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Quantum traces for representations
of surface groups in SL2.C/

FRANCIS BONAHON

HELEN WONG

We relate two different quantizations of the character variety consisting of all repre-
sentations of surface groups in SL2 . One is the Kauffman skein algebra considered
by Bullock, Frohman and Kania-Bartoszyńska, Przytycki and Sikora, and Turaev.
The other is the quantum Teichmüller space introduced by Chekhov and Fock and
by Kashaev. We construct a homomorphism from the skein algebra to the quantum
Teichmüller space which, when restricted to the classical case, corresponds to the
equivalence between these two algebras through trace functions.

14D20, 57M25, 57R56

Let S be an oriented surface of finite topological type. The goal of this paper is to
establish a connection between two quantizations of the character variety

RSL2.C/.S/D fr W �1.S/! SL2.C/g ==SL2.C/;

consisting of all group homomorphisms r from the fundamental group �1.S/ to the Lie
group SL2.C/, considered up to conjugation by elements of SL2.C/. The double bar
indicates here that the quotient is taken in the algebraic geometric sense of geometric
invariant theory.

The first quantization was introduced by D Bullock, C Frohman, J Kania-Bartos-
zyńska [12], J Przytycki and A Sikora [32] and V Turaev [35] and uses the Kauffman
skein algebra SA.S/. This algebra is obtained by considering the vector space freely
generated by all isotopy classes of framed links in S � Œ0; 1�, and then taking the
quotient of this space under the Kauffman skein relation; see Section 3.1. What
makes SA.S/ a quantization of RSL2.C/.S/ is that, when AD�1, the skein algebra
S�1.S/ has a natural identification with the commutative algebra of regular functions
on RSL2.C/.S/ and that, as A tends to �1, the lack of commutativity of SA.S/ is
infinitesimally measured by the Goldman–Weil–Petersson Poisson structure [19; 20;
31; 36] on RSL2.C/.S/; see [35]. There is a similar situation when ADC1, in which
case SC1.S/ has a natural identification with the algebra of functions on a twisted
version of RSL2.C/.S/; see Section 3.2.
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The second quantization of RSL2.C/.S/, with respect to the same Goldman–Weil–
Petersson Poisson structure, is the quantum Teichmüller space �T q

S introduced by
V Fock and L Chekhov [18; 14; 15] or, in a slightly different form, by R Kashaev [25];
see also Bonahon and Liu [5], Liu [28] and Guo and Liu [21]. This quantization
takes advantage of the fact that, if one restricts to matrices with real coefficients, a
large subset of RSL2.R/.S/ with nonempty interior has a natural identification with
the Teichmüller (or Fricke–Klein) space T .S/, consisting of isotopy classes of all
complete hyperbolic metrics on S . Starting with an ideal triangulation of the surface,
Thurston [33; 34] introduced for the Teichmüller space T .S/ a set of coordinates,
called shear coordinates, in which the Goldman–Weil–Petersson form is expressed in
a particularly simple way. The quantum Teichmüller space is a quantization of T .S/
that is based on these shear coordinates. As this construction requires the existence of
an ideal triangulation, the surface must have at least one puncture.

A natural conjecture is that these two quantizations are “essentially equivalent”.

In the classical cases where q D 1 and A D ˙1, the correspondence is relatively
clear because of the identifications of S˙1.S/ and �T 1

S with algebras of functions on
RSL2.C/.S/ and T .S/. The only minor problem is that the functions considered in
each case are not quite the same; the first point of view involves Laurent polynomials
in the square roots of the shear coordinates, whereas the second approach is based on
rational functions in the same coordinates.

More precisely, the correspondence between the skein algebra S˙1.S/ and the algebra
of regular functions on RSL2.C/.S/ uses the trace functions TrK W RSL2.C/.S/!R,
associated to all closed curves K immersed in S , which associates to a homomorphism
r W �1.S/!SL2.C/ the trace of r.K/2SL2.C/ (see Sections 1.3 and 3.2 for technical
details).

Shear coordinates depend on the choice of some topological information, namely on
the choice of an ideal triangulation � for the surface S . More importantly for us, for a
real representation rm 2RSL2.R/.S/ corresponding to a hyperbolic metric m 2 T .S/,
the trace of rm.K/ can then be explicitly computed in terms of the shear coordinates
(with sign issues which are completely resolved in Section 3.2). This trace is actually
expressed as a Laurent polynomial in the square roots of the shear coordinates of m.
This means that we must consider an algebra yZ1

� consisting of rational fractions in the
square roots of the shear coordinates. We now have an algebra homomorphism

Tr1
�W S1.S/! yZ1

�

which to ŒK�2S1.S/ associates the Laurent polynomial expressing the trace of rm.K/

in terms of the shear coordinates of m 2 T .S/.
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In the quantum case, one similarly introduces a noncommutative algebra yZ!� consisting
of rational fractions in certain skew-commuting variables associated to the square roots
of the shear coordinates. When q D !4 , the quantum Teichmüller space �T q

S consists
of those rational fractions in yZ!� that involve only even powers of the variables. See
Section 2.3 for details.

Theorem 1 For AD !�2 , there is an algebra homomorphism

Tr!� W SA.S/! yZ!� ;

depending continuously on ! in an appropriate sense, which corresponds to the above
homomorphism Tr1

�W S1.S/!Z1
� when !D1. In addition, the image Tr!�

�
ŒK�
�
2 yZ!�

of every ŒK� 2 SA.S/ is a Laurent polynomial in the variables generating yZ!� .

The homomorphism Tr!� is shown to be injective in Proposition 29.

A major step in the construction of the quantum Teichmüller space �T q
S is to make it

independent of a choice of ideal triangulation. The homomorphism Tr!� of Theorem 1
is similarly independent of choices. Making sense of this statement uses work of
C Hiatt in [24] that extends to the square root setup the original coordinate changes of
Chekhov and Fock. More precisely, for any two ideal triangulations � and �0 of the
surface S , Hiatt constructs a coordinate change isomorphism ‚!��0 W

yZ!�0! yZ!� that
restricts to the identity on �T q

S , considering the quantum Teichmüller space �T q
S as a

subalgebra of both yZ!� and yZ!�0 .

Theorem 2 Given two ideal triangulations � and �0 of the surface S and an element
ŒK� 2 SA.S/ of the skein algebra of S , the coordinate change map

‚!��0 W
yZ!�0 ! yZ!�

sends the Laurent polynomial Tr!�0.K/ to the Laurent polynomial Tr!� .K/.

While the proof of Theorem 1 is rather elaborate, the proof of Theorem 2 results from
an easy application of the technology developed by Hiatt in [24].

Theorems 1 and 2 were conjectured by Chekhov and Fock [18; 15] and proved for certain
small surfaces by Chekhov and Penner [16] and Hiatt [24]. Our proof is much more 3–
dimensional than these earlier attempts. The technical challenge is to figure out a “good”
way to order the noncommuting variables in each monomial of the Laurent polynomials
considered; this is a classical problem in mathematical physics, where it is known as the
search for a quantum ordering. Our solution is based on a careful control of the eleva-
tions of the strands of a link K in S� Œ0; 1� with respect to the Œ0; 1� factor. The exposi-
tion that we give here is very computational and involves a few miraculous identities that
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the reader may find somewhat frustrating (see in particular the proof of Proposition 26).
Recent conversations with C Kassel seem to provide a more conceptual explanation
for these identities, based on the fundamental representation of the dual SL2.q/ of the
quantum group Uq.sl2/; in particular, it might be possible to place our construction
within the framework of Bullock, Frohman and Kania-Bartoszyńska [11; 13].

This work was motivated by a comparison of the respective advantages and drawbacks
of the two points of view on the character variety RSL2.C/.S/, and by the consideration
of the impact of these on each corresponding quantization. The algebraic geometric
approach to RSL2.C/.S/ through trace functions is very natural. For instance, its
coordinate functions are polynomials. However, it is hard to extract much information
from this point of view. Conversely, the shear coordinates for the Teichmüller space
are very concrete and have deep geometric meaning, but they also suffer from some
practical drawbacks. For instance, they are not defined for closed surfaces, they do
not behave well under restriction to subsurfaces and, generally, they are less intrinsic.
This last property is particularly true for hyperbolic surfaces with infinite area, for
which additional data is needed. The same features can be found at the quantum level.
The skein algebra is very natural and occurs in many different contexts. However, its
algebraic structure is quite difficult to handle at this point, except for small surfaces
(see for instance our article [6, Section 3] for a discussion). Conversely, the quantum
Teichmüller space has a very simple algebraic structure (it is a quantum torus), but it
suffers from the lack of canonicity inherited from the classical shear coordinates.

One great advantage of the quantum Teichmüller space is that it has a finite-dimensional
representation theory which is very simple and completely understood. In particular, an
irreducible representation of the quantum Teichmüller space is essentially determined
by a point in the character variety RPSL2.C/.S/ [5; 2]. By composition with the trace
homomorphism Tr!� W SA.S/! yZ!� provided by Theorem 1, one obtains a wide family
of finite-dimensional representations of the skein algebra SA.S/. These representations
behave well with respect to the action of the mapping class group, and a particularly
useful feature of the corresponding machinery is that it works even for closed surfaces
as seen in our papers [6; 7; 8]. Thus the results of the current paper represent a key
technical step in a long-term program to study the representation theory of the skein
algebra SA.S/; see [6] for a discussion.
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1 The classical case

1.1 Ideal triangulations

The introduction was restricted to surfaces with no boundary, but it is convenient to
allow boundary as well.

Let S be an oriented punctured surface with boundary, obtained by removing finitely
many points v1; v2; : : : ; vp from a compact connected oriented surface xS with (possibly
empty) boundary @ xS . We require that each component of @ xS contains at least one
puncture vi , that there is at least one puncture, and that �.S/ < d

2
, where �.S/ is the

Euler characteristic of S and d is the number of components of @S . These topological
restrictions are equivalent to the existence of an ideal triangulation for S , namely
a triangulation of the closed surface xS whose vertex set is exactly fv1; : : : ; vpg. In
particular, an ideal triangulation � has nD�3�.S/C2d edges and mD�2�.S/Cd

faces. Its edges provide n infinite arcs �1; : : : ; �n in S , going from puncture to
puncture, which decompose the surface S into m infinite triangles T1;T2; : : : ;Tm

whose vertices sit “at infinity” at the punctures. Note that d of these �i are just the
boundary components of S .

1.2 The shear parameters

Suppose that we are given a positive weight Xi 2 RC for each interior edge �i

of the ideal triangulation �. We can associate to this data a group homomorphism
r W �1.S/! PSL2.R/ as follows.

Lift the ideal triangulation � to an ideal triangulation z� of the universal cover zS . We
can then construct an orientation-preserving immersion zf W zS !H2 from zS to the
hyperbolic plane H2 such that

(1) zf sends each face zT of z� to an ideal triangle of H2 , delimited by three disjoint
geodesics and touching the circle at infinity @1H2 in 3 points;

(2) when two faces zT and zT 0 meet along an edge z�i that projects to the edge �i

of �, then zf . zT 0/ is obtained from zf . zT / by performing a hyperbolic reflection
across the geodesic zf .z�i/ followed by a hyperbolic translation of log Xi along
the same geodesic zf .z�i/, if we orient zf .z�i/ by the boundary orientation of zT .

The immersion zf is easily constructed stepwise, and uniquely determined up to isotopy
of zS respecting z�, once we have chosen the image of a single face of zS . In particular,
the family of the ideal triangles zf . zT /�H2 is unique up to an orientation-preserving
isometry of H2 , namely up to composition by an element of PSL2.R/.
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From the construction, it is immediate that there is a unique group homomorphism
r W �1.S/! PSL2.R/ such that zf . zT / D r. /. zT / for every face zT of z�. Since
the family of the ideal triangles zf . zT / is unique up to composition by an element of
PSL2.R/, r is unique up to conjugation by an element of PSL2.R/.

We say that r W �1.S/! PSL2.R/ is associated to the shear parameters Xi 2RC .

1.3 The classical trace function

For a group homomorphism r W �1.S/! PSL2.R/ and immersion zf W zS ! H2 as
above, consider a closed curve K immersed in S .

