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Homological Lagrangian monodromy

SHENGDA HU

FRANÇOIS LALONDE
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We show that the Hamiltonian Lagrangian monodromy group, in its homological
version, is trivial for any weakly exact Lagrangian submanifold of a symplectic
manifold. The proof relies on a sheaf approach to Floer homology given by a relative
Seidel morphism.
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1 Introduction

Given a Lagrangian submanifold L�M embedded in a symplectic manifold M , it is
natural to consider the subgroup G � Diff.L/ consisting of all diffeomorphisms of L

that can be obtained as the time-one map of a Hamiltonian (that is, exact) Lagrangian
isotopy �t2Œ0;1�W L ! M that starts at t D 0 at the identity map on L and ends
at t D 1 at a diffeomorphism that preserves L. In other words, if one denotes by
HamL.M /�Ham.M / the subgroup of the group of Hamiltonian diffeomorphisms of
M consisting of the diffeomorphisms g satisfying g.L/DL, the group G is then the
image of the homomorphism

HamL.M /! Diff.L/

that assigns to each diffeomorphism g 2 HamL.M / its restriction to L. Denoting by
R any given ring, the homological Hamiltonian Lagrangian monodromy problem is
the study of the subgroup G�;R of Aut.H�.LIR// defined as the image of G under
the map that assigns to each diffeomorphism its action on homology (we will often
assume that R is given and will omit it in our notations; we will also omit the word
“exact” since we will work with Hamiltonian isotopies only in this paper).

The homological Lagrangian monodromy group G�;R is an invariant attached to each
exact Lagrange isotopy class of a given Lagrangian submanifold. It is therefore of
prime importance in the Lagrangian knot problem.

To our knowledge, this group has been studied only very recently by Mei-Lin Yau [13],
in the two cases of the standard monotone 2–torus and of the Chekanov torus, both
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living in R4 , using soft methods in a clever way. Let ‚t2Œ0;1� be the standard one-
parameter family of elements of SO.2/ starting at the identity anti-clockwise and
ending at the rotation by angle �=2. By the standard inclusion SO.2/ � U.2/, the
same path can be considered as a path of elements of U.2/ and it clearly restricts to an
exact isotopy of the standard torus Ta;a D S1.a/�S1.a/�C �C (here the number
in parentheses denotes the area of the circle) whose endpoint at t D 1 permutes the two
standard generators of H1.Ta;aIZ/. The main result of [13] is that this induces the only
non-trivial element of G�;Z , and thus G�;Z DZ2 for the standard torus. M-L Yau also
shows that the same result holds for the Chekanov 2–torus of R4 . Moreover she shows
that the intrinsic spectral (and symplectic) invariants attached to the non-trivial element
of G�;Z in each of these two cases are different, so that this provides another proof
of the fact that the standard 2–torus is not exact Lagrange isotopic to the Chekanov
2–torus.

The other extreme case is the one of a closed exact Lagrangian submanifold L in a
cotangent bundle T �V . A famous conjecture states that L should then be Hamiltonian
isotopic to the zero section. If this conjecture is true, then obviously the group G� is
trivial for all coefficients, that is to say it consists of the identity only. A homological
version of this conjecture has been proved by Fukaya–Seidel–Smith [7]: they have
indeed shown that if V is simply connected, then an exact Lagrangian embedding with
vanishing Maslov class of a spin manifold L in T �V must project to a map L! V

inducing an isomorphism in homology over Q. Thus, under these hypotheses, the
group G�;Q is clearly trivial.

The main goal of this paper is to prove the fundamental result that, when L is a weakly
exact Lagrangian submanifold of a symplectic manifold M , and under certain natural
conditions on L only related to the choice of the coefficients ring, this still holds, that
is to say the group G� is trivial. Thus, at least as far as the group G� is concerned,
a weakly exact Lagrangian submanifold behaves like the zero section of a cotangent
bundle. The additional natural conditions to which we referred are the usual conditions
under which the Floer homology over R is well-defined. We recall that, by definition,
L is weakly exact if the following map is identically 0:

I! W �2.M;L/!R W ˇ 7!

Z
ˇ

!

Obviously, this implies that M is symplectically aspherical, that is, I! vanishes on
�2.M /.

Our main result is the following:
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Theorem 1.1 Let .M; !/ be a symplectic manifold and L � M a closed weakly
exact Lagrangian submanifold. Let gt2Œ0;1� be a Hamiltonian diffeotopy of M starting
at the identity and ending at a diffeomorphism preserving L. Let f WD g1jL , then the
induced map on homology f�W H�.LIZ2/!H�.LIZ2/ is the identity.

Remark 1.2 In this theorem, instead of homology with coefficients in Z2 , we may
use Z or Q as coefficient ring as well. In these cases, we require L to be relatively
spin with a relatively spin structure, and g1 to preserve the relatively spin structure.
For the simplicity of statements, we use Z2 –coefficients in the main text, while discuss
the Z or Q–coefficients in the appendix.

A priori, one could try to prove this statement by using the invariance of the Floer
homology along the flow induced by gt2Œ0;1� to extract the information on G� , a bit
like what one would do using the sheaf of Floer homologies of a given Lagrangian sub-
manifold induced by some Lagrangian fibration. This paper shows how to make sense
of this idea. Indeed, our approach relies on the relative Seidel morphism, introduced
in Hu–Lalonde [8], associated to a Hamiltonian path gt2Œ0;1� with g1 2 HamL.M /,
and on the equivalence between two versions of this morphism, one given in analytic
terms and the other in geometric terms. The geometric version of this morphism can
be considered as the right set up for an implementation of the above “sheaf approach”
to the proof of our theorem.

The idea of the proof of the theorem is to first consider the fibration L ,!N !S1 over
S1 induced by the restriction to L of the path gt2Œ0;1� of Hamiltonian diffeomorphisms.
We then get the Wang long exact sequence

� � � !HqC1.L/
i�
�!HqC1.N /!Hq.L/

f��id
����!Hq.L/

i�
�!Hq.N /! � � �

We must therefore show that

i�W H�.L/!H�.N /

is injective. The point is that this fibration constitutes the boundary condition of
a Dirichlet problem for the x@–operator. Indeed, the path gt2Œ0;1� naturally gives
rise to a relative fibration .P;N / over .D2;S1/ with fiber .M;L/ and the linearity
of the relative Gromov–Witten invariants will lead us to a proof of the injectivity
of i�W H�.L/ ! H�.N /. This scheme of proof can be considered as the relative
Lagrangian version of the main theorem in Lalonde–McDuff–Polterovich [9]. This
will be shown in Section 3 using our geometric Seidel map defined in the next section.
In the last section of the paper, we give another proof of our main theorem which is
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more algebraic and simpler, but less geometric. It is possible that this second proof
could also be derived using the main results in Fukaya–Oh–Ohta–Ono [6, Section 22].

Note that this theorem, in its contrapositive version, provides an obstruction to the
extension of a given diffeomorphism f W L!L to a Hamiltonian diffeomorphism of
the ambient symplectic manifold: more precisely, if L is weakly exact and f W L!L

induces a map not equal to the identity on say H�.LIZ2/, then it cannot be extended to a
Hamiltonian diffeomorphism of M . Obviously, because a Hamiltonian diffeomorphism
is isotopic to the identity, the statement of the theorem is interesting only when H�.L/

does not inject in H�.M /. There are plenty of closed weakly exact manifolds whose
homologies do not inject in the homology of the ambient manifold. The simplest
example is the one of a simple closed curve of a closed Riemann surface that bounds
homologically but not homotopically, and product of these examples. A less trivial
example is the following: consider the quotient Q of T 2 � R by the linear map
.x;y; z/ 7! .xCy;y; zC1/ where x;y are the coordinates on T 2 and z on R. Then
.dx� zdy/^ dz descends to a form on Q. Let t be the coordinate on S1 . The form
! D .dx � zdy/^ dzC dy ^ dt is then well defined and is symplectic on Q� S1 .
Moreover, T 2 is Lagrangian. The Wang sequence for the mapping torus shows that
the kernel of H1.T

2/!H1.Q/ is generated by the class Œy�. The homotopy exact
sequence of the fibration Q! S1 shows that �1.T

2/! �1.Q/ is injective. It then
follows that the relative �2.M;T 2/ vanishes, which implies that .M;T 2/ is weakly
exact, and the homology does not inject.

Here is the plan of the paper: in the next section, we describe the general set up,
including the definition of our geometric relative Seidel morphism. In Section 3 , we
give the proof of the main theorem up to the statement according to which the geometric
Seidel morphism is an isomorphism which is proved in Section 4 of this paper. The
last section gives the algebraic proof to which we referred above. In the appendix, we
give the condition under which the coefficient ring can be Z or Q.

Acknowledgments We are grateful to Leonid Polterovich for pointing out to us the
reference [13] by Mei-Lin Yau. We would like to thank Doug Park for suggesting the
Thurston manifold. We would also like to thank the referee for valuable suggestions
concerning orientations.

