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Asymptotics of the colored Jones function of a knot

STAVROS GAROUFALIDIS

THANG T Q LÊ

To a knot in 3–space, one can associate a sequence of Laurent polynomials, whose
n–th term is the n–th colored Jones polynomial. The paper is concerned with the
asymptotic behavior of the value of the n–th colored Jones polynomial at e˛=n , when
˛ is a fixed complex number and n tends to infinity. We analyze this asymptotic
behavior to all orders in 1=n when ˛ is a sufficiently small complex number. In
addition, we give upper bounds for the coefficients and degree of the n–th colored
Jones polynomial, with applications to upper bounds in the Generalized Volume
Conjecture. Work of Agol, Dunfield, Storm and W Thurston implies that our bounds
are asymptotically optimal. Moreover, we give results for the Generalized Volume
Conjecture when ˛ is near 2� i . Our proofs use crucially the cyclotomic expansion
of the colored Jones function, due to Habiro.

57N10; 57M25

Dedicated to Louis Kauffman on the occasion of his 60th birthday

1 Introduction

1.1 Asymptotics of the colored Jones function of a knot

To a knot K in 3–space, one can associate a sequence of Laurent polynomials

JK ;n.q/ 2 ZŒq˙1�

for n 2N D f1; 2; 3; : : : g. The first polynomial JK ;1.q/D 1, the second JK ;2.q/ is
the famous Jones polynomial [17] of K , and JK ;n.q/ are roughly speaking the Jones
polynomials of .n�1/–parallels of the knot. More precisely, JK ;n.q/ is the quantum
group invariant of K using the n–dimensional irreducible sl2.C/ representation, nor-
malized by Junknot;n.q/D 1 for all n; see Reshetikhin and Turaev [28] and Turaev [33].
The sequence fJK ;n.q/gn is often called the colored Jones function of the knot K .

The paper is concerned with the asymptotic growth of the colored Jones function. More
precisely, fix a knot K and consider the sequence of holomorphic functions

fK ;nW C �!C; fK ;n.z/ WD JK ;n.e
z=n/
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2136 Stavros Garoufalidis and Thang T Q Lê

for n 2 N . In other words, we are evaluating the n–th polynomial JK ;n.q/ at a
complex n–th root of ez . We will be concerned with strong and weak convergence
of the sequence fK ;n , for n 2N . Let us explain what we mean by that. Fix an open
subset U of C containing 0.

Definition 1.1 (a) A sequence of holomorphic functions fnW U �! C strongly
converges in U to a holomorphic function f W U �!C (and write slimn!1 fn.z/D

f .z/) if fn.z/ converges to f .z/ uniformly on any compact subset of U .

(b) A sequence of holomorphic functions fnW U �!C weakly converges to a holo-
morphic function f W U �!C (and write wlimn!1 fn.z/D f .z/) if the Taylor series
of fn.z/ at z D 0 coefficient-wise converges to the Taylor series of f .z/. In other
words, for every k � 0, we have

lim
n!1

dkfn

dzk

ˇ̌̌
zD0
D

dkf

dzk

ˇ̌̌
zD0

:

It is easy to see that strong convergence of holomorphic functions implies weak con-
vergence. The converse is not true (see however, Lemma 2.1 below).

The Melvin–Morton–Rozansky (MMR, in short) Conjecture, which was settled by
Bar-Natan and the first author in [3], compares the function fK ;n of a knot K with the
Alexander polynomial �K of K , normalized by �K .t

�1/D�K .t/ and �K .1/D 1.

Theorem 1.2 (MMR conjecture [3]) For every knot K we have

wlimn!1 fK ;n.z/D
1

�K .ez/
:

Our sample result is the following analytic form of the MMR Conjecture, which has
application in the Generalized Volume Conjecture.

Theorem 1.3 (Proof in Section 2.1) For every knot K there exists an open neighbor-
hood UK of 0 2C such that in UK , we have

slimn!1 fK ;n.z/D
1

�K .ez/
:

Given Theorem 1.3 one may ask for a full asymptotic expansion of fK ;n.z/ in terms of
powers of 1=n. In order to formulate our results, let us introduce the notion of strong
and weak asymptotic expansions.

Geometry & Topology, Volume 15 (2011)



Asymptotics of the colored Jones function of a knot 2137

Definition 1.4 Fix an open set U of C , and holomorphic functions fnW U �!C and
RnW U �!C .

(a) We will say that the sequence fn is strongly asymptotic in U to the seriesP1
kD0 Rk.z/.

z
n
/k , and write

(1) fn.z/�
s
n!1

1X
kD0

Rk.z/
� z

n

�k

if for every N � 0 we have

(2) slimn!1

�n

z

�N
�
fn.z/�

N�1X
kD0

Rk.z/
� z

n

�k
�
DRN .z/:

(b) Likewise, we will say that the sequence fn is weakly asymptotic in U to the seriesP1
kD0 Rk.z/.

z
n
/k , and write

(3) fn.z/�
w
n!1

1X
kD0

Rk.z/
� z

n

�k

if for every N � 0 we have

(4) wlimn!1

�n

z

�N
�
fn.z/�

N�1X
kD0

Rk.z/
� z

n

�k
�
DRN .z/:

Usually, sequences of holomorphic functions fn.z/ do not have asymptotic expansions
(or even a limit, as n!1). However, sequences that appear in perturbative expansions
of Quantum Field Theory are generally expected to have asymptotic expansions. In fact
asymptotic expansions are generally easier to define (via Feynman diagram techniques)
than the partition functions fK ;n.z/ themselves. Even when the partition functions
can be defined, the asymptotic expansions is a numerically useful way to approximate
them.

In [30], Rozansky discovered that the sequence fK ;n.z/ has a weak asymptotic ex-
pansion, where the terms are rational functions in the variable ez . More precisely,
Rozansky proved the following result.

Theorem 1.5 [30] For every knot K there exists a sequence PK ;k.q/ 2QŒq˙1� of
Laurent polynomials with PK ;0.q/D 1 such that

(5) fK ;n.z/�
w
n!1

1X
kD0

PK ;k.e
z/

�K .ez/2kC1

� z

n

�k

:
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2138 Stavros Garoufalidis and Thang T Q Lê

A different proof, valid for all simple Lie groups, was given by the first author in [7], us-
ing work of the first author with Kricker [9]. Our result is strong version of Theorem 1.5.

Theorem 1.6 (Proof in Section 5.2) For every knot K there exists an open neighbor-
hood zUK of 0 2C such that in zUK , we have

(6) fK ;n.z/�
s
n!1

1X
kD0

PK ;k.e
z/

�K .ez/2kC1

� z

n

�k

:

1.2 The Generalized Volume Conjecture

In this section we state some new information about the Volume Conjecture; the latter
connects two very different approaches to knot theory, namely Topological Quantum
Field Theory and Riemannian (mostly hyperbolic) geometry.

Conjecture 1.7 (Kashaev [18]; Murakami–Murakami [25]) For every hyperbolic
knot K in S3 we have

lim
n!1

log jfK ;n.2� i/j

n
D

1

2�
vol.�2�i/;

where vol.�2�i/ is the hyperbolic volume of the knot complement S3�K .

In other words, the sequence fK ;n.2� i/ of complex numbers grows exponentially
with respect to n, and the exponential growth-rate is proportional to the volume of a
hyperbolic knot.

One can define the volume function vol.�/ of every representation �W �1.S
3 nK/!

SL2.2;C/ (see Dunfield [5], Cooper et al [4] and Thurston [32]), and vol.�2�i/

is exactly the value of this volume function with �2�i being the discrete faithful
representation of the knot group.

The idea of the Generalized Volume Conjecture (formulated in part by Gukov in [13])
is that we should use other representations of the knot complement in SL.2;C/. For ˛
nearby 2� i , in a small neighborhood of �2�i there is a unique (up to conjugation)
representation

�˛W �1.S
3
�K/ �! SL.2;C/

which satisfies

(7) �˛.meridian/D
�

e˛ ?

0 e�˛

�
:

Alas, there is an additional difficulty. Namely, when ˛=.2� i/ is rational, we should
distinguish two cases: ˛=.2� i/ D 1 or ˛=.2� i/ ¤ 1. The Generalized Volume
Conjecture for ˛ sufficiently close to 2� i may now be stated as follows.
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Conjecture 1.8 If ˛=.2� i/ 2 .R�Q/[f1g is sufficiently close to 1 then

(8) lim
n!1

log jfK ;n.˛/j

n
D c˛ vol.�˛/;

and if ˛=.2� i/ 2Q�f1g, then

lim sup
n!1

log jfK ;n.˛/j

n
D c˛ vol.�˛/;

lim inf
n!1

log jfK ;n.˛/j

n
D 0;

where c˛ ¤ 0 are some nonzero constants.

The distinction of ˛=.2� i/ being rational or not is a bit with odds with the notion of
hyperbolic Dehn surgery developed by Thurston in [32]. When ˛=.2� i/ is a rational
number, the hyperbolic Dehn surgery theorem associates an orbifold filling to the knot
complement whose volume is vol.�˛/. Orbifolds are mild generalizations of manifolds.
On the other hand, when ˛=.2� i/ is irrational, hyperbolic Dehn surgery associates a
space which is topologically a 1–point compactification of the knot complement, with
volume vol.�˛/. In the following, we will refer to the parameter ˛ in the Generalized
Volume Conjecture as the angle, making contact with standard terminology from
hyperbolic geometry.

There are two rather independent parts in the Volume Conjecture:

(a) to show that the limit exists in (8),

(b) to identify the limit with the volume of the corresponding Dehn filling.

At the moment, the Generalized Volume Conjecture is known only for the 41 knot and
certain values of ˛ ; see Murakami [24].

One may further ask what happens to the Generalized Volume Conjecture when the
angle ˛ is small. For ˛ D 0, it is natural to define �0 to be the trivial representation.
Then for ˛ small enough, there is a unique (up to conjugation) abelian SL2.C/
representation �˛ that satisfies (7). Abelian representations have 0 volume (see eg
Cooper et al [4]). On the other hand, for small enough ˛ , we have �K .e

˛/��K .1/D1.
Thus Theorem 1.3 implies:

Theorem 1.9 For every knot K there exists an open neighborhood UK of 0 2 C ,
such that for ˛ 2 UK , we have

lim
n!1

log jfK ;n.˛/j

n
D 0D vol.�˛/:
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In other words, Theorem 1.3 settles the Generalized Volume Conjecture for small
complex angles.