The fact that K is immersed provides a natural lift yr.K/2SL2.R/ of r.K/2PSL2.R/.
Indeed, lift K to an immersed path zKW Œ0; 1�! zS . Then r.K/2PSL2.R/ is the unique
orientation-preserving isometry of H2 sending the point zf ı zK.0/ 2H2 to zf ı zK.1/,
and sending the vector . zf ı zK/0.0/ to . zf ı zK/0.1/. Now, for every t 2 Œ0; 1�, we
can consider the isometry r.K/t 2 PSL2.R/ that sends the point zf ı zK.0/ 2H2 to
zf ı zK.t/, and the vector . zf ı zK/0.0/ to a positive real multiple of . zf ı zK/0.t/. We

now have a constructed a path t 7! r.K/t 2 PSL2.R/ that joins r.K/0 D IdH2 to
r.K/1D r.K/. This path defines an element of the universal cover of PSL2.R/, which
projects to an element yr.K/ of the 2–fold cover SL2.R/ of PSL2.R/.

We are particularly interested in the trace Tr yr.K/ of yr.K/2 SL2.R/. Note that, when
K is just a small circle bounding a disk embedded in S , our designated lift yr.K/ is
minus the identity matrix of SL2.R/, and Tr yr.K/D�2.

If the homomorphism r W �1.S/!PSL2.R/ is associated to shear parameters Xi 2RC
assigned to the edges of the ideal triangulation �, then the construction of the map
zf W zS !H2 and of the homomorphism r is sufficiently explicit that yr.K/ 2 SL2.R/

can be computed in practice.

More precisely, suppose K transversely meets the edges �i1
; �i2

; : : : ; �ik
; �ikC1

D �i1
,

in this order. After crossing the edge �ij , the curve K enters a face T of �, which
it exits through the edge �ijC1

. There are three possible choices for �ijC1
: it can be

the edge immediately to the left as one enters T through �ij , the one immediately to
the right, or it can be �ij again if  makes a U-turn in T . In addition, because K is
immersed, we can measure the amount by which the tangent to K turns between �ij

and �ijC1
. We then define a matrix Mj according to the various possible configurations.

If �ijC1
is the edge immediately to the left as one enters T through �ij , let tj 2 Z

denote the number of full turns to the left that the tangent to K makes between �ij

and �ijC1
, and let "j D .�1/tj D˙1. Here the topological number of turns tj 2 Z
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is measured so that tj D 0 when K has no self-intersection between �ij and �ijC1
;

in fact, tj has the same parity as the number of double points of K between �ij and
�ijC1

. In this case, define

Mj D

�
"j "j
0 "j

�
:

For the analogous case where �ijC1
is the edge immediately to the right as one enters T

through �ij , let again tj 2Z denote the number of full turns to the left that the tangent
to K makes between �ij and �ijC1

, and set "j D .�1/tj D˙1. Then define

Mj D

�
"j 0

"j "j

�
:

In the case of a U-turn, where �ijC1
D �ij , let tj 2 Z be defined so that the tangent

to K makes 2tj C 1 half-turns to the left between �ij and �ijC1
, and set again

"j D .�1/tj D˙1. Then define

Mj D

�
0 "j
�"j 0

�
:

Finally, having defined Mj in every case, consider for X > 0 the matrix

S.X /D

�
X 1=2 0

0 X�1=2

�
:

Lemma 3 Up to conjugation by an element of SL2.R/,

yr.K/D S.Xi1
/M1S.Xi2

/M2 � � �S.Xik
/Mk ;

where the matrices Mj and S.Xij / are associated as above to the way the immersed
curve K crosses the edges of the ideal triangulation �, and where Xi 2 RC are the
shear parameters defining the homomorphism r W �1.S/! PSL2.R/.

Proof This is an easy exercise in hyperbolic geometry. See, for instance, Exercises 8.5–
8.7 and 10.14 in the first author’s book [4].

1.4 State sums

As preparation for the quantum extension, we now give a state sum formula for the
trace Tr yr.K/, where yr.K/ 2 SL2.R/.

Let a state assign a sign s1; s2; : : : ; sk ; skC1 D s1 2 fC;�g to each point where K

crosses an edge �ij of �, in this order. For j D 1; 2; : : : ; k , write the matrix Mj
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defined above as

Mj D

�
mCCj mC�j

m�Cj m��j

�
with m˙˙j D 0, C1 or �1. Then, the following formula immediately follows from
Lemma 3 combined with elementary linear algebra.

Lemma 4 The trace Tr yr.K/ satisfies the state sum formula

Tr yr.K/D
X

s

m
s1s2

1
m

s2s3

2
: : :m

sks1

k
X

s1=2
i1

X
s2=2
i2

: : :X
sk=2
ik

;

where the sum is over all possible states s for K and �, and where in the exponents we
identify the sign sj D˙ to the number sj D˙1.

2 The quantum Teichmüller space

2.1 The Chekhov–Fock algebra of an ideal triangulation

Let T1;T2; : : : ;Tm be the faces of the ideal triangulation �. Index the sides of each
face Tj as �j1 , �j2 , �j3 , in such a way that they occur in this order clockwise
around Tj . We then associate to Tj a copy T q

Tj
of the triangle algebra, generated by

three elements Xj1 , Xj2 , Xj3 and their inverses X�1
j1

, X�1
j2

, X�1
j3

, and defined by the
relations that Xj1Xj2D q2Xj2Xj1 , Xj2Xj3D q2Xj3Xj2 and Xj3Xj1D q2Xj1Xj3 .
We here think of each generator Xja as being associated to the side �ja of Tj .

In the tensor product algebra T q
T1
˝ � � �˝ T q

Tm
D
Nm

jD1 T
q

Tj
, we now associate to the

edge �i of � an element Xi , defined by:

(1) Xi DXja˝Xkb if �i separates two distinct faces Tj and Tk , and if Xja 2 T q
Tj

and Xkb 2 T
q

Tk
are the generators associated to the sides of Tj and Tk corre-

sponding to �i ;

(2) XiDq�1XjaXjbDqXjbXja if �i corresponds to two sides of the same face Tj ,
if Xja , Xjb 2 T

q
Tj

are the generators associated to these two sides, and if Xja

is associated to the side that comes first when going counterclockwise around
their common vertex.

By convention, when describing an element Z1˝� � �˝Zm of
Nm

jD1 T
q

Tj
, we omit in

the tensor product those Zj that are equal to the identity element 1 of T q
Tj

.

The Chekhov–Fock algebra of the ideal triangulation � is the subalgebra T q
� ofNm

jD1 T
q

Tj
generated by the elements Xi associated as above to the edges of �, and

by their inverses X�1
i .
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Note that XiXj D q2�ijXj Xi , where the integers �ij 2 f0;˙1;˙2g are defined as
follows: Let aij be the number of angular sectors delimited by �i and �j in the faces
of �, and with �i coming first counterclockwise; then �ij D aij � aji .

2.2 Coordinate changes between Chekhov–Fock algebras

As one switches from one ideal triangulation � to another ideal triangulation �0 , the
geometry of the Teichmüller space provides coordinate changes between the shear
coordinates associated to � and those associated to �0 . Because shear coordinates can
be expressed as cross-ratios, one easily sees that these coordinate changes are given by
rational maps.

In the quantum case, there is no underlying geometry to provide us with similar
coordinate changes, and one has to find algebraic isomorphisms that have the required
properties.

As in the classical case, these will involve rational fractions, and we consequently have
to introduce the fraction division algebra �T q

� of the Chekhov–Fock algebra T q
� . Such

a fraction division algebra exists because T q
� satisfies the so-called Ore Condition; see

for instance Cohn [17] and Kassel [26]. In practice, �T q
� DC.X1; : : : ;Xn/

q

�
consists of

noncommutative rational fractions in the variables X1; : : : ;Xn which are manipulated
according to the q–commutativity relations XiXj D q2�ijXj Xi .

Chekhov and Fock [18; 14; 15] (and Kashaev [25] in the context of length coordinates)
construct such coordinate isomorphisms; see also Bonahon and Liu [5; 28].

Theorem 5 (Chekhov–Fock, Kashaev) There exists a family of algebra isomorphisms

ˆ
q
��0 W

�T q
�0 !

�T q
� ;

defined for any two ideal triangulations �, �0 , such that

ˆ
q
��00 Dˆ

q
��0 ıˆ

q
�0�00

for any three ideal triangulations �, �0 and �00 .

This enables us to define the quantum Teichmüller space �T q
S of the punctured surface S

as the quotient �T q
S D

a
�

�T q
� =�

of the disjoint union of the �T q
� of all ideal triangulations � of S , where the equivalence

relation � identifies �T q
� with �T q

�0 by the coordinate change isomorphism ˆ
q
��0 . Note

that the property that ˆq
��00 D ˆ

q
��0 ı ˆ

q
�0�00 is crucial to guarantee that � is an
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equivalence relation. This property is much stronger than one could have thought at
first glance, as indicated by the uniqueness result of Bai [1].

Because the ˆq
��0 are algebra isomorphisms, the quantum Teichmüller space �T q

S

inherits an algebra structure from the �T q
� .

2.3 The Chekhov–Fock square root algebra

The formulas of Lemma 4 involve square roots of shear coordinates. This lead us
to consider formal square roots Zi D X

1=2
i of the generators of the Chekhov–Fock

algebra T q
� .

In practice, one just considers the Chekhov–Fock algebra T !� associated to a fourth root
! D q1=4 of q . To avoid confusion, we denote by Zi the generator of T !� associated
to the edge �i of � while, as before, Xi is the generator of T q

� associated to the
same �i . Then, there exists an injective algebra homomorphism T q

� ! T !� associating
the element Z2

i to the generator Xi , so that we can consider T q
� as a subalgebra of T !� .

This also induces a similar inclusion �T q
� �

�T !� between the corresponding fraction
division algebras.

In the classical case, the coordinate changes between square roots of shear coordinates
are not as nice as those between shear coordinates, because they are not rational anymore.
The same consequently holds in the quantum setup. However, there is a subalgebra of
the algebra T !� which is better behaved with respect to coordinate changes.

A monomial Z
k1

1
Z

k2

2
� � �Z

kn
n in the generators Zi of T !� is said to be balanced if,

for every triangle face Tj of �, the exponents ki of the generators Zi associated to
the three sides of Tj add up to an even number. (When the same edge �i corresponds
to two distinct sides of Tj , the exponent ki is counted twice in the sum.) This is
equivalent to the property that there exists a homology class ˛ 2 H1.S IZ2/ such
that the class of the exponent ki in Z2 is equal to the algebraic intersection number
of ˛ with the edge �i . In this case, we will say that the monomial Z

k1

1
Z

k2

2
� � �Z

kn
n is

˛–balanced.

In the Chekhov–Fock algebra T !� , let Z!� denote the linear subspace generated by all
balanced monomials. Note that it splits as a direct sum

Z!� D
M

˛2H1.S;Z2/

Z!� .˛/

where Z!� .˛/ denotes the linear subspace generated by all ˛–balanced monomials.
The product of an element of Z!� .˛/ with an element of Z!� .ˇ/ belongs to Z!� .˛Cˇ/,
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so that Z!� is a subalgebra of T !� . We will refer to Z!� as the Chekhov–Fock square
root algebra of the ideal triangulation �.

Note that Z!� .0/ coincides with the subalgebra T q
� � T !� generated by the Z2

i DXi .

In the fraction algebra �T !� , we now consider the subset yZ!� consisting of all frac-
tions P=Q where P 2 Z!� and Q 2 Z!� .0/ D T q

� . One easily checks that yZ!� is a
subalgebra of �T !� . It also contains the Chekhov–Fock fraction algebra �T q

� .

Hiatt [24] extends the Chekhov–Fock coordinate change isomorphism ˆ��0 W �T q
�0!

�T q
�

of Theorem 5 to the Chekhov–Fock square root algebra Z!� .

Theorem 6 (Hiatt) When q D !4 , there exists for any two ideal triangulations �, �0

an algebra isomorphism
‚!��0 W

yZ!�0 ! yZ!�
extending the Chekhov–Fock coordinate change isomorphism ˆ��0 W �T q

�0 !
�T q
� . In

addition, ‚!��00 D‚
!
��0 ı‚

!
�0�00 for any three ideal triangulations �, �0 and �00 .

Proof Hiatt does not quite prove the result in this form, so we need to explain how to
obtain it from [24, Sections 6–7].

