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Isosystolic genus three surfaces
critical for slow metric variations

STEPHANE SABOURAU

We show that the two piecewise flat surfaces with conical singularities conjectured
by E Calabi as extremal surfaces for the isosystolic problem in genus 3 are critical
with respect to some metric variations. The proof relies on a new approach to study
isosystolic extremal surfaces.

53C23; 53C20, 53C22, 53C38

1 Introduction

Let M be a non-simply connected closed surface. The systole of a Riemannian
metric g on M, denoted by sys(g), is defined as the infimum of the lengths of the
noncontractible loops of M . Define the systolic area of (M, g) as

_ area(g)
sys(g)?
The systolic area of a non—simply connected closed Riemannian surface (M, g) is

bounded from below by 2 /7, where equality holds if and only if (M, g) is isometric
to a round projective plane; see Pu [24] and Gromov [15].

a(g)

Extremal metrics, ie metrics realizing the minimum of the systolic area for a surface
of given topological type, are known in only three cases. Around 1949, C Loewner
proved that extremal metrics on the torus are flat hexagonal; see Katz [19]. Then,
P Pu [24] showed that extremal metrics on the projective plane are round. In comparison,
C Bavard [4] showed that extremal metrics on the Klein bottle, formed of two round
Mobius bands glued together, are not smooth and present a line of singularities.

M Gromov [15] established the existence of extremal metrics in the setting of “general-
ized metrics". A general study of extremal surfaces has been conducted by E Calabi [11]
and pursued by R Bryant [8]. Loosely speaking they showed that extremal metrics
tend to have flat regions. E Calabi [11] also described two piecewise flat metrics with
conical singularities on the genus three surface extremal in their conformal classes. He
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1478 Stéphane Sabourau

conjectured! that these two metrics represent local minima of the systolic area and that
one of them corresponds to the global minimum.

The goal of this article is to show that these two piecewise flat metrics are critical for
the systolic area with respect to some slow metric variations defined below.

Since the systolic area functional g — o (g) is not necessarily differentiable, we need
to extend the notion of critical point. A similar extension was required by N Nadi-
rashvili [23] and A El Soufi and S Ilias [14] to study Riemannian surfaces maximizing
the product A (g)-area(g), where A (g) is the first nonzero eigenvalue of the Laplacian.
By analogy with the notion introduced by these authors, we say that a metric go on M
is critical for the systolic area with respect to a metric variation (g;);>¢ if

0(gr) = 0(go) +o(1).

We will also need the following.

Definition 1.1 A slow metric variation (g¢);>¢ is a one-parameter family of Riemann-
ian metrics g; with conical singularities on M (see Troyanov [27] or Section 12.1)
such that the differential of the Busemann function ,Bé_? ’ in the direction £ for the
metric g, satisfies

(1-1) I(dBE" —dBEL) — (dBEC —dBEY 125,y = 0(V1)

where ég is a fundamental domain of the systolic band Bg in the universal cover
of (M, go).

The directions & involved in this definition correspond to the systolic bands By of the
Calabi surface considered. We refer to Definitions 3.1 and 3.2 for precise definitions
of the directions & and the systolic bands Bg (which rest on the description of the
Calabi surfaces presented in Section 2). We also refer to Section 8 for a definition of
Busemann functions.

The condition (1-1) is clearly satisfied if the Z2—norm of d ﬁé” t—d ,Bég % on 1’3\5 is equal
to 0(+/1). We could also use the L!—norm in the condition (1-1).

Note that if the differentials of the Busemann functions vary smoothly, or even Lipschitz,
with respect to ¢, then the metric variation (g);>¢ is slow. Actually, the first part of
the article does not rely on metric variations, it only occurs in the last two sections.

Examples of slow metric variations are presented in the last section.

11 a private discussion, he told me that he was less confident now than at the time of the writing
of [11] that the metric with the higher systolic area represents a local minimum, though he still believes
that the other metric corresponds to the global minimum.
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Let (My, go) be one of the two piecewise flat surfaces of genus three with conical
singularities conjectured extremal by E Calabi in [11]; see Section 2 for a descrip-
tion. Note that these two singular surfaces are nonpositively curved in the sense of
Alexandrov.

We will deal with normalized metrics, that is, metrics with a systole equal to one.

Theorem 1.2 The metric go on My is critical for the systolic area with respect to any
normalized slow metric variation. That is,

0(gr) Z 0(go) +0(1)

for every normalized slow metric variation (g;);>o of the piecewise flat metric g .

Of course, one can ask whether the assumption on the metric variation is always
satisfied or can be dropped. To our knowledge, this is still an open question. Actually,
it is possible that any metric variation is slow, and that the restriction on the type of
metric variations can be relaxed. In any case, this result shows that the two Calabi
surfaces have special isosystolic properties. We do not know any other surface of genus
greater than one which is critical with respect to slow metric variations.

In spite of the restriction on the metric variations considered, we believe that the point
of view developed in this article could be useful in the study of extremal isosystolic
properties on surfaces. We present the general framework of the proof below.

The techniques used in this article fit in this contemporary approach of Riemannian
geometry which consists of isometrically embedding a Riemannian manifold M into
a space of large dimension, such as a Banach or Hilbert space, through the geometry
of M . This point of view allows us to study the intrinsic geometry of M through
the study of its isometric embedding. This approach was developed by Gromov [15],
Besson, Courtois and Gallot [7], Ivanov [18] and Burago and Ivanov [9; 10], for
instance, to obtain deep results on the geometry of Riemannian manifolds. We borrow
several features from these pioneer works.

Thus, contrary to classical techniques available to study extremal isosystolic surfaces
(cf Katz [19], Pu [24], Bavard [4; 5; 6], Katz and Sabourau [22] and Horowitz,
Usadi Katz and Katz [17], our proof does not rest on the conformal length method
nor does it make use of the uniformization theorem. Instead we embed the universal
cover of a Riemannian surface M into an infinite dimensional space in an equivariant
way using the geometry of the surface. This infinite dimensional space carries some
special Euclidean metrics and two-forms along certain directions. These metrics and
two-forms are modeled on a given Calabi surface My so that its embedding into this
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infinite dimensional space preserves some isometric properties. Here, the combinatorics
of the systolic loops of M{ plays an essential role. Patching the pullbacks of these
metrics and two-forms by the embedding of M , we construct an auxiliary metric and
a two-form on the competing surface M . A comparison of the area measures of the
different metrics with the area measure of the two-form shows that it is enough to study
the first variation of the integral of the two-form associated to the embedding of M .
In some sense, the proof of the main theorem boils down to an infinitesimal calibration
argument and the two-form considered above can be thought of as an “infinitesimally
calibrating" form. The restriction on the metric variation occurs only in the final step
to differentiate the integral of the infinitesimally calibrating form.