2 The geometric relative Seidel map

We present the geometric Seidel morphism for Lagrangian submanifolds. In particular,
we show that it is well defined and that it satisfies the properties that we need. As
explained in Remark 1.2, we will work over Z2 unless explicitly specified otherwise.
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2.1 Quantum homology of L

We recall the definition of the linear cluster complex (or pearl complex) as described in
Oh [11], Biran–Cornea [4] and Cornea–Lalonde [5]. Let .M; !/ be a symplectic man-
ifold and L�M a weakly exact Lagrangian submanifold. Let J be a !–compatible
almost complex structure on M . Then the fact that L is weakly exact implies that there
are no non-trivial J –holomorphic spheres in M as well as non-trivial J –holomorphic
discs with boundary on L. It follows that the quantum homology of L (see [4]) is
well defined and is isomorphic to H�.L/˝ƒL .

In this section, we will work in a more general setting and will only assume that L is
monotone, that is, there is a non-negative constant � such that

I! D �I�

where I�W �2.M;L/!R W ˇ 7! �.ˇ/ is the Maslov index of ˇ .

Suppose that .M;L/ is monotone with minimal Maslov index at least 2. Let f 2
C1.L/ be a Morse function and � a Riemannian metric on L so that the pair .f; �/
be Morse–Smale. Consider the configurations of J –holomorphic discs connected
by the negative flow lines of f . More precisely, let p0 D x; qk D y 2 Crit.f /, and
ui W .D

2;S1I �1; 1/! .M;LI qi�1;pi/, i D 1; : : : ; k be J –holomorphic discs with
boundary on L, such that for each pair .pi ; qi/, there is an open interval IiD .ai ; bi/�

R and li W Ii!L such that

d

dt
li.t/D�.r�f /.li.t// and lim

t!ai

li.t/D pi ; lim
t!bi

li.t/D qi

The value di WD bi �ai is said to be the distance between pi and qi , which are 1 for
i D 0; k . Let ˇi D Œui � 2 �2.M;L/ denote the class represented by the disc ui , and
set

ˇ WD .ˇ1; : : : ; ˇk/ and jˇj WD

kX
iD1

ˇi

Let �M.M;LIˇIf; �;J Ix;y/ denote the space of such configurations. We note that
for each li and ui there is a one-parameter family of reparametrization symmetries.
The unparametrized moduli space is defined to be the quotient by all such symmetries:

M.M;LIˇIf; �;J Ix;y/ WD �M.M;LIˇIf; �;J Ix;y/=R2kC1

In order for the theory to be well defined, we need regularity and transversality assump-
tions, as well as assumptions so that no branching of the linear cluster is possible at
dimensions 6 1 (see [4]). It is well known that all of these assumptions are satisfied in
the monotone case with minimal Maslov index at least 2, and therefore in the weakly
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exact case. With all such assumptions in place, we write down the dimension of the
moduli space that we have just defined. Let �L denote the Maslov class for L and jxj
the Morse index of x 2 Crit.f /, then

(2-1) dimR M.M;LIˇIf; �;J Ix;y/D jxj � jyjC�L.jˇj/� 1

The moduli spaces above are not necessarily compact as they admit real codimension
1 boundaries of three types:

(1) breaking of a Morse flow line, that is, di!1

(2) bubbling off of a holomorphic disc, that is, ˇi! ˇ0i Cˇ
00
i

(3) shortening of a Morse flow line, that is, di! 0

Since our assumptions exclude branching of the cluster in dimension 6 1, the bubbling
off of a holomorphic disc in a linear cluster with k holomorphic discs gives rise to
a linear cluster with kC 1 holomorphic discs with some di D 0. Now consider the
following union of equidimensional moduli spaces (in low dimensions)

M.M;LIBIf; �;J Ix;y/ WD [jˇjDBM.M;LIˇIf; �;J Ix;y/

Then the type .2/ and .3/ boundaries cancel each other and only the type .1/ boundary
remains. This provides the essential idea of the following proposition (see Oh [11],
Cornea–Lalonde [5] and Biran–Cornea [4]).

Proposition 2.1 The linear cluster complex (or pearl complex) of .M;L/ is given by
the following differential @Pearl on Crit.f /˝ƒL ,

@Pearlx D
X
y;B

#M.M;LIBIf; �;J Ix;y/eBy

where ƒL is the Novikov ring for L, and where the counting is performed for 0–
dimensional moduli spaces only. The differential satifies @2

Pearl D 0. The quantum
homology of L (in M ) is defined as

QH�.M;LIf;g;J / WDH�.Crit.f /˝ƒL; @Pearl/

The coefficients #M.M;LIBIf; �;J Ix;y/ is the counting in Z2 or Q. One can
always work over Z2 , while when L is relatively spin and a relative spin structure is
chosen, Q–coefficients can be used.

We note that the differential can be written as the sum

@Pearl D @MorseC @
0
Pearl
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where @Morse is the classical Morse differential and we may consider the cluster complex
as a deformation of the classical Morse complex. It is shown in Cornea–Lalonde [5]
and Biran–Cornea [4] that the linear cluster complex is well defined and independent of
the choices made. It is therefore an invariant of .M;L/. We write QH�.M;L/ for its
homology. By a PSS type argument, it is shown in [4] that QH�.M;L/ is isomorphic
to FH�.M;L/, the Floer homology of connecting Hamiltonian paths, whose definition
in our setting is recalled in Section 4 for the convenience of the reader.

Under the weakly exact assumption, we note that @0Pearl D 0 since there is no pseudo-
holomorphic discs representing non-trivial class. Thus, the pearl complex of .M;L/

is the Morse complex of L with coefficients in ƒL .

2.2 Bundle over a disc

Let HamL.M; !/ be the subgroup of Hamiltonian diffeomorphisms that preserve L.
Let PL Ham.M; !/ consist of paths gt2Œ0;1� in Ham.M; !/ such that

g0 D id and g1 2 HamL.M; !/

We note that PL Ham.M; !/ is a group where

.gg0/t WD gt ıg0t

Such g D gt2Œ0;1� ’s define a Hamiltonian fibration over D2 as follows (a similar
fibration was actually carried over in a different context in Akveld–Salamon [1]) .

We consider the (closed) disc with diameter 1, parametrized as

D2
WD
˚
z 2C W

ˇ̌
z� i

2

ˇ̌
6 1

2

	
and the half discs D2

˙
D fz 2D2j˙<z > 0g. Then the fibration defined by g is

Pg DD2
C �M tD2

� �M=�W .i t;x/� .i t;gt .x// for t 2 Œ0; 1�

Let � W Pg ! D2 denote the projection. On this Hamiltonian bundle, let � be the
coupling form constructed from a Hamiltonian function K generating g , then

!g WD � C ��
�!0

is a symplectic form on Pg . We note that along the S1 –boundary, we have the restricted
bundle

N WD tt2S1Lt
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that is obtained as the union of the copies of L in each fiber; it is a Lagrangian
submanifold of P . Because L is weakly exact, the comparison theorem in Biran–
Cornea [4] implies that QH�.M;L/ is isomorphic to FH�.M;L/. Because the
fibration is Hamiltonian, it is easy to see that .Pg;N / admits sections over .D2;S1/.

A class B 2 �2.Pg;N / is a section class if ��.B/ 2 �2.D
2;S1/ is the positive

generator, with respect to the natural orientation on D2 . We say that B is a fiber class
if B is in the image of the map �2.M;L/! �2.Pg;N / induced from inclusion of
the fiber.

Lemma 2.2 The following sequence of homotopy groups is exact at the middle term:

�2.M;L/
i
�! �2.Pg;N /

j
��! �2.D

2;S1/

Proof It follows from the diagram chasing:

�2.M /

k

��

Š // �2.Pg/

��
�2.M;L/

@

��

i // �2.Pg;N /

@

��

j // �2.D
2;S1/D Z

@ Š

��
�1.L/

��

� � // �1.N /

��

// �1.S
1/D Z

�1.M /
Š // �1.Pg/

where the columns are homotopy exact sequences of pairs and all rows except the
second are homotopy exact sequences of fibrations.

We only show that ker j � img i . We will use i and j to denote the first and second
map in each row. Let ˇ 2�2.Pg;N / and j .ˇ/D 0. Then j .@ˇ/D 0 and by exactness
of the third row, we see that there exists ˛0 2 �1.L/ such that i.˛0/ D @ˇ . By the
exactness of the columns, there is ˛2�2.M;L/ such that ˛0D@˛ and @.ˇ�i.˛//D0.
Thus there is  2 �2.M / Š �2.Pg/ such that i ı k. / D ˇ � i.˛/. It follows that
ˇ 2 img i .

It means in particular that the difference of section classes is a fiber class.

Definition 2.3 Let the smooth map uW D2 ! Pg represent B 2 �2.Pg;N /. The
vertical Maslov index of B , denoted �v.B/ is the Maslov index of the bundle pair
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.u�T vPg;u
�T vN /, where T v D ker d� denotes the respective vertical tangent bun-

dles.