For every ˛ 2H1.S IZ2/, let yZ!� .˛/ consist of all fractions P=Q where P 2 Z!� .˛/
and Q 2 Z!� .0/D T q

� , so that

yZ!� D
M

˛2H1.S;Z2/

yZ!� .˛/:

Hiatt constructs in [24, Section 6] a linear map ‚!��0 W yZ!�0.˛/! yZ!� .˛/. The con-
struction of this map in [24] a priori depends on the choice of a 1–dimensional
submanifold K immersed in S and representing the homology class ˛ 2H1.S IZ2/.
However, it easily follows from [24, Lemma 17] that this map depends only on ˛ .

Linearly extend these maps ‚!��0 W yZ!�0.˛/! yZ!� .˛/ to a linear map ‚!��0 W yZ!�0! yZ!� .

To show that this is an algebra homomorphism we need to check that, for every
A 2 yZ!�0.˛/ and B 2 yZ!�0.ˇ/, ‚!��0.A/‚!��0.B/D‚!��0.AB/ in yZ!� .˛Cˇ/. This is
an immediate consequence of [24, Sublemma 19] and of the construction of ‚!��0 .

The fact that the restriction of ‚!��0 to yZ!�0.0/D �T q
�0 coincides with ˆq

��0 immediately
follows from its construction in [24]. The property that ‚!��00 D‚

!
��0 ı‚

!
�0�00 is proved

in [24, Theorem 25].

Remark 7 For A 2 yZ!� , the operator point of view of [18; 14; 15] much more easily
provides a natural square root ‚!��0.A/ of ˆq

��0.A
2/. The real content of Theorem 6 is

that this square root can be expressed as a rational fraction in the generators ZiDX
1=2
i .

The restriction to yZ!�0 is here crucial.
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3 The skein algebra

3.1 Links and skeins

We begin with the framed link algebra K.S/. This is the vector space (over C ,
say) freely generated by the isotopy classes of (unoriented) 1–dimensional framed
submanifolds K � S � Œ0; 1� such that

(1) @K DK\ @
�
S � Œ0; 1�

�
consists of finitely many points in .@S/� Œ0; 1�;

(2) at every point of @K , the framing is vertical, namely parallel to the Œ0; 1� factor,
and points in the direction of 1;

(3) for every component k of @S , the points of @K that are in k � Œ0; 1� sit at
different elevations, namely have different Œ0; 1�–coordinates.

An isotopy of such framed submanifolds of course is required to respect all three
conditions. The third condition will turn out to be crucial for our analysis.

Perhaps we should have begun by specifying what we mean by a framing for K . For
us here, a framing is a continuous choice of a vector transverse to K at each point
of K .

The vector space K.S/ can be endowed with a multiplication, where the product of K1

and K2 is defined by the framed link K � S � Œ0; 1� that is the union of K1 rescaled
in S � Œ0; 1

2
� and K2 rescaled in S � Œ1

2
; 1�. In other words, the product K1K2 is

defined by superposition of the framed links K1 and K2 . Note that this superposition
operation is compatible with isotopies, and therefore provides a well-defined algebra
structure on K.S/.
Three links K1 , K0 and K1 in S � Œ0; 1� form a Kauffman triple if the only place
where they differ is above a small disk in S , where they are as represented in Figure 1
(as seen from above) and where the framing is vertical and pointing upwards (namely
the framing is parallel to the Œ0; 1� factor and points towards 1).

The Kauffman skein algebra SA.S/ is the quotient of the framed link algebra K.K/ by
the two-sided ideal generated by all elements K1�A�1K0�AK1 as .K1;K0;K1/

ranges over all Kauffman triples. The superposition operation descends to a multiplica-
tion in SA.S/, endowing SA.S/ with the structure of an algebra. The class Œ¿� of
the empty link is an identity element in SA.S/, and is usually denoted by 1.

An element ŒK� 2 SA.S/, represented by a framed link K 2 K.S/, is a skein in S .
The construction is defined to ensure that the skein relation

ŒK1�DA�1ŒK0�CAŒK1�

holds in SA.S/ for every Kauffman triple .K1;K0;K1/.
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K0K1 K1

ŒK1�DA�1ŒK0�CAŒK1�

Figure 1: The skein relation

3.2 The classical cases A D˙1

Bullock [9; 10], Bullock, Frohman and Kania-Bartoszyńska [12] and Przytycki and
Sikora [32] observe that there is a strong connection between the skein algebra with
AD�1 and the character variety

RSL2.C/.S/D fgroup homomorphisms r W �1.S/! SL2.C/g ==SL2.C/:

The quotient is under the action by conjugation, and should be understood in the
sense of geometric invariant theory (see Mumford, Fogarty and Kirwan [29]) to avoid
pathologies near the reducible homomorphisms.

Note that, for every A, there is a unique algebra homomorphism SA.S/! C that
sends each nonempty skein ŒK� 2 SA.S/ to 0 and sends the empty skein Œ¿�D 1 to 1.
This homomorphism is the trivial homomorphism SA.S/!C .

Theorem 8 [23; 9; 10; 12; 32] Assume that the surface S has no boundary (but is still
allowed to have punctures), and consider the skein algebra S�1.S/ corresponding to
AD�1. Every group homomorphism r W �1.S/! SL2.C/ defines a unique nontrivial
algebra homomorphism Tr W S�1.S/!C by the property that

Tr .ŒK�/D�Tr r.K/

for every connected skein ŒK� 2 S�1.S/.

Conversely, every nontrivial algebra homomorphism T W S�1.S/!C is associated to
a unique r 2RSL2.C/.S/ in this way.

Note that the definition of r.K/ 2 SL2.C/ implicitly supposes the choice of an orien-
tation for the closed curve K . However, reversing this orientation replaces r.K/ by
its inverse, and leaves the trace Tr r.K/ unchanged.

There is a similar result for the other case where the skein algebra SA.S/ is commu-
tative, corresponding to A D 1. This statement uses the correspondence SA.S/ Š

S�A.S/ established by J Barrett [3], and requires the use of spin structures.
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Let Spin.S/ be the set of isotopy classes of spin structures on S or, equivalently, the set
of isotopy classes of spin structures on S � Œ0; 1�. Any two elements of Spin.S/ differ
by an obstruction in H 1.S IZ2/, so that there is an action of H 1.S IZ2/ on Spin.S/.

Similarly, the cohomology group H 1.S IZ2/ acts on RSL2.C/.S/ by the property
that, if ˛ 2 H 1.S IZ2/ and r W �1.S/! SL2.C/, then ˛r 2RSL2.C/.S/ associates
.�1/˛./r. / 2 SL2.C/ to  2 �1.S/. Note that the quotient of RSL2.C/.S/ under
this action of H 1.S IZ2/ is just the character variety

RPSL2.C/.S/D fgroup homomorphisms r W �1.S/! PSL2.C/g ==PSL2.C/

of homomorphisms valued in PSL2.C/ instead of SL2.C /. (It is here important
that S is noncompact so that, because the fundamental group �1.S/ is free, every
homomorphism �1.S/! PSL2.C/ lifts to SL2.C/.)

We can then combine these actions of H 1.S IZ2/ on Spin.S/ and RSL2.C/.S/, and
consider the twisted product

RSpin
PSL2.C/

.S/DRPSL2.C/.S/ z�Spin.S/D
�
RSL2.C/.S/�Spin.S/

�
=H 1.S IZ2/:

Note that, just like RSL2.C/.S/, this twisted product RSpin
PSL2.C/

.S/ is a finite cover of
RPSL2.C/.S/ with fiber H 1.S IZ2/Š Spin.S/.

If � 2 Spin.S/ is a spin structure and K is a framed knot in S � Œ0; 1�, the monodromy
of the framing of K with respect to � defines an element �.K/2Z2 . If, in addition, we
are given a group homomorphism r W �1.S/! SL2.C/, we can consider the element
T.r;�/.K/D .�1/�.K / Tr r.K/. Note that T.r;�/.K/ is invariant under the action of
H 1.S IZ2/ on the pair .r; �/, and therefore depends only on the class of .r; �/ in
RSpin

PSL2.C/
.S/.

Theorem 9 Assume that the surface S has no boundary (but is still allowed to have
punctures), and consider the skein algebra S1.S/ corresponding to ADC1. Every
group homomorphism r W �1.S/! SL2.C/ and spin structure � 2 Spin.S/ define a
unique algebra homomorphism T.r;�/W S1.S/!C by the property that

T.r;�/.ŒK�/D .�1/�.K / Tr r.K/

for every connected skein ŒK� 2 S1.S/. This homomorphism T.r;�/ is nontrivial and
depends only on the class of .r; �/ in RSpin

PSL2.C/
.S/.

Conversely, every nontrivial algebra homomorphism T W S1.S/!C is associated to a
unique element .r; �/ 2RSpin

PSL2.C/
.S/ in this way.
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Proof Fix a spin structure � 2 Spin.S/. Then Barrett [3] defines an algebra iso-
morphism S1.S/! S�1.S/ associating .�1/kC�.K /ŒK� 2 S�1.S/ to every skein
ŒK� 2 S1.S/ represented by a link K with k components (see [32, Section 2] for a
proof that this is an algebra homomorphism). The result then immediately follows by
combining Theorem 8 with this correspondence.

To connect the setup of Section 1.3 to Theorem 9, consider a hyperbolic metric m 2

T .S/. It is convenient to move to a 3–dimensional framework, by extending m2 T .S/
to a 3–dimensional hyperbolic metric on a small thickening S � .0; 1/ of S D S �f1

2
g.

We can even consider the more general case of a hyperbolic metric m on S � .0; 1/,
not necessarily complete. Classically, this hyperbolic metric m on S � .0; 1/ has a
well-defined monodromy homomorphism r 2 RPSL2.C/.S/. What seems less well-
known is that m provides additional spin information, and uniquely determines an
element of the twisted product RSpin

PSL2.C/
.S/DRPSL2.C/.S/ z�Spin.S/.

A spin structure � 2 Spin.S/ specifies a way to lift the monodromy homomorphism
r W �1.S/! PSL2.C/ to a homomorphism r� W �1.S/! SL2.C/ as follows. For this,
first extend � to a spin structure on the thickened surface S � .0; 1/. Then consider a
developing map for the metric m, namely an isometric immersion zf W zS � .0; 1/!H3

from the universal cover zS � .0; 1/ to the hyperbolic space H3 that is equivariant with
respect to the monodromy r W �1.S/! PSL2.C/.

Represent Œ � 2 �1.S/ D �1.S Ix0/ by a path  W Œ0; 1� ! S � .0; 1/ satisfying
 .0/D  .1/D x0 . Pick an arbitrary orthonormal frame F.t/ at each  .t/, depending
continuously on t and such that F.1/ D F.0/ at  .0/ D  .1/ D x0 . Lift  to
z W Œ0; 1�! zS � .0; 1/, and F.t/ to an orthonormal frame zF .t/ at z .t/. For every
t 2 Œ0; 1�, we can now consider the unique isometry r. /t 2 PSL2.C/ of H3 that sends
zf
�
z .0/

�
to zf

�
z .t/

�
and zf

�
zF .0/

�
to zf

�
zF .t/

�
. By construction, r. /0 D IdH3 and

r. /1D r. /. The path t 7! r. /t then defines a lift yr. /2 SL2.C/ of r. /D r. /1
to the universal cover SL2.C/ of PSL2.C/. This yr. / 2 SL2.C/ clearly depends on
the framing F but, if �.F / 2 Z2 denotes the monodromy of the framing F around 
with respect to the spin structure � ,

r� . /D .�1/�.F / yr. / 2 SL2.C/

does not. One easily checks this defines a group homomorphism r� W �1.S/! SL2.C/.

By definition of the action of H 1.S IZ2/ on RPSL2.C/.S/ and Spin.S/, a differ-
ent choice of spin structure � 2 Spin.S/ does not change the class of .r� ; �/ in
RSpin

PSL2.C/
.S/D

�
RSL2.C/.S/�Spin.S/

�
=H 1.S IZ2/.

Proposition 10 The element .r� ; �/ in RSpin
PSL2.C/

.S/DRPSL2.C/.S/ z� Spin.S/ de-
pends only on the hyperbolic metric m on S � .0; 1/.
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For a connected skein ŒK� 2 S1.S/, note that the element T.r� ;�/
�
ŒK�
�

associated to
.r� ; �/2RSpin

PSL2.C/
.S/ by Theorem 9 is just the trace of yr.K/ defined above. As a conse-

quence, in the situation of Section 1.3 where m comes from a 2–dimensional hyperbolic
metric on S , where K is obtained by perturbing to remove double points a curve
immersed in S , and where the framing is chosen everywhere vertical, T.r� ;�/

�
ŒK�
�

is
exactly the trace Tr yr.K/ considered in Section 1.3.

