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Line patterns in free groups

CHRISTOPHER H CASHEN

NATAŠA MACURA

We study line patterns in a free group by considering the topology of the decomposi-
tion space, a quotient of the boundary at infinity of the free group related to the line
pattern. We show that the group of quasi-isometries preserving a line pattern in a free
group acts by isometries on a related space if and only if there are no cut pairs in the
decomposition space. We also give an algorithm to detect such cut pairs.

20F65; 20E05

1 Introduction

Given a finitely generated free group F of rank greater than one and a word w 2 F ,
the w–line at g 2 F is the set of elements fgwmgm2Z . A Cayley graph with respect
to a free basis of F is a geometric model for F that is a tree. Up to translation and
coarse equivalence, we may assume that w is cyclically reduced and not a power of
another element, and in this case there is a unique geodesic in the tree that contains the
vertices fgwmgm2Z .

The w–line at g is the same as the w line at h if and only if xhg is a power of w ; the
w–lines are the cosets of hwi in F .

The line pattern generated by w is the collection of distinct w–lines. Similarly, if we
take finitely many words w , as above, the line pattern generated by the collection is
the union of the patterns generated by the individual words. We will denote the line
pattern L when we do not wish to specify generators.

The main question is:

Question 1 Let F and F 0 be finite rank free groups, possibly of different ranks.
Consider collections of words fw1; : : : ; wmg � F and fw0

1
; : : : ; w0ng � F 0 . Let L

be the line pattern in F generated by fw1; : : : ; wmg, and let L0 be defined similarly
for F 0 .

Is there a quasi-isometry �W F ! F 0 that preserves the patterns, in the sense that
there is some constant C so that for every line l 2 L there is an l 0 2 L0 such that the
Hausdorff distance between �.l/ and l 0 is at most C , and vice versa?
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1420 Christopher H Cashen and Nataša Macura

A closely related question is:

Question 2 Let F be a free group and L a line pattern in F . What is the group
QI.F;L/ of quasi-isometries of F that preserve the line pattern L?

In a pair of 1936 papers [21; 22], J H C Whitehead gave an algorithm to answer the
following question:

Given two finite (ordered) lists of words .w1; : : : ; wk/ and .w0
1
; : : : ; w0

k
/ in a finite

rank free group F , is there an automorphism � of F such that for all i we have
�.wi/D w

0
i ?

Questions 1 and 2 may be viewed as geometric versions of Whitehead’s question.

To motivate the statement of our results, it is instructive to consider line patterns in a
different setting.

Line patterns in Hn for n� 3 have been studied by Schwartz [18]. His terminology
is “symmetric pattern of geodesics”. Let M be a compact hyperbolic orbifold of
dimension n � 3. Pick any collection of closed geodesics in M . The lifts of these
geodesics to the universal cover Hn form a line pattern; call it L.

Theorem [18, Theorem 1.1] QI.Hn;L/� Isom.Hn/

This is an example of what we will call pattern rigidity. The hyperbolic orbifold case
is special in that there is a canonical geometric model, Hn , for �1M . Forgetting this
for a moment, let Y be any geometric model for �1M . For example, Y could be a
Cayley graph of �1M . We still get a line pattern L in Y , but it is not necessarily true
that QI.Y;L/� Isom.Y /. However, there is a quasi-isometry �W Y !Hn . Each line
in L gets sent to a line in Hn , so we get a line pattern �.L/ in Hn . We have

�QI.Y;L/��1
DQI.Hn; �.L//� Isom.Hn/:

In the free group situation we do not have a canonical space to take the place of Hn

that works for every line pattern. For a given line pattern we will try to construct a
space X and a quasi-isometry �W F!X such that pattern preserving quasi-isometries
are conjugate into the isometry group of X :

�QI.F;L/��1
DQI.X; �.L//� Isom.X /

A priori this would only give a quasi-action of QI.F;L/ on X by maps bounded
distance from isometries. We actually prove something stronger. We will say a line
pattern L in F is rigid if there is a space X , a quasi-isometry �W F ! X , and
an isometric action of QI.F;L/ on X that agrees with conjugation by � , up to
bounded distance.
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It is easy to see that not all patterns are rigid. A necessary condition is that the
multiplicative quasi-isometry constants of QI.F;L/ are bounded. Suppose L is
contained in a proper free factor F 0 of F , so that F D F 0 �F 00 . Then QI.F 00/ �
QI.F;L/ contains a sequence of quasi-isometries with unbounded constants, so the
pattern is not rigid.

Another example where the lack of rigidity is apparent for algebraic reasons is the
pattern generated by the word abxaxb in F2 D ha; bi. The automorphism group of F2

preserves this line pattern, so again we have a sequence of pattern preserving quasi-
isometries with unbounded constants.

However, algebraic considerations do not fully determine which patterns are rigid.
Consider the pattern in F2 generated by ab and axb . There is only a finite group of outer
automorphisms of F2 that preserve this pattern, so all pattern preserving automorphisms
are isometries, up to bounded distance. We might guess the pattern is rigid, but in fact
it is quasi-isometrically equivalent to the abxaxb pattern; see Theorem 6.2.

Our main result shows that sufficiently complicated patterns are rigid. To make this
precise, we use a topological space that is a quotient of the boundary at infinity of a
tree for F . This space is called the decomposition space associated to the line pattern.

Main Theorem Let L be a line pattern in a finitely generated, nonabelian free
group F . The following are equivalent:

(1) The line pattern is rigid.

(2) The decomposition space has no cut pairs.

Remark We use the phrase “has no cut pairs” inclusively to mean that the space is
connected, has no cut points and no cut pairs.

In the examples above, the pattern that is contained in a proper free factor would have
a disconnected decomposition space. For the other two, the decomposition space is
a circle.

Determining if the decomposition space is connected is essentially Whitehead’s Al-
gorithm, which is discussed in Section 3. The idea is to build a graph, the Whitehead
graph, associated to the line pattern. Connectivity of this graph is related to connectivity
of the decomposition space; see Theorem 4.1.

In Section 4 we use generalizations of the Whitehead graph to identify finite cut sets in
the decomposition space. In particular, Theorem 4.17 allows us to tell if there are cut
pairs in the decomposition space.

Geometry & Topology, Volume 15 (2011)
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We show in Section 5.1 that there is no possibility of rigidity if the decomposition
space has cut pairs.

The proof that no cut pairs implies rigidity in Section 5.2 is similar in philosophy to
the various geometric proofs of Stallings’ Theorem; see Dunwoody [6], Gromov [7],
Niblo [13] or Kapovich [8]. The idea in these proofs is to use minimal surfaces, or
a combinatorial approximation thereof, to cut up a space into pieces. One then uses
properties of the particular choice of surfaces to show that they are, or can be chosen
to be, suitably independent, so that the complex dual to the cutting surfaces is a tree.
The collection of minimal surfaces is in bijection with the edges of the resulting tree.

We do something similar with small cut sets in the decomposition space. With an
appropriately chosen basis for F we can look at the tree T that is the Cayley graph
for F with respect to this basis. We find cut sets in the decomposition space associated
to the edges of this tree, which we call edge cut sets. The property of being an edge cut
set depends on the choice of basis, so we study some topological properties enjoyed
by edge cut sets and choose our definition of “small” to be all cut sets that also enjoy
those properties. (See Section 5.2.1 for precise definitions.)

The cut sets we use have more complicated interactions than those in Stallings’ Theorem,
and in general the space dual to the collection of cut sets will not be a tree; it will be a
cube complex quasi-isometric to a tree.

Working at infinity with topologically defined cut sets has the benefit that the cube
complex we construct is canonical and inherits a canonical line pattern. QI.F;L/ is
conjugate to the group of isometries of the cube complex that preserve the line pattern;
see Theorem 5.5.

This allows us to answer Questions 1 and 2 in the rigid case: Two line patterns in free
groups are equivalent if and only if there is a pattern preserving isometry between the
associated cube complexes. The free group F acts cocompactly by pattern preserving
isometries on the cube complex, so QI.F;L/ does as well. This allows us to give a
description of QI.F;L/ as a complex of groups. However, the vertex stabilizers will
not, in general, be finitely generated groups.

Consideration of line pattern preserving quasi-isometries arises naturally in Geometric
Group Theory. Work of Papasoglu [16] shows that group splittings of finitely presented
groups over virtually cyclic subgroups are preserved by quasi-isometries. If a finitely
presented, one-ended group has a nontrivial JSJ–decomposition over virtually cyclic
subgroups, then each vertex group of the decomposition has a line pattern coming
from the incident edge groups. The equivalence classes of these line patterns give
quasi-isometry invariants for the group, and, in the rigid case, impose severe restrictions
on quasi-isometries of the group.
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In particular, the authors came upon this problem in the course of studying mapping
tori of free group automorphisms. In the case of a linearly growing automorphism, the
mapping torus has a JSJ–decomposition with vertex groups F �Z. Understanding the
line patterns in the free factors of the vertex groups is a key step in the quasi-isometry
classification of these mapping tori [5].

1.1 Remarks on splittings

In a subsequent work [4], the first author has shown that cut pairs can be used to produce
a JSJ–decomposition of the free group relative to the line pattern. The construction
is analogous to Bowditch’s JSJ–decomposition for hyperbolic groups [2], using the
decomposition space in place of the boundary at infinity of the hyperbolic group. In
this light the shearing quasi-isometries that we produce in Section 5.1 may be thought
of as Dehn twists.

In the theory of JSJ–decompositions it is common to call vertices that do not split
further rigid vertices, so it might seem natural to define a line pattern to be rigid if
there are no relative splittings. The relative JSJ–decomposition shows that this is
almost equivalent to the isometric action definition of rigidity used in the present
work. That existence of a splitting implies nonrigidity is easy to see. The relative
JSJ–decomposition shows that the converse is almost true; the converse fails only in
the case that the line pattern is generated by the boundary words of a sphere with three
boundary components. It can be shown this example does not split. However, we will
see in Section 6.1 that the line pattern coming from the boundary words of a surface
with boundary gives a decomposition space that is a circle, and therefore is nonrigid in
the isometric action sense.

2 Preliminaries

In this section we recall relevant background material. Results are stated with references,
and proofs are omitted.

2.1 Cut sets and cubings

If X is a topological space, a cut set is a subset S�X such that X nSDfx2X jx…Sg

is disconnected. A single point that is a cut set is a cut point; a pair of points that is a
cut set is a cut pair, etc.

A cut set S is minimal if no proper subset of S is a cut set of X .

Geometry & Topology, Volume 15 (2011)
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If S and S 0 are cut sets of X we say S 0 crosses S if S 0 nS has points in multiple
components of X nS . This is not a symmetric relation, but it is if we assume that S

and S 0 are minimal.

A cubing is a simply connected, nonpositively curved cube complex. Cubings can be
used to encode the combinatorics of a collection of cut sets. Our treatment of cubings
is based on work of Sageev [17].

Let fSigi2I be a collection of closed, minimal cut sets of X so that for each i , X nSi

has exactly two connected components, A0
i and A1

i . We will take the superscripts
mod 2, so that the two components of X nSi are A�i and A1C�

i for � 2 f0; 1g. Let

†D fA0
i gi2I [fA

1
i gi2I

Define a cube complex as follows. The vertices are the subsets V of † such that:

(1) For all i 2 I exactly one of A0
i or A1

i is in V .

(2) If C 2 V and C 0 2† with C � C 0 then C 0 2 V .

Two vertices are connected by an edge if they differ by only one set in †.

One can identify † with 2I . The i –th “coordinate” is either 0 for A0
i or 1 for A1

i .
Edges join vertices that differ in exactly one coordinate.

The vertices are the elements of 2I that are “consistent” with the cut set structure in
the sense that if for some i and j we have A1

i �A1
j then we do not have any vertices

that are “1” in the i –th coordinate and “0” in the j –th coordinate. It is not consistent
to be simultaneously in A1

i and A0
j .

Informally, having � in the i –th coordinate corresponds to being in A�i . There is a
subtlety here, though. An element of 2I might be consistent without being realized as
a component of X n fSig. It is possible that there are vertices such that �i is the value
of the i –th coordinate of the vertex, but

T
i2I A

�i

i D∅.

Remark There is a minor difference from Sageev’s construction. In his notation we
would be considering Ai D Si [A0

i and Ac
i DA1

i . The nature of the cut sets we are
interested in would make it problematic to include them in one of the components.
There is only one place where this requires us to change Sageev’s arguments, which
we will point out shortly. Everywhere else, it is sufficient to replace a statement like

Ai �Aj )Ac
j �Ac

i

with a statement like
A
�i

i �A
�j
j )A

1C�j
j �A

1C�i

i :

This statement follows easily from the fact that minimal cut sets are either mutually
crossing or mutually noncrossing.
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Edges in the complex correspond to changing one coordinate from 0 to 1, or vice versa.
However, to maintain consistency not every coordinate can be changed:

Lemma 2.1 [17, Lemma 3.2] If V is a vertex and A�i 2 V then

W D .V n fA�i g/[fA
1C�
i g

is a vertex if and only if A�i is minimal in V , in the sense that A�i does not contain any
other Aıj 2 V .

