin with a lemma.

Lemma 6.2 The morphism f W Spec A! Spec R induced by R! A is flat, open,
and closed.

Of course, f W Spec A! Spec R is defined by sending a prime p in Spec A to its
preimage under R!A, ie to p\R. By definition, a morphism of schemes is open
(resp. closed) if and only if it is open (resp. closed) as a map of topological spaces.

13All direct sums in this theorem are direct sums in the category of algebras—thus both addition and
multiplication split component-wise
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Proof of Lemma 6.2 We first show that f is closed. Let V .I/Dfq2 Spec A j I � qg

be an arbitrary closed set in Spec A. The set V .I \R/D fp 2 Spec R j I \R � pg

is then closed in Spec R (of course we’ve identified R with its image in A), and
clearly f .V .I// D fq\R j q 2 V .I/g � V .I \R/. We claim that in fact equality
holds. Indeed, note that by Eisenbud [10, Corollary 4.5], A is integral over R. Let
p2 V .I \R/, so I \R� p. The Going Up theorem [10, Proposition 4.15] then shows
that there is q 2 Spec A such that q\R D p (ie f .q/ D p) and I � q. But this is
precisely the statement that p 2 f .V .I//. Thus f takes an arbitrary closed set V .I/

to the closed set V .I \R/, proving that f is closed.

Since A is finitely generated and free as an R–module, it is clearly flat as an R–
module, and then the standard fact that flat ring maps induce flat morphisms on Spec
(see Hartshorne [27, Proposition III.9.2.d]) shows that f is flat.

We now show that f is open. Since f is of finite presentation (as A is a finitely
presented R–algebra), Grothendieck [25, Corollaire 1.10.4] asserts that f is open if
and only if for any q2 Spec A and any generalization14 p0 of the point pD f .q/, there
is a generalization q0 of q so that f .q0/D p0 . But by Matsumura [42, 5.D] the Going
Down theorem holds for R!A because A is a flat R–module, and the statement of
the Going Down theorem precisely amounts to the existence of such a p0 .

Let U D fx 2 Spec A j f is unramified at xg:

By definition (see Grothendieck [26, 17.3.7]), f is unramified at x if and only if there
is a neighborhood U of x so that the restricted morphism f jU is unramified; thus our
set U is obviously open. Consequently Lemma 6.2 shows that f .U/ is open, and that
f .Spec A nU/ is closed. In the statement of Theorem 6.1, we evidently have

U2 D f .U/ and U1 D .Spec R/ nf .Spec A nU/:

This proves that these sets are open.

Now since R contains Q as a subfield, the residue fields �.p/ all have characteristic
zero, so they are perfect fields (that is, all of their extensions are separable). The
equivalence (A3),(A4) is then a quick consequence of the following basic theorem
about coefficient extensions of algebras over fields.

14If x and y are points in a topological space, x is called a generalization of y if we have y 2 fxg .
In the case where the topological space in question is the Spec of a ring, so that x and y are prime ideals,
this is equivalent to requiring that x � y .
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Theorem 6.3 (Bourbaki [4, V.6.7, Theorem 4]) If B is a finite-dimensional algebra
over a field k , the following are equivalent:

� There is one perfect field extension k 0 of k such that the k 0–algebra B˝k k 0 is
reduced (ie its only nilpotent element is 0).

� For every extension k! k 0 , the k 0–algebra B˝k k 0 is reduced.
� B decomposes as a direct sum BDK1˚� � �˚Kn where each Ki is an algebraic

field extension of k .

The equivalence (A3),(A4) follows immediately from this: if A˝R k is a direct sum
of k –extensions for one extension k of �.p/ (which will necessarily be of characteristic
zero and hence perfect), Theorem 6.3 shows that A˝R k will be reduced for all
extensions k of �.p/, and so any such A˝R k will be a direct sum of k –extensions
by another application of Theorem 6.3.

Meanwhile, the equivalence (B3),(B4) follows in a similar way from Entov and
Polterovich [14, Proposition 2.2(A)], which asserts that if k! k 0 is an extension of a
field of characteristic zero and B is a finite-dimensional algebra over k then B has
a field as a direct summand if and only if B˝k k 0 has a field as a direct summand.
In particular, this result shows that if (B3) holds then it holds with k D �.p/, and so
applying the result again proves (B4).

The equivalences (A1),(A2),(A4) and (B1))(B2) hold by the following argument:
Since f �1.fpg/D Spec.A˝R �.p//, we appeal to Grothendieck [26, Théorème 17.4.1,
(a),(d)], which asserts that f is unramified at q if and only if f �1.ff .q/g/ is
unramified over �.f .q// at q. It immediately follows that (A1))(A2) and (B1))(B2)
(just take k D �.p/) in view of the fact that a morphism of schemes is unramified if and
only if it is unramified at every point of the domain, as noted just after [26, Définition
17.3.7]. It also follows that the special case of (A2) in which k D �.p/ implies (A1),
in view of which the proof of the implications stated at the start of this paragraph will
be completed by the following lemma:

Lemma 6.4 Condition (A2) is equivalent to the following condition:

(A2 0 ) For every field extension �.p/! k , the map Spec.A˝R k/! Spec k induced
by the unique ring morphism k!A˝R k is unramified.

Moreover, we have the equivalence (A2 0 ),(A4).

Proof Let p 2 Spec R and let k be a field extension of �.p/ obeying the conclu-
sion of (A2). Write fk;pW Spec.A˝R k/ ! Spec k for the morphism induced by
k ! A˝R k . Since the latter ring map is flat (see Matsumura [42, 3.C]), fk;p is
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flat. Our assumption (A2) also states that fk;p is unramified. So by the implication
(c))(c’) of [26, Corollaire 17.6.2], the unique fiber of fk;p is the Spec of a direct
sum of finite extensions of k . Thus A˝R k is reduced. Of course k is perfect
since it has characteristic zero, so Theorem 6.3 shows that A˝R �.p/ is reduced, and
moreover decomposes as a direct sum of �.p/–extensions. Applying Theorem 6.3
again shows that if k 0 is now an arbitrary extension of k then A˝R k 0 is a direct sum
of k 0–extensions. We have now shown that (A2))(A4). Given (A4), applying the
implication (c’))(c) of [26, Corollaire 17.6.2] shows that for any extension k of �.p/
the morphism Spec.A˝R k/! Spec k is unramified, thus establishing (A4))(A2 0 ).
Since (A2 0 ))(A2) is trivial the proof of the lemma is complete.

We have now established all of part (A) of Theorem 6.1; to complete the proof of (B)
we will prove that (B2))(B3) and (B4))(B1).

Assume that (B2) holds for p2Spec R and the extension �.p/! k , write C DA˝R k

and let fk;pW Spec C!Spec k be the map associated to k!A˝R kDC . (B2) asserts
that fk;p has an unramified point, and we claim that we may reduce to the case that
this unramified point is a closed point, ie corresponds to a maximal ideal in C . Indeed,
the set of unramified points of fk;p is open in Spec C , and hence is equal to a set of
the form fq 2 Spec C j I 6� qg for some ideal I . The set in question is nonempty, and
so I must not be contained in the intersection of all prime ideals of C . But C , being
a finitely generated algebra over a field, is a Jacobson ring by the Nullstellensatz as
expressed in Eisenbud [10, Theorem 4.19]; thus the intersection of all prime ideals
of C is equal to the intersection of all maximal ideals. So there is a maximal ideal,
say q, such that I 6� q, and so our open set of unramified points contains this closed
point q.

Since fk;p is unramified at q, the implication (a))(d’) of [26, Théorème 17.4.1]
shows that the localization Cq is a field extension of �.p/ and that q is isolated in
Spec C . If q were the only point of Spec C then since q is maximal C would be a
local ring, and we would have Cq D C , so C would be a field and so (B3) would
certainly hold. So we may assume Spec C n fqg to be nonempty. Thus since q is
isolated we can write Spec C as a disjoint union of nonempty closed sets

Spec C D fqg
`
fr j I � rg

for some ideal I � C . Since q is maximal and I 6� q, qC I D C . Arguing as in [10,
Exercise 2.25], we find idempotents e1 2 q; e2 2 I with e1C e2 D 1 and e1e2 D 0.
This gives a direct sum splitting C D e1C ˚e2C . Now since e2 2 I , the distinguished
open set D.e2/Dfr2 Spec C j e2 … rg is equal to fqg, so the ring e�1

2
C is isomorphic

to the localization Cq (for instance this follows directly from [27, Proposition II.2.2])
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and therefore is a field. But the natural map C ! e�1
2

C is easily seen to restrict to e2C

as an isomorphism. Thus C decomposes as a direct sum isomorphic to e1C ˚ Cq

where Cq is a field extension of k . This proves the implication (B2))(B3).

Finally, assume that (B4) holds; in particular we may choose k D �.p/, so that
A˝R �.p/ Š K˚ S where K is a field extension of �.p/. Then S is easily seen
to be a maximal ideal, which may alternatively be characterized as the annihilator
fx 2A˝R �.p/ jxKD 0g. Denote the multiplicative unit in K by e 2K�A˝R �.p/.
If r is any prime ideal in A˝R �.p/, the factorization 0D e.1� e/ shows that either
e 2 r or 1� e 2 r; in the latter case r contains and hence is equal to S . Thus the open
set D.e/D fr j e … rg is equal to fSg. So S is an isolated point of Spec.A˝R �.p//

and the local ring .A˝R �.p//S at S is isomorphic to e�1.A˝R �.p//, which in
turn is isomorphic to the field K . So .A˝R �.p//S ŠK is a field extension of �.p/,
which is separable since we are working in characteristic zero. So the implication
(d’))(a) of [26, Théorème 17.4.1] proves that Spec A! Spec R is unramified at the
point qD �.S/ where �W Spec.A˝R �.p//! Spec A is the map induced by the natural
map A! A˝R �.p/. This completes the proof of the implication (B4))(B1) and
thus of all of Theorem 6.1.

Definition 6.5 Let A be an R–algebra as in Theorem 6.1.

� We say that A is generically semisimple if the subset U1 � Spec R of Theorem
6.1(A) is nonempty.

� We say that A is generically field-split if the subset U2 � Spec R of Theorem
6.1(B) is nonempty.

Proposition 6.6 Let A be an R–algebra as in Theorem 6.1, let �W R! S be a ring
map, and consider the resulting S –algebra A˝R S .

(i) If A˝R S is generically semisimple (resp. generically field-split) then A is
generically semisimple (resp. generically field-split).

(ii) Suppose that R and S are integral domains and that the ring map �W R! S is
injective. Then A˝R S is generically semisimple (resp. generically field-split)
if and only if A is generically semisimple (resp. generically field-split).

Proof For (i), that A˝R S is generically semisimple (resp. generically field split)
implies, by the equivalence (A1),(A3) (resp. (B1),(B3)), that there is a field k

and a ring map  W S ! k such that .A˝R S/˝S k decomposes as a direct sum of
extensions of k (resp. has an extension of k as a direct summand) (indeed we could
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take k D �.p/ where p is an arbitrary element of U1 (resp. U2 )). Now where k is
made into an R–algebra via the map  ı� , we have

A˝R k D .A˝R S/˝S k:

Where qD ker. ı�/, q is a prime ideal of R, and since �.q/ is the field of fractions
of R=q the map  ı� factors as a composition R! �.q/! k where �.q/! k is a
field extension. So since A˝R k decomposes as a direct sum of extensions of k (resp.
has an extension of k as a direct summand) we have q 2U1 (resp. q 2U2 ), proving (i).

As for (ii), since R and S are integral domains their spectra contain generic points
�R 2Spec R, �S 2Spec S , corresponding to the zero ideals in the respective rings. The
residue fields �.�R/ and �.�S / at these generic points are just the fields of fractions
of the respective domains, and so the monomorphism R! S induces a field extension
�.�R/! �.�S /. Moreover we have

.A˝R �.�R//˝�.�R/ �.�S /D .A˝R S/˝S �.�S /:

Consequently, by Theorem 6.3 and Entov and Polterovich [14, Proposition 2.2(A)],
A˝R �.�R/ decomposes as a direct sum of extensions of �.�R/ (resp. has an exten-
sion of k as a direct summand) if and only if the corresponding property holds for
.A˝R S/˝S �.�S /. Now any nonempty open set in Spec R contains �R , and likewise
any nonempty open set in Spec S contains �S , so by the equivalence (A1),(A3) (resp.
(B1),(B3)) it follows that the set U R

1
� Spec R (resp. U R

2
� Spec R) associated

to A via Theorem 6.1 is nonempty if and only if the corresponding subset of Spec S

associated to A˝R S via Theorem 6.1 is nonempty.