1.3 The Generalized Volume Conjecture near 2�i

Our next result states that the volume conjecture can only be barely true.

Theorem 1.10 (Proof in Section 9) For every knot K and every fixed integer m¤ 0,

lim
n!1

1

n
log jJK ;nCm.exp.2� i=n//j D 0:

It follows that the double-scaling limit

lim
n;k

1

n
log jJK ;n.exp.2� i=k//j

when n; k !1 and n=k ! 1 does not exist, or equals to 0; with the latter case
in contradiction with the Volume Conjecture. Our next result confirms the strange
behavior in the Generalized Volume Conjecture when ˛=.2� i/ is rational, not equal
to 1.

Theorem 1.11 (Proof in Section 9) For every knot K there exists a neighborhood VK

of 1 2C such that when ˛=.2� i/ 2 VK is rational and not equal to 1, then

lim inf
n!1

jfK ;n.˛/j

n
D 0:

1.4 Upper bounds for the Generalized Volume Conjecture

Our next theorem is an upper bound for the Generalized Volume Conjecture. Let <.˛/
denote the real part of ˛ .

Theorem 1.12 (Proof in Section 6.3) For every knot K with cC 2 crossings and
every ˛ 2C , we have

lim sup
n!1

log jfK ;n.˛/j

n
� c log 4C

cC 2

2
j<.˛/j:

Geometry & Topology, Volume 15 (2011)



Asymptotics of the colored Jones function of a knot 2141

1.5 Relation with hyperbolic geometry and asymptotically sharp bounds

When ˛ D 2� i , the upper bound in Theorem 1.12 is not optimal, and does not reveal
any relationship between the lim sup and hyperbolic geometry. Our next theorem fills
this gap.

Theorem 1.13 (Proof in Section 8.5) For every knot K with c C 2 crossings we
have

lim sup
n!1

log jfK ;n.2� i/j

n
�
v8

2�
c;

v8 D 8ƒ.�=4/� 3:6638623767088760602 : : :where

is the volume of the regular ideal octahedron (see Thurston [32]).

Using an ideal decomposition of a knot complement by placing one octahedron per
crossing, it follows that for every knot K with cC 2 crossings, we have

(9) vol.S3
�K/� v8c;

where vol.S3 �K/ is the hyperbolic volume of the knot complement. On the other
hand, if the volume conjecture holds for ˛ D 2� i , then

lim
n!1

log jfK ;n.2� i/j

n
D

1

2�
vol.S3

�K/�
v8

2�
c:

One may ask whether (9) (and therefore, whether the bound in Theorem 1.13) is optimal.
This may be a little surprising, since it involves all knots (and not just alternating
ones) and their number of crossings, an invariant that carries little known geometric
information. In conversations with I Agol and D Thurston, it was communicated to us
that the upper bound in (9) is indeed optimal. Moreover a class of knots that achieves
(in the limit) the optimal ratio of volume to number of crossings is obtained by taking
a large chunk of the following weave, and closing it up to a knot:

Geometry & Topology, Volume 15 (2011)
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The complement of the weave has a complete hyperbolic structure associated with the
square tessellation of the Euclidean plane:

Optimality follows along similar lines as the Appendix of Lackenby [20] (by Agol and
D Thurston), using a stronger estimate for the lower bound of the volume of Haken
manifolds, cut along an incompressible surface: If M is a hyperbolic finite volume
3–manifold containing a properly imbedded orientable, boundary incompressible,
incompressible surface S , then

vol.M /� vol.Guts.M � int.nbd.S///;

where vol stands for volume, and the Guts terminology are defined by Agol, Dunfield,
Storm and W Thurston [1]. The proof of this stronger statement (of [1]) uses, among
other things, work of Perelman.

Compare (9) with the following result of Agol, Lackenby and D Thurston [20]: If K

is an alternating knot with a planar projection having t twist, then

v3.t � 1/=2< vol.S3
�K/ < 10v3.t � 1/;

where v3 D 2ƒ.�=3/ � 1:01494 : : : is the volume of the regular ideal tetrahedron.
Moreover, the class of knots obtained by Dehn filling on the chain link has asymptotic
ratio of volume by twist number equal to 10v3 . The corresponding tessellation of the
Euclidean plane is given by the star of David.

So far, we have formulated a Generalized Volume Conjecture for ˛ near 0 and ˛
near 2� i , using representations near the trivial or near the discrete faithful. How can
we connect these choices for other complex angles ˛? A natural answer to this question
requires analyzing asymptotics of solutions of difference equations with a parameter.
This is a different subject that we will not discuss here; instead we will refer the curious
reader to the paper of the first author with Geronimo [8], and forthcoming work of the
first author. For a further discussion, see also Section 11.
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1.6 The main ideas and organization of the paper

In Section 2.1 we show that weak convergence plus uniform boundedness implies
strong convergence. Thus the strong convergence of Theorem 1.3 and Theorem 1.6
follows from the weak convergence of Theorem 1.2 and Theorem 1.5, plus uniform
bounds. Uniform bounds for the colored Jones function require large cancellations. In
order to control these cancellations, we use the cyclotomic expansion of the colored
Jones function of a knot, which is recalled in Section 3. An important point about this
expansion is that its kernel can absorb the exponential bounds of the coefficients of the
cyclotomic functions; see Section 4 and Section 5.

Using a state-sum formula for the colored Jones function, we give in Section 6 bounds
for the degrees and coefficients of the n–th colored Jones polynomial. The result is also
of independent interest. The important point is that the local weights in the state-sum
formula (ie, the entries of the R–matrix) are Laurent polynomials, given by some ratio
of q–factorials. A priori, the bounds of the n–colored Jones function are not good
enough to deduce the bounds for the n–th cyclotomic function. However, in Section 7,
we use a lemma on the growth-rate of the number of partitions of an integer, in order to
deduce the desired bounds for the cyclotomic function. As a corollary, we can deduce
the upper bound of Theorem 1.12.

In the independent Section 8, we give a better bound for the growth-rate of the entries
of the R–matrix. The important point is that these entries are ratio of 5 q–factorials,
and each q–factorial grows exponentially with rate given by the Lobachevsky function.
The q–factorials are arranged in such a way to deduce that the exponential growth-rate
of the entries of the R–matrix is given by the volume of an ideal octahedron. Together
with our state-sum formulas for the n–th colored Jones polynomial, it results in the
upper bound of Theorem 1.13.

We discuss in Section 9 the proof of Theorem 1.10 and Theorem 1.11.

In Section 10 we discuss bounds on the degrees and coefficients of q–holonomic
functions. Earlier work of the authors implies that the colored Jones and the cyclotomic
functions of a knot are q–holonomic.

In Section 11 we discuss some physics ideas related to the various expansions of the
colored Jones function.

Finally, in the Appendices we establish the Volume Conjecture for the Borromean rings
using estimates obtained in the proofs of the main results. At the time when the first
draft of this paper was written (2004), this was the only hyperbolic link for which the
volume conjecture was established. Since then the volume conjecture has been proved
for several other hyperbolic links; see eg van der Veen [34].
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Note that Theorem 6.3 and Theorem 10.3 are not used in the proofs of our results, and
are of independent interest.

The logical dependence of the main theorems is as follows:

Theorem 1.9 Theorem 1.10 Theorem 1.11

Theorem 1.3

ff OO 77

Theorem 1.6

Theorem 1.2

88

Theorem 2.2

OO

Theorem 5.3

77

Theorem 1.5

OO

Theorem 4.2

OO 77

Theorem 1.12 Theorem 1.13

Theorem 6.2

ff 88

Proposition 8.5

77

Proposition 8.6

gg

Acknowledgments The authors wish to thank I Agol, D Boyd, N Dunfield, D Thurston
and D Zeilberger for many enlightening conversations, and the anonymous referee for
his careful reading of our manuscript.

The authors were supported in part by National Science Foundation.

2 Weak versus strong convergence

2.1 A lemma from complex analysis

To prove Theorem 1.3, we need to improve the weak convergence of Theorem 1.2 to
the strong convergence. This uses the next lemma on normal families that is sometimes
referred to by the name of Vitali or Montel’s theorem. For a reference, see Hille [16]
and Schiff [31]. The lemma exhibits the power of holomorphy, coupled with uniform
boundedness.

Lemma 2.1 If
fnW fz 2C W jzj< rg ! fz 2C W jzj �M g

is a uniformly bounded sequence of holomorphic functions such that for every m� 0,
we have

lim
n!1

f .m/n .0/D am:
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Then,

� the limit f .z/D limn fn.z/ exists pointwise for all z with jzj< r ,

� f is holomorphic,

� the convergence is uniform on compact subsets,

� for every m, f .m/.0/D am .

In other words, weak convergence and uniform boundedness imply strong convergence.

Proof The sequence ffngn is uniformly bounded, so it is a normal family, and contains
a convergent subsequence fj ! f . Convergence is uniform on compact sets, and f
is holomorphic, and for every m� 0, limj f

.m/
j .0/D f .m/.0/D am .

If ffngn is not convergent (uniformly on compact sets), since it is a normal family,
then there exist two subsequences that converge to f and g respectively, with f ¤ g .
Applying the above discussion, it follows that f and g are holomorphic functions with
equal derivatives of all orders at 0. Thus, f D g , giving a contradiction.

Theorem 1.3 follows from Lemma 2.1 and the following result, whose proof will be
given in Section 4.