It seems that a local calibration argument could yield a local lower bound on the systolic
area of the Calabi surfaces and not merely an infinitesimal one. However the presence
of conical singularities on the Calabi surfaces makes the construction of a form which
locally calibrates the embedding tricky. Let us emphasize that no form defined globally
calibrates the embedding of the first Calabi surface since this surface is not a global
minimum of the systolic area.

We also carried out a similar variational study directly on the auxiliary metric without
using the infinitesimally calibrating form but the result turned out to be the same. We
will not present this study. Instead we decided to develop the infinitesimally calibrating
form approach as it lends itself to estimates for Finsler metrics too; cf Ivanov [18] and
Burago and Ivanov [9]. In this case, we have to replace the Riemannian metric with an
hexagonal metric as in Calabi [11].

In contrast with the genus three surface, we showed in [25] that extremal metrics on the
genus two surface are not piecewise flat with conical singularities. In a joint work [22]
with M Katz, we found the infimum of the systolic area on nonpositively curved genus
two surfaces and described the extremal metrics. These extremal metrics are piecewise
flat with conical singularities but are not extremal for the general isosystolic problem.
This shows that extremal metrics for the general isosystolic problem on the genus two
surface have regions with positive curvature and regions with negative curvature. To
be complete with the genus two case, let us mention that the best available systolic
inequality on this surface can be found in [21]. It is proved that every metric on the
genus two surface has a systolic area greater or equal to the systolic area of the extremal
metric on the torus. The same result holds for surfaces of genus at least 20 [20].

Locally extremal and critical metrics have recently been described on the two-sphere
by F Balacheff [2; 3] and the author [26] and on compact rank-one symmetric spaces
by J-C Alvarez Paiva and F Balacheff [1] for an extended notion of systolic volume.

Geometry & Topology, Volume 15 (2011)
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We refer to the survey by C Croke and M Katz [12] and the monograph of M Katz [19]
for an overview on other aspects of systolic geometry, especially on the notion of stable
systole for which extremal metrics have been described in higher dimension.

Acknowledgement The author is grateful to the referee for his or her careful reading
and cogent suggestions, which helped improve the presentation of the article, and for
pointing out an incorrect statement in a previous version.

2 Description of critical surfaces

In this section, we describe the two piecewise flat surfaces of genus three with conical
singularities introduced by E. Calabi and arising in Theorem 1.2. This presentation
follows the description of [11].

2.1 Piecewise flat surface modeled on Fermat’s quartic

The first surface is conformal to the Fermat quartic, defined in the complex projective
plane CP? by the homogeneous polynomial equation

x* 4yt 4zt =0.

It is modeled on the triangular hyperbolic surface representing the Fermat quartic.
This triangular hyperbolic surface is tiled by 32 equilateral hyperbolic triangles with
angles equal to /4 and has 12 vertices with 8 equilateral triangles around each of
them. These 12 vertices correspond to the points adjoined in the compactification of
the quartic, that is to the points (x, y, z) where one of the coordinates is zero and the
quotient of the other two is a primitive eighth root of unity.

Replacing the hyperbolic equilateral triangles by Euclidean equilateral triangles gives
rise to a piecewise flat surface My = (My, g9) with 12 conical singularities of an-
gle 87/3, normalized to have a systole equal to one; see Figure 1. The orientation-
preserving isometry group of My is a group of order 96. Denote by T the collection
of the equilateral flat triangles tiling M.

Every geodesic in the interior of one of the triangles of 7 and parallel to any side of
this triangle extends as a geodesic and closes after passing through 6 triangles. These
closed geodesics are systolic loops of M.

The systolic area of M is equal to

8/3
o(My) = ‘Tf ~ 1.5396.
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Figure 1

The piecewise flat surface M, can also be described as the polygonal domain of
Figure 1 where the sides are identified (preserving the orientation) according to the
letters. The 32 equilateral flat triangles of 7 are outlined in thin black lines, while the
gray stripes, crossing each other pairwise through the midpoint of each edge represent
the central portions of the bands foliated by the systolic loops on M. These systolic
loops cover the surface My and induce 32 free homotopy classes. Furthermore, exactly
six of them (with the orientation taken into account) pass through every point lying in
the interior of a triangle of 7T .

Note that the conformal class of My is given by a ramified 4—fold covering of the
octahedron.

2.2 Piecewise flat surface modeled on Klein’s quartic

The second surface is conformal to the Klein quartic, defined in the complex projective
plane CP? by the homogeneous polynomial equation

X}y+y3z+23x=0.

The hyperbolic surface representing the Klein quartic is tiled by 56 equilateral hy-
perbolic triangles with angles equal to 277/7 and has 24 vertices with 7 equilateral
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triangles around each of them. These 24 vertices correspond to the points adjoined in
the compactification of the quartic.

As before, replacing the hyperbolic equilateral triangles by Euclidean equilateral trian-
gles gives rise to a piecewise flat surface My = (My, g9) with 24 conical singularities of
angle 77 /3, normalized to have a systole equal to one; see Figure 2 for a representation.
The orientation-preserving isometry group of M| is isometric to the group PSL, (IF7)
of order 168. Denote by T the collection of the equilateral flat triangles tiling M.

n

m
po 5L LTINS eb/\nm

SRR

Figure 2

As previously, the systole is achieved by the length of the geodesics parallel to the edges
of the triangles of 7, which close after passing through 8 triangles. The systolic loops
on M cover the surface and induce 56 free homotopy classes. As before, exactly six
of them (with the orientation taken into account) pass through every point lying in the
interior of a triangle of 7T .

The systolic area of M is equal to

743
a(M0)=‘Tf: 1.5155.
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2.3 Comparison with other surfaces

It might be instructive to compare the systolic areas of the two Calabi surfaces with the
ones of surfaces of different topological types.

Given a non-simply connected closed surface X, define &(X) as the infimum of o (g)
over all the Riemannian metrics g on X.

The exact value of & is known only for the projective plane R P? [24], the torus T2 [19]
and the Klein bottle K2 [4]:

| ™o

S[RP?) == ~0.6366

~ 0.8660
22
T

&S

S(T?) =

S(K?) = ~ 0.9003.

In general, we only have
2
— <6(%)
bid
while for the genus y surfaces X, the following estimates hold:
S(T?) < &(T,) <3(vV2—1) ~1.2426
S(T?) < 6(Xy) for every y = 20

(see [24; 15; 21; 22; 20]). Even for the genus three surface, we do not know whether
G(T?) <6(X%3).

3 Systolic directions and admissible maps

Let us introduce some notation which will be used throughout this article.

Given a genus three surface M, denote by M its universal covering. Denote also
by I' the deck transformation group of the universal covering M of M, that is
M~M / T'. The deck transformation group I' is a subgroup of PSL;(R) isomorphic
to the fundamental group 71 (M) of M .