7 Quantum homology II

What we will call the “universal big quantum homology” ARM
in this paper may be

regarded as an invariant associated to a pair .M; C/ where C is a nonempty connected
component of the space of symplectic forms on the 2n–dimensional closed manifold M ;
the pair .M; C/ shall be fixed throughout this section. This invariant is a commutative
algebra ARM

over a ring RM ; this latter ring will be referred to as the “universal
quantum coefficient ring” of M (or, more properly, of .M; C/). Writing

Hk.M / WD
Hk.M IZ/

torsion
; Hev.M /D

nM
iD0

H2i.M /;
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let f�0; �1; : : : ; �N g be an integral basis of Hev.M / for which each �i has some
even homogeneous grading j�i j, such that

�0 D ŒM �; and for some s 2 f1; : : : ;N g; j�j j D 2n� 2, 1� i � s:

Thus the subgroup of Hev.M / with codimension at least 4 is spanned by �sC1; : : : ;�N .
As a module, we will have ARM

D Hev.M /˝Z RM , with f�0; : : : ; �N g serving
as a standard RM –basis for ARM

. We must now describe the ring RM , and the
multiplication rule for ARM

.

7.1 The universal quantum coefficient ring RM

As before Gromov–Witten invariants are denoted with the notation ha1; : : : ; aki0;k;ˇ ;
from now on we will always take ai 2H�.M / to be homogeneous, and ˇ 2H2.M /.
Note that these quantities are rational numbers (integers if M is semipositive) which are
independent of J and of the particular symplectic form ! representing the deformation
class C . The quantity is nonzero only when

kX
iD1

.2n� jai j/D 2 .nChc1.TM /; ˇiC .k � 3// :

H eff
2 .M /D fˇ 2H2.M / j .9 a1; : : : ; ak 2H�.M //.ha1; : : : ; aki0;k;ˇ ¤ 0/gLet

and define the “GW-effective cone” to be

C eff
D C eff.M /D

� lX
iD1

niˇi

ˇ̌̌̌
n1; : : : ; nl 2N; ˇ1; : : : ; ˇl 2H eff

2 .M /

�
:

Since the Gromov–Witten invariants are independent of the choice of ! 2 C , so too is
the GW-effective cone C eff .

Lemma 7.1 (i) If ! is any symplectic form in the deformation class C and if
D 2R, there are only finitely many elements ˇ 2 C eff such that

R
ˇ ! �D .

(ii) If ˇ 2C eff then there are just finitely many pairs .ˇ1; ˇ2/ such that ˇ1; ˇ2 2C eff

and ˇ1Cˇ2 D ˇ .

Proof If ˇ 2 C eff n f0g with
R
ˇ! �D , say ˇ D

Pl
iD1niˇi with each niˇi ¤ 0 (so

ni � 1) and ˇi 2 H eff
2
.M /, then for J an arbitrary !–compatible almost complex

structure the existence of a nonzero ha1; : : : ; aki0;k;ˇi
produces for each i a genus-zero

J –holomorphic bubble tree representing ˇi . Then
R
ˇi
! �

R
ˇ ! �D for each i . By

Gromov compactness, there are only finitely many nonzero classes ˇi of energy at
most D represented by a J –holomorphic bubble tree, and ! evaluates on each of
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these as at least some positive number „. Consequently there are only finitely many
positive integer combinations of these ˇi having energy at most D , and therefore there
are only finitely many possibilities for the class ˇ . This proves (a).

Part (b) then follows immediately: choose an arbitrary symplectic form ! from C .
If ˇ1Cˇ2 D ˇ and ˇ1; ˇ2 2 C eff , then ˇ1 and ˇ2 are necessarily each drawn from
among the finitely many classes 
 2 C eff with

R

 ! �D WD

R
ˇ ! .

We can now define the ring RM : set theoretically, let

RM D

� X
ˇ2C eff

fˇqˇ
ˇ̌̌̌
.8ˇ 2 C eff/.fˇ 2QŒxsC1; : : : ;xN �/

�
:

We use the obvious componentwise addition
P
fˇqˇC

P
gˇqˇ D

P
.fˇC gˇ/q

ˇ ,
while multiplication is, as one would expect, defined by� X

ˇ2C eff

fˇqˇ
�� X

�2C eff

g�q
�

�
D

X
�2C eff

� X
ˇC�D�

fˇg�

�
q� :

That the right hand side is well-defined follows directly from Lemma 7.1(ii), which
ensures that the inner sum on the right is finite for any given � . So since 0 2 C eff and
C eff is closed under addition, RM is a well-defined ring (with unit 1 WD q0 ). It is not
difficult to check that RM is an integral domain. On the other hand I do not know what
assumptions, if any, on M are needed to ensure that RM is Noetherian; fortunately,
Theorem 6.1 applies regardless of whether or not the ring R in its hypothesis is
Noetherian.

Given other conventions in the literature, it perhaps bears emphasizing that while
an element of RM may have a nonzero coefficient fˇ on qˇ for infinitely many
different ˇ , the coefficients fˇ themselves are taken to be polynomials, not power
series, in the variables xsC1; : : : ;xN . These latter variables may be regarded as being
dual to the basis f�sC1; : : : ; �N g for

Ln�2
iD0 H2i.M / from earlier. Formal variables

dual to the basis f�1; : : : ; �sg for H2n�2.M / (or, more accurately, exponentiated
versions of these formal variables) can be regarded as being incorporated into the formal
symbol q . It will typically not be true that the various polynomials fˇ appearing in a
given element of RM have uniformly bounded degree.

Remark 7.2 This choice of coefficient ring RM is motivated by the fact that it enjoys
the following two properties:

(a) The quantum homology ARM
of M may be naturally defined as an algebra

over RM for any M .
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(b) For many other rings ƒ obeying property (a), there is a diagram of ring maps
incorporating the rings RM and ƒ which allows Proposition 6.6 to be used
to relate the properties of the quantum homology with coefficients in ƒ to the
properties of ARM

.

We will see many examples of (b) below. In the simplest cases, the diagram alluded to
in (b) simply consists of a map RM !ƒ, and the quantum homology with coefficients
in ƒ is just ARM

˝RM
ƒ. In other cases the diagram will be more complicated: the

one involved in our discussion of the quantum homology of blowups �M in Section 7.4
takes the form:

(27)

R �M
��

B� _

��

// B=ZB

R0�M � � // R0�M Œq˙E0=.n�1/�

7.2 Quantum multiplication

Having introduced RM , we now define the quantum product � on the big quantum
homology ARM

in a standard way. Recall that ARM
is freely generated as a RM –

module by the homogeneous basis �0; : : : ; �N for Hev.M /, where �0 D ŒM � and
�1; : : : ; �s span H2n�2.M /. For i; j ; k 2 f0; : : : ;N g, consider the formal sum

cijk

D

X
ˇ2H eff

2

 X
˛D
.˛sC1;:::;˛N /

2NN�s

1

˛!
h�i ;�j ;�k ;�sC1; : : : ;�sC1„ ƒ‚ …

˛sC1

; : : : ;�N ; : : : ;�N„ ƒ‚ …
˛N

i0;j˛jC3;ˇx˛

!
qˇ:

Here we use standard multi-index notation for a tuple of nonnegative integers ˛ D
.˛sC1; : : : ; ˛N /, namely j˛j D

P
˛i , ˛!D

QN
iDsC1.˛i !/, and x˛ D x

˛sC1

sC1
� � �x

˛N

N
.

Proposition 7.3 For each i; j ; k we have cijk 2RM .

Proof This proposition amounts to the statement that, for any given ˇ 2H eff
2
.M /,

the expressionX
˛D
.˛sC1;:::;˛N /

2NN�s

1

˛!
h�i ; �j ; �k ; �sC1; : : : ; �sC1„ ƒ‚ …

˛sC1

; : : : ; �N ; : : : ; �N„ ƒ‚ …
˛N

i0;j˛jC3;ˇx˛
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is a polynomial, which in turn is to say that, again for any given ˇ 2H eff
2
.M /, there

are just finitely many multi-indices ˛ such that

h�i ; �j ; �k ; �sC1; : : : ; �sC1„ ƒ‚ …
˛sC1

; : : : ; �N ; : : : ; �N„ ƒ‚ …
˛N

i0;j˛jC3;ˇ ¤ 0:

Bearing in mind that, for l D sC 1; : : : ;N , we have 2n� j�l j � 4, by 7.1 the above
invariant can be nonzero only if

4j˛jC .2n� j�i j/C .2n� j�j j/C .2n� j�k j/� 2.nChc1.TM /; ˇiC j˛j/;

which in turn forces

j˛j �
j�i j

2
C
j�j j

2
C
j�k j

2
Chc1.TM /; ˇi � 2n:

Since, for fixed ˇ , there are only finitely many multi-indices ˛ obeying this bound
on j˛j the proposition follows.

For k D 0; : : : ;N define a dual element �k 2H2n�j�k j
by the property that

�j \�
k
D ık

j for all j ;

where \ is the Poincaré intersection pairing and ık
j is the Kronecker symbol (equiva-

lently, �k D
P

j gkj�j if fgkj g is the inverse of the matrix representing the Poincaré
pairing in the basis �0; : : : ; �N ). The multiplication law for the algebra ARM

is then
defined by extending bilinearly from

�i ��j D

NX
kD0

cijk�
k :

Since the cijk belong to RM this multiplication law is well-defined. ARM
is then a

commutative (since we are restricting to even dimensional homology) algebra with unit
�0 D ŒM �; from Kontsevich and Manin [34, Section 4] it follows that the associativity
of the algebra is a formal consequence of a certain set of axioms for Gromov–Witten
invariants, and in Fukaya and Ono [23, Section 23] it is shown that the Gromov–Witten
invariants for general symplectic manifolds constructed in [23] indeed satisfy all of the
axioms needed for associativity (Liu and Tian [36] and Ruan [53] also contain such
results).

We have now associated to the deformation class .M; C/ of symplectic manifolds a
ring RM and an RM –algebra ARM

which, module-theoretically, is free and finitely
generated. Theorem 6.1 and Definition 6.5 thus apply to the algebra ARM

, so we
may consider the questions of whether ARM

is generically semisimple or generically
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field-split (in which case we say that the symplectic deformation class .M; C/ “has
generically semisimple big quantum homology” or “has generically field-split big
quantum homology,” respectively).

7.3 Other coefficient systems

Given a ring map �W RM!S , we may form a quantum homology ring with coefficients
in S :

QH�.M IS/ WDARM
˝RM

S

where we use � to view S as an RM –algebra (if the map � is obvious from the
context we will just write QH.M IS/). Thus QH�.M IS/ is the S –algebra freely
generated as a module by �0; : : : ; �N with the multiplication law

�i ��j D

NX
kD0

�.cijk/�
k

where cijk 2RM are the constants defined at the start of Section 7.2. As mentioned in
Remark 7.2, our choice of universal quantum coefficient ring RM has been motivated
in part by the existence of many ring maps from RM to various rings in common use
as coefficient rings for quantum homology.

7.3.1 Small quantum homology For example, let

R0
M D

� X
ˇ2C eff

cˇqˇ
ˇ̌̌̌
cˇ 2Q

�
where as before C eff is the GW-effective cone and we use the obvious “power series”
multiplication (which is well-defined by Lemma 7.1(ii)). There is an obvious map
� W RM !R0

M
defined by �

�P
fˇqˇ

�
D
P
fˇ.0/q

ˇ .

Definition 7.4 Let a deformation class .M; C/ of symplectic manifolds be given.

� The small quantum homology of .M; C/ is the R0
M

–algebra

QH.M IR0
M /D QH� .M IR0

M /DARM
˝RM

R0
M

where � W RM !R0
M

is the above map.