One can show that the above is well defined and not dependent on the choice of u (see,
for example, Hu–Lalonde [8]). Furthermore, let B and B0 denote two section classes,
we have

�v.B �B0/D �L.B �B0/

�v.B/D �N .B/� 2:and

We can introduce the following equivalence relation among the section classes

B � B0()

Z
B�B0

� D 0 and �v.B �B0/D �L.B �B0/D 0:

An alternative construction of the fibration Pg is the following. Let Q WDD2 �M

and note that N coincides with the mapping cylinder of g�1
1
jL , that is,

N Š Œ0; 1��L=.0;p/' .1;g�1
1 .p//:

We then have the inclusion �gW N ,!Q given by

.t;p/ 7!
�
�t ;g

�1
t .p/

�
;

where �t WD
i
2

�
e2� it C 1

�
in the parametrization of S1 D @D2 by t 2 Œ0; 1� 7! �t .

Lemma 2.4 .Q;N /Š .Pg;N / with the respective inclusion of N .

Proof Recall that g 2 PL Ham.M; !/ is a path starting from id:

g0 D id;gt2Œ0;1� 2 Ham.M; !/ and g1 2 HamL.M; !/

We note that .Pg;N / depends only on the homotopy class of g with fixed end points.
First we show that .Q;N / depends only on such homotopy class as well. Let g0 � g

be homotopic to g in PL Ham.M; !/ with fixed end points. Thus

ht D g0t ıg�1
t 2�Ham.M; !/ is a contractible loop in Ham.M; !/

Let ‰hW D2 ! Ham.M; !/ be a homotopy of fhtg to id 2 Ham.M; !/, where
‰h.�t /D ht and ‰h

�
i
2

�
D id. Then we have

‰W Q
Š
�!Q W .z;x/ 7!

�
z; ‰h

z .x/
�
; and thus �g0 D‰

h
ı �gW N ,!Q:
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We describe an alternative construction of Pg , together with the embedding of N .
Consider the map  W D2

C �M !D2
C �M given by

 .z;x/D .z;g�1
t .x//;

where z D sC i t 2D2
C . We define Q from the quotient

D2
C �M tD2

� �M=�0W .t;x/�0 .t;x/ for t 2 Œ0; 1�

Then the map

D2
C �M tD2

� �M
 tid
���!D2

C �M tD2
� �M

induces an isomorphism of Q
Š
�! Pg . The inclusions of N obviously correspond.

2.3 Definition of the Seidel map

We first recall the definition of the map i�W H�.L/!H�.N / via Morse homology.
Denoting the basis of the fibration N as the set of points in the unit circle of the
complex plane and by L˙1 the two fibers over C1 and �1, let F 2 C1.N / satisfy
the following:

� F is a Morse function

� f˙ WD F jL˙1
are Morse functions on L

� Crit.F /D Crit.fC/[Crit.f�/ and

� maxf�C 1<minfC .

We choose a metric G on N such that the pairs .F;G/ and .f˙;g˙/ are Morse–Smale
pairs on N and L respectively, where g˙ are the restrictions of G to L˙1 . Then
the Morse complexes are well defined and compute the homologies of the respective
manifolds. To define i� via Morse theory, we require that the pair .F;G/ satisfies the
following:

� In a neighbourhood of the fibers over ˙1, the fibration N ! S1 is locally
identified as a product, L�U˙ , where ˙1 2 U˙ � S1 .

� The restriction of F to this neighbourhood is of the form f˙ C '˙ , where
'˙W U˙!R is smooth with unique critical point at ˙1.

� The restriction of G to this neighbourhood is a product metric.
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It follows that the map induced by the inclusion of the set of critical points is an
inclusion of Morse complexes:

i W MC�.LIf�;g�/ ,!MC�.N IF;G/

It induces the map i�W H�.L/!H�.N / in homology.

We now define the Seidel map in this setting. Suppose that J is a tamed almost
complex structure on Pg , where we may choose the symplectic structure on Pg to be
the pull-back of the product symplectic structure on Q via the isomorphism given by
Lemma 2.4. We also suppose that J is compatible with the fibration, namely:

� the projection � W Pg!D2 is pseudo-holomorphic, and

� J restricts to compatible almost complex structures on the fibers.

We consider the linear clusters in .Pg;N / for which exactly one of the pseudo-
holomorphic discs represents a section class in �2.Pg;N / and all other discs represent
fiber classes. Given x� 2 Crit.f�/ and yC 2 Crit.fC/, this amounts to consider the
moduli spaces M.Pg;N I � IF;G;J Ix�;yC/ where j� j is a section class. Let j � jL

be the Morse index in L and j � jN that in N , then

jx�j
N
D jx�j

L and jyCjN D jyCjLC 1

We obtain from (2-1)

dimR M.Pg;N I � IF;G;J Ix�;yC/D jx�j
N
� jyCj

N
C�N .j� j/� 1

D jx�j
L
� jyCj

L
C�v.j� j/

Definition 2.5 Let � denote a section class in �2.P;N / and �0 a particular choice of
reference section class. Then B WD � ��0 is a fiber class and the chain level geometric
Seidel map is

‰L.g; �0/W Crit.f�/˝ƒL�! Crit.fC/˝ƒLC

‰L.g; �0/.x�/ WD
X

B;yC

#M.Pg;N I �0CBIF;G;JP Ix�;yC/e
ByC

where the coefficients count (in Z or Z2 , see Remark 2.6) the zero dimensional moduli
spaces.

Remark 2.6 We note that for the purpose of the main theorem, with the assumption of
weak exactness on L, standard transversality provides that the moduli spaces above are
smooth manifolds. In general, when we allow .M;L/ to be monotone with minimal
Maslov index 2, the transversality arguments in Biran–Cornea [4] can be adapted so
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that the moduli spaces are again smooth with the expected dimension in dimension
6 1. The main point in the adaptation is that the disc that represents a section class is
necessarily simple.

For the counting, one can always work over Z2 . On the other hand, if L is relatively
spin and the map g1 preserves the chosen relative spin structure, we may use Z or Q
as coefficients, see Section A, the appendix.

Lemma 2.7 ‰L.g; �0/ is a chain map of degree �v.�0/ and the induced map on
QH�.M;L/, does not depend on the choice of generic data.

Proof Because .M;L/ is weakly exact, the moduli spaces of holomorphic discs in
Pg with boundary in N , representing a section class, are compact. Let B denote a fiber
class in �2.Pg;N /. Thus, M.Pg;N I �0CBIF;G;JP Ix�;yC/ is compactified by
broken Morse flow lines. From this, it follows that ‰L.g; �0/ is a chain map. Because
deg eB D��L.B/, by the dimension computation of the moduli spaces, we see that
the degree of the map is �v.�0/.

Now we show that it does not depend on the choices of generic data .F;G;JP /.
Suppose that we have two triples of Morse functions, metrics and compatible almost
complex structures: .Fi ;Gi ;JP;i/ for i D 0; 1. Consider the fibration

�
zP ; zN

�
D

.Pg;N / � Œ0; 1� and endow it with a triple
�
zF ; zG; zJ

�
where zF is a smooth Morse

function on zN , zG is a metric on zN that restricts to Gi on Pg � fig and where
zJ is a smooth family of !–compatible and fibration-compatible complex structures
on Pg � ftg, which connects JP;i on Pg � fig. Assume that zF coincides with
zFi WDAiFiCCi on .Pg;N /�fig for some constants Ai and Ci , i D 0; 1 chosen so

that

minf0;C >maxf1;CC 1>minf1;C >maxf0;�C 1>minf0;� >maxf1;�C 1

Here fi;˙ is the restriction of zF to the fiber Li;˙ of N � Œ0; 1�! S1 � Œ0; 1� above
the point .˙1; i/. Assume moreover as usual that Crit. zF /D Crit. zF0/[Crit. zF1/.

In general, we consider the configuration of a linear cluster in zP connecting x� 2L0;�

to yC 2 L1;C via negative gradient lines and holomorphic discs ui W .D
2;S1/ !

.Pg;N /� ftig for some ti 2 Œ0; 1�, the total class of the Œui �’s being a section class
� 2 �2. zP ; zN /Š �2.Pg;N /. Exactly like in the definition of ‰L , we can adapt the
transversality argument in Biran–Cornea [4] and see that the moduli spaces of such
configurations are smooth of the expected dimension when the dimension is 6 1. Let
M. zP ; zN I � I zF ; zG; zJ Ix�;yC/ denote the moduli space of such linear clusters and
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write � D �0CB , where �0 is a chosen reference section class and B is a fiber class.
We define †W Crit. zF0;�/˝ƒL! Crit. zF1;C/˝ƒL by

†.x�I �0/ WD
X

B;yC

#M. zP ; zN I �0CBI zF ; zG; zJ Ix�;yC/e
ByC

where the counting #M is for the moduli spaces of expected dimension 0, that is,

jx�j
L
� jyCj

L
C�v.�0/C�L.B/C 1D 0

It follows that †.�I �0/ is of degree �v.�0/C 1.

