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Strongly contracting geodesics in Outer Space

YAEL ALGOM-KFIR

We study the Lipschitz metric on Outer Space and prove that fully irreducible elements
of Out.Fn/ act by hyperbolic isometries with axes which are strongly contracting. As
a corollary, we prove that the axes of fully irreducible automorphisms in the Cayley
graph of Out.Fn/ are Morse, meaning that a quasi-geodesic with endpoints on the
axis stays within a bounded distance from the axis.

20E05; 20E36, 20F65

Introduction

There exists a striking analogy between the mapping class groups of surfaces, and the
outer automorphism group Out.Fn/ of a rank n free group. At the core of this analogy
lies Culler and Vogtmann’s Outer Space Xn [16], a contractible finite dimensional cell
complex on which Out.Fn/ has a properly discontinuous action. Like Teichmüller
space, Outer Space has an invariant spine on which the action is cocompact, making it
a good topological model for the study of Out.Fn/. Indeed, Outer Space has played
a key role in proving theorems for Out.Fn/, which were classically known for the
mapping class group. For example, Bestvina and Feighn [6] show that Out.Fn/ is a
virtual duality group by showing that the Borel–Serre bordification of Outer Space is
2n�5 connected at infinity. There have been three well studied metrics on Teichmüller
space: the Teichmüller metric, the Weil–Petersson metric, and the Lipschitz metric.
When the present work was conducted, the study of the geometry of Outer Space was
still in its infancy (see Handel and Mosher [23] and Francaviglia and Martino [20]).
Since then, Bestvina [4] has found a new proof of the classification theorem of outer
automorphisms using the geometry of Outer Space.

One would like to define a metric on Outer Space so that fully irreducible elements
of Out.Fn/ (which are analogous to pseudo-Anosov elements in MCG.S/) act by
hyperbolic isometries with meaningful translation lengths. But immediately one en-
counters a problem: it isn’t clear whether to require the metric to be symmetric. To
clarify, we follow the discussion in Handel and Mosher [24]. Consider the situation of
a pseudo-Anosov map  acting on Teichmüller space T .Sg;p/ with the Teichmüller
metric dT . Associated to  is an expansion factor � and two measured foliations
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F s and Fu so that  expands the transverse measure of Fu by � and contracts
the transverse measure of F s by ��1

 
. Incidentally, � D � �1 . Furthermore, by

Teichmüller’s theorem, the translation length of  in the Teichmüller metric is log.� /.
Going back to Out.Fn/, one can associate to a fully irreducible outer automorphism ˆ

a Perron–Frobenius eigenvalue �ˆ which plays much the same roll as the expansion
factor in the pseudo-Anosov case. If we did have an honest metric on Outer Space where
ˆ was a hyperbolic isometry then the axis for ˆ would also be an axis for ˆ�1 . Thus
for a point x on the axis of ˆ, d.x; ˆ.x//D log.�ˆ/ and d.ˆ.x/;x/D log.�ˆ�1/.
However, it is not always the case that �ˆ D �ˆ�1 . Therefore one would have to
abandon either the symmetry of the metric or the relationship between the translation
length ˆ and its Perron–Frobenius eigenvalue. We choose to do the former in order
to preserve the ties between the action of ˆ on Xn and its action on the conjugacy
classes of Fn .

The (non-symmetric) metric that we carry over from T .Sg;p/ to Outer Space is the
Lipschitz metric introduced by Thurston [32]. Given two marked hyperbolic structures
.X; f /; .Y;g/ on a surface S define

dL..X; f /; .Y;g//D inf
˚
Lip.h/ j h is Lipschitz, and homotopic to g ıf �1

	
In [12] Rafi and Choi proved that this metric is Lipschitz equivalent to dT in the thick
part of T .Sg;p/.

While T .Sg;p/ with dT is not CAT(0) (see Masur [28]) or Gromov hyperbolic (see
Masur and Wolf [29]) it does exhibit some features of negative curvature in the thick
part. A geodesic is strongly contracting if its nearest point projection takes balls disjoint
from the geodesic to sets of bounded diameter, where the bound is independent of the
radius of the ball. That is, the “shadow” that a ball casts on the geodesic is bounded.
For example, geodesics in a Gromov hyperbolic space are strongly contracting. In [30]
Minsky proved that geodesics contained in the �–thick part of T .Sg;p/ are uniformly
strongly contracting, with the bound only depending on � and the topology of S . Note
that any axis of a pseudo-Anosov map is contained in the �–thick part of T .Sg;p/ for
a sufficiently small � . We prove

Theorem An axis of a fully irreducible outer automorphism is strongly contracting.

A geodesic L in a metric space is Morse if every quasi-geodesic segment with endpoints
on L stays within a bounded neighborhood of L which only depends on the quasi-
geodesic constants. As an application of the theorem above we prove:

Corollary In the Cayley graph of Out.Fn/, the axis of a fully irreducible automor-
phism is Morse.
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Lenzhen, Rafi, and Tao [25] have since shown that geodesics with bounded combi-
natorics in Teichmüller space with the Lipschitz metric have a strongly contracting
projection. Hamenstaedt [22] has used different methods to show that lines of minima
are contracting in Outer Space.

This paper is organized as follows:

� In Section 1 we go over some definitions and background on Outer Space. The
well informed reader could skip this part.

� In Section 2 we define the Lipschitz metric on Outer Space, and deduce a formula
which expresses the relationship between the metric and the lengths of loops
in X and Y (proof due to Tad White and first written in Francaviglia and
Martino [20]).

� In Section 3 we describe axes of fully irreducible automorphisms. Given such
an axis, we define a coarse projection of Xn onto this axis. Note that the axis for
ˆ will not necessarily be an axis for ˆ�1 , however the projections of a point to
both axes are uniformly close.

� In Section 4 we define the Whitehead graph WhX .ƒ
˙/ of the attracting and

repelling laminations of ˆ for a rose X 2Xn . We prove that there exists a point
F 2 Xn for which WhF .ƒ

C/[WhF .ƒ
�/ is connected and does not contain a

cut vertex.

� In Section 5 we use the previous result to show that any loop ˛ which represents a
basis element cannot contain long pieces of both laminations. Next we prove our
main “negative curvature” property. If the projections of x and y are sufficiently
far apart then then d.x;y/ is coarsely larger than d.x;p.x//C d.p.x/;p.y//.
We show that this is enough to prove that L is a strongly contracting geodesic.
We end the Chapter by proving that in the Cayley graph of Out.Fn/, axes of
fully irreducible automorphisms are Morse.

� In Section 6 we have collected some applications: the asymptotic cone of the
Cayley graph of Out.Fn/ contains many cut points and is in fact tree graded,
the divergence function in Xn is at least quadratic. Finally, we show that
projections onto two axes A;B of independent irreducible automorphisms satisfy
a dichotomy similar to the one shown by Behrstock [3] for subsurface projections.

A note on notation Many of the theorems and propositions in this article contain
several constants which we usually denote s or c within the proposition. When referring
to a constant from a previous proposition, we add its number as a subscript.
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1 Preliminary notions

The outer automorphism group of the free group

Definition 1.1 The group of outer automorphisms of the free group of rank n is

Out.Fn/D Aut.Fn/=Inner.Fn/

If � is an automorphism we denote its class by ˆ.

Definition 1.2 Let fx1; : : : ;xng be a basis for Fn . Let A �
˚
x˙1

1
; : : : ;x˙1

n

	
and

a 2 A so that a�1 62 A. Then the Whitehead automorphism �.A;a/ associated with
.A; a/ is defined as follows. �.A;a/.a/D a and for x ¤ a; a�1 :

x! axa�1 if x;x�1
2A

x! xa�1 if x 2A and x�1
62A

x! ax if x 62A and x�1
2A

x! x if x;x�1
62A

Theorem (Whitehead generators) The following set generates Out.Fn/

fŒ�.A;a/� j all possible a;Ag

Bases of Out.Fn/ and Whitehead’s Theorem

Definition 1.3 (The Whitehead Graph) Let B D fy1; : : : ;yng be a basis of Fn , let
a be the conjugacy class, in Fn and w 2 a a cyclically reduced word written in the
basis B . Then the Whitehead graph of a with respect to B is denoted WhB.a/ and
constructed as follows: The vertex set of this graph is the set B [ B�1 . zi and zj

are connected by an edge if z�1
i zj or z�1

j zi appears in the cyclic word w , that is, if
w D : : : z�1

i zj : : : or w D : : : z�1
j zi : : : or w D zj : : : z

�1
i or w D zi : : : z

�1
j .
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The Whitehead graph WhB.Œw1�; : : : ; Œwk �/ of the set fŒw1�; : : : ; Œwk �g is the superpo-
sition of the individual Whitehead graphs WhB.Œwi �/.

Definition 1.4 We say that the set of conjugacy classes fa1; : : : ; akg can be completed
to a basis if there are wi 2 ai and wkC1; : : : ; wn such that fw1; : : : ; wng is a basis for
Fn .

Let v be a vertex in the graph G . Let Cv be the connected component of G containing
v . v is a cut vertex if Cv n fvg is disconnected. We will discuss cut vertices only when
G is connected, that is, when Cv DG .

Theorem 1.5 (Whitehead [33]) If a1; : : : ; ak can be completed to a basis and
WhB.a1; : : : ; ak/ is connected, then WhB.a1; : : : ; ak/ has a cut vertex.

A related notion is the following

Definition 1.6 (Free Factor) Let A be a subgroup of Fn , A is a free factor of Fn if
there exists a subgroup B such that Fn DA�B .

Let B D fx1; : : : ;xng be a basis for Fn , and suppose we want to determine whether
Œy1�; : : : ; Œyk � can be completed to a basis, where yi are cyclically reduced words. We
construct W DWhB.Œy1�; : : : ; Œyk �/.

� If W is connected and does not contain a cut vertex then Œy1�; : : : ; Œyk � cannot
be completed to a basis by Theorem 1.5.

� If W is connected and contains a cut vertex a we will construct a new basis B0
such that

(1)
kX

iD1

jyi jB >

kX
iD1

jyi jB0 :

Let W 0 be the induced subgraph of W on all of the vertices except a. Let W 00

be a connected component of W 0 , which does not contain a�1 . Take A to be
the elements of B whose vertices are in W 00 and a. Then B0 D �.A;a/.B/. It is
straightforward to check that (1) is satisfied.

� If W is not connected, one can continue carrying out the algorithm on a subset
of the generators, until either there is some subset of the yi s that do not form a
free factor (since their Whitehead graph is connected with no cut vertex) or there
is a basis B00 where jyi jB00 D 1 for all i , which means B00 contains y1; : : : ;yk .

Geometry & Topology, Volume 15 (2011)
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Whitehaed’s Theorem 1.5 may be reformulated in the following way.

Definition 1.7 Œy1�; Œy2�; : : : ; Œyk � are compatible with a free decomposition of Fn , if
there exists a free splitting A�B so that for all i , either Œyi � 2 ŒA� or Œyi � 2 ŒB�.

Theorem 1.8 (Martin [27]) The following are equivalent:

(1) Œy1�; : : : ; Œyk � are compatible with a free decomposition of Fn .

(2) If B is a basis such that WhB.Œy1�; : : : ; Œyk �/ contains no cut vertex then it is
disconnected.

Outer Space

A graph will always be a finite cell complex of dimension 1 with all vertices of valence
> 2. A metric on a graph G is a function `W E.G/! Œ0; 1� defined on the set of edges
of G such that

�
P

e2E.G/ `.e/ D 1. We shall denote the total sum of lengths of edges in the
metric graph G by vol.G/.

�
S
`.e/D0 e is a forest, that is, it contains no circles.

The space †G of all such metrics ` on G is a “simplex with missing faces”; the
missing faces correspond to degenerate metrics that vanish on a subgraph which is
not a forest. If G0 is obtained from G by collapsing a forest, then we have a natural
inclusion †G0 �†G .

The rose R0 is the wedge of n circles. A marking is a homotopy equivalence f W R0!

G from the rose to a graph. A marked graph is a pair .G; f / where f W R0!G is a
marking.

Definition 1.9 (Outer Space: graph definition) Outer Space Xn consists of the set of
equivalence classes of triples .G; f; `/ where G is a graph, ` is a metric, and f is a
marking, and so that .G; f; `/� .G0; f 0; `0/ if there is an isometry �W .G; `/! .G0; `0/

so that � ıf is homotopic to f 0 .