3.3 Gluing skeins

In addition to the multiplication by superposition, there is another operation which can
be performed on framed links and skeins.

Given two surfaces S1 and S2 and two boundary components k1� @S1 and k2� @S2 ,
we can glue S1 and S2 by identifying k1 and k2 to obtain a new oriented surface S .
There is a unique way to perform this gluing so that the orientations of S1 and S2 match
to give an orientation of S . We allow the “self-gluing” case, where the surfaces S1

and S2 are equal as long as the boundary components k1 and k2 are distinct. If we
are given an ideal triangulation �1 of S1 and an ideal triangulation �2 of S2 , these
two triangulations fit together to give an ideal triangulation � of the glued surface S .

Now, suppose in addition that we are given skeins ŒK1� 2 SA.S1/ and ŒK2� 2 SA.S2/

such that K1 \
�
k1 � Œ0; 1�

�
and K2 \

�
k2 � Œ0; 1�

�
have the same number of points.

We can then arrange by an isotopy of framed links that K1 and K2 fit together to give
a framed link K � S � Œ0; 1�; note that it is here important that the framings be vertical
pointing upwards on the boundary, so that they fit together to give a framing of K . By
our hypothesis that the points of K1 \

�
k1 � Œ0; 1�

�
(and of K2 \

�
k2 � Œ0; 1�

�
sit at

different elevations, the framed link K is now uniquely determined up to isotopy. Also,
this operation is well behaved with respect to the skein relations, so that K represents
a well-defined element ŒK� 2 SA.S/. We will say that ŒK� 2 SA.S/ is obtained by
gluing the two skeins ŒK1� 2 SA.S1/ and ŒK2� 2 SA.S2/.

3.4 The main theorem

Let a state for a skein ŒK� 2 SA.S/ be the assignment sW @K! fC;�g of a sign ˙
to each point of @K . Let SA

s .S/ be the algebra consisting of linear combinations of
stated skeins, namely of skeins endowed with states.

In the case where K 2 SA.S/ is obtained by gluing the two skeins K1 2 SA.S1/ and
K2 2 SA.S2/, the states sW @K!fC;�g, s1W @K1!fC;�g, s2W @K2!fC;�g are
compatible if s1 and s2 coincide on @K1\

�
k1 � Œ0; 1�

�
D @K2\

�
k2 � Œ0; 1�

�
for the
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identification given by the gluing, and if s coincides with the restrictions of s1 and s2

on @K � @K1[ @K2 .

The main result of the paper is the following. Recall that, for an ideal triangulation of
the surface S , Z!� is the square-root Chekhov–Fock algebra defined in Section 2.3.

Theorem 11 For AD !�2 , there is a unique family of algebra homomorphisms

TrS W SA
s .S/! Z!� ;

defined for each surface S and each ideal triangulation � of S , such that:

(1) (State Sum Property) If the surface S is obtained by gluing S1 to S2 , if the
ideal triangulation � of S is obtained by combining the ideal triangulations �1

of S1 and �2 of S2 , and if the skeins ŒK1� 2 SA.S1/ and ŒK2� 2 SA.S2/ are
glued together to give ŒK� 2 SA.S/, then

TrS

�
ŒK; s�

�
D

X
compatible s1;s2

TrS1

�
ŒK1; s1�

�
˝TrS2

�
ŒK2; s2�

�
where the sum is over all states s1W @K1 ! fC;�g and s2W @K2 ! fC;�g

that are compatible with sW @K ! fC;�g and with each other. Similarly if
the surface S , the ideal triangulation � of S , and the skein ŒK� 2 SA.S/ are
obtained by gluing the surface S1 , the ideal triangulation �1 of S1 , and the
skein ŒK1� 2 SA.S1/, respectively, to themselves, then

TrS

�
ŒK; s�

�
D

X
compatible s1

TrS1

�
ŒK1; s1�

�
:

(2) (Elementary Cases) When S is a triangle and K projects to a single arc embed-
ded in S , with vertical framing, then

(a) in the case of Figure 2 (a), where "1 , "2 D˙ are the signs associated by the
state s to the end points of K ,

TrS

�
ŒK; s�

�
D

(
0 if "1 D� and "2 DC;

ŒZ
"1

1
Z
"2

2
� if "1 6D � or "2 6D C;

where Z1 and Z2 are the generators of Z!� associated to the sides respec-
tively carrying weights "1 and "2 , and where ŒZ"1

1
Z
"2

2
�D!�"1"2Z

"1

1
Z
"2

2
D

!"1"2Z
"2

2
Z
"1

1
(identifying the sign "D˙ to the exponent "D˙1);
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(b) in the case of Figure 2 (b), where the end point of K marked by "1 is higher
in @S � Œ0; 1� than the point marked by "2 ,

TrS

�
ŒK; s�

�
D

8̂<̂
:

0 if "1 D "2;

�!�5 if "1 DC and "2 D�;

!�1 if "1 D� and "2 DC:

(a) (b)

"1 "2

"1

"2

Figure 2: Elementary skeins in the triangle

In particular, Theorem 11 immediately gives Theorem 1 of the introduction by restriction
to surfaces without boundary.

In the State Sum Condition (1), note that Z!� is contained in Z!�1
˝Z!�2

when the
surfaces S1 and S2 are distinct, and in Z!�1

in the case of a self-gluing.

In Condition (2)(a), the formula ŒZ"1

1
Z
"2

2
�D !�"1"2Z

"1

1
Z
"2

2
D !"1"2Z

"2

2
Z
"1

1
is more

natural than one might think at first glance, as it corresponds to the classical Weyl
quantum ordering for the monomial Z

"1

1
Z
"2

2
. More generally, if Y1;Y2; : : : ;Yk are

elements of an algebra such that YiYj D !
2aijYj Yi , the Weyl quantum ordering of the

monomial Y1Y2 � � �Yk is the monomial

ŒY1Y2 � � �Yk �D !
�
P

i<j aijY1Y2 � � �Yk :

The formula is specially designed to be invariant under all permutations of the Yi .

3.5 Picture conventions

To work more efficiently with framed links and skeins, we need a convenient way to
describe and manipulate them.

In practice, we will represent a link K � S � Œ0; 1� by its projection to S , namely by
a 1–dimensional manifold K0 immersed in S with K0\ @S D @K0 , and whose only
singularities are transverse double points in the interior of S ; in addition, these double
points are endowed with over- or under-crossing information, describing which strand
of K lies above the other in S � Œ0; 1� (with the convention that, when oriented from 0

to 1, the Œ0; 1� factor points towards the eye of the reader).
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By adding kinks if necessary, we can always arrange that the framing is vertical at every
point of K , with the framing vector parallel to the Œ0; 1� factor and pointing towards 1.

A crucial piece of information encoded in a framed link K � S � Œ0; 1� is that, for a
component k of @S , the points of .@K/\

�
k � Œ0; 1�

�
are ordered by their elevation.

This ordering is not altogether easy to describe on a 2–dimensional picture, and we
will resort to the following method to specify this orientation. We choose an arbitrary
orientation of k . We now have two orderings on .@K/\

�
k� Œ0; 1�

�
: one is by order of

increasing elevations; the other one is given by the orientation of k if we identify each
point of .@K/\

�
k � Œ0; 1�

�
to its projection in k . After an isotopy of K (which is

elevation-preserving near the boundary), we can always arrange that these two orderings
coincide, and we will require this condition to hold in all pictures.

Note that reversing the orientation of k will then oblige us to modify the projection
of K by a half-twist near k , as in Figure 3.

�! �!

Figure 3: Reversing a boundary orientation

With these conventions, the isotopy class of the framed link K � S � Œ0; 1� is then
immediately recovered from its projection K0 to S .

3.6 Unknots and kinks

For future reference, we note the following classical facts.

Lemma 12 If the framed link K0 is obtained from K by adding a positive kink as in
Figure 4 (a), then ŒK0�D�A�3ŒK� in SA.S/. If K0 is obtained from K by adding a
negative kink as in Figure 4 (b), then ŒK0�D�A3ŒK�.

If K0 is obtained from K by adding a small unknotted circle as in Figure 4 (c), then
ŒK0�D�.A2CA�2/ŒK� in SA.S/.

In the above statement, we of course assume that those skeins drawn in Figure 4 follow
the picture conventions that we just introduced. Adding a positive or negative kink
does not change the isotopy class of the link but modifies the framing.
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Proof This is an immediate consequence of the skein relations and of the invariance of
skeins under the isotopy of Figure 4(d). See, for instance, [27, Lemmas 3.2 and 3.3].

�
!

�
!

�
! �
!

(a) (b) (c) (d)

K

K0

K

K0

K

K0

Figure 4: Adding kinks and unknotted components

4 The case of the biangle

Our proof of Theorem 11 will make use of ideal biangles in addition to ideal triangles.
An ideal biangle is the surface B obtained from a closed disk by removing two points
from its boundary. In particular, it has two (infinite) edges, and it is also diffeomorphic
to the strip delimited by two parallel lines in the plane.

There is a skein algebra SA.B/ of the biangle B defined as before. States for skeins
are similarly defined.

In this context, we have the following simpler analog of Theorem 11.

Proposition 13 Let two numbers ˛; ˇ 2 C be given, with ˛2C ˇ2 D A5CA and
˛ˇ D�A3 . Then, there is a unique family of algebra homomorphisms

TrBW SA
s .B/!C;

defined for all oriented biangles B , such that:

(1) (State Sum Property) If the biangle B is obtained by gluing together two
distinct biangles B1 and B2 , and if ŒK1� 2 SA.B1/ and ŒK2� 2 SA.B2/ are
glued together to give ŒK� 2 SA.B/, then

TrB
�
ŒK; s�

�
D

X
compatible s1;s2

TrB1

�
ŒK1; s1�

�
TrB2

�
ŒK2; s2�

�
;

where the sum is over all states s1W @K1! fC;�g and s2W @K2! fC;�g that
are compatible with sW @K! fC;�g and with each other.

(2) (Elementary Cases) If, using the picture conventions of Section 3.5, the bian-
gle B is represented by a vertical strip in the plane as in Figure 5 and if K

projects to a single arc embedded in B , then
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(a) in the case of Figure 5 (a), where "1 , "2 D˙ are the signs associated by the
state s to the end points of K ,

TrB
�
ŒK; s�

�
D

(
1 if "1 D "2;

0 if "1 6D "2I

(b) in the case of Figure 5 (b),

TrB
�
ŒK; s�

�
D

8̂<̂
:

0 if "1 D "2;

˛ if "1 DC and "2 D�;

ˇ if "1 D� and "2 DC:

"1 "2

"1

"2

"1

"2

(a) (b) (c)

B B B

Figure 5: Elementary skeins in the biangle

Note that the equations ˛2Cˇ2 DA5CA and ˛ˇ D�A3 only admit four solutions,
namely .˛; ˇ/D˙.A5=2;�A1=2/ and ˙.A1=2;�A5=2/.

Proof In the case considered, the homomorphism TrB is essentially a version of the
Kauffman bracket for tangles. In particular, everything here is fairly classical. However,
it is useful to go through the details of the construction to see where the hypotheses on
˛ and ˇ come up.

We will split the proof of Proposition 13 into several steps. We begin with a lemma.

Lemma 14 For a family of homomorphisms TrB that satisfies the properties of
Proposition 13, then necessarily

TrB
�
ŒK; s�

�
D

8̂<̂
:

0 if "1 D "2;

�A�3˛ if "1 DC and "2 D�;

�A�3ˇ if "1 D� and "2 DC;

when K is as in Figure 5 (c).
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Proof The proof is provided by Figure 6. The equivalence of Figures 6(a) and 6(b) is
just obtained by rotating B by 180 degrees. Reversing the boundary orientations then
introduces a half-twist as in Figure 3, which gives the skein of Figure 6(c). Removing
the kink, Lemma 12 then shows that this skein is equal to �A�3 times the skein of
Figure 5(b). The result then follows from Property (2)(b) of Proposition 13.

"1

"2

"2

"1

"1

"2

D D

(a) (b) (c)

Figure 6: The proof of Lemma 14

From now on, when representing a skein in a biangle B , we will use the conventions
of Section 3.5 where the two boundary components of B are oriented in a parallel way,
as in Figure 5.

We now prove the uniqueness of the homomorphisms TrB .