Let My = (M, go) be one of the two piecewise flat Calabi surfaces described in
Section 2. Recall that sys(go) = 1. The metric g¢ on My lifts to a metric go on M 0-
Similarly, the natural triangulation 7 of M lifts to a triangulation 7 on M . Fix an
orientation on M. This orientation induces an orientation on the triangles Aof T
and on their boundaries JA.

Geometry & Topology, Volume 15 (2011)
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Definition 3.1 A systolic direction of M o is a go—unit vector of M o based at the
midpoint of a height of an oriented triangle A of T, parallel to an edge of A and
pointing in the same direction as this edge. The set of systolic directions, denoted
by Sp, depends on the choice of the surface Mo and its orientation. Set S5 =

{E18 €S U{=E|& € Soj.

A vector £ € S induces a geodesic line cg on M o such that cé (0) = £. Tt also defines
a unique element ag of I' C PSL,(R), leaving ¢ globally invariant, which takes cé 0)
to the vector cé( 1) (recall that sys(go) = 1). Note that the line ¢¢ projects onto a
systolic loop of Mj representing o .

Two vectors & and &' of S5 point in the same direction if they generate the same
oriented geodesic line up to some time shift. That is,

cer(t) = cg(t + 1)

for some 7 € R and every ¢t € R.

Definition 3.2 The systolic band Eg of My induced by a systolic direction & of M 0
is the union of all triangles of 7~ through which cg passes. The projection Bg of Bg
to My, which agrees with the quotient of B by (o), is also called a systolic band
of M() .

Definition 3.3 Let us define the infinite product
o0 __ 3
R® =[] R%
AeT
where R% is a copy of R3. The space R® is endowed with the product topology.
For every simplex A of T, number once and for all the systolic directions &1, &;, &3

of M o with basepoints in A such that the angles between &; and ;4 are equal
to 27r/3 (all the indices are taken modulo 3).

Every systolic direction & € Sy agrees with one of the three systolic directions &; with
basepoints in the same triangle Ag of 7 containing the basepoint of &.

The &£-coordinate of an element z of R, denoted by zg, is defined as the i—th

coordinate of the canonical projection of z in R% .
£

The action of T on M o induces an action on the (oriented) simplices A of T, on the
systolic directions £ of M o and on the vectors of S It also defines an action on R
given by

y.(z6) = (5y.6)

Geometry € Topology, Volume 15 (2011)
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forevery y € I" and z = (z¢) € R*. Clearly,

Cye=1Vy.Ct
Upg=7Vy.0. )/_1

forevery £ € S5 and y €T,

Throughout this article, we will consider admissible maps defined as follows.

Definition 3.4 A continuous map o: M — R™ is admissible if for every systolic
direction £ € Sy the following conditions are satisfied:

(1) The map ®¢: M — R defined as the & —coordinate map of @, ie ®g = P(. ),
is differentiable almost everywhere on M .

(2) The one-forms d®g and d ®g/ defined almost everywhere on M agree whenever
the systolic directions £ and &’ point in the same direction. That is,

ddy = doy.

(3) The one-form d®¢ defined almost everywhere on M satisfies the following
equivariance property
)/*(dq)y.g) = dq)g

for every y € I.
(4) The map ®¢ passes to the quotient and induces a map

D M /{og) - R/Z

where (ag) is the subgroup of I' generated by o ; cf Definition 3.1.

4 Riemannian metrics induced by admissible maps

Let A be a simplex of 7, and &1, & and &3 be the three systolic directions with
basepoints in A; cf Definition 3.3. Recall that the angles between &; and &;4¢ are
equal to 277/3 (all the indices are taken modulo 3).

Define a linear projection w3 as
nz: R®—R: ~R?
it =
z > (2g, 2g,0 283)-

Let ®: M — R be an admissible map. Denote by ®; the &; —coordinate map ®,
of ®. Even though ® is not necessarily differentiable (no norm has even been set
on R®), the composite 7z o P, which sends x to (®;(x)) 3:1 , is differentiable almost
everywhere on M . This allows us to define a metric g on M as follows.

Geometry & Topology, Volume 15 (2011)
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Definition 4.1 Let A € 7. Denote by g¢ the pullback on A of the standard Euclidean
metric g of R3 by mx o ®|x. Thatis,
go = (15 0 ®|3)"(gE)

where ®|3 is the restriction of @ to A. Strictly speaking, the quadratic form gg,
which is only defined almost everywhere on A, can be degenerate (as the differential
of 7% o ®). In spite of that, we will still refer to g as a metrlc Putting together the
metrics g on each simplex Aof T gives rise to a metric on M still denoted by 2.

Note that the metric g¢ is not well defined on the one-skeleton of the triangulation 7
since the metrics defined on each simplex of 7 do not necessarily agree on their
common edges.

Definition 4.2 Two maps ¢, ¥: X — R? are said to agree up to a coordinate
permutation of R3 if there exists a permutation o of {I,2,3} such that for ev-
ery x € X and i € {1,2, 3}, the coordinates ¢(x); and ¥ (x); of ¢(x) and ¥ (x)
satisfy ¢(x)g (i) = ¥ (x);. In this case, we write ¢ 2~ . Note that the permutation o
does not depend on x.

This definition extends to vectors of R? viewed as constant maps in R3.

Let us state a result that will be used to establish some invariance properties a couple
of times in this article.

Lemmad4.3 Let A € T and y € I'. Then the two maps
V*[d(ny.z o ¢)|y.z)] and d(nz ) CD|5)
agree almost everywhere on A up to a coordinate permutation of R3. That is,

V*[d(ny.Z o q)|y_z)] ~ d(ﬂz o CD|Z)

Proof Let (£;)3 7, and (& )3 = be the three systolic directions of M ¢ with basepoints
in A and y.A; cf Definition 3.3. Since > y isan orientation preserving isometry of Mg,
it preserves the systolic directions of M o. Hence, y. (&)3 HP (4 )l_1 Thus,

3
]Ty.z © q)|y.z = (qD‘f,{ly.Z)i:l

~ \3
>~ (Dyg |y.A)i=1'

Differentiating this relation yields

A, 5001, ) = [@yg, )

Geometry € Topology, Volume 15 (2011)
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From Definition 3.4 (3), we derive
Y (d Dy |y.Z)z‘3=1 = (d P |Z)t‘3=1
=d(wx o ®@[3)-

Hence, y*[d(ny'zodﬂy.z)]:d(nzodﬂz). O
The following result shows that the metric g¢ descends to M .
Lemma 4.4 The metric g¢ is I —invariant on M.