Definition 1.10 Throughout the paper we will abuse notation by referring to a point
in Xn as G .

An equivalent definition is the following:

Geometry & Topology, Volume 15 (2011)
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Definition 1.11 (Outer Space: tree definition) Outer Space Xn is the space of equiv-
alence classes of free, simplicial, minimal Fn –trees, with the equivalence: T � T 0 if
there exists an Fn –equivariant homothety �W T ! T 0 .

There is a natural right action of Aut.Fn/, the group of automorphisms of Fn , on Xn .
Let � be an automorphism and let gW R0!R0 be a map such that g�W �1.R0; ver/!
�1.R0; ver/ equals � . Then

�W Xn ! Xn

.X; f; `/ ! .X; f ıg; `/

Notice that this action does not depend on the choice of g , and that inner automorphisms
act trivially. Thus we get an action of Out.Fn/ on Xn . When we define the Lipschitz
metric it will be evident that this is an isometric action.

The axes topology

Consider the set of non-trivial conjugacy classes C in Fn . Each Fn –tree T induces
a length function `T W Fn ! R by `T .x/ D tr.x/ the translation length of x as an
isometry of T . Since the translation length is a class function, `T descends to a map
`T W C!R. Therefore we can define a map

`W Xn ! RPC

ŒT � ! Œ`T �

In [15] Culler and Morgan proved that this map is injective. Thus Xn inherits a topology
from RPC known as the axes topology. We remark (although we will not need this)
that there are other ways to define a topology on Xn : using the cellular structure of Xn ,
and using the Gromov topology on the space of metric Fn –trees. Paulin [31] proved
that all three topologies are equivalent.

The boundary of Outer Space

In [15] Culler and Morgan showed that SXn is compact. It was later shown by Cohen
and Lustig [13] and Bestvina and Feighn [5] that SXn is the space of homothety classes
of very small, minimal Fn –trees.

Train-track structures and maps

Definition 1.12 (Turns and train-track structures) Let G be a graph. An unordered
pair of oriented edges fe1; e2g is a turn if e1; e2 have the same initial endpoint. Let xe

Geometry & Topology, Volume 15 (2011)
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denote the edge e with the opposite orientation. If an edge path ˛ D : : : xe1e2 : : : or
˛ D : : : xe2e1 : : : then we say that ˛ crosses or contains the turn fe1; e2g.

A train track structure on G is an equivalence relation on the set of oriented edges
E.G/ with the property that if e1 � e2 then fe1; e2g is a turn.

Definition 1.13 (Legal turns and gates) A turn fe1; e2g is legal with respect to a
fixed train-track structure on G if e1 6� e2 . An edge path is legal if every turn it crosses
is legal. The equivalence classes of the edges are called gates.

Definition 1.14 (A t-t structure induced by a self-map) Let gW G ! G be map
which restricts on each edge to either an immersion or a constant map. The train-track
structure induced by g is the following equivalence relation: e1 � e2 if they have the
same initial endpoint and there is some m� 1 such that there are small enough initial
subsegments of gm.e1/ and gm.e2/ which coincide.

Definition 1.15 (Train-track maps) Let gW G!G be map which restricts on each
edge to either an immersion or a constant map. g is a (weak) train-track map if for
all e 2E.G/, the path g.e/ is legal (with respect to the t-t structure in 1.14). A weak
train-track map is called a train-track map if in addition, vertices are mapped to vertices.

For us, the distinction between a train-track map and a weak train-track map will not
be important so we subsequently drop the adjective “weak”.

Irreducible outer automorphisms

Definition 1.16 Let ˆ be an outer automorphism. ˆ is reducible if there exists a free
product decomposition

Fn DH1 � � � � �Hm �U

where all Hi are nontrivial, m � 1 and where ˆ permutes the conjugacy classes
of H1; : : : ;Hm � Fn . If m D 1 we also require that U is non-trivial. An outer
automorphism ˆ is said to be irreducible if it is not reducible.

Definition 1.17 ˆ is called fully irreducible if all of its powers are irreducible.

The main content of the classification theorem of Out.Fn/ is that irreducible outer
automorphisms have “nice” representatives that are called train-track maps.

Definition 1.18 Let ˆ2Out.Fn/ a topological representative of ˆ is a marked graph
.G; h/ and a self map f W G!G such that

Geometry & Topology, Volume 15 (2011)
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(1) the restriction of f to each edge to either an immersion or a constant map.
(2) if kW G!R0 is a homotopy inverse of h then .h ıf ı k/� 2ˆ.

Definition 1.19 (irreducible maps) A core graph H is a graph, all of whose vertices
have valence � 2. Let gW G ! G be map that restricts on each edge to either an
immersion or a constant map. g is reducible if there is a proper, nonempty core
subgraph H of G which is invariant under g . If g is not reducible it is called
irreducible.

Theorem 1.20 (Bestvina and Handel [10]) If ˆ 2Out.Fn/ is irreducible then ˆ has
an irreducible train-track representative .G; h; f /.

Definition 1.21 If ˆ is an irreducible outer automorphism and f W G!G is a train-
track representative of ˆ one can endow G with a metric `W E.G/! .0; 1/ so that
f stretches each edge of G by the same amount cPF.f / > 1. cPF.f / is called the
expansion factor of f , or the Perron–Frobenius eigenvalue of f . Even though the
automorphism ˆ has many different train-track representatives, their stretch factors
are equal and thus we may write cPF.ˆ/.

Laminations of fully irreducible automorphisms

Let f W G! G be a train-track representative of an irreducible outer automorphism
� , let c be the expansion factor of f . By replacing f with a power if necessary,
we may assume that f has a fixed point p in the interior of an edge. Let I be an
� neighborhood of p so that f .I/ � I . Choose an isometry �W .��; �/! I and
extend uniquely to a local isometric immersion �W R!G so that �.cmt/D f m.t/ for
all t 2 R. � is a periodic leaf in the lamination ƒC

f
.G/ (for a definition of ƒC

f
see

Bestvina, Feighn and Handel [7]). A stable leaf subsegment is the restriction of � to a
subinterval of R. Given a different metric graph H 2 Xn and a homotopy equivalence
gW G!H , ƒC

f
.H / the attracting lamination in the H coordinate is the collection of

immerssions Œg��. This definition does not depend on the train-track representative,
so we can denote it by ƒC

�
. An important feature of the leaves of ƒC

�
is given by the

following proposition.

Proposition 1.22 (Bestvina, Feighn and Handel [7, Proposition 1.8]) Every periodic
leaf of ƒC

�
is quasi-periodic.

This means that for every length L there is a length L0 such that if ˛; ˇ�� are subleaf
segments with length.˛/DL and length.ˇ/ >L0 then ˇ contains an occurrence of
˛ . One can think of � as a necklace made of beads. The segments of length L that
appear in � are beads of different colors. The proposition tells us that in any subchain
of L0

L
consecutive beads we can find beads of all possible colors.
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Geometric and nongeometric automorphisms

Definition 1.23 An outer automorphism ˆ of Fn is geometric if there is a surface
automorphism F W Sg;p! Sg;p with �1.Sg;p/D Fn so that F� 2ˆ.

When nD 2 all elements of Out.Fn/ are geometric. This is false for n > 2. In this
section we describe when an irreducible automorphism is geometric.

Notation 1.24 Consider a graph G if ˛ is a loop we denote by Œ˛� the immersed loop
which is freely homotopic to ˛ . If ˛ is a path then Œ˛� is the immersed path homotopic
to ˛ relative to its endpoints.

Definition 1.25 (Nielsen paths) Let f W G!G be a map, a Nielsen path of f is a
path ˇ such that there is some integer i such that Œf i.ˇ/�D ˇ . Note that if ˛; ˇ are
Nielsen paths then so is ˛ˇ . A Nielsen path is indivisible if it cannot be expressed as a
concatenation of other Nielsen paths.

Definition 1.26 Let f W G! G be a train-track map. f is stable if it has no more
than one invariant indivisible Nielsen path.

Theorem 1.27 (Bestvina and Handel [10]) Every irreducible ˆ 2 Out.Fn/ has a
stable irreducible train track representative.

Theorem 1.28 (Bestvina and Handel [10]) Let ˆ be an irreducible outer automor-
phism and f W G!G a stable train-track representative for ˆ. ˆ is geometric if and
only if f has an invariant Nielsen loop ˇ , that is, Œf .ˇ/�D ˇ . Moreover, ˇ has the
property that it crosses every edge twice.

If F W Sg;p ! Sg;p represents ˆ then one of the boundary components will be a
Nielsen loop of the type described in the theorem. If f W G!G is a train-track map
with a Nielsen loop ˇ as described in the theorem then one can attach an annulus along
one of its boundary components to G along ˇ and get a surface Sg;1 and an induced
map f on it which represents ˆ. ˇ will correspond to the boundary on this surface.

2 The Lipschitz metric on Xn

Let .G; f; `/ and .G0; f 0; `0/ represent two points x;y in Xn . A difference of markings
is a map hW G!G0 with h ıf homotopic to f 0 . We will assume that h is Lipschitz.

Geometry & Topology, Volume 15 (2011)
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By Lip.h/ denote the Lipschitz constant of � , that is, the smallest number such that
dy.�.p/; �.p

0//� Lip.�/ � dx.p;p
0/ for all p;p0 2G . Define the distance

d.x;y/Dminh log Lip.h/

where min is taken over all differences of markings (it is attained by Arzela–Ascoli).

We claim that we may restrict our attention to maps h that are linear on edges, since
the minimum is realized by a linear map: For any map h one can construct a map
k � h which is linear on edges. Define k.v/D h.v/ on every vertex v of G and let
the image of the edge .v; w/ under k be the immersed path Œh.v/; h.w/�, which is
homotopic to im

�
hjŒv;w�

�
rel endpoints and parameterized at a constant speed. It is

clear that Lip.k/� Lip.h/. Therefore, we can usually restrict our attention to linear
maps.

Lemma 2.1 The Lipschitz distance satisfies the following:

(1) d.x;y/� 0 with equality only if x D y .

(2) d.x; z/� d.x;y/C d.y; z/ for all x;y; z 2 Xn .

(3) d is a geodesic metric; for any x;y there is a path from x to y whose length is
d.x;y/.

Proof (1) Let h be the linear map realizing d.x;y/. Since h is a difference in
marking, it is a homotopy equivalence. If h were not onto, then h� would not be an
isomorphism (since there are no edges in y that can be homotoped away from every
loop, recall that there are no free edges). Thus, vol.y/� vol.Im.h//� Lip.h/ vol.x/
(because h stretches all edges by at most Lip.h/). Since vol.y/D vol.x/D 1 we get
Lip.h/� 1 hence d.x;y/� 0. We get equality if only if Lip.h/D 1 and h is a local
isometry, hence if and only if h is an isometry. This implies x D y .

(2) Suppose hW x! y , kW y! z realize the distance, we shall also call them optimal
maps, then j D k ı h is a difference in marking from x to z , thus by the chain rule
Lip.h/Lip.k/�Lip.j /� exp.d.x; z//. Taking log we get d.x;y/Cd.y; z/�d.x; z/.

(3) See, for example, Francaviglia and Martino [20].

2.1 Candidates and computing distances

Definition 2.2 Suppose .G; f; `/ represents x in Xn . Let ˛ be a loop in G . `.˛/ is
the length of an immersed loop Œ˛� freely homotopic to ˛ in x .

We say that a loop ˛ in G is a candidate if either

Geometry & Topology, Volume 15 (2011)
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� it is embedded, or

� (figure eight) there are two embedded circles u; v in G that intersect in one
point and ˛ crosses u; v once and does not cross any edges outside of u and v ,
or

� (barbell) there are two disjoint embedded circles u; v in G and an arc w that
connects them, and whose interior is disjoint from u and v , and ˛ crosses u; v

once, w twice, and no edges outside u[ v[w .

The following is due to Tad White, and first published in the paper by Francaviglia and
Martino [20]. We give a shorter proof here.

Proposition 2.3 Let x;y 2 Xn , x D .G; f; `/;y D .G0; f 0; `0/ and let gW G ! G0

be a difference of markings. Then

d.x;y/D log sup˛
`0.g.˛//

`.˛/

where the supremum is taken over all loops ˛ in x . Moreover, there is a candidate loop
˛ in G which realizes the supremum.

