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Free planar actions of the Klein bottle group

FRÉDÉRIC LE ROUX

We describe the structure of the free actions of the fundamental group of the Klein
bottle ha; b j aba�1 D b�1i by orientation preserving homeomorphisms of the plane.
The main result is that a must act properly discontinuously, while b cannot act
properly discontinuously. As a corollary, we describe some torsion free groups that
may not act freely on the plane. We also find some properties which are reminiscent
of Brouwer theory for the group Z , in particular that every free action is virtually
wandering.

37E30, 57S25

1 Introduction

An action of a group G on a topological space X is a homomorphism ˆ from G to
the group of homeomorphisms of X . The action is faithful is ˆ is injective. It is well
known that some (finitely presented) groups may not act faithfully on the circle (see
for example Ghys [6]). What about the plane? The following classical result, due to
Kerékjártó [9], solves the question for finite groups (see also Constantin and Kolev [4]):

Theorem (Kerékjártó) Every finite subgroup of Homeo0.R
2/, the group of orienta-

tion preserving homeomorphisms of the plane, is conjugate to a subgroup of the group
of linear rotations SO.2/. In particular, these are cyclic groups.

Thus the following question is natural.

Question Does every torsion-free finitely presented group admit a faithful action by
orientation preserving homeomorphisms of the plane?

One might also wish to impose some specific property, asking which groups act freely,
transitively, minimally, and so on. To the knowledge of the author, there are very few
results, even partial ones, on these very general questions. In particular, the above
question seems to be open.

In this paper, we will focus on free actions on the plane, and we will restrict ourselves
to orientation preserving homeomorphisms. Remember that a group action ˆ is said to
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1546 Frédéric Le Roux

be free if the homeomorphism ˆ.g/ is fixed point free as soon as g is not the identity
element. According to Kerékjártó’s theorem, a group cannot act freely on the plane if
it has some torsion element. What are the other obstructions? This work is an attempt
to give a very partial answer to this question. We will describe quite accurately the free
planar actions of the group

BS.1;�1/D ha; b j aba�1
D b�1

i:

This group is the fundamental group of the Klein bottle, it is also a very special case of
the family of Baumslag–Solitar groups [1]. On the one hand we will see that there are
uncountably many different (nonconjugated) free actions of BS.1;�1/. On the other
hand these actions are quite rigid, and share many common features. We will find that
there is an analogy between the free actions of BS.1;�1/ and the free actions of Z on
the plane, as described by Brouwer’s plane translations theorem. In particular,

� the action of BS.1;�1/ is free as soon as the generators a; b have no fixed point;

� every free action is “virtually wandering”: the action of the index 2 abelian
subgroup ha2; bi is wandering.

As a consequence of our study, we will prove that some torsion free groups may not
act freely on the plane.

It is time to describe the simplest free action of BS.1;�1/ on the plane1. The dynamics
of the generators a and b are described in Figure 1.

a

b

Figure 1: Generators of the simplest action of BS.1;�1/

Here is a more accurate description. Consider the matrices A;B 2 SL.2;R/,

AD

�
0 �1

1 0

�
and B D

�
2 0

0 1=2

�
:

1Of course, BS.1;�1/ admits a properly discontinuous action on the plane as the fundamental group of
the Klein bottle; but in this text we shall be concerned only with orientation preserving homeomorphisms.
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The relation ABA�1 D B�1 holds. This gives a (nonfaithful) action of BS.1;�1/ on
the plane. Consider the universal covering map

pW R2
!R2

n f0g

.�; r/! e�rCi� :given by

Then the action of BS.1;�1/ on the plane given by A;B lifts under p to a free action
on the plane. More precisely, denote by BHomeo0.R

2/ the subgroup of elements of
Homeo0.R

2/ that commutes with the map

.r; �/! .r; � C 2�/:

Every element H 2 BHomeo0.R
2/ induces an element P .H / of Homeo0.R

2/ that
fixes 0. The map P is a morphism, and the preimage of the subgroup of Homeo0.R

2/

generated by A and B is isomorphic to BS.1;�1/. The generators are the maps a; b

where

aW .�; r/ 7! .� C�=2; r/;

and b is the unique lift of B that satisfies b.0; r/D .0; r � log.2//.

Note that the index .2pC1/–subgroup ha2pC1; bi is isomorphic to BS.1;�1/, thus
we get an infinite family of examples. The philosophy of our results is that every free
action “looks like” these models. Theorem 1, Corollaries 2.3 and 2.4, Lemma 2.6 and
Section 2.3 below may be seen as more and more precise descriptions of the free planar
actions of BS.1;�1/ which illustrate this philosophy. We will see in particular that for
a general free action of BS.1;�1/, the action of the generator a is always conjugate
to the translation .r; �/ 7! .r; � C �/, while the action of b is never conjugate to a
translation (see Theorem 1 and the remark that follows).

Acknowledgements A motivating problem, asked by Danny Calegari, is to determine
whether each finitely generated group acting on the disk admits a left-invariant circular
order, or equivalently, if it is isomorphic to a subgroup of orientation preserving circle
homeomorphisms. The answer is affirmative for diffeomorphisms; more generally,
it was proved by Calegari [3] that every finitely generated subgroup of Diffeo1

0.R
2/

admitting a compact invariant subset has this property. In the context of this prob-
lem, Andrés Navas introduced me to the crystallographic group G1 that appears in
Corollary 2.1; it was shortly after that I tried to prove that this group does not act freely
on the plane. Andrés also suggested the group G2 below.
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1548 Frédéric Le Roux

2 Results

2.1 Main result, easy consequences

Theorem 1 Assume a and b are fixed point free orientation preserving homeomor-
phisms of the plane, such that aba�1 D b�1 . Then a is conjugate in Homeo0.R

2/ to
a translation.