Now considering the boundary components of the moduli spaces with dimension 1,
we see that it consists of the following four types of configurations, corresponding
precisely to the case when the breaking of Morse flow lines happens on one of the
Li;˙ ’s.

It is then obvious that:

(1) the breaking on L0;� corresponds to †.�I �0/ ı @Pearl ,

(2) the breaking on L1;C corresponds to @Pearl ı†.�I �0/,

(3) the breaking on L0;C corresponds to ˆC ı‰L0
.g; �0/ and

(4) the breaking on L1;� corresponds to ‰L1
.g; �0/ ıˆ� ,

where

ˆ˙W Crit.f0;˙/˝ƒL! Crit.f1;˙/˝ƒL

are the comparison maps between quantum homologies of L with different choices of
.f; �;J /, which are quasi-isomorphisms. We can then write down

(2-2) †.�I �0/ ı @Pearl� @Pearl ı†.�I �0/DˆC ı‰L0
.g; �0/�‰L1

.g; �0/ ıˆ�

and it follows that ˆC ı‰L0
.g; �0/ and ‰L1

.g; �0/ ıˆ� induce the same maps on
quantum homologies.

We note that the above lemma implies that the Seidel map ‰.g; �0/ does not depend on
the homotopy class of g , because the construction for g0 � g gives the same bundles
.Pg;N / with a different set of data .F;G;JP /.
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3 Proof of the theorem

We will use the following proposition, which follows from Proposition 4.1 in Section 4:

Proposition 3.1 The map ‰L.g; �0/ is an isomorphism of quantum homology of
.M;L/.

As shown in the introduction, the main theorem (Theorem 1.1) follows from:

Lemma 3.2 Let .M;L/ be symplectically aspherical. Then i�W H�.L/!H�.N / is
injective.

Proof Note that the Morse theoretical definition of i� is defined by the inclusion of
chain complexes MC�.L/ ,!MC�.N /. Since .M;L/ is symplectically aspherical,
QH�.M;L/DH�.LIƒL/ is the homology of .MC�.L/˝ƒL; @Morse/. The Seidel
map ‰L.g; �0/ then defines an isomorphism of QH�.M;L/.

By the universal coefficient theorem, H�.L/˝ƒL is a subgroup of QH�.M;L/. We
prove by contradiction. Suppose that ker i� ¤ f0g, then there exists ˛ ¤ 0 2 ker i�
such that it is represented by

P
i aixi;� 2MC�.L�/ andX

i

aixi;� D @
N
Morse

X
j

bj yj ;C for some yj ;C 2 Crit.fC/

where @N
Morse denote the boundary operator in Morse homology of N . Since ‰L is an

isomorphism on QH�.M;L/, we have ‰L

�P
i aixi;�

�
¤ 0.

We work on chain level. Let y 2 Crit.F / and zC 2 Crit.fC/� Crit.F / and consider
the moduli space for fiber classes B :

M.Pg;N I �0CBIF;G;JP Iy; zC/;

which has expected dimension

jyjN � jzCj
N
C�N .�0CB/� 1D jyjN � jzCj

L
C�v.�0/C�L.B/:

Let †.g; �0/ denote the map MC�.N / 7!MC�.L/˝ƒL defined by

y 7!
X

B;zC

#M.Pg;N I �0CBIF;G;JP Iy; zC/e
BzC

where the coefficients count dimension 0 moduli spaces. We note that when restricted
to MC�.L�/, †.g; �0/ coincides with ‰L .
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Consider now the moduli spaces M.Pg;N I �0CBIF;G;JP Iy; zC/ of dimension 1,
which are compactified by the breakings in the Morse flow lines in N , on L˙ . By the
choices made for .F;G/, we write down the boundary components for y D yC :

(3-1)

MMorse.yC;y
0
C/�M.Pg;N I �0CBIF;G;JP Iy

0
C; zC/

MMorse.yC;x�/�M.Pg;N I �0CBIF;G;JP Ix�; zC/

MMorse.z
0
C; zC/�M.Pg;N I �0CBIF;G;JP IyC; z

0
C/

where MMorse denotes the moduli space of Morse trajectories (in N ) connecting the
two critical points, which in this case, all have dimension 0. It follows that

†.g; �0/ ı @
N
Morse.yC/C @Morse ı†.g; �0/.yC/D 0

Thus

‰L

�X
i

aixi;�

�
D†.g; �0/

�X
i

aixi;�

�
D

X
j

bj†.g; �0/ ı @
N
Morse.yj ;C/

D @Morse

�
�

X
j

bj†.g; �0/.yj ;C/

�
and becomes 0 in QH�.M;L/. This is a contradiction.

4 Correspondence between the analytic and geometric Seidel
maps

We first recall the construction of the analytic Seidel map and restate it in the current
geometric setting. Then we show that the two constructions coincide. In a way similar
to Seidel [12], the comparison uses the PSS isomorphism in the Lagrangian setting, for
which we will adapt the construction of Biran–Cornea [4] or Hu–Lalonde [8] using
Hamiltonian fibrations.

4.1 Analytic setting

In this subsection, we recall the Seidel map and PSS isomorphism in the analytic setting.
Recall that

D2
˙ D

˚
z 2C W

ˇ̌
z� i

2

ˇ̌
6 1

2
and ˙<z > 0

	
Let @0 DD2

C\ iRDD2
�\ iR, and @˙ DD2

˙
\
˚
z W
ˇ̌
z� i

2

ˇ̌
D

1
2

	
. Let PLM be the

space of paths in M with both ends on L that are contractible in .M;L/, and zPLM
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the covering space whose elements are equivalence classes Œl; w� of pairs .l; w/

l W .Œ0; 1�; f0; 1g/! .M;L/ and wW .D2
C; @C; @0/! .M;L; l/

where l.t/D w.i.1� t//. The equivalence relation is the following

.l; w/� .l 0; w0/() l D l 0 and w �@0
w0

where �@0
means that the homotopy connecting w and w0 in .M;L/ becomes the

trivial homotopy when restricted to @0 . The Floer homology of .M;L/ is constructed
from a choice of a time-dependent Hamiltonian function H and a compatible almost
complex structure J on M . The action functional as well as the metric are then defined
as:

aH .Œl; w�/D�

Z
D2
C

w�!C

Z
Œ0;1�

Ht .l.t//dt

.�; �/J D

Z
Œ0;1�

!.�.t/;Jt�.t//dt; for �; � 2 C1.l�TM /and

Then the Floer homology FH�.M;LIH;J / can be seen as the Morse homology of
zPLM for aH in the metric .; /J . The differential daH and .; /J are well defined on
PLM already and the equation of negative gradient flow lines can be written in PLM

as well:

(4-1)
�
@u
@s
CJt .u/

�
@u
@t
�XHt

.u/
�
D 0 for all .s; t/ 2R� Œ0; 1�;

uW R� Œ0; 1�!M and ujR�f0;1g �L

The action of PL Ham.M; !/ on PLM lifts to an action of an extension group
zPL Ham.M; !/ on zPLM . An element of zPL Ham.M; !/ can be represented as
.g; zg/, where g 2 PL Ham.M; !/ and zg is determined by the action of .g; zg/ on
point elements Œp;p� 2 zPLM in the following fashion. Let’s denote .g; zg/ ı Œp;p� by
Œpg; w

g
p �. Let Œl; w� 2 zPLM and Œlg; wg�D .g; zg/ ı Œl; w�, then

lg.t/D gt ı l.t/

and wg is defined as follows (we write wg instead of w.g;zg/ to simplify the notation).
Consider w as a homotopy from a constant path l.0/ to l , that is, it is spanned by a
one-parameter family ˛�2Œ 1

2
;1� with ˛ 1

2
.t/D l.0/ and ˛1.t/D l.t/. The action of g

on w is then the strip obtained as the image gt .˛� .t//. Now we define the action of
.g; zg/ on w as the half disk obtained by gluing the above strip along its boundary at
� D 1

2
with wg

l.0/
. This defines wg .

Now the push-forward by g of H and J is given by the pair .H g;J g/:

H g.t;x/DH.t;g�1
t .x//CK.t;x/ and J

g
t D dgt ıJt ı dg�1

t
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where K.t;x/ is the Hamiltonian function generating g . The lifted action of .g; zg/
on zPLM then defines an isomorphism of Floer homologies

‰zgW FH�.M;LIH;J /! FH�.M;LIH g;J g/ W Œl; w� 7! Œlg; wg�

which gives the analytic version of the relative Seidel map.

We also describe the PSS isomorphism in the analytic setting. We will describe only
the direction QH�! FH� because the other direction is similar, and we will describe
(both directions of) the geometric version in more detail in the next subsection. Let
Z� be the half-disc with infinite end:

Z� WDD2
�[@0

.RC � i Œ0; 1�/�C

and choose a C1 z–dependent (z 2 Z� ) Hamiltonian function and a compatible
almost complex structure .H; J/ WD f.Hz;Jz/gz2Z� on M such that

.H; J/jz2D2
�
D .0;J0/

.H; J/j<z>1 D .H;J /;and

where J0 is a generic compatible almost complex structure. The equation is

(4-2)
�
@u
@s
CJz.u/

�
@u
@t
�XHz

.u/
�
D 0 for all z D sC i t 2Z�

uW Z�!M and uj@Z� �L

Then finite energy solutions converge to critical points l of daH as s!1. We may
mark the point 1

2
.�1; i/ and consider the evaluation map from the moduli space of the

solutions to (4-2). The PSS isomorphism QH�! FH� is then defined by counting
the intersections with cycles in L� WDL�

˚
1
2
.�1; i/

	
of the moduli space under the

evaluation.