It turns out in general that there are still too many vertices. The graph that has been
constructed so far is not necessarily connected. This is where our construction differs
from Sageev’s. For both his construction and ours, the idea is to select a subcollection
of the vertices, show that the subcollection belongs to a path connected subset of the
graph, and then throw away everything not in that path component. Our construction
will come later in Section 5. However, this is the only place in which Sageev uses the
special properties of his chosen collection †. The rest of his arguments go through
unchanged in our setting.

So assume that we have passed to a nontrivial path connected component of the original
graph. Following Sageev again, one glues in one square (2 dimensional cube) whenever
one sees the boundary of a square in the graph. One proceeds by induction to glue in
an n–cube whenever one sees the boundary of an n–cube in the .n�1/–skeleton of the
complex. The result is a (possibly infinite dimensional) simply connected, nonpositively
curved cube complex, a cubing [17, Theorem 3.7].

There is an equivalence relation on the (directed) edges of a cubing. Two directed
edges e and e0 are equivalent if there is a finite sequence e D e0; e1; : : : ; ek D e0 such
that for each i , ei and eiC1 are opposite edges of some 2–cube, oriented in the same
direction.

Equivalence classes of edges are called combinatorial hyperplanes. There is a corre-
sponding idea of a geometric hyperplane. Consider an n–cube of the complex. It can
be identified with a cube of side length 1 in Rn where the vertices have all coordinates
in f˙1

2
g. Consider the edges that correspond to changing the n–th coordinate from �1

2

to 1
2

. These edges belong to a combinatorial hyperplane. The corresponding portion of
a geometric hyperplane is the intersection of the n–cube with the coordinate hyperplane
f.x1; : : : ;xn/ 2Rn j xn D 0g. Such pieces are then glued together for each cube with
edges in the combinatorial hyperplane.

Theorem 2.2 [17, Theorem 4.10] Suppose J is a geometric hyperplane in a cub-
ing Y . Then J does not intersect itself and partitions Y into two connected compo-
nents.
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1426 Christopher H Cashen and Nataša Macura

We take the metric on the cubing to be the path metric on the 1–skeleton. The distance
between two vertices is the minimal number of edges in an edge path joining them,
and such a minimal edge path is called a geodesic.

A corollary of the preceding theorem is the following observation about geodesics:
Let x and y be vertices in a cubing Y . If they are distance D apart, then a geodesic
joining them must cross D geometric hyperplanes, one through the midpoint of each
edge of the path. Each of these hyperplanes disconnects Y , with x and y in opposite
components. Therefore, any geodesic from x to y must cross the same D hyperplanes.
Conversely, the distance between x and y in Y is the number of hyperplanes separating
them.

Fix a hyperplane. There is an A�i 2† such that every directed edge e in the hyperplane
joins a vertex Ve with a vertex .Ve n fA

�
i g/[fA

1C�
i g. Furthermore, every edge of this

form belongs to the hyperplane [17, Lemma 3.9].

Thus, we have a bijection between the set of geometric hyperplanes and the collec-
tion fSig of cut sets. This is how the cubing encodes the collection of cut sets. Cut sets
of X correspond to hyperplanes of Y . Distance in Y corresponds to being separated
by a given number of cut sets. An n–cube in Y corresponds to a collection of n

distinct, pairwise crossing cut sets Si in X .

2.2 Graphs and complexes of groups

In this section we give a brief account of graphs and complexes of groups. The reader
is referred to Bridson and Haefliger’s book [3] for more detail.

A graph of groups is a construction that builds a group by amalgamating smaller groups.
Start with a finite connected graph � , and associate to each vertex or edge  a local
group G , along with injections �e;vW Ge!Gv for each edge e and vertex v that is
an endpoint of e .

The fundamental group of the graph of groups is then obtained by taking as generators
all the vertex groups as well as one generator ge for each edge e in the graph. The
relations are:

(1) All the relations from the vertex groups.

(2) For each edge e with endpoints v and v0 , and for each h 2Ge ,

ge�e;v.h/g
�1
e D �e;v0.h/:

(3) ge D 1 for each edge e in a chosen maximal subtree of � .

The fundamental group does not depend on the choice of maximal subtree.
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Associated to a graph of groups there is a simplicial tree D� covering � called the
Bass–Serre tree or the development of the graph of groups. The fundamental group
of the graph of groups acts by isometries on D� , with vertex stabilizers equal to
conjugates of the vertex groups in the graph of groups and edge stabilizers equal to
conjugates of the edge groups.

Conversely, given a cocompact isometric action of a group G on a simplicial tree we
get a graph of groups decomposition for G by taking the graph to be the quotient of the
tree by the G action and choosing the local groups to be the vertex and edge stabilizers.

A complex of groups is a generalization of the graph of groups construction to higher
dimensional complexes. In particular, a group acting cocompactly by isometries on
a polyhedral complex can be given a complex of groups structure by associating
to each cell in the quotient a group isomorphic to the stabilizer of the cell in the
original complex.

Unlike in the graph of groups case, not every complex of groups is developable. That
is, starting with a complex of groups � , there may not exist a complex X so that the
fundamental group of the complex of groups acts on X with quotient � . However,
if you start with a group acting on a polyhedral complex, then the resulting graph
of groups is developable: the development is just the polyhedral complex that you
started with.

A developable complex of groups is faithful if no nontrivial element of the fundamental
group of the complex of groups acts trivially on the development.

To ensure that the quotient is still a polyhedral complex, one should assume that if an
element of the group leaves a cell invariant, then it fixes it pointwise. This is called an
action without inversions. If this is not the case, it can be achieved by subdividing cells.

Lim and Thomas have worked out a covering theory for complexes of groups [9]. A
particular result that will be of interest to us is:

Theorem 2.3 [9, Theorem 4] Let X be a simply connected polyhedral complex, and
let G be a subgroup of Aut.X / (acting without inversions) that induces a complex of
groups � . Then there is a bijection between the set of subgroups of Aut.X / (acting
without inversions) that contain G , and the set of isomorphism classes of coverings of
faithful, developable complexes of groups by � .

If G acts cocompactly on X then so does any subgroup H of Aut.X / containing G ,
and we get a covering of the compact quotient complexes. If the complex of groups
coming from the H action has finite local groups then we get a finite covering, so G

is a finite index subgroup of H .
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2.3 Coarse geometry

In this section and the next we establish the language and basic ideas of coarse geometry
and trees. Again, see Bridson and Haefliger’s book [3] for more detail.

Let .X; dX / and .Y; dY / be metric spaces. Let A and B be subsets of X .

The (open) r –neighborhood of A is the set Nr .A/D fx 2X j dX .x;A/ < rg.

The Hausdorff distance between A and B is

dH .A;B/D inffr jA� SNr .B/ and B � SNr .A/g:

We will use the common convention that some object is r –[adjective] if it has the
property for the specified r , and is [adjective] if there exists some r such that the
object is r –[adjective].

A and B are r –coarsely equivalent if dH .A;B/� r .

A is r –coarsely dense in X if A is r –coarsely equivalent to X .

A map �W X !Y is a .�; �/–quasi-isometric embedding if there exist �� 1 and �� 0

such that for all x;x0 2X ,

1

�
dX .x;x

0/� � � dy.�.x/; �.x
0//� �dX .x;x

0/C �:

If, in addition, the image of � is �–coarsely dense in Y , then � is a .�; �/–quasi-
isometry.

Maps � and  from X to Y are r –coarsely equivalent, or are equivalent up to
r –bounded distance, if for all x 2X , dY .�.x/;  .x//� r .

QI.X ! Y / is the set of quasi-isometries from X to Y modulo coarse equivalence.

Suppose A is r –coarsely dense in X and � is a pseudo-map that assigns to each a2A

a subset �.a/ in Y of diameter at most R. Suppose there are �� 1 and � � 0 such
that for all a and a0 in A,

1

�
dX .a; a

0/� ��R� inffdY .y;y
0/ j y 2 �.a/;y0 2 �.a0/g;

supfdY .y;y
0/ j y 2 �.a/;y0 2 �.a0/g � �dx.a; a

0/C �CR:

Then the pseudo-map � determines a unique (up to coarse equivalence) extension to
a .�; 2�r C �CR/–quasi-isometric embedding ˆW X ! Y such that for all a 2 A,
ˆ.a/ 2 �.a/. For each x 2X choose a closest a 2A and choose any ˆ.x/ 2 �.a/.
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Suppose for some x we define ˆ0.x/ by choosing a different closest a0 2 A and
ˆ0.x/ 2 �.a0/. Then

dY .ˆ.x/; ˆ
0.x//� supfdY .y;y

0/ j y 2 �.a/;y0 2 �.a0/g

� �dX .a; a
0/C �CR

� � � 2r C �CR;

so ˆ and ˆ0 are coarsely equivalent.

The fact that ˆ is a quasi-isometric embedding follows easily.

If �W X ! Y is a .�; �/ quasi-isometry, consider the inverse pseudo-map that takes a
point in �.X / to its preimage in X . This preimage has diameter at most � , and the
image of � is �–coarsely dense in Y . We can therefore extend this pseudo-map to
a .�; 2�.�C �//–quasi-isometry x�W Y ! X . The compositions � ı x� and x� ı� are
coarsely equivalent to the identity maps in Y and X , respectively. We call x� a coarse
inverse of � .

With this notion of inverse, the set QI.X /DQI.X!X / of quasi-isometries from X

to itself, modulo coarse equivalence, becomes a group, the quasi-isometry group of X .

Let G be a finitely generated group and let B be a finite generating set. The word
metric on G with respect to B is defined by setting jgj to be the minimum length of a
word equal to g in G written in terms of generators in B or their inverses.

The Cayley graph of G with respect to B is the graph with one vertex for each element
of G and an edge Œg;g0� connecting vertex g to vertex g0 if g0 D gb for some b 2 B .
Make this a metric graph by assuming that each edge has length one. The distance
between two vertices g and g0 is the length of the shortest edge path joining them.
Thus, the distance from g to the identity vertex is the same as jgj in the word metric.
G acts on the Cayley graph by isometries via left multiplication.

While the Cayley graph depends on the choice of finite generating set, different choices
yield quasi-isometric graphs. More generally, if G acts properly and cocompactly
by isometries on a length space X , then X is quasi-isometric to G with (any) word
metric. We call such a space X a geometric model of G .

2.4 Free groups and trees

Let F be the free group of rank n, with free generating set (free basis) BDfa1; : : : ; ang.
For g 2 F , let xg denote g�1 .

Let T D CB.F / be the Cayley graph of F with respect to B . Since we have chosen a
free generating set, T is a tree, a graph with no loops.
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The tree has a boundary at infinity @T that is a Cantor set. Adding the boundary
compactifies the tree; ST D T [@T is a compact topological space such that the induced
topology on T agrees with the metric topology on T . For any two points t and t 0

in ST there is a unique geodesic Œt; t 0� joining them.

Let v and w be vertices in T . Define

shadowv.w/D fx 2 ST j w 2 Œv;x�g:

Let shadowv1.w/D shadowv.w/\ @T .

If � 2 @T and v 2 T let v D v0; v1; : : : be the vertices along Œv; ��. The sets
shadowv.vi/ give a neighborhood basis for � . The topology on ST is independent
of the choice of v .

Since T is hyperbolic, any quasi-isometry �W T ! T 0 extends to a homeomorphism
@�W @T ! @T 0 .

2.5 Line patterns and the decomposition space

Suppose l D fgwmgm2Z is a line in the pattern. The line l has distinct endpoints at
infinity

lC D gw1 D lim
i!1

gwi ;

l� D gw�1 D lim
i!�1

gwi :

The lines in the pattern never have endpoints in common, so we can decompose @T
into disjoint subsets that are either the pair of endpoints of a line from the pattern or a
boundary point that is not the endpoint of a line.

Define the decomposition space DL (or just D when L is understood) associated to
a line pattern L to be the space that has one point for each set in the decomposition
of @T , with the quotient topology.

Let qW @T !D be the quotient map. For x 2D, q�1.x/ is either a single point that is
not the endpoint of any line in L, or q�1.x/D flC; l�g for some l 2 L. The former
we call bad points, the latter, good points.

The quotient map q induces a bijection between L and the good points of D, which
we denote by q� .

If S � D we will use the notation yS D q�1.S/� @T . Further, if S consists of good
points we will use zS to be the collection of lines of L given by q�1

� .S/.

The decomposition space is a perfect, compact, Hausdorff topological space.
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A quasi-isometry � from T to T 0 extends to a homeomorphism @�W @T ! @T 0 .
In particular, if there are line patterns L in T and L0 2 T 0 , and if � is a pattern
preserving quasi-isometry, then the homeomorphism @�W @T ! @T 0 descends to a
homeomorphism of the corresponding decomposition spaces.

3 Whitehead’s Algorithm

In a pair of 1936 papers [21; 22], J H C Whitehead gave an algorithm to answer the
following question:

Given two finite (ordered) lists of words .w1; : : : ; wk/ and .w0
1
; : : : ; w0

k
/ in a finite

rank free group F , is there an automorphism � of F such that for all i we have
�.wi/D w

0
i ?

A number of authors have refined Whitehead’s Algorithm and applied it to related
algebraic questions. Section I.4 of the book of Lyndon and Schupp [10] gives a version
of Whitehead’s Algorithm and some of the classical applications.