Lemma 15 If there exists a family of homomorphisms TrB satisfying the properties
of Proposition 13, then it is unique.

Proof We first restrict attention to a skein ŒK� 2 SA.B/ that is represented by a
family of arcs and curves without crossings in B . By general position, isotop K

so that it is in bridge position namely so that, as we sweep B from one boundary
component to the other, the local maxima and minima are generic and occur at distinct
positions. We can then subdivide B into a union of biangles B1; : : : ;Bn so that each
Ki DK\

�
Bi � Œ0; 1�

�
contains at most one maximum or minimum. Each Ki then is

of one of the three types pictured in Figure 7.

(a) (b) (c)

: : :

m

8<:
n
˚

m
˚

n
˚

m
˚

: : :

: : :

: : :

: : :

Figure 7: The subdivision skeins Ki
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In particular, if a, b , c are the three skeins respectively represented in Figures 5(a),
5(b) and 5(c), ŒKi �D Œa�

m , Œa�mŒb�Œa�n or Œa�mŒc�Œa�n in the algebra SA.Bi/. Thus, for
any state si , the image of ŒKi ; si � 2 SA

s .Bi/ under the algebra homomorphism TrBi
is

uniquely determined by Properties (2)(a)–(b) of Proposition 13 and by Lemma 14.

By the State Sum Property,

TrB
�
ŒK; s�

�
D

X
compatible si

TrB1

�
ŒK1; s1�

�
� � �TrBn

�
ŒKn; sn�

�
;

so that TrB
�
ŒK; s�

�
is uniquely determined.

In the case of a skein with crossings, the Kauffman skein relations allow ŒK� 2 SA.B/

to be expressed as a linear combination of skeins without crossings. By linearity of
TrB and by uniqueness in the case without crossings, TrB ŒK; s� is uniquely determined
in this general case as well.

This proves Lemma 15, namely the uniqueness of the homomorphisms TrB .

We now demonstrate the existence of the homomorphisms TrB .

First consider the case of a link K �B � Œ0; 1� whose projection to B has no crossing.
As in the proof of Lemma 15, put K in bridge position, and decompose B as a union
of biangles Bi such that Ki DK \

�
Bi � Œ0; 1�

�
has at most one local maximum or

one local minimum for the sweep.

In this case with no crossing, define

(1) TrB
�
ŒK; s�

�
D

X
compatible si

TrB1

�
ŒK1; s1�

�
� � �TrBn

�
ŒKn; sn�

�
;

where each TrB1

�
ŒKi ; si �

�
is defined by Conditions (2)(a)–(b) of Proposition 13 or by

Lemma 14.

Note that, in the above sum, there are few states si for which TrBi

�
ŒKi ; si �

�
is nonzero.

Lemma 16 For a skein ŒK� 2 SA.B/ without crossing, the number TrB
�
ŒK; s�

�
de-

fined above is independent of the subdivision of B into biangles Bi .

Proof For a given bridge position of K , the only freedom in the choice of the
biangles Bi is that we can successively add or delete biangles Bi where Ki has no local
maximum or minimum. Because of the definition of the corresponding TrB

�
ŒKi ; si �

�
by Condition (2)(a) of Proposition 13, the state sum (1) providing TrB

�
ŒK; s�

�
remains

unchanged if we add or delete such a Bi .

It therefore suffices to prove independence under the bridge position. By general
position, any two bridge positions are related to each other by a sequence of the
following moves:
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(1) the “Snake Move” of Figure 8, where a local maximum and a local minimum
collide and cancel out; this Snake Move actually comes in two types, related to
each other by a reflection, according to whether the local maximum sits above
or below the local minimum just before the collision;

(2) the inverse of the snake move, which creates a pair of a local maximum and a
local minimum;

(3) the “Time Switch Move”, where the times at which two different local extrema
occur during the sweep of B are switched; there are 4 types of such Time Switch
Moves and their inverses (according to whether they involve local maxima or
minima), two of which are represented in Figures 9 and 10.

 !

Figure 8: The Snake Move and its inverse

 !

Figure 9: A Time Switch Move

 !

Figure 10: Another Time Switch Move
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The invariance of the state sum formula (1) for TrB
�
ŒK; s�

�
under these Snake and

Time Switch Moves follows from an easy computation using the definition of the
TrBi

�
ŒKi ; si �

�
by Lemma 14 and Condition (2) of Proposition 13. In particular, the

hypothesis that ˛ˇ D�A3 is critical for the Snake Move.

This proves Lemma 16, and uniquely defines TrB
�
ŒK; s�

�
for every skein with no

crossing.

In particular:

Lemma 17 If K projects to a small circle embedded in the biangle B ,

TrB
�
ŒK;¿�

�
D�A2

�A�2:

Proof Putting K in bridge position with only one local maximum and one local
minimum, the state sum formula (1) involves only four compatible states, two of which
contribute 0 to the sum. Using the hypothesis that ˛2Cˇ2 DACA5 , this gives

TrB
�
ŒK;¿�

�
D 0C 0C˛.�A�3˛/Cˇ.�A�3ˇ/D�A2

�A�2:

We now define TrB
�
ŒK; s�

�
for an arbitrary link K with a state s . By resolving all

the crossings of K and applying the skein relation, write ŒK� 2 SA.B/ as a linear
combination

ŒK�D

kX
iD1

Ani ŒKi �

of skeins ŒKi � where the link Ki has no crossing. Then, define

TrB
�
ŒK; s�

�
D

kX
iD1

Ani TrB
�
ŒKi ; si �

�
:

Lemma 18 The number TrB
�
ŒK; s�

�
defined above is independent of the framed

isotopy class of K .

Proof It suffices to show invariance under the second and third Reidemeister Moves.
This is a classical consequence of Lemma 17 (see for instance [27, Lemma 3.3]).

By construction, it is immediate that the TrB
�
ŒK; s�

�
satisfy the skein relation. There-

fore, the construction provides a linear map

TrBW SA
s .B/!C:

It is also immediate that this linear map also satisfies the State Sum Property (1) of
Proposition 13. It remains to show that it is an algebra homomorphism.
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Lemma 19 For any two stated skeins ŒK; s�, ŒK0; s0� 2 SA
s .B/,

TrB
�
ŒK; s�ŒK0; s0�

�
D TrB

�
ŒK; s�

�
TrB

�
ŒK0; s0�

�
:

K

K0

: : : : : : : : :

: : :: : :: : :

Figure 11: Superposition of skeins K and K0

Proof Our convention of using parallel orientations for the two boundary components
of B turns out to be convenient here. The product ŒK; s�ŒK0; s0� is equal to ŒKK0; s[s0�,
where KK0 denotes the superposition of the links K and K0 . Because of the orientation
convention, the superposition KK0 of K and K0 can be isotoped so that K and K0

sit side by side in B , with K0 above K on the sheet of paper as in Figure 11. If we
use this configuration in our construction of TrB

�
ŒKK0; s[ s0�

�
, it is then immediate

that TrB
�
ŒKK0; s[ s0�

�
D TrB

�
ŒK; s�

�
TrB

�
ŒK0; s0�

�
.

This completes the proof of Proposition 13.

Although the definition of TrB may seem complicated, its computation is much simpler
in practice. Indeed, if K is a link whose projection to B has no crossing, each of its
components is a closed curve, or an arc of one of the three types of Figure 5. If, in
addition, K is endowed with a state s and if "1D˙ and "2D˙, let a

"1
"2

be the number
of components of the type of Figure 5(a) where the state s assigns signs "1 and "2 as
in that figure; let b

"1
"2

be the number of components of the type of Figure 5(b); let c
"1
"2

be the number of components of the type of Figure 5(c); and let d be the number of
closed components of K .

Lemma 20 For a stated skein ŒK; s� 2 SA
s .B/ with no crossing, let a

"1
"2

, b
"1
"2

, c
"1
"2

and d be defined as above. If one of aC� , a�C , bCC , b�� , cCC , c�� is nonzero, then
TrB

�
ŒK; s�

�
D 0. Otherwise,

TrB
�
ŒK; s�

�
D ˛bC� ˇb�

C.�A�3˛/c
C
� .�A�3ˇ/c

�
C.�A2

�A�2/d :
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Proof Isotop K so that it is in bridge position and so that: each arc component of K

has only one local maximum or minimum; the projection of each closed component
of K to B bounds a disk whose interior is disjoint from the projection of K . The
formula then follows from the definition of TrB

�
ŒK; s�

�
.

In particular, for a skein with no crossings, TrB
�
ŒK; s�

�
is independent of the relative

nesting of the components of the projection of K to B .

The following two observations will be useful later on.

Lemma 21 If TrB
�
ŒK; s�

�
is nonzero, the stated skein ŒK; s� 2 SA

s .B/ is balanced
is the sense that the sum of the signs assigned by s to the components of @K in one
component of @B is equal to the sum of the signs in the other component of @B .

Proof Lemma 20 proves this for skeins with no crossings. The general case follows
from this one by resolving all the crossings and applying the skein relations.

"1

"2

"0
1

"02

Figure 12: A right-handed half-twist

The following is an immediate computation, based on the definitions.

Lemma 22 For the right half-twist ŒK; s� represented in Figure 12,

TrB ŒK; s�D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

A if "1 D "
0
1 D "2 D "

0
2;

A�A�4˛2 if "1 D "
0
1 DC and "2 D "

0
2 D�;

A�A�4ˇ2 if "1 D "
0
1 D� and "2 D "

0
2 DC;

�A�4˛ˇ if "1 D "
0
2 ¤ "2 D "

0
1;

0 otherwise.

5 Split ideal triangulations

A split ideal triangulation y� is obtained from an ideal triangulation � by replacing each
edge of � by two parallel copies of it, separated by a biangle. In particular, y� is a cell
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decomposition of S whose faces consists of finitely many triangles T1;T2; : : : ;Tm

(each corresponding to a face of �) and finitely many biangles B1;B2; : : : ;Bn (each
corresponding to an edge of �).

Lemma 23 Let K be a framed link in S � Œ0; 1� and let y� be a split ideal triangulation
of S . Then K can be isotoped so that

(1) for every edge y�i of y�, K is transverse to y�i � Œ0; 1�;
(2) for every triangle face Tj of y�, K\

�
Tj�Œ0; 1�

�
consists of finitely many disjoint

arcs, each of which is contained in a constant elevation surface S �� and joins
two distinct components of @Ti � Œ0; 1�;

(3) for every triangle face Tj of y�, the components of K\
�
Tj�Œ0; 1�

�
lie at different

elevations, and their framings are vertical pointing upwards.

The effect of Lemma 23 is to push all the complexities of K into the part of S � Œ0; 1�

that lies above the biangles of y�.

Proof Select a spine Yj for each ideal triangle Tj , namely an infinite Y-shaped subset
such that Tj properly collapses on Yj , as in Figure 13.

Tj

Yj

Figure 13: The spine of an ideal triangle

By generic position we can arrange that, for each spine Yj , the link K is disjoint from
the singular locus fvj g� Œ0; 1� of each Yj � Œ0; 1�, corresponding to the 3–valent vertex
vj 2 Yj , and transverse to the rest of Yj � Œ0; 1�. With a further isotopy we can assume
that on a small neighborhood Uj of Yj � Œ0; 1� each component of K\Uj has constant
elevation, and that distinct components have distinct elevations. Finally, the framing
can be modified so that it is vertical and pointing upwards on K\Uj .

By definition of the spines Yj , the union of the Tj � Œ0; 1� can be isotoped inside the
union of the Uj , and this by an isotopy which respects all level surfaces S �� and
which sends vertical arc �� Œ0; 1� to vertical arc. Modifying K by the inverse of this
isotopy puts it in the required position.

When K satisfies the conclusions of Lemma 23, we will say that it is in good position
with respect to the split ideal triangulation y�.
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When K is in good position, we can always isotop it so that, over each triangle face Tj ,
K \

�
Tj � Œ0; 1�

�
projects to finitely many disjoint arcs embedded in Tj . However,

the projection is usually much more complicated when we use the conventions of
Section 3.5 to represent the ordering of the components of K\

�
Tj � Œ0; 1�

�
. The two

pictures of Figure 14 illustrate the same example of a link in good position over a
triangle Tj , drawn with the conventions of Section 3.5 but with two different choices
of orientations for the sides of Tj .