� We say that .M; C/ has generically semisimple small quantum homology (resp.
has generically field-split small quantum homology) provided that the R0

M
–

algebra QH.M IR0
M
/ is generically semisimple (resp. generically field-split) in

the sense of Definition 6.5.
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Proposition 7.5 If .M; C/ has generically semisimple (resp. generically field-split)
small quantum homology, then .M; C/ has generically semisimple (resp. generically
field-split) big quantum homology.

Proof Indeed, this follows immediately from Proposition 6.6(i).

Consulting the definitions of the map � and of the multiplication law in big quantum ho-
mology, we see that QH.M IR0

M
/ is the free R0

M
–module generated by �0; : : : ; �N

subject to the multiplication law

�i ��j D

NX
kD0

� X
ˇ2H eff

2
.M /

h�i ; �j ; �ki0;3;ˇqˇ
�
�k ;

consistently with a formulation that some readers may find more familiar (again, f�lg

is a Poincaré dual basis to f�lg).

7.3.2 Novikov rings Choose a symplectic form ! belonging to the given deformation
class C of forms on M , with de Rham cohomology class Œ!�. Let the subgroup �! �R
and the Novikov ring ƒ! be as before (see Section 2).

Consider a general element

�D �D C

NX
iDsC1

�i�i 2

n�1M
kD0

H2k.M Iƒ
0
!/

where �i 2 ƒ
0
! and �D 2H2n�2.M Iƒ

0
!/; here as before �sC1; : : : ; �N is a fixed

basis of
Ln�2

kD0 H2k.M /. Define a map

��W RM !ƒ!X
ˇ2C eff

� X
˛D.˛sC1;:::;˛N /

c˛x˛
�

qˇ 7!
X
ˇ

�X
˛

c˛

NY
iDsC1

�
˛i

i

�
exp.�D \ˇ/T

hŒ!�;ˇi:(28)

Here �D \ˇ denotes the Poincaré intersection pairing between the “divisor” class �D

and ˇ 2H2.M /. That this map is well-defined (ie that �� sends every element of RM

to a formal sum which obeys the finiteness condition in the definition of ƒ! ) follows
directly from Lemma 7.1(i).

Definition 7.6 Let .M; !/ be a symplectic manifold, determining a symplectic defor-
mation class .M; C/ where ! 2 C . Let

�D �D C

NX
iDsC1

�i�i 2

n�1M
kD0

H2k.M Iƒ
0
!/:
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(i) The �–deformed quantum homology of .M; !/, denoted QH.M; !/� , is the
ƒ! –algebra

QH.M; !/� D QH��.M Iƒ!/DARM
˝RM

ƒ! ;

where the RM –algebra structure on ƒ! is that induced by the ring map ��
of (28).

(ii) In the special case that �D �D 2H2n�2.M /, QH.M; !/� will also be called
the “�–twisted small quantum homology” of .M; !/.

This is clearly consistent with the terminology from before: as in Section 5 QH.M; !/�
is the even part of the algebra .H�.M Iƒ!/I ��/.

To prepare for our next result, we introduce some notation:

Definition 7.7 Given a basis B D f�0; : : : ; �N g for Hev.M / with �0 D ŒM � and
�1; : : : ; �s a basis for H2n�2.M /, we define

EBW

n�1M
kD0

H2k.M IC/!CN

EB

� NX
iD1

�i�i

�
D .e�1 ; : : : ; e�s ; �sC1; : : : ; �N /;by

E0
BW H2n�2.M IC/!Csand

E0
B

� sX
iD1

�i�i

�
D .e�1 ; : : : ; e�s /:by

Theorem 7.8 For a closed symplectic manifold .M; !/, the following are equivalent:

(i) There exists � 2
Ln�1

kD0 H2k.M Iƒ
0
!/ such that the �–deformed quantum ho-

mology QH.M; !/� is a semisimple ƒ! –algebra (resp. has a field as a direct
summand).

(ii) Where C is the deformation class of ! , .M; C/ has generically semisimple big
quantum homology (resp. has generically field-split big quantum homology).

(iii) There is a nonzero Laurent polynomial

f 2QŒz1; z
�1
1 ; : : : ; zs; z

�1
s ; zsC1; zsC2; : : : ; zN �

such that, for all � 2
Ln�1

kD0 H2k.M IC/ such that f .EB.�// ¤ 0, the �–
deformed quantum homology QH.M; !/� is a semisimple ƒ! –algebra (resp.
has a field as a direct summand).
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Remark 7.9 Note that since, in (iii), the polynomial f has its coefficients in Q, it fol-
lows that when any of the above equivalent conditions holds, if we choose a particular �
with the property that the coordinates of EB.�/ D .e

�1 ; : : : ; e�s ; �sC1; : : : ; �N / are
algebraically independent over Q, then QH.M; !/� will automatically be semisimple
(resp. have a field as a direct summand) for this specific choice of �.

Proof The fact that (i))(ii) follows directly from Proposition 6.6(i). The implication
(iii))(i) is trivial. It remains to prove that (ii))(iii).

Accordingly, assume that .M; C/ has generically semisimple big quantum homology
(resp. has generically field-split big quantum homology). Thus the open subset U1

(resp. U2 ) of Spec RM produced by applying Theorem 6.1 to the RM –algebra ARM
is

nonempty. Recall that a basis for the topology of Spec RM is formed by distinguished
open sets of the form D.g/D fp 2 Spec RM j g … pg where g 2RM . So the open set
produced by Theorem 6.1 contains one of these sets D.g/ with g ¤ 0 (as of course
D.0/D¿); we fix this g .

Since the codomain of the map ��W RM !ƒ! is a field, ker�� is a prime ideal; let us
denote this prime ideal by p� . If p� 2D.g/, then ARM

˝RM
�.p�/ is semisimple (resp.

has a field as a direct summand). Now ��W RM!ƒ! factors through the canonical map
RM! �.p�/ to give a field extension �.p�/!ƒ! , so the equivalences in Theorem 6.1
show that QH.M; !/� is semisimple (resp. has a field as a direct summand) whenever
the same property holds for ARM

˝RM
�.p�/.

As such, the proof will be complete if we show that, whenever 0 ¤ g 2 RM , there
is f 2QŒz1; z

�1
1
; : : : ; zs; z

�1
s ; zsC1; zsC2; : : : ; zN � such that ker�� 2D.g/ whenever

f .EB.�//¤ 0. Of course, ker�� 2D.g/ if and only if ��.g/¤ 0. Let us write

g D
X
ˇ2C eff

gˇqˇ

where each gˇ 2 QŒzsC1; : : : ; zN �. Since g ¤ 0, let �0 be the minimal value of
hŒ!�; ˇi over all those ˇ with gˇ ¤ 0. By Lemma 7.1(i), there are just finitely many
ˇ 2H2.M /, say ˇ1; : : : ; ˇk , such that gˇ ¤ 0 and hŒ!�; ˇi D �0 .

For i D 1; : : : ; s and j D 1; : : : ; k write

�i \ ǰ D nij :

Then, if �D

NX
iD1

�i�i ;
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the coefficient on T �0 in ��.g/ is

kX
jD1

g
ǰ
.�sC1; : : : ; �N /

sY
iD1

.e�i /nij :

So let

(29) f .z1; : : : ; zN /D

kX
jD1

g
ǰ
.zsC1; : : : ; zN /

sY
iD1

z
nij

i :

The above discussion and the definitions show that we will have ker��2D.g/ whenever
f .EB.�//¤ 0. So the proof will be complete if we establish that f is not the zero
polynomial. But, recalling that by definition H2.M / D H2.M IZ/=torsion, since
f�1; : : : ; �sg is a basis for H2n�2.M /, the map

H2.M /! Zs

ˇ 7! .�1\ˇ; : : : ; �s \ˇ/

is injective. Consequently the only terms in (29) with powers of z1; : : : ; zs respectively
equal to ni1; : : : ; nis are those arising from j D 1. So since gˇ1

is not the zero
polynomial it follows that f is not the zero polynomial and we are done.

Similarly, we have:

Theorem 7.10 For a closed symplectic manifold .M; !/, the following are equivalent:
(i) There exists � 2 H2n�2.M Iƒ

0
!/ such that the �–twisted small quantum ho-

mology QH.M; !/� is a semisimple ƒ! –algebra (resp. has a field as a direct
summand).

(ii) Where C is the deformation class of ! , .M; C/ has generically semisimple small
quantum homology (resp. has generically field-split small quantum homology).

(iii) There is a nonzero Laurent polynomial

f 2QŒz1; z
�1
1 ; : : : ; zs; z

�1
s �

such that, for all � 2 H2n�2.M IC/ such that f .E0
B.�// ¤ 0, the �–twisted

small quantum homology QH.M; !/� is a semisimple ƒ! –algebra (resp. has a
field as a direct summand).

Proof The proof differs only notationally from that of Theorem 7.8 and so is left to
the reader.

A reader who still prefers to work with undeformed (ie �D 0) quantum homology may
take solace in the following, which is somewhat reminiscent of Ostrover and Tyomkin
[48, Theorem 4.1] and Fukaya, Oh, Ohta and Ono [22, Proposition 8.8]:

Geometry & Topology, Volume 15 (2011)



Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms 1389

Proposition 7.11 Given a deformation class .M; C/ of closed symplectic manifolds,
the following are equivalent:

(i) There exists a symplectic form ! 2 C such that the undeformed quantum homol-
ogy QH.M; !/0 is semisimple (resp. has a field as a direct summand).

(ii) .M; C/ has generically semisimple (resp. generically field-split) small quantum
homology.

(iii) Where ŒC�D fŒ!� 2H 2.M IR/ j ! 2 Cg, there is a countable intersection B of
open dense subsets of ŒC� such that QH.M; !/0 is semisimple (resp. has a field
as a direct summand) whenever ! 2 C and Œ!� 2 B .

Proof Again (i))(ii) follows from Proposition 6.6(i) and (iii))(i) is trivial so we
just need to prove (ii))(iii). So assume that .M; C/ has generically semisimple (resp.
generically field-split) small quantum homology.

We may then choose a basis for H 2.M IQ/, let B0 �H 2.M IR/ be the set of classes
having rationally independent coefficients when written in terms of this basis, and
let B D B0 \ ŒC�. Since B0 is a countable intersection of open dense subsets of
H 2.M IR/ and ŒC� is open (because nondegeneracy is an open condition on a 2–form),
B is a countable intersection of open dense subsets of ŒC�. Moreover if Œ!� 2 B then
ˇ 7! hŒ!�; ˇi is an injective map C eff!R, and so the map

 ! W R
0
M !ƒ!X

ˇ2C eff

cˇqˇ 7!
X
ˇ2C eff

cˇT hŒ!�;ˇi

is also injective. So since QH.M; !/0 D QH.M IR0
M
/˝R0

M
ƒ! where ƒ! is made

into a R0
M

–module by  ! , it follows from Proposition 6.6(ii) that, for Œ!� 2 B ,
QH.M; !/0 is semisimple (which, since its coefficient ring is a field, is equivalent to
being generically semisimple) if and only if .M; C/ has generically semisimple small
quantum homology.

Remark 7.12 There is an obvious isomorphism between our Novikov field ƒ! and
the field denoted by K� in Entov and Polterovich [14], and the algebra ƒ! –algebra
QH.M; !/0 is straightforwardly seen to be isomorphic to the K� –algebra QH2n.M; !/

from [14] (in [14] a degree-shifting parameter q , which does not belong to K� , is used
to move all of the even-degree homology into degree 2n; note that the ring denoted
by ƒ� in [14] plays a different role than our ƒ! ). In particular the notion of semisim-
ple quantum homology from [14] is equivalent to, in our notation, the property that
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QH.M; !/0 is semisimple. In turn, in the case that .M; !/ is monotone, this notion can
be identified with that in Entov and Polterovich [12] by the argument in [14, Section 5].

In Ostrover and Tyomkin [48], the authors use a slightly different convention for the
Novikov ring, in that they consider the ring K# in which the exponents are allowed
to be arbitrary real numbers rather than being restricted to the period group � D �! .
However, as follows from Proposition 6.6 (or, indeed, [14, Proposition 2.2]), this
distinction does not affect whether the quantum homology is semisimple or field-split
provided that one works in characteristic zero.

In particular, it follows from this that the symplectic manifolds that were found to have
semisimple or field-split quantum homology in [12; 14; 48] all fall under the purview
of Theorem 7.10 and Proposition 7.11.

