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Infinitesimal projective rigidity under Dehn filling

MICHAEL HEUSENER

JOAN PORTI

To a hyperbolic manifold one can associate a canonical projective structure and a
fundamental question is whether or not it can be deformed. In particular, the canonical
projective structure of a finite volume hyperbolic manifold with cusps might have
deformations which are trivial on the cusps.

The aim of this article is to prove that if the canonical projective structure on a cusped
hyperbolic manifold M is infinitesimally projectively rigid relative to the cusps, then
infinitely many hyperbolic Dehn fillings on M are locally projectively rigid. We
analyze in more detail the figure eight knot and the Whitehead link exteriors, for
which we can give explicit infinite families of slopes with projectively rigid Dehn
fillings.

57M50; 53A20, 53C15

1 Introduction

A closed hyperbolic n–dimensional manifold inherits a canonical projective structure.
This can be easily seen by considering the Klein model for the hyperbolic space.
Projective structures on manifolds were studied by Benzécri in the 1960s [5]. Though
the hyperbolic structure is rigid for n > 2 (cf Weil [41] and Mostow [31]), it might
be possible to deform the canonical projective structure. Kac and Vinberg [39] gave
the first examples of such deformations. Koszul [26] and Goldman (unpublished)
later generalized these examples. Johnson and Millson provide deformations of the
canonical projective structure by means of bending along totally geodesic surfaces [23].
Examples of deformations for Coxeter orbifolds have been obtained by Benoist [3],
Choi [11] and Marquis [28]. See the survey by Benoist [4] and references therein for
more results on convex projective structures.

In the sequel we will use the following notation:

Definition 1.1 A closed hyperbolic manifold is called locally projectively rigid if the
canonical projective structure induced by the hyperbolic metric cannot be deformed.
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Cooper, Long and Thistlethwaite have studied the deformability of 4500 hyperbolic
manifolds from the Hodgson–Weeks census with rank 2 fundamental group [12],
proving that at most 61 can be deformed. The goal of this paper is to provide infinite
families of projectively locally rigid manifolds, by means of Dehn filling.

Let N be a closed hyperbolic 3–dimensional manifold. We will make use of the fact
that geometric structures on N are controlled by their holonomy representation. Hence
we consider the holonomy representation of the closed hyperbolic 3–manifold N

�W �1.N /! PSO.3; 1/� PGL.4/:

If not specified, the coefficients of matrix groups are real: PGL.4/D PGL.4;R/. The
closed manifold N is locally projectively rigid if and only if all deformations of � in
PGL.4/ are contained in the PGL.4/–orbit of � .

Existence or not of deformations is often studied at the infinitesimal level. We may
consider the adjoint action on the lie algebra so.3; 1/. Then Weil’s infinitesimal
rigidity [41] asserts that

H 1.�1.N /I so.3; 1/Ad�/D 0:

The adjoint action extends to the Lie algebra sl.4/ WD sl.4;R/ and motivates the
following definition.

Definition 1.2 A closed hyperbolic three manifold N is called infinitesimally projec-
tively rigid if

H 1.�1.N /I sl.4/Ad�/D 0:

Infinitesimal rigidity implies local rigidity, but the examples of Cooper, Long and
Thistlthwaite [13; 12] show that the converse is not true.

We are working with aspherical manifolds, so computing the cohomology of a manifold
or of its fundamental group does not make any difference.

For cusped manifolds one has a similar definition. Let M denote a compact three
manifold with boundary a union of tori and whose interior is hyperbolic with finite
volume.

Definition 1.3 The manifold M is called infinitesimally projectively rigid relative to
the cusps if the inclusion @M �M induces an injective homomorphism

0!H 1.M I sl.4/Ad�/!H 1.@M I sl.4/Ad�/:
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The following theorem provides infinitely many examples of infinitesimally projectively
rigid 3–dimensional manifolds.

Theorem 1.4 Let M be a compact orientable 3–manifold whose interior is hyperbolic
with finite volume. If M is infinitesimally projectively rigid relative to the cusps, then
infinitely many Dehn fillings on M are infinitesimally projectively rigid.

In his notes [38] Thurston defines the hyperbolic Dehn filling space. He uses this space
to prove that, for all but a finite number of filling slopes on each boundary component,
the 3–manifolds obtained by Dehn filling on M are hyperbolic. The hyperbolic Dehn
filling space is a subset of the generalized hyperbolic Dehn filling coefficients and it
is described in Definition 2.2 below; cf Neumann and Zagier [32]. The methods of
Theorem 1.4, give the following:

Theorem 1.5 Let M be a compact orientable 3–manifold whose interior is hyperbolic
with cusps. If a hyperbolic Dehn filling N on M satisfies:

(i) N is infinitesimally projectively rigid,

(ii) the Dehn filling slope of N is contained in the (connected) hyperbolic Dehn
filling space of M ,

then infinitely many Dehn fillings on M are infinitesimally projectively rigid.

By Hodgson and Kerckhoff’s estimation of the size of the hyperbolic Dehn filling
space [22], in a one cusped manifold all but at most 60 topological Dehn fillings have
a hyperbolic structure that lies in the hyperbolic Dehn filling space. Hence:

Corollary 1.6 Let M be a one cusped hyperbolic manifold of finite volume. If 61

Dehn fillings on M are either nonhyperbolic or infinitesimally projectively rigid, then
infinitely many fillings are so.

Those results are proved using the fact that all parameters of Thurston’s hyperbolic
Dehn filling space corresponding to non–infinitesimally projectively rigid fillings on M

are contained in a proper analytic subset of the Dehn filling space, provided M itself is
infinitesimally projectively rigid. This technique goes back to Kapovich in the setting
of deformations of lattices of PSO.3; 1/ in PSO.4; 1/ [24].

Moreover, we obtain explicit examples of infinite families of infinitesimally projectively
rigid manifolds. The Dehn filling parameters of these families lie on certain real analytic
curves, and a careful analysis of the infinitesimal deformations of the corresponding
manifolds results in the following proposition:
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Proposition 1.7 For a sufficiently large positive integer n, the homology sphere
obtained by 1=n–Dehn filling on the figure eight knot is infinitesimally projectively
rigid.

In fact, for every k 2 Z, k ¤ 0, there exists nk > 0 such that if n � nk then the
k=n–Dehn filling on the figure eight knot is infinitesimally projectively rigid.

Theorem 1.4 provides infinitely many rigid Dehn fillings. On can ask whether there
are still infinitely many nonrigid Dehn fillings. Though we do not have an example
for manifolds, the following proposition shows that there are infinitely many nonrigid
orbifolds obtained by Dehn fillings on the cusped manifold that satisfy the hypothesis
of Theorem 1.4.

Proposition 1.8 The orbifold On with underlying space S3 , singular locus the figure
eight knot and ramification index n is not locally projectively rigid for sufficiently
large n. More precisely, its deformation space is a curve.

For any n 2 N, the Fibonacci manifold Mn is the cyclic cover of order n of the
orbifold On in Proposition 1.8; see Helling, Kim and Mennicke [20]. Hence Mn is not
projectively rigid, as deformations of the projective structure of On induce deformations
of Mn . There is an abundant literature about those manifolds. For instance, M4 is
not Haken but Mn is Haken for n � 5, and Scannell has proved that they are not
infinitesimally rigid in SO.4; 1/ [36].

Using that punctured torus bundles with tunnel number one are obtained by n–Dehn
filling on the Whitehead link (cf Akiyoshi [1]), we shall prove:

Proposition 1.9 All but finitely many punctured torus bundles with tunnel number
one are infinitesimally projectively rigid relative to the cusps.

All but finitely many twist knots complements are infinitesimally projectively rigid
relative to the cusps.

The real hyperbolic space H3 naturally embeds in the complex hyperbolic space H3
C .

We may study the corresponding deformation theory coming from viewing PSO.3; 1/D
IsomC.H3/ in PSU.3; 1/D Isom0.H3

C/, ie the identity component of complex hyper-
bolic isometries.

Definition 1.10 We say that M is infinitesimally H3
C –rigid relative to the cusps if the

sequence
0!H 1.M I su.3; 1/Ad�/!H 1.@M I su.3; 1/Ad�/

is exact.
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In particular, if @M D ∅, then we require H 1.M I su.3; 1/Ad�/ D 0. The study of
deformations in PGL.4/ and PSU.3; 1/ are related, as we shall see in Section 3.4. In
particular we have the following theorem of Cooper, Long and Thistlethwaite.

Theorem 1.11 [13] Let M n be a real hyperbolic manifold of finite volume, n� 3.
Then M n is infinitesimally projectively rigid relative to the cusps if and only if M n is
infinitesimally Hn

C –rigid relative to the cusps.

This equivalence is described by means of Lie algebras, and it is used along the paper,
because some things are easier to understand in the complex hyperbolic setting instead
of the projective one.

The article is organized as follows. In Section 2 we recall Thurston’s construction of
deformations of hyperbolic structures and the generalized Dehn filling coefficients. In
Section 3 we introduce the main tools in order to study infinitesimal deformations. The
next two sections are devoted to cohomology computations, namely in Section 4 we
compute invariant subspaces of the Lie algebras and in Section 5 we analyze the image
in cohomology of the restriction to the torus boundary. The proofs of Theorems 1.4
and 1.5 are given in Section 6, by means of an analytic function on the deformation
space: when this function does not vanish, then the corresponding Dehn filling is
infinitesimally rigid. To prove Propositions 1.7 and 1.9, we require the notion of rigid
slope, treated in Section 7, as well as explicit computations on the figure eight knot
and the Whitehead link exteriors, made in Section 8.

Acknowledgements We are indebted to Suhyoung Choi for useful conversations, as
well to the anonymous referee(s) for suggesting many improvements.
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2 Dehn fillings and Thurston’s slice

In this section we recall the deformation space introduced by Thurston in his proof of
hyperbolic Dehn filling theorem [38].

Along the paper, M denotes a compact manifold with boundary a union of k > 0 tori
and hyperbolic interior:

@M D @1M t � � � t @kM;

where each @iM Š T 2 .
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The deformation space of hyperbolic structures of M around the complete structure is
described by the Thurston’s slice [38; 32]. Given �i ; �i 2 �1.@M / a pair of simple
closed curves that generate the fundamental group on each component @Mi , Thurston
introduced a parameter

uD .u1; : : : ;uk/ 2 U � Ck ;

defined on U a neighborhood of 0. The neighborhood U parametrizes the deformations
of the complete holonomy of the interior of M . Two structures parametrized by u

and u0 2 U are equivalent (the developing maps differ by composing with an isometry
of H3 ) if and only if

(1) .u1; : : : ;uk/D .˙u01; : : : ;˙u0k/:

This is a consequence of the fact that (1) is a criterion for having the same character,
and the fact that deformations are parametrized by conjugacy classes of holonomy; see
Canary, Epstein and Green [10].

Theorem 2.1 (Thurston’s slice) There exists an open neighborhood 0 2 U � Ck ,
an analytic family of representations f�ugu2U , of �1.M / in PSL2.C/ and analytic
functions vi D vi.u/, i D 1; : : : ; k so that:

(i) The parameters ui and vi are the complex length of �u.�i/ and �u.�i/ respec-
tively.

(ii) The function �i.u/ D vi.u/=ui is analytic. Moreover vi D �i.0/ui C .juj
3/,

where �i.0/ 2 C is the cusp shape and has nonzero imaginary part.

(iii) The structure with holonomy �u is complete on the i –th cusp if and only if
ui D 0.

(iv) When ui ¤ 0, the equation

(2) pi ui C qi vi D 2� i

has a unique solution .pi ; qi/ 2 R2 . The representation �u is the holonomy
of a incomplete hyperbolic structure with generalized Dehn filling coefficients
.pi ; qi/ on the i –th cusp.

See Boileau and Porti [6, Appendix B] for a proof, for instance.

In his proof of hyperbolic Dehn filling, Thurston shows that there is a diffeomorphism
between U and a neighborhood of 1 in .R2 [ f1g/k that maps componentwise
0 to 1 and ui ¤ 0 to .pi ; qi/ 2 R2 satisfying pi ui C qi vi D 2� i.

Definition 2.2 The connected neighborhood of 1 in .R2[f1g/k that is the image
of U is called the hyperbolic Dehn filling space.
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The geometric interpretation of generalized Dehn filling coefficients is the following
one: the representation �0 is the holonomy of the complete hyperbolic structure of
Int.M /. If u ¤ 0 then the representation �u is the holonomy of a noncomplete
hyperbolic structure Mu on Int.M / and the metric completion of Mu is described by
the Dehn filling parameters:

(i) When pi ; qi 2 Z are coprime, then the metric completion of Mu is precisely
the Dehn filling with slope pi�i C qi�i .

(ii) When pi=qi D p0i=q
0
i 2 Q[1 with p0i ; q

0
i 2 Z coprime, then the completion

of Mu is a cone manifold, obtained by Dehn filling with slope p0i�i C q0i�i

where the core of the torus is a singular geodesic with cone angle 2�p0i=pi .

(iii) When pi=qi 2RnQ, then the metric completion is the one point compactification.

A particular case that we will use later is when ui D ˛i i for some ˛i 2 R, ˛i > 0.
Then pi D 2�=˛i and qi D 0, and �.i˛1;:::;i˛k/ is the holonomy of a hyperbolic cone
manifold with cone angles .˛1; : : : ; ˛k/.

The real analytic structure will be crucial in our arguments. When viewed in PSL2.C/,
�u is complex analytic, but we will work with the real analytic structure, which is the
same as for PSO.3; 1/. In particular the following lemma will be useful.

Lemma 2.3 For each i D 1; : : : ; k , if �i.u/D vi.u/=ui , then the map

U � Ck
! R2

u 7!
1

jpi C qi�i j
2
.pi ; qi/

is real analytic.