This theorem, which is the main result of the paper, will be proved in Section 4. It
is complemented by the following remark. Under the same hypotheses, the map b

cannot be conjugate to a translation. Indeed, let us assume b D .x;y/ 7! .xC 1;y/.
The map a sends every b–orbit to another b–orbit, thus it induces an orientation-
preserving homeomorphism xa of the infinite annulus R2=b . There are only two
isotopy classes of orientation preserving homeomorphisms of the annulus, and the
relation aba�1 D b�1 tells us that xa is isotopic to the map induced on R2=b by the
rotation .x;y/ 7! .�x;�y/. In particular xa extends to a homeomorphism xa of the
2–sphere R2=btf˙1g (the two-ends compactification of the infinite annulus) which
exchanges the two points ˙1. The homeomorphism xa of the 2–sphere preserves
the orientation, thus it must have a fixed point (this is a consequence of Lefschetz’s
formula). Thus xa has a fixed point. This means that a preserves some b–orbit, let’s
say Z�f0g; the relation aba�1 D b�1 yields a.zC1/D a.z/�1 for every integer z .
Either a fixes a point of Z, or every point of Z has period two. In this second case,
a must have a fixed point: this is a consequence of Brouwer theory; see Section 2.2
below. In any case the action is not free.

As an easy corollary to the theorem and the remark, we may construct some examples
of torsion-free groups that cannot act freely on the plane.

Corollary 2.1 The following groups are torsion-free and admit no free action by
orientation-preserving homeomorphisms of the plane:

� the crystallographic group G1 D h˛; ˇ j ˇ˛
2ˇ�1 D ˛�2; ˛ˇ2˛�1 D ˇ�2i,

� the group G2 D h˛; ˇ; 
 j ˛ˇ˛
�1 D ˇ�1; ˇ
ˇ�1 D 
�1i.

Proof The group G1 is torsion-free, and the elements ˛; ˇ are nontrivial (see Deroin
and Navas [5, Paragraph 1.3.1]). If G1 acts freely on the plane, then the hypotheses
of Theorem 1 are satisfied by the maps aD ˛ and b D ˇ2 . Thus ˛ is conjugate to a
translation. But the maps aD ˇ and bD ˛2 also satisfy the hypotheses of the theorem,
and by the above remark we get that ˛2 is not conjugate to a translation. Since the
square of a translation is a translation, this is a contradiction.
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The arguments for the group G2 are similar, the only nonobvious part is that it is
torsion-free and that the elements ˛; ˇ; 
 are nontrivial. This will follow from the
existence of a normal form.

Lemma 2.2 The subgroup F2 of G2 generated by ˛ and 
 is free. Every element
of G2 has a unique expression of the form wˇn , with ! 2F2 . Furthermore, the product
in G2 is given by the formula

.!ˇn/:.!0ˇn0/D !ˆn.!0/ˇ.�1/�.w/nCn0

where ˆ is the automorphism of F2 that sends ˛ to ˛ and 
 to 
�1 , and � W F2! Z
is the morphism that counts the sum of the powers of ˛ .

Proof Consider a word x in ˛; ˇ; 
; ˛�1; ˇ�1; 
�1 . The relations in the group G2

can be interpreted by saying that the following operations are valid on the word x :
the sequence ˇ"˛ may be replaced by ˛ˇ�" , and the sequence ˇ
 " may be replaced
by 
�"ˇ . We may perform these operations on x until every power of ˇ has been
“pushed” to the right of the word. This proves the existence of a normal form in G2 as
the product of an element of the subgroup F2 generated by ˛; 
 , and a power of ˇ .

In order to prove that ˛; 
 generate a free group, we will associate to each word x

as above another word !.x/ in ˛; 
; ˛�1; 
�1 , constructed as follows. For each
occurrence of ˛ , we count the number of occurrences of ˇ and ˇ�1 appearing on
its left-hand side, and if this number is odd we replace ˛ by its inverse. We do the
same for each occurrence of ˛�1 ; then we delete all the occurrences of ˇ and ˇ�1 .
The valid operations in G2 do not affect the value of !.x/, thus this construction
defines a map !W G2! F2 . This proves that the subgroup generated by ˛ and 
 is
isomorphic to F2 , and the uniqueness of the word ! 2 F2 in the normal form !ˇn .
The uniqueness of the power of ˇ is proved similarly. The remaining details, including
the formula for the product, is left to the reader.

The uniqueness of the normal form immediately entails that ˛; ˇ; 
 are nontrivial
elements in G2 . It may also be used to check that G2 is torsion free.

To complete the picture, let us note that both groups admit faithful (but not free!)
actions by orientation preserving homeomorphisms on the plane. Indeed, the group G1

acts faithfully by orientation preserving homeomorphisms on the circle (see Section 3.2
below, also note that it does not act on the line (see [5, Paragraph 1.3.1]). The group G2

acts faithfully on the line. This may be seen as follows. It is a classical fact that it is
enough to prove that there exists a left-invariant order on G2 (see [5, Proposition 1.1.5]).
Note that the morphism � defined in the previous Lemma is well defined on G2 . The
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function �W G2!Z, which is defined using the normal form by �.!ˇn/Dn, restrict to
a morphism on the kernel of � . The function w defined on G2 by w.!ˇn/D! restrict
to an isomorphism from the kernel of � onto the free group F2 with two generators.
Let us choose an arbitrary left invariant order on F2 (it is well known that F2 acts
faithfully on the line). In order to define a left-invariant order on G2 , we first define
the set PC of “positive” elements, that is, we say that g > e if and only if one of the
following holds:

� �.g/ > 0,

� �.g/D 0 and �.g/ > 0,

� �.g/D 0 and �.g/D 0 and w.g/ > e ,

where the last inequality refers to the previously chosen order on F2 . Then it is easy
to check that this set PC is a semigroup, the set P� of inverses of elements of PC
is again a semigroup, and that fPC;P�; fegg is a partition of G2 . Thus this partially
defined order extends to a left invariant order on G2 (see [5, 1.1.1]).

2.2 Analogy with the theory of Brouwer homeomorphisms

In this section we show two consequences of Theorem 1 that may be regarded as
analogous to old results concerning free actions of the group Z.

A fixed point free, orientation preserving homeomorphism h of the plane is called a
Brouwer homeomorphism. The main result of Brouwer theory says that a Brouwer
homeomorphism has no periodic points (see for example Le Calvez [11] and the
references therein). In other words, the Z–action generated by h is free. The following
result may be seen as an analog of this fact.