Proof Lety €T and x € M such that g and y*ge are defined at x. Denote by
A the simplex of 7 such that x € A. We have

(V*8a)lx =[y*(m, 50 ®)*gEllx
=[y*d(x, 5 0 D)*|x gE.
From Lemma 4.3 and since gg is invariant by coordinate permutations, we derive
(Y*ge)lx = d(ﬂg °o®)*|x gE
=[(m5 0 )" gEllx
= §<I>|x-

Hence, y*ge = 2. O

Definition 4.5 The metric induced by g on the quotient M will be denoted by g4 .

5 Two-forms induced by admissible maps

Let ®: M — R be an admissible map. As in Section 4, we can define a two-form wg
on M.

Definition 5.1 Assume A € 7. Denote by @we the pullback on A of the two-
form 21'3=1 dx; Adx;yq of R? by mx o ®|3 (all indices are taken modulo 3). That is,

3
&3@ = (JTZOCD|Z)*(ZCZX, Adx,-+1).

i=1

As previously, this two-form is only defined almost everywhere on A. Putting together
the two-forms @ on each simplex A gives rise to a two-form on M still denoted
by &g .
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The following result shows that the two-form @w¢ descends to M .
Lemma 5.2 The one-form @¢ is I" —invariant on M.

Proof The proof proceeds as in the proof of Lemma 4.4: simply replace g¢ by @e
and gg by Zledx,- Adxjy1. As previously, the result follows from Lemma 4.3 and
the invariance of Z;l dx; A dx;41 by coordinate permutations. O

Definition 5.3 The two form induced by @wg on the quotient M will be denoted
by we.

6 Comparison of the area forms dg¢ and w ¢

Lemma 6.1 Let ®: M — R be an admissible map. Then we have
0| < V3dge

almost everywhere on M , where |wg| is the area measure of wg on M and dgg is
the area measure of g on M .

Proof Let A € 7. The two-form &g is represented on A by the sum

3
> doi ndD;y

i=1

where ®; = @, and the &;’s are the three systolic directions with basepoints in A;
cf Definition 3.3.

Let x € A such that the ®;’s are differentiable at x for i € {1,2,3}. Each bivector
dx®; A dy®;41 of the cotangent plane T;‘]\? can be represented by the oriented
go—area of the parallelogram #; spanned by the gg—gradients V,®; and V,®;
of ®; and ;41 at x [18; 9] so that

3
(6-1) Dy = Z area(#;) dgy.
i=1
Note that
(6-2) area(#;) = detz, (Vx®;, Vi D4 1).

On the other hand, the differential of 73 o ® at x is given by

dy(nz 0 ®): TxMo— R
u = (Vyx®i,u) 3:1-

Geometry € Topology, Volume 15 (2011)
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Let (e,e3) be a positively oriented gy—orthonormal basis of T xz\? o. The cross-
product of dx (o @)(e1) and dx (7 o P)(ez) is the vector of R3 given by

3
(6-3) dyx (5 0 ®)(e1) x dx (g 0 P)(e2) = (detgy (VxPiy1. VaPit2));_,
where the index i is taken modulo 3. Now, recall that g = (3 o ®)* gg. Hence,

dgo = |dx(mg o ®)(e1) x dx(mg 0 P)(e2)| Ed&o

3
Z area(#;)%2 d Zo

i=1

from Equations (6-3) and (6-2). By the Cauchy—Schwarz inequality, we derive

3
Zarea(#,-)2 dgo=~3d3%s. |

i=1

3
Op = Z area(#;) dgo < V3

1=

7 Area measures of 1-Lipschitz admissible maps

Let g be a metricon M and g its lift on M . Even though the supremum norm ||.||co is
not always finite on R, the following definition of Lipschitz maps for the supremum
norm still makes sense.

Definition 7.1 A map ®: M — R is 1-Lipschitz if

[®(x) — P(¥)]loo < dg(x,y)

for every x, y € M, or equivalently if ®g is 1-Lipschitz as a function with real values
forevery £ € Sp.

With this notion, we can state the following result.
Lemma 7.2 Let ®: M — R be a 1 -Lipschitz admissible map. Then we have

3
dge < Edg

almost everywhere on M , where dg and dg ¢ represent the area measures of g and g¢
on M.

Furthermore, equality holds if and only if g¢ = % g almost everywhere on M .
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Proof Let x € M such that go is defined at x. Denote by A the simplex of T
such that x € A. Let (&)3 i—; be the three systolic directions with basepoints in A;
cf Definition 3.3. We will write ®; = P, .

Let (eq, ep) be a positively oriented g—orthonormal basis of T XM . We have
(7-1) dge = Vdetz gopdg

where detz o = (det golei,e f))i,j (1.2} defines the determinant of g¢ with respect
to g. (This definition does not depend on the choice of the positively oriented g—
orthonormal basis (e, e3).)

The trace of g¢|x with respect to g is given by

2
trg (Zolx) = Z(ﬂg ° q’)*(gE)lx(ej’ej)
j=1
2

=3 |ldx (g 0 ®)(e)) 11}

j=1

3
> 1dx®i(e))I?

i=1

Il
MN

Il
_

J

= lldx®il %

=1

w

~

By assumption, the map @ is 1-Lipschitz. Thus, the map ®¢ is 1-Lipschitz for every
systolic direction &. Therefore, ||dx®;||z < 1. Hence,

trz (So) < 3.

From the geometric-arithmetic mean inequality, we have

3
Y% detg < E .
The result follows from (7-1). O

Corollary 7.3 Under the same assumption as Lemma 7.2, we have

3
area(ge) < 3 area(g)

with equality if and only if go = % g almost everywhere.
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8 Admissible map induced by a metric on M

Fix a Calabi surface My ; cf Section 2. Let g be a metric on M and g be the induced
metric on the universal covering M of M .

Given £ € S (cf Definition 3.1), we define sys,(ag) as the least length of a loop
of M representing ag. That is,

(8-1) sySq () = sys(M / (eg))
where M /{ag) is endowed with the metric induced by g.

Lemma 8.1 There exists a constant C = C(g) such that for every vector £ € S;
(cf Definition 3.1), we have

8-2) |dg(cg(0), cg(2)) — 1 sysg(ag)| = C.
Proof Let m = E(t) be the integer part of 7. The g—distance between cg(,,) and cg(7)
is uniformly bounded from above.

Let y be a g—length minimizing loop in M representing ag. Denote by c¢g(0) the
projection of ¢g(0) to M and by ¢ a segment joining cg(0) to y. The loop cUy™ Ue™!
represents ag" and lifts to an arc of M with endpoints cg(0) and cg(m). Thus,

(8-3) dz(cg(0), cg(m)) < msysg(ag) + 2 diam(g).

On the other hand, every arc with endpoints ¢¢(0) and cg(m) projects to a loop of M
representing ag”. From [16, Lemma 4.32], we obtain

(8-4) m sysg(ag) = dg(cg(0), cg(m)).
Combined with some triangular inequalities, the bounds (8-3) and (8-4) yield the desired
estimate. O

The bound (8-2) shows that the following limit-sup (8-5) is finite.