Theorem 2.2 (Proof in Section 4.2) For every knot K there exists an open neighbor-
hood UK of 0 2C and a positive number M such that for ˛ 2 UK , and all n� 1, we
have

jfK ;n.˛/j<M:

2.2 The main difficulty for uniform bounds

Before we proceed with the proof of Theorem 2.2, let us point out the main difficulty. As
we will see later, JK ;n.q/ is a Laurent polynomial in q whose span (ie, the exponents
of its monomials) are O.n2/ and whose coefficients are eO.n/ . In addition, due to our
normalization, JK ;n.1/D 1. In other words, the O.n2/ many exponentially growing
coefficients of JK ;n.q/ add up to 1. When we evaluate JK ;n.e

˛=n/, we want to bound
the result independent of n. This will happen only if major cancellations occur. How
can we control these cancellations? The answer to this is a key cyclotomic expansion
of the colored Jones function, which we review next.
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3 Two expansions of the colored Jones polynomial

3.1 The loop expansion

With q D eh , one has

JK ;n.e
h/D

1X
iD0

aK ;i.n/ hi
2QŒŒh��:

It turns out that aK ;i.n/ is a polynomial in n with degree less than or equal to i [3].
Hence there are rational numbers aK ;i;j , depending on the knot K , such that

JK ;n.e
h/D

X
0�j�i

aK ;i;j nj hi
D

X
0�i;0�j�i

aK ;i;j .nh/j hi�j

D

X
0�j ;k

aK ;jCk;j .nh/j hk :

If we define
RK ;k.x/D

X
0�j

aK ;jCk;j xj
2QŒŒx��;

then we have the loop expansion

(10) JK ;n.e
h/D

1X
kD0

RK ;k.nh/hk
2QŒŒh��:

It turns out that RK ;k.x/ 2Q.ex/ are rational functions for all k . In fact, the MMR
Conjecture states that

RK ;0.x/D
1

�K .ex/
2QŒŒx��:

More generally, Rozansky [30] proves there are Laurent polynomials PK ;k.t/2QŒt˙1�

such that in QŒŒx��,

RK ;k.x/D
PK ;k.e

x/

�K .ex/2kC1
:

Remark 3.1 For every i; j , the function K ! aK ;i;j is a finite type invariant of
degree i . Although the polynomials PK ;k.t/ are not finite type invariants (with respect
to the usual crossing change of knots), they are finite type invariants with respect to a
loop move described by the first author and Rosansky [11]. We will not use these facts
in our paper.
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3.2 The cyclotomic expansion

Habiro found another interesting expansion of the colored Jones function, known as the
cyclotomic expansion. Although the cyclotomic expansion has important arithmetic
consequences, we discuss only its algebraic properties here. Let us define:

(11) Cn;k.q/D

kY
jD1

.qn
C q�n

� qj
� q�j / with Cn;0.q/ WD 1:

He showed that there exist unique Laurent polynomials HK ;k.q/2ZŒq˙1�, kD0; 1; : : :

such that

(12) JK ;n.q/D

n�1X
kD0

Cn;k.q/HK ;k.q/:

For details, see Habiro [15, Section 6]. Note that our HK ;n.q/ is JK .P
00
n / in Habiro’s

notation. We will call the expansion (12) the cyclotomic expansion. Since Cn;k.q/D 0

if k � n, the summation in (12) can be assumed from 0 to 1.

It is possible to solve for HK ;n from Equation (12). Explicitly, from [15, Lemma 6.1]
one has

(13) HK ;n.q/D
1

f2nC 2g!

nC1X
kD1

.�1/nC1�k
f2kgfkg

�
2nC 2

nC 1� k

�
JK ;k.q/;

where we use the following definitions:

fng WD qn=2
� q�n=2; fng! WD

nY
iD1

fig;

fagb WD
fag!

fa� bg!
D

aY
jDa�bC1

fj g;

�
a

b

�
WD

fag!

fbg!fa� bg!
:

3.3 Comparing the cyclotomic and the loop expansion

In the loop expansion, as well as in the cyclotomic expansion, one should treat qn

and q (where n is the color) as two independent variables. Consider two independent
variables z (standing for ˛ ) and y (standing for ˛=n). Let us define the following
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biholomorphic functions

ck.z;y/D

kY
jD1

.ez
C e�z

� ejy
� e�jy/;

hK ;k.z;y/D ck.z;y/HK ;k.e
y/:

The cyclotomic expansion says that for every n we have

(14) fK ;n.˛/D

1X
kD0

hK ;k.˛; ˛=n/ 2QŒŒ˛��:

The loop expansion is a Taylor expansion in ˛=n, so we will consider the Taylor
expansion in y (around 0) of hK ;k.z;y/:

hK ;k.z;y/D

1X
pD0

dk;p.z/yp;

where dk;p.z/ (which depends on K ) is holomorphic for z 2C .

Comparing the loop and the cyclotomic expansion (Equations (10) and (14)), we obtain:

Lemma 3.2 For every knot K and every p 2N we have

(15) RK ;p.x/D

1X
kD0

dk;p.x/ 2QŒŒx��

as formal power series in x .

4 A reduction of Theorem 2.2 to estimates of the cyclotomic
function

4.1 Uniform bounds of the colored Jones function

In this section we will deduce Theorem 2.2 from estimates of the degree and the
coefficients of the cyclotomic expansion of the knot. These estimates will be established
in Section 6. By definition fK ;n.˛/D JK ;n.e

˛=n/, hence Equation (12) gives that

(16) fK ;n.˛/D

n�1X
kD0

Cn;k.e
˛=n/HK ;k.e

˛=n/:

To have upper bounds for jfK ;n.˛/j we will need bounds for HK ;k.e
˛=n/ and the

“kernel” Cn;k.e
˛=n/ (the kernel does not depend on the knot K ).
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Definition 4.1 For a Laurent polynomial f .q/D
P

k akqk , we define its l1 –norm by

kf k1 D
X

k

jak j:

The proof of the following Theorem, which gives bounds for the degrees and the
l1 –norm of HK ;n , will be given in Section 7.

Theorem 4.2 (Proof in Section 7) For every knot K , there are positive constants
A0;A1 (depending on K ) such that for all n 2N we have

(a) HK ;n.q/D

A0n2X
jD�A0n2

bj ;nqj .

(b) kHK ;nk1 �An
1

.

The next lemma follows from Theorem 4.2 and an elementary estimate.

Lemma 4.3 Suppose j˛j< 1.

(a) For every knot K there is a constant A2 such that for every 0� k � n, we have

jHK ;k.e
˛=n/j � .A2/

k :

(b) There is a constant A3 > 0 such that every 0� k � n we have

jCn;k.e
˛=n/j � .A3/

k
j˛jk :

Proof (a) By Theorem 4.2(a),

HK ;k.e
˛=n/D

A0k2X
jD�A0k2

bj ;kej˛=n:

From the bounds for j and k � n one has that jj=nj � A0k , hence jej˛=nj �

exp.A0 k j<.˛/j/� exp.k A0/. From the above equation one has

jHK ;k.e
˛=n/j � kHK ;kk1 .exp A0/

k :

Using Theorem 4.2, it is enough to take A2 DA1 exp.A0/.

(b) By definition,

Cn;k.e
˛=n/D

kY
jD1

.e˛C e�˛ � ej˛=n
� e�j˛=n/D

kY
jD1

.g.˛/�g.j˛=n// ;
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where g.z/ D ez C e�z . One has g0.z/ D ez � e�z , hence for z on the interval
connecting ˛ and j˛=n, with 0� j � n, one has jg0.z/j � 2 exp.j˛j/� 2e . By the
mean value theorem, we have, for 0� j � k � n,

jg.˛/�g.j˛=n/j � 2ej˛� j˛=nj � 2ej˛j:

It follows that
jCn;k.e

˛=n/j � .2e/k j˛jk :

It is enough to take A3 D 2e .

4.2 Theorem 4.2 implies Theorem 2.2

It follows from Lemma 4.3 that for 0� k � n and j˛j< 1, we have

jCn;k.e
˛=n/HK ;k.e

˛=n/j � j˛A2A3j
k :

Let us choose UK to be the disk centered at the 0, with radius 1=.2A2A3C 1/, then
j˛A2A3j< 1=2 for ˛ 2UK . Equation (16) and the above estimate imply that for all n

and all ˛ 2 UK , we have

jfK ;n.˛/j �

n�1X
kD0

jCn;k.e
˛=n/HK ;k.e

˛=n/j �

n�1X
kD0

.1=2/k < 2;

which concludes the proof of Theorem 2.2, assuming Theorem 4.2.

5 A reduction of Theorem 1.6 to estimates of the cyclotomic
function

5.1 Some estimates

The following is a higher order version of Lemma 4.3. The proof is similar.

Lemma 5.1 Suppose j˛j< 1.

(a) For 1� k � n, 0� l , and y on the interval from 0 to ˛=n we haveˇ̌̌̌
@l

@yl
ck.˛;y/

ˇ̌̌̌
< .A3/

k
j˛jk�l k2l :

(b) For any y 2C; jyj< 1=n and 1� k � n we haveˇ̌̌̌
@l

@yl
HK ;k.e

y/

ˇ̌̌̌
< .A2/

k .A0/
l k2l :

Geometry & Topology, Volume 15 (2011)



Asymptotics of the colored Jones function of a knot 2151

Proof (a) We have ck.˛;y/D
Qk

jD1 gj , where

gj D e˛C e�˛ � ejy
� e�jy :

By the Leibniz rule, the l –th derivative (with respect to y ) of ck is the sum

(17)
@l

@yl
ck.˛;y/D

X
jljDl

�
l

l1; : : : ; lk

�
t.l/; where t.l/D

kY
jD1

g.lj /j :

Here l D .l1; : : : ; lk/; jlj WD
Pk

jD1 lj , lj � 0. We will estimate each term t.l/. Fix
lD .l1; : : : ; lk/. We consider two cases, lj D 0 and lj > 0.

Suppose lj D 0. Then g.lj /j D gj D e˛ C e�˛ � ejy � e�jy . Since j � k � n, the
interval connecting ˛ and jy lies totally in the disk of radius j˛j (remember that
jyj � j˛j=n). As in the proof of Lemma 4.3, we have

(18) jgj j D j.e
˛
C e�˛/� .ejy

C e�jy/j � .2e/j˛j:

Now suppose lj > 0. Then

g.lj /j D�ejyj lj � e�jy.�j /lj :

It is clear je˙˛j< e . Since jj j � jkj and jjyj< j˛j, we have je˙jy.˙j /lj j< eklj .
Hence

(19) jg.lj /j j< .2e/ klj :

Taking the product over j , using (18), (19) and
P

lj D l , we get

jt.l/j< .2e/k kl
j˛j#fljD0g

< .2e/k kl
j˛jk�l

because j˛j< 1 and #flj D 0g � k � l . SinceX
jljDl

�
l

l1; : : : ; lk

�
D kl ;

from (17) and the above estimate for t.l/, we get the result with A3 D 2e .

(b) By Theorem 4.2(a),

@l

@yl
HK ;k.e

y/D

A0k2X
jD�A0k2

bj ;kejyj l :
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From the bounds for j and k � n one has jejy j � exp.A0k/ and jj l j � .A0k2/l .
From the above equation one hasˇ̌̌̌

@l

@yl
HK ;k.e

y/

ˇ̌̌̌
� kHK ;kk1 .exp A0/

k.A0k2/l :

Using Theorem 4.2, it is enough to take A2 DA1 exp.A0/.