Corollary 2.3 Let a; b be as in Theorem 1, two Brouwer homeomorphisms satisfying
the relation aba�1 D b�1 . Then the action of BS.1;�1/ generated by a and b is free.

The analogy can be pushed a little further. An action of a group G on a topological
space X is said to be wandering if every point has a neighbourhood that is disjoint
from all its G –images. It is part of Brouwer theory that any free action of the group Z
is wandering (this point of view already appears in Thurston [17, Section 3.5]). The
same is almost true for the group BS.1;�1/.

Corollary 2.4 Let a; b be as in Theorem 1. Then the action of the index 2 abelian
subgroup ha2; bi of BS.1;�1/ is wandering. More precisely, every disk D such that
b.D/\D D∅ is disjoint from its image under a2pbq for every .p; q/¤ .0; 0/.

Geometry & Topology, Volume 15 (2011)
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Note that the action described on Figure 1 is not wandering, indeed any open set
meeting one of the vertical b–invariant lines meets its images under b˙na for every n

large enough (see Figure 2). Thus we cannot dispose of the index 2 subgroup.

D

bna.D/

a.D/

ba.D/

b2a.D/

Figure 2: This action is not wandering.

In order to prove the corollaries we generalize a definition from Le Roux [13]. Let �
denotes an affine translation .x;y/ 7! .xC Ev;y/, and b be any Brouwer homeomor-
phism. First assume that b commutes with � . Remember that the index of b along
a curve 
 W Œ0; 1�!R2 is the real number given by the total angular variation of the
vector 
 .t/b.
 .t// when t goes from 0 to 1, divided by 2� . Consider a curve 

joining some point x to the point �x . Since b commutes with � , the vectors xb.x/

and �.x/b�.x/ are equal; thus the index of b along 
 is an integer. The space of
curves joining some point to its image under � is connected, thus this number does not
depend on the choice of the curve 
 , nor on the point x ; we denote it by I.b; �/.

Assume now that �b��1 D b�1 . Then for any point x the vectors xb.x/ and
�b.x/b�b.x/ are opposite. Thus the index of b along a curve joining some point
to its image under �b is a half-integer, it does not depend on the choices, again we
denote it by I.b; �/. For example, for the action of BS.1;�1/ described on Figure 1,
we have I.b; ak/D�k=2. Let us summarize this construction.

Definition 2.5 If either b commutes or “anticommutes” with an affine translation � ,
we have defined a number I.b; �/ which we call the index of b relative to � .

The following lemma generalizes Affirmation 4.15 of [13].

Lemma 2.6 The number I.b; �/ is a conjugacy invariant: if H is a homeomorphism
that commutes with � then I.HbH�1; �/D I.b; �/.

Proof The space of homeomorphisms that commute with � is arcwise connected
(this is an easy consequence of Kneser theorem [10]). Whenever .Ht / is a continuous
family of homeomorphisms that commute with � , the number It D I.HtbH�1

t ; �/ is
an integer or a half integer that depends continuously on t , thus it is constant.
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A translation domain for a Brouwer homeomorphism b is a simply connected open
subset O of the plane such that b.O/DO and the restriction of b to O is conjugate
to a plane translation.

Lemma 2.7 Let b0 be a Brouwer homeomorphism that commutes with an affine trans-
lation � . Assume there exists some translation domain O for b such that O\�.O/¤∅.
Then the index I.b; �/ is zero.

Proof We first remark that if z; z0 are two points in the plane that are not in the
same � –orbit, then there exists an arc 
 joining z and z0 which is free for � , that is,
�.
 /\
 D∅. Indeed, 
 may be obtained as the lift of some simple arc in the quotient
space R2=� belonging to the right homotopy class.

Under the hypotheses of the lemma, we may find some point z 2 O such that �.z/
belongs to O and is not in the b–orbit of z . Since z; �.z/ belong to the same translation
domain, the previous remark provides an arc 
 joining z to z0 D �.z/ which is free
for b , that is, 
 \ b.
 /D∅. Now the Lemma follows from Lemma 4.42 in [13].

Proof of Corollaries 2.3 and 2.4 Let a; b be Brouwer homeomorphisms such that
aba�1 D b�1 . We apply Theorem 1: up to conjugacy, we may assume that a D

.x;y/ 7! .xC 1;y/.

We first prove Corollary 2.4. Consider some element a2pbq with .p; q/¤ .0; 0/. We
first notice that the number I.b; a/ is (by definition) a half-integer; and thus the index
I.b; a2p/D 2pI.b; a/ is nonnull. On the other hand, consider any topological disk D

such that b.D/\D D s∅. Then bq.D/\D D∅ for every q ¤ 0, which solves the
case p D 0 (see for example Guillou [7]). Now assume p ¤ 0. According to Brouwer
theory, there exists a translation domain O that contains D , and thus also bq.D/

(see for example Le Roux [12, Theorem 11]). Since the index I.b; a2p/ is not 0,
Lemma 2.7 tells us that a2p.O/\O D∅. A fortiori we get a2pbq.D/\D D∅.

Let us prove Corollary 2.3. Consider some element having normal form apbq with
.p; q/ 2 Z2 n f.0; 0g (see Lemma 3.1 below). We want to prove that this element is
fixed point free. If p is even then the result follows from Corollary 2.4. Assume that p

is odd. Then we have the identity .apbq/2D a2p . Thus if apbq has a fixed point, this
point is also fixed for a2p . Since a Brouwer homeomorphism has no periodic point,
this is a contradiction.

2.3 A finer description

In the introduction we have claimed on the one hand that there exist uncountably many
free actions of BS.1;�1/ on the plane, and on the other hand that they are quite rigid.
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We would like to provide some evidence to support these claims. For this we will
sketch a finer description of these actions. Here we adopt a more relaxed style; details
are left to the reader.

Consider a free action BS.1;�1/! Homeo0.R
2/. According to Theorem 1, a is

conjugate to a translation. Thus the quotient space R2=a2 is homeomorphic to an
annulus. The map a induces on R2=a2 an order 2 homeomorphism ya, conjugate to
the order 2 rotation of the annulus. The map b induces a homeomorphism yb of R2=a2

that anticommutes with ya. We consider the compactified annulus R2=a2 [ f˙1g,
which is homeomorphic to the 2–sphere. Then yb extends continuously to a map of the
2–sphere that fixes both points ˙1, and has no other fixed point.