Definition 8.2 Every vector £ € S induces a Busemann function ,Bé?’ - M — R with
respect to g defined as

(8-5) ﬁg (x) = litm sup dg(x, cg (1)) —t sysg(ag)

where x € M . Note that ,Bg (c£(0)) = 0.

The function ,Bég is 1-Lipschitz as a limit-sup of 1-Lipschitz functions. Thus, it is
differentiable almost everywhere by the Rademacher theorem.
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Suppose that ﬂg is differentiable at x € M . The g—geodesic ray y arising from the
g—gradient Vy /35 of ’BE at x satisfies the relation

(8-6) BE (v(s) — BE (y(0) =
for every s > 0. Furthermore, ,Bg is differentiable at every point of y and
ViBE = V().

The relation (8-6) also implies that the projection of y to M is a geodesic curve
without transverse self-intersecting points.

Definition 8.3 Let us define a map &8 M — R as follows.

As previously, given a vector £ € S;, we define ¢§ - M —>R as
9F (x) = L(BE(x) — B4, ()

for every x € M . Note that ¢¢ g = —qﬁég )

Given & € S§, denote by £(i) with i € Z the vectors of S§ pointing in the same direction
as &£. More precisely, £(i) = cé (i/mn), where n is equal to 6 if M| is the first Calabi
surface (cf Section 2.1), and to 8 if M is the second Calabi surface; cf Section 2.2

(recall that sys(Mp) = 1). Note that £(0) =&, E(n) =g .£, E()(j) =£&(@{ + j) and
Fe@) = -

We can now define a function @é" ‘M —>R as

1 n—1
37) 20 = (3 285 /svsg (e
i=0

for every x € M and every vector & € Sg - Note that ¢ £ = —@é" i

The functions CD? give rise to a map PE: M —R®.

Example 8.4 Let g = g and £ € Sy be a systolic direction on M. Denote by A
the flat triangle of 7" where the basepoint of é lies in. The Busemann function ,Bg is

differentiable on A and its go—gradient on A is a unit vector parallel to & pomtmg in
the same direction as £. Hence,

Vx©§0 - Vxﬁégo - E

for every x € A.
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Lemma 8.5 Let g be a metric on M with sys(g) > 1. Then the map ®8: M —R®
induced by g is 1-Lipschitz and admissible.

Proof Let § € Sp. Since sysg(ag) = 1, the £—coordinate maps @g are 1-Lipschitz
as an average of 1-Lipschitz functions. In particular, the condition (1) of Definition 3.4
is satisfied by the Rademacher theorem. Furthermore, the map ®$: M — R is also
1-Lipschitz; cf Definition 7.1.

Let x € M and y € I'. Since ¢, ¢ = y.cg and dg is I'—invariant, we have
dz(y.x,c (1)) = dgz(x,cg(1)).
We also have sys, (ay.¢) = sys,(ag) since a, ¢ and ag are conjugate in I". Thus,
BE (v .x) = BE ().
(8-8) 9% (. x) = B (x).

Combined with the relations (y.&)(i) = cj’/.g(i/n) =y. cé(i/n) = y.£(i) and the
definition of @g (cf (8-7)), we obtain

@fy'g(y LX) = ¢§(x)
Hence the equivariance of d®¢ ; cf Definition 3.4 (3).

By definition of ag (cf Definition 3.1), we have o . c4¢(t) = c4¢(t = 1). Recall also
that c_g(¢) = cg(—1), a_g = ozé_l and sys, (a—g) = sysg(ag). Thus, the Busemann
functions ﬂig satisfy

ﬁié (ag . x) = limsup dg(ag . x, ce(t)) — 1 sysg(ate)
t—00

=limsup dg(x,cxe(t F 1)) — (1 F 1) sysg(ore) F sysg(oe)

t—>00

= B (x) — sys, (@)
Hence

(3-9) Bf (e .x) = 9 () —sysq (@),

Combined with the relation g = ag(;) and the definition of ®¢ (cf (8-7)), we obtain
d>§(oe§ LX) = @g(x) —1.

Hence the condition (4) of Definition 3.4.

Now, from Equations (8-8) and (8-9), we derive

(8-10) 95 () = BF (x) + sysg (@),

Geometry & Topology, Volume 15 (2011)



Isosystolic genus three surfaces critical for slow metric variations 1495

Let & and &’ = £(1) be two neighbor systolic directions pointing in the same direction.
From the Equation (8-10) and the relations £'(i) = £(i + 1) and £(n) = g . £, we
deduce

1 n—1
o=, > W™ ) [3754(@)
1 n
= (Z Zd’ég(j)(x)) /sysg(ag)
j=1

n—1
= (5 X0t 0) fovsetaer +
=0

1
(8-11) =CI>§(x)—|——.
n
Repeatedly using this relation, we derive
PF(x) = PF(x) + -
3 3 n

for every pair of systolic directions & and & pointing in the same direction with
g =¢&@()andi€Z.

The condition (2) of Definition 3.4 immediately follows. O

9 Induced metrics and two-forms of model admissible maps

Let ®° be the 1-Lipschitz admissible map induced by the metric go on My; see
Definition 8.3.

Lemma 9.1 We have 3
g0 = 5 8o-

Proof Let x € M and u € Tx M . Denote by A the triangle of 7 such that x € A.
Let (&) l.3=1 be the three systolic directions with basepoints in A ; cf Definition 3.3. We
will write @ = Pf0.
Zoo(u,u) = (w5 0 ®°)*(gE) (U, u)
3
=D ldx @ ).

i=1
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Suppose u is the gradient of CD? at x for the metric g, 1e u = Vy CDO Since the
go—dot product between VXCD and V, @0 is equal to 1 — 56; ; (ie 1 When i=j

and —5 1 when i # j), we have

3
Zoo(u.u) =) go(Vx®). V,®9)?
i=1
=, -1, =%
3.
- 5 gO(”a lxl)

since u = VCID? is a gp—unit vector. We derive that

~ 3.
0= =
go ) 80
on M o since the vectors Vy CID? span the vector space TXA? . Hence the result. |

Lemma 9.2 We have

3f

wgo = —— dgo.

Proof We will use the same notation as in the proof of the previous lemma. By
definition of wgo, we have (cf (6-1))

3

Bpo =Y _ detg, (Vx D). Vx®?, ) dZo.
i=1

Now, the angle between the unit vectors Vy CDO and V,® +1 is equal to 27/3. There-
fore,

V3
0 0
detg, (Vx @7, Vx @iy ) = B
3
Hence Do = id go- O

10 The A—functional of an admissible map

Definition 10.1 The .4-functional of an admissible map &: M — R is defined as

A(P) = /M 0.
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Let g be a metric on M with sys(g) > 1. Consider the admissible map ®& induced
by g. Define ¢%: M — R as the difference P8 = P& — ®Y, where PO is the
admissible map induced by the metric gog on M.