Corollary 5.2 For every knot K there are positive constants A4;A5 such that

(a) for 0� k , 0�N , and j˛j< 1 and y on the interval from 0 to ˛=k , we haveˇ̌̌̌
@N

@yN
hK ;k.˛;y/

ˇ̌̌̌
< j˛A4j

k�N .A5k2/N :

(b) for 0� k , 0�N , and j˛j< 1 and every positive integer n, we haveˇ̌̌̌
hK ;k.˛; ˛=n/�

N�1X
pD0

dk;p.˛/ .˛=n/p
ˇ̌̌̌
<

1

N !

�˛
n

�N

j˛A4j
k�N .A5k2/N :

Proof (a) The N –th derivative of hK ;k.˛;y/, which is the product of ck.˛;y/ and
HK ;k.e

y/, is the sum of 2N terms, each of the form

@l

@yl
ck.˛;y/

@N�l

@yN�l
HK ;k.e

y/:

The absolute value of the above term is bounded by j˛jk�l.A2A3/
k.A0/

N�lk2N

using Lemma 5.1, which, in turn, is less than j˛jk�N .A2A3/
k.A0/

N k2N . Hence,
multiplied by 2N we getˇ̌̌̌
@l

@yl
hK ;k.˛;y/

ˇ̌̌̌
<2N
�j˛jk�N .A2A3/

k.A0/
N k2N

D.˛A2A3/
k�N .2A0A2A3k2/N :

It is enough to take A4 DA2A3 and A5 D 2A0A2A3 .

(b) By Taylor’s Theorem,ˇ̌̌̌
hK ;k.˛; ˛=n/�

N�1X
pD0

dk;p.˛/ .˛=n/p
ˇ̌̌̌
<

1

N !

�˛
n

�N

max
ˇ̌̌̌
@N

@yN
hK ;k.˛;y/

ˇ̌̌̌
;

where max is taken when y is on the interval connecting 0 and ˛=n. Using the estimate
of part (a), we get the result.
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5.2 Theorem 4.2 implies Theorem 1.6

To simplify notation, let us define, for a knot K ,

(20) f
ŒN �

K ;n
.z/ WD JK ;n.e

z=n/�

N�1X
kD0

PK ;k.e
z/

�K .ez/2kC1

� z

n

�k

:

Theorem 1.6 follows from Theorem 1.5, Lemma 2.1 and the following uniform bound.

Theorem 5.3 For every knot K there exists an open neighborhood zUK of 0 2C such
that for every N � 0 there exists a positive number MN such that for ˛ 2 zUK , and all
n� 0, we have ˇ̌̌̌�n

˛

�N

f
.N /

K ;n
.˛/

ˇ̌̌̌
<MN :

Proof of Theorem 5.3, assuming Theorem 4.2 We have the following identities,
where the second follows from (14) and (15):

f
ŒN �

K ;n
.˛/D fK ;n.˛/�

N�1X
pD0

RK ;p.˛/
�˛

n

�p

D

1X
kD0

hK ;k

�
˛;
˛

n

�
�

N�1X
pD0

� 1X
kD0

dk;p.˛/

��˛
n

�p

D

1X
kD0

�
hK ;k

�
˛;
˛

n

�
�

N�1X
pD0

dk;p.˛/
�˛

n

�p
�

Using the estimate in Corollary 5.2, we see that

ˇ̌̌̌�n

˛

�N

f
ŒN �

K ;n
.˛/

ˇ̌̌̌
<

1

N !

1X
kD0

j˛A4j
k�N .A5k2/N :

If j˛A4j< 1, the series of the right hand side is absolutely convergent. It is enough to
take zUK to be the disk centered at 0 with radius 1=.2A4C1/. This proves Theorem 5.3,
assuming Theorem 4.2.
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6 Bounds for the degree and coefficients of the colored Jones
function

6.1 Bounds for the degree

In this section we give a bound for the coefficients of the colored Jones polynomial,
and deduce Theorem 1.12. This and the next section are logically independent from
the previous Section 4 and Section 5.

For a Laurent polynomial f .q/ D
PM

kDm akqk , with amaM ¤ 0, let us define
degC.f / D M and deg�.f / D m. In [22] the second author showed that there
are quadratic bounds for the degrees of the colored Jones polynomial.

Suppose the knot K has a planar projection with cC 2 crossings. Let ! be the writhe
number, ie the number of positive crossing minus the number of negative ones. Then
by [22, Proposition 2.1], taking into account the change of variable, the framing, and
the normalization, one has the following bounds for the degrees of JK ;n.q/.

Proposition 6.1 With the above notation, there are constants s˙ such that

degC.JK ;n/�
.cC 2/.n� 1/2C 2.n� 1/.sC� 1/�!.n2� 1/

4
;

deg�.JK ;n/� �
.cC 2/.n� 1/2C 2.n� 1/.s�� 1/C!.n2� 1/

4
:

The constants s˙ have transparent geometric meaning, but we don’t need their exact
values here.

Another proof of the quadratic bounds, though less as explicit, for the degrees of the
colored Jones polynomial using the theory of q–holomorphic functions is given in
Section 10.1.

6.2 Bounds for the coefficients

For a Laurent polynomial f 2ZŒq˙1=4�, we define kf k1 as in Definition 4.1, ie kf k1
is the sum of the absolute values of its coefficients. Observe that

(21) kf Cgk1 � kf k1Ckgk1; kfgk1 � kf k1 kgk1:

Since kfj gk1 D 2, we have, for k � n

(22) kfagkk1 D

 aY
jDa�kC1

fj g


1

� 2k
� 2n:
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It is known that the quantum binomial
�
m
k

�
is a Laurent polynomial in q1=2 with

positive integer coefficients, hence its l1 –norm is obtained by putting q1=2 D 1, which
is the classical binomial

�
m
k

�
. One has, if m� n,

(23)
�m

k

�
1

D

�
m

k

�
� 2m

� 2n:

Theorem 6.2 For every knot K of cC 2 crossings and every n we have

(24) kJK ;nk1 � nc4cn:

Proof The proof of the Theorem is easy using the state sum definition of the colored
Jones polynomial: The colored Jones polynomial is the sum, over all states, of the
weights of the states. There are nc states, the weight of each is the product of several
q–factorials and q–binomial coefficients for which an upper bound can be easily found.
Let us now go to the details of the proof.

The knot K is the closure of a .1; 1/–tangle T (or long knot), with orientation given by
the direction from the bottom boundary point to the top boundary point. The crossing
points of the diagram of T (on the standard 2–plane) break T into 2cC 5 arcs, two
of which are boundary (ie each contains a boundary point of T ). The two crossings
adjacent to the boundary arcs are called boundary crossings.

To get from cC 2 to c in the estimate, we will choose the .1; 1/–tangle T such that
(1) when going along T , starting at the bottom boundary point, we must pass the very
first crossing (resp. very last crossing) by an overpass (respectively, an underpass) and
(2) the two strands at each crossing are pointing upwards, as in the following figure:

(25)
a b

k

a�kbCk

a b

k

aCkb�k

Here is how to get such a .1; 1/–tangle T . Consider a diagram of K on a 2–sphere S2 .
The cC 2 crossings break the knot diagram into 2cC 4 arcs. At each crossing we
have an overpass and an underpass. When we go along the knot starting at some point,
following the direction of the orientation, we pass through all these underpasses and
overpasses. Hence there must be an arc which starts at an underpass and ends at an
overpass, assuming there is at leat one crossing. Remove from S2 a small disk which
is a small neighborhood of a point inside this arc. What is left is a long knot diagram on
a disk, which can also be considered as a .1; 1/–tangle diagram in the strip R� Œ0; 1�
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in the standard 2–plane which satisfies requirement (1). Using the isotopy of the form

which moves crossings (positive or negative) into standard upright position, we get the
desired .1; 1/–tangle.

A state k is an assignment of numbers, called the colors, to the crossings of the diagram
of T , where each color is in f0; : : : ; n� 1g. For a fixed state we will color the 2cC 5

arcs as follow. First color the bottom boundary arc by 0. Going along the diagram of T

from the bottom boundary point, if we are on an arc of color a and pass a crossing, the
next arc will have color aC k or a� k , according as the pass is an underpass or an
overpass; see (25). Here k is the color of the crossing.

We will only consider states such that the colors of arcs are between 0 and n� 1 and
the color of the top boundary arc is 0. The under/overpass configuration at the two
boundary crossings ensures that the two boundary crossings have color 0, otherwise
the arcs next to the two boundary arcs would have negative colors. It follows that the
number of states is at most nc .

The weights of the positive crossing (on the left) and negative crossing (on the right
in (25)) are

RC.nI a; b; k/D .unit/
�
bC k

k

�
fn� 1C k � agk ;(26)

R�.nI a; b; k/D .unit/
�
aC k

k

�
fn� 1C k � bgk ;(27)

where .unit/ stands for ˙ a power of q˙1=4 , which does not affect the l1 norm. Note
that both aC k and bC k in the above formulas are between 0 and n� 1.

The weight of a maximum/minimum point is a also ˙ a power of q˙1=4 , whose exact
formula is not important for us. Let F.n;k/ denote the product of weights of all the
crossings and all the extreme points. Then

(28) JK ;n.q/D
X

k

F.n;k/:

Using the estimates (23) and (22), we see that kR˙.nI a; b; k/k1 � 4n . Since the
weight of the two boundary crossing is just a unit, the l1 norm of F.n;k/ is less
than 4cn . From (28) and the fact that there are nc states, we get kJK ;nk1 � nc4cn .
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Since there is a constant b such that nc � bn , we have the following.

Theorem 6.3 For every knot K , there is a constant A6 such that for every positive
integer n,

kJK ;nk1 � .A6/
n:

6.3 Proof of Theorem 1.12

Fix a knot with cC2 crossings. The bounds for the degrees of JK ;n (see Proposition 6.1)
allow us to write

JK ;n.q/D
X

j

an;j qj ;

where jj j � n2.cC 2Cjwj/=4CO.n/. For such j , we have

jej˛=n
j D e<.j˛/=n

� e.cC2Cjwj/n=4CO.1//j<.˛/j:

Using Theorem 6.2 we get

jJK ;n.e
˛=n/j � nc4cne.cC2Cjwj/n=4CO.1//j<.˛/j:

1

n
log jfK ;n.˛/j � c log 4C

cC 2Cjwj

4
j<.˛/jCO

�
log n

n

�
:Thus,

The result follows from the observation that j!j � cC2, since cC2 is the total number
of crossings.

7 Proof of Theorem 4.2

The goal of this Section is to prove Theorem 4.2.