Proof Using Equation (2), we obtain

pi D�2�
Re.ui�i/

jui j
2 Im.�i/

; qi D 2�
Re.ui/

jui j
2 Im.�i/

; pi C qi�i D
2� i
ui
:

The lemma is a straightforward consequence from these equalities and the fact that the
imaginary part of �i.0/ does not vanish.

3 Infinitesimal deformations

The aim of this section is to provide some technical background for the sequel and
to set up the notation. In Section 3.1 we shall recall the setup of twisted homol-
ogy theory, Section 3.3 provides some known results about the cohomology group
H 1.M I so.3; 1/Ad�/.
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3.1 The cohomology, Kronecker pairings and the Poincaré–Lefschetz du-
ality

3.1.1 The homology and cohomology with twisted coefficients Let X be a finite
CW–complex, let V be a finite dimensional real vector space and let �W �1.X /!

GL.V / be a representation. In the sequel of this subsection we shall denote zX the
universal covering of X and � WD �1.X / for short its fundamental group. The vector
space V and its dual V � turn into a left modules over the group ring Z� : for all

 2 � , v 2 V and f 2 V � we have


 v WD �.
 /v and 
 f .v/D f .�.
 /�1v/ :

The homology and cohomology of X with coefficients in V are defined as usual:

C�.X IV / WD C�. zX /˝Z� V;

C �.X IV �/ WD HomZ�.C�. zX /IV
�/ :

Here we follow the standard notation and conventions (see Hatcher [19, 3.H]). The
boundary and coboundary operators are given by

@p D @˝ IdW Cp.X IV /! Cp�1.X IV / ;

ıp
W C p�1.X IV /! C p.X IV /; ıpF.cp/D F.@cp/;

where @ denotes the boundary operator of C�. zX /. Note that C�.X IV / and C �.X IV �/

are finite dimensional vector spaces due to the finiteness of X .

3.1.2 The group cohomology and infinitesimal deformations Let � D �1.X /, V

and �W �! GL.V / be as in the previous section. The group cohomology of � with
coefficients in V is denoted by

H�.� IV /:

See for instance Brown [9] for definitions and proofs of this section. We are mainly
interested in the case where X is a hyperbolic manifold, hence aspherical. Thus we
have a natural isomorphism

H�.� IV /ŠH�.X IV /:

(see Whitehead [42] for details). For the interpretation of H 1.� IV / in terms of
infinitesimal deformations, we need to recall that the space of 1–cocycles or crossed
morphisms is

Z1.� IV /D fd W �! V j d.
1
2/D d.
1/C �.
1/d.
2/; 8
1
2 2 �g:
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The space of coboundaries is

B1.� IV /D fd 2Z1.� IV / j 9 v 2 V such that d.
 /D .�.
 /� 1/v; 8
1
2 2 �g:

Then we have a natural isomorphism

H 1.� IV /ŠZ1.� IV /=B1.� IV /:

Weil’s construction [41] gives the cohomological interpretation of infinitesimal de-
formations. Namely, given G a Lie group with Lie algebra g and a representation
 W �!G , the space of infinitesimal deformations is

H 1.� I gAd /;

where Ad denotes the composition of  with the adjoint representation, hence it is a
representation of � into GL.g/. The construction of Weil is as follows. A deformation
of  W �!G may be written as  t W �!G , where  0D and t 2 .�"; "/. Assuming
differentiability at t D 0, then define d W �! g by

d.
 / WD
d

dt

ˇ̌̌̌
tD0

 t .
 /  0.
 /
�1 for all 
 2 �:

It is easy to check that d 2 Z1.� I gAd /. In fact Weil proves that Z1.� I gAd /

is precisely the space of infinitesimal (or first order) deformations of  , and that
B1.� I gAd / is the space of infinitesimal deformations by conjugation [41].

Theorem 3.1 (Weil) Infinitesimal rigidity implies actual rigidity: If H 1.� IgAd /D0

then  cannot be deformed up to conjugation.

3.1.3 The Kronecker pairing Let X , � D �1.X /, V and �W �!GL.V / be as in
the first section. There is a natural isomorphism

� W C�.X IV /
�
! C �.X IV �/D HomZ�.C�. zX /IV

�/

(see [40, 2.6]). For g 2 Cp.X IV /
� , G 2 C p.X IV �/, cp 2 Cp. zX / and v 2 V the

isomorphism � and its inverse are given

�g.cp/.v/D g.cp˝ v/ and ��1G.c˝ v/DG.c/.v/ :

This gives rise to the Kronecker pairing

h : ; : iW C p.X IV �/˝Cp.X IV /! R

given by hG; cp˝ vi DG.c/.v/. The Kronecker pairing behaves well with respect of
the boundary operators:

hG; @p.cp˝ v/i D hı
pG; cp˝ vi :
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This shows that we obtain a well defined pairing

h : ; : iW H p.X IV �/˝Hp.X IV /! R :

In order to see that the Kronecker pairing is nondegenerate we observe that the boundary
operators @p and ıp are dual to each other and hence Ker @pD .Im ıp/? and Ker ıpD
.Im @p/? (see [17, 2.26]). Therefore if F is a p–cocycle and if hF; zpi D 0 for every
zp 2 Ker @p then F 2 .Ker @p/? D Im ıp and hence F is a coboundary.

Now let bW V �V ! R be a nondegenerate bilinear form. Moreover we shall assume
that b is � –invariant ie for all 
 2 � and for all v;w 2 V we have

b.v; w/D b.
 v; 
 w/ :

The form b induces an isomorphism �b between the � –modules V and V � : for
v;w 2 V we have �b.v/.w/ D b.v; w/. The map �b is injective and hence an
isomorphism since b is nondegenerate. Observe that �b is � –invariant:

�b.
 v/.w/D b.
 v; w/D b.v; 
�1w/D �b.v/.

�1w/D 
�b.v/.w/ :

Now b gives rise to a Kronecker pairing

h : ; : iW C p.X IV /˝Cp.X IV /! R

given by hF; cp˝vi D �b.F.cp//.v/D b.F.cp/; v/ for F 2C p.X IV / and cp˝v 2

Cp.X IV /. Hence we obtain a nondegenerate form

h : ; : iW H p.X IV /˝Hp.X IV /! R :

3.1.4 The Poincaré–Lefschetz duality Let M be a compact, oriented, n–dimen-
sional manifold with boundary @M and let �W �1.M /! GL.V / be a representation.
The intersection number between simplices of two dual triangulations on the universal
covering �M induces the perfect intersection pairing

Hp.M IV
�/˝Hn�p.M; @M IV /! R

(see [33, 0.3; 23, Section 4; 30, Lemma 2] and for a general approach [37]).

Hence we obtain an isomorphism between Hp.M IV
�/� and Hn�p.M; @M IV /. Com-

posing this isomorphism with the isomorphism obtained from the Kronecker pairing
we obtain the duality isomorphism

PDW Hn�p.M; @M IV /!H p.M IV / :
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An isomorphism PDW Hp.M IV
�/ ! H n�p.M; @M IV �/ is obtained analogously.

The usual formula for the cup-product (to be denoted [) of simplicial cochains gives
that the cup-product induces a perfect pairing

: [ : W H n�p.M; @M IV /˝H p.M IV �/! R :

Moreover the existence of a nondegenerate bilinear map bW V �V !R gives a pairing

:
b
[ : W H n�p.M; @M IV /˝H p.M IV /! R :

3.1.5 Killing forms The Killing form on any Lie algebra g is defined as

B.X;Y /D trace.adX ı adY / for all X;Y 2 g;

where adX 2 End.g/ denotes the endomorphism given by adX .Y /D ŒX;Y �. If gD

sl.4/, then B.X;Y /D 8 tr.X �Y /. Note that B is symmetric.

The matrix of the Lorentzian inner product is denoted by

J D

0BB@
1

1

1

�1

1CCA ;
O.3; 1/D fA 2 GL.4/ jAtJAD J g;so that

and the connected component of the identity of its projectivization PSO.3; 1/ is the
group of orientation preserving isometries of H3 . Its Lie algebra is

so.3; 1/D fa 2 sl.4/ j atJ D�Jag:

Following Johnson and Millson [23], along the paper we shall use the decomposition
of sl.4/ as direct sum of PSO.3; 1/–modules via the adjoint action:

sl.4/D so.3; 1/˚ v;(3)

vD fa 2 sl.4/ j atJ D Jag:where

Notice that v is not a Lie algebra, but just a PSO.3; 1/–module, and that

dim.v/D dim.gl.4//� dim.so.3; 1//D 15� 6D 9:

Both the form B on sl.4/ and its restriction to so.3; 1/ are nondegenerate. Moreover
v is the orthogonal complement to so.3; 1/:

sl.4/D so.3; 1/? v:

Therefore B restricted to v is nondegenerate, too.
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Hence a representation �W �1.X /! PSO.3; 1/ gives a canonical splitting in homology

H�.X I sl.4/Ad�/DH�.X I so.3; 1/Ad�/˚H�.X I vAd�/:

In the sequel we shall be mostly interested in the following situation: let M be a finite
volume hyperbolic 3–manifold with k cusps and let �W �1.M /! SO.3; 1/� SL.4/
be a representation. Then the Lie algebra sl.4/ turns into a �1.M /–module via
Ad ı�W �1.M /! Aut.sl.4//. Note that the Killing form is �1.M / invariant hence
the action of �1.M / respects v ie the 9–dimensional vector space v turns into a
�1.M /–module and the restriction of the Killing form on v induces a nondegenerate
�1.M / invariant bilinear form

BW v� v! R :

A cup product on cohomology is defined by using B :

(4) H p.M I v/˝H q.M; @M I v/
[
�!H pCq.M; @M I v˝v/

B�
��!H pCq.M; @M IR/;

where the first arrow is the usual cup product, and B� denotes the map induced by
BW v˝ v! R. In the sequel this cup product will be simply denoted by [.

This cup product induces Poincaré–Lefschetz duality

H p.M I v/˝H n�p.M; @M I v/
[
�!H n.M; @M IR/Š R

since B is nondegenerate. As B is symmetric, this cup product is symmetric or
antisymmetric depending on whether the product of dimensions p q is even or odd, as
the usual cup product.

3.2 The semicontinuity

Let V be a finite dimensional real vector space and let � be a finitely generated group.
The set R.�;GL.V // of all representations of � into GL.V / has the structure of a
real affine algebraic set, R.�;GL.V //�RN (see Lubotzky and Magid [27]). Given a
representation �W �!GL.V / the vector space V turns into a � –module via � which
will be denoted by V� .

Lemma 3.2 Let V be a finite dimensional real vector space. Then the function
hi W R.�;GL.V //! Z given by

hi.�/D dim H i.�IV�/

is upper semicontinuous for i D 0; 1.

More precisely, for each n 2 Z the set f� 2 R.�;GL.V // j hi.�/ � ng is a closed
algebraic subset.
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Proof This follows from a general theorem [18, Theorem 12.8]. For the convenience
of the reader we give an elementary argument.

We view H 1.�IV�/ as the group cohomology of � , namely it is isomorphic to the
quotient Z1.�IV�/=B

1.�IV�/. The space of cocycles Z1.�IV�/ is the kernel of a
linear map with coefficients that are polynomial functions in the ambient coordinates,
hence dim.Z1.�IV�// is constant, except on a (possibly empty) closed algebraic
subset where it is larger. On the other hand, the space of coboundaries B1.�IV�/ is
the image of a linear map whose coefficients are polynomial functions in the ambient
coordinates, hence dim.B1.�IV�// is constant, except on a closed algebraic subset
where it is smaller.

Analogously, H 0.�IV�/ is the kernel of a linear map with coefficients that are polyno-
mial functions in the ambient coordinates. Hence dim.H 0.�IV�// is constant, except
on a (possibly empty) closed algebraic subset where it is larger.

3.3 Infinitesimal deformations in real hyperbolic spaces

Infinitesimal deformations in IsomC.H/ D PSO.3; 1/ are well understood, and de-
scribed by H 1.M I so.3; 1/Ad�/. We summarize in this subsection the main results.

Let M be a finite volume hyperbolic 3–manifold with k cusps. We choose one
essential simple closed curve �i � @iM for each boundary component.

Proposition 3.3 Let M be a finite volume hyperbolic 3–manifold with k cusps and
�D �1 [ � � � [�k � @M be given as above. Moreover let U and f�ugu2U be as in
Theorem 2.1.

Then there exists a possibly smaller open neighborhood zU of 0 2 zU � U such that for
all u 2 zU :

(i) The inclusion @M �M induces a monomorphism

0!H 1.M I so.3; 1/Ad�u
/!H 1.@M I so.3; 1/Ad�u

/:

(ii) The inclusion of the union �D �1[ � � � [�k �M induces a monomorphism

0!H 1.M I so.3; 1/Ad�u
/!H 1.�I so.3; 1/Ad�u

/:

(iii) dim H 1.M I so.3; 1/Ad�u
/D 2k .

(iv) dim H 1.M; �I so.3; 1/Ad�u
/D 2k .

The zU depends on � for (ii) and (iv), but not for (i) and (iii).
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Proof First note that for uD 0 the representation �0 is the holonomy of the complete
hyperbolic structure. Thus H 0.M I so.3; 1/Ad�0

/ D 0, H 0.�I so.3; 1/Ad�0
/ Š R2k ,

H 0.@M I so.3; 1/Ad�0
/Š R2k ,

dim.H 1.M I so.3; 1/Ad�0
//D 2k and dim.H 1.M; �I so.3; 1/Ad�0

//D 2k

(see [25, 8.8; 15; 8; 29] for a proof).

Now from semicontinuity, we can choose zU such that for all u 2 zU , we have
H 0.M Iso.3;1/Ad�u

/D0, H 0.�Iso.3;1/Ad�u
/ŠR2k , H 0.@M Iso.3;1/Ad�u

/ŠR2k ,

dim.H 1.M I so.3; 1/Ad�u
//� 2k and dim.H 1.M; �I so.3; 1/Ad�u

//� 2k:

Here we used the fact that for every representation �W �1.M /! PSO.3; 1/ we have
H 0.�i I so.3; 1/Ad�/Š R2 if and only if �.�i/¤ 1.