More recently, Stallings [19] and Stong [20] gave 3–manifold versions of Whitehead’s
Algorithm. In each of these papers the aim was to show that a version of Whitehead’s
Algorithm could be used to determine if, given a finite list of words .w1; : : : ; wk/

in F , there is a free splitting of F such that every wi is conjugate into one of the free
factors. Stallings calls this “algebraically separable”. This algebraic question is then
shown to be equivalent to a geometric question about whether or not a collection of
curves in a handlebody has a property that Stallings calls “geometrically separable”
and Stong calls “disk-busting”.

In this section we review Whitehead’s Algorithm. Our language is similar to that of
Stallings and Stong, except that our group actions are on the left and path concatenations
are on the right, while they use the opposite convention.

3.1 Whitehead graphs

Let B D fa1; : : : ; ang be a free basis of F . Let w 2 F be a cyclically reduced
word. The Whitehead Graph of w with respect to B is the graph WhB.�/fwg with
2n vertices labeled a1; : : : ; an; xa1; : : : ; xan , and an edge between vertices v and v0 for
each occurrence of xvv0 in w (as a cyclic word). The graph depends on the choice of B ,
and, of course, on w , but we will write Wh.�/ when these are clear.

Remark At present the .�/ may be ignored; it will be explained in the next section.
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b

xb

axa

Figure 1: Wh.�/fag

b

xb

axa

Figure 2: Wh.�/fab2g

b

xb

axa

Figure 3: Wh.�/fabxaxbg

b

xb

axa

Figure 4: Wh.�/fa2ba2xb2g

For example, if F D ha; bi Figures 1–4 show some Whitehead Graphs.

Notice that Wh.�/fag is disconnected; the vertices b and xb are isolated.

Wh.�/fab2g is connected but becomes disconnect if the vertex b (or xb ) is deleted; b

and xb are cut vertices.

Wh.�/fabxaxbg is connected and has no cut vertices.

Wh.�/fa2ba2xb2g is also connected with no cut vertices, and has multiple edges
between vertices a and xa.

More generally, one can make a Whitehead graph representing finitely many words
w1; : : : ; wm . We call this Whitehead graph Wh.�/fw1; : : : ; wmg or Wh.�/fLg, where
L is the line pattern generated by fw1; : : : ; wmg.

3.2 Whitehead automorphisms

Applying � 2 Aut.F / changes the Whitehead graph WhB.�/fw1; : : : ; wmg to the
Whitehead graph WhB.�/fŒ�.w1/�; : : : ; Œ�.wm/�g, where Œ�.wi/� means choose a
cyclically reduced word in the conjugacy class of �.wi/.
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An automorphism that permutes B or swaps a generator with its inverse gives an
isomorphic Whitehead graph.

Definition 3.1 (Whitehead automorphism) A Whitehead automorphism is an auto-
morphism of the following form: Pick x 2 B [ xB , a generator or the inverse of a
generator. Pick Z � B[ xB such that x 2Z and xx …Z .

Define an automorphism �x;Z by defining �x;Z .x/ D x and for the rest of the
generators y 2 B by

�x;Z .y/D

8̂̂̂̂
<̂
ˆ̂̂:

y if y …Z and xy …Z;

xy if y 2Z and xy …Z;

yxx if y …Z and xy 2Z;

xyxx if y 2Z and xy 2Z:

We say that the automorphism �x;Z is the Whitehead automorphism that pushes Z

through x .

To visualize what is happening, consider the rose with one vertex and one oriented
loop for each element of B . The fundamental group is F . The Whitehead automor-
phism �x;Z is the automorphism of the fundamental group induced by the homotopy
equivalence that pushes one or both ends of the y –loop around the x–loop according
to whether y or xy or both are in Z , or leaves the y –loop alone if neither y nor xy are
in Z . See also Section 4.2.

Define the complexity of the collection w1; : : : ; wn to be the number of edges of
Wh.�/fw1; : : : ; wmg. This is equivalent to the sum of the lengths of the wi , and also
half the sum of the valences of the vertices.

Comparing WhB.�/fw1; : : : ; wmg to WhB.�/fŒ�x;Z .w1/�; : : : ; Œ�x;Z .wm/�g we see
that the valences of vertices other than x and xx do not change. The new valence
of x and xx is equal to the number of edges that go between Z and Zc . Thus, the
Whitehead automorphism reduces the complexity of the Whitehead graph exactly when
there are fewer edges joining Z and Zc than the valence of x .

Theorem 3.2 Aut.F / is generated by

(1) exchanges of a generator with its inverse.

(2) permutations of the generators.

(3) Whitehead automorphisms.
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Proof This is clear since this set of automorphisms contains the Nielsen generators [14]
for Aut.F /.

Whitehead’s Algorithm is as follows: First, check if any Whitehead automorphisms
reduce the complexity of the Whitehead graph. Repeat. Once you have reduced to
minimal complexity, there are only finitely many graphs to consider. Build a graph
with one vertex for each possible Whitehead graph with the given complexity, and an
edge between two vertices if one of the given generators of the automorphism groups
takes one graph to the other. One can then show that an automorphism matching up
the two lists of words exists if and only if the reduced Whitehead graphs for the two
lists of words lie in the same connected component of this graph.

If fw1; : : : ; wmg is a subset of a free basis then the minimal complexity Whitehead
graph should have m disjoint edges.

If there is a free splitting F D F 0 �F 00 with every wi in F 0 or F 00 then the minimal
complexity Whitehead graph should be disconnected.

The presence of a cut vertex in the Whitehead graph indicates that the graph is not
reduced. If x is a cut vertex, let Z be the union of fxg and the vertices of a connected
component of Wh.�/fLg n fxg not containing xx . The Whitehead automorphism �x;Z

reduces complexity.

One application of Whitehead’s Algorithm is that a word w is an element of a free
basis of F DFn if and only if the minimal complexity Whitehead graph for w consists
of a single edge and 2.n� 1/ isolated vertices.

More generally, the width of an element w is the rank of the smallest free factor of F

containing w . The minimal complexity Whitehead graph for an element of width m

in F D Fn consists of 2.n�m/ isolated vertices and a connected graph without cut
vertices on the remaining vertices.

4 Whitehead graphs and the topology of the decomposition
space

The decomposition space associated to a line pattern first appears in the literature in
work of Otal [15], who proves that the decomposition space is connected if and only if
there exists a basis B of F such that WhB.�/ is connected without cut vertices.

A similar theorem appears in the thesis of Reiner Martin [12], who references notes of
Bestvina.
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Theorem 4.1 [12, Theorem 49] For any w 2 F �f1g, the following are equivalent:

(1) w is contained in a proper free factor of F .

(2) The width of w is strictly less than the rank of F .

(3) There exists a disconnected Whitehead graph of w .

(4) The decomposition space associated to the pattern generated by w is discon-
nected.

(5) Every Whitehead graph for w with no cut vertices is disconnected.

The goal of this section is to further explore the relationship between generalizations
of the Whitehead graph and the topology of the decomposition space. In particular, we
are interested in finite cut sets in the case that the decomposition space is connected.

Remark The theorem stated in [12] has an additional equivalent condition: for any
basis there exists a generalized Whitehead graph that is disconnected. We will not make
use of this. In our notation, Martin’s generalized Whitehead graph is WhB.Nr .�//fwg

(see below).

4.1 Geometric interpretation and generalizations

Let B be a free basis for Fn , and let T be the corresponding Cayley graph. Let L be
a line pattern in Fn . Let X be a connected subset of ST that includes any limit points
of X in @T .

Definition 4.2 (Whitehead graph) The Whitehead graph WhB.X /fLg is a graph
whose vertices are the connected components of ST nX . Distinct vertices v1 and v2

are connected by an edge for each line l 2 L with one endpoint in the component
corresponding to v1 and the other in the component corresponding to v2 .

Remarks The conditions on X ensure that for each component of ST nX there is a
unique edge of T that connects the component to X . Thus, vertices of a Whitehead
graph are in bijection with the edges of T that have exactly one endpoint in X .

When X D � is a single vertex the definition given here coincides with the classical
definition of WhB.�/fLg. Since L is equivariant we get the same graph for any choice
of vertex.

We will suppress the L and B in the notation when these are clear from context.

The argument X in parentheses is a subset of ST . In particular, we will often be
interested in a geodesic segment X joining two points x and y in ST . We will use
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closed interval notation X D Œx;y� to denote such a segment. As the vertices of the tree
are labeled by group elements one might also interpret Œx;y� to be the vertex labeled
by the commutator of x and y . To avoid confusion, we will never use square brackets
for commutators; square brackets always refer to a geodesic segment in ST .

If X and Y have the same vertex set they result in the same Whitehead graph. It will
sometimes be convenient to use notation like Œx;y/ to mean the geodesic subsegment
of Œx;y� including all but the last edge.

We will also give a combinatorial construction of our generalization of the Whitehead
graph. However, the intuition that informs our arguments comes from the above
geometric interpretation. One should visualize the Whitehead graph as the portion of
the line pattern that passes through a subset of a tree, rather than as an abstract graph.
Where appropriate, as in Figures 5 and 6, we have included the relevant portions of the
tree to aid in this visualization.

If X is a finite (finitely many vertices) connected subset of T we can build up Whitehead
graphs Wh.X /fLg in a combinatorial way by splicing together copies of Wh.�/fLg
for each of the vertices of X . Splicing is a method of combining graphs. The term
was coined by Manning in [11] where he uses splicing to construct Whitehead graphs
of finite covers of a handlebody from the Whitehead graph of the base handlebody.

Let v be a vertex of a graph � and let v0 be a vertex of a graph � 0 of valence equal to
the valence of v . Given a bijection between edges of � incident to v and edges of � 0

incident to v0 , the splicing map, form a new graph whose vertices are the vertices of �
and � 0 minus the vertices v and v0 . Edges not incident to v or v0 are retained in the
new graph. Finally, for each pair of edges Œw; v� in � and Œw0; v0� in � 0 identified by
the splicing map, add an edge Œw;w0� in the new graph.

In other words, we have deleted v and v0 , leaving the edges incident to those vertices
with “loose ends”. The splicing map tells us how to splice a loose end at v to a loose
end at v0 to get an edge in the new graph.

For Whitehead graphs the splicing map is determined by the line pattern. Suppose L
is some line pattern and we have chosen a basis. Suppose we have adjacent vertices g

and ga in a Cayley graph, and corresponding Whitehead graphs Wh.g/fLg and
Wh.ga/fLg. We splice them together to build the Whitehead graph Wh.Œg;ga�/fLg
on the (one edge) segment Œg;ga�. The g vertex and ga vertex in T are adjacent across
an a–edge, so the splicing vertices are the a–vertex of Wh.g/fLg and the xa–vertex
of Wh.ga/fLg. Each edge in Wh.g/fLg incident to a corresponds to a length two
subword of one of the generators of the line pattern of the form xa or xax . Suppose an
edge corresponds to a subword xa, and suppose the next letter is y , so there is a length

Geometry & Topology, Volume 15 (2011)



Line patterns in free groups 1437

three subword xay . We define the splicing map to identify the edge corresponding to
this particular instance of the subword xa to the edge in Wh.ga/fLg (incident to xa)
corresponding to this particular instance of the subword ay .

We can make the splicing easier to visualize if we draw the Whitehead graphs with
loose ends at the vertices. Figure 5 shows the Whitehead graph for the pattern generated
by the words ab and axb in F D F2 D ha; bi, along with the underlying tree. The
word ab will contribute an edge from xa to b and an edge from xb to a. The twists in
the graph indicate the splicing maps.

� axa

b

xb

Figure 5: Wh.�/fab; axbg (loose)

� axa

b

xb

ab

axb

a2

Figure 6: Wh.�/fab; axbg and Wh.a/fab; axbg (loose)
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Figure 7: Wh.Œ�; a�/fab; axbg

Let � be the identity vertex. Take a copies of this graph at � and at a and splice them
together. We get the splicing map by considering the words. There is an ab–line at �.
If the first letter is a, the previous letter was b , so we see an edge from xb to a in the
Whitehead graph at �. The next letter is b , so in the Whitehead graph at a we see an
edge from xa to b , and the twist in the graph indicates that these two edges should be
spliced together.

Similarly, there is an axb–line at �. It contributes an edge from b to a in the Whitehead
graph at �, and this continues on to an edge from xa to xb in the Whitehead graph at a.

Note Unless noted otherwise, figures are drawn so that the splicing map is achieved
by an orientation preserving isometry of the page.

The geometric and splicing constructions produce the same graph for sets X with
finitely many vertices. We could try to take limits of the spliced graphs when X is
infinite, but if X � ST contains endpoints of some l 2L, then splicing does not actually
produce a graph.

If both endpoints of l are in xX then after finitely many splices there is an edge
corresponding to l , but in the limit the edge grows to be an open interval not incident
to any vertices; the vertices escape to infinity. This line does not occur if we follow
the geometric definition, because it is not joining two different components of the
complement of X in ST . Similarly, if only one endpoint of l is in xX then splicing
produces a graph G with a half line attached. If we throw out these “nonclosed edges”
we get the graph Wh.X /fLg of the geometric definition.

Remark Stong [20] defines a generalized Whitehead graph that coincides with our
definition, but, like Martin [12], only makes use of WhB.Nr .�//fwg.
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4.2 Whitehead automorphisms revisited

Let us consider how application of a Whitehead automorphism changes the line pattern.