7.3.3 The case of convergent structure constants Having proven results relating
generic semisimplicity in the sense of Definition 6.5 to quantum homology over the
Novikov rings used in symplectic topology, we now connect Definition 6.5 to semisim-
plicity as it is studied by algebraic geometers. As before, we will consider a basis
�0; : : : ; �N for Hev.M / with �0D ŒM � and �1; : : : ; �s spanning H2n�2.M /. Con-
sistently with algebraic geometry conventions, we will choose �1; : : : ; �s to be “nef”
in the sense that �i\ˇ� 0 whenever ˇ 2H eff

2
(it’s straightforward to find such a basis,

regardless of whether the symplectic deformation class .M; C/ arises from algebraic
geometry: choose �1 equal to the Poincaré dual to a symplectic form in C representing
a primitive integral homology class; complete this to an integral basis �1; �

0
2
; : : : ; �0s

for H2n�2.M /, and then for some large integer K set �j D�
0
jCK�1 for 2� j � s ).

As far as I can tell, there is not a universal consensus in the algebraic geometry
community regarding the most appropriate coefficient ring for quantum homology.
Some authors use the Novikov rings of Section 7.3.2. In other cases, a formal power
series ring of the form QŒŒt1; : : : ; tN �� is used (see for instance Iritani [33, Section 2]
and Bayer [2]); in this case the quantum homology can be described in our language as
being obtained from the RM –algebra AM induced by the coefficient extension

ˆW RM !QŒŒt1; : : : ; tN ��X
ˇ2C eff

gˇqˇ 7!
X
ˇ2C eff

gˇ.tsC1; : : : ; tN /

sY
iD1

t
�i\ˇ
i :

Since ˆ is injective (because ˇ 7! .�1\ˇ; : : : ; �s\ˇ/ is injective, as was noted in the
proof of Theorem 7.8) it immediately follows from Proposition 6.6(ii) that .M; C/ has
generically semisimple (resp. generically field-split) quantum homology in our sense

Geometry & Topology, Volume 15 (2011)



Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms 1391

if and only if this coefficient extension over QŒŒt1; : : : ; tN �� is generically semisimple
(resp. generically field-split).

The context in which semisimple quantum homology has been of greatest interest in
algebraic geometry is when the power series that appear in the algebra converge, so
that the coefficient ring may be taken to be C ; in this case the quantum homology
gives a Frobenius manifold (rather than a formal Frobenius manifold in the terminology
of Manin [41]), and the Frobenius manifolds obtained in the semisimple case have
remarkable relations to disparate areas of mathematics (see for instance Dubrovin [9]).

Where � > 0 and B�.E0/ denotes the ball of radius � around the origin in CN , let

S� D ff 2QŒŒt1; : : : ; tN �� j f is absolutely convergent on B�.E0/g

RM;� Dˆ
�1.S�/:and

Clearly RM;� and S� are rings, and ˆ restricts to an injective map ˆW RM;�! S� .
Similarly define R0

M;�
DR0

M
\RM;� .

Definition 7.13 Given � > 0, we say that .M; C/ has �–convergent big (resp. small)
quantum homology if the structure constants cijk of the start of Section 7.2 (resp. the
elements �.cijk/ 2 R0

M
where � is defined at the start of Section 7.3.1) belong to

RM;� (resp. R0
M;�

).

If .M; C/ has �–convergent big quantum homology, then we may define A�RM
to be

the RM;� –algebra freely generated as a module by the �i with �i ��j D
P

k cijk�
k ,

so that obviously ARM
DA�RM

˝R�
M

RM . Similarly we may define a version A�;0RM

of the small quantum homology with coefficients in R0
M;�

so that the small quantum ho-
mology as we originally defined it, namely QH.M IR0

M
/, is given by QH.M IR0

M
/D

A�;0RM
˝R0

M;�
R0

M
.

Incidentally, note that if .M; C/ is symplectically Fano (ie if there is a symplectic
form in C representing c1.TM /; this subsumes all cases where M is Fano in the
complex algebraic sense), then the structure constants �.cijk/ for the small quantum
homology are all just finite sums. Indeed, the �.cijk/ involve only Gromov–Witten
invariants with three insertions, and 7.1 imposes an upper bound on hc1.TM /; ˇi

for the homology class ˇ 2H2.M / of the curves counted by such invariants; in the
symplectically Fano case Gromov compactness then implies that there can be only
finitely many ˇ represented by pseudoholomorphic curves which obey this bound. So
in this case .M; C/ has �–convergent small quantum homology for every � > 0.
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The definition of RM;� ensures that, for any Et 2 B�.E0/ 2CN , we have a well-defined
ring map

evEt W RM;�!C

evEt

�X
ˇ

gˇqˇ
�
D

X
ˇ2C eff

gˇ.tsC1; : : : ; tN /

sY
iD1

t
�i\ˇ
i :defined by

By the same token, if Ez 2Cs with kEzk< � , we have a ring map

evEz W R
0
M;�!C

evEz

�X
ˇ

gˇqˇ
�
D

X
ˇ2C eff

gˇ

sY
iD1

z
�i\ˇ
i :defined by

Definition 7.14 If Et 2CN (resp. Ez 2Cs ), the big (resp. small) quantum homology of
.M; C/ at Et (resp. at Ez ) is the algebra defined by QH.M /jEt DA�RM

˝RM;�
C (resp.

QH.M /jEz DA�;0RM
˝R0

M;�
C ), where C has been made into an algebra over RM;� by

the map evEt (resp. C has been made into an algebra over R0
M;�

by the map evEz ).

Theorem 7.15 If .M; C/ has �–convergent big quantum homology, the following are
equivalent:

(i) There exists Et 2 B�.E0/ such that QH.M /jEt is a semisimple C–algebra (resp.
contains C as a direct summand).

(ii) .M; C/ has generically semisimple (resp. generically field-split) big quantum
homology.

(iii) There is a nonzero analytic function f W B�.E0/ ! C such that QH.M /jEt is
a semisimple C–algebra (resp. contains C as a direct summand) whenever
f .Et/¤ 0.

There is an essentially identical theorem for small quantum homology, whose statement
is left to the reader.

Proof As has become customary in this paper, (i))(ii) by Proposition 6.6, while
(iii))(i) is trivial, so we just need to prove (ii))(iii).

Assume that .M; C/ has generically semisimple (resp. generically field-split) big
quantum homology. Since ARM

DA�RM
˝RM;�

RM , it follows from Proposition 6.6(i)
that the RM;�–algebra A�RM

is generically semisimple (resp. generically field-split).
So Theorem 6.1 produces an open set U1 (resp. U2 ) in Spec RM;� , which necessarily
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contains an open set of the form D.f / D fp 2 Spec RM;� j f … pg where f ¤ 0.
By an argument that we have used before, the point Et 2 B�.E0/ will have the property
that QH.M /jEt is a semisimple C–algebra (resp. contains C as a direct summand15)
provided that ker evEt 2D.f /, ie provided that f …ker evEt . But by definition elements f
of RM;� are power series which define analytic functions on B�.E0/, and evEt is just
given by evaluating such a function at Et . Thus our condition on Et is simply that, viewing
f now as an analytic function, f .Et/¤ 0.

7.3.4 Examples from the literature From our above results we can immediately
read off from the literature some broad families examples of deformation classes .M; C/
which have generically semisimple (small or big) quantum homology:

� Any symplectic toric Fano manifold has generically semisimple small quantum
homology. This follows from the Batyrev–Givental formula for the quantum
homology of such a manifold as re-expressed by eg Fukaya, Oh, Ohta and
Ono [22] and Ostrover and Tyomkin [48]; in particular, in light of Proposition 7.11
above, we can simply read off this conclusion from [48, Theorem 4.1].

� Any closed symplectic toric manifold, Fano or not, has generically semisimple
big quantum homology. Indeed, Delzant’s theorem [8] shows that any closed
symplectic toric manifold is deformation equivalent to a projective toric manifold
(isotope the Delzant polytope to have integral vertices), and Iritani showed [33,
Theorem 1.3] that the big quantum homology of a projective toric manifold
has convergent structure constants and is generically semisimple in the sense
considered in Theorem 7.15.

� Of the 59 Fano 3–folds which have no odd rational cohomology, 36 of them
were shown to have generically semisimple small quantum homology (over C )
in Ciolli [7]; by the small-quantum-homology version of Theorem 7.15 this is
equivalent to generically semisimple small quantum homology in our sense (ie
over R0

M
).

� It was shown by Bayer [2] that a blowup at a point of a manifold with generi-
cally semisimple quantum homology still has generically semisimple quantum
homology (the theorem is stated for big quantum homology, but the proof works
equally well for small quantum homology). Bayer works over a formal power
series ring into which RM admits an embedding as in Section 7.3.3, so once
again this is equivalent to semisimple quantum homology in our sense.

15Typically the condition is “contains a field as a direct summand,” but in any event this field is a finite
extension of the base field, and here the base field in C , whose only finite extension is itself
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On the negative side, it was observed by Hertling, Manin and Teleman [28] that
a projective algebraic manifold M cannot have generically semisimple quantum
homology if there are any nonzero Hodge numbers hp;q.M / with p ¤ q . In the
symplectic category it remains true that a symplectic manifold cannot have generically
semisimple quantum homology if it has any nonzero odd Betti numbers (the point is
that the product of a Poincaré dual pair of odd homology classes would be a nonzero
even homology class, which would however be nilpotent by the supercommutativity
properties of the Gromov–Witten invariants). On the other hand nonzero odd Betti
numbers do not give any particular obstruction to the quantum homology of M being
generically field-split, as Theorem 7.16 below demonstrates.

Also, all evidence points to the notion that one cannot delete the word “generically”
from the above discussion. For example, there is given in [48, Section 5] an example
of a monotone Fano toric 4–fold (thus of 8 real dimensions) whose untwisted small
quantum homology is not semisimple.

7.4 Symplectic blow-ups

The purpose of this final subsection is to prove the following, thus establishing
Theorem 1.6(ii):

Theorem 7.16 Let . �M ; C/ be a deformation class of symplectic manifolds obtained
by blowing up a symplectic manifold .M; !/ at a point. Then . �M ; C/ has generically
field-split small quantum homology.

As mentioned earlier, Bayer showed in [2] that if M has generically semisimple
quantum homology then so does �M . At the other extreme, if M is not uniruled, then
the undeformed quantum homology of the blowup has a field direct summand; this fact
is proven based on results of McDuff [43] in Entov and Polterovich [14, Section 3],
where its discovery is attributed to McDuff.

Our proof of Theorem 7.16 will be based on largely the same approach used by Bayer
in his proof of the semisimple case. Let E 2 H2n�2. �M / denote the class of the
exceptional divisor, and for j � 1 abbreviate E\j DEj . We have a splitting

Hev. �M /DHev.M /˚ spanfE1; : : : ;En�1g

which is orthogonal with respect to the classical cap product. Also let E0 be the class
of a line in the exceptional divisor E ; thus

E0 D .�1/nEn�1:
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Let �0; : : : ; �N be a basis of the usual form for Hev.M / with �1; : : : ; �s a basis
for H2.M /, so that �1; : : : ; �s;E

0 is a basis for H2. �M /.

The standard universal coefficient ring R0�M for the small quantum homology of �M ,
according to the conventions that we have used so far, consists of formal sumsX

ˇ2C eff

cˇqˇ

where cˇ 2Q, and where here and below C eff refers to the GW-effective cone of �M
(not of M ). Following Bayer [2], we formally adjoin to this ring an invertible element

Z D q�.1=.n�1//E0

to obtain a ring R0�M Œq˙E0=.n�1/�. If we decompose a general element ˇ 2H2. �M / as

ˇ D ˇ0C dˇE0 ˇ0 2H2.M /; dˇ 2 Z;

then a general element of R0�M Œq˙E0=.n�1/� may be written

KX
kD�K

X
ˇ2C eff

cˇ;kqˇ
0

Zk�.n�1/dˇ

where the natural number K depends on the particular element. Now let

B D

� KX
kD�K

X
ˇ2C eff

cˇ;kqˇ
0

Zk�.n�1/dˇ 2R0�M Œq˙E0=.n�1/�

ˇ̌̌̌
k � .n� 1/dˇ � 0 whenever cˇ;k ¤ 0

�
:

In other words, B consists of elements c D
P

cˇ;kqˇZk of R0�M Œq˙E0=.n�1/� such
that, when the qˇ appearing in the sum are broken up as qˇ

0

Zl where ˇ0 2H2.M /,
all powers of Z appearing in the expansion of c are nonnegative.