Next the long exact sequence of the pair .M; �/ is given by

0!H 0.�I so.3; 1/Ad�u
/!H 1.M; �I so.3; 1/Ad�u

/

!H 1.M I so.3; 1/Ad�u
/!H 1.�I so.3; 1/Ad�u

/! � � � :

Therefore for all u 2 zU the map H 0.�I so.3; 1/Ad�u
/!H 1.M; �I so.3; 1/Ad�u

/ is
injective and hence surjective since dim.H 1.M; �I so.3; 1/Ad�u

// � 2k . It follows
from this that for all u 2 zU dim.H 1.M; �I so.3; 1/Ad�u

// D 2k and that the map
induced by the inclusion ��M gives a monomorphism

0!H 1.M I so.3; 1/Ad�u
/!H 1.�I so.3; 1/Ad�u

/ :

Since the inclusion � � M factors through the @M , � � @M � M , we obtain
that the map H 1.M I so.3; 1/Ad�u

/!H 1.�I so.3; 1/Ad�u
/ factors through the map

H 1.M I so.3; 1/Ad�u
/!H 1.@M I so.3; 1/Ad�u

/ hence for all u 2 zU the map

H 1.M I so.3; 1/Ad�u
/!H 1.@M I so.3; 1/Ad�u

/

is injective. Hence

H 0.@M I so.3; 1/Ad�u
/!H 1.M; @M I so.3; 1/Ad�u

/

is an isomorphism. Moreover Poincaré–Lefschetz duality gives that

H 1.M; @M I so.3; 1/Ad�u
/ŠH 2.M I so.3; 1/Ad�u

/�

and hence dim.H 2.M I so.3; 1/Ad�u
// D 2k . Now the Euler characteristic of M is

zero and H 0.M I so.3; 1/Ad�u
/D 0 which implies

dim.H 1.M I so.3; 1/Ad�u
//D 2k :
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Remark 3.4 This proposition can be seen as the algebraic part of Thurston’s hyperbolic
Dehn filling theorem.

3.4 Complex hyperbolic space

Consider C3;1 ie C4 with the hermitian product

hw; zi D w1xz1Cw2xz2Cw3xz3�w4xz4 D w
tJxz D z�w;

where z�DxztJ . Its projectivization P3;1 WD P.C3;1/ gives rise to complex hyperbolic
space H3

C . More precisely, H3
C D fŒv� 2 P3;1 j hv; vi< 0g; cf [16; 14]. Here and in the

sequel Œv� denotes the line generated by the nonzero vector v 2 C3;1 .

Let SU.3; 1/D fA 2 SL.4;C/ j xAtJAD J g:

The group of holomorphic isometries of complex hyperbolic space is the projectivization
PSU.3; 1/D PU.3; 1/, with Lie algebra:

su.3; 1/D fa 2 sl.4;C/ j xatJ D�Jag:

The key point is that, as SO.3; 1/–module, this Lie algebra has a decomposition:

(5) su.3; 1/D so.3; 1/? i v:

Thus:

Remark 3.5 The subspace vD fa 2 sl.4/ j at J D J ag can be seen as the imaginary
part of infinitesimal deformations in complex hyperbolic space.

Proof of Theorem 1.11 We define

vn D fa 2 sl.nC 1/ j atJ D Jag;

where J is the symmetric matrix with one negative and n positive eigenvalues, gener-
alizing the definition of v for nD 3. The generalizations of Equations (3) and (5) are

sl.nC 1/D so.n; 1/? vn;

su.n; 1/D so.n; 1/? i vn;

that are isomorphisms of SO.n; 1/–modules via the adjoint action.

Let M n denote a compact n–manifold whose interior has a finite volume hyperbolic
structure, as in the statement of the theorem. By Garland’s infinitesimal rigidity [15],
the map induced by inclusion

H 1.M n
I so.n; 1//!H 1.@M n

I so.n; 1//
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is injective (here all SO.n; 1/–modules become �1.M
n/–modules via the holonomy).

Thus M n is infinitesimally projectively rigid relative to the cusps if and only if

H 1.M n
I vn/!H 1.@M n

I vn/

is injective, and M n is infinitesimally Hn
C –rigid relative to the cusps if and only if

H 1.M n
I ivn/!H 1.@M n

I ivn/

is injective. The theorem follows from the fact that vn and ivn are isomorphic as
�1.M

n/–modules.

We will use Remark 3.5 and Equation (5) to understand the computations for the
cohomology with coefficients in v in a Riemannian setting.

In order to understand the Killing form on su.3; 1/ we follow the exposition of Goldman
[16, 4.1.3]. Let

vC D

0BB@
0

0

1

1

1CCA and v� D

0BB@
0

0

�1

1

1CCA
be two null vectors in C3;1 representing two distinct boundary points of H3

C . Then the
element

� WD �
1

2
.vCv

�
�� v�v

�
C/D

0BB@
0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

1CCA
is the infinitesimal generator of a 1–parameter subgroup of isometries fixing the points
Œv˙� 2 @H3

C and translating along the geodesic between ŒvC� and Œv��.

Decompose the Lie algebra su.3; 1/ into eigenspaces

gk D Ker.ad� �kI/

of ad� . The eigenspace gk is nonzero only for k 2 f0;˙1;˙2g. More explicitly,

(6) g0 D

8<:
0@a 0 0

0 � tr.a/=2 t

0 t � tr.a/=2

1A ˇ̌̌̌ˇ̌ a 2 u.2/; t 2 R

9=; ;
g˙1Dfvv

�
˙
�v˙v

� j v 2V .vC; v�/
?g and g˙2Dfisv˙v�˙ j s 2Rg, where V .vC; v�/

denotes the vector space generated by vC and v� . Note that V .vC; v�/ is the positive
two-dimensional complex subspace of C3;1 given by z3 D z4 D 0. As usual we
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have Œgk ; gl � � gkCl with the convention that gkCl D 0 if jkC l j > 2. This tells us
immediately that gk is orthogonal with respect to the Killing form to gl for all k ¤�l .

Now let G˙ � PSU.3; 1/ denote the stabilizer of the point Œv˙� 2 @H3
C . The Lie

algebra g˙ of G˙ is given by

g˙ D g0˚ g˙1˚ g˙2:

Note also that h˙ D g˙1˚ g˙2 is the Lie algebra of parabolic transformations fixing
the point Œv˙�.

As a consequence of this discussion we obtain the following lemma.

Lemma 3.6 The Killing form of su.3; 1/ restricted to g˙ is degenerated. More
precisely, the radical rad.g˙/ D g˙ \ g?

˙
D h˙ consist exactly the infinitesimal

parabolic transformations.

Proof Let us consider the sign C, the other case is analogous. We have

g?0 D hC˚ h�; g?1 D g0˚ hC˚ g�2 and g?2 D g0˚ hC˚ g�1 :

This follows since gk is orthogonal with respect to the Killing form to gl for all k¤�l .
Hence gC\ g?C D gC\ g?

0
\ g?

1
\ g?

2
D hC D g1˚ g2 .

4 Invariant subspaces in the complex hyperbolic geometry

In this section we shall compute subspaces of the SO.3; 1/–module v that are invariant
by certain elements of PSO.3; 1/. This will be used later for computing certain
cohomology groups. For a given set of hyperbolic isometries � � PSO.3; 1/, we let
v� denote the invariant subspace in v:

v� D fv 2 v j Ad
 .v/D v; 8
 2 �g:

For our computations, we will view elements in v as lying in iv, namely as infinitesimal
isometries of H3

C . We shall make use of the decomposition

su.3; 1/� D so.3; 1/� ˚ iv�

and the following lemma (see [7, III.9.3] for a proof).

Lemma 4.1 For 
 2 PSU.3; 1/, su.3; 1/
 D Ker.Ad
 �1/ is the Lie algebra of the
centralizer of 
 (ie the Lie subgroup of elements in PSU.3; 1/ that commute with 
 ).
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Alternatively, the computation of invariant subspaces could also be made with the
analogue of Lemma 4.1 for GL.4/ or just by explicit computation of the adjoint action
on v.

The centralizer of an element is obtained by means of the stabilizer of an invariant
object in H3

C[ @H3
C . This explains the organization of this section, one subsection for

each object.

4.1 Geodesics.

Consider the Riemannian geodesic 
 in H3
C between ŒvC� and Œv��. Let g0 � su.3; 1/

denote the Lie algebra of the subgroup G0 � PSU.3; 1/ which fixes the endpoints
of the geodesic 
 (see [16, 4.1.3]). Notice that G0 Š R � U.2/, where R acts by
translations and U.2/ is the pointwise stabilizer, isomorphic to the stabilizer of a point
in H2

C , hence g0 Š R˚ u.2/.

Lemma 4.2 Let A 2 PSO.3; 1/ be a hyperbolic element of complex length l C i˛ ,
l ¤ 0.

(i) If ˛ 62 �Z, then dim vA D 1.

(ii) If ˛ 2 �Z, then dim vA D 3.

Proof We let 
 denote the axis of A. After conjugation we might assume that 
 is
the geodesic between ŒvC� and Œv�� and hence

AD

0BB@
cos˛ � sin˛ 0 0

sin˛ cos˛ 0 0

0 0 cosh l sinh l

0 0 sinh l cosh l

1CCA :
If ˛ 2 �Z, then A commutes with the whole stabilizer G0 , with Lie algebra g0 (see
Equation (6)). The elements of i vA D i v\ g0 are of the form0BB@

b i a i 0 0

a i c i 0 0

0 0 �bCc
2

i 0

0 0 0 �
bCc

2
i

1CCA with a; b; c 2 R:

Hence dim vA D 3.

If ˛ 62 �Z, then the elements of i vA are as before, but by setting aD 0 and b D c ,
hence dim vA D 1. This corresponds to the u.1/ factor in g0 Š R˚ u.2/.
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Remark 4.3 Note that if A2 PSO.3; 1/ is a loxodromic element with complex length
l C i˛ with l ¤ 0 and ˛ 62 �Z then vA D vG0 is one-dimensional generated by the
vector 0BB@

�1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

1CCA :

4.2 Complex hyperbolic lines

The complex hyperbolic space is the projectivization of the subset of the time-like
vectors of C3;1 . A complex hyperbolic line is defined as the intersection of H3

C with a
complex projective line. The group SU.3; 1/ acts transitively on the set of complex
planes that contain time-like vectors. Hence all complex hyperbolic lines are isomorphic
to H1

C , and a standard model for a complex hyperbolic line is the image of the plane
given by x1 D x2 D 0. The intersection of a complex hyperbolic line with @H3

C is
a smooth circle called a chain. Two distinct boundary points of H3

C are contained
in a unique chain and the Riemannian geodesic between the two boundary points is
contained in the corresponding complex hyperbolic line.

The identity component of the stabilizer of a chain is given by P .U.2/�U.1; 1//�

PSU.3; 1/.

Lemma 4.4 Let A 2 PSO.3; 1/ be an elliptic element of rotation angle ˛ 2 .0; 2�/.

(i) If ˛ D � , then dim vA D 5.

(ii) If ˛ ¤ � , then dim vA D 3.

Proof As before we let 
 denote the axis of A. After conjugation we might assume
that 
 is the geodesic between ŒvC� and Œv�� and hence

AD

0BB@
cos˛ � sin˛ 0 0

sin˛ cos˛ 0 0

0 0 1 0

0 0 0 1

1CCA :
If ˛ D � then a direct calculation gives that i vA consists of matrices of the form0BB@

a i b i 0 0

b i c i 0 0

0 0 d i e i
0 0 �e i �.aC cC d/ i

1CCA with a; b; c; d; e 2 R.
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Hence dim vA D 5. Notice that i vA is the imaginary part of s.u.2/˚ u.1; 1//.

If ˛¤ � , then i vA consists of the previous matrices that in addition satisfy bD 0 and
aD c . Hence i vA is the imaginary part of u.1; 1/ (viewed in s.u.2/˚ u.1; 1//) and
has dimension 3.

4.3 Points at infinity and the Heisenberg geometry

In the sequel we will use the notation of Section 3.4, ie we will fix two light-like vectors
v˙ 2 C3;1 representing two distinct boundary points Œv˙� 2 @H3

C . Moreover we will
use the root-space decomposition of su.3; 1/. The Heisenberg group H� is the group
of parabolic transformations fixing the point Œv��, ie expW g�1˚g�2!H� is given by

exp.v�v�� vv��C i t v�v
�
�/

D I4C v�v
�
� vv��� .kvk

2=2� it/v�v��

D

0BB@
1 0 z1 z1

0 1 z2 z2

�xz1 �xz2 1�kvk2=2C it �kvk2=2C it
xz1 xz2 kvk2=2� it 1Ckvk2=2� it

1CCA
DWH.z1; z2; t/(7)

where v D .z1; z2; 0; 0/
t 2 v?C\ v

?
� is a space-like vector and hence hv; vi D kvk2 D

jz1j
2Cjz2j

2 � 0.

Following the exposition in Goldman’s book [16, 4.2], the boundary at1 of H3
C minus

the point Œv�� can be identified with a Heisenberg space, ie a space equipped with a
simply transitive left action of the Heisenberg group H� . Hence by looking at the orbit
of ŒvC� we have a bijection H�! @H3

C n fŒv��g given by

H.z1; z2; t/ 7!H.z1; z2; t/ŒvC�D

2664
2z1

2z2

1�kzk2C 2it
1Ckzk2� 2it

3775
where kzk2 D jz1j

2Cjz1j
2 .