Suppose x , y and z are in B[ xB with y ¤ z . Consider a Whitehead automorphism
� D �x;Z (recall Definition 3.1). Let l 2 L be a line that goes through vertices y ,
� and z , where � is the identity vertex. The line l is the geodesic that goes through
vertices of the form fy.xyzu/mgm2Z , where u is some word in F that does not begin
with xz or end with y .

First suppose that y; z 2 Z , y; z ¤ x and xy;xz … Z , so that �.x/ D x , �.y/ D xy

and �.z/D xz . Then �.l/ is the line that includes vertices of the form

f�.y.xyzu/m/gm2Z D fxy.xyxxxz�.u//mgm2Z D fxy.xyz�.u//mgm2Z:

Since u does not begin with xz or end in y , the same is true for �.u/. Therefore, �.l/
goes through vertices xy , x and xz . The line l that went through � has been “pushed
through” the x edge to a line �.l/ that goes through x and not through �.

Using similar arguments one can show:

(1) �.l/ goes through x and not through � if y and z are in Z .

(2) �.l/ goes through � and not through x if y and z are in Zc .

(3) �.l/ goes through both � and x if exactly one of y or z is in Z .

4.3 Connectivity of the decomposition space

Fix a line pattern L, and let DD DL be the corresponding decomposition space. The
next two lemmas use essentially the same ideas that go into the proofs of Theorem 4.1
in [12; 15, Proposition 2.1].

Lemma 4.3 If for some choice of basis B the graph WhB.�/ is disconnected, then D
is disconnected.

Proof Let � be the identity vertex in T . Let B be a free basis of F such that WhB.�/
is not connected. Vertices of WhB.�/ are in bijection with B [ xB . There is some
partition of B[ xB into subsets A and A0 so that no lines of L connect A to A0 . Let

yAD
S

a2A shadow�1.a/:

The sets yA and yAc � @T are both nonempty clopens, sets that are both open and
closed. Since there are no lines of L with one endpoint in yA and one in yAc , their
images in D are disjoint nonempty clopens, so D is disconnected.
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Lemma 4.4 Suppose there exists a free basis B of F such that WhB.�/ is connected
without cut vertices. Let T be the Cayley graph of F corresponding to B . Pick any
edge e in T . Let � and v be the endpoints of e . Let yAD shadow�1.v/. That is, yA is
the “half” of @T on the “v–side” of e . The set AD q. yA/ is connected in D.

yAe� v

Figure 8: The boundary of the tree split into “halves”

Proof Suppose there are open sets B and C of D such that A � B [ C and
A\B\C D∅. The set yA is open in @T , so A0D yA\q�1.B/ and A00D yA\q�1.C /

are open. Assuming that A0 is nonempty, we will show that A00 must be empty, which
implies A is connected.

The set yA is closed in @T , so A0 and A00 are closed. Compactness of @T implies A0

and A00 are compact clopens. Since A0 is compact and open, there are finitely many
vertices x1; : : : ;xa so that A0 D

Sa
iD1 shadow�1.xi/

There is a similar finite collection y1; : : : ;yb that determines A00 .

Consider the convex hull H of fxig
a
iD1
[fyj g

b
jD1
[fvg; it is a finite tree. Call

the vertices of H other than fxig
a
iD1
[fyj g

b
jD1
[fvg the “interior vertices”. Since

A0[A00 D yA, the set H includes all edges incident to its interior vertices. Let X be
the union of the set of interior vertices with fvg.

Construct the Whitehead graph Wh.X /. It has aC bC 1 vertices corresponding to
the xi and yj and the edge e of T .

The graph is connected without cut vertices, since it can be constructed by splicing
together finitely many copies of Wh.�/, which is connected without cut vertices. In
particular, the vertex e is not a cut vertex.

Assume A0 is nonempty. If x1 D v then A0 D yA, so A00 D ∅, and we are done.
Otherwise, x1 is a vertex of Wh.X / different from v . Since v is not a cut vertex, there
are edges of Wh.X / incident to x1 and not v . Such an edge corresponds to a line
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l 2L with one endpoint in the shadow of x1 and the other endpoint in the shadow of z

for some z 2 fxig
a
iD2
[fyj g

b
jD1

. In the decomposition space these two endpoints are
identified, and we already know that the image of the first endpoint is in B . This means
that z must be in fx2; : : : ;xag. Since Wh.X / is connected and v is not a cut vertex,
we conclude that all the vertices of Wh.X / n v belong to fx1; : : : ;xng, so A00 D ∅.
Thus, A is connected in D.

Thus, if Wh.�/ is connected without cut vertices, then for any edge e in T the
boundaries of the two connected components of T n e correspond to connected sets
in the decomposition space. Since Wh.�/ is connected without cut vertices there are
at least two lines in L crossing e . This means that these two connected sets in the
decomposition space have points in common.

Corollary 4.5 Suppose Wh.�/ has no cut vertices. Then the decomposition space is
connected if and only if Wh.�/ is connected.

Proof of Theorem 4.1 Conditions (1) and (2) are equivalent by definition. The
equivalence of (1) and (3) is a consequence of Whitehead’s Algorithm.

(3))(4) is Lemma 4.3.

Corollary 4.5 implies the contrapositive of (4))(5).

It is always possible to eliminate cut vertices with Whitehead automorphisms, so
(5))(3).

4.4 Cut sets in a connected decomposition space

From now on, unless otherwise noted, we will assume that L is a fixed line pattern
such that the decomposition space D D DL is connected. Thus, we can choose a
basis B such that WhB.�/fLg is connected without cut vertices. In particular, this is
true for any basis for which WhB.�/fLg has minimal complexity, but for most of our
arguments minimal complexity is not a necessary hypothesis. As B and L are fixed,
we will suppress them in the Whitehead graph notation.

Our goal is to identify finite minimal cut sets.

Here is another corollary of Lemma 4.4:

Corollary 4.6 Pick any edge e in T . Let zS be the collection of (finitely many) lines
of L that cross e . Then S D q�. zS/ is a cut set in D.
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Definition 4.7 (Edge cut set) A set S D q�. zS/, such that zS is the set of lines of L
crossing some edge e of T is called an edge cut set.

These cut sets will play a pivotal role in Section 5. They are the prototypes for the
“small” cut sets that we will use to build a cubing.

It will turn out that for our purposes the most important cut sets come from finite
subsets of L. The edge cut sets mentioned above are an example of such sets. A finite
collection of lines zS D fl1; : : : ; lkg � L gives a finite set S D q�. zS/ of D. We would
like to be able to decide if such a set S is a cut set of D. To do this, we consider
generalized Whitehead graphs.

Let X be a compact connected subset of T , and let l be a line of L. If l intersects X
then there is an edge of Wh.X / corresponding to l . Let Wh.X /� l denote the graph
that results from deleting the interior of the edge of Wh.X / corresponding to l . (If
there is no such edge, because l \X D∅, then Wh.X /� l is just Wh.X /.) Similarly,
Wh.X /� zS is the graph obtained from Wh.X / by deleting the interiors of any edges of
Wh.X / coming from the lines of zS . Given zS , we would like to know the relationship
between components of Wh.X /� zS and components of D nS . Much of the technical
work of the next few sections is aimed at answering this question. Ultimately, in
Lemma 4.20, we will show that, under certain conditions, given zS there is a choice of
X so that components of Wh.X /� zS are in bijection with components of D nS .

There is an easy sufficient condition to see that a set zS D fl1; : : : ; lkg � L gives a cut
set S D q�. zS/ of D:

Proposition 4.8 Let zS D fl1; : : : ; lkg be a finite collection of lines in L. Let X be
any compact, connected set in T . If Wh.X /� zS is disconnected then S D q�. zS/ is a
cut set.

One could prove this proposition with an argument similar to that of Corollary 4.6. We
will prove a more general result in the next proposition. Before moving on, though,
let us consider an example that shows that this proposition does not give a necessary
condition for S to be a cut set. Clearly if X is disjoint from zS then Wh.X /� zS will
not give any information about D nS , but in fact there are situations for which there is
no compact X such that Wh.X /� zS adequately models D nS .

Consider the pattern L generated by the pair of words b and abxaxb in F D ha; bi. The
Whitehead graph (with loose ends) for this pattern is shown in Figure 9.

The graph Wh.�/fb; abxaxbg is connected without cut vertices, so the decomposition
space is connected. We claim that the endpoints of any b–line give a cut point in the
decomposition space. For instance, the b–line through the identity vertex has endpoints
b1 , b�1 in @T . Let B D q.b1/D q.b�1/.
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Figure 9: Wh.�/fb; abxaxbg (loose)

Let � be the identity vertex. Let

yAD
S

m2Z shadow�1.b
ma/;

that is, yA consists of all the boundary points � of T such that the first occurrence of a

or xa in the geodesic from the identity to � is an a.

Now yA is open, and every line of L with one endpoint in yA has both endpoints in yA.
Let AD q. yA/; the preimage is yAD q�1.A/, so A is open in D. Similarly, let A0 be
the image in D of the boundary points of T such that the first occurrence of a or xa in
the geodesic from the identity is an xa.

We have DD B [A[A0 , and B D xA nAD SA0 nA0 , so B is a cut point.

For any compact, connected X , the Whitehead graph Wh.X /fb; abxaxbg looks like a
circle with a number of disjoint chords (see Figure 10).

The edges of the circle correspond to abxaxb–lines, and the chords correspond to b–lines.
This graph has no cut points, so deleting the interior of an edge does not disconnect it.

Figure 10: Wh. SN1.�//fb; abxaxbg
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This example has shown that to decide if zS gives a cut set, it is not enough to delete
the interiors of edges in a Whitehead graph over a compact set X .

There will be several different notions of deleting parts of Whitehead graphs, so let us
standardize notation.

We have already said that Wh.X /� l is obtained from Wh.X / by deleting the interior
of the edge corresponding to l , if such an edge exists. Similarly, obtain Wh.X /� zS
by deleting the interiors of any edges corresponding to a line in zS .

Another option would be to delete not just the interior of an edge, but also its vertices.
However, we do not want to lose other edges incident to these vertices. Let Wh.X /� Rl
be the graph obtained from Wh.X / by deleting the interior of the edge corresponding
to l as well as the two vertices that are its endpoints, retaining loose ends at these
vertices.

We will also be interested in comparing Whitehead graphs Wh.X / and Wh.Y/ when
X �Y . The simplest example is when e is an edge of T incident to exactly one vertex
of X . The edge e corresponds to a vertex in Wh.X /. Define Wh.X / n e to be the
graph obtained from Wh.X / by deleting this vertex, but retaining the incident edges
as loose ends at e .

Similarly, if v is a vertex of T that is distance 1 from X , then there is a unique edge e

with one endpoint equal to v and the other in X . Define Wh.X / n v DWh.X / n e .

More generally, if X � Y 2 ST then obtain Wh.X / nY from Wh.X / by deleting each
vertex of Wh.X / that corresponds to an edge in Y . Visualizing Whitehead graphs in
the tree, Wh.X / nY is the portion of Wh.Y/ that passes through the set X .

Consider the line pattern L generated by abxaxb and b . Let l be the b–line through the
identity vertex �. Let X D � and let Y D Œxb; b�. Figures 11–14 illustrate our different
notions of deleting from Wh.X /. The reader should note the relationships between
Figures 11–14 and Figure 9 and Figure 10.

Recall that the preimage in @T of a point in D is either a single point or the pair of
endpoints of a line of L. We call the former bad points and the latter good points.

Lemma 4.9 (Hull determines connectivity) Let S be a nonempty, finite subset of D
that is not just a single bad point. Let H be the convex hull of q�1.S/. There is
a bijection between connected components of Wh.H/ and connected components
of D nS .
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Figure 13: Wh.�/� Rl
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Figure 14: Wh.�/ n Œxb; b�

Proof Components Ai of T nH are the kind of sets in Lemma 4.4. Therefore,
q.@Ai/ is connected in D. The set @Ai is open in @T . For a subcollection fAij g

corresponding to a connected component of Wh.H/, we have that q.
S

j @Aij / is an
open connected set in DnS , as in the proof of Lemma 4.4. The complement of this set
in D nS is either empty or is a union of sets of a similar form, corresponding to other
connected components of H . Thus, q.

S
j @Aij / is closed, and is therefore a connected

component of D nS .

Pick any vertex � 2 T . If � 2 D is a bad point, the previous argument applies if we
take H to be the ray Œ�; ��. If Wh.�/ is connected without cut points then Wh.H/ is
connected. Therefore:

Corollary 4.10 No bad point of D is a cut point.

In a sense, Lemma 4.9 achieves our goal of relating the topology of the decomposition
space to generalizations of the Whitehead graph. However, this generalized Whitehead
graph is infinite. In the next two sections we show that the same information can be
obtained from a finite portion of this Whitehead graph.
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4.5 Identifying cut points and cut pairs

The previous corollary tells us that any cut point is a good point, so its preimage in @T
is a pair of points. We have a similar situation if there is a cut pair consisting of two
bad points; the preimage of such a set in @T is a pair of points. In both cases, the
convex hull is a line.

Suppose g 2F nf1g is cyclically reduced with HCD g1 and H�D g�1 . Let H be
the convex hull of these two points. Let X D Œ�;g/ be the segment joining the identity
vertex to the g vertex in T , not including the vertex g .

We know, by Lemma 4.9, that the connected components of D n q.fH�;HCg/ are in
bijection with components of Wh.H/. We can construct Wh.H/ by splicing together
g–translates of Wh.X / nH .