7.1 The bound for degrees of HK;n

Note that

deg˙.fg/D deg˙.f /C deg˙.g/ and degC.f Cg/�max.degC.f /; degC.g//:

From deg˙fkg D ˙k=2, we get

deg˙.fkg!/D˙k.kC 1/=4; deg˙

��
n

k

��
D˙k.n� k/=2:
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From these and Equation (13) we get

degC.HK ;n.q//

� max
1�k�nC1

�
�
.2nC 2/.2nC 3/

4
CkC

k

2
C
.nC 1C k/.nC 1� k/

2
CdegC.JK ;k/

�
:

Using Proposition 6.1 for the upper bound of degC.JK ;k/, after a simplification, we
get

degC.HK ;n.q//� max
1�k�nC1

�
�

n.nC 3/

2
C

c.k � 1/2

4
C
.k � 1/sC

2
C
j!j.k2� 1/

4

�
:

The right hand side reaches maximum when k D nC 1. Using ! � cC 2, we have

degC.HK ;n.q//� n2c=2C n.sCC c � 1/=2:

A similar calculation shows that

deg�.HK ;n.q//� �.n
2c=2C n.s�C c � 1/=2/:

If we choose A0 bigger than c and js˙Cc�1j, then we have j deg˙.HK ;n/j �A0n2 .
This proves the first statement of Theorem 4.2.

7.2 The bound for the l1–norm of HK;n

Multiply both sides of (13) by f2nC 2g!, then use (23) and Theorem 6.3, we see that
there is a constant A7 such that

(29) kf2nC 2g!HK ;n.q/k1 � .A7/
n:

The polynomials

zHK ;n.q/ WD qA0n2

HK ;n.q/ and g.q/ WD zHK ;n.q/

2nC2Y
jD1

.1� qj /

have only nonnegative degrees in q , with degC. zHK ;n/� 2A0n2 :

(30) zHK ;n.q/D

2A0n2X
kD0

akqk

Since g.q/ is the product of the polynomial on the left hand side of (29) and a power
of q , we have

(31) kg.q/k1 � .A7/
n:
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There are estimates of l1 –norm using Mahler measure [23]. However, the estimat e
(31) is weak: the inequalities of Mahler imply an exponential upper bound on the
Mahler measure of HK ;n.q/, and a doubly exponential upper bound on the l1 –norm
of HK ;n.q/. The following estimate, which does not follow from Mahler measure
considerations, was communicated to us by D Boyd. Since

zHK ;n.q/D g.q/
1Q2nC2

kDj .1� qj /
;

we have that

ak D

kX
iD0

bick�i ; where g.q/D
X

k

bkqk and
1Q2nC2

kD1 .1� qk/
D

1X
kD0

ckqk :

Note that ck is the number of partitions of k of length � 2nC2. Hence 0� ck�1� ck ,
and ck � pk , where pk is the number of partitions of k . Using the growth rate of pk

(see Andrews [2]), we see that there is a constant A8 such that

(32) pk < .A8/
p

k :

The crucial part of the above inequality is the exponent
p

k . Now we can easily obtain
the desired upper bounds for k zHK ;nk1 . Since ak D

Pk
iD0 bick�i we have

jak j �

kX
iD0

jbi jck�i �

� kX
iD0

jbi j

�
ck �kg.q/k1ck

� .A7/
n.A8/

n
p

2A0 by (31), (32) and k � 2A0n2.

It follows that, for n� 1,

k zHK ;nk1 �

2A0n2X
kD0

jak j � 2A0n2.A7/
n.A8/

n
p

2A0 � .A1/
n;

for appropriate A1 . This completes the proof of Theorem 4.2.

8 Growth rates of R–matrices and the Lobachevsky function

8.1 The Lobachevsky function

In Section 6 we got a simple but crude estimate for the l1 –norm of the R–matrices,
which are a ratio of five quantum factorials. In this largely independent section we
will give refined (and optimal) estimates for the growth rate of the R–matrices. These
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estimates reveal the close relationship between hyperbolic geometry and the asymptotics
of the quantum factorials.

Recall that the Lobachevsky function is given by

ƒ.z/D�

Z z

0

log j2 sin xj dx D
1

2

1X
nD1

sin.2nz/

n2
:

The Lobachevsky function is an odd, periodic function with period � . Its graph for
z 2 Œ0; �� is:

�0:4

�0:2

0:2

0:4

0:5 1 1:5 2 2:5 3

Definition 8.1 If f .q/ 2 ZŒq˙1=4�, let us denote by evn.f / the evaluation of f at
q1=4 D e� i=.2n/ .

For 0� k � n we have

evnjfkgj D je
k�i=n

� e�k�i=n
j D 2 sin.k�=n/;

log.evnj.fj g!j/j/D

jX
kD1

log j2 sin.k�=n/j;hence,

which is very closely related to a Riemann sum of the integral in the definition of the
Lobachevsky function. It is not surprising to have the following.

Proposition 8.2 For every ˛ 2 .0; 1/ we have

log jevn.fb˛ncg!/j D �
n

�
ƒ.�˛/CO.log n/:

Here O.log n/ is a term which is bounded by C log n for some constant C independent
of ˛ .

Remark 8.3 The proof reveals an asymptotic expansion of the form

evn.fb˛ncg!/� n� exp
�
�

n

�
ƒ.�˛/

��
C0C

C1

n
C

C2

n2
C � � �

�
:

for explicitly computable constants Ci and � .
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Proof Recall the Euler–MacLaurin summation formula with error term (see for
example, Olver [26, Chapter 8])

bX
kDa

f .k/D

Z b

a

f .x/ dxC
1

2
f .a/C

1

2
f .b/

C

m�1X
kD1

B2k

.2k/!
.f .2k�1/.b/�f .2k�1/.a//CRm.a; b; f /;

where Bk is the k –th Bernoulli number and the error term has an estimate

jRm.a; b; f /j � .2� 21�2m/
jB2mj

.2m/!

Z b

a

jf .2m/.x/j dx:

Applying the above formula for mD 1 to f .x/D log.2 sin x�=n/, we have

log
� b˛ncY

kD1

2 sin.k�=n/

�
D

1

2
.f .1/Cf .b˛nc//C

Z b˛nc

1

log.2 sin.t�=n// dt CR1.1; b˛nc; f /

D
1

2
.f .1/Cf .˛n/C

Z ˛n

1

log.2 sin.t�=n// dt CR1.1; b˛nc; f /C �.˛; n/

D
1

2
.f .1/Cf .˛n//C

n

�

Z �˛

�=n

log j2 sin.u/juCR1.1; b˛nc; f /C �.˛; n/

D
1

2
.f .1/Cf .˛n//C

n

�

�
�ƒ.�˛/Cƒ

��
n

��
CR1.1; b˛nc; f /C �.˛; n/:

Here �.˛; n/ comes from adjusting the boundary of integration and satisfies j�.˛; n/j D
O.1/. Note that

1

2
jf .1/Cf .˛n/j DO.log n/:

Moreover, f 00.x/D �2

n2 .csc.�x=n//2 > 0. HenceZ b˛nc

1

jf 00.x/j dxD

Z b˛nc

1

f 00.x/ dx �

Z ˛n

1

f 00.x/ dxD
�

n

�
cot.˛�/� cot

��
n

��
:

It follows easily that
jR1.1; b˛nc; f /j DO.1/:

Furthermore, using L’Hospital’s rule, one can see that
n

�

ˇ̌̌
ƒ
��

n

�ˇ̌̌
DO.log n/:

The result follows.
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Corollary 8.4 For every ˛ 2 .0; 1/ and any fixed number d we have

log jevn.fb˛nC dcg!/j D �
n

�
ƒ.�˛/CO.log n/:

Proof There is " > 0 such that for big enough n, we have " � x=n � 1 � " for
every integer x between b˛nc and b˛nC dc. For such x , we have 0 < 2 sin "� <
2 sin.x�=n/< 2, so there is a constant M such that jlog 2 sin.x�=n/j<M . There are
at most jd jC1 such values of x . Hence the difference between log jevn.fb˛nC dcg!/j

and log jevn.fb˛ncg!/j by absolute value is less than .jd j C 1/M , a constant. The
result follows.

8.2 Asymptotics of the R–matrix using ideal octahedra

Since the entries of the R–matrix are given by ratios of five quantum factorials (see
Equation (26)), Proposition 8.2 gives a formula for the asymptotic behavior of the
entries of the R–matrix when evaluated at e2�i=n .

Proposition 8.5 (a) Suppose that ˛; ˇ; � are real numbers that satisfy the inequalities

(33) ˛; ˇ; � 2 Œ0; 1� 0� ˇC � � 1; 0� ˛� � � 1:

Then the limit

(34) rC.˛; ˇ; �/ WD lim
n!1

1

n
log jevn.RC.nI bn˛c; bnˇc; bn�c//j;

exists and is equal to

(35) rC.˛; ˇ; �/D Œ�ƒ.�.ˇC �//Cƒ.�ˇ/Cƒ.��/�ƒ.�˛/Cƒ.�.˛� �//�=�:

(b) The quantity rC.˛; ˇ; �/ equals to 1=.2�/ times the volume of an ideal octahedron
with vertices

(36) .0; 1;1; z� ; .zˇz� � 1/=.zˇ � 1/; z˛/ 2 .C n f0; 1g/
6;

where .z˛; zˇ; z�/D .e2� i˛; e2�iˇ; e2�i�/.

(c) Suppose that ˛; ˇ; � are real numbers that satisfy

˛; ˇ; � 2 Œ0; 1� 0� ˛C � � 1; 0� ˇ� � � 1:

Then the limit

r�.˛; ˇ; �/ WD lim
n!1

1

n
log jevn.R�.nI bn˛c; bnˇc; bn�c//j:

exists and is equal to

(37) r�.˛; ˇ; �/D rC.ˇ; ˛; �/:
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Proof (a) Observe that

jevn.fj g/jD jevn.fn�j g/jD 2 sin.j�=n/ and jevn.fn�1g!/jD

n�1Y
jD1

2 sin.j�=n/Dn:

From these, we have that

(38) jevn.fj g!/j D
n

jevn.fn� 1� j g!/j
:

Using (26) and then (38), we have

(39)
jevn.RC.nI a; b; k//j D

jevn.fbC kg!/j jevn.fn� 1C k � ag!/j

jevn.fbg!/j jevn.fkg!/j jevn.fn� 1� ag!/j

D
jevn.fbC kg!/j jevn.fag!/j

jevn.fbg!/j jevn.fkg!/j jevn.fa� kg!/j
:

Proposition 8.2 concludes the proof of (a).