Definition 2.4 (a t-t structure induced by a map) Let gW G!H be a map whose
restriction to each edge is either an immersion or constant. The train-track structure
induced by g is the following equivalence relation: e1 � e2 if they have the same
initial vertex and if there are small enough initial segments of g.e1/ and g.e2/, which
coincide (they define the same germ).

Remark 2.5 Notice that the train-track structure defined in 2.4 is smaller (has less
illegal turns) than the one in Definition 1.14. When we refer to a t-t structure defined
by g and g is a self-map we will always mean the structure defined in 1.14.

Proof of Proposition 2.3 Let ˛ be an immersed loop in G . The loop g.˛/ might
not be immersed.

(2) l 0.g.˛//� Lip.g/l.˛/

This is a strict inequality if one of the edges that ˛ crosses is stretched less than Lip.g/
or if the loop g.˛/ is not immersed. We have

(3) d.x;y/� log sup˛
`0.g.˛//

`.˛/
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We define the green graph of G with respect to g as the set of edges on which the
slope of g is Lip.g/. We denote it by Gg . There is a train-track structure on Gg

induced by g as in Definition 2.4.

Now suppose g is an optimal map, that is, it satisfies d.x;y/D log Lip.g/, and suppose
that Gg is the smallest among all optimal maps. To show equality in (3) we will find a
candidate loop ˛ that is contained in Gg and is legal with respect to the train-track
structure of g thus obtaining equality in (2).

First, we claim there are at least two gates at each vertex. See Figure 1 for an example.
Suppose by way of contradiction that there is a vertex v which has only one gate,
we will construct a new map h homotopic to g so that either Lip.h/ < Lip.g/ or
Lip.h/ D Lip.g/ and Gh ¨ Gg which gives a contradiction. Define a map h by
h.u/D g.u/ for all vertices u¤ v . To define h.v/, recall that all images of edges in
Gg adjacent to v start with the same initial subsegment in G0 (there is one gate). Take
the subsegment to be small enough as to not contain a vertex. Let h.v/ be the point
on this subsegment, a distance " (to be chosen later) away from g.v/. Define h to be
homotopic to g and linear on edges.

f

e2

v

e1
w0

a1

w

a3a2

Figure 1: The following is an example of a map f where Xf has a vertex
with one gate. We show that the map is not optimal. In the graph on the left
both edges have length 1

2
and in the graph on the right all three edges have

length 1
3

. Suppose the map f takes e1! a2xa3 and e2! a1xa2a1xa3a2xa1 .
The stretch of f on e1 is 2=3

1=2
D

4
3

and the stretch of f on e2 is 6=3
1=2
D 4 ,

so Lip.f / D 4 and the green graph of f is Xf which is just e2 . Both
e2; xe2 begin with a1 so Xf contains only one gate at v . Let w0 be a point
on a1 which is " away from v where 8" < 4 � 4

3
. w0 divides a1 into

two edges b1; b2 . Consider the map f1 which takes e1 !
xb1a2xa3b1 and

e2! b2xa2b1b2xa3a2
xb2 . f1 is homotopic to f . f1 stretches e1 by 2=3C2"

1=2
D

4
3
C4" and e2 by 2�2"

1=2
D 4�4" . Since " is small enough Lip.f1/D 4�4"

which is smaller than Lip.f / .
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For e 2G which is not adjacent to v the images of e under g and h coincide so the
slope of h on e is still � Lip.g/. If e 2 Gg is adjacent to v , we have made g.e/

shorter by " so the slope of h on e is strictly smaller than Lip.g/. Let S be the second
largest slope of g in G . If e 2G nGg then `0.h.e//� S � `.e/C 2". So if we take

" < 1
2
.Lip.g/�S/.length of shortest edge in G/

then the slope on e will still be strictly smaller than Lip.g/. This proves the claim.

Construct a legal loop in ˛ 2 Gg as follows. Start constructing an embedded legal
path ˛ until it intersects itself. That is, until ˛.t1/D ˛.t2/ for some 0� t1 < t2 (we
now consider ˛ as a map from Œ0;L� to G ). If the turn fDC˛.t1/;D�˛.t2/g is legal,
then ˛jŒt1;t2� is a legal loop. If it is illegal, let ˛0.t/D ˛.t C t1/ and rename ˛; t1 to
get ˛.0/D ˛.t1/ and fDC˛.0/;D�˛.t1/g is illegal. By the previous paragraph there
is another gate at ˛.0/ in Gg . Extend ˛ to cross this gate and continue until there
are t2 < t3 so that ˛.t2/D ˛.t3/. If 0< t2 � t1 then either ˛jŒt2;t3� is a legal loop or
˛jŒ0;t2�[˛

�1jŒt3;t1� is a legal loop. If t1 < t2 < t3 then either ˛jŒt2;t3� is a legal loop or
˛jŒ0;t4�[˛

�1jŒt1;t2� is a legal loop (barbell or figure 8 loops).

Note that d.x;y/� log `
0.g.˛//
`.˛/

for any loop ˛ and any difference in marking g . The
right hand side does not depend on a particular choice of g (among the different choices
of differences in markings), so one can effectively compute the distance by maximizing
the ratio over the finitely many candidate loops.

For x 2 Xn represented by .G; f; `/, any conjugacy class ˛ of Fn may be identified
with an immersed loop ˛G in G . We will use the same notation for both the conjugacy
class and the loop representative. If we want to emphasize that the loop ˛ is in the
graph G we will denote it by ˛G

Definition 2.6 We say that the conjugacy class ˛ is a basis element if f˛g can be
completed to a basis of Fn .

Proposition 2.7 Let ˛X ; ˇX be different candidates in .X; f; `/. Then there is a third
candidate 
X so that f˛; 
 g and fˇ; 
 g can each (separately) be completed to a basis
of Fn .

Proof Suppose ˛X is a candidate and 
X is an embedded loop such that 
X n˛X �feig.
Let J by a maximal forest in X which doesn’t contain ei . Collapse J to get RX a
wedge of circles. Since ei was not collapsed, 
R n˛R � feig. Let ej be any edge that
˛ crosses exactly once then f˛R; 
R; e1; : : : ; yei ; : : : ; yej ; : : : ; eng represents a basis for
Fn because fej ; ei ; e1; : : : ; yei ; : : : ; yej ; : : : ; eng is a basis for Fn .
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Suppose ˛ is a figure 8 or barbell candidate and 
 is an embedded circle so that 
 � ˛ .
Choose an edge ei in ˛ n
 which ˛ crosses only once. Collapse a maximal forest that
doesn’t contain ei . Now choose ej in 
R . Then f˛R; 
R; e1; : : : ; yei ; : : : ; yej ; : : : ; eng

is a basis for Fn .

Let ˛X ; ˇX be any two candidates. If one of them is an embedded loop whose image is
not contained in the other then ˛; ˇ can be completed to a basis. If ˛; ˇ have the same
image then find an embedded loop 
 as in the previous paragraph so that ˛; 
 and
ˇ; 
 can be completed to a basis. If they have different images and are not embedded,
let 
 be an embedded loop so that im 
 � im˛ . Then ˛; 
 can be completed to a
basis. If im 
 � imˇ then ˇ; 
 can be completed to a basis. If 
 is not contained in
ˇ then again by the previous paragraph ˇ; 
 can be completed to a basis.

2.2 Asymmetry of d.x; y/

In general, the lipschitz distance is not symmetric as is shown in Figure 2.

m�1
m

1
m1

2
1
2

y x

X

y
x

Y

Figure 2: An example where d.X;Y /D log 2m�2
m
� log 2 and d.Y;X /D log m

2

We will make use of the following result:

Definition 2.8 For � > 0 the � –thick part of Xn is

Xn.�/D f.X; f; l/ 2 Xn j l.˛/� � for all ˛g

Theorem 2.9 (Algom-Kfir and Bestvina [2]) For any � > 0 there is constant c D

c.�; n/ such that:

d.x;y/� c � d.y;x/

for any x;y 2 Xn.�/.
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3 The axis of an irreducible automorphism and its projection

It is straightforward to check that the right action of Out.Fn/ on Xn is an isometric
action.

Notation 3.1 Let x D .G;g; `/ be a point in Xn . In this section and in later chapters,
we will repress g and ` and denote x with G .

Let � be an irreducible outer automorphism. Observe that if f W G!G is a train-track
representative for � then so is f W G ��!G �� . We get a sequence of points G ��m

so that f W G � �m! G � �m is a train-track representative for � . We would like to
define a line Lf D fGtgt2R D fG.t/gt2R so that:

(1) Gt is a directed geodesic parameterized according to arc-length in the Lipschitz
metric. That is, for t < t 0 we have d.Gt ;Gt 0/ D t 0 � t . In particular, for
t < t 0 < t 00 : d.Gt ;Gt 00/D d.Gt ;Gt 0/C d.Gt 0 ;Gt 00/

(2) G0 DG

(3) Lf is invariant under � .

(4) For each t , there are maps ft W Gt !Gt that are irreducible train-track repre-
sentatives of � .

The way to achieve this is to start “folding” G onto itself by identifying appropriate
segments in edges which form an illegal turn until we reach G �� . This defines a path
ŒG;G � �� WD fGtg0�t�log� where log� D d.G;G � �/. Then we translate this path
using � to construct a line Lf D

S1
mD�1ŒG;G � �� � �

m . This line is automatically
invariant under � . It is not hard to see that it is a directed geodesic. For more details
see the author’s thesis [1], Handel and Mosher [23] or Francaviglia and Martino [20].

3.1 The projection to an axis

Notation 3.2 In this section we denote the point xD .G; h; `/2Xn by G . The length
of the (immersed) loop ˛ in G will now be denoted by l.˛;G/.

Let � be an outer automorphism, and suppose f W G!G is a train-track representative
for � and gW H !H is a train-track representative for ��1 . We may suppose f and
g are stable. Let Lf D fG.t/gt2R be an axis for � , and Lg D fH.t/gt2R an axis for
��1 . Let �; � be the expansion factors of �; ��1 . We will show that for a conjugacy
class of basis elements ˛ there is a k0 such that l.�k�k0.˛/;G/� �k�k0 l0C�

k0�k l0 .
This k0 will allow us to define the projection to Lf .
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Notation 3.3 Fix a graph G . If ˛ is a loop we denote by Œ˛� the immersed loop which
is freely homotopic to ˛ . If ˛ is a path then Œ˛� is the immersed path homotopic to ˛
relative to its endpoints.

Definition 3.4 (The bounded cancellation constant) Let f W T !T 0 be an equivariant
map of free simplicial metric R–trees. There is a constant denoted BCC.f / so that
for all p; q; r 2 T such that p 2 Œq; r � we have d.f .p/; Œf .q/; f .r/�/ < BCC.f /.
This was first observed by Cooper [14]. BCC.f / is called the bounded cancellation
constant of f . When T;T 0 are very small the existence of a bounded cancellation
constant was proved by Gaboriau, Jaeger, Levitt, and Lustig in [21].

We need the following lemmas and notions due to Bestvina, Feighn, and Handel [7].
We include some details for completeness.

Definition 3.5 We call the constant �D 2BCC.f /
��1

the legality threshold (note the slight
difference from the “critical constant” of [7]). The legality of ı with respect to the
train-track structure of f is

LEGf .ı;G/D
Total length of all legal pieces of length > �

l.ı;G/

If LEGf .ı;G/ > � we say that ı is �–legal.

Lemma 3.6 For every � > 0 there is a constant C D C.�/ so that if ı is �–legal then
l.f n.ı/;G/ > C�nl.ı;G/.

Proof Let ˇ1; : : : ; ˇk be legal subsegments of ı of length > � and let

ı D �1ˇ1�2ˇ2 : : : �kˇk�kC1

Let e1 be the initial edge of ı and e2 be the terminal edge of ı and suppose that the
turn fxe2; e1g is legal. Thus when we reduce f .ı/ it is automatically cyclically reduced.