Wh.X / nH is Wh.X / n fe;geg for some edges e incident to � and ge incident to
gD g�, so Wh.X /nH has a collection of loose ends at e and at ge . The action of g

identifies Wh.X / nH with Wh.gX / nH , which has loose ends at ge and g2e . The
line pattern determines for us a splicing map for splicing the loose ends of Wh.X /nH
at ge to the loose ends of Wh.gX / nH at ge .

It is an easy consequence of the hypothesis that Wh.�/ is connected without cut vertices
that for any segment Œ�;gk/ � H , every component of Wh.Œ�;gk// nH contains a
loose end at e (and a loose end at gke ). Thus, the number of components of Wh.H/
is bounded above by the number of components of Wh.�/ nH . To bound the number
of connected components of Wh.H/ below we need to know if distinct connected
components of Wh.X / nH become connected when we splice on more translates.

Let P be a partition of the loose ends of Wh.X / nH at e that is at least as coarse
as connectivity in Wh.X / nH , ie, if two loose ends belong to the same connected
component of Wh.X / nH then they belong in the same subset of the partition.

Let jP j be the number of subsets in the partition; P is nontrivial if jP j> 1.

Since P is at least as coarse as connectivity, every vertex and edge in Wh.X / nH is
connected to loose ends in exactly one subset of P . Let P 0 be the partition of the
loose ends of Wh.X / nH at ge such that two loose ends are in the same subset of the
partition if and only if they are connected to loose ends at e in a common subset of the
partition P .

The g action determines a partition gP of the loose ends of Wh.gX / nH at ge by
pushing forward the partition P .
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We say the partition P is compatible with the splicing map if there is a bijection
between subsets of the partitions P 0 and gP such that the splicing map splices edges
in a subset of P 0 to edges in the corresponding subset of gP .

The trivial partition is always compatible with the splicing map, but this gives us no
information. Another obvious partition to consider would be the partition that comes
from connectivity in Wh.X / nH . This is the partition in which two loose ends of
Wh.X / nH at e belong to the same subset of the partition if and only if they belong
to the same connected component of Wh.X / nH . Suppose this partition is compatible
with the splicing map. This would mean that two loose ends of Wh.X / nH at ge

in the same connected component of Wh.X / nH must splice to two loose ends of
Wh.gX / nH at ge in the same connected component of Wh.gX / nH , so splicing
introduces no new connectivity. In this case it follows that for all k � 1 the number
of connected components of Wh.Œ�;gk// nH is equal to the number of connected
components of Wh.X / nH .

However, this is not always the case. Splicing may introduce new connectivity. Com-
patibility of the partition controls how much new connectivity is introduced. If we
have a partition compatible with the splicing map, then, after splicing, the partition P

is at least as coarse as connectivity in Wh.Œ�;g2// nH . Moreover, P will still be
compatible with the splicing map at g2e , so we may continue by induction to show:

Proposition 4.11 Suppose P is a partition that is compatible with the splicing map.
Then for any segment Y D Œ�;gk/ of H , the number of connected components of
Wh.Y/ nH is greater than or equal to jP j.

Any particular line l 2 L overlaps with H for distance at most

jgj � .2Cmaximum number of consecutive g ’s in a generating word for L/:

This is infinite if and only if g is a generator of the line pattern. Thus, g is a generator
of the line pattern if and only if in every Y there is a free edge (edge that is loose at
both ends) in Wh.Y/ nH , since in this case HD xl where l 2 L is the g–line through
the identity.

Given a compatible partition, there are two cases to consider. If for some Y we have
no free edges in Wh.Y/ nH then the number of connected components of Wh.H/ is
greater than or equal to jP j. In particular, if jP j � 2, then q.fHC;H�g/ is a cut pair
consisting of two bad points, a bad cut pair.

In this case we could have chosen the partition P so that one of the subsets is the
singleton consisting of the loose end of the free edge. The partition P 0 also has a
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subset that is a singleton, consisting of the other loose end of the free edge. Such a
partition has a segregated free edge.

We do not see the free edge in Wh.H/, so in general we can only conclude that Wh.H/
has at least jP j�1 connected components. If jP j�1� 2 then q.fHC;H�g/D q�.l/

is a cut point in D.

Proposition 4.12 (q.fg1; g�1g/ cut set criterion) Let g 2 F n f1g be an element
of the free group. With notation as above, let P be the finest partition that is compatible
with the splicing map and at least as coarse as connectivity in Wh.X / nH . Then:

(1) If P is trivial then q.fg1; g�1g/ is not a cut set.

(2) If P is nontrivial and has no segregated free edge then q.fg1; g�1g/ is a bad
cut pair.

(3) If P has a segregated free edge and jP j D 2 then q.fg1; g�1g/ is not a cut
set.

(4) If P has a segregated free edge and jP j> 2 then q.fg1; g�1g/ is a cut point.

Proof If P is trivial then Wh.Œ�;g2// nH is connected, so q.fg1; g�1g/ is not a
cut set. Similarly, if jP j D 2 and there is a segregated free edge then HD xl for l 2 L
and Wh.Œ�;g2�/� l is connected, so q.fg1; g�1g/ is not a cut set.

In the other cases, Wh.H/ has multiple components, so q.fg1; g�1g/ is a cut set.

The proposition tells us that given a g we can decide if q.fg1; g�1g/ is a cut set.
We call this a periodic cut set. Next we show that if there are cut points or cut pairs
then there are periodic cut sets:

Proposition 4.13 If D has cut points or cut pairs then there is some R depending
on L and some g with jgj �R such that q.fg1; g�1g/ is a cut set.

To identify cut points we just need to apply Proposition 4.12 to the generators of L, so
in this case it is sufficient to take R to be the length of the longest generator of L. The
work of proving Proposition 4.13 lies in finding an R that works for the cut pair case:

Lemma 4.14 If q.fHC;H�g/ is a cut pair then there is some R depending on L and
some g 2 F n f1g with jgj �R such that q.fg1; g�1g/ is a cut set.

Note that q.fg1; g�1g/ is either a cut point or a bad cut pair.
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Proof Let H be the convex hull of fHC;H�g. We may assume that H contains the
identity vertex �.

Use # to denote number of connected components.

Every connected component of Wh.�/ nH contains an edge, so the number of compo-
nents is at most the complexity of Wh.�/.

For any segment X of H we have

2� # Wh.H/� # .Wh.X / nH/� # .Wh.�/ nH/� complexity of Wh.�/:

Number the vertices of H consecutively with integers with �D v0 and index increasing
in the HC direction. Number the edges of H so that ei is incident to vi�1 and vi . We
consider these edges oriented in the direction of increasing index. An oriented edge
of T comes with a label that is a generator or inverse of a generator of F .

The function f .i/D #.Wh.ŒH�1; vi �/ nH/ is nonincreasing and, for high enough i ,
stabilizes at # Wh.H/. Since we started with a cut pair, for high enough i there is
no free edge in Wh.ŒH�1; vi �/ nH . After changing by an isometry and relabeling, if
necessary, we may assume that i D 0 is “high enough” in the previous two statements.

Fix a numbering from 1 to cD # Wh.H/ on the components of Wh.H/. At each vi we
get a partition Pi into c subsets of the loose ends of Wh.vi/nH at ei by connectivity
in Wh.H/. Similarly, we get a partition P 0i of the loose ends of Wh.vi/ nH at eiC1 .
These partitions are at least as coarse as connectivity in Wh.Œvi ; vj �/nH for any j � i .

By construction, the splicing map at eiC1 connecting loose ends of Wh.vi/nH at eiC1

to loose ends of Wh.viC1/nH at eiC1 is compatible with the partitions P 0i and PiC1 .

For each edge pair .ei ; eiC1/ there is a corresponding label pair Li that gives a
nontrivial word of length two in F . There are 2n.2n� 1/ such words.

Let m be the number of partitions of (complexity of Wh.�/) things into c nonempty
subsets. Consider the segment Œv0; vR �, where R D 2n.2n� 1/m. Some label pair
appears at least m times. Let fij gmjD1

be a set of indices such that the Lij are the same.

Let gj ;k be the element of F that takes vij to vik
.

If we fix Pi1
we get a map of the elements g1;k into the set of all possible partitions

by g1;k 7! g1;kPi1
, so for some 1 � j < k we have g1;j and g1:k mapping to the

same partition. Therefore, gj ;kPij D Pik
.

Setting g D gi;j then gives the desired element.
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Remark In the preceding proof we found an element g such that the g–action
preserved a partition. We did not insist that the g–action also fixed the numbering of
components of Wh.H/; these may be permuted. The proof may easily be modified to
fix the numbering, at the expense of a larger bound on jgj.

Corollary 4.15 Existence of a cut pair implies existence of a cut point or bad cut pair.

Corollary 4.16 With R as in the previous proposition, for any pair of points fHC;H�g
in @T , if X is a segment of the convex hull H of fHC;H�g of length greater than R,
and if there are no cut pairs in the decomposition space, then one of the following
is true:

(1) Wh.X / nH is connected.

(2) Wh.X / nH has two components, one of which is a free edge.

Theorem 4.17 (Detecting cut pairs) There is a finite algorithm for detecting cut pairs
in the decomposition space

Proof Given a list of words generating a line pattern, apply Whitehead automorphisms,
if necessary, to eliminate cut vertices. If the graph becomes disconnected, stop; the
decomposition space is disconnected by Corollary 4.5.

If it is possible to disconnect the Whitehead graph by deleting the interiors of two
edges, stop; these two edges correspond to a cut pair. In particular, this happens if the
Whitehead graph has any valence two vertices.

Use Proposition 4.12 to check if any of the generators of the line pattern give a cut
point in the decomposition space. If so, stop.

Let R be the constant from Lemma 4.14. The idea now is to check segments of
length R to see if we can find a disconnected Whitehead graph. There are a lot of
these. We streamline the process by only checking those long segments for which every
subsegment gives a disconnected Whitehead graph.

Let X0 D f�g.

We proceed by induction. Suppose Xi is defined.

Start with XiC1 D Xi . Consider pairs of points v and v0 such that d.v;Xi/ D

d.v0;Xi/ D 1, such that d.v;�/ D d.v0;�/ D i C 1, and such that � 2 Œv; v0�. If
Wh.Xi \ Œv; v

0�/ n Œv; v0� is not connected, add v and v0 to XiC1 .

Continue until stage k D 1CdR=2e. Apply Corollary 4.16 and Proposition 4.13: there
are pairs v and v0 in Xk nXk�1 with � 2 Œv; v0� such that Wh.Xk�1\ Œv; v

0�/ n Œv; v0�

has more than one component that is not just a free edge if and only if there are cut
pairs in the decomposition space.
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Corollary 4.18 If a Whitehead graph for a line pattern has the property that deleting
any pair of vertices leaves at most one free edge and at most one other connected
component, then the decomposition space has no cut pairs.

Unfortunately, this corollary does not apply if a Whitehead graph has more than one
edge between a pair of vertices. Indeed, consider the pattern in F2 D ha; bi generated
by the word a2ba2xb2 . The Whitehead graph in Figure 15 is reduced and contains
the complete graph on the four vertices, but q.fa1; a�1g/ is a cut pair, as is evident
from Figure 16.

Figure 15: Wh.�/fa2ba2xb2g Figure 16: Wh.Œ�; a�/fa2ba2xb2g n Œa�1; a2�

4.6 Cut sets when there are no cut pairs

Let S be a finite set in the decomposition space, and let H be the convex hull of q�1.S/.
Lemma 4.9 tells us that S is a cut set if and only if Wh.H/ is disconnected. We will
pass to a finite subset of H whose Whitehead graph contains the same connectivity
information.

Define the core C of q�1.S/, to be the smallest closed, connected set such that H n C
is a collection of disjoint infinite geodesic rays Rj W Œ1;1�! ST . We use Rj .0/ to
denote the vertex of the core that is adjacent to Rj .1/.

Let � be a point in @T . If q.�/ is either a cut point or a bad point that is a member of
a cut pair, it is not hard to see that there is a geodesic ray R with R.1/D � such that
Wh.R.Œ1;1// nR.0/ is not connected.

Conversely, if there exists a geodesic ray RW Œ0;1�! ST with R.1/D � such that
Wh.R.Œ1;1// nR.0/ is not connected, then, arguing as in the proof of Lemma 4.14,
q.�/ is either a cut point or is a bad point that belongs to a cut pair.

If there are no cut points or cut pairs, then Wh.R.Œ1;1// nR.0/ is connected for any
ray R.
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Proposition 4.19 Suppose � is a point in @T such that q.�/ is a bad point that is not
a member of a cut pair. Then q.�/ is not a member of any minimal finite cut set. In
particular, if D has no cut pairs then no bad point belongs to any minimal finite cut set.

Proof The assumption that q.�/ is not a member of a cut pair implies that for any
ray RW Œ0;1�! ST with R.1/D � , the Whitehead graph Wh.R.Œ1;1�// nR.0/ is
connected.

Let S be a finite cut set in D with q.�/ 2 S . Let H and C be the hull and core of
q�1.S/, respectively. Consider the ray R that is the component of HnC containing � .

Components of D nS are in bijection with components of Wh.H/, which, in turn, are
in bijection with components of Wh.H nR.Œ1;1�//, since Wh.R.Œ1;1�// nR.0/ is
connected. This is just the hull of q�1.S n fq.�/g/.