In the sequel we shall represent points of H� by triples of points .z1; z2; t/ where
z1; z2 2 C, t 2 R with multiplication

.!1; !2; s/ � .z1; z2; t/D .!1C z1; !2C z2; sC t C Im.!1xz1C!2xz2//

for all .!1; !2; s/; .z1; z2; t/ 2H:
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Therefore, H� is a nilpotent 5–dimensional real Lie group, which is a nontrivial central
extension

0! R!H�! C2
! 0 :

The center are the elements of the form .0; 0; t/, t 2 R.

In the sequel we will make use of the Siegel domain model H3 of H3
C . Here

H3
D

8<:w D
0@w1

w2

w3

1A 2 C3

ˇ̌̌̌
ˇ̌ jw1j

2
Cjw2j

2 < 2<.w3/

9=;
is obtained in the following way: we choose the point Œv�� 2 @H3

C and we denote by
H � P3;1 the projective hyperplane tangent to @H3

C at Œv��. More precisely, H is the
projectivization of v?� � C3;1 given by the equation z3C z4 D 0. The corresponding
affine embedding C3! CP3

nH is given by

0@w1

w2

w3

1A 7!
2664

w1

w2

1=2�w3

1=2Cw3

3775 :

It is easy to see that H3
C corresponds to the Siegel domain H3 � C3 . In this model the

whole stabilizer G� of the point Œv�� at infinity is the semidirect product:

G� DH� Ì .U.2/�R/ :

Here U.2/ acts linearly on the factor C2 , and trivially on the factor R. Moreover R
acts as follows:

.I2; �/.z1; z2; t/.I2;��/D.e
��z1; e

��z2; e
�2�t/; for all �2R; for all .z1; z2; t/2H:

Hence the product on G� is given by

.z1; z2; t/.A; �/ �.z
0
1; z
0
2; t
0/.A0; �0/D .z1; z2; t/

�
e��.z01; z

0
2/A

t ; e�2�t 0
�
.AA0; �C�0/;

for all .z1; z2; t/; .z
0
1
; z0

2
; t 0/ 2H , A;A0 2 U.2/ and �; �0 2 R.

In this construction, the subgroup of real parabolic transformations corresponds to
R2 � f0g �H� .

Lemma 4.5 (i) If A is a nontrivial parabolic element of PSO.3;1/, then dim vAD3.

(ii) If � < PSO.3; 1/ is a rank 2 parabolic subgroup, then dim v� D 1.
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Proof Using the representation in the Heisenberg group H� , we may assume that up
to conjugation A is .1; 0; 0/ 2H� . Note that the centralizer of A is contained in G� .
This follows from the fact that A has a unique fixed point on H3

C and every element
which commutes with A has to fix this point.

Now a direct calculation gives that the centralizer of A in G� is 5–dimensional and
given by �

.s; z; t/

�
1 0

0 a

�
2G�

ˇ̌̌̌
s; t 2 R; z 2 C and a 2 U.1/

�
:

Thus dim.su.3; 1/A/D 5, and since dim.so.3; 1//A D 2 (the tangent space to the real
parabolic group itself), the first assertion follows.

For the last assertion, we view � as a rank 2 subgroup of the Heisenberg group

� < R2
� f0g<H�:

Its centralizer is contained in G� and is precisely the subgroup of elements with real
coordinates:

R3
Š f.s1; s2; t/ 2H� j s1; s2; t 2 Rg<H� :

As the subgroup of real parabolic transformations R2 � f0g is the centralizer of � in
PSO.3; 1/, it follows that v� D f.0; 0/g �R is one dimensional.

5 The cohomology of the torus

In this section, we analyze the cohomology of the boundary @M and the image of the
map induced by inclusion @M �M , which is a Lagrangian subspace.

5.1 A Lagrangian subspace

As in Section 2, let �u denote a representation contained in Thurston’s slice, where
u D .u1; : : : ;uk/ 2 U � Ck is a point in the deformation space. The subspace
invariant by the image of the peripheral subgroup of the i –th component is denoted by
v�u.�1.@i M // , and its orthogonal complement by�

v�u.�1.@i M //
�?
D fv 2 v j B.v; w/D 0; 8w 2 v�u.�1.@i M //

g:

Lemma 5.1 (i) For ui ¤ 0, the radical of v�u.�1.@i M // is trivial, ie�
v�u.�1.@i M //

�?
\ v�u.�1.@i M //

D 0:

(ii) For every u 2 U , the invariant subspace v�u.�1.@i M // has dimension one.
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Proof When ui ¤ 0, �u.�1.@iM // consists of nonparabolic isometries that preserve
a geodesic, and we want to apply Lemma 4.2 (i) and Remark 4.3. For this, we need to
find an element 
 2�1.@iM / such that �u.
 / satisfies the hypothesis of Lemma 4.2 (i),
namely that �u.
 / has nonzero translational part and its rotation angle is not an integer
multiple of � . If the real part of ui does not vanish and the imaginary part of ui

is not contained in Z� then we choose �i . If the real part of ui vanishes, then by
Theorem 2.1 the real part of vi does not, and the condition on the complex length
applies to either 
 D �i or 
 D �i�i , that have respective complex lengths vi and
ui C vi . The same argument applies when the imaginary part of ui is zero.

By Lemma 4.2 (i) and its proof, v�u.�1.@i M // is the one dimensional subspace generated
by (a conjugate of) 0BB@

1

1

�1

�1

1CCA ;
which is a nonisotropic element for the Killing form, and both assertions of the lemma
are clear when ui ¤ 0.

When ui D 0, assertion (ii) is precisely Lemma 4.5 (ii).

Corollary 5.2 For every u 2 U we have H j .@M I vAd�u
/D 0 for j > 2 and

dim H 0.@M I vAd�u
/D k;

dim H 1.@M I vAd�u
/D 2k;

dim H 2.@M I vAd�u
/D k :

Proof We have

H 0.@M I vAd�u
/Š

kM
iD1

v�u.�1.@i M //

and hence by Lemma 5.1 (ii) we obtain

dim H 0.@M I vAd�u
/D k :

Now Poincaré duality gives dim H 2.@M I vAd�u
/Dk and since the Euler characteristic

of @M vanishes we obtain dim H 1.@M I vAd�u
/D 2k .

The cup product on H 1.@M I vAd�u
/ is the orthogonal sum of the cup products on the

groups H 1.@iM IvAd�u
/. More precisely, if resi WH

1.@M IvAd�u
/!H 1.@iM IvAd�u

/
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denotes the restriction induced by the inclusion @iM ,! @M , then for z1; z2 2

H 1.@M I vAd�u
/ we have

(8) z1[ z2 D

kX
iD1

resi.z1/[ resi.z2/ :

Note that this defines a symplectic form

!W H 1.@M I vAd�u
/˝H 1.@M I vAd�u

/! R

given by !.z1; z2/D z1[ z2 .

Lemma 5.3 Let uD .u1; : : : ;uk/ 2 U .

(i) When ui ¤ 0, there is a natural isomorphism

H�.@iM I vAd�u
/ŠH�.@iM IR/˝ v�u.�1.@i M //:

(ii) For u 2 U , dim H 1.@M I vAd�u
/D 2 k , and the image of the map

H 1.M I vAd�u
/!H 1.@M I vAd�u

/

is a Lagrangian subspace of H 1.@M I vAd�u
/ for the form ! (in particular it has

dimension k ).

Proof To prove assertion (i), we use the decomposition of Lemma 5.1:

vD
�
v�u.�1.@i M //

�?
˚ v�u.�1.@i M //;

which is a direct sum of �1.@iM /–modules, and therefore it induces a direct sum in
cohomology. Since

�
v�u.�1.@i M //

�? has no invariant subspaces,

H 0.@iM;
�
v�u.�1.@i M //

�?
/D 0:

In addition, the Killing form restricted to
�
v�u.�1.@i M //

�? is nondegenerate, thus by
duality and by vanishing of the Euler characteristic

H�
�
@iM;

�
v�u.�1.@i M //

�?�
D 0:

H�.@iM I v/DH�.@iM I v
�u.�1.@i M ///ŠH�.@iM IR/˝ v�u.�1.@i M //:Hence

The first statement of assertion (ii) is just Corollary 5.2. The fact that the image of
the map H 1.M I vAd�u

/!H 1.@M I vAd�u
/ is a Lagrangian subspace follows from
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duality. We reproduce the proof for completeness (cf [21]). We are interested in the
following part of the exact cohomology sequence of the pair .M; @M /:

H 1.M I vAd�u
/

j�

�!H 1.@M I vAd�u
/
�
�!H 2.M; @M I vAd�u

/ :

The maps j � and � are dual to each other: for z1 2 H 1.M I vAd�u
/ and z2 2

H 1.@M I vAd�u
/,

hj �.z1/[ z2; Œ@M �i D hz1[�.z2/; ŒM; @M �i;

where ŒM; @M � 2H3.M; @M IR/ and Œ@M � 2H2.@M IR/ denote the respective fun-
damental classes.

It follows that dim Im.j �/ D 1
2

dim H 1.@M I vAd�u
/ D k . Moreover � ı j � D 0

implies that Im.j �/ is isotropic and hence Lagrangian since dim Im.j �/D k .

Corollary 5.4 Let M be a cusped manifold. Then for all u 2 U � Ck we have

dim H 1.M I vAd�u
/� k :

Moreover, M is infinitesimally projectively rigid if and only if dim H 1.M I vAd�0
/Dk .

Proof The proof follows directly from Lemma 5.3 and from the decomposition of the
SO.3; 1/–module sl.4/D so.3; 1/˚ v (see Equation (3)).

5.2 Parabolic representations

Let � and � be two generators of Z2 and

%W Z2
! PSO.3; 1/

a representation into a parabolic group. Up to conjugation we suppose that the boundary
point Œv�� is the fixed point of the parabolic group. Viewing the parabolic group as
translations of R2 , %.�/ is a translation of vector v� , and %.�/ of vector v� . Assume
that the representation has rank 2, (ie v� and v� are linearly independent). Then:

Lemma 5.5 If the angle ' between v� and v� is not in �
3

Z then the map induced by
restrictions

H 1.Z2
I vAd%/

i�
�
˚i�
�

����!H 1.�I vAd%/˚H 1.�I vAd%/

is injective. Moreover, rank.i�
�
/D rank.i��/D 1.
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Proof We follow the notation from Section 4.3. We may assume that v�D .1; 0/, v�D
.a cos'; a sin'/2R2 , a sin'¤ 0. In the Heisenberg model H� , %.�/D .1; 0; 0/ and
%.�/D .a cos'; a sin'; 0/. For � 2R, we define a representation %� W Z˚Z!G� by

%� .�/D %.�/ and %� .�/D

�
1 0

0 ei�

�
%.�/:

Notice that %� .�/ and %� .�/ commute, because�
1 0

0 ei�

�
2 U.2/

fixes .1; 0/.

Differentiating at � D 0, we obtain an infinitesimal deformation, that is, a cocycle
d�W Z2! g� D g0˚ g�1˚ g�2 given by

d�.
 /D
d%� .
 /

d�

ˇ̌̌̌
�D0

%0.
 /
�1 :

The cocycle d�W Z2! g� is trivial when restricted to �. More precisely we obtain

d�.�/D 0 and d�.�/D

�
0 0

0 i

�
:

Notice that the derivative of the canonical embedding U.2/!PSU.3; 1/ determined by

A 7!

�
A 0

0 I2

�
is the map u.2/! su.3; 1/ given by

a 7!

�
a 0

0 0

�
�

tr a

4
I4

�
0 0

0 i

�
7!

i
4

0BB@
�1

3

�1

�1

1CCA 2 iv :and that

Hence we obtain a cocycle z�W Z2! v given by z�.�/D 0 and z�.�/D a� where

a� WD

0BB@
�1

3

�1

�1

1CCA 2 v :

Geometry & Topology, Volume 15 (2011)



Infinitesimal projective rigidity under Dehn filling 2043

In the same way we obtain a second cocycle z�W Z2! v given by z�.�/D a� and
z�.�/D 0 where

a� D

0BB@
1� 2 cos.2'/ �2 sin.2'/
�2 sin.2'/ 1C 2 cos.2'/

�1

�1

1CCA 2 v :
Here ' is the angle between v� and v� . Notice that z� is constructed as z� but
switching the roles of � and �. Thus a� is invariant by %.�/, and it can be obtained
by conjugating a� by a rotation of angle ' .

We claim that the cocycle z� is cohomologically nontrivial when restricted to �, ie
nontrivial in H 1.�I vAd%/. This proves that z� is a nontrivial cocycle, and rank.i��/�1.
By symmetry of the generators, z� is a nontrivial cocycle and rank.i�

�
/� 1. Moreover,

since i��.z�/D 0D i�
�
.z�/ it follows that the image of i��˚ i�

�
is 2–dimensional and

the assertion of the lemma follows.

To prove the claim, we will use the cup product

H 1.�I vAd%/˝H 0.�I vAd%/!H 1.�IR/Š R

associated to the Killing form defined in (4). Recall that a� 2H 0.�I vAd%/D v%.�/ is
invariant under the action of �. The cup product i��.z�/[ a� is a represented by the
homomorphism H1.�IR/! R given by�

i��.z�/[ a�
�
.�/D B.a�; a�/D 8 tr.a� � a�/

D 32.1C 2 cos.2'//D 128
�

cos2.'/� 1
4

�
:

This is nonzero by the hypothesis about the angle ' between v� and v� , hence
i��.z�/[ a� is not homologous to zero.

Remark 5.6 (1) Notice that in the proof of Lemma 5.5, instead of the cup product
we could have considered the Kronecker paring between homology and cohomology,
and we would have ended up checking the nonvanishing of the same evaluation of the
Killing form B.a�; a�/.

(2) Note that the assumption '¤�=3 is essential in Lemma 5.5: we can still construct
the cocycles z� and z� in the case ' D �=3. But now we have i��.z�/D 0D i�

�
.z�/.

Moreover the two cocycles z� and z� represent linear dependent nontrivial cohomology
classes in H 1.ZI vAd%/. Hence the map

i�� ˚ i��W H
1.Z2
I vAd%/!H 1.�I vAd%/˚H 1.�I vAd%/

is not injective if ' D �=3.
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Before the next lemma, we still need a claim about symplectic forms on vector spaces.