Lemma 2.8 The fixed point index of the fixed points ˙1 for yb are even.

Proof The argument is essentially the one that we used just before Definition 2.5
to show that I.b; �/ is a half-integer. We do the computation inside a chart of
R2=a2 [ fC1g ' R2 that sends C1 to 0, and in which the map ya becomes the
linear rotation .x;y/!�.x;y/. In this chart, the vectors from any point x to ybx and
from yayb.x/ to ybyayb.x/D yax are equal. We consider some curve 
 in R2 joining some
point x to ab.x/, and the curve 
 0 obtained as the concatenation of 
 and ab.
 /.
This curve projects down to a curve in R2=a2 that goes once around C1, and the
index of yb along this curve is twice an integer.

Since the indices are not equal to one, we may apply the results of Le Roux [15],
which provides a partial description of the dynamics of yb in terms of Reeb components.
Going back to the free action of BS.1;�1/ on the plane, we get the following rough
description. Let m be the least number of translation domains for b that are needed
to connect a point to its image under a. There exists a unique sequence of Reeb
components .Fi ;Gi/i2Z for b such that, for every i , .a.Fi/; a.Gi//D .FiCm;GiCm/

(see Le Roux [14] for the definition of the Reeb components in this context). The plane,
equipped with the translation distance that counts the number of translation domains
needed to connect two points ([14], section 3.1), is quasi-isometric to a tree (this fact
uses [15, Proposition 3.4]). In fact, a planar countable simplicial tree may be naturally
constructed, on which the map a acts as a hyperbolic transformation.

Conversely, let a denotes a plane translation, ya the order two map induced by a on the
annulus R2=a2 . Let ˇ be any fixed point free homeomorphism of the annulus that pre-
serves the orientation and anticommutes with ya. Then ˇ extends to a homeomorphism
of the 2–sphere that fixes the ends ˙1. Assume that the index of C1 is not equal
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to one2. According to [13, Section 4.1.e], there exists a unique homeomorphism b

of R2 , which is a lift of ˇ , and such that the index I.b; a2/ is not zero; b is called the
canonical lift of ˇ . The relation yaˇyaD ˇ�1 implies that aba�1 is a lift of ˇ�1 ; since
I.aba�1; a2/D I.b; a2/ is not zero, this lift is the canonical lift of ˇ�1 , and thus it
coincides with b�1 . In other words, b anticommutes with a, and the homeomorphisms
a; b induce a free action of BS.1;�1/ on the plane. The image of this action is equal to
the group of all the lifts of all the powers of ˇ . It is not difficult to construct uncountably
many such actions, and in particular to see that every planar countable simplicial tree,
equipped with a hyperbolic map, is realized by a free action of BS.1;�1/ on the plane,
in the sense of the previous paragraph.

3 Preliminaries for the proof of Theorem 1

3.1 Basic algebra of BS.1; �1/

Here are some basic facts about the group BS.1;�1/ D ha; b j aba�1 D b�1i. The
index 2 subgroup ha2; bi is isomorphic to Z2 . The index 2 subgroup ha; b2i is
isomorphic to BS.1;�1/. For any action of BS.1;�1/, a preserves the fixed point set
of b .

Lemma 3.1 Every element of BS.1;�1/ is equal to a unique element apbq , with
p; q 2 Z.

Proof Existence is easy, and the uniqueness is proved by considering some specific
faithful action of BS.1;�1/, for instance the one described on the first figure of this
paper (one could also use the action of BS.1;�1/ on the plane as covering automor-
phisms of the Klein bottle).

3.2 One-dimensional actions of BS.1; �1/

Figure 3 below shows the easiest nontrivial action of BS.1;�1/ on the line. The
generators are obtained as lifts of the action of the matrices A;B on the projective line
P1.R/' S1 .

Lemma 3.2 (actions on the circle) Let a; b be two orientation preserving circle home-
omorphisms such that aba�1 D b�1 . Assume both a and b have fixed points. Then
Fix.a/ is strictly included in Fix.b/. More precisely, every component of S1 nFix.a/
contains some points that are fixed by b .

2The author does not know if this is a consequence of the other hypotheses.
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a

b

fixed points of b

Figure 3: The simplest one-dimensional action

Proof We first find a common fixed point. Let y be some point of the circle that is
fixed by b . Then every point any is also fixed by b . If a has some fixed point, then
this sequence converges to a fixed point of a which is also a fixed point of b .

We denote the common fixed point by 1, and we will use that a and b preserves
the order on S1 n f1g (that is, we consider a and b as homeomorphisms of the line).
Let x be a fixed point for a, we argue by contradiction to prove that it is also a fixed
point for b . Assume b.x/ < x . Then x < b�1x since b preserves the orientation.
But a�1x D x , thus ba�1x D bx < x and aba�1x < a.x/ D x . This contradicts
aba�1 D b�1 .

Now let � be a component of S1 nFix.a/. Clearly it is homeomorphic to the line, and
invariant under a and b . If b has no fixed point on �, then b and ab�1a�1 pushes
points in opposite direction, which is impossible because they are equal. Thus b has
some fixed point in � (and actually it must have infinitely many).

As a corollary of this Lemma, we see that the crystallographic group G1 defined in
Corollary 2.1 may not act by orientation preserving homeomorphisms of the circle with
the generators a; b having rotation number 0. Here is a construction of an action where
b has rotation number 1

2
. We see S1 as the union of two copies of the closed interval

Œ�1;C1� with the two copies of �1 identified, as well as the two copies of C1
(we orient the first copy of our interval positively and the second copy negatively). The
map a is the translation x 7! xC 1 on each copy of Œ�1;C1�. Let R be the map
sending the point x of each copy to the point �x in the other copy; this is an order
two orientation preserving homeomorphism. Let b0 be some orientation preserving
homeomorphism of Œ�1;C1� such that ab0a�1 D b0�1 , as the “b” in Figure 3, and
that commutes with the map x 7! �x . We define b as follows: on the first copy
of Œ�1;C1� it coincides with R, on the second copy it is equal to b0R. Then the
relations ab2a�1 D b�2 and ba2b�1 D a�2 may be easily checked, thus a circle
action of the group G1 is defined. The faithfulness of this action may be checked first
in restriction to the index four abelian subgroup generated by a2; b2; .ab/2 ; given the
absence of torsion element, this entails the faithfulness of the whole action.
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3.3 Limit sets of Brouwer homeomorphisms

The main tool in the proof of Theorem 1 will be the singular set of a Brouwer homeo-
morphism, (probably introduced for the first time in Homma and Terasaka [8]). For the
proofs we refer the reader to our paper [14, Section 5] (which may be read independently
of the remaining of [14]).