Œf .ı/�� Œf .�1/� �f .ˇ1/ � Œf .�2/� �f .ˇ2/ � � � Œf .�k/� �f .ˇk/ � Œf .�kC1/�

where the cancellation occurs only at the dots. Note that l.f .ˇi/;G/ > � > BCC.f /.
If there was a subsegment t of f .ˇ1/ that cancelled with a subsegment s of Œf .�1/�

and l.t;G/D l.s;G/>BCC.f /=2 then this would contradict the bounded cancellation
lemma. Thus there is a middle segment ˇ1

1
, obtained from f .ˇ1/ by truncating a

segment of length BCC.f /=2 from both ends which survives the cancellation. Similarly,

Geometry & Topology, Volume 15 (2011)



2198 Yael Algom-Kfir

there are middle segments ˇ1
i of f .ˇi/ for 1� i�k which survive after the cancellation

in Œf .ı/�. Thus

l.f .ı/;G/�

kX
iD1

l.ˇ1
i /D

kX
iD1

�l.ˇi ;G/�BCC.f /:

We continue to apply f and get subsegments ˇm
i of f .ˇm�1

i / obtained by truncating
subsegments of length BCC.f /=2 from both ends of f .ˇm�1

i /, which survive in
Œf m.ı/� after the cancellation. The length of ˇm

i is no less than �l.ˇm�1
i ;G/ �

BCC.f / > l.ˇm�1
i ;G/ > � hence

l.ˇm
i ;G/� �

ml.ˇi ;G/�BCC.f /.1C�C � � �C�m�1/

D �ml.ˇi ;G/�
BCC.f /.�m� 1/

�� 1

D �m l.ˇi ;G/

�
1�

BCC.f /
l.ˇi ;G/.�� 1/

�
C

BCC.f /
�� 1

� �m l.ˇi ;G/

�
1�

BCC.f /
l.ˇi ;G/.�� 1/

�
Since l.ˇi ;G/� � D

2BC C.f /
��1

the term in the parenthesis is no smaller than 1
2

thus
l.ˇm

i ;G/�
1
2
�ml.ˇi ;G/. Therefore,

l.f m.ı/;G/ >

kX
iD1

l.ˇm
i ;G/ >

1
2
�m

kX
iD1

l.ˇi ;G//

D
1
2
�m� l.ı;G/

Therefore C.�/D �
2

.

Lemma 3.7 (Bestvina, Feighn and Handel [7, Lemma 5.6]) If � is non-geometric
there is a constant �0 > 0 and an integer N such that for any conjugacy ˛ :

LEGf .�N .˛/;G/ > �0 or LEGg.�
�N .˛/;H / > �0

We want some version of this lemma for geometric automorphisms. In the proof of 3.7
the assumption that � is nongeometric is used only to bound the number of consecutive
Nielsen paths appearing in ˛G (the immersed loop representing the conjugacy class ˛
in G ).

Recall the definitions of Nielsen paths from Definition 1.25. Recall that if � is geometric
and fully irreducible and f is stable, then the unique invariant indivisible Nielsen path
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ˇ is a loop. Therefore, if ˛ D ˇm there is no bound for the number of consecutive
Nielsen paths that appear in ˛G . We shall restrict our attention henceforth to the case
where ˛ is the conjugacy class of a basis element.

Proposition 3.8 There is a bound K that depends only on � , such that if ˛ is a
conjugacy class of a basis element, then ˛G cannot cross more than K consecutive
Nielsen paths.

Proof Let f W G!G be a train-track representative of � , by a lemma of Bestvina,
Feighn and Handel [8, Lemma 4.2.5] there is a finite set of periodic Nielsen paths

1; 
2; : : : ; 
m of f . There is a constant K so that it is either impossible to concatenate
more than K consecutive Nielsen paths or if we concatenate K of the 
i s then we
will get a path containing a loop which is a concatenation of the Nielsen paths. This
loop ˇ0 is fixed by some power f k . Since � is fully irreducible this implies that �k is
geometric and ˇ0 represents a conjugacy class in the fixed subgroup of �k . The fixed
subgroup of �k is cyclic, let ˇ be its generator. Let hW H !H be a stable train-track
representative of �k . Let �W G!H be a Lipschitz homotopy equivalence respecting
the markings of G;H . By making K even larger we can insure that if ˛ contains a
concatenation of K indivisible Nielsen paths then ˛ contains ˇ2 with a padding of
segments of length BCC.�/ at each end. Thus a path ˛ that contains K consecutive
Nielsen paths would map under � to a path containing 2 consecutive appearances of ˇ .

hW H!H may be extended to an automorphism of a surface of genus greater than 0 and
one boundary component yhW Sg;1! Sg;1 where H is a spine for Sg;1 (see Bestvina
and Handel [10]). In this case, the indivisible Nielsen path ˇ can be represented by the
boundary circle. Collapse H to a rose R with vertex � (also embedded in the surface)
and notice the Whitehead graph of ˇ with respect to the basis represented by the edges
of R is equal to Link.�;Sg/ which is a circle. Thus, WhR.ˇ/ is connected with no cut
vertex. Now if ˛H contains 2 consecutive appearances of ˇ then WhR.˛/�WhR.ˇ/.
Hence WhR.˛/ is connected with no cut-vertex. By Whitehead’s theorem ˛ is not a
basis element, which is a contradiction.

Lemma 3.9 For any irreducible outer automorphism � there is a constant �0 > 0 and
an integer N such that for any basis element ˛ ,

LEGf .�N .˛/;G/ > �0 or LEGg.�
�N .˛/;H / > �0

if � is nongeometric this holds for all ˛ . In particular, the above holds for a conjugacy
class ˛ that is represented by a candidate loop in some x 2 Xn .
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Proof There is an integer K so that for any basis element ˛ , ˛ does not contain K

consecutive Nielsen paths. Apply the proof of Lemma 3.7 as it appears in the paper [7]
by Bestvina, Feighn and Handel to get the first part of the statement. By Proposition 2.7
all candidates are basis elements so the statement applies to them.

Fix a conjugacy class of a basis element ˛ . Notice that if LEGf .�N .˛/;G/� � then
LEGf .�m.˛/;G/ � � for all m > N (once a legal segment has length greater than
the threshold, the exponential expansion dominates over the bounded cancelation and
makes the surviving subsegments longer than their predecessors). Define

k0 D k0.˛/DmaxfkjLEGf .�
k.˛/;G/� �0g

k 00 D k 00.˛/DminfkjLEGg.�
k.˛/;H /� �0g

To see the existence of some k; j such that

LEGf .�
k.˛/;G/� �0 and LEGg.�

j .˛/;H /� �0

first suppose that LEGf .˛;G/ > �0 we show that LEGg.�
m.˛/;H / � �0 for some

m� 0. By Lemma 3.6, for all m� 0

l.f m.˛/;G/ > C1�
m�0l.˛;G/

Let � W G!H be an optimal difference in marking, if LEGg.�
m.˛/;H / > �0 then

by applying Lemma 3.6 to g we get

l.gm. �.f m.˛// /;H /� C2�
m�0l.�.f m.˛//;H /� C1C2�

m�m�2
0l.˛;G/

But gm ı � ıf m is homotopic to � , thus

l.gm.�.f m.˛//;H /D l.�.˛/;H /� Lip.�/l.˛;G/:

This gives a bound on m. Thus there is some k such that LEGg.�
k.˛/;H / < �0 .

The sequence ˛;g.˛/; : : : ;gk.˛/; : : : weakly converges to the lamination ƒ�
�
.H /

(see Bestvina, Feighn and Handel [7]). This means that every leaf segment ˇ of
a leaf ` of the lamination ƒ�

�
.H / appears in all but finitely many elements of the

sequence fgk.˛/g. Since every leaf of this lamination is g legal we get that for some
k , LEGg.�

k.˛/;H /� �0 . This gives us the existence of k 0
0

and a symmetric argument
shows the existence of k0 .

Lemma 3.10 There is an N so that for all ˛ , jk0.˛/� k 0
0
.˛/j<N

Proof At k0 , LEGf .�k0.˛/;G/� �0 , thus by Lemma 3.9, LEGg.�
k0�2N .˛/;H / >

�0 . This implies that k 0
0
> k0� 2N . By symmetry we get the result.

Geometry & Topology, Volume 15 (2011)



Strongly contracting geodesics in Outer Space 2201

For each conjugacy class ˛ and t 2R define

l˛.t/D l.˛;G.t//

We now show that if ˛ is a basis element, then there is a bounded set on which l˛.t/

achieves its minimum, the bound is uniform over all conjugacy classes ˛ .

Definition 3.11 Let t0.˛/D k0 log� and t 0
0
.˛/D k 0

0
log�.

Lemma 3.12 There exists a C such that for every basis element ˛ let n.t/D
�
jt j

log�

˘
then for t > 0

(4) 1
C
��n.t/

� l˛.t0/ < l˛.t0C t/� C ��n.t/
� l˛.t0/

and for t < 0

(5) 1
C
� �n.t/

� l˛.t0/ < l˛.t0C t/� C � �n.t/
� l˛.t0/

Proof For any integer m:

C3:6�
ml.˛;G.t0//� l.�m.˛/;G.t0//� �

ml.˛;G.t0//

Now

l˛.t0C t/D l.˛;G.t//� �l.˛;G.t0C n.t/ log�//� ��n.t/l.˛;G.t0//

which is the right hand side of (4). To get the left hand side,

l˛.t0C t/�
l.˛;G.t0C .n.t/C 1/ log�/

�
� C3:6�

n.t/l.˛;G.t0//:

We now prove the right hand side of .5/. Let

d Dmaxft0� t 00; d.G.t0/;H.t0//; d.H.t0/;G.t0//g and D D ed :

Notice that D doesn’t depend on ˛ . When t < 0, �.n.t/C 1/� t < �n.t/ hence

l˛.t0Ct/D l.˛;G.t0Ct//��l.˛;G.t0�.n.t/C1/ log�//D�l.��.n.t/C1/.˛/;G.t0//:

Now

l.��.n.t/C1/.˛/;G.t0//�Dl.��.n.t/C1/.˛/;H.t0//�D2l..��1/n.t/C1.˛/;H.t 00//

and

l..��1/n.t/C1.˛/;H.t 00//� �
n.t/C1l.˛;H.t 00//

�D�n.t/C1l.˛;H.t0//�D2�n.t/C1l.˛;G.t0//:
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Thus we get
l.˛;G.t0C t//� �D4� � �n.t/l.˛;G.t0//

The left hand side of .5/ is proved similarly.

Since the length function is coarsely et C e�t it attains a minimum.

Definition 3.13 (min set) For a conjugacy class ˛ of a basis element: let L D

minfl˛.t/ j t 2Rg and denote by T˛ the set of t˛ such that l˛.t˛/DL. The min set
of ˛ is �f .˛/D fG.t˛/ j t˛ 2 T˛g ¤∅.

It follows from Lemma 3.12 that

Corollary 3.14 There exists an s > 0 so that for any basis element ˛ and for all
t˛ 2 T˛ , jt˛ � t0j< s .

Which implies the following.

Corollary 3.15 There is an s > 0 such that for every basis element ˛ , diamfT˛g< s

hence diamf�f .˛/g is bounded independently of ˛ .

From now on t˛ denotes any choice of element in T˛ , for example the smallest one.
The following proposition follows from Corollary 3.14 and Lemma 3.10.

Corollary 3.16 There is an s > 0 such that for every primitive ˛ :

d.G0;H 0/ < s for all G0 2 �f .˛/;H
0
2 �g.˛/:

That is, the min sets of ˛ with respect to Lf and Lg are uniformly close.

Corollary 3.17 There is an s> 0 such that for every basis element ˛ , if t > t˛Cs then
LEG.˛;G.t// > �0 (the legality is computed with respect to the train track structure
induced by ft W G.t/!G.t/ (see Definition 1.14) from item (4) in the list of properties
of Lf ).

The following observation states that if ˛ is almost legal in G.t/, then it almost realizes
the distance d.G.t/;G.t C t 0//. Denote St˛.X;Y /D

l.˛;Y /
l.˛;X /

.

Proposition 3.18 There is a C so that if ˛ is �0 –legal in G.t/ with respect to gt then
for all t 0 > 0,

log St˛.G.t/;G.t C t 0//�C � d.G.t/;G.t C t 0//D t 0
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Proof Since ˛ is �–legal t � t0 . Let K D C3:12 from Lemma 3.12.

l˛.t C t 0/�
1

K
�n.tCt 0/l˛.t0/

l˛.t/�K�n.t/l˛.t0/

Then

St˛.G.t/;G.t C t 0//D
l˛.t C t 0/

l˛.t/
�

1

K2
�n.tCt 0/�n.t/:

Now we are in a position to define a coarse projection �f W Xn!Lf . Let X 2Xn and
TX D ft j d.X;G.t//D d.X;Lf /g. Define the projection of X to Lf by �f .X /D
fG.t/ j t 2 TX g.