Claim 5.7 Let .V; !/ be a 2–dimensional symplectic subspace. Suppose f;gW V !R
are linear forms which form a basis of the dual space V � , ie f ˚ gW V ! R2 is an
isomorphism.

Then there exists a constant c 2 R, c ¤ 0, such that, for every x;y 2 V ,

!.x;y/D c.f .x/g.y/�g.x/f .y// :

Proof The claim is a consequence of the fact that the space of antisymmetric bilinear
forms on R2 is one dimensional.

Lemma 5.8 If a subspace L � H 1.@M I vAd�0
/ is Lagrangian for the cup product,

then there exist simple closed curves �1 2 �1.@1M /, . . . , �k 2 �1.@kM / so that the
image of L injects in H 1.�1I vAd�0

/˚ � � � ˚H 1.�k I vAd�0
/. Moreover, injectivity

fails if we consider only k � 1 curves.

Proof Along this proof, the action on v is the adjoint of the holonomy of the complete
structure, so Ad �0 is omitted from notation. For j D1; : : : ; k , let resj W H 1.@M I v/!

H 1.@j M I v/ denote the map induced by restriction, which is also the projection to the
j –th factor of the isomorphism

H 1.@M I v/ŠH 1.@1M I v/? � � � ?H 1.@kM I v/:

Recall that this is an orthogonal sum for the cup product (8).

We prove the lemma by induction on k . When k D 1, it suffices to chose two curves
�1 and �1 in @1M that satisfy the hypothesis of Lemma 5.5. Hence

i��1
˚ i��1

W H 1.@1M I v/!H 1.�1I v/˚H 1.�1I v/

is injective. Then for at least one of the curves, say �1 , i��1
.L/¤ 0.

For the induction step, we chose the corresponding curves on the k –th component �k

and �k , so that

i��k
˚ i��k

W H 1.@kM I v/!H 1.�k I v/˚H 1.�k I v/

is injective, and assume that i��k
.L/¤ 0.

Let L0 � H 1.@1M I v/ ? � � � ? H 1.@k�1M I v/ be the projection to the first k � 1

factors of the kernel of i��k
restricted to L; ie

L0 D .res1˚ � � �˚ resk�1/.ker i��k
jL/
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We first check that L0 is isotropic. Given x;y 2L0 , there exist xk ;yk 2H 1.@kM I v/

such that .x;xk/, .y;yk/ 2L and i��k
.xk/D i��k

.yk/D 0. Thus, by Claim 5.7 and
Equation (8):

0D .x;xk/[ .y;yk/D x[yC ck.i
�
�k
.xk/i

�
�k
.yk/� i��k

.xk/i
�
�k
.yk//D x[y:

Finally we claim that the dimension of L0 is k � 1. Since dim..ker.i��k
jL//D k � 1,

we need to check that res1˚ � � � ˚ resk�1 restricted to ker i��k
jL is injective. Let

x 2 ker.res1/\� � �\ker.resk�1/\ker.i��k
jL/, we want to prove that xD 0. Notice that

x 2H 1.@kM I v/\L\ker.i��k
/. Choose y 2L such that i��k

.y/¤ 0, this is possible
because i��k

.L/¤ 0. Then, using x 2H 1.@kM I v/, Claim 5.7 and Equation (8), we
obtain

0D x[y D ck.i
�
�k
.x/i��k

.y/� i��k
.x/i��k

.y//D�ck i��k
.x/i��k

.y/

for some ck ¤ 0. Since i��k
.y/¤ 0, i�

�k
.x/D 0. Therefore x D 0.

Finally, the fact that injectivity fails if we consider only k � 1 curves is clear once we
know that the rank of H 1.@M I v/! H 1.�i I v/ is at most one. Indeed Lemma 5.5
tells that this rank is at most one.

6 The function on the deformation space

Recall that M denotes a compact manifold with boundary a union of k > 0 tori
and hyperbolic interior. The goal of this section is to give a sufficient cohomological
condition which guarantees that infinitely many fillings on M are infinitesimally rigid.

For this we shall define a real analytic function f W U ! R, where U � Ck is a
parametrization of Thurston’s slice. This function is defined as the determinant of a
matrix whose entries are pairings between homology and cohomology classes. This f
will depend of several choices, but its zero set is a well defined analytical subset of U .
Another analytical subset of U is defined by means of the dimension cohomology of M

with twisted coefficients. We shall prove that the Dehn fillings whose parameter u is
away from these analytical subsets are infinitesimally rigid. Moreover, when M is
infinitesimally projectively rigid with respect to the cusps, these subsets are proper.

For this we need several tools for constructing a function on the deformation space.
The first one is given by the following lemma. All statements are up to taking a smaller
neighborhood of 0, U � Ck .

Lemma 6.1 As in Section 2, let U � Ck be an open neighborhood of 0 which
parametrizes the deformations of the complete holonomy of the interior of M .
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(1) There exists a nonvanishing element ai
u 2 v

�u.�1.@i M // that varies analytically
in u 2 U .

(2) There exists a family of cohomology classes fz1
u; : : : ; z

k
u g that define a basis for

the image of H 1.M I vAd�u
/!H 1.@M I vAd�u

/ and that varies analytically in
u 2 U .

Remark 6.2 To vary analytically depends on the construction we take for cohomology,
but we always think of an analytic map on a finite dimensional space of cocycles, either
in simplicial cohomology (fixing a triangulation and varying the bundle) or in group
cohomology (fixing a generating set for the fundamental group).

Proof The first assertion follows directly from Lemma 5.1 (ii).

For the second part we will use Lemma 5.3 (ii). The rank of H 1.M I vAd�u
/ !

H 1.@M I vAd�u
/ is k . Hence it suffices to take a basis when uD 0, fz1

0
; : : : ; zk

0
g and

then make it vary in the kernel of H 1.@M I vAd�u
/!H 2.M; @M I vAd�u

/, which is
an analytic family of k –dimensional vector spaces.

For i D 1; : : : ; k we consider the following 1–cycle in the i –th torus @iM of the
boundary

ai
u˝

1

jpi C qi�i j
2
.pi�i C qi�i/

in simplicial homology. This twisted cycle is the image of the untwisted cycle

pi�i C qi�i

jpi C qi�i j
2
2H1.@iM;R/

by the natural map

H1.@iM;R/
ai

u˝�

���!H1.@iM; v�u.�1.@i M ///!H1.@iM; vAd�u
/

that consists in tensorizing by ai
u and composing with the map induced by the inclusion

of coefficients v�u.�1.@i M //! v.

Let h : ; : i denote the Kronecker pairing between homology and cohomology of @M
with coefficients in vAd�u

(see Section 3.1.3). We define

f .u/D det
���

zi
u; a

j
u˝

pj�j C qj�j

jpj C qj�j j2

��
ij

�
;

where pi and qi are the generalized Dehn filling coefficients corresponding to u 2 U

(see Section 2). If we view zu as a map on simplicial chains taking values on v, and
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B denotes the Killing form, then

f .u/D det
�

B

�
zi

u

�
pj�j C qj�j

jpj C qj�j j2

�
; aj

u

��
:

Remark 6.3 The function f depends on several noncanonical choices. But we are
only interested in the zero locus of f and this set does not depend on the different
choices involved in the definition of f . Notice also that Lemma 2.3 implies that f is
analytic and f .0/D 0. The proof of Proposition 1.8 in Section 8.2 shows that the zero
locus f �1.f0g/ of f might be one dimensional and that in general 0 2 f �1.f0g/ is
not an isolated point (see Section 8.2).

In the sequel let u.p;q/ denote the parameter of the structure whose completion gives
the Dehn filling with coefficients .p1; q1/; : : : ; .pk ; qk/ where .pi ; qi/ are pairs of
coprime integers.

Lemma 6.4 If

(i) f .u.p;q//¤ 0,

(ii) dim H 1.M; vAd�u.p;q/
/D k ,

then H 1.M.p;q/; vAd�u.p;q/
/D 0.

Proof In this proof the representation �u.p;q/ is fixed and we remove Ad �u from
notation.

Hypotheses (i) and (ii) imply that

fa1
u˝ .p1�1C q1�1/; : : : ; a

k
u ˝ .pk�k C qk�k/g

is a basis for H1.M I v/. Hence for 
 WD 
1[� � �[
k , 
i Dpi�iCqi�i , the following
composition gives an isomorphism in homology:

kM
iD1

H1.
i IR/!
kM

iD1

H1.
i I v
�u.�1.@i M ///!H1.
 I v/!H1.M I v/:

Equivalently, we have an isomorphism in cohomology:

(9) H 1.M I v/!H 1.
 I v/!

kM
iD1

H 1.
i I v
�u.�1.@i M ///!

kM
iD1

H 1.
i IR/:

Let N denote a tubular neighborhood of the filling geodesics, so that N DN1[� � �[Nk

is the union of k solid tori, N[M is the closed manifold M.p;q/ and N\M D@M .We
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claim that the inclusions induce an isomorphism

H i.M I v/˚H i.N I v/!H i.@M I v/

for i D 0 and i D 1. Then by Mayer–Vietoris, H 1.M.p;q/; v/D 0 follows.

Let us check the claim. When i D 0, H 0.M I v/Š vAd�u.�1M / D 0, and the required
isomorphism comes from the fact that �1.Nj / and �1.@j M / have the same image
under �u and hence the same invariant subspace.

When i D 1, we notice that by Lemma 5.3

H 1.@iM; v/DH 1.@iM;R/˝ v�u.�1.@i M //;

and dim v�u.�1.@i M // D 1, by Lemma 5.1. Similarly,

H 1.Ni ; v/DH 1.Ni ;R/˝ v�u.�1.@i M //:

Then the proof follows from isomorphism (9) and the natural isomorphism induced by
inclusions:

H 1.@iM IR/ŠH 1.Ni IR/˚H 1.
i IR/:

Corollary 6.5 If the generic dimension of H 1.M I vAd�u
/ is k and if f is noncon-

stant in a neighborhood of 0, then infinitely many Dehn fillings on M are infinitesimally
rigid.

Proof The dimension of H 1.M I vAd�u
/ is bounded below by k and upper semicon-

tinuous on u 2 U (it is larger on a proper analytic subset). Hence the set of u 2 U

where dim H 1.M I vAd�u
/¤ k or f .u/D 0 is a proper analytic subset of U , and it

misses infinitely many Dehn fillings by [33, Lemme 4.4].

Corollary 6.6 Assume that M is infinitesimally projectively rigid relative to the cusps.
Then for u 2 U , the dimension of H i.M I vAd�u

/ is k for i D 1; 2 and zero otherwise.

Proof The dimension of H 1.M I vAd�u
/ is bounded below by k and upper semicon-

tinuous on U , hence constant, because this dimension is reached at uD 0. As �u is
irreducible, vAd�u

has no nontrivial invariant element and therefore H 0.M I vAd�u
/D0.

As the Euler characteristic of M vanishes, and M has the homotopy type of a two
dimensional complex, the dimension of H i.M I vAd�u

/ is also k of i D 2 and zero
otherwise.

For a collection of simple closed curves � D f�1; : : : �kg, where �i � @iM is
nontrivial in homology, the structure with cone angles ˛ and meridians � has parameter
uD .˛i; : : : ; ˛i/ 2 U , where iD

p
�1. To simplify notation, we shall write uD ˛i,

in particular the holonomy is written as �˛i .
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Proposition 6.7 Assume that there exists a collection of simple closed curves as above
�� @M and some " > 0 so that, for all 0< ˛ < ",

dim H 1.M; �I vAd�˛i/D 3k:

Then infinitely many Dehn fillings are infinitesimally rigid.

Proof We first outline the proof. Our goal is to prove the proposition by applying
Corollary 6.5. The dimension of H 1.M I vAd�u

/ is k when uD ˛i by an argument
on the long exact sequence in cohomology of the pair .M; @M /. The same dimension
count holds for a generic u 2 U , by semicontinuity. In addition, the long exact
sequence in cohomology also tells that H 1.M I vAd�u

/ injects in H 1.�I vAd�u
/, when

u D ˛i. This gives a basis for H 1.M I vAd�u
/ so that when we look at its image in

H 1.@M I vAd�u
/ and we compute f , we have that f .u/¤ 0, for uD ˛i.

Now we proceed with the details. Since �˛i.�j / is a rotation of angle 0< ˛ < � , by
Lemma 4.2 dim H 0.�j I vAd�˛i/D dim vAd�˛i.�j / D 3, and therefore

dim H 0.�I vAd�˛i/D 3k:

Then the long exact sequence of the pair .M; �/ starts as follows:

0!H 0.�; vAd�˛i/!H 1.M; �; vAd�˛i/!H 1.M; vAd�˛i/! � � � :

Since dim H 0.�I vAd�˛i/D dim H 1.M; �; vAd�˛i/, we have an inclusion

0!H 1.M I vAd�˛i/!H 1.�I vAd�˛i/:

The inclusion of � in M factors through @M , hence by Lemma 5.3, it follows that

dim H 1.M I vAd�˛i/D k;

which is the first condition for applying Corollary 6.5, by upper semicontinuity of the
dimension of H 1 .

Moreover, using Lemma 5.3 (i), it follows that

H 1.M I vAd�˛i/Š

kM
jD1

H 1.�j IR/˝ v�˛i.�1.@jM // :

This implies that one can choose a basis fz1
u; : : : ; z

k
u g for H 1.M I vAd�˛i/, where

z
j
u D y�j ˝ a

j
˛ i and y�j 2H 1.�j IZ/ is the dual of the fundamental class in H1.�j IZ/.