Lemma 7.17 (cf [2, Lemma 3.4.2]) Let

N D spanBfHev.M /;ZE;Z2E2; : : : ;Zn�1En�1
g:

(So N is an additive subgroup of the small quantum homology QH. �MIR0�M Œq˙E0=.n�1/�/.)
Then N is closed under quantum multiplication, and so quantum multiplication
makes N into a B –algebra. Moreover, this B –algebra N is generically field-split.

Theorem 7.16 immediately follows from Lemma 7.17 and Proposition 6.6. Indeed,
assuming the lemma, we have

QH. �M IR0�M Œq˙E0=.n�1/�/DN ˝B R0�M Œq˙E0=.n�1/�
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as algebras, so Proposition 6.6(ii) applied to the inclusion B!R0�M Œq˙E0=.n�1/� implies
that QH. �M IR0�M Œq˙E0=.n�1/�/ is generically field-split. Then applying Proposition 6.6
to the inclusion map R0�M !R0�M Œq˙E0=.n�1/� shows that �M has generically field-split
small quantum homology (as defined in Definition 7.4). (The relations between the
various rings involved here were summarized in (27).)

Proof of Lemma 7.17 As in the corresponding result in Bayer [2], we will use proper-
ties of the Gromov–Witten invariants of blowups that were discovered by Gathmann [24]
in the context of convex algebraic varieties, and which were extended to the symplectic
case by Hu [32] and McDuff [43]. (To be specific, we will require extensions to the
context of genus zero symplectic Gromov–Witten invariants of Lemmas 2.2 and 2.4 and
Proposition 3.1 of [24]. Of these, Lemma 2.2 is generalized to the symplectic context
by [32, Theorem 1.2], while [24, Lemma 2.4(i)] is generalized by [32, Lemma 1.1] and
[24, Lemma 2.4(ii)] is generalized by [43, Lemma 2.3]. Meanwhile Gathmann’s proof
of his Proposition 3.1 depends only on these other results together with the splitting
axiom – see McDuff and Salamon [44, pages 224–225] – for Gromov–Witten invariants,
which of course also extends to the symplectic case.)

Having started with a basis �0; : : : ; �N for Hev.M /, we have a standard basis

�0; �1; : : : ; �s;En�1; �sC1; : : : ; �N ;E1; : : : ;En�2;

where �1; : : : ;En�1 form a basis for H2. �M /. If �0; : : : ; �N is a Poincaré dual
basis for the above basis Hev.M /, then our basis for Hev. �M / will have Poincaré dual
basis

�0; : : : �s; .�1/n�1E; �sC1; : : : ; �N ; .�1/n�1En�1; : : : ; .�1/n�1E2:

Consider a (small) quantum product of elements �i ; �j 2Hev. �M / which come from
classes in Hev.M /. We have

(30) �i ��j D

NX
kD0

X
ˇ2C eff

h�i ; �j ; �ki0;3;ˇqˇ�k

C .�1/n�1
n�1X
kD1

X
ˇ2C eff

h�i ; �j ;Eki0;3;ˇqˇEn�k :

With respect to invariants of the form h�i ; �j ; �ki0;3;ˇ , [32, Theorem 1.2] shows
that, whenever ˇ belongs to the subgroup H2.M /�H2. �M /, such a Gromov–Witten
invariant is equal to the corresponding Gromov–Witten invariant in M . As for classes ˇ
not belonging to H2. �M /, if such a class has the form ˇDˇ0CdˇE0 where ˇ02H2.M /

with ˇ0 ¤ 0, [24, Proposition 3.1(ii),(iii)] shows that the invariant vanishes unless
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dˇ < 0. Now we have qˇ D qˇ
0

Z�.n�1/dˇ , so the term h�i ; �j ; �ki0;3;ˇqˇ�k

belongs to N , and indeed belongs to the B –submodule Zn�1N of N . Meanwhile if
ˇ D dˇE0 then [32, Lemma 1.1] shows that the invariant h�i ; �j ; �ki0;3;ˇ is zero.
Thus all of the terms in (30) arising from invariants h�i ; �j ; �ki0;3;ˇ with ˇ…H2.M /

contribute terms belonging to the submodule Zn�1N � N , while all of the terms
arising from h�i ; �j ; �ki0;3;ˇ with ˇ 2H2.M / contribute terms in H2.M /�N .

Now we consider the invariants h�i ; �j ;Eki0;3;ˇ appearing in (30). Again writing
ˇ D ˇ0CdˇE0 , if ˇ0 D 0 then by [32, Lemma 1.1] the invariant vanishes. So we may
assume ˇ0 ¤ 0. Then Gathmann’s vanishing theorem [24, Proposition 3.1] shows that,
in order that h�i ; �j ;Eki0;3;ˇ ¤ 0, we must have

k � 1� .dˇC 1/.n� 1/; and therefore .n� 1/dˇ � k � n:

Bearing in mind that qˇ D qˇ
0

Z�.n�1/dˇ , this shows that the term in �i ��j corre-
sponding to any such invariant has En�k multiplied by some Zl where l � n� k . In
particular such terms always give rise to elements of N . This completes the analysis
of the various terms of �i ��j and proves that, for all i; j ,

(31) �i ��j 2N:

Now consider a quantum product of elements �i ;Z
j Ej 2 N , where i � 1, j � 2.

We have

(32) �i �Zj Ej D

NX
kD0

X
ˇ2C eff

h�i ;Ej ; �ki0;3;ˇqˇZj�k

C .�1/n�1
n�1X
kD1

X
ˇ2C eff

h�i ;Ej ;Eki0;3;ˇqˇZj En�k :

For any of the Gromov–Witten invariants appearing in (32), we write ˇ D ˇ0 C

dˇE0 where ˇ0 2H2.M / and dˇ 2 Z. According to [32, Lemma 1.1], an invariant
h�i ;Ej ; �ki0;3;ˇ or h�i ;Ej ;Eki0;3;ˇ necessarily vanishes if ˇ0 D 0, so we assume
that ˇ0 ¤ 0. In this case, since we assume j � 2 we may apply Gathmann’s vanishing
theorem [24, Proposition 3.1] to infer the following: the invariants h�i ;Ej ; �ki0;3;ˇ

vanish unless .n� 1/dˇ � j �n, while the invariants h�i ;Ej ;Eki0;3;ˇ vanish unless
.n� 1/dˇ � j C k � n� 1. The invariants of the former type lead in (32) to a term in
which �k is multiplied by a power of Z at least equal to n, while the invariants of
the latter type lead to a term in which En�k is multiplied by a power of Z at least
equal to j C .nC 1� j � k/D n� k C 1. Hence, recalling that N is by definition
spanned over B by generators �k ;Z

lEl , it follows that

(33) �k �Zj Ej 2ZN if k � 1; j � 2:
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As for �i �ZE1 , consulting again (the j D 1 version of) (32), note first that any
invariant h�i ;E1; �ki0;3;ˇ or h�i ;E1;Eki0;3;ˇ vanishes unless ˇ0 ¤ 0 by [32,
Lemma 1.1]. So we assume that ˇ0 ¤ 0, in which case for some l 2 f1; : : : ; sg

we will have �l \ˇ ¤ 0. In this case we can use the divisor axiom twice to obtain

h�i ;E1; �ki0;3;ˇ D�
dˇ

�l \ˇ
h�i ; �l ; �ki0;3;ˇ;

h�i ;E1;Eki0;3;ˇ D�
dˇ

�l \ˇ
h�i ; �l ;Eki0;3;ˇ;

so in particular the invariants are trivial unless dˇ¤0. We can then use Gathmann’s van-
ishing theorem again to see that the only nonzero invariants of the first type have dˇ � 0

and that the only nonzero invariants of the second type have k�1� .dˇC1/.n�1/, ie
�.n� 1/dˇ � n� k . From this it follows directly that (33) extends to the case j D 1:

(34) �k �ZE1 2ZN if k � 1:

Finally, we consider products

(35) ZiEi �Zj Ej DZiCj

� NX
kD0

X
ˇ2C eff

hEi ;Ej ; �ki0;3;ˇqˇ�k

C .�1/n�1
n�1X
kD1

X
ˇ2C eff

h�i ; �j ;Eki0;3;ˇEn�k

�
:

[32, Lemma 1.1] and Gathmann’s vanishing theorem show that invariants of the form
hEi ;Ej ; �ki0;3;ˇ with k¤0 can be nonzero only when ˇ0¤0 and .n�1/dˇ� iCj�

n� 1, and so they contribute terms in (35) in which �k is multiplied by Z to a power
at least nC 1. As for the case k D 0 (so �0 D Œ �M �), we have hEi ;Ej ; Œ �M �i0;3;ˇ D 0

unless ˇ D 0 and i C j D n, in which case it equals Ei \Ej D .�1/n�1 . Thus the
contribution of the terms in (35) arising from �0 is equal to .�1/n�1ZiCj EiCj .

As for the invariants hEi ;Ej ;Eki0;3;ˇ , if ˇ0¤0 Gathmann’s vanishing theorem shows
that they are zero unless .n� 1/dˇ � i C j C k � n� 2, so that they contribute a term
to (35) in which En�k is multiplied by a power at least n� k C 2. Meanwhile the
invariants hEi ;Ej ;Eki0;3;ˇ with ˇ0 D 0, ie the invariants hEi ;Ej ;Eki0;3;rE0 are,
according to [43, Lemma 2.3], equal to 0 unless r D 0 (in which case they come from
the classical cap product Ei \Ej D EiCj ) or r D 1, in which case they are �1 if
i C j C k D 2n� 1 and zero otherwise. In view of this, we have

(36) ZiEi �Zj Ej 2

(
ZiCj EiCj CZN i C j < n;

.�1/nZiCjC1�nEiCjC1�nCZN i C j � n:

Geometry & Topology, Volume 15 (2011)



Deformed Hamiltonian Floer theory, capacity estimates and Calabi quasimorphisms 1399

Combining (31), (33), (34) and (36), it is immediate that N closed under quantum
multiplication, so that quantum multiplication endows N with the structure of a B–
algebra. It remains to show that N is generically field-split. For this it suffices to find
one prime ideal in the set U2 � Spec B associated to N by Theorem 6.1. Consider
the ideal ZB � B , which is evidently prime. Define

B D
B

ZB
; N DN ˝B B:

C1 D spanBf�1; : : : ; �N g; C2 D spanBfE1; : : : ;En�1g;If we let

we have a direct sum decomposition of modules (not of algebras, of course)

N D B�0CC1CC2:

Of course �0 acts as the multiplicative identity, and (33), (34) show that (as we have
reduced mod Z ) C1C2 D 0. Meanwhile (36) shows that C2 is closed under quantum
multiplication, and that we have, as an algebra,

C2 Š
BŒs�

hsn� .�1/nsi

(where the variable s corresponds to ZE ). Moreover, as in [2, page 9], the element
Y D .�1/nZn�1En�1 D�.�s/n�1 2 C2 , Y acts as a multiplicative identity on C2 ,
which is thus a subalgebra. So since YC1D0, we have a direct sum splitting of algebras

N D C2˚ .h�0�Y iCC1/

(here ˚ denotes direct sum of algebras and C denotes module sum). But then when
we extend coefficients to the fraction field k of B , we will have

N ˝B k Š kŒs�=hsn
� .�1/nsi˚D

for some k –algebra D . It’s obvious from the Chinese Remainder Theorem that
kŒs�=hsn� .�1/nsi in turn decomposes as a direct sum of a field and an algebra. Thus
N ˝B k has a field as a direct summand. In the notation of Theorem 6.1 we have
k D k.ZB/, so the prime pDZB belongs to the open set U2 of Theorem 6.1.