Proposition 3.19 There is an s > 0 such that, for every point X 2 Xn ,

diam.�.X // < s:

Proof Let u.t/ be a coarsely exponential function, that is, a function that satisfies
Lemma 3.12. Let C D C3:12 , s.u/D

2 log.C /
log� C 1. Let t0 < t and t 0 > t C s.u/ then

�n.t 0/�n.t/ > C 2 . Thus by Lemma 3.12 applied to u we have:

u.t 0/�u.t/ > 1
C
�n.t 0/u.t0/�C�n.t/u.t0/ > 0

Similarly for t 0 < t � s.u/ and t < t0 for some appropriate s.u/. To sum up:

If t0 < t; t C s.u/ < t 0 then u.t/ < u.t 0/

If t0 > t; t � s.u/ > t 0 then u.t/ < u.t 0/

Let ˛; ˇ be two candidates in X . The function u.t/D St.˛t /D
l˛.t/

l.˛;X /
differs from

l˛.t/ by the multiplicative constant 1
l.˛;X /

. So u.t/ and v.t/DSt.ˇt / are also coarsely
exponential.

We claim that h.t/Dmaxfu.t/; v.t/g also has a coarse minimum. Let tu D t0.u/D

t0.˛/ and tvD t0.ˇ/ and for concreteness, assume tu< tv . Note that limt!˙1 h.t/D

1 so h obtains a minimum at some th .

If h.tu/D u.tu/ let t > tuC s.u/ then we have

h.tu� t/� u.tu� t/ > u.tu/D h.tu/

h.tuC t/� u.tuC t/ > u.tu/D h.tu/

hence the diameter of the min-set of h is at most 2s.u/. Similarly, if h.tv/D v.tv/

we are done. So we can assume h.tu/D v.tu/ > u.tu/ and h.tv/D u.tv/ > v.tv/. By
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continuity, there is a point t1 so that u.t1/D v.t1/Dh.t1/. Then h.t1Ct/�u.t1Ct/>

u.t1/ for t > s.u/ (since u is increasing in this domain) and h.t1�t/� v.t1�t/>v.t1/

for t > s.v/. Therefore the min-set of h is bounded by 2.s.u/C s.v// see Figure 3.

Since there is only a finite number of candidates (depending only on n) then the
diameter of �.X / is uniformly bounded.

Figure 3: If two functions have a coarse minimum then their max has a coarse minimum.

Using the fact that the length map l˛.t/ is coarsely exponential one could show
that �f W Xn ! Lf is “coarsely Lipschitz”. However we will get a better result in
Corollary 5.12.

4 The Whitehead graph of the attracting and repelling lami-
nations

4.1 The length of a lamination

Let � be a fully irreducible automorphism, and f W G0 ! G0 a stable train-track
representative of � . Let T0 be the universal cover of G0 , and zf W T0! T0 a lift of f .
Suppose ƒC

�
.G0/ is the attracting lamination of � realized as bi-infinite lines in G0 .

Definition 4.1 (length of ƒC
�

in T scaled with respect to T0 ) Given a very small
minimal R–tree T (that is, where we do not identify homothetic trees) one can define
the length of the lamination ƒC in T , scaled with respect to T0 , as follows. Let
hW T0 ! T be an equivariant Lipschitz map and let � be a subsegment of the leaf
� 2 ƒC

�
.G0/ and z� be a lift of � to T0 . Let Œh.z�/� the tightened image of z� in T

then

(6) lT0
.ƒC;T /D lim

�!�

l.Œh.z�/�;T /

l.z�;T0/
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Note that Definition 4.1 does not depend on the choice of leaf � of ƒC
�

since all leaves
of ƒC

�
have the same leaf segments. In Lemma 4.3 we will prove that this definition

is mathematically sound. But first, let us observe that the limit in equation (6) is not
invariant when resealing the metric of T . Therefore, we modify the definition for ŒT �

Definition 4.2 (length of ƒC
�

in the projective class of T scaled with respect to T0 )
Let Œw1�; : : : ; ŒwJ � be a set of conjugacy classes in Fn that cannot be simultaneously
elliptic in any very small Fn –tree (for example the set of words of length at most
2 in some basis). Let tr.w1;T /; : : : ; tr.wJ ;T / be their translation lengths in T and
d.T /D

PJ
iD1 tr.wi ;T / then

(7) plT0
.ƒC; ŒT �/D

lT0
.ƒC;T /

d.T /

Lemma 4.3 The limit in equation (6) exists, and it is independent of the choice of h.
Moreover, the map plT0

.ƒC; �/W SXn!R is continuous.

Proof We begin by showing that the limit exists. This boils down to the fact that �
is quasi-periodic. We first give the idea of the proof: If � � � is long enough then �
is a concatenation of a list of words �k

1
; : : : ; �k

m called k –tiles, which are f k images
of edges. The k –tiles appear with fixed frequencies r1; : : : ; rm . We can choose the
tiles long enough so that the cancellation in h#

�
z�k

i

�
h#
�
z�k
j

�
is negligible with respect to

the length of �k
i . Thus h#.z�/ (up to small cancellation) is a concatenation of the tiles

h#
�
z�k

i

�
, which appear with frequency ri . Thus

lT0
.h.z�//;T /

lT0
.z�;T0/

�

Pm
iD1 ril.h.z�

k
i /;T /Pm

iD1 ril.z�
k
i ;T0/

:

This expression can be shown to converge as k!1.

Let LD Lip.h/ and C D BCC.h/. Denote the edges of G0 by e1; : : : ; em . For each
k the i th k –tile is �k

i D f k.ei/ where 1 � i � m. We use lk
i .T0/ D l.z�k

i ;T0/,
and lk

i .T / D l.Œh.z�k
i /�;T / for shorthand. Let A D maxflk

i .T0/j1 � i � mg and
B Dminflk

i .T0/j1� i �mg. Suppose k is large enough so that 2C
B
< � .

Each leaf � of ƒC
0

has a natural 1–tiling by edges in G0 . The standard j –tiling of
� is the f j image of the 1–tiling of f �j .�/. Let � be a subsegment of �, � itself
might not be “nicely” tiled because it might begin and end in the middle of a tile, but
we can sandwich it �1 � � � �2 with leaf segments which are tiled. Let �1 be the
longest subsegment of � which is tiled by f�k

i g
m
iD1

and �2 the shortest subsegment of
� which contains � and is tiled by f�k

i g
m
iD1

.

l.z�1;T0/� l.z�;T0/� l.z�2;T0/� l.z�1;T0/C 2A
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Let N k
i D #occurrences of the tile �k

i in the tiling of �1 , and N k D
Pm

iD1 N k
i . By

Perron–Frobenius theory there are r1; : : : ; rm (independent of k ) such that N k
i =N

k!

ri as �1! �. Let

ak D

Pm
iD1 ril

k
i .T /Pm

iD1 ril
k
i .T0/

:

We show that for large enough � , l.hŒz��;T /
l.�;T0/

is in Œak � �; ak C ��.

We have
l.Œh.z�1/�;T /

l.z�2;T0/
�

l.Œh.z�/�;T /

l.z�;T0/
�

l.Œh.z�2/�;T /

l.z�1;T0/
:

The right hand side is

l.Œh.z�2/�;T /

l.z�1;T0/
�

Pm
iD1 N k

i lk
i .T /C 2ALPm

iD1 N k
i lk

i .T0/

D

Pm
iD1

N k
i

N k lk
i .T /C

2AL
N kPm

iD1
N k

i

N k lk
i .T0/

�����!
N k!1

Pm
iD1 ril

k
i .T /Pm

iD1 ril
k
i .T0/

D ak :

The left hand side limits to

l.hŒz�1�;T /

l.z�2;T0/
�

Pm
iD1 N k

i

�
lk
i .T /� 2C

�Pm
iD1 N k

i lk
i .T0/C 2A

D

Pm
iD1 N k

i lk
i .T /Pm

iD1 N k
i lk

i .T0/C 2A
�

Pm
iD1 N k

i 2CPm
iD1 N k

i lk
i .T0/C 2A

�

Pm
iD1

N k
i

N k lk
i .T /Pm

iD1
N k

i

N k lk
i .T0/C 2A

�
N k � 2C

N kBC 2A
�����!
N k!1

Pm
iD1 ril

k
i .T /Pm

iD1 ril
k
i .T0/

�
2C

B

D

Pm
iD1 ril

k
i .T /Pm

iD1 ril
k
i .T0/

� � D ak � �:

Thus, for all � , and for large enough � ,

(8) ak � � �
l.Œh.z�/�;T /

l.z�;T0/
� ak C �:

Let J.L/ be the smallest closed interval containing
˚ l.Œh.z�/�;T /

l.z�;T0/

ˇ̌
� � �; l.z�;T /�L

	
then we have J.LC 1/� J.L/. By equation (8) the diameter of J.L/ is bounded by
2� . By Cantor’s nested intervals lemma ak converges to a limit c . Thus

(9) lim
�!�

l.hŒz��;T /

l.z�;T0/
D c:

Geometry & Topology, Volume 15 (2011)



Strongly contracting geodesics in Outer Space 2207

Next, we show that this limit does not depend on the choice of h. We claim that if
h0W T0! T is another equivariant Lipschitz map, then

jl.Œh.�/�;T /� l.Œh0.�/�;T /j< 2D

for some D . Thus the limit in equation (9) is the same for both h and h0 . Indeed let p

be some point in T0 . Then for all x 2 T0 there is a g 2Fn such that dT0
.x;g �p/� 1.

Hence

d.h.x/; h0.x//� d.h.x/; h.gp//C d.h.gp/; h0.gp//C d.h0.gp/; h0.x//

� Lip.h/C d.h.p/; h0.p//CLip.h0/:

Denote this constant by D . Thus, for any path � �T0 the initial and terminal endpoints
of h.�/; h0.�/ are D–close, so jl.Œh.�/�;T /� l.Œh0.�/�;T /j< 2D .

Finally we want to show that plŒT0�
.ƒC; ŒT �/ depends continuously on ŒT �.

plŒT0�
.ƒC; ŒT �/D lim

k!1

1Pm
iD1 ril

k
i .T0/

Pm
iD1 ril

k
i .T /

d.T /

Without loss of generality suppose tr.w1;T /¤ 0. If ŒTj � ����!
j!1

ŒT � then

lk
i .Tj /

tr.w1;Tj /
�!

lk
i .T /

tr.w1;T /

for all 1� i �m soPm
iD1 ril

k
i .Tj /

d.Tj /
D

Pm
iD1 ril

k
i .Tj /=tr.w1;Tj /

d.Tj /=tr.w1;Tj /
����!
j!1Pm

iD1 ril
k
i .T /=tr.w1;T /

d.T /=tr.w1;T /
D

Pm
iD1 ril

k
i .T /

d.T /
:

This completes the proof.

4.2 The Whitehead graph of the attracting and repelling laminations

We’ve defined the Whitehead graph of a conjugacy class ˛ in the basis B . If R 2 Xn

is a rose, that is, a wedge of n circles, then a marking inverse identifies it’s edges with
a basis B.R/ of Fn . The Whitehead graph of ˛ in R is WhR.˛/DWhB.R/.˛/.

Let � be a quasi-periodic bi-infinite edge path in R. Since it is quasi-periodic, there
is some M so that fthe turns taken by �g � fthe turns taken by �0g where �0 is any
subpath of � whose length is at least M . We may assume that �0 is a closed path. Let
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Wh�R.�
0/ be the Whitehead graph of �0 taking into account all turns except the one

connecting the end of �0 and the beginning of �0 . Define WhR.�/ D Wh�R.�
0/ (We

exclude the “last” turn of �0 since it need not be taken in �). WhR.�/ does not depend
on our choice of �0 .

Proposition 4.4 Let X 2 Xn , every leaf of ƒC.X / is quasi-periodic.