Lemma 10.2 Let £ € Sy. The function {55: M —>R passes to the quotient by (ag)
and induces a function denoted by (pg: M [{ag) — R.

Proof Passing to the quotient by (o), the real-valued function d>§ induces a map
@g : M /{ag) — R/Z which takes a (simple) systolic loop of M /{wg) to a generator
of the fundamental group of R/Z. This map CI>§ induces an isomorphism in homotopy
between nl(M / (ozg)) and 1 (R/Z). Therefore, the map goé passes to the quotient
and induces a map (pé? M /{ag) — R/Z which is homotopically trivial and lifts to the

desired function (,0E M [{ag) — R. |

Definition 10.3 Let £ € Sy be a systolic direction of M o- Recall that the systolic
band Eg of M induced by £ is the union of all the triangles of 7 through which
ce passes. The projection Bg of Eg to My, which agrees with the quotient of Eg
by (ag), is also called a systolic band of M.

We assign to every triangle A € 7 lying in a systolic band B the systolic direction £A g
with basepointin A pointing in the same direction as the edge of A lying in the boundary
of B (the edges of a triangle inherit the orientation of the triangle).

Let D be a collection of triangles of 7 whose union forms a fundamental domain
of M in M as in Figures 1 and 2. By definition of .4, we have

(10-1)  A(P%)—A(P°) = Z/Zd% ANAD), | +d D) NAGE, | +dPE NdTE, |

Aep” " i=1
= 2/ ngo, ANdD) | +dD) AdFE,,
Aep " i=1
Ig
+ Z Z/d(pz /\d(pz—i-l
Aepi=1
Te
where of = Of . o) =& and =P

Here, the & X ’s, with i € {1, 2,3}, are the three systolic directions arising from the
triangle A of D.
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The following proposition amounts to the criticality of the A—functional at ®°.

Proposition 10.4 We have

3
— =~ 0 0 ~ _
Ig:=)" AZd(pf/\d@Hl +d®) AdFE | = 0.
Aep T i=1

Proof By rearranging the terms of the sum, we can write /4 as

Ip=Y" Z/Zdalg AdDY, | —dD)_).
Now, note that d D, | —d®?_, = (v/3/2)(dDP)*, where (dPP)* is the image of d Y
by the Hodge operator on the one-form space of M (. Thus,

3
(10-2) Iy = ‘/75 > Z/~ dFE A (dDY)*.
A

Aepi=1

The one-forms (d CID?)* are constant on the systolic bands Eg of M 0. We will still
denote by (dCD?)* the one-form obtained by passing to the quotient on Bg. By
rearranging the terms of the sum and passing to the quotient, we can write (10-2) as

V3
I, = - Z Z / dpf g A (dPY )
B ACB'A
where the first sum is taken over all the systolic bands B of M| and the second over
all the triangles A of 7 lying in B. Here, ¢f p = ¢§A , and O} p= CDEgA , Where
&, B is defined in Definition 3.2. , ’

Now, fix a triangle Ao of 7 lying in B. Set ¢§ = (pZO,B and v% = (d@gO’B)*.
Let A be another triangle of 7 lying in B. If A and A, have an edge lying in the
same connected component of dB, then d(pi’ p = do3, from Definition 3.4 (2), and
(d CIDZ’ g = vg. Similarly, if A and Ay do not have any edge lying in the same
connected component of 0B, then dp} p = —dgg and (d CDg’ )" =—v%. In both
cases,

dgf g A (dDY p)* = dyp§ Avy.

3
Therefore, I, = \/7— Z /;9 do§ A Y.
B
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Since the one-form v% 1s constant on B, and therefore closed on B, we deduce from

Stokes’ formula that f
3 / 0
I, = — YEVp.
=5 [ et

But the one-form v% vanishes on the vectors tangent to dB. Thus, I equals zero. O

11 Proof of the main result

Let ® = ®¢ be the 1-Lipschitz admissible map induced by a metric g on M . From
Lemma 9.2, we derive that
3v3
A% = T\/_ area(go).

Now, from Corollary 7.3 and Lemma 6.1, we have

A(D¥) < /3 area(go) < ¥ area(g).

Let (g;) be a slow metric variation of go with sys(g;) = 1. By definition of a slow
variation, we deduce from the Cauchy—Schwarz inequality that the term Jg, in (10-1)
is negligible with respect to #. Thus, Proposition 10.4 implies that

A(DE1) — A(D°) = 0(2).

Hence, area(g;) > area(gg) + o(?).

12 Examples of slow metric variations

The goal of this section is to present examples of slow metric variations and, more
generally, to show how one can prove that a metric variation is slow.

12.1 A general bound for not-necessarily slow metric variations

Let (g7)s>0 be a smooth deformation of go. More precisely, g; is a Riemannian metric
with conical singularities on M smoothly varying with ¢ on M\ {conical singularities}
(as a smooth section of the bundle of symmetric 2—forms on M\ {conical singularities}).
Recall from [27] that a point p of M is a conical singularity of order t (or of angle
0 =2 (t + 1)) of the metric g if there exists a nonsingular conformal map z: U — C
defined in a neighborhood U of p such that z(p) =0 and g = f(z)|z|?*¥|dz|? in U,
for some continuous positive function f'.
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From [13], if p and ¢ are two nonconjugate points on a complete simply connected
manifold endowed with a Riemannian metric g, there exists a neighborhood of g such
that for every metric h in this neighborhood, the points p and g are connected by
a unique h —geodesic arc smoothly depending on h. Thus, the gr—minimizing arcs
joining pairs of adjacent singularities smoothly vary with ¢, for ¢ small enough. There-
fore, by taking the pullback of g; under a one-parameter family of diffeomorphisms
converging to the identity map when ¢ goes to zero, we can assume that the edges of
the triangulation 7 are g;—minimizing arcs for ¢ small enough.

Recall that the systolic band Eg induced by a systolic direction & € Sy (cf Definition 3.2)
is a flat strip in M o composed of equilateral flat triangles of 7. The trajectories (for
positive time) of the dynamical system generated by —Vyg, ,350 (where ﬁé"o ~is the
Busemann function defined by &; cf Definition 8.2) arising from the points of Bg are
semilines parallel to the boundary of the flat strip Eg and pointing in the same direction
as cg; cf Definition 3.1. If the metric has nonpositive curvature (the case we will focus
on), the Busemann function ,Bég ! is differentiable and the trajectory y;* of —Vg, ,85 !
arising from x is complete and leaves every compact set.

The following result shows that for 7 small enough the trajectories of —Vy, ,Bég ! are
still trapped in Bg.