Thus, since pj D 2�=˛ and qj D 0, we get

f .˛i/D
˛k

.2�/k
B.a1

˛ i; a
1
˛ i/ � � �B.a

k
˛ i; a

k
˛ i/¤ 0;

as the Killing form on v�˛ i.�1.@jM // is nondegenerate.
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Proof of Theorem 1.4 As M is infinitesimally projectively rigid, by Lemma 5.8 we
can choose a set of slopes �D �1[ � � � [�k , so that

0!H 1.M I vAd�0
/!H 1.�I vAd�0

/

is exact. By the long exact sequence of the pair .M; �/, since dim vAd�0.�j / D 3,
this is equivalent to saying that dim H 1.M; �I vAd�0

/D 3k . By analyticity and upper
semicontinuity of the dimension of the cohomology, the hypothesis of Proposition 6.7
holds true.

Proof of Theorem 1.5 To simplify, we first assume that the infinitesimally projectively
rigid Dehn filling can be connected to the complete structure by a family of cone
manifold structures of cone angle ˛ 2 Œ0; 2��, where ˛ D 2� corresponds to the Dehn
filling and ˛ D 0 to the complete structure. Notice that this is the case of the Dehn
fillings provided by Hodgson and Kerckhoff in their estimation of the size of the
hyperbolic Dehn filling space [22] (hence of all but at most 60 Dehn fillings).

Let M.p;q/ be infinitesimally projectively rigid and let u.p;q/ 2U denote the parameter
in the Thurston slice corresponding to the holonomy of the structure on M induced
by the Dehn filling. Let V � U denote the domain of definition of the real analytic
function f W V ! R.

As in the proof of Lemma 6.4, a Mayer–Vietoris argument gives that

dim H 1.M I vAd�u.p;q/
/D k:

Moreover, if the parameter u.p;q/ is contained in V then f .u.p;q//¤ 0.

A priori V could be a smaller neighborhood of the origin and u.p;q/ 2U XV might hap-
pen. The problem is that the cohomology classes z1

u; : : : ; z
k
u 2 Im.H 1.M I vAd�u

/!

H 1.@M I vAd�u
// could be linearly dependent or even not be defined outside V . To

fix that, we use the path of hyperbolic cone structures, that gives a segment in U , that
we parametrize by the cone angle ˛ 2 Œ0; 2��. Let u˛ 2 U denote the parameter of the
deformation space. By upper semicontinuity,

dim H 1.M I vAd�u˛
/D k D dim H 1.M I vAd�u2�

/

for almost all ˛ 2 Œ0; 2��. Let 
1; : : : ; 
k denote the filling slopes. By compactness,
the segment Œ0; 2�� is covered by intervals

Œ0; 2��D Œ0; ˛00/[ .˛1; ˛
0
1/[ � � � [ .˛r ; 2��;

so that on each .˛i ; ˛
0
i/, there exist a family of cohomology classes

z1
˛; : : : ; z

k
˛ 2 Im.H 1.M I vAd�u˛

/!H 1.@M I vAd�u˛
//
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that vary analytically on ˛ 2 .˛i ; ˛
0
i/ and are linearly independent for each ˛ 2 .˛i ; ˛

0
i/,

by Lemma 6.1. On each interval we may use the cohomology classes to construct
functions

fi W .˛i ; ˛
0
i/! R

similar to f , ie as the determinant of the matrix of Kronecker pairings between zl
˛ and

the homology class represented by a
j
˛ ˝ .˛=2�/
j . The function f0W .˛0; ˛

0
0
/! R

can be chosen to be the restriction of f W U ! R. In addition, the functions fi and
fiC1 may differ on .˛0i ; ˛iC1/, but fi.˛/D 0 if and only if fiC1.˛/D 0, for every
˛ 2 .˛0i ; ˛iC1/. Since fr .2�/ ¤ 0 and the fi are analytic, f0 and f are nonzero.
In addition, by upper semicontinuity, the generic dimension of H 1.M I vAd�u

/ is k ,
hence we may apply Corollary 6.5. This finishes the proof when there is a segment of
hyperbolic cone structures connecting u.p;q/ to the origin.

In the general case, instead of considering a path of hyperbolic cone structures, which
is a straight segment in U , it is sufficient to take a piecewise analytic path in U

connecting u.p;q/ to the origin, and apply the previous argument. The only key point
is that we have to chose piecewise analytic paths so that their nonsmooth points are not
in the vanishing locus of f , which is always possible by genericity.

7 Rigid slopes

Definition 7.1 Let M 3 be a cusped hyperbolic manifold of finite volume which is
infinitesimally projectively rigid with respect to the cusps. Let 
 be a slope of @1M ,
We say that 
 is a rigid slope if the map

i�
 W H
1.M I vAd�0

/!H 1.
 I vAd�0
/

is nontrivial.

Proposition 7.2 Let M 3 be a cusped hyperbolic manifold of finite volume which is
infinitesimally projectively rigid with respect to the cusps and let �; � 2 @1M be a pair
of simple closed curves generating the fundamental group of @1M . Let .pn; qn/ 2 Z2

be a sequence of coprime integers lying on a line a pnC b qn D c . If 
 D�b�C a�

is a rigid slope, then M 3
.pn;qn/;1;:::;1

is infinitesimally rigid with respect to the cusps
for n large enough.

Proof After changing the basis in homology, the curves � and � are chosen such that
aD 1, b D 0, ie �D .0; 1/ is the rigid slope. We also may assume .pn; qn/D .c; n/.
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Let us consider the path

s 7!

(
.c; 1=s/ if s ¤ 0;

1 if s D 0

in the parameter space. Denote by u.s/ the corresponding point in the deformation
space.

Lemma 7.3 The path u.s/ is a real analytic on s 2 .�"; "/.

Proof Setting �.u/D v.u/=u, from p uC q v D u.cC 1
s
�.u//D 2� i we can write

u.s cC �.u//D s 2� i:

Since �.0/ ¤ 0 and � is analytic on u, this allows to define u as analytic function
on s , by applying the analytic version of the implicit function theorem.

Let �u 2 Im
�
H 1.M I vAd�u

/!H 1.@1M I vAd�u
/
�

be an analytic family of cohomol-
ogy classes, so that i�

�
.�0/ ¤ 0. This is always possible since i�

�
factors through

H 1.@1M I vAd�u
/.

The two cohomology classes z�; z� 2 H 1.@1M I vAd�0
/ as defined in the proof of

Lemma 5.5 satisfy i��.z�/D i�
�
.z�/D 0, i��.z�/¤ 0, and i�

�
.z�/¤ 0. Hence we may

assume that
�0 D z�Cˇz� for some ˇ 2 R:

Let also au.s/ 2 vAd�u.s/.�1.@1M // be an analytic family of invariant elements, with
a0 ¤ 0. As in Lemma 6.1, we want to see that for s > 0, the following function does
not vanish:

f .s/ WD

�
�u.s/; au.s/˝

c�C .1=s/�

jcC .1=s/� j2

�
D

s

js cC � j2

˝
�u.s/.s c�C�/; au.s/

˛
:

Notice that it follows from the proof of Lemma 5.1 that for small s , s ¤ 0, the
restriction of the Killing form on the subspace vAd�u.s/.�1.@1M // is positive definite ie
B.au.s/; au.s// > 0 for sufficiently small s ¤ 0.

Lemma 7.4 If kau.s/k D B.au.s/; au.s//
1=2 , then

lim
s!0

B.�u.s/.�/; au.s//

kau.s/k
D 16 and lim

s!0

B.�u.s/.�/; au.s//

kau.s/k
D 16ˇ:
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Assuming the lemma we obtain

f .s/

s kau.s/k
D

1

js cC � j2

�
B.�u.s/.�/; au.s//

kau.s/k
C s c

B.�u.s/.�/; au.s//

kau.s/k

�
lim
s!0

f .s/

s kau.s/k
D

16

j�0j
2
:and hence

Hence f .s/¤ 0 for s¤ 0. Moreover, since the dimension of H 1.M I vAd�u
/ is upper

semicontinuous with respect to u, it still satisfies dim.H 1.M I vAd�u.s/
// D k . By

analyticity those conditions are satisfied for all but finitely many s , hence we may
apply Lemma 6.4.

This concludes the proof of Proposition 7.2 assuming Lemma 7.4.

Before proving Lemma 7.4, we still need a further computation. Let w0 2 su.3; 1/

denote

w0 D
i
2

V0; where V0 D

0BB@
1

1

�1

�1

1CCA :
Note that w0 is contained in g0 � su.3; 1/ which is the Lie algebra of the stabilizer of
Œv˙� 2 @1H3

C .

Lemma 7.5 The invariant element au 2 v
�u.�1.@1M // can be chosen such that

au D p.u/C 4
ˇ̌̌
sinh2 u

2

ˇ̌̌
V0 ;

where p.u/ is an infinitesimal parabolic transformation.

Proof Since w0 is invariant by the stabilizer G0 for u¤ 0, au can be obtained by
conjugating w0 , and then by normalizing the result so that the limit exists if u tends
to 0.

Recall that in the Heisenberg model the subgroup of real parabolic representations
corresponds to R2 � f0g �H� � G� DH� Ì .U.2/�R/. Note also that w0 is the
image of iI2 under the canonical inclusion u.2/ ,! su.3; 1/.

Suppose that .x;y; 0/ 2 R2 � f0g is the second fixed point of �u.�1@M /. In the
notation of PSL2.C/ we have

�u.�/D˙

�
eu=2 1

0 e�u=2

�
;

hence xC iy D
�1

2 sinh.u=2/
:
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Using the formalism of G� , the conjugate of w0 we are looking for is

Ad.x;y;0/

�
i 0

0 i

�
D

d

dt
.x;y; 0/

�
eit 0

0 eit

�
.�x;�y; 0/

ˇ̌̌̌
tD0

D
d

dt
.x;y; 0/.�xeit ;�yeit ; 0/

�
eit 0

0 eit

� ˇ̌̌̌
tD0

D
d

dt

�
x.1� eit /;y.1� eit /; .x2

Cy2/ sin.t/
� �eit 0

0 eit

� ˇ̌̌̌
tD0

D
�
� ix;�iy; .x2

Cy2/
�
C

�
i 0

0 i

�
:

Under the inclusion g� ,! su.3; 1/ this element is written as0BB@
i=2

i=2
�i=2

�i=2

1CCA� i

0BB@
0 0 x y

0 0 x y

�x x 0 0

�y y 0 0

1CCAC i.x2
Cy2/

0BB@
0 0 0 0

0 0 0 0

0 0 1 �1

0 0 1 �1

1CCA :
Hence Ad.x;y;0/.w0/D w0C parabolic.

Now x2 C y2 D 1=j4 sinh2.u=2/j and in order to obtain an invariant matrix which
converges when u! 0 we take

au D�i4
ˇ̌̌
sinh2 u

2

ˇ̌̌
Ad.x;y;0/.w0/D 4

ˇ̌̌
sinh2 u

2

ˇ̌̌
V0C parabolic

and the lemma is clear.

Proof of Lemma 7.4 Using Lemma 7.5 and Lemma 3.6 we obtain

B.au; au/
1=2
D 4j sinh2.u=2/jB.V0;V0/

1=2
D 8j sinh2.u=2/j;

B.�u.s/.�/; au.s//D B.�u.s/.�/;V0/ 4j sinh2.u=2/j:

Hence

B.�u.s/.�/; au.s//

kau.s/k
D

1

2
B.�u.s/.�/;V0/!

1

2
B.�u.0/.�/;V0/ as s! 0;

B.�u.0/.�/;V0/D B.z�.�/;V0/D B.a�;W0/D 32 :

A similar computation holds for �u.s/.�/.
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8 Examples

In this section we compute two examples, the figure eight knot and the Whitehead link
exteriors. We start introducing some notation. Let x 2 R4 be a column vector. As
in Section 3.4 we will use the following notation: x� D xtJ . Then for all x; y 2 R4

we have that xy�C yx� 2 v. In the sequel we will make use of the following basis
fv1; : : : ; v9g of v:

vi D eie�i C e4e�
4

for i D 1; : : : ; 3;

v4 D e1e�2C e2e�1; v5 D e1e�3C e3e�1; v6 D e1e�4C e4e�1;

v7 D e2e�3C e3e�2; v8 D e2e�4C e4e�2; v9 D e3e�4C e4e�3 :

8.1 The figure eight knot

In this section we explain the computations to show that the figure eight knot exterior
is infinitesimally projectively rigid.

Let � be the fundamental group of the figure eight knot exterior. We fix a presentation
of � :

(10) � D hx; y j xy�1x�1yxy�1xyx�1y�1
i;

where x and y represent meridians.

By Corollary 5.4, it suffices to show that dim H 1.�; vAd�0
/D 1.

We start with a holonomy representation of the complete structure in SL2.C/ [35]:

x 7!

�
1 1

0 1

�
y 7!