(b) This was pointed out to us by D Thurston. Although this fact is not used in the proof
of Proposition 8.6 nor in the proof of Theorem 1.13, it is an interesting geometric fact.
To prove it, recall that the boundary of 3–dimensional hyperbolic space is C[f1g.
Let Tz denote the regular ideal tetrahedron of shape z 2C�f0; 1g. Tz is isometric
to the ideal tetrahedron with ordered vertices at 0; 1;1 and z in the boundary of 3–
dimensional hyperbolic space. For z 2C n f0; 1g, the ideal octahedron Tz is isometric
to T1=.1�z/ and Tz=.z�1/ by an orientation-preserving isometry, and isometric to T1=z ,
T.1�z/=z and T.z�1/=z by an orientation-reversing isometry. Thus, when z 2Cnf0; 1g,
we have

(40)
vol.Tz/D vol.T1=.1�z//D vol.Tz=.z�1//

D� vol.T1=z/D� vol.T.1�z/=z/D� vol.T.z�1/=z/:

The shape of the ideal tetrahedron with distinct ordered vertices .z0; z1; z2; z3/ in
C[f1g is given by the cross-ratio

(41) Œz0 W z1 W z2 W z3�D
.z0� z3/.z1� z2/

.z0� z2/.z1� z3/

following the convention of Dupont and Zicker [6, Equation 1.4]. If .˛1; ˛2; ˛3/ denote
the three dihedral angles of Tz at opposite pairs of edges, then the volume vol.Tz/ is
given by Ratcliffe [27, Theorem 10.4.10]:

vol.Tz/Dƒ.˛1/Cƒ.˛2/Cƒ.˛3/:

If the shape parameter z D ei� is a complex number of magnitude 1, then the di-
hedral angles of Tz coincide with the angles of an isosceles triangle with angles
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.�; .� � �/=2; .� � �/=2/. In that case, we have

vol.Tei� /Dƒ.�/Cƒ

�
� � �

2

�
Cƒ

�
� � �

2

�
:

The following symmetries of the Lobachevsky function [27, Theorem 10.4.3,10.4.4]

ƒ.��/D�ƒ.�/;
1

2
ƒ.2�/Dƒ.�/Cƒ

�
� C

�

2

�
imply that

(42) vol.Tei� /D 2ƒ

�
�

2

�
:

Now, we return to the proof of part (b). Fix ˛; ˇ; � as in (33) and consider the complex
numbers of magnitude 1:

.z˛; zˇ; z�/D .e
2� i˛; e2�iˇ; e2� i�/

Consider five ideal tetrahedra with shapes

(43) .zˇz�/
�1; zˇ; z� ; z�1

˛ ; z˛z�1
� :

Equations (35) and (42) imply that the sum of their volumes is given by 2� rC.˛; ˇ; �/.
Now consider the ideal octahedron with vertices

.A;B;C;D;E;F /D .0; 1;1; z� ; .zˇz� � 1/=.zˇ � 1/; z˛/

drawn as follows:

A

B C

D

E

F
It can be triangulated into five ideal tetrahedra ABDE , BDCE , ABCD , ABCF and
ACDF with ordered vertices and with shape parameters�

1�
1

zˇz�
;

zˇ

zˇ � 1
;

z�

z� � 1
;

z˛

z˛ � 1
;
z˛

z�

�
computed according to Equation (41). Adding up the volumes of these tetrahedra, with
proper orientations concludes the proof of (b). (c) is analogous to (a). We thank the
referee for correcting the vertices of the octahedron in an earlier version of this paper.
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8.3 The maximum of the growth rate of the R–matrix

In this section we determine the maximum of r˙.˛; ˇ; �/.

Proposition 8.6 (a) With ˛; ˇ; � satisfying (33), rC.˛; ˇ; �/ achieves maximum
when ˛ D 3=4; ˇ D 1=4, and � D 1=2. Moreover

rC.3=4; 1=4; 1=2/D
v8

2�
;

v8 D 8ƒ.�=4/� 3:6638623767088760602 : : :where

is the volume of the regular hyperbolic ideal octahedron.

(b) Similarly, r�.˛; ˇ; �/ reaches maximum when ˛ D 1=4; ˇ D 3=4, and k D 1=2;
and its maximum value is the same as that of rC.˛; ˇ; �/.

Thus, asymptotically, the winning configuration is given by:

3n=4

3n=4

n=4

n=4

n=2

Proof It is enough to consider the case of rC . The result for r� follows from (37).
Let ı D ˛� � , we have

rC.˛; ˇ; �/D�ƒ.�.ˇC �//Cƒ.�ˇ/Cƒ.��/�ƒ.�.ıC �//Cƒ.�.ı//;

with domain 0 � ˇ; ı; � , and ˇC � � 1; ıC � � 1. Note the symmetry between ˇ
and ı .

Using ƒ0.x/D � log.2 sin x/ for 0 < x < � , one can easily show that the function
�ƒ.�.ˇC �//Cƒ.�ˇ/, for a fixed � 2 Œ0; 1�, achieves maximum at ˇ D .1� �/=2.
It follows that the maximum of rC.˛; ˇ; �/ is the same as the maximum of

g.�/ WD 2.�ƒ.�.ˇC �//Cƒ.�ˇ//Cƒ.��/;

with ˇD .1��/=2. The domain for g is � 2 Œ0; 1�. Using the derivative of g it is easy
to show that g achieves maximum when � D 1=2. In this case ˛ D 3=4; ˇ D 1=4.

Remark 8.7 Another proof is to use part (b) of Proposition 8.5 and the fact that the
volume of an ideal octahedron is maximized at a regular ideal octahedron; see [27].
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Lemma 8.8 If z; w are complex numbers that satisfy jzj D jwj D 1 and j1� zj D

j1�wj, then z D w˙1 .

Proof Let us define

Cu0;r WD fu 2C j ju�u0j D r > 0g:

Then Cu0;r is a circle with center u0 and radius r . Fixing w , it follows that z 2

C0;1\C1;j1�wj . The intersection of two circles is two points, and since w and w�1D xw

both lie in the intersection, the result follows.

8.4 The maximum of the R–matrices at roots of unity

Proposition 8.6 gives the maximum of the growth rate of evn.RC.nI a; b; k// as n!1.
The following proposition gives the maximum of evn.RC.nI a; b; k//, for a fixed n.

Proposition 8.9 (Proof in Appendix B.2) The value of jevn.RC.nI a; b; k//j achieves
its maximum at a D b3n=4c, b D b.n � 1/=4c, and k D a � b . The value of
jevn.R�.nI a; b; k//j achieves its maximum at a D b.n � 1/=4c, b D b3n=4c, and
k D b � a. The maximum value of jevn.RC.nI a; b; k//j is the same as that of
jevn.R�.nI a; b; k//j.

Note that for these optimal values in the RC case, ja� 3n=4j � 1, jb� n=4j � 1 and
jk � n=2j � 1. The proof of this proposition will be given in Appendix B.

From Corollary 8.4 and Propositions 8.5, 8.6 and 8.9, we have the following.

Corollary 8.10 The growth rate of the maximum of jevn.RC.nI a; b; k//j is given by

lim
n!1

maxa;b;k log jevn.R˙.nI a; b; k//j

n
D
v8

2�
:

8.5 Proof of Theorem 1.13

Recall that by (28), the colored Jones function is the sum of nc summands. Each
summand F.n;k/ is the product of R–matrices (which are weights of crossing points)
and weights of extreme points (which have absolute value 1). There are cC 2 crossing
points, but the weights of the two boundary crossing have absolute value 1. Hence

jJK ;n.e
2� i=n/j � nc

�
max
a;b;k
jevn.R˙.nI a; b; k//j

�c
:

From the growth rate of maxa;b;k jevn.R˙.nI a; b; k//j given by Corollary 8.10 we
get the theorem.
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9 The Generalized Volume Conjecture near ˛ D 2�i

In this section we will prove Theorems 1.10 and 1.11 which are concerned with the
Generalized Volume Conjecture near 2� i . Our proofs use crucially the well-known
symmetry principle (see Kirby and Melvin [19] and Lê [21]: Suppose m;m0 and n are
positive integers with m�˙m0 mod n, then

(44) JK ;m.e
2�i=n/D JK ;m0.e2� i=n/:

Note that this fact is also a consequence of the existence of the cyclotomic expansion.
However, the case of higher rank Lie algebra requires results from canonical basis
theory; see [21].

Proof of Theorem 1.10 The symmetry principle implies that for all n>m> 0, we
have

JK ;n˙m.e
2�i=n/D JK ;m.e

2�i=n/;

which implies that

lim
n!1

JK ;n˙m.e
2�i=n/D lim

n!1
JK ;m.e

2�i=n/D JK ;m.1/D 1;

from which Theorem 1.10 follows easily.

Proof of Theorem 1.11 Fix a knot K and consider the neighborhood UK of 0 as in
Theorem 1.3. Define VK D 1CUK .

Let us suppose that ˛=.2� i/ 2 VK is a rational number not equal to 1. Assume that
˛ D 2� ip=m with p;m unequal coprime positive integers. Let N D np . Then, the
symmetry principle implies that

fK ;N .˛/D JK ;N .e
˛=N /

D JK ;np.e
2� i=.nm//

D JK ;njp�mj.e
2�i=.nm//:

Since njp�mj=.nm/D jp=m� 1j 2 UK , Theorem 1.3 implies that

lim
n!1

JK ;njp�mj.e
2�i=.nm//D

1

�.e2�i.jp=m�1j/
:

In other words,

lim
n!1

fK ;np.˛/D
1

�.e2� i.jp=m�1j/

is bounded. The result follows.
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10 The q–holonomic point of view

10.1 Bounds on l1–norm of q–holonomic functions

The main result of [10] is that for every knot K , the functions JK and HK are
q–holonomic. Recall that a sequence f W N �! Q.q/ is q–holonomic if satisfies a
q -linear difference equation. In other words, there exists a natural number d and
polynomial aj .u; v/ 2QŒu; v� for j D 0; : : : ; d with ad ¤ 0 such that for all n 2N
we have

(45)
dX

jD0

aj .q
n; q/fnCj .q/D 0:

In this section we observe that q–holonomic functions satisfy a priori upper bounds
on their degrees and (under an integrality assumption) on their l1 –norm. As a simple
corollary, we obtain another proof of the quadratic bounds in Proposition 6.1, though
not as explicit.

Definition 10.1 We say that a sequence f W N �!ZŒq˙1� is q–integral holonomic if
it satisfies an q–difference equation as above with ad D 1.