Lemma 12.1 For t small enough, every complete minimizing g;—geodesic trajec-
tory yy leaving Bg does not stay at bounded distance from cg.

In pamcular for t small enough, the trajectories of —Vg, 'BE ! arising from the points
of BE lie in Bg

Proof We will assume that all the geodesics are parametrized by their arclength.
Let BE denote the gg—convex neighborhood of Bg formed of the triangles of 7~ with
a vertex in Bg For ¢ small enough, the boundary of Bg is made of g;—minimizing
segments and the angles of the singularities of g; are greater than 2s. Therefore,
for ¢ small enough, the trajectories y; leaving Eg also leave §§+ . By translating the
trajectories if necessary, we can extract a sequence ¥y, , where t;, — 0, leaving Eg
with a speed vector Un_ such that (u,) converges to a gg—unit vector u, pointing
outside the interior of BS Since the conical singularities of g are greater than 27,

the complete minimizing g—geodesic trajectories Yoo generated by uo, do not stay at
bounded distance from cg. (Note that the trajectories yoo are not necessarily uniquely
determined by uo as they may pass through conical singularities.) On the other hand,
there exists a trajectory Yoo as above such that (y;,) converges (up to a subsequence)
t0 Yoo in restriction to any given bounded open set of M . The conclusion follows. 0
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We can now prove a general bound on the variation of the gradient of Busemann
functions with respect to any (not-necessarily slow) metric deformation.

Proposition 12.2 Let (g;);>0 be a smooth deformation of g, as above. Then for
every systolic direction § € Sy and every triangle A of T lying in Bg, we have

|dBE" — dBEll e iy = OV,

Remark 12.3 We do not know whether this ((4/7)—bound can be replaced with a
0(~/t)-bound as in the definition of slow metric variations; cf Definition 1.1. A positive
answer would show that any metric variation is slow.

Proof Fix x € A a point where ,Bég * is differentiable. Let b be the go—segment
of Bg passmg through x and gg—orthogonal to the boundary components of Bg Set
Xj = E -x and b; —oz -b; cf Definition 3.1. Denote by / the distance function to cg with
respect to go. Suppose for simplicity that the angle 6y = 0y (x) between —Vg, 'BS (xo)
and —Vg, ,8é (xo) is positive. Note that the function 6y tends to zero in L°°(A)
when 7 goes to zero. Since the metric deformation is smooth and sys, (ag) = 1
(cf (8-1)), the trajectory y;* of —Vy, ﬂsg ! arising from xq, which is geodesic for g,
hits h; at a point x; such that 2(x;)—/h(x¢) > sin 8y — C ¢ for ¢ small enough, where,
by compactness, C is an absolute constant (ie, a constant depending only on g and
the derivatives of the metric family (g;) at ¢ = 0, but not on ¢ and xg). Furthermore,
the angle 0; between —Vg, ,Bg" (x1) and —Vg, ,3 “(x1) is greater or equal to 6y —C’ ¢
where C’ is another absolute constant. We repeat this process again and again. As a
result, we obtain a sequence of points x; along the trajectory y;/ and a sequence of
angles 0; between —Vgoﬂgo (x;) and —Vg, ,Bé"f (x;) is such that

(12-1) h(xi+1) —h(x;) = sint; —Ct,

(12-2) 0;>0p—iC't

This last inequality implies that 6; is positive for i < ig := [fy/C’t]. Note that
for ¢ small enough, 6; is less than 7 /4 and so sin6; > 1—909,-. Thus, summing the

inequality (12-1) from i = 0 to iy — 1 and using (12-2), we derive that for ¢ small
enough,

iop—1 io—1

h(xig) —h(xo) = Y sin6; —ig C 1> — Z 0; —
i=0

9 io(ig— 1 C
(12-3) > E(io B0 — MC’z) —— b,
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Now, since y} lies in Ezg— from Lemma 12.1, the sequence /(x;) is uniformly bounded,
for instance by 1. Thus, from (12-3) and the expression of i, the angle 6, satisfies
some inequality

a
where a and b are positive absolute constants. We immediately deduce that

o < b+ VB2 1 da]i
0

- 2a/t = 0.

Hence the result. O

12.2 Changing the edge lengths

A piecewise flat Calabi surface My = (M, g¢) is composed of Euclidean equilateral
triangles with the same side length. We can deform the metric g into another piecewise
flat metric by changing the lengths of the sides of the Euclidean triangles of 7 tilling the
surface; cf Section 2. This yields a 48—dimensional space of deformations for the Calabi
surface modeled on Fermat’s quartic and a 84—dimensional space of deformations
for the one modeled on Klein’s quartic. We consider a one-parameter family (g;);>0
of such deformations, where the lengths of the sides of the Euclidean triangles of T
smoothly depend on ¢. We denote by 7; and 7 ; the deformations of the triangulations
given by 7 and 7. For ¢ small enough, the conical singularities of the piecewise
flat metric g; have nonpositive curvature in Alexandrov’s sense and the Busemann
functions of g; are differentiable everywhere off the conical singularities.

Proposition 12.4 Let A be a triangle of T and & € Sy be a systolic direction with
basepoint in A. Then the metric family (g;);>¢o satisfies

(12-4) |(dBg —dBEL) — (dBE* — dBEY) | 2z, = O).

In particular, the one-parameter family of metrics (g;);>¢ is a slow metric variation.

Remark 12.5 The estimate (12-4) is stronger than the estimate (1-1) in the definition
of a slow metric variation; cf Definition 1.1. Indeed, it yields a O(¢)—bound, which
is stronger than a o(+/f)-bound. This still leaves room for improvement and for
describing new slow metric variations.

It will be convenient to introduce the following definition.
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Definition 12.6 We will write that a(z) < b(¢) if there exists a positive absolute
constant C (ie, a constant depending only on g, and the derivatives of the metric
family (g;) at £ =0, but not on #) such that a(z) < C b(¢) for ¢ small enough. Similarly,
we define a(¢) = b(z). If both a(z) < b(¢) and a(t) Z b(t), we will write a(t) ~ b(z).

We will also use this definition for functions a(x, #) depending on a variable x. In this
case, we require the absolute constant C to be independent of x.

Proof of Proposition 12.4 As recalled in Section 12.1, the systolic band Bg of My
induced by £ is a flat strip in M o composed of equilateral flat triangles of 7 . This band
can also be seen as a horizontal strip in R? endowed with the Euclidean metric. Moving
along cg in the pos1t1ve direction, we denote by A1 the trlangle of T in Bg adjacent
to AO =A, by A2 the triangle of 7 in Bg adjacent to AI, and so on. Similarly, we
define Ak for k negative by moving along c¢ in the negative direction.