Figure 14: A link in good position over a triangle

Figures 15–19 describe five moves, occurring in a neighborhood of a triangle Tj ,
which isotop K from one good position to another. It is understood there that K is in
good position with respect to the split ideal triangulation, and in particular that each
component of K\

�
Tj�Œ0; 1�

�
has constant elevation. The intersection K\

�
Tj�Œ0; 1�

�
may include more components than the zero, one or two arcs shown. However, when
two arcs are shown, it is understood that they are adjacent to each other for the ordering
of the components of K \

�
Tj � Œ0; 1�

�
given by their elevation; their ordering with

respect to each other is determined by the ordering of their end points, indicated by the
arrows with the conventions of Section 3.5.

Moves (I) and (II) of Figures 15–16 eliminate a U-turn in biangles adjacent to Tj .
Moves (III) and (IV) transpose the elevations of two components of K\

�
Tj � Œ0; 1�

�
.

The kinks added by Move (V) change the framing in two biangles adjacent to Tj (if
these two biangles are distinct), but not the isotopy class of the global framing of K

since the two kinks have opposite signs.

Lemma 24 Let K and L be two framed links in S � Œ0; 1� satisfying the conclusions
of Lemma 23, namely in good position with respect to y�. If K and L are isotopic,
then they can be connected by a sequence of framed links K DK0;K1;K2; : : : ;Kl ,
KlC1 DL such that each Ki is in good position with respect to y�, and such that one
goes from Ki to KiC1 by either an isotopy keeping the link in good position with
respect to y�, or one of the moves (I)–(V) of Figures 15–19 and their inverses.
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 !

Figure 15: Move (I)

 !

Figure 16: Move (II)

 !

Figure 17: Move (III)

 !

Figure 18: Move (IV)

 !

Figure 19: Move (V)
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Proof Choose a spine Yj in each triangle face Tj of the split ideal triangulation y�, as
in the proof of Lemma 23. For a framed link K in S � Œ0; 1�, this proof of Lemma 23
shows that being in good position with respect to the split triangulation y� is essentially
equivalent to the property that, for each spine Yj ,

(1) the link K is transverse to Yj � Œ0; 1�, and in particular is disjoint from the
singular locus fvj g � Œ0; 1�, where vj is the trivalent vertex of Yj ;

(2) the elevations of the points of K\
�
Yj � Œ0; 1�

�
are distinct;

(3) the framing of K is vertical, pointing upwards, at each point of K\
�
Yj � Œ0; 1�

�
.

When these properties hold, we say that K is in good position with respect to the
spine Yj .

Indeed, by adjusting K in a neighborhood of the Yj as in the proof of Lemma 23 and
by collapsing the triangles Tj in this neighborhood by isotopies, one easily goes back
and forth between links that are in good position with respect to the split triangulation y�
and links that are in good position with respect to the spines Yj .

Let us first neglect the elevations of the intersection points and the framings.

If the two framed links K and L are in good position with respect to the spines Yj , and
if they are isotopic, let us choose the isotopy to be generic with respect to the Yj � Œ0; 1�.
Then, during the isotopy, the link remains transverse to the Yj � Œ0; 1� except at finitely
many times where, either the link crosses one of the singular loci fvj g � Œ0; 1�, or it is
tangent to one of the smooth parts .Yj �fvj g/� Œ0; 1�.

When the link crosses the singular locus fvj g � Œ0; 1�, an intersection point of the
link with a component of .Yj � fvj g/ � Œ0; 1� gets replaced with two intersection
points, one in each of the two other components of .Yj �fvj g/� Œ0; 1�, or the converse
holds. Translating this in terms of links in good position with respect to the split ideal
triangulation y� gives Move (II) and its inverse.

When the link becomes tangent to .Yj � fvj g/ � Œ0; 1� then, generically, either two
intersection points of the link with .Yj �fvj g/� Œ0; 1� collide and cancel out, or a pair
of intersection points gets created in the inverse process. This is described by Move (I)
and its inverse.

So far, we had neglected the elevation of the intersection points. At finitely many times
during the generic isotopy, the elevations of two points of some K\

�
Yj � Œ0; 1�

�
will

cross each other. This is described by Moves (III) and (IV), according to whether the
points are in the same component of .Yj �fvj g/� Œ0; 1� or not.

Geometry & Topology, Volume 15 (2011)



1600 Francis Bonahon and Helen Wong

In particular, when we care about elevations, Moves (III) and (IV) enable us to avoid
having to consider two versions of Moves (I) and (II), one for each ordering of the two
points of K\

�
Yj � Œ0; 1�

�
.

Finally, we have to worry about framings. At some time in the isotopy, we will need
to move the framing at a point of K \

�
Yj � Œ0; 1�

�
from vertical position to vertical

position by rotating it by a certain number of full turns. This is accomplished by several
applications of Move (V) or its inverse.

6 The quantum trace as a state sum

We now begin the proof of Theorem 11.

Let K be a framed link in S � Œ0; 1�, with a state sW @K! fC;�g. Let � be an ideal
triangulation for S .

Let y� be a split ideal triangulation associated to �. By an isotopy, put K in good position
with respect to y� as in Lemma 23. The conclusions of this lemma guarantee that, for
every triangle face Tj or biangle face Bi of y�, the intersections Kj DK\

�
Tj � Œ0; 1�

�
and Li DK\

�
Bi � Œ0; 1�

�
are framed links in Tj � Œ0; 1� or Bi � Œ0; 1�.

Suppose that, in addition to the state sW @K!fC;�g, we are given a state sj W @Kj !

fC;�g for each Kj with j D 1; 2; : : : ;m, and a state ti W @Li! fC;�g for each Li

with i D 1; 2; : : : ; n. Note that exactly two of these states are defined at every point of
@K[

Sm
jD1 @Kj [

Sn
iD1 @Li . We say that all these states s , sj and ti are compatible

if they coincide whenever they are defined at the same point.

For a triangle Tj , let k1; k2; : : : ; kl be the components of Kj , in order of increasing
elevation (remember that the elevation is constant on each ki , and that distinct ki have
distinct elevations). Then Kj D k1k2 � � � kl in the link algebra K.Tj /; note that the
order of the terms in this product is important. Let TrTj .ki ; sj / 2 Z!Tj be defined as in
Condition (2)(a) of Theorem 11. Then, define

TrTj .Kj ; sj /D TrTj .k1; sj /TrTj .k2; sj / � � �TrTj .kl ; sj / 2 Z!Tj :

For a biangle Bi of y�, let TrBi
.Li ; ti/ 2C be the scalar provided by Proposition 13.

We can then consider the tensor product� nY
iD1

TrBi
.Li ; ti/

�� mO
jD1

TrTj .Kj ; sj /

�
2

mO
jD1

Z!Tj

Recall that the triangles Tj are identified to the faces of the ideal triangulation �, and
that the Chekhov–Fock square root algebra Z!� is also contained in

Nm
jD1 Z!Tj .
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Lemma 25 If the states s , sj and ti are compatible, the element� nY
iD1

TrBi
.Li ; ti/

�� mO
jD1

TrTj .Kj ; sj /

�
2

mO
jD1

Z!Tj

is contained in the square root Chekhov–Fock algebra Z!� of Section 2.3.

Proof We first have to check that, when the monomial� nY
iD1

TrBi
.Li ; ti/

�� mO
jD1

TrTj .Kj ; sj /

�
is different from 0, the generators Zja and Zka associated to the two sides of an
edge �i of � appear with the same exponent in the monomial. This is an immediate
consequence of Lemma 21 and of the definition of the terms TrTj .Kj ; sj /.

The fact that this monomial satisfies the parity condition defining the square root
algebra Z!� automatically follows from the definitions.

Define

TrS .K; s/D
X

compatible sj ;ti

� nY
iD1

TrBi
.Li ; ti/

�� mO
jD1

TrTj .Kj ; sj /

�
2 Z!� .K/;

where the sum is over all choices of states sj W @Kj ! fC;�g, j D 1; 2; : : : ;m, and
ti W @Li!fC;�g, i D 1; 2; : : : ; n, that are compatible with sW @K!fC;�g and with
each other.

The key step in the proof of Theorem 11 is the following.

Recall that our definition of TrB for biangles B in Section 4 depended on two pa-
rameters ˛ and ˇ such that ˛2Cˇ2 D ACA5 and ˛ˇ D �A3 . This allowed four
possibilities .˛; ˇ/ D ˙.A1=2;�A5=2/ and ˙.A5=2;�A1=2/ for these parameters.
They now need to be even more restricted. Going over the proof of Proposition 26, the
reader will readily check that these restrictions on A, ˛ and ˇ are necessary for the
statement to hold.

Proposition 26 If AD !�2 , ˛ D�!�5 and ˇ D !�1 , the above element

TrS .K; s/ 2 Z!� .K/

depends only on the isotopy class of K and on the state s .
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Proof By Proposition 13, TrS .K; s/ is invariant under isotopy respecting good posi-
tion with respect to the split ideal triangulation y�. Therefore, we only need to check
that it remains unchanged under the Moves (I)–(V) of Lemma 24.

These moves involve a triangle Tj , adjacent to three biangles Bi1
, Bi2

, Bi3
. We will

restrict attention to the case where these three biangles are distinct. Since it involves
only minor modifications in notation and no new arguments, we leave as an exercise to
the reader the task of adapting our proof to the case where two of the biangles coincide.

To alleviate the notation, we can assume that the triangle involved is the triangle T1 ,
while the adjacent biangles are B1 , B2 , B3 . In addition, in each of Figures 15–19,
we will assume that the Bi are indexed as in Figure 20. In particular, the square root
algebra Z!

T1
is defined by generators Z11 , Z12 and Z13 , respectively associated to

the edges T1\B1 , T1\B2 and T1\B3 , such that Z1iZ1.iC1/ D !
2Z1.iC1/Z1i if

we count indices modulo 3.

T1
B1 B2

B3

Figure 20: Labeling conventions

Consider a move of type (I)–(V), going from a framed link K (on the left of each of
Figures 15–19) to a framed link K0 (on the right of Figures 15–19). In the above state
sums for TrS .K; s/ and TrS .K

0; s/ we group terms so that, in each group, the families
of compatible states sj , ti for K and s0j , t 0i for K0 coincide outside of the parts of K

and K0 shown. We then have to show that, in each group, the sum of the contributions
to TrS .K; s/ of the compatible states sj , ti for K considered is equal to the sum of
the contributions to TrS .K

0; s/ of the corresponding compatible states s0j , t 0i for K0 .
We will group terms even further according to the powers of the generators Z11 , Z12 ,
Z13 of Z!

T1
(associated to the sides of the triangle T1 ) contributed by these states.

In the case of Move (I), for a given family of compatible states s0j , t 0i for K0 , there
are 24 families of compatible states sj , ti for K that coincide with s0j , t 0i outside
of the area shown, but only four of these give a nonzero contribution to TrS .K; s/.
These are indicated in Figure 21. The equality sign in this figure means that we have
to show that the contributions of the terms on one side of the equation add up to the
contributions of the other side.
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C

C

�

C

C

�

C

�

C

C

C

�

�

C

�

CC C C
?
D

Figure 21: States for Move (I)

For the labeling conventions of Figure 20 and remembering that Li denotes the portion
of K that is above the biangle Bi , let tCC

1
, t�C

1
, tC�

1
be the states for L1 described

by the first, second and fourth triangles in Figure 21, in this order. (To explain the
notation, note the signs assigned by these states to the two points of K\B1\T1 shown,
for the orientation of the edge B1 \ T1 specified by the arrow.) Similarly, let t�C

2

and tC�
2

be the states for L2 represented in the first and third triangles, respectively.

By the State Sum Property of Proposition 13,

TrB1
.L01; t

0
1/D ˛ TrB1

.L1; t
�C

1
/Cˇ TrB1

.L1; t
C�

1
/

D�!�5 TrB1
.L1; t

�C

1
/C!�1 TrB1

.L1; t
C�

1
/

while

TrB2
.L2; t

C�

2
/D ˇ TrB2

.L02; t
0
2/D !

�1 TrB2
.L02; t

0
2/;

TrB2
.L2; t

�C

2
/D ˛ TrB2

.L02; t
0
2/D�!

�5 TrB2
.L02; t

0
2/:

For each of these states s1 for K1 , those components of K1 that are not represented
on Figure 21 and sit below the two arcs shown have the same contribution X 2Z!

T1
to

TrT1
.K1; s1/, while the components of K1 sitting above the two arcs shown contribute

Y 2 Z!
T1

.