In this section we consider a single Brouwer homeomorphism a. A set E is said to
be free if a.E/\E D ∅. For every free topological closed disk D , the sequence
.an.D//n�0 is made of pairwise disjoint sets. Furthermore, it converges in the space
of compact subsets of the sphere R2 [ f1g, equipped with the Hausdorff topology.
The limit, or more precisely its intersection with the plane, is called the positive limit
set of D and denoted by limCD . It is disjoint from D and from all its iterates an.D/.
For every point x , we define the positive limit set of x as

limC x D
\
flimCD;x 2 Int.D/g:

The set lim� x is defined as the positive limit set of x for the homeomorphism a�1 . We
will use the notation limCa when we need to emphasize that a is the homeomorphism
that is used. This construction has the following properties.

(1) We have y 2 limC x if and only if x 2 lim� y and this holds if and only if there
exists a sequence .zn/n�0 of points converging to x such that the sequence
.anzn/n�0 converges to y (then we say that the couple .x;y/ is singular for a).

(2) The map a is conjugate to a translation if and only if it admits no singular couple.

(3) For every x , limC
a2 x D limCa x .

(4) The sets limC x and lim� x are disjoint and do not contain x . The sets
.limC x/[f1g and .lim� x/[f1g are compact connected subsets of R2[f1g.
They are invariant under a.

(5) These are conjugacy invariants: for every homeomorphism ˆ of the plane,
lim˙ˆaˆ�1 ˆ.x/Dˆ.lim˙a x/.

If k is a free connected compact subset of the plane, then again the sets in the sequence
.an.k//n�0 are pairwise disjoint, and the sequence converges. The proof is similar to
the proof of convergence for disks (see [14, Lemme 5.1]), and left to the reader. Thus
we may define3 the limit set limC.k/. The sets lim�.k/ and limC.k/ are disjoint and
disjoint from k .

3Note that limCa x is in general not equal to limCa fxg , since the latter is always empty.
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We will denote by V Ca .x/ the connected component of R2 n limCa .x/ that contains x .
It is invariant under a (see [14, Lemme 5.8]). Likewise, for any free connected compact
set k , the connected component V Ca .k/ of R2 n limCa .k/ that contains k is invariant
under a (the proof is similar to the proof of [14, Lemme 5.4]). We denote V Ca .k/ by
V C.k/ when there is only one Brouwer homeomorphism under consideration. The
following result generalizes [14, Proposition 5.5], where k� was a closed disk and kC

was an arc.

Proposition 3.3 Let k�; kC be two compact connected free sets. Assume that kC

meets both limC k� and V C.k�/. Then there exists n0> 0 such that for every n� n0 ,
ank�\ kC ¤∅.

The following construction will be useful for the proof. Denote by Full.k/ the union
of k and of all the bounded connected components of R2 n k . If k is compact and
connected then Full.k/ is compact and connected. It coincides with the intersection of
all topological disks containing k , and there exists a decreasing sequence of topological
disks whose intersection is equal to Full.k/. If in addition k is free then Full.k/ is
free, essentially because all the orbits of a tends to infinity, which prevents a.k/ to be
included in Full.k/. Thus the set limC Full.k/ is also defined. Furthermore, it is easy
to see that it is equal to limC k .

Proof We generalize the proof of [14]. We will need the following simple consequence
of Franks’s lemma: whenever D1;D2 are two free disks, the set of times n such that
an.D1/ meets D2 is an interval of Z (see [12, Lemme 7]).

Let k�; kC be as in the proposition. We begin with an easy case, namely assuming that
kC meets some iterate an0.k�/. In this case, let us prove that kC must also meet all
the iterates an.k�/ with n� n0 . Assume on the contrary that an1.k�/\ kC D∅ for
some n1 > n0 . First note that kC is included in the unbounded connected component
of R2 n an1.k�/. Indeed it is disjoint from an1.k�/ and meets the set limC k� ,
which is disjoint from an1.k�/ and unbounded. Likewise an1.k�/ is included in
the unbounded connected component of R2 n kC . For otherwise we would have
limC k� � limC Full.kC/ D limC kC and the set kC would meet limC kC , which
cannot happen.

Thus there exist some free open disks D�;DC containing respectively k�; kC and
such that an1.D�/\DC D∅. Since kC meets limC k� there exists n2 > n1 such
that an2.D�/\DC ¤∅. In this situation DC meets an0.D�/ and an2.D�/ but not
an1.D�/, which contradicts Franks’s lemma.

We now face the general case. Again we consider some free open disk DC contain-
ing kC . According to Schoenflies theorem, there exists a homeomorphism of the plane
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that sends DC to a Euclidean disk Bx0
whose center we denote by x0 . We may further

require that some point of kC\V C.k�/ is sent to x0 . Conjugating a by this change
of coordinate, we may assume that Bx0

is a free Euclidean open disk containing kC

whose center x0 is a point of kC\V C.k�/.

Consider a point x of V C.k�/. We say that x is a neighbour if there exists a Euclidean
free open disk Bx (called a neighbour disk), centered at x , meeting limC k� . The
set of neighbours is open and contains the point x0 . Assume x is a neighbour. Then
exactly one of the following holds:

(1) There exists a compact connected set k
g
x , included in a neighbour disk Bx and

disjoint from limC k� , containing x and meeting some iterate of k� (then the
point x will be called good; note that in this case k

g
x meets only a finite number

of iterates of k� ).