�
1 0

.1� i
p

3/=2 1

�
:

Using for instance the construction described in [12], the representation in PSO.3; 1/
is given by

�0.x/D

0BB@
1 0 0 0

0 1 �1 1

0 1 1=2 1=2

0 1 �1=2 3=2

1CCA ; �0.y/D

0BB@
1 0

p
3=2
p

3=2

0 1 1=2 1=2

�
p

3=2 �1=2 1=2 �1=2
p

3=2 1=2 1=2 3=2

1CCA :
Notice that the holonomy of x and y have a fixed point in the light cone, which are
respectively

vC D

0BB@
0

0

1

1

1CCA and v� D

0BB@
0

0

�1

1

1CCA :
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With respect to the basis fv1; : : : ; v9g for v the adjoint representation is given by

Ad �0.x/D

0BBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0

1 2 2 0 0 0 �2 2 �2

1
4

5
4

1
2

0 0 0 1 1 1
2

0 0 0 1 �1 �1 0 0 0

0 0 0 1 1
2
�

1
2

0 0 0

0 0 0 �1 1
2

3
2

0 0 0

1
2

3
2

0 0 0 0 �
1
2

3
2

0

3
2

5
2

2 0 0 0 �
3
2

5
2
�2

3
4

7
4

1
2

0 0 0 0 2 1
2

1CCCCCCCCCCCCCCCCCCCA

Ad �0.y/D

0BBBBBBBBBBBBBBBBBBBBBB@

7
4

3
4

3
2

0
p

3 �
p

3 0 0 3
2

1
4

5
4

1
2

0 0 0 1 1 1
2

1 1
2

1
2

p
3

2
�

p
3

2
�

p
3

2
�

1
2

1
2

�
1
2

p
3

4

p
3

4

p
3

2
1 1=2 �1=2

p
3

2

p
3

2

p
3

2

�
3
p

3
4
�

p
3

4
0 �

1
2
�

1
4

5
4
�

p
3

4
�

p
3

4
0

�
5
p

3
4
�

3
p

3
4
�
p

3 �1
2
�

5
4

9
4
�

p
3

4
�

p
3

4
�
p

3

�
1
4

�
3
4

0 �

p
3

2
�

p
3

4

p
3

4
1
4

�
3
4

0

3
4

5
4

1
p

3
2

p
3

4
�

p
3

4
3
4

7
4

1

�
3
2

�1 �
1
2
�

p
3

2
0

p
3 0 �1 1

2

1CCCCCCCCCCCCCCCCCCCCCCA

:

The cohomology group H 1.�I v/ is computed as the quotient Z1=B1 , where Z1 D

Z1.�I vAd�0
/ is the space of cocycles and B1 DB1.�I vAd�0

/ the space of cobound-
aries, cf Section 3.1.2.

Since v has no element globally invariant by � , dim B1 D dim v D 9. We claim
that dim Z1 D 10. To compute this dimension, we use the isomorphism of R–vector
spaces:

Z1
$
˚
.a; b/ 2 v2

ˇ̌
@w
@x
� aC @w

@y
� b D 0

	
d $ .d.x/; d.y//
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where w D xy�1x�1yxy�1xyx�1y�1 is the relation in the presentation of � , and
@w
@x

, @w
@y

stand for the Fox derivatives [27]:

@w

@x
D 1�xy�1x�1

Cxy�1x�1yCyxy�1x�1
�y;

@w

@y
D�xy�1

Cxy�1x�1
�yxy�1x�1

Cyxy�1
� 1:

Thus, Z1 is isomorphic to the kernel of the linear map from v� v to v with matrix

(11)
�

Ad �0

�
@w

@x

�
;Ad �0

�
@w

@y

��
:

One can check that this matrix has rank 8, by means of an elementary but tedious
computation. Hence dim Z1 D 10, as claimed. To prove Proposition 1.7 we need to
show:

Remark 8.1 The longitude is a rigid slope.

With this remark, Proposition 1.7 is just an application of Proposition 7.2. To prove
that the longitude is a rigid slope, we need to analyze more carefully the previous
computation.

By looking at the kernel of matrix (11), we choose one cocycle d determined by

d.x/D

0BB@
0 0 0 0

0 0 �3 �1

0 �3 0 0

0 1 0 0

1CCA and d.y/D 0 :

Let l D yx�1y�1x2y�1x�1y be the longitude that commutes with x . Then, by Fox
calculus,

d.l/D

0BBB@
60 �4

p
3 60

p
3 �68

p
3

�4
p

3 �4 �12 12

60
p

3 �12 178 �206

68
p

3 �12 206 �234

1CCCA :

To see that d restricted to the cyclic group generated by l is not a coboundary, following
the proof of Lemma 5.5, we must find an invariant element a 2 vAd�0.l/ such that
B.d.l/; a/¤ 0. Since

�0.l/D

0BB@
1 0 �2

p
3 2
p

3

0 1 0 0

2
p

3 0 �5 6

2
p

3 0 �6 7

1CCA ;
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following again the proof of Lemma 5.5, we choose

aD

0BB@
�1

3

�1

�1

1CCA ;
and we have that B.d.l/; a/D�16¤ 0.

8.2 Orbifolds with the figure eight knot as the singular locus

Let On denote the orbifold with underlying space S3 , singular locus Sing.On/ the
figure eight knot and ramification index n. The orbifold On is hyperbolic for n� 4.
Note that the orbifold On has a finite cyclic covering fOn!On where Mn WD

fOn is
the so called Fibonacci manifold which is widely studied in the literature [20].

The aim of this subsection is to prove Proposition 1.8, which states that On is not
locally projectively rigid for sufficiently large n, and that its deformation space is a
curve. This will be proved in Section 8.2.4, after three sections of preliminary results.

As before, �0 WD � D �1.On nSing.On// denotes the fundamental group of the figure
eight knot exterior, so that

�1=n WD �
orb
1 .On/Š �=hm

n
i;

for m 2 � representing a meridian. Note that there exists an exact sequence

0! �1.Mn/! �orb
1 .On/! Z=nZ! 0 :

8.2.1 A finite order automorphism of �0 The figure eight knot is amphicheiral and
hence there exists an automorphism of �0 preserving the longitude and sending the
meridian to its inverse. Such an automorphism '0W �0! �0 is given by

'0.x/D x�1 and '0.y/D yx�1y�1xy�1:

By direct calculation using Presentation (10) and the meridian/longitude pair mD x

and l D yx�1y�1x2y�1x�1y , one checks that '0 is an automorphism and that

'0.m/Dm�1 and '0.l/D l:

Hence '0 induces automorphisms

'1=nW �1=n! �1=n:
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Let �0W �0!PSO.3; 1/ and �1=nW �1=n!PSO.3; 1/ denote the holonomy representa-
tions. Then by Mostow–Prasad rigidity there exists a unique element A1=n 2 PSO.3; 1/
such that

(12) �1=n ı'1=n D AdA1=n
ı�1=n

for n� 4, including 0D 1=1.

For any group homomorphism 'W �! � 0 and any � 0–module a0 we denote by 'a0

the � –module with underlying set a0 and the � action 
 ıa0 D '.
 /ıa0 . It is easy to
check that ' induces a map

f �W H�.� 0; a0/!H�.�; 'a0/

(see [9, III.8]). Now any � –module a and any morphism of � –modules ˛W 'a0! a

there is an induced map in cohomology .'; ˛/�W H�.�; a/!H�.�; a/ given by

.'; ˛/� D ˛� ı'
�:

By [9, Proposition III.8.3], inner automorphisms of � induce the identity on cohomol-
ogy.

Now Equation (12) tells us that AdA�1
1=n
W '1=nv�1=n

! v�1=n
is a �1=n –module mor-

phism and hence there is an induced map

'�1=n WD .'1=n;AdA�1
1=n
/�W H 1.�1=n; v�1=n

/!H 1.�1=n; v�1=n
/:

To work explicitly with this map, we work with cocycles Z1.�1=n; v�1=n
/ ie maps

zW �1=n ! v�1=n
satisfying the cocycle relation (Section 3.1.2). We also denote by

'�
1=n
W Z1.�1=n; v�1=n

/!Z1.�1=n; v�1=n
/ the induced map on cocycles that is given by

'�1=n.z/D AdA�1
1=n
ız ı'1=n for all z 2Z1.�1=n; v�1=n

/:

In the sequel we shall compute the action of '�
1=n

first on the homology H�.@M; v�1=n
/

and then we shall deduce its action on H�.�1=n; v�1=n
/.

For 4� n<1, we have a natural isomorphism

H�.@M; v�1=n
/ŠH�.@M;R/˝ v�1=n.�1@M /

(see Lemma 5.3). For nD1 Lemma 5.5 applies and hence

i�l ˚ i�mW H
1.@M; v�0

/!H 1.l; v�0
/˚H�.m; v�0

/

is injective. Moreover rk.i�
l
/D rk.i�m/D 1.

In the sequel let '�W H�.@M;R/! H�.@M;R/ denote the map induced in the un-
twisted cohomology with real coefficients.
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Lemma 8.2 For n<1, with respect to the isomorphism

H�.@M; v�1=n
/ŠH�.@M;R/˝ v�1=n.�1@M /;

the isomorphism '�
1=n

on cohomology is given by

'�1=n D '
�
˝ Id

v�1=n.�1@M / :

For nD1, we have

i�l ı'
�
0 D i�l and i�m ı'

�
0 D�i�m :

Proof If n� 4 then �1=n.m/ is an elliptic element and �1=n.l/ is a pure hyperbolic
translation. This can be seen for example by using the trace identity

tr �.l/D tr4 �.m/� 5 tr2 �.m/C 2;

which holds for every irreducible representation �W � ! SL.2;C/ (see for example
[33, page 113]). Hence up to conjugation we may assume that

�1=n.m/D

0BB@
cos.2�=n/ � sin.2�=n/ 0 0

sin.2�=n/ cos.2�=n/ 0 0

0 0 1 0

0 0 0 1

1CCA

�1=n.l/D

0BB@
1 0 0 0

0 1 0 0

0 0 cosh.�n/ sinh.�n/

0 0 sinh.�n/ cosh.�n/

1CCA ;
where �n is the translation length of the holonomy of l , which is the length of the
geodesic singular locus. With this normalization we obtain

v�1=n.�1@M /
D

*0BB@
1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1CCA
+
;

A1=n D

0BB@
1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

1CCA�R˛ 0

0 T�

�
;

where R˛ is a rotation of angle ˛ 2 R and T� is a hyperbolic translation of length
� 2 R. The actual values of ˛ and � are not needed since the above form of A1=n
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already implies that it acts trivially on v�1=n.�1@M / ie

AdA1=n

ˇ̌
v�1=n.�1@M / D Id

v�1=n.�1@M / ;

and the first assertion of the lemma follows.

In order to prove the second assertion recall that

�0.m/D �0.x/D exp

0BB@
0 0 0 0

0 0 �1 1

0 1 0 0

0 1 0 0

1CCA and �0.l/D exp

0BB@
0 0 �2

p
3 2
p

3

0 0 0 0

2
p

3 0 0 0

2
p

3 0 0 0

1CCA :

A0 DM

0BB@
1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

1CCAHence

for some M in the parabolic group that fixes vC D Fix.h�0.m/; �0.l/i/, and that
maps v� , the point fixed by the parabolic group containing �0.y/, to �0.yx�1/ � v� ,
because '0.y/D yx�1y�1xy�1 . With respect to our normalization we have

vC D

0BB@
0

0

1

1

1CCA ; v� D

0BB@
0

0

�1

1

1CCA and �0.yx�1/ � v� D

0BB@
p

3

�1

0

2

1CCA :

M D exp

0BB@
0 0 �

p
3=2
p

3=2

0 0 1=2 �1=2
p

3=2 �1=2 0 0
p

3=2 �1=2 0 0

1CCAHence

A0 D

0BB@
1 0 �

p
3=2
p

3=2

0 �1 1=2 �1=2
p

3=2 1=2 1=2 1=2
p

3=2 1=2 �1=2 3=2

1CCA :and

Let us consider the two cocycles zm; zl W �1.@M /! v�0
which were constructed in the

proof of Lemma 5.5: zmW �1.@M /! v�0
given by zm.l/D 0 and zm.m/D al where

al D

0BB@
�1

3

�1

�1

1CCA 2 v;
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and zl W �1.@M /! v�0
given by zl.l/D am and zl.m/D 0 where

am D

0BB@
3

�1

�1

�1

1CCA 2 v :
These cocycles satisfy

i�m.Œzm�/¤ 0; i�l .Œzm�/D 0;

i�m.Œzl �/D 0; i�l .Œzl �/¤ 0 :

Moreover we have

'�0 zm.m/D AdA�1
0

zm.m
�1/

D�AdA�1
0

Ad�0.m/�1 al

D�

0BB@
�1 0 0 0

0 3 2 �2

0 2 0 �9

0 2 9 �2

1CCA
'�0 zm.l/D AdA�1

0
zm.l/D 0 :and

hi�m'
�
0 zm; ami D B.am; '

�
0 zm.m//D 32D�B.am; al/Since

it follows that i�m'
�
0

zm��i�mzm (see the argument at the end of the proof of Lemma 5.5).
On the other hand we have

'�0 zl.m/D 0 and '�0 zl.l/D AdA�1
0
.am/D

0BB@
3 0 �2

p
3 2
p

3

0 �1 0 0

�2
p

3 0 2 �3

�2
p

3 0 3 �4

1CCA :
Since B.al ; '

�
0

zl.l//D�32D B.al ; am/ it follows that i�
l
'�

0
zl � i�

l
zl .

Corollary 8.3 For sufficiently large n 2 N the composition

H 1.M; v�1=n
/ ,!H 1.@M; v�1=n

/!H 1.m; v�1=n
/

is the zero map.

Proof The longitude l is a rigid slope (see Remark 8.1). Thus by Lemma 8.2 the map
'�

0
W H 1.M; v�0

/!H 1.M; v�0
/ is the identity.
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Next notice that for n sufficiently large, by Corollary 6.6 we have an inclusion

H 1.M; v�1=n
/ ,!H 1.@M; v�1=n

/ :

The eigenvalues of '�
1=n
W H 1.@M; v�1=n

/!H 1.@M; v�1=n
/ are ˙1 since the restric-

tion of '1=n to the subgroup generated by m and l is an involution. Moreover, '�
1=n

preserves H 1.M; v�1=n
/ ,! H 1.@M; v�1=n

/ and hence the induced map '�
1=n

on
H 1.M; v�1=n

/ is ˙Id and by continuity this restriction is the identity.

On the other hand we have '1=n.m/Dm�1 , hence by Lemma 8.2 and Lemma 5.3,
'�

1=n
induces �Id on the image of H 1.@M; v�1=n

/!H 1.m; v�1=n
/.