Therefore, the contributions to TrS .K; s/ of the four families of states t1 , s1 , t2 on
the left of Figure 21 add up to

TrB1
.L1; t

CC

1
/X ŒZ11Z�1

12 �ŒZ11Z12�Y TrB2
.L2; t

�C

2
/

CTrB1
.L1; t

�C

1
/X ŒZ�1

11 Z�1
12 �ŒZ11Z12�Y TrB2

.L2; t
�C

2
/

CTrB1
.L1; t

CC

1
/X ŒZ11Z12�ŒZ11Z�1

12 �Y TrB2
.L2; t

C�

2
/

CTrB1
.L1; t

C�

1
/X ŒZ11Z12�ŒZ

�1
11 Z�1

12 �Y TrB2
.L2; t

C�

2
/

D TrB1
.L1; t

CC

1
/X.!Z11Z�1

12 /.!Z12Z11/Y .�!
�5/ TrB2

.L02; t
0
2/

CTrB1
.L1; t

�C

1
/X.!�1Z�1

11 Z�1
12 /.!Z12Z11/Y .�!

�5/ TrB2
.L02; t

0
2/

CTrB1
.L1; t

CC

1
/X.!�1Z11Z12/.!

�1Z�1
12 Z11/Y!

�1 TrB2
.L02; t

0
2/

CTrB1
.L1; t

C�

1
/X.!�1Z11Z12/.!Z�1

12 Z�1
11 /Y!

�1 TrB2
.L02; t

0
2/
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D�!�3 TrB1
.L1; t

CC

1
/XZ2

11Y TrB2
.L02; t

0
2/

�!�5 TrB1
.L1; t

�C

1
/XY TrB2

.L02; t
0
2/

C!�3 TrB1
.L1; t

CC

1
/XZ2

11Y TrB2
.L02; t

0
2/

C!�1 TrB1
.L1; t

C�

1
/XY TrB2

.L02; t
0
2/

D .�!�5 TrB1
.L1; t

�C

1
/C!�1 TrB1

.L1; t
C�

1
//XY TrB2

.L02; t
0
2/

D TrB1
.L01; t

0
1/XY TrB2

.L02; t
0
2/;

which, as required, is the contribution of the right hand side of Figure 21 to TrS .K
0; s/.

Recall that square brackets Œ � denote here the Weyl quantum ordering (see the end of
Section 3.4). Also, note that the order in which we multiply the contributions of the
various components of K1 is really crucial in the above computations.

?
D with ."1; "3/ 6D .C;�/

"1

"3

�

C

"1

"3

C
?
D D 0

C

�

C

�

C

�

�

C

C

�

Figure 22: States for Move (II)

We now consider Move (II). If we again group terms according to compatible states s0j , t 0i
for K0 , Figure 22 lists the possible restrictions to the part of K involved in Move (II)
of all compatible states sj , ti for K that make nontrivial contributions to TrS .K; s/.

In the case of the first line of Figure 22, note that TrB2
.L2; t2/D ˇ TrB2

.L0
2
; t 0

2
/ by

the State Sum Property of Proposition 13. As before, let X 2 Z!
T1

be the contribution
of those components of K1 that are not represented on the figure and sit below the two
arcs shown, while Y represents the contribution of the components that sit above these
two arcs. Then if, as usual, we identify the sign "D˙ to the number "D˙1,

TrT1
.K1; s1/ TrB2

.L2; t2/DX ŒZ12Z
"3

13
�ŒZ

"1

11
Z�1

12 �Yˇ TrB2
.L02; t

0
2/

DX.!"3Z
"3

13
Z12/.!

�"1Z�1
12 Z

"1

11
/Y!�1 TrB2

.L02; t
0
2/

DX.!"3�"1�1Z
"3

13
Z
"1

11
/Y TrB2

.L02; t
0
2/

DX ŒZ
"3

13
Z
"1

11
�Y TrB2

.L02; t
0
2/

D TrT1
.K01; s

0
1/ TrB2

.L02; t
0
2/

because "3� "1� 1D�"1"3 when ."1; "3/ 6D .C1;�1/.
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For the second line of Figure 22, there are two families of compatible states s�C
1

, t�C
2

and sC�
1

, tC�
2

for K that correspond to compatible states s0
1

, t 0
2

for K0 and give
nontrivial contributions to TrS .K; s/. Note that s0

1
, t 0

2
contribute 0 to TrS .K

0; s/.
Then,

TrT1
.K1; s

�C

1
/ TrB2

.L2; t
�C

2
/CTrT1

.K1; s
C�

1
/ TrB2

.L2; t
C�

2
/

DX ŒZ�1
12 Z�1

13 �ŒZ11Z12�Y˛ TrB2
.L02; t

0
2/

CX ŒZ12Z�1
13 �ŒZ11Z�1

12 �Yˇ TrB2
.L02; t

0
2/

DX.!Z�1
13 Z�1

12 /.!Z12Z11/Y .�!
�5/TrB2

.L02; t
0
2/

CX.!�1Z�1
13 Z12/.!

�1Z�1
12 Z11/Y!

�1 TrB2
.L02; t

0
2/

D�!�3XZ�1
13 Z11Y TrB2

.L02; t
0
2/C!

�3XZ�1
13 Z11Y TrB2

.L02; t
0
2/

D 0D TrT1
.K01; s

0
1/ TrB2

.L02; t
0
2/:

This concludes the proof of invariance under Move (II).

For Move (III), instead of state sums, it is more convenient to use the compatibility of
the TrBi

.Li ; ti/ with the skein relations, as proved by Proposition 13.

D C CA2 CA�2

D C CA2 CA�2

D C .�A2�A�2CA2CA�2/

D

Figure 23: Skein manipulations for Move (III)

The proof of the invariance under Move (III) is described by Figure 23, where the
equalities between linear combinations are understood to apply to the images of the
corresponding links under TrS . The first equality comes from the fact that TrB1

and
TrB2

are compatible with the skein relations, as proved by Proposition 13. The second
equality is a consequence of the invariance of TrS under Move (I), which we just
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proved. The third equality is a consequence of the fact that, in the skein algebra
SA.B1/, adding a small unknotted unlinked loop to a skein ŒL� just multiplies ŒL� by
the scalar �.A2CA�2/ (see Lemma 12).

We now turn to Move (IV). All the states that have nontrivial contributions are listed in
Figure 24. Grouping the contributions of compatible states according to their restrictions
outside of the pictures, and according to powers of the generators Z11 , Z12 , Z13

of Z!
T1

, we have to show the equalities of contributions indicated.

"

C

C

C

"

C

C

C

?
D

�

�

"

�

�

�

"

�

?
D

"1

C

"2

�

"1

�

"2

C

with ."1; "2/ 6D .�;C/
?
D

�

C

C

�

�

�

C

C

�

�

C

C

�

C

C

�

?
D

C C

Figure 24: State sums for Move (IV)

As usual, let t""
0

3
be the state for L3 or L0

3
where the two boundary points represented

are respectively labelled by ", "0 2 fC;�g, in this order for the orientation of the edge
T1 \B3 specified by the arrow (while the value of t""

0

3
on the other points of @L3

and @L0
3

is determined by the group of compatible states that we are considering). By
combining Proposition 13 and Lemma 22,

TrB3
.L03; t

CC

3
/D !�2 TrB3

.L3; t
CC

3
/;

TrB3
.L03; t

��
3 /D !�2 TrB3

.L3; t
��
3 /;

TrB3
.L03; t

C�

3
/D !2 TrB3

.L3; t
�C

3
/C .!�2

�!6/ TrB3
.L3; t

C�

3
/;

TrB3
.L03; t

�C

3
/D !2 TrB3

.L3; t
C�

3
/:
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Then, for the first line of Figure 24,

TrT1
.K01; s

0
1/ TrB3

.L03; t
0
3/DX ŒZ12Z13�ŒZ

"
11Z13�Y TrB3

.L03; t
CC

3
/

DX!2ŒZ"
11Z13�ŒZ12Z13�Y!

�2 TrB3
.L3; t

CC

3
/

DX ŒZ"
11Z13�ŒZ12Z13�Y TrB3

.L3; t
CC

3
/

D TrT1
.K1; s1/ TrB3

.L3; t3/;

where, as usual, X and Y denote the contributions of the components of K1 and K0
1

that respectively sit below and above the two arcs represented.

The case of the second line is almost identical:

TrT1
.K01; s

0
1/ TrB3

.L03; t
0
3/DX ŒZ"

12Z�1
13 �ŒZ

�1
11 Z�1

13 �Y TrB3
.L03; t

��
3 /

DX!2ŒZ�1
11 Z�1

13 �ŒZ
"
12Z�1

13 �Y!
�2 TrB3

.L3; t
��
3 /

DX ŒZ�1
11 Z�1

13 �ŒZ
"
12Z�1

13 �Y TrB3
.L3; t

��
3 /

D TrT1
.K1; s1/ TrB3

.L3; t3/:

For the third line of Figure 24,

TrT1
.K01; s

0
1/ TrB3

.L03; t
0
3/

DX ŒZ
"2

12
Z�1

13 �ŒZ
"1

11
Z13�Y TrB3

.L03; t
�C

3
/

DX!2.�"1"2C"2�"1/ŒZ
"1

11
Z13�ŒZ

"2

12
Z�1

13 �Y!
2 TrB3

.L3; t
C�

3
/

DX ŒZ
"1

11
Z13�ŒZ

"2

12
Z�1

13 �Y TrB3
.L3; t

C�

3
/

D TrT1
.K1; s1/ TrB3

.L3; t3/

as required. Note that �"1"2C "2� "1 D�1 exactly when ."1; "2/ 6D .�1;C1/.

The case of the fourth line of Figure 24 is more elaborate.

TrT1
.K01; s

�C

1
/ TrB3

.L03; t
�C

3
/CTrT1

.K01; s
C�

1
/ TrB3

.L03; t
C�

3
/

DX ŒZ12Z�1
13 �ŒZ

�1
11 Z13�Y TrB3

.L03; t
�C

3
/

CX ŒZ12Z13�ŒZ
�1
11 Z�1

13 �Y TrB3
.L03; t

C�

3
/

DX.!Z12Z�1
13 /.!Z13Z�1

11 /Y!
2 TrB3

.L3; t
C�

3
/

CX.!�1Z12Z13/.!
�1Z�1

13 Z�1
11 /Y!

2 TrB3
.L3; t

�C

3
/

CX.!�1Z12Z13/.!
�1Z�1

13 Z�1
11 /Y .!

�2
�!6/ TrB3

.L3; t
C�

3
/

D !4XZ12Z�1
11 Y TrB3

.L3; t
C�

3
/CXZ12Z�1

11 Y TrB3
.L3; t

�C

3
/

C!�4XZ12Z�1
11 Y TrB3

.L3; t
C�

3
/�!4XZ12Z�1

11 Y TrB3
.L3; t

C�

3
/
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D !2XZ�1
11 Z12Y TrB3

.L3; t
�C

3
/C!�2XZ�1

11 Z12Y TrB3
.L3; t

C�

3
/

DX.!Z�1
11 Z�1

13 /.!Z13Z12/Y TrB3
.L3; t

�C

3
/

CX.!�1Z�1
11 Z13/.!

�1Z�1
13 Z12/Y TrB3

.L3; t
C�

3
/

DX ŒZ�1
11 Z�1

13 �ŒZ12Z13�Y TrB3
.L3; t

�C

3
/

CX ŒZ�1
11 Z13�ŒZ12Z�1

13 �Y TrB3
.L3; t

C�

3
/:

This concludes our proof that TrS .K; s/ remains invariant under Move (IV).

The case of Move (V) is much simpler. Indeed, by Lemma 12,

TrB1
.L01; t1/D�A�3 TrB1

.L1; t1/;

TrB2
.L02; t2/D�A3 TrB2

.L2; t2/:

Therefore, when computing TrS .K
0; s/, the two scalars �A�3 and �A3 cancel out,

and TrS .K
0; s/D TrS .K; s/.

This concludes our proof that TrS .K; s/ is invariant under the moves (I)–(V), at least
under our original assumption that the biangles B1 , B2 , B3 touching the triangle T1

where each move takes place are distinct. As indicated at the beginning, we are leaving
as an exercise to the reader the task of adapting our arguments to the case where two
of these three biangles are equal.

By Lemma 24, this concludes the proof of Proposition 26.

Lemma 27 The above element

TrS .K; s/ 2 Z!� .K/

depends only on the class ŒK; s� 2 SA
s .S/ of the framed link K and its state s in the

skein algebra.