Appendix A Proof of Proposition 3.4

This appendix outlines the proof of the basic properties of the perturbed moduli spaces
which are used in Section 3.2.2 to give a construction of the deformed Floer boundary
operator in the semipositive case without appealing to Fukaya, Oh, Ohta and Ono [21].
As described there, the basic strategy is to achieve transversality by means of “domain-
dependent incidence conditions”: we modify the evaluation map at the i –th marked
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point on the cylinder by the time–�ˇ;i flow of a vector field V where �ˇ;i depends
on the locations of the various marked points as in (8). As we will see, in analyzing
moduli spaces of expected dimension 0 or 1, one in principle encounters many strata
corresponding to various configurations of Floer cylinders, holomorphic spheres, and
flowlines of V ; all of these strata except the simplest, expected, ones can be shown to
be empty for generic choices of the auxiliary data. A complete combinatorial analysis
of all of these strata would be something of a notational nightmare to which we will not
subject the reader, but we will provide enough of an outline of the required arguments
that a diligent reader who is comfortable with standard techniques such as those in
McDuff and Salamon [44, Chapter 6] should be able to fill in the details.

We fix a strongly nondegenerate Hamiltonian H0 and consider tuples .H;J;V; ˇ/
where H varies in a small C lC1 –neighborhood Hl of H0 in the space of those Hamilto-
nians whose 2–jet with coincide with H0 near each of its 1–periodic orbits; J belongs
to the space J l of S1 –families of C l !–compatible almost complex structures; the
vector field V varies in the space V l of C l gradient-like vector fields for a fixed Morse
function g whose critical points are disjoint from the fixed submanifolds fi.Ni/; and
ˇ varies in the space B of functions introduced shortly after Definition 3.3; recall that
this space is a Banach manifold (it is diffeomorphic to an open subset of a Banach
space) and that all of its members are smooth positive functions with Gaussian decay.

For any 
�; 
C 2 P .H /, C 2 �2.

�; 
C/ and I D .i1; : : : ; ik/ 2 f1; : : : ;mg

k write

U l.C /D

8̂<̂
:.u;J;H /

ˇ̌̌̌
ˇ̌̌ uW R�S1!M; J 2 J l ;H 2Hl ;

x@J ;H uD 0;
R

R�S1

ˇ̌
@u
@s

ˇ̌2
ds dt <1;

u.s; � /! 
˙ as s!˙1; Œu�D C 2 �2.

�; 
C/

9>=>; ;

U l.C; I/D

8̂<̂
:.u; Ez; n1; : : : ; nk ;J;H;V; ˇ/

ˇ̌̌̌
ˇ̌̌ .u;J;H / 2 U l.C /; Ez 2 .R�S1/k ;

nj 2Nij ; V 2 V l ; ˇ 2 B;
 
�ˇ;j .Ez/

V
.u.zj //D fij .nj /

9>=>; :
(The reader can think of U as standing for “universal moduli space.”) We have:

Proposition A.1 Assume that it is not the case that both 
�D
C and C 2�2.

�; 
C/

is the trivial class. Then U l.C / is a C l�1 –Banach manifold. Moreover, for any fixed
J0 2 J l , the subspace U l.C IJ0/ D f.u;H / W .u;J0;H / 2 U l.C /g is also a C l�1 –
Banach manifold, and for any distinct points w1; : : : ; wp 2R�S1 the evaluation map

evw1;:::;wp
W U l.C IJ0/!M p

.u;H / 7! .u.w1/; : : : ;u.wp//

is a submersion.
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Proof The proof of Theorem 5.1(ii) of Floer, Hofer and Salamon [18] shows that, for
fixed J0 , the map .u;H / 7! x@J0;H u (which is a class C l�1 map between appropriate
Banach manifolds) is transverse to the zero section; by the implicit function theorem
this suffices to show that both U l.C / and U l.C IJ0/ are C l�1 Banach manifolds.
The statement about the evaluation map can be proven by combining the argument
used in the proof of McDuff and Salamon [44, Lemma 3.4.3] with properties of the
linearization of .u;H / 7! x@J ;H u from [18]; see also the proof of Le and Ono [35,
Proposition A.1.4] for a similar argument.

Definition A.2 If p2N and if S is a subset of N , a surjective map � W S!f1; : : : ;pg
is called order-respecting if whenever 1� i < j � p the minimal element of ��1f i g

is less than the minimal element of ��1fj g.

Note that the correspondence which assigns to each order-respecting surjective � W S!
f1; : : : ;pg the collection of sets f��1f i g j 1� i � pg is a one-to-one correspondence
onto the set of partitions of S into p disjoint subsets.

The space U l.C; I/ has various strata corresponding to the extent to which the marked
points zj (j D 1; : : : ; k ) overlap. We label any one of these strata by means of a
surjective order-respecting map � W f1; : : : ; kg!f1; : : : ;pg for some natural number p :
the stratum U l

�.C; I/ will consist of those .u; Ez; En;J;H;V; ˇ/ for which zj1
D zj2

if
and only if �.j1/D �.j2/.

Proposition A.3 Fix a surjective order-respecting map � W f1; : : : ; kg ! f1; : : : ;pg
and let �1; : : : ; �k 2 Œ0;1/ have the property that �j > �j 0 whenever j > j 0 and
�.j /D �.j 0/. Let

�� D f.m1; : : : ;mk/ 2M k
j .9j ; j 0/.�.j /¤ �.j 0/ and mj Dmj 0/g:

Then the map
��;�1;:::;�k

W M p
�V l

!M k

defined by

��;�1;:::;�k
.m1; : : : ;mp;V /D

�
 
�1

V
.m�.1//; : : : ;  

�k

V
.m�.k//

�
restricts to ��1

�;�1;:::;�k
..M nCrit.g//k n��/ as a submersion.

Proof Let .m1; : : : ;mp;V / 2 �
�1
�;�1;:::;�k

..M n Crit.g//k n ��/. Writing xj D

 
�j
V
.m�.j//, we have

��;�1;:::;�k
.m1; : : : ;mp;V /D .x1; : : : ;xk/:
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Of course, since the vector field V has zero locus equal to Crit.g/, for each j neither
m�.j/ nor xj lies in V �1.0/. Note also that the xj are all distinct points: the fact that
.x1; : : : ;xk/ …�� immediately implies that xj ¤ xj 0 when �.j /¤ �.j 0/, while if
�.j /D �.j 0/ and j > j 0 we have by assumption �j > �j 0 and xj D  

�j
V
.m�.j// and

xj 0 D  
�j 0

V
.m�.j//; so since V is a gradient-like vector field and m�.j/ … V �1.0/ we

indeed have xj ¤ xj 0 .

We are to show that if v 2 TxjM then the element of T.x1;:::;xk/M
k whose j –th

component is equal to v and whose other components equal zero lies in the image of
the linearization of ��;�1;:::;�k

at .m1; : : : ;mp;V /. Now since the xj are all distinct
and lie in V �1.0/, we can find disjoint flow boxes for V around each of the xj , say
with the property that the integral curve of V starting at m�.j/ enters the flow box
around xj at time �j � � and exits at time �j C � ; moreover we can arrange that the
j –th flow box intersects the integral curve of V through one of the mr if and only if
mr and xj lie on the same flowline of V . In the case that �j ¤ 0, it is straightforward
to construct a one-parameter family of perturbations fVs;j gs2.�ı;ı/ of V , each equal
to V outside the flow box, such that

 
�j˙�

Vs;j
.m�.j//D  

�j˙�

V
.m�.j//

d

ds
 
�j
Vs;j

.m�.j//D v:while

Then where � D dVs;j=ds the element .0; : : : ; 0; �/ is sent by the linearization to our
desired element .0; : : : ; v; : : : ; 0/. Meanwhile if �j D 0 (so that xj Dm�.j/ ) we can
obtain the element .0; : : : ; v; : : : ; 0/ as the image under the linearization of an element
of form .0; : : : ; v; : : : ; 0; �/ where v 2Tm�.j/M DTxjM and the perturbation � of V

is supported in the flow boxes around the various xj with j ¤ j 0 but �.j /D�.j 0/.

Now, as suggested earlier, if 
�; 
C 2 P .H0/, C 2 �2.

�; 
C/, I 2 f1; : : : ;mgk ,

and � W f1; : : : ; kg ! f1; : : : ;pg is a surjective order-respecting map, let

U l
�.C; I/D f.u; Ez; En;J;H;V; ˇ/ 2 U l.C; I/ j zj D zj 0, �.j /D �.j 0/g:

Also let

U l;�
� .C; I/Df.u; Ez; En;J;H;V; ˇ/2U l

�.C; I/ j�.j /¤�.j
0/) fij .nj /¤ fij 0 .nj 0/g:

Proposition A.4 Assume that it is not the case that both 
�D
C and C 2�2.

�; 
C/

is the trivial class.

(i) For any surjective order-respecting map � W f1; : : : ; kg! f1; : : : ;pg, U l;�
� .C; I/

is a C l�1 –Banach manifold.
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(ii) Let a D .J;H;V; ˇ/ 2 J l �Hl � V l �B be a regular value of the projection
U l;�
� .C; I/! J l �Hl �V l �B . Then�Ma;�
� .
�; 
C;C INI /D f.u; Ez; En/ j .u; Ez; En;J;H;V; ˇ/ 2 U l;�

� .C; I/g

is a C l�1 manifold of dimension x�.C /� ı.I/� 2.k �p/.

(iii) A residual subset of the space A D
T1

lD2 J l �Hl � V l �B has the property
that all of its members are regular values of the projections in (ii) above for all
sufficiently large l .

Proof For r D 1; : : : ;p write jr for the minimal element of ��1.r/.

Modulo reordering of the factors, U l;�
� .C; I/ may be identified with the space of tuples

..u;J;H /; Ez; .m1; : : : ;mp;V /; n1; : : : ; nk ; ˇ/

2 U l.C /� .R�S1/k � .M p
�V l/�

� kY
jD1

Nij

�
�B

such that

� zj D zj 0 if �.j /D �.j 0/;

� evzj1 ;:::;zjp
.u;J;H /D .m1; : : : ;mp/;

� ��;�ˇ;1.Ez/;:::;�ˇ;k.Ez/.m1; : : : ;mp;V /

D .fi1
.n1/; : : : ; fik

.nk// 2 .M nCrit.g//k n�� .

The first condition above is obviously cut out transversely (and imposes a condition of
codimension two for each of the k�p indices j which are not equal to jr for some r ),
while the second and third are cut out transversely by, respectively, Proposition A.1
and Proposition A.3. Said differently, U l;�

� .C; I/ is identified with the preimage of the
diagonal under a certain map

U l.C /� .R�S1/k � .M p
�V l/�

� kY
jD1

Nij

�
�B

!
�
.R�S1/k�p

�M p
� ..M nCrit.g//k n��/

�2
;

and the above shows that this map is transverse to the diagonal. Since

U l.C /� .R�S1/k � .M p
�V l/�

� kY
jD1

Nij

�
�B
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is a C l�1 Banach manifold it therefore follows from the implicit function theorem that
U l;�
� .C; I/ is as well, proving (i).

As for (ii), the implicit function theorem implies that �Ma;�
� .
�; 
C;C INI / is a C l�1

manifold of dimension equal to the index of the projection; we need only determine
this index. Now as in Salamon [55, Section 2] and Robbin and Salamon [52], the index
of the projection U l.C /! J l �Hl is x�.C /, while of course the identity map on
V l �B has index zero. So by using the characterization of the previous paragraph of
U l;�
� .C; I/ as the preimage of the diagonal under a certain map, and recalling that the

manifold Nij has dimension 2d.ij /, we calculate the dimension to be�
x�.C /C 2kC 2npC

kX
jD1

2d.ij /

�
� .2.k �p/C 2npC 2nk/

D x�.C /C 2kC

kX
jD1

2d.ij /� 2nk � 2.k �p/D x�.C /� ı.I/� 2.k �p/;

as claimed in (ii).

Finally, assertion (iii) follows from the Sard–Smale theorem (applied with l sufficiently
large) together with a straightforward adaptation of the argument of Taubes described
on [44, pages 52–53] which allows one to pass from C l auxiliary data .J;H;V / to
C1 such data.