Question 10.2 Is it true that JK and CK are q–integral holonomic for every knot K?

For a partial answer, see the first author’s paper [12] with Sun.

Theorem 10.3 (a) If f W N �! ZŒq˙1� is q–holonomic, then for all n we have

degC.fn/DO.n2/ and deg�.fn/DO.n2/:

(b) If f is q–integral holonomic, then for all n we have

kfnk1 � C n

for some constant C . In particular,

lim sup
n!1

log jfn.e
˛=n/j

n
� C˛

for all ˛ 2C .

In other words, integral q–holonomic functions grow at most exponentially.
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Proof Suppose f satisfies (45). It is easy to see that for every a.u; v/2QŒu; v�, there
exists a constant C 0 such that degC.a.q

n; q// <C 0n for every n� 1. We choose such
a common C 0 for all aj .q

n; q/, j D 0; 1; : : : ; d , and, in addition, C 0 > degC f .n/ for
nD 0; 1; : : : ; d .

We will prove by induction on n� 1 that degC f .n/�C 0n2 . By assumption, it is true
for nD 1; : : : ; d . For n� 1, Then, by induction we have

degC fnCd .q/D degC
�
lad .q

n; q/ fnCd .q/
�
� degC ad .q

n; q/

D degC

�
�

d�1X
jD0

aj .q
n; q/fnCj .q/

�
� degC ad .q

n; q/

< C 0nCC 0.nC d � 1/2CC 0n� C 0.nC d/2:

The second claim in (a) follows similarly.

For (b), let cj D kaj .Q; q/k1 for j D 0; : : : ; d � 1, and choose C so that

� C d � cd�1C d�1C � � �C c0C 0 ,
� kfn.q/k1 � C n for nD 0; : : : ; d � 1.

Then, it is easy to see by induction that (b) holds for all n.

Remark 10.4 It is easy to see that the bounds of Theorem 10.3 are sharp. For example,
consider the sequence fn.q/D .1C q/.1C q2/ : : : .1C qn/.

Theorem 10.3 gives an alternative proof of the quadratic bounds for the degrees of the
color Jones polynomial, though not as explicit as in Proposition 6.1. If Question 10.2
has a positive answer then Theorem 10.3 also gives an alternative proof of Theorem 6.2.

10.2 Bounds for higher rank groups

In [10], we considered the colored Jones function

Jg;K W ƒw �! ZŒq˙1�

of a knot K , where g is a simple Lie algebra with weight lattice ƒw . In the above
reference, the authors proved that Jg;K is a q–holonomic function, at least when g is
not G2 . For gD sl2 , Jsl2;K is the colored Jones function JK discussed earlier.

In [10] , the authors gave state-sum formulas for Jg;K similar to (28) where the
summand takes values in ZŒq˙1=D �, where D is the size of the center of g.

The methods of the present paper give an upper bound for the growth-rate of the
g–colored Jones function. More precisely, we have:
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Theorem 10.5 For every simple Lie algebra g (other than G2 ) and every ˛ 2 C ,
and every � 2ƒw , there exists a constant Cg;˛;� such that for every knot with cC 2

crossings, we have

lim sup
n!1

log jJg;K ;n�.e
˛=n/j

n
� Cg;˛;�c:

The details of the above theorem will be explained in a subsequent publication.

11 Some physics

11.1 A small dose of physics

One does not need to know the relation of the colored Jones function and quantum field
theory in order to understand the statement and proof of Theorem 1.6. Nevertheless,
we want to add some philosophical comments, for the benefit of the willing reader.
According to Witten [35], the Jones polynomial JK ;n can be expressed by a partition
function of a topological quantum field theory in 3 dimensions—a gauge theory with
Chern–Simons Lagrangian. The stationary points of the Lagrangian correspond to
SU.2/–flat connections on an ambient manifold, and the observables are knots, colored
by the n–dimensional irreducible representation of SU.2/. In case of a knot in S3 ,
there is only one ambient flat connection, and the corresponding perturbation theory is
a formal power series in hD log q .

Rozansky exploited a cut-and-paste property of the Chern–Simons path integral and
considered perturbation theory of the knot complement, along an abelian flat connection
with monodromy given by (7). In fact, Rozansky calls such an expansion the U.1/–
reducible connection contribution (in short, U.1/–RCC) to the Chern–Simons path
integral, where U.1/ stands for the fact that the flat SU.2/ connections are actually
U.1/–valued abelian connections. Formal properties of such a perturbative expansion,
enabled Rozansky to deduce (in physics terms) the loop expansion of the colored Jones
function [29]. Rozansky also proved the existence of the loop expansion using an
explicit state-sum description of the colored Jones function [30].

Of course, perturbation theory means studying formal power series that rarely converge.
Perturbation theory at the trivial flat connection in a knot complement converges, as it
resumes to a Laurent polynomial in eh ; namely the n–th colored Jones polynomial. The
volume conjecture for small complex angles is precisely the statement that perturbation
theory for abelian flat connections (near the trivial one) does converge.
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At the moment, there is no physics (or otherwise) formulation of perturbation theory
of the Chern–Simons path integral along a discrete and faithful SL2.C/ representation.
Nor is there an adequate explanation of the relation between SU.2/ gauge theory (valid
near ˛ D 0) and a complexified SL2.C/ gauge theory, valid near ˛ D 2� i . These are
important and tantalizing questions, with no answers at present.

11.2 The WKB method

Since we are discussing physics interpretations of Theorem 1.6 let us make some more
comments. Obviously, when the angle ˛ is sufficiently big, the asymptotic expansion
of Equation (6) may break down. For example, when e˛ is a complex root of the
Alexander polynomial, then the right hand side of (6) does not make sense, even to
leading order. In fact, when ˛ is near 2� i , then the solutions are expected to grow
exponentially, and not polynomially, according to the Volume Conjecture.

The breakdown and change of rate of asymptotics is a well-documented phenome-
non well-known in physics, associated with WKB analysis, after Wentzel–Krammer–
Brillouin; see for example [26]. In fact, one may obtain an independent proof of
Theorem 1.6 using WKB analysis, that is, the study of asymptotics of solutions of
difference equations with a small parameter. The key idea is that the sequence of colored
Jones functions is a solution of a linear q–difference equation, as was established in [10].
A discussion on WKB analysis of q–difference equations was given by Geronimo and
the first author in [8].

The WKB analysis can, in particular, determine small exponential corrections of the
form e�c˛n to the asymptotic expansion of Theorem 1.6, where c˛ depends on ˛ ,
with Re.c˛/ < 0 for ˛ sufficiently small. These small exponential corrections (often
associated with instantons) cannot be captured by classical asymptotic analysis (since
they vanish to all orders in n), but they are important and dominant (ie, Re.c˛/ > 0/

when ˛ is near 2� i , according to the volume conjecture. Understanding the change of
sign of Re.c˛/ past certain so-called Stokes directions is an important question that
WKB addresses.

We will not elaborate or use the WKB analysis in the present paper. Let us only
mention that the loop expansion of the colored Jones function can be interpreted as
WKB asymptotics on a q–difference equation satisfied by the colored Jones function.

Appendix A The volume conjecture for the Borromean rings

It is well-known that the complement of the Borromean rings B can be geometrically
identified by gluing two regular ideal octahedra; see Thurston [32]. As a result, the
volume vol.S3�B/ of S3�B is equal to 2v8 .
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Suppose L is a k –component framed link, and n1; : : : ; nk are positive integers. The
colored Jones polynomial zJL.n1; : : : ; nk/ 2 ZŒq˙1=4� is the sl2 –quantum invariant of
the link whose components are colored by sl2 –modules of dimensions n1; : : : ; nk [28;
33]. The normalization is chosen so that for the unknot, zJL.n/D Œn�. Define

JL;n.q/ WD
JL.n; n; : : : ; n/

Œn�
:

The next theorem confirms the volume conjecture for the Borromean rings.

Theorem A.1 Let B be the Borromean rings, then

lim
n!1

log jJB;n.e
2�i=n/j

n
D

1

2�
vol.S3

�B/:

Proof For an integer j and a positive integer k let xj D 2 sin.j�=n/ and zk DQk
jD1 xj .

Then (see (38))

xj D xn�j D�xnCj ;(46)

zk D n=zn�1�k for 1� k � n� 1:(47)

Using Habiro’s formula for zJL of the Borromean ring [14; 15], one has

JB;n.q/D

n�1X
lD0

.�1/l
fng2

�Ql
jD1fnC j gfn� j g

�3�Q2lC1
jDlC1fj g

�2 :

When q1=2 D ei�=n , one has fj g D 2i sin.j�=n/, which is 0 exactly when j is
divisible by n. Hence if 2l C 1 < n, then the denominator of the term in the above
sum is never 0, while the numerator is 0, since it has 2 factors fng. On the other hand,
if 2l C 1> n, then the denominator has 2 factors fng, which would cancel with the 2
same factors of the numerator. Hence at q1=2D ei�=n one can assume that 2lC1� n,
or l > n=2� 1:

JB;n.e
2�i=n/D

X
n>l>n=2�1

.�1/l evn

�Ql
jD1fnC j gfn� j g

�3�Qn�1
jDlC1fj g

Q2lC1
jDnC1fj g

�2
D

X
n>l>n=2�1

.zl/
6

.zn�l�1/
2 .z2lC1�n/

2
by (46):
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Using (47), which says zl D n=zn�1�l , we have

(48) JB;n.e
2� i=n/D

X
n>l>n=2�1

n2 .l/
2; where l D

.zl/
2

.zn�1�l/
2 z2lC1�n

:

By (51) below, with al D l , bl D n� 1� l and kl D 2l C 1� n, we have

l D jevn.RC.nI al ; bl ; kl//j:

By Proposition 8.9, jevn.RC.nI al ; bl ; kl//j achieves the maximum at

amax D b3n=4c; bmax D b.n� 1/=4c and kmax D amax � bmax :

When l D b3n=4c we have al D amax , while jbl � bmax j � 1 and jkl � kmax j � 1. It
is easy to see that

(49) lim
n!1

log b.n�1/=4c� log jevn.R.nI amax ; bmax ; kmax //j

n
D 0:

There are less than n summands in the right hand side of (48), and each summand is
positive. Hence

n2 .b3n=4c/
2 < JB;n.e

2�i=n/ < n3
jevn.R.nI amax ; bmax ; kmax //j

2:

From (49) it follows that

2� lim
n!1

log jJB;n.e
2�i=n/j

n
D 2� lim

n!1

log jevn.R.nI amax ; bmax ; kmax //j
2

n
;

which is equal to 2v8 , according to Corollary 8.10.