Proof Bestvina, Feighn and Handel [7] prove this for a graph G which admits a
train-track representative f W G!G of � . For a general X 2 Xn let �W X !G and
�0W G! X be optimal differences in markings and C D maxfLip.�/;Lip.�0/g. Let
�X 2ƒ

C.X / and 
 � �X be a subsegment of length s . Let B D BCC.�0/ and extend

 to 
 0 � �X by adding segments of length B at both ends of 
 . Let ı � �G be a
segment such that Œ�0.ı/�D 
 0 . len.ı/� C.sC 2B/ and there is an L0 such that any
leaf segment ˛ � �G of length greater than L0 contains every leaf segment of length
C.sC 2B/, in particular, ˛ � ı . Thus Œ�0.˛/� � 
 . Let S 0 D CL0 then for any leaf
segment ˇ � �X of length CL0 we have ˇ D Œ�0.˛/� for a leaf segment ˛ � �G of
length at least L0 hence ˛ contains ı and ˇ contains an appearance of 
 .

Let X be a rose, every leaf of ƒC.X / is quasi-periodic, and we may define WhX .�/

for � 2ƒC . If �1; �2 2ƒ
C.X / are leaves of the attracting lamination then they share

the same leaf segments so, WhX .�1/DWhX .�2/. Since the choice of the leaves does
not affect the whitehead graph, fix leaves � 2ƒC and � 2ƒ� once and for all.

Let WhR.�; �/ be the superposition of the Whitehead graphs WhR.�/;WhR.�/.

Lemma 4.5 There is a point F 2 Xn such that for any leaves � 2 ƒC
�
.F / and

� 2ƒ�
�
.F /, the whitehead graph WhF .�; �/ is connected and contains no cut vertex.

To prove this lemma we will need the following proposition which boils down to a
result by Levitt and Lustig [26].

Proposition 4.6 If plT0
.ƒC; ŒT �/D 0 then plT0

.ƒ�; ŒT �/¤ 0

Proof Let � 2 ƒC.T0=Fn/ be any leaf and represent it as a bi-infinite geodesic in
T0 . Let hW T0 ! T be an equivariant Lipschitz map. We map � to T by h, and
denote by �T the tightened image of � in T . We claim that if �T is unbounded
then lT0

.ƒC;T / > 0. Indeed, if �T is unbounded then there exists a lift of a tile
� D f k.ei/ such that l.Œh.z�/�;T / > 2BC C.h/ denote their positive difference by b .
If � is a leaf segment of � tiled by k –tiles then Œh.�/� is no shorter than Nib where
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N� is the number of times � appears in � . Let A be the length of the longest k –tile
and let N be the number of k –tiles in � . Thus, as � gets larger,

lT0
.ƒC;T /�

l.Œh.�/�;T /

l.�;T0/
>

N�b

N �A
� ri

b

A
> 0:

In [26, Section 6] it is shown that if � 2ƒC is bounded then T has dense orbits. Thus
if plT0

.ƒC; ŒT �/D 0 then lT0
.�;T /D 0 and � is bounded which implies that T has

dense orbits. [26, Proposition 5.1] shows that if T has dense orbits and ƒC is bounded
then ƒ� is unbounded. Therefore lT0

.ƒ�;T / > 0 hence plT0
.ƒ�; ŒT �/ > 0.

Proof of Lemma 4.5 Pick a point X0 2 Xn whose underlying graph is a rose where
all edges have length 1

n
. It was proven by Bestvina, Feighn and Handel [7] that

WhX0
.�/;WhX0

.�/ are both connected. If WhX0
.�; �/ contains a cut vertex a then

let X1 D X0 � �.A;a/ the automorphism described in Whitehead’s algorithm (see
description in the paragraph following Definition 1.6). Continue this way to get a
sequence X0;X1;X2; : : : We will show that this process terminates in a finite number
of steps with a graph F DXN such that WhF .�; �/ does not contain a cut vertex.

A priori, two other cases are possible: Xk DXj for some j > k , and the process never
terminates producing an infinite sequence fXig

1
iD1

.

Observation 4.7 For all i we have

lT0
.ƒC; zXi/ > lT0

.ƒC; zXiC1/ and lT0
.ƒ�; zXi/ > lT0

.ƒ�; zXiC1/:

We delay the proof of this observation to finish the proof of Lemma 4.5. Xk D Xj

for k < j is impossible since the lengths get strictly smaller. If the process doesn’t
terminate then we get an infinite sequence fXig

1
iD1

which has a subsequence converging
projectively to a limit ŒT �2@Xn . We will argue that plT0

.ƒC; ŒT �/DplT0
.ƒ�; ŒT �/D0

and get a contradiction to Proposition 4.6.

Let L D lT0
.ƒC; zX0/ then lT0

.ƒC; zXi/ < L, and together with d. zXi/ � 1 we get
plT0

.ƒC; Œ zXi �/ < L. Therefore, plT0
.ƒC; ŒT �/ < L. Now assume by way of contra-

diction that plT0
.ƒC; ŒT �/ D L0 > 0. There exists some conjugacy class Œw� such

that tr.w;T / < L0d.T /
2nL

(if T is simplicial then there is a conjugacy class Œw� which
is elliptic and if T is not simplicial, it has a quotient tree with dense orbits. In either
case we can find conjugacy classes with arbitrarily small translation length). Since the
smallest loop in Xk has length 1

n
,

lT0
.ƒC; zXk/

tr.w; zXk/
<

L

1=n
D nL
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Since zXk converges projectively to ŒT �,

lT0
.ƒC; zXk/

tr.w; zXk/
D

lT0
.ƒC; zXk/

d. zXk/
�

d. zXk/

tr.w; zXk/
>

L0

2
�

d.T /

L0d.T /=2nL
D nL

So we get a contradiction to plT0
.ƒC; ŒT �/ ¤ 0. A similar argument shows that

plŒT0�
.ƒ�; ŒT �/D 0 and we get a contradiction. Therefore, the process must end in a

finite number of steps with a graph F such that WhF .�; �/ is connected without a cut
vertex.

Proof of Observation 4.7 Let

ak.T /D

Pm
iD1 rili.T /Pm
iD1 rili.T0/

where the notation is established in the proof of Lemma 4.3. We must estimate
limk!1 ak.T / for T D zXj and T D zXjC1 . We will show that li. zXj / > li. zXjC1/.

� in Xj is denoted �.Xj /, let a be a cut vertex in WhXj .�/ and recall that XjC1 D

Xj � �.A;a/ . This implies that any leaf segment � � �.Xi/, the length of Œ�.A;a/.�/�
in Xj is not longer than � in Xj . Moreover, the length shrinks by a definite amount.
Let xx 2 A then subwords of � of the form xxa and xax reduce to x , so their length
is decreased by 1

n
. So by taking � long enough we can make sure it contains M

appearances of such turns and thus in XjC1 the length would be decreased by M
n

.

Now let �D �k
i be k –tiles in G0 , k is large (to be specified later). Let hW G0!Xj be a

difference in marking. Then Œh.�/�D˛ ���ˇ where ���.Xj / and l.˛;Xj /; l.ˇ;Xj /<

BCC.h/. ˛; ˇ contain at most nBCC.h/ edges. Each edge in ˛; ˇ may transform to
at most 3 edges x! axxa, hence they may add to the total length of Œ�.A;a.�/� at most
2 � nBCC.h/ � 2

n
. Thus

l.Œh.�/�;XjC1/� l.�;Xj /C 4BCC.h/�
M

n

Choose M D 5nBCC.h/ and let N be the number of k tiles in � ,

ak. zXjC1/D

P
rili.XjC1/P
rili.G0/

�

P
ri.li.Xj /� 1/P

rili.G0/

D ak. zXj /�
1P

rili.G0/
D ak. zXj /�

N

l.�;G0/

And N
l.�;G0/

�1. Thus k must be chosen long enough so that � contains M appearances
of xx for some x 2A.
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Remark 4.8 If WhF .�; �/ is connected and does not contain a cut vertex, then
WhF ��.�; �/ and WhF ���1.�; �/ satisfy the same property. In fact WhF .�; �/ D

WhF ��.�; �/DWhF ���1.�; �/. Indeed let kW F ! F and k 0W F ! F be topological
representatives of �; ��1 (see Definition 1.18). Then WhF .�/DWhF ��.k#.�// this is
because � 2ƒC.F / implies k#.�/ 2ƒ

C.F ��/. WhF ��.k#.�//DWhF ��.�/ because
ƒC.F � �/ is �; ��1 –invariant . Thus WhF .�/ D WhF�.�/. Similarly, WhF .�/ D

WhF ��.k#.�// D WhF ��.�/. Thus, WhF .�; �/ D WhF ��.�; �/. The argument for
WhF��1.�; �/ is identical.

5 Axes are strongly contracting

5.1 Projections of horoballs are finite

Definition 5.1 Let � a leaf of ƒC or ƒ� in X 2Xn . Let 
 be an edge path contained
in �. We say that 
 is an r –piece of � if the l.
;X /� r .

The next proposition states that basis elements cannot contain long pieces of both ƒC

and ƒ� .

Proposition 5.2 There exists a constant | > 0 so that for all Gt 2 Lf :

(1) Let ˇ conjugacy class of Fn . ˇ is represented by an immersed loop which
we shall also denote by ˇ in Gt . Suppose there exist leaves � 2ƒC

f
.Gt / and

� 2ƒ�
f
.Gt / such that ˇ contains a | –piece of � or the inverse of a | –piece of

� and a | –piece of � . Then ˇ is not a basis element.

(2) Let ˛; ˇ be tight loops in Gt (also thought of as conjugacy classes). Suppose
˛; ˇ are compatible with a free decomposition of Fn . If ˛ contains a | –piece
of � or the inverse of a | –piece of � (a | –piece of � or the inverse of a | –piece
of � ) then ˇ doesn’t contain a | –piece of � (a | –piece of � or the inverse of a
| –piece of �).

(3) If ˛ is a primitive conjugacy class (a conjugacy class of a basis element) then
˛m cannot simultaneously contain both a | –piece of � or a | piece of ��1 and
a | piece of � .

Proof

(1) We first prove this for G0 . By Lemma 4.5, there is an F 2 C Vn such that
WhF .�; �/ is connected and contains no cut point. Suppose d D d.F;G0/

and k D exp.d/ so for all loops ˛ : l.˛;G0/
l.˛;F /

� k . Hence l.˛;F / � 1
k

l.˛;G0/.
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Let h0W G0! F be an optimal Lipschitz difference in marking, and let B D

BCC.h0/. Since �F ; �F are quasi-periodic there is a length r such that if 
F

is an r –piece of �F then 
F contains all of the 2–edge leaf segments in �F

hence WhF .�F / D Wh�F .
F /. Similarly, if ıF is an r –piece of �F then ıF
contains all of the 2–edge leaf segments in �F hence WhF .�F /DWh�F .ıF /.
Let p be large enough so that if ˇ is a p–piece of �G0

; �G0
then all edges of

G0 appear in ˇ .
Define | D k.rC2B/Cp . If ˇG0

contains ˇ0
1

or ˇ
0�1
1

where ˇ0
1

is a | –piece
of �0 2ƒ

C.G0/. By truncating a piece of length at most p from ˇ0
1

we can find
ˇ1�ˇ

0
1

a loop such that l.ˇ1;G0/ > k.rC2C /. Thus l.Œh0.ˇ1/�;F / > rC2B

and Œh0.ˇ1/� is contained in �F apart from some initial and terminal segments
of length at most B . Hence Œh0.ˇG0

/� contains an r –piece of �F . Similarly, if
ˇG0

contains an | –piece of �0 2ƒ
�.G0/ then there is a loop ˇ2 2 � so that

l.ˇ2;G0/ > k.rC2B/. Hence l.Œh0.ˇ2/�;F / > rC2B and Œh0.ˇG0
/� contains

an r –piece of �F . Therefore, if ˇG0
contains such ˇ0

1
; ˇ0

2
then WhF .ˇ/ �

WhF .�; �/. By the definition of the Whitehead graph WhF .
F /DWhF .

�1
F
/

so if ˇ contains ˇ
0�1
1
; ˇ0

2
then again, WhF .ˇ/�WhF .�; �/. Thus WhF .ˇ/ is

connected and does not contain a cut vertex. By Whitehead’s Theorem 1.5 ˇ is
not a basis element.
We can do the same for all graphs Gt 2 Lf and | depends on d.F;Gt /, which
varies continuously with t . Therefore if we vary t across a fundamental domain
of the � action on Lf , then there is an upper bound for | (which we still denote
| ). Now by Remark 4.8 the same is true (with the same | ) for any translate of
the fundamental domain (we translate F as well so the distance and the optimal
map remain the same).