Thus, S n fq.�/g is still a cut set, so S was not minimal.

For a finite collection of lines zS Dfl1; : : : ; lkg�L, the core is a finite tree. The convex
hull minus the core is a collection of 2k disjoint raysn

R�i W Œ1;1�! T
ˇ̌

lim
t!1

R�i .t/D l�i ; � 2 fC;�g; i D 1; : : : ; k
o
:

Lemma 4.20 Let S be a finite set of good points of D, none of which is a cut point.
Components of D nS are in bijection with components of Wh.C/� zS .

Proof Suppose zS D fl1; : : : ; lkg.

For each i and � , since q�.li/ is not a cut point, Wh.R�i .Œ1;1�//nR
�
i .0/ is connected.

Wh.H/ is obtained from Wh.C/ � fRl1; : : : ; Rlkg by splicing on each complement
Wh.R�i .Œ1;1�// nR

�
i .0/.

This means to each deleted vertex of Wh.C/ � fRl1; : : : ; Rlkg we have spliced on a
connected graph, so we might have just as well not deleted those vertices.

In fact, we can use the argument of Lemma 4.20 to reduce the convex hull even further.
If C is not just a vertex, then it has some valence one vertices that we call leaves. The
edge connecting a leaf to the rest of the core is called the stem.

Suppose that for some leaf v of C every line of zS that goes through v goes through
the stem of v . From Wh.v/, delete the interiors of edges corresponding to the li
and the vertex corresponding to the stem. The resulting graph is connected, so con-
nected components of Wh.C/ � zS are in bijection with connected components of
Wh.C n fvg/� zS .

Thus, we may prune some leaves off of the core without changing the connectivity of
the Whitehead graphs.
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Prune off the leaves that do not have all of zS going through their stems, and repeat.
The result is a well defined nonempty tree pC , the pruned core. There are two possible
outcomes: either every leaf contains a line of zS that does not go through the stem of
that leaf, or the pruned core is a segment such that every line of zS runs over the entire
segment. Edge cut sets (recall Definition 4.7) fall into the second category, and the
segment is exactly the single edge defining the edge cut set. The segment could not be
longer or else the Whitehead graph would have a cut vertex, contrary to hypothesis.

Remark Equivalently, the pruned core is the minimal subset of the tree that contains
at least one point from every line of zS and all edges that are crossed by all of zS .

Proposition 4.21 An edge cut set is minimal if and only if it does not contain a cut
point. In particular, if there are no cut points in the decomposition space, then edge cut
sets are minimal.

Proof Let zS D fl1; : : : ; lkg be the set of lines of L going through an edge e of T ,
so that S D q�. zS/ is an edge cut set. We must have k > 1 or else Wh.�/ has a cut
vertex, contrary to hypothesis. If one of the points of S is a cut point, then this is a
proper subset that is a cut set, so S is not minimal.

Conversely, suppose none of the points of S is a cut point. The pruned core pC of S

is the single edge e defining S . There are at least two connected components of
Wh.pC/� zS , lying on opposite sides of e . In fact, there are exactly two components,
because otherwise Wh.�/ has a cut vertex. By Lemma 4.20 these correspond to two
connected components of D nS .

Each of the li has one endpoint in each component, so if any li is omitted from the
set the two components will have a point in common, and we no longer have a cut set.
Thus, S is minimal.

Remark For a nonexample consider Figure 9. The three lines crossing the b–edge
give an edge cut set. However, one of these lines is the b–line through �, which already
gives a cut point, so this edge cut set is not minimal.

Lemma 4.22 Suppose there are no cut points in the decomposition space. If S is a
cut set with pruned core pC , then one of the following occurs:

� S is an edge cut set and pC is a single edge.

� pC is a single vertex.

� pC has leaves and through every leaf there is a line of zS that does not go through
the stem.
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Proof Suppose there is a leaf for which every line of zS that goes through the leaf
goes through the stem. Such a leaf would have been pruned off unless all of the lines
of zS go through the stem. Thus, the pruned core is a segment such that all of the lines
of zS run over the entire segment. This means that S is a subset of an edge cut set for
each of the edges of the segment. Since S is a cut set and edge cut sets are minimal,
S must be equal to the edge cut set for each of the edges of the segment. Since Wh.�/
is connected without cut vertices, there is a unique such edge.

Proposition 4.23 If D has no cut pairs, the good points and bad points are topologi-
cally distinguished.

Proof Every line in the pattern crosses edges, so every good point belongs to infinitely
many edge cut sets, and edge cut sets are minimal.

Bad points are the points that do not belong to any minimal finite cut set. Good points
are the points that do.

Proposition 4.24 Let S be a minimal finite cut set, none of whose elements are
members of a cut pair. There are exactly two connected components of D nS .

Proof By Proposition 4.19, S consists of good points. Let zSDfl1; : : : ; lkgDq�1
� .S/.

Components of D nS are in bijection with components of Wh.C/� zS . This is a finite
graph, so D nS has only finitely many components.

Let A1; : : : ;Am be a list of the components of D nS .

If q�.li/ is not a limit point of Aj in D then Aj is still a connected component in
D n .S n q�.li//. This contradicts minimality of S , so each point of S is a limit point
in D of every Aj . This implies that for each i and j , at least one of the points lCi
and l�i is a limit point of q�1.Aj /.

Now H n C is a collection of disjoint rays R�i . The graph Wh.R�i .Œ1;1�// nR
�
i .0/ is

connected, so no lCi or l�i is a limit point of more than one q�1.Aj /.

Thus, there are exactly two components A1 and A2 of DnS , and each line li has one
endpoint in q�1.A1/ and the other in q�1.A2/.

Corollary 4.25 Let S be a minimal finite cut set that is not an edge cut set, none of
whose elements are members of a cut pair. For every vertex v 2 pC , the portion of
Wh.pC/� zS at v contains an edge from each component of Wh.pC/� zS .

Proof If v is a leaf such that the portion of Wh.pC/� zS at v belongs to a single
component of Wh.pC/� zS then v should have been pruned off.
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If v is not a leaf, pC n fvg has at least two components. If the Whitehead graph over
one of those components sees only one component of Wh.pC/ � zS then it would
have been possible to prune it off. Thus, every component of pC n fvg must see two
components of Wh.pC/� zS . There are only two components of Wh.pC/� zS , so both
must be able to connect to all components of pC nfvg. In particular, they must connect
through v .

4.7 Indecomposable cut sets

In this section we will assume that the decomposition space has no cut pairs.

Our ultimate goal is to construct a cubing quasi-isometric to a bounded valence tree.
For this purpose, we will need to choose a collection of cut sets in a such a way that
there is a bound on the number of cut sets in the collection that cross any fixed cut set
in the collection.

Cut sets with disjoint pruned cores do not cross, so we could control crossings if we
could control the diameters of the pruned cores of the cut sets in some collection.

The following example shows that cut sets of a fixed size can have pruned cores with
arbitrarily large diameter. We subsequently introduce the property of indecomposability
to rule out this kind of bad behavior.

Let L be the line pattern in F D ha; bi generated by the words abxaxb , a and b . The
edge cut sets have size three. It can be shown that these are the only cut sets of size
three and there are none smaller; see Section 6.2. It is also possible to find minimal cut
sets of size four. Pick any two of the edge cut sets that share a line. The four lines of
the symmetric difference are a minimal cut set. Figure 17 shows the line pattern. The
two dashed lines indicate edge cut sets of size three. The four thickened lines make up
the cut set of size four that is the symmetric difference. There is no bound on the size
of the pruned core of such a cut set, nor on the number of such cut sets that cross each
other. To see this, translate the two lines on the right by some high power of a, leaving
the two lines on the left fixed. The result is still a four line cut set.

We say that a minimal finite cut set S � D is decomposable if there are minimal cut
sets Q and R such that:

(1) Q and R are noncrossing.

(2) jQj< jS j and jRj< jS j.

(3) S DQ�RD .Q nR/[ .R nQ/.

A minimal finite cut set S is indecomposable if it is not decomposable.
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Figure 17: A problematic minimal cut set

The smallest cut sets in D are indecomposable since there are no smaller cut sets to
decompose them into.

The following lemma is designed specifically to rule out the bad example described
in Figure 17.

Lemma 4.26 Suppose S is a finite minimal cut set and the pruned core pC of zS has
an interior vertex v such that Wh.v/npC has exactly two components, one of which is
a free edge, and no lines of zS go through v . Then S is decomposable.

Proof Let l be the line of L corresponding to the free edge in Wh.v/ n pC . By
Corollary 4.25, every component of pCnfvg must see both components of Wh.pC/n zS .
Thus, the line l enters every component of pC n fvg, which means that pC n fvg has
only two components. Let zQ be l together with the lines of zS on one side of pC nfvg,
and let zR be l together with the lines of zS on the other side of pC n fvg.

Then Q\RD q�.l/, and S DQ�R.

Let A0 and A1 be the components of D nS . The line l does not belong to zS , so we
may assume that q�.l/ 2A0 . Let X and Y be the two components of pC n fvg. We
may assume Q is on the X side.

Let X0 be the portion X corresponding to A0 , and define X1 , Y0 and Y1 analogously;
see Figure 18. The edge of Wh.pC/� zS corresponding to l is the only connection
between X0 and Y0 , so zQ separates X0 from X1[Y0[Y1 .

Thus, Q is a cut set. Moreover, Q is a minimal cut set since every edge corresponding
to a line in zQ has one end in X0 and one end in X1[Y0[Y1 .

By a similar argument, R is a minimal cut set.
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l

v
Q R

X1

X0 Y0

Y1

Figure 18: Schematic diagram of decomposable cut set

The sets Q and R are noncrossing because the only line of R that has an endpoint
in X0 is l D zQ\ zR.

Finally, as there are no cut pairs, we have

3� jQj D jQ nRjC jQ\Rj D jQ nRjC 1) jQ nRj � 2:

jS j D jQ nRjC jR nQj> 1CjR nQj D jR\QjC jR nQj D jRjThus,

Similarly, jQj< jS j.

Theorem 4.27 (Edge cut sets are indecomposable) Suppose we have chosen a free
basis of F such that Wh.�/ is minimal complexity. Then edge cut sets are indecom-
posable.

Proof Let e be an edge of T . Let zS be the lines of L that cross e . Let S D q�. zS/.

The set S is minimal by Proposition 4.21. Suppose S decomposes into Q and R. We
must have Q\R¤∅, otherwise Q and R are proper subsets of S that are cut sets,
contradicting minimality of S . Since Q and R do not cross and S nRDQ nR, it
follows that S does not cross R. Thus, since they are minimal, R does not cross S .
Therefore, R n S D R \Q is contained in one component of D n S . This means
that q�1

� .Q\R/ D zQ\ zR is contained in one component of T n e . Let � be the
vertex of T incident to e on the zQ\ zR side. It follows that the cores of Q and R are
contained in the component of T n e containing �.

We define a version of pruned core relative to �. If jR nQj D 1 it is possible that �
is not in the core of R, so begin with the convex hull of �[ CR . Now declare that
� is not a leaf, and prune leaves as in the construction of the pruned core. This time,
however, we will also prune a leaf even if all of the lines of zR go through the stem.
Call the resulting set the partially pruned core of zR, and denote it ppC zR . This partially
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pruned core is the minimal connected set that contains � and at least one vertex of
each line of zR\ zQ, so, in fact, ppC zQ D ppC zR , and we may omit the subscripts.

jR nQjC jQ\Rj D jRj< jS j D jQ nRjC jR nQj

So jQ\Rj< jQ nRj. Similarly, jQ\Rj< jR nQj.

There are two connected components of Wh.ppC/� zQ, call them component 0 and
component 1. Since Q and S do not cross, everything on the side of e opposite zQ\ zR
belongs to a single component.

First suppose ppCD�. Suppose the edge e oriented away from � has label x 2B[ xB ;
suppose the corresponding vertex in Wh.ppC/� zQ is in component 1. Suppose the
vertex corresponding to the edge labeled xx is in component 0. Then the Whitehead
automorphism that pushes the vertices in Wh.�/ in component 1 through x changes the
valence at x from jS jD jQnRjCjRnQj to jQ\RjCjRnQj. Since jQ\Rj< jQnRj

this contradicts the assumption that the Whitehead graph had minimal complexity.

Conversely, if the vertex xx is in component 1 push

Z D fxg[ fvertices of component 0g

through x and get a contradiction.

Now suppose ppC is not just �. Then there is some leaf v ¤ �. Suppose the stem
of v (oriented away from the leaf) has label x 2 B [ xB , and suppose the vertex in
Wh.ppC/� zQ corresponding to xx is in component 1.

Figure 19 shows a schematic diagram of Wh.ppC/.

The labeling in the diagram is as follows:

� X0 = the portion of component 0 on the v side of the stem.

� X1 = the portion of component 1 on the v side of the stem.

� Y0 = the portion of component 0 between the stem of v and e .

� Y1 = the portion of component 1 between the stem of v and e .

� Z = everything on the side of e opposite zQ\ zR.

� lowercase letters represent the number of lines with endpoints in the specified
regions with:
– a, b , c and h counting the lines of zQ\ zR.
– d and i counting the lines of zQ n zR.
– e and j counting the lines of zR n zQ.
– f and g counting the lines not in zQ[ zR crossing the stem.