Appendix B Proof of Proposition 8.9

B.1 Preliminary estimates

Again we denote xj D 2 sin.j�=n/. The following is obvious.

Lemma B.1 (a) The xj , as a function of j , is increasing for j 2 Œ0; n=2� and
decreasing for j 2 Œn=2; n�. In particular, for j � l � n� j we have xj � xl .

(b) For every 1� j � n�1, one has 2� xj . For n=4� j � 3n=4, one has 2� .xj /
2 .

Lemma B.2 For a fixed k , 1� k � n�1, the value of yb.k/ WD
QbCk

jDbC1 xj achieves
its maximum at

(50) b D ˇ.k/ WD b.n� k/=2c:
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Proof We will prove that if b <ˇ.k/, then yb.k/� ybC1.k/, while if b >ˇ.k/ then
yb.k/� yb�1.k/. This will prove the lemma.

Suppose b < ˇ.k/. Then b � b.n � k/=2c � 1 � .n � k/=2 � 1. It follows that
.b C 1/ � b C k C 1 � n� .b C 1/: From Lemma B.1(a) we get xbC1 � xbCkC1 .
Hence ybC1.k/=yb.k/D xbCkC1=xbC1 � 1, or ybC1.k/� yb.k/.

Suppose now b � 1C ˇ.k/. If b � n=2, then xb � xbCk since yj is deceasing
on Œn=2; n�. If b < n=2, then from b � 1C b.n� k/=2c one can easily show that
bCk �n�b�n=2. Hence we also have xbDxn�b �xbCk . Thus yb�1.k/=yb.k/D

xb=xbCk � 1.

Using (39), with jevn.fj g/j D xj , we have
(51)

jevnRC.nI a; b; k/j D
yb.k/ya�k.k/

y0.k/
; jevnR�.nI a; b; k/j D

ya.k/yb�k.k/

y0.k/
:

By Lemma B.2, both yb.k/ and ya�k.k/ achieve maximum when b D a�k D ˇ.k/.
Hence

(52) max jevnRC.nI a; b; k/j D max
0�k�n

s.k/; where s.k/D
.yˇ.k/.k//

2

y0.k/
:

Lemma B.3 One has

(53)
s.kC 1/

s.k/
D
.xˇ.k//

2

xkC1

with the denominator satisfying

(54) xkC1 D

(
x2ˇ.k/�1 if n� k is even;

x2ˇ.k/ if n� k is odd:

Proof By definition,

(55) s.k/D
.yˇ.k/.k//

2

y0.k/
D

�Qk
jD1 xˇ.k/Cj

�2Qk
jD1 xj

:

Note that, with ˇ.k/D b.n� k/=2c, we have

(56) ˇ.kC 1/D

(
ˇ.k/� 1 if n� k is even;

ˇ.k/ if n� k is odd:

We consider two cases: n� k is even and n� k odd.
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(a) n� k is even. Replacing k with kC 1 in (55), then using ˇ.kC 1/D ˇ.k/� 1,
we get

s.kC1/D

�QkC1
jD1 xˇ.kC1/Cj

�2QkC1
jD1 xj

D

�QkC1
jD1 xbk�1Cj

�2QkC1
jD1 xj

D
.xˇ.k//

2
�Qk

jD1 xˇ.k/Cj

�2
xkC1

Qk
jD1 xj

:

Dividing by s.k/, we get (53). As for the denominator, using xj D xn�j and n�k D

2ˇ.k/,
xkC1 D xn�k�1 D x2ˇ.k/�1:

This proves the lemma when n� k is even.

(b) n�k is odd. Replacing k with kC1 in (55), then using ˇ.kC1/Dˇ.k/, we get

(57)

s.kC 1/D

�QkC1
jD1 xbkCj

�2QkC1
jD1 xj

D
.xˇ.k/CkC1/

2
�Qk

jD1 xˇ.k/Cj

�2
xkC1

Qk
jD1 xj

D
.xˇ.k/CkC1/

2

xkC1

s.k/:

Using xj D xn�j and n�ˇ.k/� k � 1D ˇ.k/, we have

xˇ.k/CkC1 D xn�ˇ.k/�k�1 D xˇ.k/;

which, together with Equation (57), proves Equation (53). As for the denominator,
using n� k � 1D 2ˇ.k/,

xkC1 D xn�k�1 D x2ˇ.k/:

This completes the proof of the lemma.

As k increases from 0 to n, ˇ.k/ D b.n� k/=2c decreases and covers all integers
from bn=2c to 0.

Lemma B.4 (a) If n � 7 then s.k/ achieves maximum at an integer k such that
ˇ.k/D b.n� 1/=4c.

(b) s.k/ achieves maximum at k which is the smallest integer such that ˇ.k/ D
b.n� 1/=4c.

Proof (a) We will show that

(a1) if ˇ.k/ > .n� 1/=4 then s.kC 1/� s.k/,

(a2) if ˇ.k/� .n� 1/=4� 1 then s.k � 1/ > s.k/.

This will show that the maximum can be achieved for a k such that ˇ.k/Db.n�1/=4c.
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Proof of (a1) Suppose ˇ.k/ > n�1
4

. There is no integer in the interval .n�1
4
; n

4
/,

because otherwise (by multiplying by 4) there would be an integer in .n� 1; n/. It
follows that ˇ.k/� n=4.

Besides, ˇ.k/ D b.n� k/=2c � n=2. Thus ˇ.k/ 2 Œn=4; n=2�. By Lemma B.1(b),
.xˇ.k//

2 � 2 � xj for any 1 � j � n. It follows that the right hand side of (53) is
bigger than or equal to 1, or s.kC 1/=s.k/� 1.

Proof of (a2) Suppose ˇ.k/� n�1
4
� 1. Then ˇ.k � 1/� n�1

4
since by (56), either

ˇ.k � 1/D ˇ.k/ or ˇ.k � 1/D ˇ.k/C 1.

Since 2ˇ.k � 1/ < n=2, by Lemma B.1(a), x2ˇ.k�1/ � x2ˇ.k�1/�1 . It follows that
xk , either equal to x2ˇ.k�1/ or x2ˇ.k�1/�1 by (54), satisfies

xk � x2ˇ.k�1/�1:

By Lemma B.3 and the above inequality,

s.k/

s.k � 1/
D
.xˇ.k�1//

2

xk

�
.xˇ.k�1//

2

x2ˇ.k�1/�1

< 1;

where the last inequality follows from Lemma B.5 below. This completes the proof of
the part (a).

(b) When n < 7 the statement is checked by explicit calculation. We will assume
n� 7.

There are two values of k such that ˇ.k/D b.n� 1/=4c. Let � be the smaller one,
then the other one is �C 1. Then n� � is odd since otherwise ˇ.� � 1/D ˇ.k/.

Since n� � is odd, by Lemma B.3, we have

s.�C 1/

s.�/
D
.xˇ.�//

2

x2ˇ.�/�1

;

which is less than 1 by Lemma B.5. This means s.k/ achieves maximum at k D � .

B.2 Proof of Proposition 8.9

First consider RC.nI a; b; k/. By (52), Lemmas B.4(b) and B.2, jRC.nI a; b; k/j
achieves maximum when k satisfies the condition in Lemma B.4(b), b D b.n� 1/=4c,
and a D b C k . The value of k satisfying the condition in Lemma B.4(b) can be
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calculated easily:

k D

8̂̂̂̂
<̂
ˆ̂̂:

n=2C 1 nD 0 mod 4;

.n� 1/=2 nD 1 mod 4;

n=2 nD 2 mod 4;

.nC 1/=2 nD 3 mod 4:

From there one can calculate aD kC b . It is easy to check that the values of a; b; k

are exactly the ones given in Proposition 8.9.

Now turn to R�.nI a; b; k/. By (51),

jR�.nI a; b; k/j D jRC.nI b; a; k/j:

So jR�.nI a; b; k/j and jRC.nI b; a; k/j have the same maximum, and jR�.nI a; b; k/j
achieves maximum when jRC.nI b; a; k/j achieves maximum.

This completes the proof of Proposition 8.9, modulo the following lemma.

Lemma B.5 For 1� j � n�1
4

, with n� 7, one has x2j�1 > x2
j .

Proof With xj D 2 sin.j�=n/, the statement is equivalent to

sin..2j � 1/�=n/ > 2 sin2.j�=n/;

which, using 2 sin2.x/D 1� cos.2x/, is equivalent to

(58) sin..2j � 1/�=n/C cos.2j�=n/ > 1 for 1� j �
n� 1

4
:

We will prove (58) not only for integer j , but for all real j 2 Œ1; n�1
4
�.

The function f .j /D sin..2j � 1/�=n/C cos.2j�=n/ has the second derivative

f 00.j /D�.2�=n/2 .sin..2j � 1/�=n/C cos.2j�=n//

which is strictly negative on the interval Œ1; n�1
4
�. Hence f .j / achieves absolute

minimum at one of the end points 1 and n�1
4

. It is enough to show that the values
of f at these two end points are bigger than 1.

At the end point 1, he inequality f .1/ > 1 is

(59) sin.�=n/C cos.2�=n/ > 1:

The function f1.x/D sin xC cos.2x/ has the second derivative

f 001 .x/D� sin x� 4 cos.2x/
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which is strictly negative on the interval .0; �=6/. Hence on the closed interval Œ0; �=6�
the function f1.x/ achieves the absolute minimum at one of the end points. But
f1.0/ D f1.�=6/ D 1. If n � 7, then �=n 2 .0; �=6/. Hence f1.�=n/ > 1, which
is (59).

At the end point n�1
4

, one has

f

�
n� 1

4

�
D sin

�
�

2
�

3�

2n

�
C cos

��
2
�
�

2n

�
D cos.3�=2n/C sin.�=2n/ because sin.�=2�x/D cos x:

Hence f ..n� 1/=4/ > 1 is equivalent to

(60) sin.�=2n/C cos.3�=2n/ > 1:

Look at the function f2.x/D sin xC cos.3x/ on the interval Œ0; �=14�. The second
derivative

f 002 .x/D� sin x� 9 cos.3x/

is strictly negative on the interval .0; �=14/, and f2 has values f2.0/ D 1 and
f2.�=14/D 1:004 : : : > 1. It follows that f2.x/ > 1 for x 2 .0; �=14�. If n� 7, then
�=2n 2 .0; �=14�. Hence f2.�=2n/ > 1, which is (60).
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