(2) There exists a compact connected set kb
x , included in a neighbour disk Bx and

meeting limC k� , containing x and disjoint from all the iterates of k� (then
the point x will be called bad).

Indeed we may choose a segment 
 inside a neighbour disk Bx with one endpoint
equal to x and the other on limC k� , and otherwise disjoint from limC k� . If 

does not meet any iterate of k� we are in the bad case, otherwise we are in the good
case. Now assume both cases occur simultaneously. Then k 0

2
D k

g
x [ kb

x is a compact
connected free set meeting limC k� and some iterate of DC , but not infinitely many
of them, in contradiction to the easy case.

We will actually prove that every neighbour point is good. From this we deduce that
the point x0 is good, thus kC , being included in Bx0

and meeting the set limC k� ,
must meet some iterate of k� . Then we are back to the easy case of the proposition,
and the proof is complete.

Let us prove that every neighbour point is good. It is easy to see that the set of good
points is open. Since both types are exclusive, a bad point has a neighbourhood which
does not meet any iterate of k� , and from this we see that the set of bad points is
also open. Denote by N the set of neighbour points, and let N 0 be some connected
component of N . It is enough to prove that N 0 contains some good points. Let z

be any point which is simultaneously on the boundary of N 0 and on the boundary of
V C.k�/. The situation is now similar to that of Affirmation 5.10 of [14], and the same
proof shows that N 0[fzg is a neighbourhood of z in the space V C.k�/[fzg (the key
argument here is Alexander’s lemma – see [14]). Being on @V C.k�/� limC k� , the
point z is accumulated by iterates an.k�/, which are all included in V C.k�/ since
this last set is invariant under a. In particular N 0 meets some of these iterates. Thus it
contains some good points.
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Homeomorphisms of the disk We will need to adapt the above definitions to a slightly
different setting. Let a be an orientation preserving homeomorphism of the closed two-
disk D2 , which has no fixed point in the interior. The interior of D2 is homeomorphic
to the plane, thus the above definitions make sense for ajInt.D2/ , but we also want
to consider singular couples .x;y/ where x or y (or both) belongs to the boundary,
and to define the limit set of a nonfixed boundary point. We proceed as follows. We
identify D2 with the unit disk in the plane. Let h be the circle homeomorphism such
that, in polar coordinates, a.1; �/D .1; h.�// for every � 2 S1 . Radially extend the
action of a on the boundary of D2 to R2 n D2 , that is, consider the extension xa
of a defined by xa.r; �/ D .r; h.�// for every � 2 S1 and r > 1. Let O be the
complement of the fixed points set of xa in the plane. It is easy to check that O is
simply connected. Thus we may identify O with the plane, and consider a0 D xajO
as a Brouwer homeomorphism. In particular the sets limCa0 x , limCa0 k are defined for
every point x and every free compact connected set k in O . Now we set

limCa x D limCa0 x; limCa k D limCa0 k

for any nonfixed point x or free compact connected set k in D2 . It is easy to see that
these are closed subsets of D2 nFix.a/. We have the following characterizations for
every point y 2D2 which is not fixed by a:

� y 2 limCa x if and only if there exists a sequence .zn/n�0 of points of D2

converging to x such that the sequence .anzn/n�0 converges to y .

� y 2 limCa k if and only if there exists a sequence .zn/n�0 of points of k such
that the sequence .anzn/n�0 converges to y .

We also define the set V Ca .k/ D V Ca0 .k/ \ D2 ; the negative limit sets are defined
similarly.

3.4 Prime ends for limit sets of Brouwer homeomorphisms

We briefly review the theory of prime ends compactification; see Mather [16] for details.
Let U be a simply connected open set in the plane which is not equal to the whole
plane. The space yU of prime points of U is a topological space, naturally associated
to U , with the following properties.

(1) U identifies with a subset of yU ; the points in @ yU D yU nU are the prime ends
of U .

(2) The pair .U; yU / is homeomorphic to the pair .Int.D2/;D2/.
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(3) Any homeomorphism aW clos.U /! clos.U / extends to a unique homeomor-
phism yaW yU ! yU . This extension process is natural, in particular the map a 7! ya

is a group homomorphism. This last point is of course especially crucial for the
study of group actions.

Remember [16] that an end-path in U is a continuous mapping 
 W .0; 1�! U such
that, when t tends to 0, 
 .t/ converges in clos.U / to a point of @U , which is called
the limit point of 
 and denoted by limclos.U / 
 . If 
 is an end-path then lim yU 
 is
also a single prime end [16, Lemma 14.1]. Such a prime end is called accessible. The
set of accessible prime ends is dense in @ yU [16, Theorem 17.2].

According to [16, Lemma 14.1], two end-pathes having distinct limit points in @U also
have distinct limit prime ends in @ yU . This entails immediately the following Lemma.

Lemma 3.4 Let a be a Brouwer homeomorphism, and U be a nonempty simply
connected open set such that a.U / D U . Assume that U is not equal to the whole
plane. Then no accessible prime end in @ yU is fixed by ya. In particular, the set of fixed
points of ya is nowhere dense in @ yU .

We consider a Brouwer homeomorphism a. The following lemma is essentially another
formulation of Proposition 3.3.

Lemma 3.5 Let z be a point such that limCa z is nonempty. Let U D V Ca z be the
connected component of R2n limCa z that contains z , and yaW yU ! yU denotes the prime
ends compactification of a on U . Then the set limCya z is equal to @ yU nFix.ya/.

Likewise, let k be a compact connected free set such that limCa k is nonempty. Let
U D V Ca k , and yaW yU ! yU denotes the prime ends compactification of a on U . Then
the set limCya k is equal to @ yU nFix.ya/.

Proof First note that the set U is invariant under a [14, Lemme 5.4]. By definition the
set limCa z is disjoint from U D V Ca z . Thus limCya z � @ yU . For the reverse inclusion,
since the accessible prime ends are dense on @ yU and the set limCa z is closed in
@ yU nFix.ya/, we just need to show that every accessible prime end e 2 @ yU belongs to
limCya .z/. Let 
 be an end-path in U such that lim yU 
 D e , with 
 .1/D z . According
to [14, Proposition 5.5], for any disk D in U that contains z in its interior, 
 meets
an.D/ for an infinite number of n� 0. We deduce that the set limCa z meets the closure
of 
 in yU ; since it is disjoint from U , it contains e .