Proof We have to show that TrS is compatible with the skein relations, namely that

TrS .K1; s/DA�1 TrS .K0; s/CA TrS .K1; s/

when the framed links K1 , K0 and K1 form a Kauffman triple, namely are related
as in Figure 1.

When we put K1 in good position with respect to the split ideal triangulation y� as in
Lemma 23, we can always arrange that the little ball where K1 , K0 and K1 differ
is located above a biangle Bj . For that biangle, Proposition 13 asserts that TrBj is
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compatible with the skein relations. In particular, if L0
j , L1

j , L1j are the respective
intersections of K1 , K0 and K1 with Bj � Œ0; 1�, it follows from Proposition 13 that

TrBj .L
1
j ; sj /DA�1 TrBj .L

0
j ; sj /CA TrBj .L

1
j ; sj /

for every state sj . By definition of TrS as a state sum, this immediately proves the
desired result.

We are now ready to prove Theorem 11. Indeed, the combination of Proposition 26
and Lemma 27 provides a linear map

TrS W SA
s .S/! Z!�

defined by TrS

�
ŒK; s�

�
D TrS .K; s/. This linear map is well-behaved under the super-

position operation, so that it is actually an algebra homomorphism.

Because of its construction as a state sum, it is also immediate that the family of
homomorphisms TrS satisfy the State Sum Condition (1) of Theorem 11.

This State Sum Condition also shows that the homomorphisms TrS are uniquely deter-
mined by their restriction to the case where S is a triangle. When S is a triangle, the
skein algebra SA.S/ is generated by simple arcs of the type appearing in Condition (2)
of Theorem 11 (use the skein relations to eliminate all crossings, and apply Lemma 12
to remove all simple closed curves). The uniqueness part of Theorem 11 immediately
follows.

This concludes the proof of Theorem 11.

7 Invariance under changes of ideal triangulations

The homomorphism TrS W SA
s .S/! Z!� provided by Theorem 11 depends of course

on the ideal triangulation � of S considered. We now show that it is well behaved
under change of ideal triangulation.

Since we now have to worry about different ideal triangulations, we will write Tr�S
�
ŒK;s�

�
for the element that we have so far denoted TrS

�
ŒK; s�

�
2 Z!� .

Given two ideal triangulations � and �0 of S , let ‚!��0 W yZ!�0 ! yZ!� be the coordinate
change map provided by Theorem 6.

Theorem 28 Given two ideal triangulations � and �0 of S , and a stated skein ŒK; s�2
SA

s .S/, the coordinate change map

‚!��0 W
yZ!�0 ! yZ!�

sends the polynomial Tr�
0

S

�
ŒK; s�

�
to the polynomial Tr�S

�
ŒK; s�

�
.
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Note that, in general, the coordinate change map ‚!��0 sends a polynomial P 2Z!�0 to a
rational fraction in yZ!� . It is therefore surprising that the trace polynomials Tr�S

�
ŒK; s�

�
remain polynomial under coordinate change.

Proof of Theorem 28 By [22; 30], any two ideal triangulations can be connected to
each other by a sequence of diagonal exchanges, as in Figure 25. Since it is proved in
[24, Theorem 25] that ‚!��00 D‚

!
��0 ı‚

!
�0�00 for every three ideal triangulations �, �0

and �00 , it will be sufficient to restrict attention to the case where � and �0 differ only
by a diagonal exchange.

�2

�5

�4

�3
�1

�!

T1

T2

�02

�0
5

�04

�0
3

�01

T 01

T 0
2

Figure 25: A diagonal exchange

We will assume that the indexing of the edges and faces of � and �0 is as in Figure 25.
Beware that it is quite possible that there exists identifications between the sides of the
square represented, for instance that �1 D �2 or �1 D �3 ; however, this will have no
impact on our arguments.

For the split ideal triangulation y� associated to � let, as usual, Tj denote the triangle
face associated to the j –th face of �, and let Bi be the biangle face corresponding
to the edge �i of �. We use similar conventions for the split ideal triangulation y�0

associated to �0 .

Put the framed link K in good position with respect to the split ideal triangulation y�,
as in Lemma 23. When doing so we can always arrange that, above the square
T1[B1[T2 formed by the triangles T1 , T2 and the biangle B1 , the components of
K\

�
.T1[B1[T2/� Œ0; 1�

�
are all horizontal arcs. Indeed, we can always push any

complication of the picture away from the square T1 [B1 [T2 and into one of the
biangles Bi with i > 1.

The same property will then hold in y�0 since we can always arrange that T 0
1
[B0

1
[T 0

2
D

T1[B1[T2 . In particular, K is now in good position with respect to both y� and y�0 .

In the state sum expression of Tr�S
�
ŒK; s�

�
, we can then group the contributions of the

components of K\
�
.T1[B1[T2/� Œ0; 1�

�
into blocks in Z!

T1
˝Z!

T2
of one of the

following types.
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(1) For components going from �2 � Œ0; 1� to �3 � Œ0; 1�:
(a) ŒZ12Z11�˝ ŒZ21Z23�

(b) ŒZ12Z11�˝ ŒZ21Z�1
23
�C ŒZ12Z�1

11
�˝ ŒZ�1

21
Z�1

23
�

(c) ŒZ�1
12

Z�1
11
�˝ ŒZ�1

21
Z�1

23
�

(2) For components going from �2 � Œ0; 1� to �4 � Œ0; 1�:
(a) ŒZ12Z11�˝ ŒZ21Z24�C ŒZ12Z�1

11
�˝ ŒZ�1

21
Z24�

(b) ŒZ12Z�1
11
�˝ ŒZ�1

21
Z�1

24
�

(c) ŒZ�1
12

Z�1
11
�˝ ŒZ�1

21
Z24�

(d) ŒZ�1
12

Z�1
11
�˝ ŒZ�1

21
Z�1

24
�

(3) For components going from �2 � Œ0; 1� to �5 � Œ0; 1�:
(a) ŒZ12Z15�˝ 1

(b) ŒZ�1
12

Z15�˝ 1

(c) ŒZ�1
12

Z�1
15
�˝ 1

(4) For components going from �3 � Œ0; 1� to �4 � Œ0; 1�:
(a) 1˝ ŒZ23Z24�

(b) 1˝ ŒZ23Z�1
24
�

(c) 1˝ ŒZ�1
23

Z�1
24
�

(5) For components going from �3 � Œ0; 1� to �5 � Œ0; 1�:
(a) ŒZ15Z11�˝ ŒZ21Z23�

(b) ŒZ15Z11�˝ ŒZ21Z�1
23
�

(c) ŒZ�1
15

Z11�˝ ŒZ21Z23�

(d) ŒZ�1
15

Z11�˝ ŒZ21Z�1
23
�C ŒZ�1

15
Z�1

11
�˝ ŒZ�1

21
Z�1

23
�

(6) For components going from �4 � Œ0; 1� to �5 � Œ0; 1�:
(a) ŒZ15Z11�˝ ŒZ21Z24�

(b) ŒZ�1
15

Z11�˝ ŒZ21Z24�C ŒZ
�1
15

Z�1
11
�˝ ŒZ�1

21
Z24�

(c) ŒZ�1
15

Z�1
11
�˝ ŒZ�1

21
Z�1

24
�

Then Tr�
0

S

�
ŒK; s�

�
is obtained from Tr�S

�
ŒK; s�

�
by replacing each of the above blocks

by the corresponding block in the list below, while the remaining Zji with j > 2 are
replaced with the corresponding Z0ji .

(1) For components going from �0
2
� Œ0; 1� to �0

3
� Œ0; 1�:

(a) ŒZ0
12

Z0
13
�˝ 1

(b) ŒZ0
12

Z0
13
�1�˝ 1

(c) ŒZ0
12
�1Z0

13
�1�˝ 1
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(2) For components going from �0
2
� Œ0; 1� to �0

4
� Œ0; 1�:

(a) ŒZ0
12

Z0
11
�˝ ŒZ0

21
Z0

24
�

(b) ŒZ0
12

Z0
11
�˝ ŒZ0

21
Z0

24
�1�

(c) ŒZ0
12
�1Z0

11
�˝ ŒZ0

21
Z0

24
�

(d) ŒZ0
12
�1Z0

11
�˝ ŒZ0

21
Z0

24
�1�C ŒZ0

12
�1Z0

11
�1�˝ ŒZ0

21
�1Z0

24
�1�

(3) For components going from �0
2
� Œ0; 1� to �0

5
� Œ0; 1�:

(a) ŒZ0
12

Z0
11
�˝ ŒZ0

21
Z0

25
�

(b) ŒZ0
12
�1Z0

11
�˝ ŒZ0

21
Z0

25
�C ŒZ0

12
�1Z0

11
�1�˝ ŒZ0

21
�1Z0

25
�

(c) ŒZ0
12
�1Z0

11
�1�˝ ŒZ0

21
�1Z0

25
�1�

(4) For components going from �0
3
� Œ0; 1� to �0

4
� Œ0; 1�:

(a) ŒZ0
12

Z0
11
�˝ ŒZ0

21
Z0

24
�

(b) ŒZ0
12

Z0
11
�˝ ŒZ0

21
Z0

24
�1�C ŒZ0

12
Z0

11
�1�˝ ŒZ0

21
�1Z0

24
�1�

(c) ŒZ0
12
�1Z0

11
�1�˝ ŒZ0

21
�1Z0

24
�1�

(5) For components going from �0
3
� Œ0; 1� to �0

5
� Œ0; 1�:

(a) ŒZ0
13

Z0
11
�˝ ŒZ0

21
Z0

25
�C ŒZ0

13
Z0

11
�1�˝ ŒZ0

21
�1Z0

25
�

(b) ŒZ0
13

Z0
11
�1�˝ ŒZ0

21
�1Z0

25
�

(c) ŒZ0
13

Z0
11
�1�˝ ŒZ0

21
�1Z0

25
�1�

(d) ŒZ0
13
�1Z0

11
�1�˝ ŒZ0

21
�1Z0

25
�1�

(6) For components going from �0
4
� Œ0; 1� to �0

5
� Œ0; 1�:

(a) 1˝ ŒZ0
24

Z0
25
�

(b) 1˝ ŒZ0
24

Z0
25
�1�

(c) 1˝ ŒZ0
24
�1Z0

25
�1�

The coordinate change map ‚!��0 W yZ!�0 ! yZ!� is defined in [24] by a similar block-by-
block analysis. It turns out that it is very well-behaved with respect to the blocks in the
above two lists. Indeed, Hiatt proves in [24, Lemma 21] that ‚!��0 sends each block
of Z!

T 0
1

˝Z!
T 0

2

in the list above to the corresponding block in Z!
T1
˝Z!

T2
in the first

list, while sending each element of Z!
T 0
j

with j > 2 to the element of Z!
Tj

obtained by
removing the primes 0 . When combined with our original observations, this proves that

‚!��0
�
Tr�
0

S

�
ŒK; s�

��
D Tr�S

�
ŒK; s�

�
in the case considered, namely when � and �0 differ by a diagonal exchange.

As noted at the beginning of our discussion, this completes the proof of Theorem 28.
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8 Injectivity of the quantum trace homomorphism

We conclude with a simple observation.

Proposition 29 The quantum trace homomorphism

Tr!� W SA.S/! yZ!�

of Theorem 1 is injective.

Proof As a vector space, the skein algebra is clearly generated by the family of
all skeins ŒK� 2 SA.S/ that are simple, in the sense that they are represented by 1–
submanifolds of S (with no crossings, and with vertical framing) whose components
are not homotopic to 0.

For such a simple skein ŒK�, our state sum construction of the Laurent polyno-
mial Tr!�

�
ŒK�
�
2 yZ!� shows that its highest degree term is a nonzero scalar multiple of

Z
k1

1
Z

k2

2
� � �Z

kn
n , where ki > 0 is the geometric intersection number of K with the

i –th edge �i of the ideal triangulation �.

The key observation is now that a simple skein ŒK� can be completely recovered from
the collection .k1; k2; : : : ; kn/ of its geometric intersection numbers. It easily follows
that the image under Tr!� of a nontrivial linear combination of simple skeins cannot
be 0 (focus attention on a term for which .k1; k2; : : : ; kn/ is maximal), which proves
that the kernel of Tr!� is trivial.

Incidentally, the above argument also provides another proof that simple skeins are
linearly independent in SA.S/.
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