4.2 Geometric setting

In this subsection, we rewrite the construction of PSS isomorphism in the previous
subsection using Hamiltonian fibrations, and prove Proposition 4.1 stating that the
geometric and analytic Seidel morphisms coincide.

The equation (4-2) can be written also as the x@–equation for a holomorphic section in
a fibration over Z� as follows. Let P� DZ� �M and consider the symplectic form:

�� WD �.!C dHz ^ dt/C ds ^ dt

The almost complex structure zJ� on P� is given by Jz along the fibers and

zJ�

�
@

@s

�
D
@

@t
�XHz
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The f.Hz;Jz/gz2Z� in the above expressions are given by the same .H; J/ in the
previous subsection. Then zJ� is tamed by �� and the x@–equation for zJ�–holomorphic
sections ��W Z�!P� with boundary on L�@Z� coincides with (4-2) and the graph
of a solution of (4-2) gives a zJ�–holomorphic section. Thus we obtain the geometric
version of the PSS isomorphism in the direction QH�! FH� .

To define the other direction, FH� ! QH� , let � W C ! C be the anti-linear map
reversing the real part:

�.sC i t/D�sC i t:

then DC D �.D�/ and we consider ZC D �.Z�/, PC DZC �M . From .H; J/ as
above, we define

˚�
H

g

�.z/
;J

g

�.z/

�	
z2ZC to be the push-forward by g . The correspond-

ing symplectic structure �g
C is

�
g
C WD �.!C dH

g

�.z/
^ dt/C ds ^ dt

and the tamed almost complex structure zJ g
C is defined by J�.z/ along the fiber over

z 2ZC and

JC

�
@

@s

�
D
@

@t
�XH

g

�.z/

In this case, pseudoholomorphic sections with finite energy converge to critical points
lg of daH g as s!�1. Then counting of moduli spaces of sections gives the other
direction FH�! QH� of the PSS isomorphism.

Proposition 4.1 The composition

QH�.M;L/
PSS
��! FH�.M;L/

‰zg
��! FH�.M;L/

PSS
��! QH�.M;L/

coincides with the geometric Seidel map ‰L.g; �0/ for an appropriately chosen �0 .

Proof The proof is an application of the gluing method to explicitly identify the
moduli spaces involved. Note that this only concerns the moduli spaces of dimension
6 1. It is analogous to the proof showing that PSS maps are isomorphisms (see
Biran–Cornea [4]).

Consider for each R>0 the map GRW Œ1;RC1��Œ0; 1��M! Œ�R�1;�1��Œ0; 1��M

between subsets of P� and PC given by

GR.s; t;x/D .s�R� 2; t;gt .x//

It is then straightforward to check that GR�.��/D�
g
C . It follows that PC and P�

may be glued symplectically using GR :

Pg.R/ WD
˚�

P�n.RC1;1/� Œ0; 1��M
�
[
�
PCn.�1;�R�1/� Œ0; 1��M

�	
=GR;
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and we obtain a Hamiltonian fibration, which is homotopic to Pg given in the previous
geometric construction. The symplectic form �.R/ on Pg.R/ can be written as

�.R/D ��.R/C!D2

where �.R/ is a coupling form.

The almost complex structures on PC and P� are glued by GR as well, and the
result is denoted zJg.R/. For pseudoholomorphic sections uC and u� in PC and
P� with finite energy, which converge to Œlg; wg� and Œl; w� respectively, their limits
as s!˙1 are identified naturally by g . It follows that under gluing by GR , uC
and u� give rise to a pseudoholomorphic section of Pg.R/, for R big enough, using
standard gluing argument. Let M.PC; l

g/ and M.P�; l/ be the moduli spaces of
pseudoholomorphic sections in PC and P� with prescribed limits at infinity, and
M.Pg.R// the moduli space of pseudoholomorphic sections in Pg.R/. The same
gluing argument (together with compactness) shows that for all R> 0,

M.Pg.R//Š[lM.PC; l
g/�M.P�; l/

Next we identify the maps. Let ˛� denote a chain in L� and zl D Œl; w�. Let M.P�; zl/

be the subspace of M.P�; l/ such that

I�.w#u�/D 0

where we think of u� as a map from the half disc to M via the projection P�!M .
Then the PSS map QH�! FH� is defined at the chain level as

(4-3) PSS.˛�/D
X
zl

#.ev�M.P�; zl/ t ˛�/zl

where ev� is the evaluation map

M.P�; zl/!L�W u� 7! u�
�

1
2
.�1; i/

�
On the other hand, let ˛C be a chain in LC DL�

˚
1
2
.1; i/

	
and M.PC; zl

g/ be the
subspace of M.PC; l

g/ such that

I�.w
g#.�uC//D 0 for uC 2M.PC; zl

g/

Then the PSS map FH�! QH� is defined as

(4-4) PSS.zlg/D
X

B2�2.M;L/;˛C

#.evCM.PC; zl
g#B/ t ˛C/eB˛C
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It follows that the composition in the statement is defined by

(4-5)

PSS ı‰zg ıPSS.˛�/D
X
zl

#.ev�M.P�; zl/ t ˛�/PSS.zlg/

D

X
zl;B;˛C

#.ev�M.P�; zl/ t ˛�/#.evCM.PC; zl
g#B/ t ˛C/eB˛C

D

X
˛C;B

#..ev� � evC/M.Pg.R/; �
g
w#B/ t .˛� �˛C//eB˛C

where the last equality uses the isomorphism of the moduli spaces via gluing, and �g
w

can be formally written as wg#.�w/. Here the notation M.Pg.R/; �/ denotes the
subset of elements in M.Pg.R// that represent the section class � .

Comparing with the expression for ‰L.g; �0/, we see that the only thing left to show
is that wg#.�w/ belongs to the same section class for any zl D Œl; w�. Then take �0

to be the common class and the proposition is established. This we show in the next
lemma.

Lemma 4.2 Let zl D Œl; w� 2 zPLM and zg 2 zPL Ham.M; !/. The equivalence class
of the section �g

w D w#.�wg/ of P .R/ defined above does not depend on w .

Proof We show that the sections �g
w are homotopic, which implies equivalence.

Suppose that .g; zg/D id then the resulting bundle .Pg;N / is the trivial bundle pair.
Let pr W .Pg;N /! .M;L/ be the projection to the fiber, then pr.w#.�w// represents
0 in �2.M;L/. In particular, w#.�w/ is homotopic to the section D2�fl.0/g. Thus,
the equivalence class of wg#.�w/ does not depend on w .

Let zp D Œp;p� be the trivial path and lifting to zPLM where p 2 L. Then �g
p D

w
g
p #.�p/. Choose a path fptg on L which connects p and p0 , then it is obvious that
�

g
p and �g

p0 are homotopic through sections with boundary on N by �g
pt

. It follows
that the equivalence class of �g

p does not depend on the point p .

For general Œl; w� we show that it is the combination of the above two special cases.
First, .g; zg/ may be reparametrized such that gt D g1 for t > 1

3
, and w

g
p maps

DC \
˚
=z < 2

3

	
to g1.p/ for all p 2 L. Then, w may be reparametrized such that

w D l.0/ on DC\
˚
=z > 1

3

	
. The resulting section �g

w is homotopic to the original
wg#.�w/.

We can now identify the section �g
w with the special cases. For =z > 2

3
, the section �g

w

coincides with �g

l.0/
and for =z < 1

3
, the section �g

w coincides with g1 ı .w#.�w//.
For 1

3
< =z < 2

3
, the section �g

w coincides with g1.l.0//.
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Similar construction for another element Œl 0; w0� gives a section �g
w0 . Now the homo-

topies described in the special cases define a homotopy between the sections �g
w and

�
g
w0 .

5 A second proof of Theorem 1.1

We now present another proof of the main theorem based on the analytic Seidel map
which is proved to be trivial in the symplectically aspherical case, thanks to additional
algebraic structures and ideas appearing in Leclercq [10]. This algebraic proof, which
is geometrically less meaningful, is conceptually more elementary. As above, we work
with coefficients in Z2 and we assume the pair .M;L/ to be symplectically aspherical.
In that case, the proofs of the intermediate steps are fully written in [10]. Moreover,
this proof does not extend as it is to integer and rational coefficients (see Section A.8
for some details).

Recall that since we work under the symplectic asphericity condition, the quantum
homology of L is actually its Morse homology and we may forget about the Novikov
ring on the Floer side.