The second case follows from analogous considerations, replacing [14, Proposition 5.5]
by Proposition 3.3 above.
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4 Proof of Theorem 1

Let us explain the main idea of the proof. We consider two Brouwer homeomorphisms
a; b such that aba�1 D b�1 . We assume that a is not conjugate to a translation, and
we look for a contradiction. By hypothesis the singular set of a is nonempty: there
exist two points x;y such that y 2 limCa .x/. The sets limCa .x/ and lim�a .y/ are
one-dimensional closed subsets of the plane. To simplify, let us assume that there exists
a simply connected open set O whose boundary is the union of these two limit sets.
Using the algebra, we prove that the set O is invariant under b2 ; up to replacing b

by b2 , we may assume that it is invariant under b . By considering the prime-ends
compactification of O , we get an action of BS.1;�1/ on the disk; we may further
simplify the action to get the following situation (Figure 5, right): the action is free on
the interior of the disk, a has exactly two fixed points N;S on the boundary, and b

has only isolated fixed points in each component �;�0 of @D2 n fN;Sg. We now use
the dynamics of b . A classical property of local dynamics, that goes back to Birkhoff,
allows to find two compact connected sets k; k 0 that meet respectively �;�0 , and
that are positively invariant under b . We now remember that the boundary of O is
made up of two mutually singular sets. This entails that almost all a–iterates of k will
meet k 0 . Consider a point in the intersection a2n.k/\ k 0 (Figure 6). The set a2n.k/

is positively invariant under b , thus the b–iterates of this point must converge towards
a point of �, but they must also converge to a point of �0 . This is a contradiction.

Unfortunately, such a set O does not always exist. But this difficulty may be overcome
by using two successive prime-ends compactifications in order to get the disk action.

We now turn to the details of the proof. Let a; b be two Brouwer homeomorphisms
satisfying aba�1 D b�1 .

Lemma 4.1 For every point x , the four following sets are invariant under b2 : limCa .x/,
lim�a .x/, the connected component V Ca .x/ of R2 n limCa .x/ containing x , and the
connected component V �a .x/ of R2 n lim�a .x/ containing x .

Proof We prove the invariance for limCa .x/, the proof is the same for the two other
sets. We use the properties of the limit sets given in Section 3.3. In particular the limit
sets with respect to a and a2 are the same, and the limit sets are conjugacy invariants.
Since b commutes with a2 , we deduce b.limCa .y//D limCa .b.y// for every y . Then

b2
�
limCa .x/

�
D b

�
limCa .b.x//

�
D ab�1a�1

�
limCa .b.x//

�
D limCa .x/

where the last equality also uses that limCa .y/ is invariant under a for every y .
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The Brouwer homeomorphism b2 still satisfies a.b2/a�1 D .b2/�1 . Thus, up to
replacing b by b2 , we may assume the following property: for every point x , the four
sets appearing in Lemma 4.1 are invariant under b .

From now on we argue by contradiction, assuming that a is not conjugate to a translation.
According to point 2 in Section 3.3, there exists two points x;y such that x2 lim�a y . In
particular, let us consider the set U1D V �a .y/. This is a simply connected proper open
subset of the plane, which is invariant under a and b . Let yU1 denote the prime-ends
compactification of U1 . We denote by a1 D ya; b1 D

yb the induced homeomorphisms,
which still satisfy the relation a1b1a�1

1
D b�1

1
. The point y 2 U1 identifies with a

point in yU1 which we denote by y1 .

Lemma 4.2 The homeomorphisms a1 and b1 have a common fixed point on @ yU1 .

Proof By the Brouwer fixed point theorem, both a1 and b1 have some fixed point
on yU1 , and since by hypothesis they are fixed point free on U1 , the fixed points are on
the boundary. Thus Lemma 3.2 applies and provides a common fixed point.

According to Lemma 3.4, @ yU1 contains some point which is not fixed by a1 . Let � be
a connected component of @ yU1 n Fix.a1/ in @ yU1 . According to Lemma 3.2, � is
invariant under b1 , and b1 has some fixed point on �. We would like this fixed
point to be isolated among the fixed points of b1 , and for this we use the following
construction that will further simplify the action on the boundary of yU1 . Let I be
any connected component of � n Fix.b1/. Since a1 preserves the fixed point set of
b1 and has no fixed point on �, we have a1.I/\ I D∅. Let � be the equivalence
relation whose nontrivial classes are the connected components of @ yU1nfa

n
1
.I/; n2Zg.

Denote by pW yU1 !
yU1=� the quotient map. It is easy to see that the quotient

space yU1=� is again homeomorphic to a disk. The homeomorphisms a1; b1 induce
homeomorphisms of yU1=� which we denote by a2; b2 , and the relation a2b2a�1

2
Db�1

2

is still satisfied. The complement of � in @ yU1 is sent onto a single point, which is the
only fixed point of a2 , and on p.�/ the action of ha2; b2i is conjugate to the easiest
line action, as pictured on Figure 3. Also note that according to Lemma 3.5, the set
lim�a1

y1 is equal to @ yU1 nFix.a1/, from thus we deduce easily that lim�a2
p.y1/ D

@ yU1=�nFix.a2/D p.�/.

From now on we forget about the initial action and work in yU1=�, which we identify
with D2 ; we denote the point p.y1/ by y2 , and keep the notation � for p.�/. The
salient features are the following.

� The maps a2; b2 are orientation preserving homeomorphisms of the disk D2

that satisfy a2b2a�1
2
D b�1

2
and have no fixed point on Int.D2/.
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� On @D2 , the maps a2 and b2 have a single common fixed point, which we
denote by 1, and on �D @D2 n f1g the dynamics of ha2; b2i is as pictured
on Figure 3.