As t varies, the triangles of 7; and 7T ; are smoothly deformed. In order to compare
the geometry of go and g;, it will be convenient to consider the triangles A , and their
smooth deformations ch embedded in R?; see Figure 3. (This will implicitly be used
in the sequel.) This can be done by keeping both the center of Zf) and the direction
of a given edge of Z’ fixed in R%. With this identification, the restriction of g; to
the union Bg of the Al % agrees with (more precisely, is the pullback of) the Euclidean
metric of the plane. Note that even for small 7, the center of A can be far from the
center of A , (of course, this occurs only for k large enough) and the band Eé may
no longer be embedded in R?. However, we will later see that large portions of the
band Eé do not overlap in R2.

A geodesic loop of a piecewise flat surface with conical singularities which does not
pass through a singularity can be translated without increasing its length until it reaches
a singularity. Thus, every homotopy class can be represented by a shortest representative
passing through a conical singularity. In particular, the lift of some &—systolic loop
of (M g¢) passes through some vertex (conical singularity) xo of Bg at distance <1
from A. Here, a &—systolic loop of M is the projection of a systolic loop of M /{ag)
on M . Consider now the pleceW1se straight line ¢ of R? composed of the segments ¢;
of R? with endpoints x; = ozE Xo and x;4+1 in Bg Let v be the angle between the
directions of ¢; and  Cit1 (it does not depend on i since ag acts by isometry on Bé).
Since the triangles A smoothly vary in R?, we have |v| <1.

Suppose that v is different from zero. Then ¢ lies outside the disk of R? bounded
by the circle C, of radius p = £/(2tan(v/2)) >~ 1/t passing through the midpoints
of the segments ¢;, where £ is the length of ¢;; see Figure 3. Changing the origin O
of R? if necessary, we can assume that the disk is centered at O. Since the boundary
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- - @)

-

Figure 3: In gray, a fundamental domain for the projection of Eét

component dg Eé of Eét passing through x, is at Hausdorff distance <t from ¢ in R?,
it lies in a tubular neighborhood of C,, of width =~ 7, that is, an annulus A(r, R) of R2
centered at O of inner radius r and outer radius R, where p—r >~ ¢t and R—p >~ ¢;
see Figure 4. In particular, the band ES’ is bounded in R2.

The area of AN D(R+1)is <t,where D(R+1) is the disk of radius R+ ¢ centered
at O. Thus, from Proposition 12.2,

IdBE —dBE | 2@ p Ry S IVE-

Let us now bound the L*°—variations of d8§* —d ,35% between s =0 and s =7 on
A\ D(R +1t). Asin Lemma 12.1, for ¢ small enough, every geodesic of (M, g)
leaving Eét diverges so fast that it does not stay at bounded distance from cg. (This
is due to the angles of the singularities of g; which are greater than 27 .) Thus, for ¢
small enough, the trajectories of —Vy, ,Bg ! arising from the points of Eét \ l~)(R +1)
(which are geodesics possibly passing through conical singularities) lie in Bé. Since
they are length-minimizing geodesics, each of these trajectories lies in the convex
cone bounded by two semilines arising from the same starting point as the trajectory
and pointing in the same direction as £, where the first semiline is tangent to C, and
the second is tangent to Cg; see Figure 4. Thus, for every x in A \ D(R +1), the
vector —Vy, ,Bég (x) points into the convex cone previously described with vertex x.
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Using a simple trigonometric argument, we deduce that

(12-5)

<cosf <

R+d 7"~ R+d

where 6 = 0(x) is the angle between u(x) and —Vg, ,Bg’ (x) (here, u(x) is the vector
based at x orthogonal to the line Ox and pointing in the same direction as &) and d is
the distance from x to the disk bounded by Cg. Strictly speaking, we need to estimate
the angle in R? between —Vg, ,8?0 (x) and —Vg, ,8? (x), but since this angle agrees
with 6 up to some constant < ¢, we can work with 6 instead.

0
/

|
I
|
|
I
| r
|
|
I
|

X
Opin  Omax

Figure 4

As x liesin A \ D(R+1t), we have t <d < 1. Combined with the estimates on r
and R, namely r ~ R~ 1/t and r — R ~ t, we derive from (12-5) that t < 0 < /7.
This does not yield the desired o(+/7)—bound on 8, only a O(+/t)-bound. To obtain a
o(+/t)-bound, we have to use a symmetry argument and deal with —§ as well.

Set 64+ = 6. Replacing & with —&, we define 6_ as the angle between —u(x) (which
almost agrees with —Vyg, ,Bfg_ (x)) and —Vg, B& ¢ (x). The angle 6_ satisfies the same
relation ¢ < 6_ < 4/t and the same bound (12-5) as 6. Therefore, since |R —r| <1,
we deduce that

|R—r| <42

04 —cosb_| <
| cos 64 —cos |_R+d~

Geometry € Topology, Volume 15 (2011)
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From the mean value theorem, there exists 6, between 64 and 6_ (and so 6, = 1)
such that

|cos 4 —cosbO_| = |sinf|- |6+ — O]
2|0 —0_|.

Hence, |04+ — 6_| < t. Therefore,

|(d,3§’ —dﬁf’g)—(dﬂg" —dﬁfg)| ~ |cos Oy +cos_ —2+i(sinfy —sin6_)]
NI

on A\ D(R+1).

Suppose now that v is equal to zero. Then c¢ is a straight line in R2. Since the boundary
component dg Eé of Eé passing through x is at Hausdorff distance <t from ¢ in R?,
there exists a flat strip S;, parallel to ¢, of width w; with wo —w; < ¢, contained
in Eé, where wy is the width of Eg. The straight lines foliating S; project to systolic
loops of (M, g;). Therefore, the trajectories of —Vy, ,Bg’ ! arising from the points of S;
lie in these straight lines and so are parallel to ¢. As ¢¢ smoothly varies with ¢ (see [13]
and the beginning of Section 12.1), we derive that

IdBE —dBEll Loogins,) S 1-
On the other hand, the area of A \ S; is <¢. Thus, from Proposition 12.2,
”dﬁgt - dﬂgo ”LZ(Z\S,) < [\/Z-

The desired estimate follows in this case too. Hence the result. O

Remark 12.7 For any oriented simple closed geodesic y on M|, we can define a one-
parameter family of metrics (g;) by twisting the metric g¢ along y. More precisely,
cut My open along y and glue the boundary components back together after making a
twist of parameter 7. The resulting metric on the surface, denoted by g;, is piecewise
flat with conical singularities of angles greater than 2. (The conical singularities
of My may be split into two conical singularities in the process if y passes through
some of them.) The proof of Proposition 12.4 can easily be modified to show that (g;)
is a slow metric variation too.

Note that in the hyperbolic case, the metric variations obtained by twisting along simple
closed geodesics induce a dense set of directions in the tangent space of the Teichmiiller
space at the initial metric.

Geometry & Topology, Volume 15 (2011)
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