First, notice that there is an “instantaneous” version of the analytic Seidel map described
in Section 4, consisting in using, instead of an isotopy g 2 PL Ham.M; !/, only a
Hamiltonian diffeomorphism preserving L, g12HamL.M; !/. We let ‰i

L
.g1/ denote

this instantaneous version, as well as its Morse counterpart.

Indeed, for any diffeomorphism h 2 Diff.L/, we can consider the morphism ‰i
L
.h/

identifying the complexes MC�.LIf; �/ and MC�.LIf h; �h/, where f h D f ı h�1

and �h D .h�1/�� , via the following equivalences:

x 2 Critk.f /” xh
D h.x/ 2 Critk.f

h/

 flow line of .f; �/”  h
D h ı  flow line of .f h; �h/

This identification induces an isomorphism on homology which commutes with the
usual comparison morphism. (The commutativity can be obtained at the chain level, by
choosing a regular homotopy .f ;�/ between .f0; �0/ and .f1; �1/ and on the other
side .f h;�h/.) The action of h on the (Morse) homology of L can then be seen as
the composition of this identification with the usual Morse comparison morphism (in
order to end up in the initial complex MC�.LIf; �/).

Now, if we choose g1 2 HamL.M; !/, we can compare the Floer and Morse instan-
taneous Seidel maps respectively associated to g1 and its restriction to L. The first
step of this second proof is to show that they do coincide, via the Lagrangian PSS
morphism.
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Lemma 5.1 The following diagram commutes in homology:

(5-1) MC�.LIF; �/
‰i

L
.g1jL/

//

PSS
��

.g1/�

++
MC�.LIFg1 ; �g1/

PSS
��

comp
// MC�.LIF; �/

PSS
��

FC�.LIH;J /
‰i

L
.g1/

// FC�.LIH g1 ;J g1/ comp
// FC�.LIH;J /

Proof Since the PSS morphism commutes with the classical Morse and Floer compar-
ison morphisms (see, for example, Leclercq [10, Lemma 2.3] for a proof), the right
square of (5-1) commutes in homology.

Now the left square commutes (at the chain level) for any regular choices of Floer and
Morse data on the left and their respective pullbacks via the Hamiltonian diffeomorphism
and its restriction to L. Indeed, in that case, there is an identification of the moduli
spaces defining the involved PSS morphisms.

Since (5-1) commutes, it suffices to prove that the composition of the two morphisms
at the Floer level induces the identity in homology. In order to do so, we express the
action of ‰i

L
.g1/ on FH�.L/ in terms of the (non-instantaneous) analytic Seidel map

(and Poincaré duality).

Lemma 5.2 The following diagram commutes:

(5-2) FC�.LIH;J/

‰L.g/ &&

‰i
L
.g1/ // FC�.LIH g1;J g1/

PD// FCy�.LIbH g1;bJ g1/

FC�.LIH g;J g/

77

PD // FCy�.LIbH g;cJ g/

‰L.g
0/

66

where g0 is the isotopy defined as g0t D g1 ıg�1
1�t

. (The dotted arrow, usually denoted�
‰L.g

0/
�
!
, is defined by the commutativity of the right square, that is, by pre- and

post-composing ‰L.g
0/ with Poincaré duality.)

Let us briefly recall the Floer theoretic version of Poincaré duality. This isomor-
phism is defined by identifying the complexes FC.LIH;J / and FC.LI yH ; yJ / for
any regular pair .H;J /, where . yH ; yJ / is “dual” to .H;J /, that is, is defined as
yHt .x/D�H1�t .x/ and yJt D J1�t . The generators are geometrically the same orbits

but considered with the opposite orientation, and so are the half-tubes defining the
respective differentials. (A priori y� D ��, if the references of the Maslov indices are
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chosen so that they geometrically coincide. Other choices amount to global shifts of
the degree which do not matter here.)

Via straightforward computations, it is easy to see that
�bH g

�
g0 D bH g1 D yH g1 and�cJ g

�
g0 DbJ g1 D yJ g1 , and that all the involved pairs are regular if and only if .H;J /

is. Thus, (5-2) makes sense as it is (on the complexes).

Remark 5.3 Notice for later use, that Poincaré duality commutes with the usual
comparison morphism of Floer homology, since it even commutes at the chain level as
soon as one uses timewise dual homotopies.

Proof of Lemma 5.2 Figure 1 illustrates the evolution of an orbit along (5-2).

xg

x xg1

PD

PD
‰L.g/

‰i
L.g1/

‰L.g
0/

Namely, for each time t , we have:

x.t/ xg.t/D gt .x.t//

 PD.xg/.t/D g1�t .x.1� t//

 
�
PD.xg/

�
g0.t/D g1.x.1� t//

 PD�1
��

PD.xg/
�
g0
�
.t/D g1.x.t//D xg1.t/

The half-tubes defining Floer differential evolve in a similar way and the commutativity
of the diagram immediately follows.

Now comes the crucial point: When .M;L/ is symplectically aspherical, the analytic
Seidel map acts trivially on (Morse) homology.

Lemma 5.4 The analytic Seidel map (of Proposition 4.1), is the identity, that is,
‰L.g/ acts on Floer homology as the usual comparison morphism.

Remark 5.5 Recall that the PSS morphism and ‰L.g/ can be composed since the
action of g preserves the component of P.L/ consisting of contractible (in �1.M;L/)
paths (see Bialy–Polterovich [2, Theorem 1.8] for the proof of this result in the weakly
exact case).
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The proof of the theorem now easily follows. Indeed, Lemma 5.4 allows us to replace
the Seidel map by the usual comparison morphism, in the diagram induced in homology
by (5-2). Thus, we get the commutative diagram

(5-3) FH�.L/

comp
��

‰i
L
.g1/ // FH�.L/

FH�.L/ PD
// FH�.L/ comp

// FH�.L/

PD�1

OO

Now, as noticed above (see Remark 5.3), the comparison morphism commutes with
Poincaré duality, thus we can permute the two morphisms composing the bottom line
of (5-3). Since the Floer comparison morphism is natural, this shows that ‰i

L
.g1/ acts

on FH�.L/ as the comparison morphism and this, in turn, proves that the bottom line
of (5-1) induces the identity in homology, which concludes the proof of Theorem 1.1.

Therefore, it only remains to prove Lemma 5.4. The fact that, for a symplectically
aspherical pair .M;L/, ‰L.g/ acts on Floer homology as the comparison morphism
can be indirectly deduced from the commutative diagram of Leclercq [10, Proposition
3.1], by first arbitrarily “cutting” in two parts the Hamiltonian isotopy which we
consider. However, the proof of [10, Proposition 3.1] itself can be easily adapted to
immediately show that the diagram

(5-4) MC�.LIf; �/

PSS
��

PSS // FC�.LIH g;J g/

FC�.LIH;J /
‰L.g/

66

commutes in homology, and this commutativity amounts to the triviality of the analytic
Seidel map (compare with Proposition 4.1).

Proof of Lemma 5.4 We know from Leclercq [10, Sections 3.1–3.2] that all the
involved groups are MH�.L/–modules, and that this additional structure is preserved
by the PSS morphism and by ‰L.g/. Thus ˆ D .PSS/�1 ı ‰L.g/ ı PSS is an
endomorphism of MH�.L/ (as a module over itself).

Now ˆ.ŒL�/ D ŒL�, since ŒL� generates MHtop.L/ (due to Z2 coefficients, signs
are arbitrary). Since ŒL� is also the unit of the ring .MH�.L/; � /, we have for any
a 2MH�.L/:

ˆ.a/Dˆ.a � ŒL�/D a �ˆ.ŒL�/D a � ŒL�D a :
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Thus ˆ is the identity and (5-4) commutes. Now, since the PSS morphism commutes
with the usual comparison morphisms, the composition of the PSS morphisms in (5-4)
is nothing but the Floer comparison morphism. Thus both morphisms

‰L.g/; compW FC�.LIH;J /
//// FC�.LIH g;J g/

coincide in homology.

Appendix A Orientation of the moduli spaces

We are going to follow closely the orientation conventions of Biran–Cornea [3, Ap-
pendix] (also compare with Fukaya–Oh–Ohta–Ono [6, Section 44]) and describe the
orientations for the various moduli spaces used in the main text. In this appendix, we
adapt to coefficients Z or Q the various definitions and propositions for proving the
main theorem, when the pair .M;L/ has a relatively spin structure and the monodromy
preserves the relatively spin structure. We will work in the case where .M;L/ is
weakly exact. In particular, there is no non-trivial holomorphic discs with boundaries
on L and @Pearl D @Morse .

A.1 Half discs

Let .M;L/ be a pair of symplectic manifold and Lagrangian submanifold. Let � 0
M

denote a triangulation on M such that L is a subcomplex. The induced triangulation on
L is denoted � 0

L
. We say that .M;L/ is relatively spin with a relatively spin structure

Sr (with respect to the triangulation � 0
M

), if

(1) There is ˛ 2H 2.M;Z2/ such that ˛jL D w2.TL/

(2) There is an oriented vector bundle V 0!M 0
.3/

, the 3–skeleton of � 0
M

, so that
w2.V

0/D ˛ , and

(3) an extension of the trivialization of V 0˚ TL on L0
.1/

onto L0
.2/

, the 1– and
2–skeleton of � 0

L
respectively.