Geometry & Topology, Volume 15 (2011)



Line patterns in free groups 1459

*va

b

c

d

e

f

g

h

i

j

X0

X1

Y0

Y1

Z

Q

R

S

Figure 19: Schematic diagram for Wh.ppC/

Since v ¤� is a leaf of ppC we must have a> 0 (this follows from Lemma 4.22) and
X0 and X1 nonempty.

Minimality of Q implies that Wh.ppC/� zQ has exactly two connected components.
In the diagram they are X0[Y0 and X1[Y1[Z .

The union X0 [Y0 must belong to a connected component, so Y0 D ∅ if and only
if f D 0. Y0 D∅ also implies c D hD i D 0. Now d C i D jQ nRj, so this would
imply d > 0.

The set R is also a minimal cut set, so Wh.ppC/� zR must have exactly two components.
In the diagram they are X0[Y0[Z and X1[Y1 . Since X1[Y1 is connected, Y1D∅
if and only if g D 0.

Thus, we have:

(1) Y0 D∅() f D 0) d > 0; c D hD i D 0.

(2) Y1 D∅() g D 0) e > 0; b D hD j D 0.

The Whitehead automorphism that pushes

Z D fxg[ fvertices of Wh.v/ in component 0 of Wh.ppC/� zQg

through the stem changes the valence of vertex x from bC c C d C eC f C g to
a C c C e C g . By our minimal complexity assumption, we must therefore have
a� bC d Cf .

Now jQnRj> jQ\Rj � aCbCc � 2bCcCdCf , which means that jQnRj> d ,
so i > 0.

We will now change Q and R to a new decomposing pair Q0 and R0 for S with
strictly smaller partially pruned core; see Figure 20.
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Let zQ0 n zR0 be the lines of zQ n zR that do not pass through v .

Let zR0 be the rest of zS .

Let zQ0\ zR0 be zQ\ zR minus the lines contributing to a and b plus the lines contributing
to f .

*va

b

c

d

e

f

g

h

i

j

X0

X1

Y0

Y1

Z

Q0

R0

S

Figure 20: Schematic diagram for modified Wh.ppC/

jS j � jR0j D jQ0 nR0j � jQ0\R0j

D jQ nRj � d � .jQ\Rj � a� bCf /

D jQ nRj � jQ\RjC aC b� d �f

� jQ nRj � jQ\RjC .bC d Cf /C b� d �f

D jS j � jRjC 2b � jS j � jRj> 0

A similar computation shows jS j � jQ0j � jS j � jQjC 2.bC d/ > 0.

We must show that Q0 and R0 are noncrossing minimal cut sets.

The components of Wh.ppC/� zQ0 are Y0 and X0 [X1 [Y1 [Z . To see that the
latter is connected, note that a> 0, eC j > 0 and either Y1 D∅ or g > 0.

Thus, Q0 is a minimal cut set since Wh.ppC/� zQ0 has exactly two connected compo-
nents and every line of zQ0 goes from one component to the other.

By similar considerations, R0 is a minimal cut set since Wh.ppC/� zR0 has components
Y0[Z and X0[X1[Y1 .

That Q0 and R0 are noncrossing follows from the observation that

Y0\ .X0[X1[Y1/D∅:

We have not added anything to zQ0\ zR0 except possibly some lines going through v ,
so the new partially pruned core is contained in the old one minus the vertex v .
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If xx is in component 0, repeat the argument with the roles of Q and R reversed and
reach a similar conclusion.

Thus, by repeating this process, we can reduce the partially pruned core until we find
some decomposing pair Q and R so that the partially pruned core is just �. We have
already seen that leads to a contradiction, so S is indecomposable.

Theorem 4.28 (Indecomposables are bounded) The diameter of the pruned core of
an indecomposable cut set S is bounded in terms of L and jS j.

Proof If pC is a point or a single edge we are done. Otherwise it is a tree with leaves.
Each leaf contains a line from zS that does not go through its stem, so there are at
most jS j leaves.

Suppose X is a segment of pC that does not have any lines of zS going through it.
By Corollary 4.25, at every vertex of pC there are edges of Wh.pC/� zS from both
components. Since S is indecomposable, by Lemma 4.26 it is not the case that one of
these components is a free edge. Now apply Corollary 4.16 and conclude that there is
a bound R on the length X .

Similarly, if X is a segment of pC that meets exactly one of the li then it has length
bounded by R.

It follows that the diameter of pC is at most 2R.jS j � 1/.

5 Rigidity

In the next two sections we prove the Main Theorem. In Section 5.1 we show that
if there are cut pairs then the line pattern is not rigid. In Section 5.2 we prove the
converse.

5.1 The problem with cut pairs

If D has cut pairs then it has either a cut point or a bad cut pair, by Corollary 4.15. In
either case, there is a cut set such that the preimage in @T is two points fg1;g�1g.
The convex hull H of these two points is a line, and Wh.H/ has multiple components
A1; : : : ;Ak . For each i , let Xi be the union of components of T nH corresponding
to Ai .

The action of g may permute these components, but gk! fixes them.
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Let �W T ! T be the quasi-isometry given by

�.x/D

(
gk!x if x 2 X1;

x otherwise:

This “shearing” quasi-isometry moves the X1 component along H , fixing the rest of
the tree.

It is not hard to see that �n is not bounded distance from an isometry for n¤ 0. Since
F acts by isometries it follows that F�a and F�b are not the same coset of F in
QI.F;L/ when a¤ b , so F is an infinite index subgroup.

It is possible to show directly that � could not be conjugate into an isometry group.
Alternatively, notice that we can stack shearing quasi-isometries to produce a se-
quence of quasi-isometries with unbounded multiplicative quasi-isometry constants;
see Figure 21. Take an element h of F such that hH is contained in the X1 component
with hX1 � X1 .

The desired sequence of quasi-isometries is .ˆi/, where

ˆi D �
i
ı .h�i xh/ ı .h2�i xh2/ ı � � � :

That is, for any x 2 T there exists some j such that x 2 hjX1 n hjC1X1 . For m> j

hm�i xhm.x/D x , so

ˆi.x/D �
i
ı .h�i xh/ ı .h2�i xh2/ ı � � � ı .hj�i xhj /.x/:

h3H

h2H

hH

H

ˆ3
�!

Figure 21: Shearing

5.2 Rigidity when there are no cut pairs

Let L be a line pattern in F . Choose a free basis B for F so that Wh.�/DWhB.�/fLg
has minimal complexity, and let T be the Cayley graph of F with respect to B .
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Assume that D D DL has no cut pairs. We will construct a cubing X , a quasi-
isometry �W T ! X , and an isometric action of QI.F;L/ on X that agrees with
�QI.F;L/��1� Isom.X /, up to bounded distance, completing the proof of the Main
Theorem. The action of F on X will be cocompact, implying that QI.F;L/ has a
complex of groups structure.

5.2.1 Constructing the cubing We will now choose a collection of “small” cut
sets and show that the corresponding cubing has the desired properties. The guiding
principles in defining a suitable collection of cut sets are that:

(1) There are few enough cut sets so that the cubing is finite dimensional.

(2) There are enough cut sets so that the cubing is finite valence.

(3) The cut sets are defined in terms of the topology of D, so that homeomorphisms
of D preserve the collection of cut sets, and hence the cubing.

Remark Notice that the cubing associated to the collection of edge cut sets is just the
tree T . However, the property of being an edge cut set depends on the choice of basis,
so pattern preserving quasi-isometries do not necessarily preserve this cubing.

Let b be the maximum valence of a vertex in Wh.�/. Let fSigi2I be the collection of
indecomposable cut sets of size at most b in D. These are the “small” cut sets that we
will use to build the cubing.

Remark We have chosen two topological properties enjoyed by the edge cut sets,
size at most b and indecomposability, and defined our collection by these properties.
These choices work. Other choices might also work. It is not strictly necessary that the
chosen collection contains the edge cut sets, but this is convenient in showing that the
cubing is quasi-isometric to T ; see Theorem 5.4.

For each i 2 I , Si is a finite minimal cut set, by definition, and, since there are no cut
pairs, D nSi has exactly two connected components, by Proposition 4.24.

Let the two connected components of D nSi be A0
i and A1

i . Let

†D fA0
i gi2I [fA

1
i gi2I :

Recall from Section 2.1 that from this information we define a graph as follows:

A vertex is a subset V of † such that:

(1) For all i 2 I exactly one of A0
i or A1

i is in V .

(2) If C 2 V and C 0 2† with C � C 0 then C 0 2 V .
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Two vertices are connected by an edge if they differ by only one set in †.

This gives a graph; it remains to select a path connected component of this graph to be
the 1–skeleton of the cubing.

Define a bad triple xx D fx1;x2;x3g to be an unordered triple of distinct bad points
in D.

There are no bad points in minimal cut sets, so for any bad triple and any Si , xx �
A0

i [A1
i . We let xx decide democratically whether it will affiliate with A0

i or A1
i : say

xx 2A�i if at least two of the xj ’s are in A�i .

Define Vxx D fA
�
i 2† j xx 2A�i g. This is a vertex of X . Define the 0–skeleton of the

cubing to be the set X .0/ of all vertices that are connected by a finite edge path to Vxx
for some bad triple xx .

The following lemma replaces Lemma 3.4 of [17].

Lemma 5.1 For any bad triples xx and xy , there are only finitely many Si separating
them.

Proof Let xx D fx1;x2;x3g and xy D fy1;y2;y3g be bad triples.

The preimage q�1.xx/D fq�1.xi/giD1;2;3 consists of three distinct points in @T . The
convex hull of three points in the boundary of a tree is a tripod. The core, as previously
defined, is the unique vertex that is the branch point of the tripod. Denote this point Cxx .

It is not hard to see that a cut set Si separates xx from xy only if the pruned core pC
of Si intersects the finite geodesic segment joining Cxx and Cxy in T .

By Theorem 4.28, there is a uniform bound a on the diameter of the pruned core of
any Si . Since L is locally finite, this means there is a uniform bound c on the number
of Si such that � 2 pCSi

. If Y is any finite collection of vertices in T , the number
of Si such that pCSi

\Y ¤∅ is at most cjYj.

Thus, the number of Si separating xx from xy is at most c �
�
1C dT .Cxx; Cxy/

�
.

Add edges to the 0–skeleton as above to get the 1–skeleton X .1/ of the cubing. With
Lemma 5.1 replacing Lemma 3.4 of [17], the following theorem follows by the same
proof as in [17]:

Theorem 5.2 [17, Theorem 3.3] X .1/ is connected.

The rest of the construction of the cubing follows as in Section 2.1.
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Remark We are forced to use this alternate way of choosing the vertices of the cubing
because every good point in D belongs to infinitely many of the cut sets.

Also, Lemma 5.1 is false if one tries to use just bad points instead of bad triples. Two
bad points are separated by infinitely many of the Si .

Remark For a fixed vertex v 2 T , there are uncountably many bad triples xx with
Cxx D v . However, these give only finitely many distinct vertices Vxx in X , because
the Vxx can only differ in the finitely many coordinates i such that the pruned core of
Si contains v . Even this is an over count. If Se is an edge cut set associated to an
edge e incident to v , then every bad triple with Cxx D v lies in the same component of
DnSe . If our set of indecomposables is exactly the collection of edge cut sets then the
cubing is isomorphic to the tree T .

Notice X is defined in terms of the topology of D, so we have:

Lemma 5.3 Any homeomorphism of D induces an isomorphism of X .

5.2.2 Estimates on the cubing Recall from the proof of Lemma 5.1, we have a
bound a on the diameter of the pruned core of any Si , and there is a c such that if Y
is any finite collection of vertices in T , the number of Si such that pCSi

\Y ¤∅ is
at most cjYj.

The cut sets Si and Sj are noncrossing if their pruned cores are disjoint, so we have a
uniform bound c.2n/a=2 on the number of Sj that cross a fixed Si .

A k –cube in X corresponds to a collection of k pairwise crossing cut sets, so the
cubing is finite-dimensional.

Pick a vertex x 2 X . Let e and e0 be edges incident to x . There are distinct
hyperplanes He and He0 associated to these edges. Since e and e0 are incident
to a common vertex, there is no third hyperplane separating He from He0 . Therefore,
the valence of a vertex in X is bounded by the maximum size of a subcollection fSigi2J

of the indecomposable cut sets such that for any j and k in J , there is no i 2 I such
that Si separates Sj and Sk . If Sj and Sk have disjoint pruned cores then there is an
edge cut set separating them, so the maximum size of the set J is at most c.2n/a=2 .
Thus, X is uniformly locally finite.

A hyperplane H corresponds to an equivalence class of edges in X . The 1–neighbor-
hood of H is the set of vertices that are endpoints of these edges. If k is the number
of hyperplanes crossing H , then the 1–neighborhood of H has at most 2kC1 vertices
and diameter at most kC 1. Crossing hyperplanes correspond to crossing cut sets, so
k is at most c.2n/a=2 .
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5.2.3 The rigidity theorem

Theorem 5.4 X is quasi-isometric to T .

Proof For each edge e 2 T there is a corresponding edge cut set Se . By construction,
Se 2 fSig, so in the cubing X there is a corresponding hyperplane He . Define �.e/ to
be the set of vertices in the 1–neighborhood of He . Recall from the previous section
that this is a set of boundedly many vertices with bounded diameter.