The complement U l
�.C; I/ n U

l;�
� .C; I/ involves configurations in which one has,

among other conditions, a Floer cylinder uW R�S1!M and distinct marked points
zj ; zj 0 2R�S1 (with �.j /¤ �.j 0/) such that u.zj / and u.zj 0/ are connected to the
same point fij .nj /D fij 0 .nj 0/ by prescribed-length flowlines of V . This gives rise to
a variety of different substrata of U l

�.C; I/ determined by precisely which indices j

correspond to “duplicated” contact points with the fij .Nj /. All of these substrata can
easily be seen to have large codimension in U l

�.C; I/. Namely, although the condition
that fij .nj / D fij 0 .nj 0/ implies that one cannot directly appeal to Proposition A.3,
one can (assuming without loss of generality that d.ij 0/ � d.ij /) forget about the
incidence constraint corresponding to index j 0 , but impose the constraint that the
distinct points zj and zj 0 are mapped by u to points lying on the same flowline of
the vector field V , and that moreover this flowline passes at the time �ˇ;j .Ez/ through
the submanifold fij .Nj /. This amounts to replacing a constraint of codimension
2n� 2� 2d.ij 0/ by a constraint of codimension 2n� 3C 2n� 2d.ij /; thus at least
formally the codimension increases by at least 2n�1. (Of course, we have 2n�4, since
if 2nD 2 there are no “big deformations” to consider.) Moreover the newly imposed
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constraints (on u.zj / and u.zj 0/) are easily seen to be cut out transversely using
Proposition A.1 and Proposition A.3. Any additional duplicated incidence conditions
may be handled by repeating this same procedure of forgetting the duplicated condition
but imposing the condition that different marked points on R�S1 are both mapped to
the same flowline of V which itself satisfies various incidence conditions; it is easy to
see that at each stage the expected dimension only decreases. Consequently just as in
the proof of Proposition A.4, the Sard–Smale theorem allows one to show that:

Proposition A.5 For a residual set of aD .J;H;V; ˇ/, the set�Ma
�.

�; 
C;C INI /D f.u; Ez; En/ j .u; Ez; En;J;H;V; ˇ/ 2 U l

�.C; I/g

has the property that �Ma
�.

�; 
C;C INI / n �Ma;�

� .
�; 
C;C INI / is contained in a
union of manifolds of dimension at most �Ma;�

� .
�; 
C;C INI /� .2n� 1/.

From this we quickly obtain:

Corollary A.6 Assume that it is not the case that both 
CD 
� and C 2�2.

�; 
C/

is the trivial class. For a residual set of aD .J;H;V; ˇ/, if x�.C /� ı.I/� 2 then

Ma.
�; 
C;C INI /DMa;�
id .


�; 
C;C INI /

where idW f1; : : : ; kg!f1; : : : ; kg is the identity, and Ma.
�; 
C;C INI / is a smooth
manifold of dimension x�.C /� ı.I/.

Proof Since all of the various strata and substrata of �Ma.
�; 
C;C INI / admit free
R–actions, these strata and substrata are empty unless they have positive dimension.
But if x�.C /� ı.I/� 2 then Proposition A.4 and Proposition A.5 show that all strata
have nonpositive dimension for generic a except when pD k . Since the only surjective
order-respecting map f1; : : : ; kg ! f1; : : : ; kg is the identity, the result follows.

Of course, �Ma;�
id .


�; 
C;C INI / can be oriented using coherent orientations in a
standard way. This therefore completes the proof of Proposition 3.4(i). For the
remainder of Proposition 3.4 we must of course address the failure of compactness of
Ma.
�; 
C;C INI /D �Ma.
�; 
C;C INI /=R. The idea is familiar from Hofer and
Salamon [29]: the standard Gromov–Floer compactification of Ma.
�; 
C;C INI /

involves configurations of broken trajectories and sphere bubbles; those configurations
involving a two-stage broken trajectory and no sphere bubbles form a codimension-one
stratum of the boundary, while all other strata have codimension at least two. The
analysis is somewhat trickier than in [29], however, in part because in our case the
possible sphere bubbles that arise in studying the boundaries of moduli spaces of
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dimension two can have arbitrarily large Chern number. Indeed, the reader may have
noticed that to prove Corollary A.6 it was not necessary let the function ˇ which
determines the “contact times” �ˇ;i vary in the universal moduli space; a version of
Corollary A.6 would have held if we had simply set ˇ equal to (for instance) the
Gaussian s 7! e�s2

. However in analyzing certain highly degenerate substrata of the
compactification of Ma.
�; 
C;C INI / we will see that it becomes useful to vary ˇ .

At an initial level, any stratum of the compactification of Ma.
�; 
C;C INI /, where
I D .i1; : : : ; ik/ 2 f1; : : : ;mg

k , may be described by the following data:

� A sequence 
0 D 

�; 
1; : : : ; 
� D 


C 2 P .H /.
� Classes Ca 2 �2.
a�1; 
a/ (1� a� �) and classes A1; : : : ;A� 2 �2.M / such

that, where # denotes the obvious gluing operation, we have

.C1 # � � � # C�/ # .A1 # � � � # A� /D C:

� A function �W f1; : : : ; �g ! f1; : : : ; �g (the significance of � is that its domain
parametrizes the (stable, possibly multicomponent) sphere bubbles, while its
codomain parametrizes the cylindrical components; the s–th bubble will be
attached to the �.s/–th cylindrical component).

� A partition of the index set f1; : : : ; kg as

f1; : : : ; kg D .SC
1 [ � � � [SC

� /[ .S
S
1 [ � � � [SS

� /

(this partition specifies the components onto which the various marked points
fall). We will write IC

a (resp. IS
b

) for the tuple consisting of those ij for j 2SC
a

(resp. SS
b

), taken in increasing order of j .
� Maps �C

a W S
C
a ! f1; : : : ;p

C
a g and �S

b
W SS

b
! f1; : : : ;pS

b
g for appropriate in-

tegers pC
a , pS

b
which are surjective and order-respecting. (These maps play the

same role as our earlier maps � W f1; : : : ; kg ! f1; : : : ;pg).

Any element of such a stratum of the compactification of �Ma.
�; 
C;C INI / for a
fixed aD .J;H;V; ˇ/ is determined by the following data:

(i) Solutions uaW R� S1!M (1 � a � �) to the equation x@J ;H ua D 0 which
represent the classes Ca 2 �2.
a�1; 
a/.

(ii) Stable genus-zero J –holomorphic maps vb (1 � b � � ) with domain D.vb/

representing the classes Ab 2 �2.M /. The vb will be assumed to have no
trivial components. (For background on stable genus-zero maps see McDuff and
Salamon [44, Chapter 6].)

(iii) For each b D 1; : : : ; � , a point zb0 2D.vb/ and a point wb 2R�S1 with the
property that u�.b/.wb/D vb.zb0/.
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(iv) For each c D 1; : : : ;pC
a (resp. c D 1; : : : ;pS

b
), distinct points zC

ac 2 R� S1

(resp., distinct points zS
bc
2D.vb/).

(v) For each j 2 f1; : : : ;mgk , points nj 2Nij .

These data are required to satisfy the incidence conditions which we now describe: For
aD 1; : : : ; � , let zIa denote the multi-index obtained by combining together IC

a and
all of the IS

b
such that �.b/ D a, and arranging the indices in the original order in

which they appeared in I . Define E�a 2 .R�S1/zIa by setting the entry corresponding
to an index j 2 SC

a equal to zC
a�C

a .j/
from (iv) above, and the entry corresponding to

an index j 2 SS
b

where �.b/D a equal to the point wb from (iii). We then require
that, if j is the rj –th index appearing in the multi-index zIa , we have

(37) fij .nj /D

8<: 
�ˇ;rj .

E�a/

V
.ua.z

C
a�C

a .j/
// if j 2 SC

a ;

 
�ˇ;rj .E�a/

V
.vb.z

S
a�S

b
.j/// if j 2 SS

b
where �.s/D a:

Informally, these strata thus involve various combinatorial arrangements of Floer
cylinders representing the Ca ; stable genus-zero J –holomorphic curves representing
the Ab ; and flowlines of the vector field V which begin at marked points on the
cylinders or spheres and pass through the submanifolds fij .Nij / at times that are
prescribed by the locations of the various marked points. The reader will likely be
relieved to learn that we do not intend to analyze these strata in full generality in
the above complicated combinatorial notation; rather we will indicate the arguments
that are generally used, and leave it to the reader to convince themselves that these
arguments can be applied to deal with all of the strata as described above.

Let us call an element of the compactification simple provided that: none of the
spherical components of any of the stable curves vb are multiply covered; none of
the cylindrical components are “trivial cylinders” .s; t/ 7! 
 .t/; all cylindrical and
spherical components have distinct images; and all of the contact points fij .nj / are
distinct. Within any of the strata described above, the space of simple elements of
the compactification can be shown to be a manifold for generic data a in much the
same way as we handled �Ma;�

id .

�; 
C;C INI /: for this purpose we appeal again to

Proposition A.1 and Proposition A.3 and (for the sphere bubbles) McDuff and Salamon
[44, Lemma 3.4.2]. Note that the evaluation maps for the universal moduli spaces
of cylinders are made submersive by varying H (in Proposition A.1); those for the
flowlines of V are made submersive by varying V (in Proposition A.3) and those
for spheres are made submersive in [44] by varying J ; hence by varying the tuple
.J;H;V / we can simultaneously achieve transversality for all of the evaluation maps
at the marked points for the universal moduli spaces of simple configurations in any
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one of our strata. In view of this, if we restrict to simple configurations, arguments
much like those given in [44, Chapter 6] show that these universal moduli spaces are
Banach manifolds and that, using the Sard–Smale theorem, for generic a the associated
stratum of the moduli space has dimension at most, with notation as above and after
dividing by symmetry groups (given by translation of the cylindrical components and
automorphisms of S2 for the spherical component),

x�.C /� ı.I/� �� 2� � 2

�
k �

� �X
aD1

pC
a C

�X
bD1

pS
b

��
:

Thus if, as in Proposition 3.4(ii)–(iii), we have x�.C /�ı.I/� 2, then all of these strata
are (for generic a) empty unless � D 0 (ie there are no sphere bubbles),

P�
aD1

pC
a Dk ,

and either x�.C /� ı.I/D 1 and � D 1 or x�.C /� ı.I/D 2 and � 2 f1; 2g. In case
x�.C /� ı.I/D 1, the only stratum containing any simple configurations for generic a

is thus precisely �Ma;�
id .


�; 
C;C INI /=R, while if x�.C /� ı.I/D 2 the only such
strata are �Ma;�

id .

�; 
C;C INI /=R (which has dimension 1) together with all those

strata involving two cylindrical components, no sphere bubbles, and k distinct points
distributed among the two cylindrical components connected by flowlines of V to the
appropriate fij .Nij /. These latter strata precisely give (10) in Proposition 3.4. As
described in Remark 3.2, standard gluing arguments show that corresponding to each
element of (10) one can obtain a unique end of the space �Ma;�

id .

�; 
C;C INI /=R.

Consequently the proof of Proposition 3.4 will be complete if we show that the com-
pactification of �Ma;�

id .

�; 
C;C INI /=R generically does not include any nonsimple

configurations when x�.C /� ı.I/� 2.

Since
�X

aD1

��
x�.Ca/C

X
b2��1.a/

2c1.Ab/

�
�

�
ı.IC

a /C
X

b2��1.a/

ı.IS
b /

��
D x�.C /� ı.I/;

we may reduce to the case that there is just one cylindrical component, and so it suffices
to prove:

Proposition A.7 For generic a the following holds. Consider a stratum as described
above with �D 1 and associated data .C1; I

C
1
; �C

1
; fAb; I

S
b
; �S

b
g�
bD1

/. Assuming that
x�.C /� ı.I/� 2, this stratum contains no nonsimple configurations.

We complete this appendix by outlining the proof of Proposition A.7, leaving some
details to the reader. Within each of the strata of configurations as described above there
are various substrata describing ways in which the configuration may fail to be simple.
In effect, we show that each of these substrata is, for generic a, contained in a manifold
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of negative dimension; this suffices since there are only countably many substrata and a
countable intersection of residual sets is residual. For the most part, the proof follows the
standard strategy of associating to a nonsimple configuration by an “underlying simple
configuration” and appealing to transversality for the underlying simple configuration;
of course this only works if this replacement does not increase the expected dimension.