(2) The proof of the second claim is similar to (1). If ˛G contains a long enough
piece of �G and ˇG contains a long enough piece of �G then WhF .˛; ˇ/ �

WhF .�F ; �F / but by Theorem 1.8 ˛; ˇ are then not compatible with a free
decomposition.

(3) This follows from the fact that in any basis the Whitehead graph of ˛ and ˛m

are one and the same. If ˛m contains such pieces then WhF .˛
m/ would not

contain a cut vertex contradicting Whitehead’s Theorem.

We now turn to prove some applications:

Lemma 5.3 There is an s > 0 such that: if ˛; ˇ are conjugacy classes which are
compatible with a free decomposition of Fn then jt˛ � tˇj< s
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Proof Suppose for concreteness tˇ > t˛ . Let ˛t represent ˛ in Gt , and ˇt represent
ˇ in Gt . We claim that there is a t0 such that if t < tˇ� t0 then ˇt contains a | –piece
of �G.t/ , and if t > t˛C t0 then ˛t contains a | –piece of �G.t/ . Thus, if jtˇ� t˛j> 2t0
let r D t˛ C t0 then ˛r contains an | –piece of �G.r/ and ˇr contains a | piece of
�G.r/ which contradicts Proposition 5.2.

To find t0 : by Corollary 3.17, there is an s1 D s3:17 such that if t > t˛ C s1 then
LEGf .˛t ;G.t// > �0 . Let ˛0t � ˛t be a legal segment of length > � (the legality
threshold). There is an N such that Œf N

t .˛t /� will contain a | –piece of the lamination
contributed from f N

t .˛0t /. Let s2 D s1 C N log.PF.f // then at t0 D t˛ C s2 , ˛
contains a | –piece of �, contributed by ˛0t .

We apply this argument for ˇ in H.t 0
ˇ
/. Thus there is an s3 so that if t < t 0

ˇ
� s3 then

ˇ in H.t/ contains a D| piece of � where

D Dmax
˚
ed.Gu;Hu/; ed.Hu;Gu/ j u 2R

	
:

Now jtˇ � t 0
ˇ
j< c5:6 thus if s4 D s3C c5:6 and t < tˇ � s4 then ˇ in H.t/ contains a

D| piece of � . Thus ˇt in G.t/ contains a | piece of � .

Corollary 5.4 There exists a constant s > 0 such that if ˛ and ˇ are candidates in X

then jt˛ � tˇj< s

Proof By Proposition 2.7 there is a candidate 
 so that ˛; 
 and 
; ˇ can be completed
to a basis of Fn . Therefore by Lemma 5.3 there is an s D s5:3 such that jt˛ � t
 j< s

and jt
 � tˇj< s . Thus jt˛ � tˇj< 2s

Corollary 5.5 There exists a constant s > 0 so that if ˛ is a candidate in X then
jtX � t˛j< s

Proof Let ˛1; : : : ; ˛N be the candidates of X , for each i denote by ti the param-
eter realizing mint2R St˛i

.X;G.t//, that is, ti D t˛i
. tX is the parameter realizing

mint2R max1�i�N St˛i
.X;G.t//. In the proof of Proposition 2.7, we show that

tX 2
h

min
1�i�N

ftig; max
1�i�N

ftig
i

By Corollary 5.4 the length of this interval is s D s5:4 . Thus jtX � t˛j< s .

Corollary 5.6 There exists an s > 0 such that if the translation length of ˛ 2 Fn in
both X and Y is smaller than 1 then j�.X /��.Y /j< s .
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�.Y / X

Y

L

Figure 4: In a tree, the geodesic from Y to a point on a geodesic visits �.Y /

Proof Since vol.X /D 1, ˛ does not cross all edges of X . Let ei be the edge that ˛
misses. If ei is non-separating collapse a maximal tree J of X which avoids ei to
obtain RX and choose a short basis of �1.RX / so that the image of ei is the basis
element xn . Then ˛ is carried by the free factor hx1; : : : ;xn�1i. If ˛ misses ei which
is separating then again it is carried by a free factor which we denote hx1; : : : ;xmi.
Similarly, ˛ is carried by hy1; : : : ;yki. Therefore, jt˛ � tŒxn�j < s5:3 . Similarly, for
Y ,jt˛� tŒyn�j< s5:3 . So tŒxn� and tŒyn� are uniformly close. By Corollary 5.5, we have
that tX and tY are uniformly close.

A horoball based at the conjugacy class ˛ is the (unbounded) subset H.˛; r/D fx 2

Xn j l.˛;x/ < rg of Xn . Corollary 5.6 shows that the �f .H.˛; 1// is a bounded
interval of Lf .

5.2 Projections to axes are like projections in trees

Consider a geodesic L in a tree T , and let � W T ! L be the closest point projection.
The next lemma is motivated by the following observation (see Figure 4): If X is a
point on L then d.Y;X /D d.Y; �.Y //C d.�.Y /;X /.

Lemma 5.7 There exist constants s; c > 0 such that for any Y , if jt � tY j > s then
d.Y;G.t//� d.Y; �.Y //C d.�.Y /;G.t//� c
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Proof Denote X D G.t/. Let us first prove it for t > tY . There is an s1 D s5:5

such that for all candidates ˛ of Y : jt˛ � tY j < s1 . There is an s2 D s3:17 such
that if t > t˛ C s2 then LEGf .˛t ;G.t// > �0 . Let Z D G.tY C s1 C s2/ then for
any candidate ˇ of Y , LEGf .ˇ;Z/ > �0 . Now suppose ˇY in Y is the loop that
realizes d.Y;Z/, that is, Stˇ.Y;Z/D ed.Y;Z/ . Then, since ˇ is �0 –legal in Z then by
Proposition 3.18 there is a C D C3:18 so that Stˇ.Z;X /� Ced.X ;Z/ so Stˇ.Y;X /D
Stˇ.Y;Z/Stˇ.Z;X /� Ced.Y;Z/ed.Z;X / D Ced.Y;Z/Cd.Z;X / . We have St.Y;X /�
Stˇ.Y;X /�Ced.Y;Z/Cd.Z;X / . Thus d.Y;X /� log.C /Cd.Y;Z/Cd.Z;X /. Now
recall that Z DG.tY C s1C s2/ so d.�.Y /;Z/D s1C s2 . We have

d.Y;Z/ > d.Y; �.Y //

d.Z;X / > d.�.Y /;X /� .s1C s2/

thus d.Y;X /�d.Y; �.Y //Cd.�.Y /;X /�.s1Cs2/Clog.C / let cD s1Cs2�log.C /
and we get d.Y;X /� d.Y; �.Y //C d.�.Y /;X /� c .

If t < tY : there is an s0 such that the above holds for g . The claim now follows form
the fact that �f ; �g are uniformly close (see Corollary 3.16).

Getting back to the tree T , if X;Y are any two points such that �.Y / ¤ �.X /

then the geodesic from Y to X passes through �.X /, see Figure 5. In particular
d.Y;X / > d.Y; �.X //. In Xn :

Lemma 5.8 There exist constants s; c > 0 such that for X;Y 2 Xn if jtY � tX j > s ,
then d.Y;X /� d.Y; �.X //� c

To prove this we recall from Proposition 5.2, that if ˛ and ˇ are loops in G.t/

representing candidates of X then they cannot contain long pieces of both laminations
ƒC; ƒ� . We will need a slightly souped up version of this.

Definition 5.9 We call a point X in Xn minimal if the underlying topological graph
of X is either a bouquet of circles or a graph with two vertices, one edge between
them which we will refer to as a bar, and all other edges are loops.

Proposition 5.10 Suppose X is minimal. Let v be one of its vertices and the basepoint
for �1.X; v/ and let e denote the bar of X initiating from v (if X is a rose then e

is empty). Let ˛X ; ˇX be either one edge loops based at v or loops of the form e
 xe

where 
 is a one edge loop based at the other vertex. Fix Z 2 Lf and let hW X !Z

be a map homotopic to the difference in marking so that h.˛X / is an immersed loop
and h.ˇX / is a loop which is immersed as a path. If h.˛X /; Œh.ˇX /� both contain a
| –piece of � 2ƒ� then h.ˇX / does not contain a 3| –piece of � 2ƒC .
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X

�.X /

Y

L

Figure 5: In a tree, if X;Y project to different points then the geodesic
between them visits both of the projections.

Proof We emphasize that by Proposition 5.2, Œh.ˇ/� does not cross a | –piece of �
but we want it not to contain any such pieces in the part that gets cancelled when we
tighten the loop.

We represent h.˛/ by the cyclically reduced edge path x in G.t/ and ˇ by the reduced
uD wyw�1 , with y cyclically reduced. We proceed to prove the proposition by way
of contradiction. We’ll show that if w contains a 2| piece of � then there is an m

such that the immersed loop homotopic to xmu contains both a | piece of � and a |
piece of �. Since xmu is a basis element this is a contradiction to Proposition 5.2.

First notice that w ª xm and w ª x�m for all m. For otherwise xm or x�m would
contain both a | piece of � and a | piece of � contradicting Proposition 5.2. Moreover,
there is an m such that xm ª w and x�m ª w . Let u D gcdfx�m; wg and v D
gcdfxm; w�1g then xm D vx1 D x2u�1 with x1;x2 non-empty, w D uw1 D w2v

�1

with w1; w2 non empty and

z D xmxm
�wyw�1

�xm
D xmx2w1yw2x1

the word on the right hand side is cyclically reduced.

Now the assumption was that w D uw1 contains a 2| piece of �. If w1 contains a
| –piece of � then Œz� represents a basis element and contains a | –piece of � and a
| –piece of � thereby contradicting Proposition 5.2. If u contains a | –piece of � then
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xm contains the inverse of a | –piece of � and also a | –piece of � again contradicting
Proposition 5.2.

Proof of Lemma 5.8 We prove the claim for X;Y such that tY < tX , the case where
tY > tX follows by applying the same argument to g . We also make the assumption
that X is minimal.

˛i

�.Y / �.X /G.r/

ˇ

XY

Figure 6: In G.r/ , ˇ contains many l1 –pieces of � and ˛i contain l1 –pieces
of �

Let � be a periodic leaf of ƒC
f

and � a periodic leaf of ƒ�
f

. Let | D |5:10 . The
idea of the proof is as follows. If tY << tX , then for r in the middle of ŒtY ; tX �, any
loop which is short in Y , would contain many | –pieces of � in G.r/. And any loop
which is short in X would contain many | –pieces of � in G.r/, see Figure 6. If a
candidate in Y was short in X , then it would contain long pieces of both � and � in
G.r/ contradicting the fact that it is a basis element. To make the argument precise we
need to argue that for a candidate ˇ in Y , l.ˇ;X / is longer than a definite fraction
of l.ˇ; �.X //. This is done by bounding l.ˇ; �.X // above by the number of disjoint
| –pieces of � that appear in ˇ�.X / .

Let s1 D s5:5 that is, for any candidate ˇ in Y , jtY � tˇj< s1 . Let s2 D s3:17 , that is,
for any primitive conjugacy class ˇ if t > tˇCs2 then LEGf .ˇ;G.t// > �0 . Let s3 be
such that if t > tˇCs2Cs3 then ˇ crosses a | –piece of � in G.t/ (contributed by one
of the � long legal segments). Let s4 be such that for any primitive conjugacy class
ˇ if t < tˇ � s4 then ˇ contains a | –piece of � in G.t/. Let s D 2s1C s2C s3C s4

and suppose that tX � tY > s we will show that there exists a c as in the statement of
the Lemma.

Let ˇ be a loop in Y such that d.Y; �.X //D log.Stˇ.Y; �.X ///. Then by Corollary 5.4
tˇ < tY C s1 . Let r D tX � s1� s4 then r > tY C s1C s2C s3 (see Figure 6). Let k.r/
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be the number of | –pieces of � in ˇr �G.r/ with disjoint interiors, then

(10) k.r/ � | > �0 � l.ˇ;G.r//

Recall that X is minimal. Let ˛1; : : : ; ˛n denote loops representing a short basis in X

where ˛i is either a one edge loop or is e˛0xe where ˛0 is a one edge loop based at the
other vertex and e is the bar of X . Let ˛1 be the longest one-edge-loop.
Choose a map hW X !G.r/, homotopic to the difference in marking, so that h.˛1/ is
an immersed loop and h.˛i/ are immersed as paths. Each h.˛i/ in G.r/ contains a
| –piece of � . By Proposition 5.10 for 1� i � n, h.˛i/ does not contain any | –pieces
of �.