The distance dX .�.e/; �.e
0// is the number of hyperplanes separating He and He0 .

This is at least the number of edges separating e from e0 in T , which is dT .e; e
0/, and

at most the number of fSig such that pCSi
meets the geodesic between e and e0 in T ,

which is bounded by c � dT .e; e
0/. This shows that � is a quasi-isometric embedding.

Suppose there is a vertex x 2 X not in the image of � . This x has some incident
edge, corresponding to some S 2 fSig. The hypothesis that x is not in the image of �
implies that S does not cross any edge cut set, which means that pCs is a single vertex
v 2 T . There are boundedly many such S , and the distance from x to �.T / is less
than this bound, so � is coarsely onto, hence a quasi-isometry.

The quasi-isometry � gives a collection of quasi-lines �.L/ in X . In fact, we can see
this collection of quasi-lines directly from D. Each good point in D belongs to infinitely
many indecomposable cut sets. For l 2 L, the collection fS j S indecomposable;
jS j � b; q�.l/ 2 Sg corresponds to a collection of hyperplanes in X . The union of
these hyperplanes is coarsely equivalent to �.l/.

Theorem 5.5 (Rigidity Theorem) For i D 1; 2, let Fi be a free group with line
pattern Li . Let Di be the decomposition space corresponding to Li in Fi .

Suppose, for each i , Di has no cut pairs.

Let �i W Fi!Xi be the quasi-isometry to the cube complex constructed above. Then

�2 QIf.F1;L1/! .F2;L2/g�
�1
1 D Isomf.X1; �1.L1//! .X2; �2.L2//g:

Proof Elements of QIf.F1;L1/ ! .F2;L2/g give homeomorphisms D1 ! D2 .
Homeomorphisms take indecomposable cut sets to indecomposable cut sets of the same
size and preserve crossing and intersection. Therefore, we get isometries X1! X2

respecting the line patterns.

The Rigidity Theorem answers Questions 1 and 2 for rigid patterns.

Geometry & Topology, Volume 15 (2011)



Line patterns in free groups 1467

The free group acts on itself by pattern preserving isometries via left multiplication.
Let � be the identity vertex in T . For any indecomposable cut set S , there is an
element g 2 F such that � 2 g.pCS /. There are only finitely many indecomposable
cut sets of bounded size with � 2 pC , so F acts cocompactly on X . Therefore,
QI.F;L/Š Isom.X; �.L// acts cocompactly on X . This gives an explicit presentation
for Isom.X; �.L// as a finite complex of groups. Moreover, the F action is already
cocompact, so by applying Theorem 2.3 and the subsequent remarks, we have:

Corollary 5.6 If L is a rigid line pattern and if QI.F;L/ acts on X with finite
stabilizers then F is a finite index subgroup of QI.F;L/.

One might hope that the finite stabilizers hypothesis in the preceding corollary is always
true for rigid patterns, so that F is always finite index in QI.F;L/. The example in
Section 6.3 shows this is not true.

6 Examples

6.1 Whitehead graph is the circle

We will show in this section that when the Whitehead graph is a circle we get a
quasi-isometrically flexible line pattern.

Theorem 6.1 For a line pattern L in Fn , the following are equivalent:

(1) Every Whitehead graph WhB.�/ that has no cut vertex is a circle.

(2) Some Whitehead graph WhB.�/ is a circle.

(3) L is generated by the boundary words of a compact surface with boundary with
fundamental group Fn .

(4) D is a circle.

(5) Every minimal cut set of D has size two.

Otal [15, Theorem 2] proved essentially the same theorem using essentially the same
argument.

Proof Clearly (1))(2), because Whitehead automorphisms will eliminate cut vertices.

If some Whitehead graph WhB.�/ is a circle, find a planar embedding of it. Fill the
interior of this circle with a 2n–gon. Blow up each vertex of the 2n–gon to a segment
to give a 4n–gon. Identify these newly blown up sides in pairs using the splicing
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maps. The result is a compact surface with fundamental group Fn such that the words
labeling boundary components generate L. Thus (2))(3).

We can give this surface a hyperbolic metric so that the universal cover is just T
fattened, and the boundary components are horocycles that are in bijection with the
lines of L. This gives us a homeomorphism between the decomposition space and
S1 D @H2 . Thus (3))(4).

(4))(5) is a topological property of circles.

Now, suppose every minimal cut set of D has size two. Since D is connected, every
Whitehead graph for L is connected. Let B be a free basis such that WhB.�/ has
no cut vertices. (Such a basis always exists, by Whitehead’s Algorithm.) The edges
incident to a vertex of WhB.�/ correspond to an edge cut set. This is a minimal cut
set by Proposition 4.21, so by hypothesis has size two. Therefore, WhB.�/ is a finite,
connected, valence two graph, hence, a circle. Thus, (5))(1).

Theorem 6.2 Let F and F 0 be free groups, possibly of different rank. Let L and L0
be line patterns in F and F 0 , respectively. Suppose DL is a circle. There is a pattern
preserving quasi-isometry from F to F 0 if and only if DL0 is also a circle.

Proof The “only if” direction is clear, as a pattern preserving quasi-isometry induces
a homeomorphism of decomposition spaces.

Suppose both DL and DL0 are circles. By Theorem 6.1, there exist free bases B of F

and B0 of F 0 such that WhB.�/fLg and WhB0.�/fL0g are circles.

As in the proof of Theorem 6.1 we can associate each pattern with the boundary
curves of the universal cover of a surface with boundary. It is a theorem of Behrstock
and Neumann [1] that there are many boundary preserving quasi-isometries of such
surfaces.

We saw some circle patterns in the Introduction. Let F D F2 D ha; bi.

Let L1 be the line pattern generated by the word abxaxb .

Let L2 be the line pattern generated by the words ab and axb .

For each of these Wh.�/fLig is a circle, so the two patterns are quasi-isometrically
equivalent.

This example also shows that neither the number of generators of a line pattern nor the
widths of the generators are quasi-isometry invariants.
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6.2 Whitehead graph is the complete graph

Let K2n be the complete graph on 2n vertices, the graph consisting of 2n vertices
with exactly one edge joining each pair of vertices.

Suppose L is a line pattern in FDFn so that for some free basis B , WhB.�/fLgDK2n .

The decomposition space D has no cut pairs.

Suppose S is a minimal finite cut set of D that is not an edge cut set. Wh.pC/� zS
has two components. The portion of Wh.pC/� zS at a leaf contains vertices from both
components.

The portion of Wh.pC/ � zS at a leaf is a graph obtained from K2n be deleting a
vertex, corresponding to the stem of the leaf, and interiors of some number of edges
coming from lines of zS that go through the leaf but not through the stem. The result
is a disconnected graph with at least one vertex in each of the components. Thus, we
have partition of 2n� 1 vertices into two subsets, and we must delete all the edges
between them. The subsets have sizes m and 2n� 1�m, for some 1�m� 2n� 2,
and the number of edges between them is m.2n� 1�m/� 2n� 2. There are at least
two leaves, so jS j � 4n� 4 > 2n� 1. The edge cut sets have size 2n� 1, so our
construction of a cubing uses only the edge cut sets. Thus, the cubing is just the tree T .

Suppose there are two different 2n–valent trees T and T 0 , each with a line pattern
whose Whitehead graph is K2n . Choose any vertices � 2 T and �0 2 T 0 , and define
�.�/D �0 . Choose any vertex v 2 T adjacent to � and any vertex v0 2 T 0 adjacent
to �0 , and define �.v/ D v0 . Choose any bijection z� between the lines crossing
Œ�; v� and the lines crossing Œ�0; v0�. We claim that these choices determine a pattern
preserving isometry � . In particular, suppose we have chosen to identify lines l and l 0 .
The line l goes through one other vertex w adjacent to �, and the line l 0 goes through
one other vertex w0 adjacent to �0 . Define �.w/D w0 , and continue to extend � in
this manner.

In this case it is easy to compute

QI.F;L/Š Sym.2n/�Sym.2n�1/ .Sym.2n� 1/�Sym.2// :

Here, Sym.2n/ is the symmetric group on 2n objects, stabilizing a vertex of the tree
and permuting the incident edges, and Sym.2n� 1/� Sym.2/ is the stabilizer of an
edge of T , which should be subdivided to avoid edge inversions.

The preceding discussion proves:
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Theorem 6.3 Suppose L is a line pattern in F D Fn such that WhB.�/fLg DK2n .
Suppose that F 0 D Fm is another free group, possibly of different rank, with line
pattern L0 .

There is a pattern-preserving quasi-isometry F ! F 0 if and only if DL0 has the
following properties:

(1) There are no cut sets of size less than 2n� 1.

(2) The collection of cut sets of size 2n� 1 yields a cubing that is a 2n–valent tree.

(3) The induced line pattern in the cubing restricts to the complete graph K2n in the
star of any vertex.

For example, the line pattern L in F D F2 with basis B D fa; bg generated by a, b ,
and abxaxb has Whitehead graph WhB.�/fLg DK4 .

Compare this to the line pattern L0 in F 0 D F3 with basis B0 D fx;y; zg generated
by y , zx , zxx xy and xyxz . The Whitehead graph WhB0.�/fL0g looks like two copies
of K4 spliced together; see Figure 22.

xz

xx xz

y xy

Figure 22: Whfx;y;zg.�/fy; zx; zxx xy;xyxzg

It is not hard to show that the smallest cut sets are the obvious ones of size three. These
yield a cubing that is a 4–valent tree, essentially blowing up each vertex of F3 into a
pair of vertices.

This pattern is quasi-isometric to the K4 pattern in F2 .

6.3 A rigid example for which the free group is not finite index in the
group of pattern preserving quasi-isometries

Consider the line pattern in F D ha; bi generated by the words a, b , and abaxbxabxaxb .
Let T be the Cayley graph of F with respect to fa; bg.
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Figure 23: Wh.�/fa; b; abaxbxabxaxbg (loose)

It is easy to check that Whitehead graph in Figure 23 is reduced and the decomposition
space has no cut pairs, so the pattern is rigid.

The edge cut sets have size five. Deleting any vertex of the Whitehead graph leaves
a graph that requires at least three more edges to be deleted to disconnect the graph.
Thus, any other cut sets have size at least six. As the edge cut sets are the only cut sets
of size less than or equal to five, the rigid cube complex is just the tree T .

We will show that F is not a finite index subgroup of QI.F;L/. Not only are the
vertex stabilizers in QI.F;L/ not finite, they are not even finitely generated.

Define an isometry � of T piecewise as follows. First, note that the automorphism ˛

of F that exchanges a with xa preserves the pattern. It inverts a, fixes b , and takes
abaxbxabxaxb to a cyclic permutation of itself. To the branch of the tree consisting of words
beginning with b , apply the automorphism ˛ . To each branch of the tree beginning
with anb for some n, apply the automorphism an ı˛ ı xan . Fix the rest of the tree.

The isometry � is built piecewise from pattern preserving automorphisms of F . It
fixes the “bottom half” of T , fixes the b–line through an for each n, and reflects each
branch beginning with anb through the b–line through an .

There are lines of the pattern that pass through multiple pieces of the domain of � , so
we check that the � is defined consistently for these lines. As illustrated in Figure 24,
the only lines shared by the bottom half of the tree and the vertical branches are the
fixed b–lines (green lines in the figure are fixed). The reflections in adjacent vertical
branches agree on the two lines they share (the two thickened blue lines are exchanged).
Therefore, � pieces together to give a pattern preserving isometry.

Thus, for any n, bn ı� ı xbn is a pattern preserving isometry that fixes every line in the
n–neighborhood of the identity vertex, but is not the identity map. It follows that the
stabilizer of the identity vertex is not finitely generated.
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�xa

bxab

Figure 24: Wh.Œxab; b�/fa; b; abaxbxabxaxbg (loose)

6.4 A cube complex that is not a tree

Finally, we give an example of a rigid line pattern for which our argument does not
produce a cube complex that is a tree.

Consider the line pattern in F3D ha; b; ci generated by the four words xabc , xacb , xab3

and xac3 . The Whitehead graph (with loose ends), is shown in Figure 25.

The reader may verify that this is a minimal Whitehead graph and there are no cut
points or cut pairs in the decomposition space. In fact, the smallest cut sets are the
edge cut sets of size four corresponding to the a–edges. These are the only cut sets of
size four.

The other edge cut sets have size five, so we construct a cube complex using inde-
composable cut sets of size four and five. Figure 26 depicts the Whitehead graph
(along with portions of the Whitehead graph over two neighboring vertices) with the
1–skeleton of the cube complex overlaid.

Note that every cut set of size five is crossed by another cut set of size five. However,
the edge cut sets are still topologically distinguished! They are the cut sets of size five
that are crossed minimally (once) by another cut set of size five. The other cut sets of
size five are crossed by either two or five other cut sets of size five.
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a

b c

xa

xbxc

Figure 25: Wh.�/fxabc; xacb; xab3; xac3g (loose)

Figure 26: Whitehead graph with cube complex

Had we said, “build the cube complex associated to the cut sets of size four and those
of size five that are crossed by exactly one other cut set of size five” we would have
recovered the tree as the cube complex.

In every example we know, it is possible, after computing the cube complex, to pick
out a topologically distinguished collection of cut sets whose associated cube complex
is a tree. We do not know if this is true in general.
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