In particular, the semipositivity condition implies that for generic J there will be no
J –holomorphic spheres of negative Chern number. Thus as a first step we may replace
any multiply covered sphere bubble components by their underlying simple spheres;
since the Chern numbers of these spheres are nonnegative doing so cannot increase the
expected dimension of the configuration.

In most cases, nonsimple configurations in which two or more of the fij .nj / are
equal can be handled by essentially the same method as in our earlier analysis of
U l
�.C; I/ n U

l;�
� .C; I/: namely, we use the fact that if fij .nj / D fij 0 .nj 0/ and if

j 2 SC
a and j 0 2 SC

a0 then ua.z
C
a�C

a .j/
/ and ua0.z

C
a0�C

a0
.j 0// must both lie on the same

flowline of V , and this flowline satisfies additional incidence conditions (if instead
j 2 SS

b
and/or j 0 2 SS

b0
for some b; b0 then of course a similar condition holds for

vb.z
S
a�S

b
.j// and/or vb0.z

S
a�S

b0
.j//). Just as discussed earlier, replacing the duplicated

incidence condition at fij .nj / by this new condition lowers the expected dimension.

However there is a new complication in this analysis that did not appear earlier, namely
that our configurations may have more than one spherical component, and it might be
the case that two different spherical components have the same image, in which case
the new condition produced by the previous paragraph may not be cut out transversely
in the appropriate universal moduli space. (Such a configuration could in principle arise
in the compactification as a limit in which the same sphere bubbles off from two distinct
points on the cylinder.) Now most configurations in which there is such a “duplicated
sphere” can also be ruled out by a similar technique as in the previous paragraph: the
sphere would have to meet the other components of the configuration at two distinct
points, and by forgetting one copy of the sphere but imposing the condition that the
other components meet the sphere twice we replace a condition which is not cut out
transversely in the universal moduli space by one which usually is cut out transversely
and does not have a larger expected dimension.

We noted that this new condition is “usually” cut out transversely: the proof of this
requires Proposition A.1 (or, in the case where the components meeting the duplicated
sphere are also spheres, McDuff and Salamon [44, Lemma 3.4.2]), but that proposition
of course requires the assumption that it is not true that 
�D 
C and C1 2�2.


�; 
�/

is the trivial class. Thus we arrive at the one remaining set of cases where a new argument
is required, namely that where the unique cylindrical component of our configuration
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represents the trivial class; of course, by energy considerations it is easy to show that
this is equivalent to the unique cylindrical component uW R�S1!M being a “trivial
cylinder” u.s; t/D 
 .t/. In all other cases, the arguments sketched above allow one to
replace a hypothetical nonsimple configuration by a simple configuration contained in
a moduli space whose expected dimension before taking the quotient by translations
of the cylinder is at most x�.C /� ı.I/� 2� 0; hence for generic a once we take the
R–symmetry into account the appropriate moduli space will be empty.

Accordingly we consider configurations in which the unique cylindrical component is
a trivial cylinder u.s; t/D 
 .t/. In analyzing these types of configurations, we find it
useful to vary the function ˇW R!R that we have included in our auxiliary data.

The first observation to make in this context is that for generic choices of the vector
field V , no flowline of V will pass through both a periodic orbit 
 2 P .H / and
one of the submanifolds fi.Ni/ (since the latter have codimension at least four).
Consequently for generic a the only possible nonempty strata corresponding to a single,
trivial, cylindrical component are ones in which, in our earlier notation, SC

1
D¿, ie in

which all of the marked points used for the incidence conditions are on the spheres,
not on the cylinder. Moreover just as in Hofer and Salamon [29] one can see that for
generic choices of the pair .J;V / any stratum involving just a trivial cylinder together
with a single sphere bubble will be empty: the single sphere bubble would represent a
class A with 2c1.A/D x�.C /� 2C ı.I/, and by imposing the incidence conditions
corresponding to I together with the condition that the sphere would need to pass
through the periodic orbit 
 we would find the dimension of the relevant space equal to

2nC 2c1.A/� 6� ı.I/C 2� .2n� 1/D 2c1.A/� ı.I/� 3< 0:

(Note that this conclusion uses the fact that since all of the marked points are on the
sphere which has bubbled off at a single point .s0; t0/ on the cylinder, the element
E�1 2 .R�S1/k from (37) will have all its entries equal to .s0; t0/, and so the various
�ˇ;i.E�1/ will all be zero).

A similar analysis together with the tricks that have been discussed earlier deal with all
of the other strata, except those where the following situation holds: we have two or
more copies of the same sphere (or potentially multiple covers thereof) which have
bubbled off at different points .s1; t/; : : : ; .sr ; t/ on the cylinder. Indeed, in this case
we have u.s1; t/D � � � D u.sr ; t/D 
 .t/ since the cylinder is a trivial cylinder and so
the condition that the sphere meets the cylinder at all r of these points is obviously not
cut out transversely.

The main new difficulty that this situation creates is that, because the incidence condi-
tions that a sphere must satisfy depend in part on the positions on the cylinder at which
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the other spheres are considered to have bubbled off, there may be particular choices
of the bubbling points .si ; t/ that force us to consider possible sphere bubbles whose
homology classes and incidence conditions would have been ruled out by a dimension
count if the other sphere components had not been present. The way that we resolve this
issue is by noting that the occurrence of such unexpected spheres imposes conditions
on the parameters si , and that we can ensure that these conditions on the si are cut out
transversely in the universal moduli space by varying the function ˇW R!R.

To keep the notational difficulties under control, we will illustrate the method on
a particular type of substratum in which the essential point is present, leaving the
general case to the reader. Consider a case in which the cylindrical component is a
trivial cylinder u.s; t/D 
 .t/, while the spherical components have homology classes
A1 D � � � D Ar D A and ArC1 D B , with all of the first r spherical components
represented by the same map v1W S

2!M and the remaining component represented
by vrC1W S

2!M . Assume moreover that the multi-indices IS
1
; : : : ; IS

r representing
the incidence conditions obeyed by the various copies of v1 are all the same, say equal
to G D .g1; : : : ;gp/ 2 f1; : : : ;mg

p . We then have (since x�.C /� ı.I/� 2),

(38) 2rc1.A/C 2c1.B/� rı.G/� ı.IS
rC1/� 2:

Also write IS
rC1
D .g0

1
; : : : ;g0q/ for the multi-index representing the incidence condition

corresponding to the other sphere. We will consider the most highly degenerate case in
which, on the r copies of the representative of A, each of the p incidence conditions
are satisfied at the same point for each of the r copies; less degenerate situations can
be handled by combining the methods described below with earlier techniques.

The problematic configurations then entail the data of tuples�
J;H;V; ˇ; v1; vrC1; .s1; t1/; .s2; t1/; : : : ; .sr ; t1/; .srC1; trC1/;

z10; : : : ; z1p; zrC1;0; : : : ; zrC1;q; n1; : : : ; np; n
0
1; : : : ; n

0
q

�
such that

(i) x@J v1 D
x@J vrC1 D 0,

(ii) v1.z10/D 
 .t1/,

(iii) vrC1.zrC1;0/D 
 .trC1/,

(iv) where E� 2 .R�S1/prCq has its j –th entry given by .sb; t1/ if j 2 SS
b

with
1� b � r and by .srC1; trC1/ if j 2 SS

rC1
, we have

 
�ˇ;j .E�/

V
.v1.z1`//D fg`.n`/ if j is the `–th largest element of SS

b .1� b � r/;

 
�ˇ;j .E�/

V
.vrC1.zrC1;`//D fg0

`
.n`/ if j is the `–th largest element of SS

rC1:
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Here all of the zij vary in S2 ; n` 2 Ng` ; and n0
`
2 Ng0

`
. For simplicity we will

assume that these points are all distinct, as the case where some of them coincide can
be handled by incorporating our previous methods.

This is equivalent to the data of

.J;H;V; ˇ; v1; vrC1; t1; trC1; s1; s2; : : : ; srC1; fzij g; fn`g; fn
0
`g/

such that (i), (ii), (iii) above hold and we replace (iv) by

(v) we have

 
�ˇ;j .E�/

V
.v1.z1`//D fg`.n`/ if j is the `–th largest element of SS

1 ;

 
�ˇ;j .E�/

V
.vrC1.zrC1;`//D fg0

`
.n`/ if j is the `–th largest element of SS

rC1;

(vi) for 1 � b � r and 1 � ` � p write j .b`/ for the `–th largest element of SS
b

.
Then for 2� b � r , �ˇ;j.b`/.E�/D �ˇ;j.1`/.E�/.

For j D 1; : : : ; r , j .b1/ is the minimal element of SS
b

. The map

B�RrC1
!Rr

.ˇ; s1; : : : ; srC1/ 7! .�ˇ;j.11/.E�/; : : : ; �ˇ;j.1r/.E�//

is easily seen by (8) to have rank at least r � 1 (the only reason that it might not
have rank r is that one of the indices j .b1/ might be equal to one and we always
have �ˇ;1 D 0). Consequently at least r � 2 of the equations in (vi) above are cut
out transversely. Meanwhile the conditions in (i), (ii), (iii), and (v) are also cut out
transversely, using Proposition A.3 and [44, Lemma 3.4.2]. Therefore the space of
data .J;H;V; ˇ; Et ; Es; Ez; En/ obeying (i),(ii),(iii),(v), and the aforementioned r equations
of (vi) will be a Banach manifold, and we compute that the index of the projection to
.J;H;V; ˇ/ is

.2nC 2c1.A/� 6/C .2nC 2c1.B/� 6/C 2C .r C 1/C 2pC 2q

C 2

pX
`D1

d.ig`/C 2

qX
`D1

d.ig0
`
/� .2nC 2nC 2npC 2nqC r � 2/

D 2c1.A/C 2c1.B/� 7� ı.G/� ı.IS
rC1/:

In view of (38), this quantity is negative if 2c1.A/� ı.G/� 0, and so in this case the
usual application of the Sard–Smale theorem shows that for generic aD .J;H;V; ˇ/

the substratum under consideration will not appear. It remains to analyze the case that
2c1.A/� ı.G/ < 0.
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This case is handled by an argument along the following lines. Note first of all
that, if the function ˇ were set equal to zero, then there would generically be no
J –holomorphic representative of A obeying the incidence conditions given by G (and
meeting the orbit 
 ), since the expected dimension of the space of such spheres is
2nC2c1.A/�6�ı.I/�.2n�3/D2c1.A/�ı.G/�3. However the presence of ˇ leads
to the various �ˇ;j changing as the si vary, and for generic but fixed J and V the �ˇ;j
may occasionally attain exceptional values for which the sphere in question does occur.
Indeed if 2c1.A/�ı.G/D�˛ then for generic J and V the presence of such a sphere
imposes a condition of codimension ˛C3 on the various �ˇ;j.1`/.E�/ for 1� `� p (in
particular if p < ˛C 3, or more generally if .s1; : : : ; srC1/ 7! .�ˇ;j.11/; : : : ; �ˇ;j.1p//

has rank less than ˛C 3, then the sphere will not arise for generic J and V ). Now
if .s1; : : : ; srC1/ 7! .�ˇ;j.11/; : : : ; �ˇ;j.1p// has rank c � ˛C 3 one can see by taking
advantage of the freedom to vary ˇ that at least .r�1/c of the conditions in (vi) will be
cut out transversely; this increases the codimension in the appropriate universal moduli
space to ˛C3C.r�1/c� r.˛C3/D�r.2c1.A/�ı.G/�3/. Using this, the space of
configurations of the form in question is found to be contained in a transversely-cut-out
moduli space which, for generic a, has dimension

2nC 2c1.B/� 6� ı.IS
rC1/� .2n� 3/C .r C 1/C r.2c1.A/� ı.G/� 3/;

which by (38) is at most �2r ; thus the relevant space is empty for generic a.

To sum up, using the methods that we have developed a sufficiently persistent reader
may show that, for generic a, if x�.C /� ı.I/� 2 the only nonempty stratum of our
compactified moduli space corresponding to just one cylindrical component is the main
stratum Ma;�

id .

�; 
C;C INI /, and the only nonempty stratum corresponding to more

than one cylindrical component is the usual space of two-stage broken trajectories
(which arises only if x�.C /� ı.I/D 2). This suffices to prove Proposition 3.4.
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