� There exists a point y2 2 Int.D2/ such that lim�a2
y2 D @D

2 n f1g.

bb

U1

y

lim�a .y/

bbbb

b
b

b

b

b
b

b

b

bb

a2
b2

x2
y2

1

Figure 4: Before and after the first prime-ends compactification (and bound-
ary simplification)

Let x2 denote a fixed point of b2 which is an attractor for the restriction of b2 to @D2 .
Identifying D2 with the unit disk in the plane, we may extend b2 to a homeomorphism b

of the plane such that x2 is an attractor for the restriction of b to R2 n Int.D2/. Then
we may apply the following lemma with x D x2 .

Lemma 4.3 (Birkhoff’s lemma [2, Paragraph 51]) Let b be a homeomorphism of
the plane, and x an isolated fixed point for b . Then one of the following holds.

(1) The point x has a basis of connected (closed) neighbourhoods N satisfying
b.N /�N .

(2) For any small enough neighbourhood N of x , there exists a connected com-
pact set k 0 included in N , containing x and a point of @N , and satisfying
b�1.k 0/� k 0 .

If the first case of the lemma occurs, then we define k D N \D2 with N a small
attracting neighbourhood of x2 provided by the Lemma. In the opposite case, let us
consider some small neighbourhood N and the compact set k 0 given by the second
case of the lemma. Note that, since x2 is an attractor for the restriction of b to the
complement of Int.D2/, k 0 is included in Int.D2/[ fx2g. Then the set k D a2.k

0/

satisfies b2.k/ � k . To summarize, in any case there exists a compact connected
subset k of D2 , included in an arbitrarily small neighbourhood N of the fixed point x2
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of b2 , that contains x2 and is not included in �, and such that b2.k/� k . Since a2

has no fixed point on �, we may find a topological closed disk D �D2 which is free
for a2

2
, and such that the set [

n2Z

an
2.D/

contains �. In the above construction we choose N small enough so that k is free
for a2 and included in D . Since the set limCa2

D is disjoint from an
2
.D/ for every n,

this implies that the set

limCa2
k D limCa2

2
k � limCa2

2
D

is disjoint from �.

Lemma The set limCa2
k contains y2 .

Proof Let D be a closed disk containing y2 in its interior. The set lim�a2
D contains

lim�a2
y2 D @D

2 n f1g, in particular it contains x2 . Let 
 be any arc joining y2 to a
point of k inside Int.D2/. The arc 
 is disjoint from lim�a2

y2 , thus it is also disjoint
from lim�a2

D if D is small enough. In this case 
 is included in the complementary
component V �a2

.D/ of lim�a2
D that contains D , and in particular this set contains a

point of k . Since k meets both lim�a2
D and V �a2

.D/ we may apply Proposition 3.3
(with k� D D , kC D k , and a D a�1

2
). We get that there exists n0 such that for

every n� n0 , the set a�n
2
.D/ meets k , in other words an

2
.k/ meets D . Thus limCa2

k

meets D . Since this happens for every small enough D , we y2 belongs to limCa2
k .

Let U2 be the connected component of Int.D2/n limCa2
k containing Int.D2/\k . This

is a simply connected proper open subset of the disk. We consider the prime-ends com-
pactification yU2 of U2 , and we let a3 D ya2; b3 D

yb2 be the induced homeomorphisms.
Since the set limCa2

k is disjoint from �, the points of � are all accessible from U2 ,
so � identifies with an open interval of @ yU2 . In particular the point x2 and the set k

identify with a point and a set in yU2 which we still denote by x2 and k .

Lemma 4.4 The set limCa3
k is equal to

@ yU2 n .�[Fix.a3/:

Proof As in the proof of Lemma 3.5, we use Proposition 3.3 to show that every
accessible prime end on @ yU2 n clos.�/ is accumulated by iterates of k . Details are
left to the reader.
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Since the set limCa2
k is not empty, yU2 n� is a nonempty closed interval. This interval

contains some points that are not fixed under b3 (Lemma 3.4), thus we may consider
some connected component I 0 of

limCa3
k n .�[Fix.b3// :

As above, we identify points in the same component of

@ yU2

�� [
n2Z

an
3.I
0/[�

�
:

The resulting space is again homeomorphic to the disk, and we get the following
situation. We have two homeomorphisms a3; b3 of D2 that have no fixed point

bbbb

b
b

b

b

b
b

b

b

bb

a2
b2

k y2
1

limCa2
k U2

b

b

bb

b

b
b b

b

b
bb

b

b
b b

b

b
bb

bb

b b

b b

a3 b3

k

b3

N

k 0
x0

S

Figure 5: Before and after the second prime-ends compactification

on Int.D2/ and satisfy a3b3a�1
3
Db�1

3
. The map a3 has exactly two fixed points which

we denote by N;S . Each connected component �;�0 of @D2 n fN;Sg, is preserved
by a3; b3 , and the action on �;�0 are conjugate to the action on Figure 3. There exists
a compact connected set k , free for a3 , meeting � and such that limCa3

k D�0 . This
set satisfies b3.k/� k .

We apply Birkhoff’s Lemma again to get a compact connected set k 0 in D2 , included
in an arbitrarily small neighbourhood of some fixed point x0 2�0 for b3 , containing x0

but not included in �0 , and such that b3.k
0/� k 0 .

Lemma There exists n0 such that for every n� n0 , an
3
.k/ meets k 0 .

Proof This lemma is an immediate consequence of Proposition 3.3, with k�D k and
kC D k 0 .
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Choose some even number 2n such that a2n
3

k meets k 0 . Since a2n
3

commutes with b3 ,
the set k 0 D a2n

3
k again satisfies b3.k

0/ � k 0 . By Brouwer’s theory, for any point
z 2 Int.D2/, the !–limit set !.z/ of z for b3 is included in @D2 . Since b3.k

0/� k 0 ,
if z belongs to k 0 then !.z/� k 0\ @D2 ��0 . Similarly if z belongs to a2n

3
k then

!.z/� k \ @D2 ��. This contradicts the facts that

a2n
3 k \ k 0 ¤∅ but �\�0 D∅:

b

b

bb

b

b
b b

b

b
bb

b

b
b b

b

b
bb

bb

a3

b3

b3

k 0

x0

a2n
3 .k/

Figure 6: The contradiction
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