In fact, once there is an oriented vector bundle V 0!M 0
.3/

satisfying .3/ above, we
have w2.V

0/jL D w2.TL/. It is shown in [6, Section 44] that the moduli spaces of
(parametrized) pseudo-holomorphic discs in M with boundaries on L can be coherently
oriented when .M;L/ is relatively spin.

Let .H˙; J˙/ be a C1 z–dependent (z 2Z˙ , see Section 4.1) Hamiltonian function
and a compatible almost complex structure on M , such that

� .H˙; J˙/jz2D2
˙

D .0;J0/ and
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� .H˙; J˙/j˙<z>1 D .H;J /.

For zl D Œl; w�, let M�

�
M;LIH�; J�I zl

�
denote the moduli space of perturbed half

discs u�W Z�!M , which are finite energy solutions to (4-2), such that u converges
to l as s!1 and I�.w#u�/D 0. Similarly, for zl 0D Œl; w0� there is the moduli space
MC

�
M;LIHC; JCI zl 0

�
, which consists of perturbed half discs uCW ZC!M , such

that uC converges to l as s!�1 and I�.w
0#.�uC// D 0. Following the gluing

argument described in Proposition 4.1, let

Z.R/D .Z�n.RC1;1/�Œ0; 1�/[.ZCn.�1;�R�1/�Œ0; 1�/=.s; t/� .s�R�2; t/

and .H.R/; J.R// be the glued data. Then Z.R/ is conformally equivalent to a disc
and the glued equation is the pseudo-holomorphic equation with compact perturba-
tion. Let M.M;LIH.R/; J.R// be the moduli space of the solutions (we also use
M.M;LIH.R/; J.R/IB/ where BD Œw0#.�w/� is the class represented by the maps),
then it admits coherent orientation from the relatively spin structure on L. The gluing
map is a local diffeomorphism:

(A-1) M�

�
M;LIH�; J�I zl

�
�MC

�
M;LIHC; JCI zl 0

�
!M.M;LIH.R/; J.R//

We determine the orientations of the spaces M˙

�
M;LIH˙; J˙I zl

�
, with the chosen

relatively spin structure, in the following steps:

� Fix zl D Œl; w�. Choose an orientation of M�

�
M;LIH�; J�I zl

�
. The moduli

spaces M.M;LIH.R/; J.R// on the right of (A-1) are coherently oriented by
the chosen relatively spin structure, for any zl 0 D Œl; w0�. Thus, the condition
that (A-1) is orientation preserving induces coherent orientations for all moduli
spaces of the type MC

�
M;LIHC; JCI zl 0

�
, where zl 0 D Œl; w0�.

� For each Hamiltonian path l , choose zl D Œl; w� and an orientation of the moduli
space M�

�
M;LIH�; J�I zl

�
. The step above determines coherent orientations

for all moduli spaces of the type MC

�
M;LIHC; JCI zl 0

�
.

� We note the following special case of (A-1):

M�

�
M;LIH�; J�I zl

�
�MC

�
M;LIHC; JCI zl

�
!M.M;LIH.R/; J.R/I 0/ŠL

Again, the condition that (A-1) preserves orientation induces coherent orientation
of all moduli spaces of the type M�

�
M;LIH�; J�I zl 0

�
.

A.2 Floer homology

Let �M.M;LIH;J I l�; lC/ be the moduli space of the parametrized finite energy
solutions to the equation (4-1), such that as s!˙1, u! l˙ . Let zl� D Œl�; w�� and
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zlC D ŒlC; wC�. By an abuse of notations, we use �M�
M;LIH;J I zl�; zlC

�
to denote

the subspace of solutions u which satisfy I�.w�#u#wC/D 0. Then the orientation of�M�
M;LIH;J I zl�; zlC

�
is determined by requiring the gluing map below to preserve

the orientations:

M�

�
M;LIH�; J�I zl�

�
� �M�

M;LIH;J I zl�; zlC
�
�MC

�
M;LIHC; JCI zlC

�
!M.M;LIH; J/

That the above map is a local homeomorphism follows from similar arguments in [6,
Section 44].

We will drop .M;LIH;J / from the notations in the following. To define the Floer
homology, one considers the moduli space

M.l�; lC/ WD �M.l�; lC/=R

of unparametrized solutions, where the action of ˛ 2R on uW R� Œ0; 1�!M is given
by

.˛ ıu/.s; t/D u.sC˛; t/

Then we require the following (locally defined homeomorphism) map to preserve the
orientations:

M.l�; lC/�R! �M.l�; lC/

Then the Floer boundary map is defined by

@Floerzl� WD
X
zlC

#M
�
zl�; zlC

�
zlC

where the sum is along all zlC such that the moduli space involved has dimension 0.
By the conventions we adopt, the following gluing map preserves the orientations:

�M�
zl�; zl0

�
� �M�

zl0; zlC
�
! �M�

zl�; zlC
�

Passing to the unparametrized moduli spaces, it induces the inclusion as boundaries:

M
�
zl�; zl0

�
�M

�
zl0; zlC

�
! @M

�
zl�; zlC

�
where the orientation is given by .�1/dimM.zl�;zl0/ . It then follows that @2

Floer D 0 over
Z or Q.
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A.3 PSS maps

We refer to the main text, (4-3) and (4-4), for the definition of the PSS maps that
relate the quantum and Floer homologies of .M;L/. Here we describe the orientations
involved. The coefficient in (4-3) is oriented as the fiber product

˛� L�ev� M
�
P�; zl

�
and the coefficient in (4-4) is oriented as the fiber product

M
�
PC; zl

g#B
�

evC�L ˛C

Using the conventions established in Biran–Cornea [3, Appendix A.1] and the previous
subsections, these define chain maps in Z or Q. The orientations here together with
(A-2) (and the arguments that follow) imply that (4-5) holds in Z or Q.

A.4 Geometric Seidel map

A smooth map f W .M;L/! .M;L/ preserves Sr if:

(1) There is a common refinement �M of the triangulations � 0
M

and f�� 0M on M

(2) and a common extension V !M.3/ of the vector bundles V 0 and f�V 0

(3) as well as a trivialization of V ˚TL on L.2/ , which is a common extension
of the trivializations of V 0˚TL and f�.V 0˚TL/ on the respective 1– and
2–skeletons.

We use W u
f
.x/ (respectively W s

f
.x/) to denote the unstable (respectively stable)

manifold (under the negative gradient flow) of the critical point x of a Morse function
f .

Proposition A.1 Suppose that L � M is a relatively spin monotone Lagrangian
submanifold, with minimal Maslov index 2 and let a fixed relatively spin structure Sr

be given. Suppose that g1W .M;L/! .M;L/ preserves Sr . Then ‰L.g; �0/ (see
Definition 2.5) can be defined over Z or Q.

Proof We show that the moduli spaces of the type M.Pg;N I � IF;G;JP Ix�;yC/

admit coherent orientations, from which the statement follows.

Let us start by showing that the moduli space of holomorphic discs representing the
section class �0 as defined in Lemma 4.2 admits a coherent orientation. Notice that, for
example, M

�
P�; zl

�
is identified as M�

�
zl
�

and M
�
PC; zlg

�
is identified as MC

�
zlg
�
,

whose orientations are given as in Section A.1. The gluing construction in the proof
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of Proposition 4.1 implies that M.Pg; �0/ admits coherent orientation such that the
gluing map is orientation preserving:

(A-2) M
�
P�; zl

�
�M

�
PC; zlg

�
!M

�
Pg.R/; �0

�
Next, we show that the moduli spaces of holomorphic discs in .Pg;N / representing
the fiber classes are coherently oriented. Again, the moduli spaces might be empty,
nonetheless, the index of the linearized operator can be oriented as described below.
Consider M � I together with the product triangulation � 0� induced from � 0

M
. We

have .M � I/0
.3/
�M 0

.3/
� I . Thus, the vector bundle V 0 induces a vector bundle V 0�

on .M � I/0
.3/

by pulling back. Let � 0g D g.� 0�/ and V 0g D g�.V
0
�/, then

.� 0g;V
0

g/jM�f0g D .�
0
M ;V 0/ and .� 0g;V

0
g/jM�f1g D .g1��

0
M ;g1�V

0/

Since g1 preserves Sr , there is a common refinement �M of � 0
M

and g1��
0
M

together
with common extension V of V 0 and g1�V

0 . The mapping torus M � I=.x; 0/ �

.g1.x/; 1/ is diffeomorphic to M �S1 . Then the triangulations � 0g on M � I and
�M on M �f0g define then a cellular decomposition �S1 of M �S1 D PgjS1 � Pg .
Similarly the vector bundles V 0g on .M � I/.3/ and V on M.3/ define a vector bundle
VS1 on the 3–skeleton .M �S1/.3/ of the cellular decomposition �S1 . Using the
presentation of N as a mapping torus of g1 given in Lemma 2.4, N � Pg is a
subcomplex in the cellular decomposition �S1 and we denote the induced cellular
decomposition �N . By construction, the trivialization of V ˚TL on L.2/ induces
a trivialization of VS1 ˚TN D VS1 ˚T vN ˚R on N.2/ , the 2–skeleton of N in
the cellular decomposition �N . In the construction of the geometric Seidel map, the
holomorphic discs representing the fiber classes lie completely in PgjS1 . Thus, the
same arguments that define a coherent orientation of moduli spaces of holomorphic
discs from a relatively spin structure (see, for example, Fukaya–Oh–Ohta–Ono [6,
Section 44]) can be adapted here to give coherent orientations for the corresponding
moduli spaces.