8.2.2 The orbifold cohomology It will be convenient to consider orbifold cohomol-
ogy with twisted coefficients. We follow the simplicial approach of Section 3.1.1.
Consider a CW–complex structure on the underlying manifold of On (S3 in this
case), that respects the stratification of the singular locus (ie the singular locus is a
subcomplex). Following [33], we use precisely the same definition as in Section 3.1.1
of twisted simplicial chains and cochains to defined the homology and cohomology
of On with twisted coefficients. In particular we are interested in

H�.On; v�1=n
/:

The fastest way to see that these cohomology groups are independent of the CW–
complex structure is using the cyclic regular covering Mn!On that is a manifold,
the Fibonacci manifold, as mentioned at the beginning of Section 3.1. We denote the
projection

pW Mn!On:

On the other hand, let tnW Mn!Mn denote the generator of the group of deck transfor-
mations, so that OnDMn=htni. It acts on cohomology, and H�.On; v�1=n

/t
�
n denotes

the invariant subspace. The following lemma uses the standard transfer argument and
can be found in [33]:

Lemma 8.4 The projection induces an isomorphism

p�W H�.On; v�1=n
/
Š
�!H�.Mn; v�1=n

/t
�
n :

It follows from this lemma that H�.On; v�1=n
/ is independent of the CW–complex. It

is also used in the next lemma.

Lemma 8.5 There is a natural isomorphism H�.On; v�1=n
/ŠH�.�1=n; v�1=n

/.
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Proof As above let Mn ! On be cyclic regular covering corresponding to the
Fibonacci manifold. The compact, hyperbolic manifold Mn is aspherical, hence there
is a canonical isomorphism

H�.�1.Mn/; v�1=n
/ŠH�.Mn; v�1=n

/ :

Then the lemma follows because H�.On; v�1=n
/ŠH�.Mn; v�1=n

/t
�
n , by Lemma 8.4,

and H�.�1.On/; v�1=n
/DH�.�1.Mn/; v�1=n

/t
�
n , by the transfer in group cohomology

(see [9] for instance).

The point of working with orbifold cohomology with twisted coefficients is that one
can apply some tools of simplicial cohomology, mainly Mayer–Vietoris and the long
exact sequence of the pair [33]. This will be useful in the following section.

8.2.3 A finite order automorphism of �1=n

Proposition 8.6 For sufficiently large n 2N we have:

(1) H 1.�1=n; sl.4/�1=n
/ŠH 1.�1=n; v�1=n

/ŠR is one-dimensional and '�
1=n

acts
trivially on it.

(2) H 2.�1=n; sl.4/�1=n
/ŠH 2.�1=n; v�1=n

/ŠR is one-dimensional and '�
1=n

acts
by multiplication by �1 on it.

Proof We start with the decomposition

H�.�1=n; sl.4/�1=n
/DH�.�1=n; so.3; 1/�1=n

/˚H�.�1=n; v�1=n
/:

The group H 1.�1=n; so.3; 1/�1=n
/ D 0 vanishes by Weil’s infinitesimal rigidity and

hence
H 2.�1=n; so.3; 1/�1=n

/D 0

by Poincaré duality and Lemma 8.5. Thus

H i.�1=n; sl.4/�1=n
/DH i.�1=n; v�1=n

/ for i D 1; 2.

In order to compute H i.�1=n; v�1=n
/ Š H i.On; v�1=n

/ we shall apply the Mayer–
Vietoris sequence to the decomposition OnDM [Nn where NnDN .Sing.On// is a
regular neighborhood of the singular locus such that M \NnD @M . By Corollary 6.6,
the dimension of H i.M; v�1=n

/ is 1 for i D 1; 2 and zero otherwise. Hence

H 0.On; v�1=n
/ŠH 0.M; v�1=n

/Š v�1=n.�1.M //
D 0;

H 0.@M; v�1=n
/Š v�1=n.�1.@M //

D v�1=n.�1.Nn// ŠH 0.Nn; v�1=n
/:
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Therefore we obtain the following exact sequence from Mayer–Vietoris:

H 1.On; v�1=n
/�H 1.M; v�1=n

/˚H 1.Nn; v�1=n
/

!H 1.@M; v�1=n
/�H 2.On; v�1=n

/ :

The injectivity of the first arrow follows from a dimension counting of the 0–th
cohomology terms. One can deduce that the last arrow is surjective by looking at
the terms that follow the exact sequence: dim H 2.M; v�1=n

/ D 1 by Corollary 6.6,
dim H 2.@M; v�1=n

/ D 1 by Lemma 5.3(i), and the other cohomology groups ap-
pearing vanish as Nn has the homotopy type of a circle and M and @M have the
homotopy type of a 2–complex. By Corollary 8.3, both groups H 1.M; v�1=n

/ and
H 1.Nn; v�1=n

/ have the same image in H 1.@M; v�1=n
/ which is exactly the kernel of

the map H 1.@M; v�1=n
/!H 1.m; v�1=n

/. Notice also that dim H 1.@M; v�1=n
/D 2

and
dim H 1.Nn; v�1=n

/D dim H 0.Nn; v�1=n
/D dim v�1=n.�1Nn/ D 1 :

Therefore we get dim H 1.On; v�1=n
/D 1. Moreover, the map '�

1=n
acts trivially on

H 1.On; v�1=n
/ since by the proof of Corollary 8.3 it acts trivially on H 1.M; v�1=n

/,
and H 1.On; v�1=n

/ injects into H 1.M; v�1=n
/.

On the other hand we have

H 1.@M; v�1=n
/ŠH 1.@M;R/˝ v�1=n.�1@M /;

'.m/ D m�1 and '.l/ D l . Hence the eigenvalues of '�
1=n
W H 1.@M; v�1=n

/ !

H 1.@M; v�1=n
/ are ˙1. The eigenspace corresponding to the eigenvalue C1 is

the image of H 1.M; v�1=n
/ (and H 1.Nn; v�1=n

/). Therefore '�
1=n

acts as �Id on
H 2.On; v�1=n

/.

8.2.4 Deforming the projective structure of On

Proof of Proposition 1.8 We shall show that every Zariski tangent vector is inte-
grable. We use the following general setup: let � be a finitely presented group and let
�W �! GL.r;R/ be a representation. A formal deformation of � is a representation
�t W �! GL.r;RŒŒt ��/ such that �0 D � . Here RŒŒt �� denotes the ring of formal power
series and �0W �!C is the evaluation of �t at t D 0.

Every formal deformation �t of � can be written in the form

�t .
 /D .Ir C tu1.
 /C t2u2.
 /C � � � /�.
 /;

where Ir denotes the identity matrix and ui W � ! gl.r/ are maps ie elements of
C 1.�; gl.r/�/. An easy calculation gives that u1 2Z1.�; gl.r/�/ is a cocycle (Weil’s
theorem). More generally we have the following:
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Lemma 8.7 Let �W � ! GL.r/ be a homomorphism. Then �t W � ! GL.r;RŒŒt ��/
given by

%t .
 /D .Ir C tu1.
 /C t2u2.
 /C t3u3.
 /C � � � /�.
 /

is a homomorphism if and only if for all k 2 Z, k � 1, we have

(13) ıuk C

k�1X
iD1

ui P[uk�i D 0 :

The proof of this lemma is a direct calculation. Here the cup product P[ is the composi-
tion of the usual cup product [ with the matrix multiplication

C 1.�; gl.r/�/˝C 1.�; gl.r/�/
[
�! C 2.�; gl.r/�˝ gl.r/�/

�
�! C 2.�; gl.r/�/:

Namely, for cochains c1; c2 2 C 1.�; gl.r/�/, the cup product c1 P[ c2 2 C 2.�; gl.r/�/

is given by
c1 P[ c2.
1; 
2/D c1.
1/Ad�.
1/

�
c2.
2/

�
2 gl.r/ :

In the sequel the representation � is going to be always �1=n , hence we omit it from
notation. Note that the �1=n –module gl.4/ decomposes as a direct sum

gl.4/D R˚ sl.4/;

where RŠR�I4 is the trivial module, it is the center of gl.4/. Moreover H i.�1=n;R/D0

for i D 1; 2 since H1.Mn;Z/ is finite (no root of unity is a zero of the Alexander
polynomial of the figure eight-knot). Hence

H i.�1=n; gl.4//DH i.�1=n; v/ for i D 1; 2.

Instead of '1=n we shall consider the automorphism  nW �1=n ! �1=n given by
 1=nDcy�1ı'1=n , where cy�1 denotes conjugation by y�1 . By [9, Proposition III.8.3],
the induced maps in cohomology are the same:  �

1=n
D '�

1=n
. Notice that  4

1=n
is the

identity.

Let v 2H 1.�1=n; gl.4//, we choose a cocycle u1 2Z1.�1=n; gl.4// in its cohomology
class. Since  1=n has order 4, we may consider the average of the action of  �

1=n

on u1 :
1
4
.u1C 

�
1=n.u1/C . 

�
1=n/

2.u1/C . 
�
1=n/

3.u1//:

This cocycle is  �
1=n

–invariant and, since  �
1=n

acts as the identity on H 1.�1=n; gl.4//,
it is cohomologous to u1 . Thus we may assume that  �

1=n
.u1/D u1 by averaging.

First we claim that u1 P[u1 is cohomologous to zero. This is because  �
1=n
.u1 P[u1/D

 �
1=n
.u1/ P[ 

�
1=n
.u1/D u1 P[u1 and  �

1=n
.u1 P[u1/ is cohomologous to �u1 P[u1 , as

u1 P[u1 is a 2–cocycle and  �
1=n

acts on H 2.�1=n; gl.4// by multiplication by �1.
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There exist a 1–chain u2 2 C 1.�1=n; gl.4// satisfying u1 P[u1C ıu2 D 0. As before,
we may assume that  �

1=n
.u2/Du2 by averaging. The same argument as before proves

that

u2 P[u1Cu1 P[u2 D  
�
1=n.u2 P[u1Cu1 P[u2/��.u2 P[u1Cu1 P[u2/;

where � means cohomologous. Thus there exists a 1–chain u3 2 C 1.�1=n; gl.4//

satisfying
u1 P[u2Cu2 P[u1C ıu3 D 0:

Again u3 can be chosen to be  �
1=n

–invariant. By induction we can find an infinite
sequence of 1–chains u2;u3; : : : that satisfy Equation (13).

This implies that all obstructions to integrability vanish, hence we have a formal
deformation of � , that gives formal integrability of v . We apply Artin’s theorem [2],
to conclude that formal integrability implies actual integrability of v .

8.3 The Whitehead link

A similar computation as for the figure eight knot tells us that the Whitehead link LD

K1tK2 is infinitesimally projectively rigid. Let � D �1.M / denote the fundamental
group of the Whitehead link exterior M . We will work with the presentation

� D hx;y j xy�1x�1yx�1y�1xyx�1yxy�1xyx�1y�1
i;

where x is a meridian for K1 and y is a meridian for K2 . The holonomy representation
�W �! SL2.C/ is given by

x 7!

�
1 1

0 1

�
; y 7!

�
1 0

�1� i 1

�
(see Riley [34] for details). A computation analogous to the one of the previous
subsection shows that dim H 1.M I vAd�/D 2. Hence, by Corollary 5.4, the Whitehead
link is infinitesimally projectively rigid relative to the cusps.

Once we know the dimension of the deformation space, we have a geometric tool to
understand the deformations: let S denote the thrice puncture sphere illustrated in
Figure 1. By symmetry of the components of the link, there are two of them. The
surface S intersects one boundary torus in a longitude lxDyx�1y�1xy�1x�1yx , and
the other one in two meridians y and zDx�1y�1xyx�1yx , with opposite orientation.
The restriction of the holonomy onto �1.S/ is conjugate to a representation into
SL2.R/. Hence S a totally geodesic thrice puncture sphere in the link complement.

Lemma 8.8 Let @1M denote the boundary component of K1 . Every slope on @1M

different from the longitude lx is a rigid slope.

Geometry & Topology, Volume 15 (2011)



2068 Michael Heusener and Joan Porti
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K1

K2

Figure 1: The thrice punctured sphere S in the Whitehead link

Proof We consider the bending along S (see Johnson and Millson [23] for more
details about the bending construction). Since S is totally geodesic, the image of
its holonomy is contained in SO.2; 1/ � SO.3; 1/. On the other hand the SO.2; 1/
commutes with the exponential of

aD

0BB@
�3

1

1

1

1CCA 2 sl.4/:
We write � as an HNN-extension � D�.M nS/��1.S/ : In particular we have a gener-
ator � of � such that the only relations involving � are of the form �j1.s/�

�1D j2.s/,
for all s 2 �1.S/, where j1; j2W �1.S/! �1.M nS/ are the morphisms induced by
inclusions of each copy of S in M nN .S/. The bending is the family of represen-
tations �t , t 2 R, such that �t j�1.MnS/ D � and �t .�/D exp.t a/�.�/. Johnson and
Millson prove in [23, Lemma 5.5] that the cocycle tangent to this deformation is not
cohomologous to zero.

If we restrict this bending cocycle to @1M , it is itself a bending cocycle along the
longitude lx , and it happens to be precisely the infinitesimal deformation constructed
in the proof of Lemma 5.5. Thus, except for the longitude itself, this infinitesimal
deformation is nontrivial when restricted to any slope of the torus, because the cusp
shape of the Whitehead link lies in the Gaussian integers ZŒi�, thus the angle of any
slope with the longitude lx can never be �=3, and we can apply Lemma 5.5.
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Proof of Proposition 1.9 Lemma 8.8 and Proposition 7.2 imply that for almost all n

the .n; 1/–Dehn fillings are infinitesimally projectively rigid. According to [1] those
fillings are precisely the punctured torus bundles with tunnel number one.

Twists knots are obtained by .1; n/–Dehn fillings, but we cannot apply Proposition 7.2,
because the longitude is not a rigid slope. However, the path .p; q/D .1; s/ for s 2 R
and s � 1 is contained in the whole deformation space (cf [1]). Hence, since the
coefficients .1; 1/ correspond to the figure eight knot exterior, with an argument similar
to Theorem 1.5, the .1; n/–Dehn fillings are infinitesimally rigid for all but finitely
many n.
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