Lastly, by Lemma 2.2, any section class � differs from �0 by a fiber class. It follows
from gluing theory that the coherent orientations of M.Pg; �0/ and the fiber classes
constructed above define coherent orientations for all the moduli spaces of the form
M.Pg; �/.

Similar to the pearl complex (see Biran–Cornea [4; 3] and Cornea–Lalonde [5]), the
moduli space M.Pg;N I � IF;G;JP Ix�;yC/ consists of multiple configurations of
pseudo-holomorphic discs connected by Morse flow lines. Consider the configuration of
a section connected to x� and yC by Morse flow lines, those of the other configurations
and the compatibility among the configurations are similar to [3, Appendix A.2]. The
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corresponding moduli space is described by the following fiber product:

W u
F .x�/�N .M.Pg; �/�RC/�N W s

F .yC/

The manifolds W u
F
.x�/ and W s

F
.yC/ are identified respectively with the manifolds

W u
f
.x/ in L� and W s

f
.y/ in LC as oriented manifolds. N is oriented as a fiber

bundle over S1 , which is oriented as R1=Z. The orientation of the fiber product
follows from the convention as in [3]. Namely, locally it coincides with the orientation
of I �N for some interval I �R.

A.5 The map †.g; �0/

This map is used in the proof of Lemma 3.2. Its definition involves moduli spaces of
the form M.Pg;N I � IF;G;JP Iy; zC/. For y D y� , the orientation is provided in
Proposition A.1, while for y D yC , the orientation is given by a similar fiber product:

W u
F .yC/�N .M.Pg; �/�RC/�N W s

F .zC/

The orientation of W u
F
.yC/ is induced by the orientation of W s

F
.yC/ and N . Then

(3-1) with the product orientations gives the oriented boundary components.

A.6 The map ˆ˙

These maps are the comparison maps for the quantum homology of QH�.M;L/,
which are used in the proof of Lemma 2.7. With the weakly exact condition, the maps
coincide with the comparison maps for the Morse theory of L with coefficients in ƒL .
Let zL˙ D L˙ � Œ0; 1� and zF˙ D zF jzL

˙
, etc. The manifold zL˙ is oriented as fiber

bundle over Œ0; 1�, where Œ0; 1� carries the natural orientation. We identify W s
zF
˙

.x0;˙/

with W s
f0;˙

.x/ and W u
zF
˙

.y1;˙/ with W u
f1;˙

.y/ as oriented manifolds. The map ˆ˙
is defined as

ˆ˙.x˙/ WD
X
y˙

#MMorse.x0;˙;y1;˙/y˙

where the sum is along y˙ with jy˙jLDjx˙jL . The orientations of the moduli spaces
in the definition are induced by the choice of the orientations of the stable and unstable
manifolds.

A.7 The map †.�I �0/

This map is used in the proof of Lemma 2.7. We note that to adapt the proof of
Lemma 2.7 to coefficient Z or Q, we only need to show that in Z or Q:

(A-3) ˙†.�I �0/ ı @Pearl˙ @Pearl ı†.�I �0/DˆC ı‰L0
.g; �0/�‰L1

.g; �0/ ıˆ�
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Thus, we only need to verify the orientations of the moduli spaces involved on the right
side. Since the signs on the left hand side would not affect our arguments in the proof
of Lemma 2.7, we will not concern ourselves with them.

The map †.�I �0/ involves the moduli spaces of the form

M
�
zP ; zN I � I zF ; zG; zJ Ix0;�;y1;C

�
;

whose orientation is given by the following fiber product:

W u
zF
.x0;�/� zN .M. zP ; �/�RC/� zN W s

zF
.y1;C/

The orientations of the spaces involved are as follows. The manifold zN is oriented as a
fibration over Œ0; 1� with the natural orientation. We make the following identifications
between various (un)stable manifolds as oriented manifolds:

� W s
zF
.x0;C/ with W s

f0;C
.x/,

� W u
zF
.y1;�/ with W s

f1;�
.y/,

� W s
zF
.y1;C/ with W s

zFC
.y/ and

� W u
zF
.x0;�/ with W u

zF0
.x/.

The orientations of the other (un)stable manifolds are induced from these choices. The
moduli space M. zP ; �/ consists of the pseudo-holomorphic sections in Pg � ftg for
some t 2 Œ0; 1�, and it can be oriented as a fibration over Œ0; 1�, with fiber M.Pg; �/.

Next we consider the boundary of the dimension 1 moduli space

M
�
zP ; zN I � I zF ; zG; zJ Ix0;�;y1;C

�
:

We will concentrate on the boundary components that are involved in the right hand
side of (A-3). Following the conventions in Biran–Cornea [3], the components are (the
.�1/� identifies the orientations)

(A-4)

.�1/n�jy1;Cj
L

W u
zF
.x0;�/� zN

�
M
�
zP ; �

�
�RC

�
� zN

�
M zN

Morse.y0;C;y1;C/�W s
zF
.y0;C/

�
and M zN

Morse.x0;�;x1;�/�W u
zF
.x1;�/� zN

�
M
�
zP ; �

�
�RC

�
� zN W s

zF
.y1;C/:

The moduli spaces involved in the maps ˆC ı‰L0
.g; �0/ and ‰L1

.g; �0/ ıˆ� are
respectively

(A-5)
M
zLC

Morse.y0;C;y1;C/�
�
W u
zF0
.x0;�/�N .M.P; �/�RC/�N W s

zF0
.y0;C/

�
and

�
W u
zF1
.x1;�/�N .M.P; �/�RC/�N W s

zF0
.y1;C/

�
�MzL�

Morse.x0;�;x1;�/
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where the Morse moduli spaces are of dimension 0. To identify the orientations of the
spaces in (A-4) and (A-5), we recall the following identity relating the fiber products
with different bases:

.U �R/�X�R .V �R/X�RW D .�1/jU jCjV jU �X V �X W

and U �X�R .V �R/X�R.W �R/D U �X V �X W

where the transversality conditions are satisfied for all the fiber products, the product
with R are oriented as fibrations over R, jU j denotes the dimension of U , and .�1/�

identifies the orientation. It follows that the orientations of the first products in (A-4)
and (A-5) are opposite and those of the second products coincide. Thus the right hand
side of (A-3) is established in coefficient Z or Q.

A.8 Remarks concerning the algebraic proof

Assume that the pair .M;L/ is relatively spin and consider integer or rational coef-
ficients. Then diagrams (5-1) and (5-2) can still be defined (with Morse homology
replaced by Lagrangian quantum homology) and still commute.

Diagram (5-1) By the details above, the morphisms which compose this diagram are
well-defined (the only one which is not explicitly addressed above is the instantaneous
version of Seidel’s morphism, however, it is well-defined as the full Seidel map is,
since we consider Hamiltonian diffeomorphisms which preserve the spin structure).
The commutativity of the right-hand square also holds, up to homology (and states that
the PSS morphism is well-defined). The commutativity of the left-hand square also
holds at the chain level for relevant choices of the parameters.

Diagram (5-2) There are orientation conventions which make Poincaré duality well-
defined in this case (see Biran–Cornea [3, Appendix A.2.6]). One can also check that
this isomorphism commutes with the usual comparison morphism of Floer homology
and that diagram (5-2) also commutes (at the chain level, for adequate choices of the
parameters).

Obviously, Lemma 5.4 does not hold since (luckily enough) the relative Seidel morphism
is not trivial. However, it should hold when we restrict ourselves to relatively aspherical
pairs .M;L/ (regardless of the coefficient ring). What remains to be checked (in view
of the paragraph above) for our algebraic proof to go through are the following steps:

(1) The Lagrangian quantum product is well-defined with unit ŒL�, the fundamental
class of L seen as a quantum homology class.

(2) Floer homology is a module over the Lagrangian quantum homology ring.
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(3) The PSS and Seidel morphisms are compatible with the module structures (the
Lagrangian quantum homology ring being seen as a module over itself).

(4) ŒL� is fixed via the composition of the PSS and Seidel morphisms (and finally
PSS�1 ).

Now, (1) holds (see [3, Appendix A.2.2]), as most probably (2) and (3). Concerning
(4), the image of ŒL� via the composition of these isomorphisms still has to generate
the quantum homology module of degree n of L, however, there is no a priori reason
why it should coincide with ŒL� (even with integer coefficients).
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