Claim Let 
 be a conjugacy class in Fn and write it as a cyclically reduced word in
˛1; : : : ; ˛n the basis of �1.X; v/. If Œh.
X /� contains k occurrences of | –pieces of
ƒC in G.r/ (with disjoint interiors) then 
X traverses each ˛q at least k times.

Moreover, for i ¤ j , 
 contains at least
�

k
2

˘
disjoint appearances of subpaths of the

type ˛i : : : j̨ .

Proof of Claim First note that if 
X is a loop that does not traverse ˛q at all then
it is carried by the free factor h˛1; : : : ; y̨q; : : : ; ˛ni. Using Proposition 5.2 applied
to h.˛q/; Œh.
 /� in G.r/, we get that Œh.
 /� does not contain any l –pieces of ƒC in
G.r/.

Now suppose that 
X D ˛i1
: : : ˛iN

so that ˛ij D ˛q for at most k � 1 choices of
j s. Œh.
X /� is the result of reducing h.˛i1

/ � h.˛i2
/ � � � h.˛iN

/ to get �i1
�i2
: : : �iN

where �ij are the subpaths of h.˛ij / that survive after the cancellation (some �ij

might be trivial). | –pieces of � can appear only if they are split between different
�i s. If there are k disjoint | –pieces of � in 
G.r/ then there is a | –piece of �
appearing in �im

: : : �il
� Œh.˛im

/ : : : h.˛il
/� where none of the ˛ij are equal to ˛q .

This is a contradiction to the first paragraph. Since every | –piece in � must stem from
Œh.˛im

/ : : : h.˛il
/� with all ˛i appearing in the product then 
X contains at least

�
k
2

˘
disjoint appearances of subpaths of the type ˛i : : : j̨ .

By the claim above ˇX in X must traverse ˛1 at least k D k.r/ times. If l.˛1;X / >
1

nC1
then l.ˇ;X / > k

nC1
. Otherwise, X has a separating edge e and l.e;X / > 1

nC1
.

Let ı be a one-edge-loop so that ˛1 and ı are loops on opposite sides of e . By the
claim above ˇX traverses ˛1 and ı alternately at least k

2
times therefore it must cross

e at least k
2

times. Again we get l.ˇ;X / > k
2.nC1/

. Combining with equation (10)

(11) l.ˇ;X / >
�0

2.nC 1/|
l.ˇ;G.r//
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Lf is contained in the � –thick part of Xn for some � . Let �D exp.D2:9.�/.s1Cs4//

then l.ˇ;G.r//��l.ˇ;G.tX //. By equation (11) we get l.ˇ;X /> �0�
2.nC1/|

l.ˇ; �.X //.

Thus, we get l.ˇ;X /
l.ˇ;Y /

> �0�
2.nC1/|

l.ˇ;�.X //
l.ˇ;Y /

, that is,

d.Y;X / > d.Y; �.X //� log
�

2.nC 1/|

�0�

�
Which proves the statement in the case that X is minimal. Now we deal with the case
that X is not minimal. We claim that there is a constant b such that for any X 2 Xn

there is a minimal K so that d.X;K/ < b . Moreover, there exists a short loop in X

(whose length is smaller than 1) that is still short in K . Therefore, by Corollary 5.6
d.�.K/; �.X // < s5:6 . So

d.Y;X /� d.Y;K/� d.X;K/� d.Y;K/� b > d.Y; �.K//� c � b �

d.Y; �.K//� d.�.K/; �.X //� c � b > d.Y; �.X //� c � b� s5:6:

To prove that each point in Xn lies a uniform distance away from a minimal K : Let e

be the longest edge in X . Note that l.e;X /� 1
3n�3

. If e is nonseparating let J be a
maximal tree in X that does not contain e , otherwise let J be the forest obtained from
this maximal tree by deleting e . Collapse J to get a new unnormalized graph X 0 with
volume > 1

3n�3
. Notice that X 0 is a minimal graph. Normalize X 0 to get K . Then

d.X;K/� log
�

1
1=.3n�3/

�
D log.3n� 3/. If ˛ is an embedded path in X its image is

embedded in K thus the claim is proved.

Corollary 5.11 There are constants s; c > 0 such that if d.�.Y /; �.X // > s then

d.Y;X / > d.Y; �.Y //C d.�.Y /; �.X //� c:

Proof By Lemma 5.7 if d.�.Y /; �.X // > s5:7 then

d.Y; �.X // > d.Y; �.Y //C d.�.Y /; �.X //� c5:7:

By Lemma 5.8 if d.�.Y /; �.X // > s5:8 then

d.Y;X / > d.Y; �.X //� c5:8:

So let s Dmaxfs5:7; s5:8g and c D c5:7C c5:8 then d.�.Y /; �.X // > s implies

d.Y;X / > d.Y; �.X //� c5:8 > d.Y; �.Y //C d.�.Y /; �.X //� c5:7� c5:8

D d.Y; �.Y //C d.�.Y /; �.X //� c:

This completes the proof.

As a corollary we get that the projection is coarsely Lipschitz.
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Corollary 5.12 There is a constant c > 0 such that for all X;Y 2 Xn ,

d.X;Y /� d.�.X /; �.Y //� c:

5.3 Strongly contracting geodesics

Definition 5.13 Let A be a subset in U an asymmetric metric space. The outgoing
neighborhood and the incoming neighborhood of A are respectively:

Nı.A!/D fx 2 U j d.a;x/ < ı for some a 2Ag

Nı.A /D fx 2 U j d.x; a/ < ı for some a 2Ag

Definition 5.14 Let r > 0. The ball of outward radius r centered at x is

Br .x!/D fy 2 Xn j d.x;y/ < rg

The ball of inward radius r centered at x is

Br .x /D fy 2 Xn j d.y;x/ < rg

We will use the ball of outward radius to define the notion of a strongly contracting
geodesic in this case.

Definition 5.15 (Strongly contracting geodesics in an asymmetric space) Let L be
a directed geodesic in U , and let �LW U ! L be the closest point projection. L is
D–strongly contracting if, for any ball Br .x!/� U disjoint from L,

diam.�L.Br .x!/// <D:

Theorem 5.16 If f W G!G is a train-track representative of a fully irreducible outer
automorphism � , then Lf is D–strongly contracting.

Proof It is enough to show that there exists a D> 0 such that diamf�.Br .Y!//g<D

for r D d.Y; �.Y //. We’ll show that if X 2Br .Y!/ then d.�.Y /; �.X // <D where
DDmaxfs5:11; c5:11g. If X 2Br .Y!/ then d.Y;X /< r and by Corollary 5.11 either
d.�.Y /; �.X // � s5:11 or d.Y;X / > d.Y; �.Y //C d.�.Y /; �.X //� c5:11 . If the
latter occurs then

r > r C d.�.Y /; �.X //� c5:11

Thus d.�.Y /; �.X // < c5:11 .
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5.4 The Morse Lemma

Definition 5.17 The map ˛W Œ0; l �! U is a directed .k; c/–quasi-geodesic if for all
0� t < t 0 � l we have

1

k
.t 0� t/� c � d.˛.t/; ˛.t 0//� k.t 0� t/C c

Definition 5.18 Let ˛W Œ0; l �! U be a path. As in a symmetric metric space ˛ is
rectifiable if the following limit exists. Let P be a partition of Œ0; l �, P W t0 D 0< t1 <

� � �< tm D l . Let �.P /DmaxiftiC1� tig

lim
�.P/!0

m�1X
iD0

d.˛.ti/; ˛.tiC1//

This limit is the length of the path ˛ .

Definition 5.19 A quasi-geodesic ˛W Œ0; l �! U is (m,p)-tame if for all 0� t < t 0 � l

we have
len.˛jŒt;t 0�/�m.t 0� t/Cp

Lemma 5.20 For every .k; c/–quasi-geodesic ˛W Œ0; l �! U there is an .m;p/–tame
(k’,c’)-quasi-geodesic ˇW Œ0; l �! U with

(1) ˇ.0/D ˛.0/; ˇ.l/D ˛.l/

(2) k 0 D k , c0 D 2.kC c/

(3) mD k.kC c/, and p D .kC c/.2k2C 2kcC 3/

(4) NkCc.im˛/� imˇ and NkCc.imˇ/� im˛

The proof of Lemma 5.20 for a symmetric metric space can be found in the book by
Bridson and Haefliger [11]. The proof for a nonsymmetric space is the same hence we
omit it.

Definition 5.21 A point x 2U is high if there exists a constant A such that d.x;y/�

Ad.y;x/ for all y 2 U . A set S 2 U is high if there are constants A so that for all
x 2 S and y 2 U such that d.x;y/� Ad.y;x/

We recall the definition of Hausdorff distance

Definition 5.22 Let S;T � U be closed. Define the Hausdorff distance

dHaus.S;T /D inff� j S �N�.T!/ and T �N�.S!/g
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The Morse Lemma If L is a directed, A–high, D–strongly contracting geodesic
in U and and ˛ is an .a; b/–quasi-geodesic with endpoints on L then there exists a
constant C , depending only on A;D; a and b , such that dHaus.im L; im˛/ < C .

Remark 5.23 In fact, we only need � to satisfy: len.˛jŒt 0;t �/ < aŒd.˛.t 0/; ˛.t//�C b

for the corollary above to hold true.

Proof of the Morse Lemma We may assume that ˛ is an .a; b/–tame quasi-geodesic.
We fix the following notation. Let cDmaxfa; b; 1g, RDmaxfd.˛.t/; im L/jt 2 Œ0; l �g

and suppose R > cD . Let Œs1; s2� be a maximum subinterval such that for every
s 2 Œs1; s2�: d.˛.s/; im L/� cD . Subdivide Œs1; s2� into: s1 D r1; : : : ; rm; rmC1 D s2

where d.˛.ri/; ˛.riC1//D 2cD for i �m and d.˛.rm/; ˛.rmC1//� 2cD . Thus:

(12) len
�
˛jŒs1;s2�

�
�

mC1X
iD1

d.˛.ri/; ˛.riC1//� 2cDm

On the other hand, let pi D �L.˛.ri//. Since d.˛.ri/;pi/ � cD , and since L is
D–strongly contracting we get

d.p1;pmC1/�D.mC 1/

So d.˛.r1/; ˛.rmC1//� cDC .mC 1/DCAcD where L is A–high. Therefore,

(13) len
�
˛jŒs1;s2�

�
� cd.˛.s1/; ˛.s2//C c � c.cDC .mC 1/DCAcD/C c

Combining the inequalities (12) and (13) we get:

2mcD � c2DC .mC 1/cDCAc2DC c

After some manipulation we get: m� cC c �AC 1
D
C 1DK .

Hence len
�
˛jŒs1;s2�

�
�m2cD < 2KcD . Thus for each s 2 Œs1; s2�:

d.˛.s/; im L/ < d.˛.s/; ˛.s2//Cd.˛.s2/; im L/� len.˛jŒs1;s2�/CcD< 2KcDCcD

Since im L is A–high there is a constant C so that dHaus.im L; im˛/ < C .

Since Lf is periodic there is an � so that imLf � X��n . By Theorem 2.9 the set Lf
is A–high. Thus applying the Morse Lemma we get the following.

Theorem 5.24 Lf is a Morse geodesic: For any .a; b/–quasi-geodesic Q with end-
points on Lf there is a C that depends only on the constants a; b; � and D5:16 so that
dHaus.imLf ; imQ/ < C .

Geometry & Topology, Volume 15 (2011)



Strongly contracting geodesics in Outer Space 2223

6 Applications

6.1 Morse quasi-geodesics in the Cayley graph of Out.Fn/

Let C be the Cayley graph of Out.Fn/ with the generating set of Whitehead au-
tomorphisms f�ig

N
iD1

, that is, its vertices V .C/ are the elements of Out.Fn/ and
 1;  2 2 Out.Fn/ are connected by an edge if there is a Whitehead generator �i so
that  1 D �i ı 2 (we want Out.Fn/ to act on the right). Let � be a fully irreducible
outer automorphism. Let f W G!G be a stable train-track representative for � . Define
the equivariant map �W C ,! Xn by taking id 2 C to G , and mapping the edges of C

to geodesics between images of vertices.

Let M DmaxfdXn
.�.id/; �.�i// j �i is a generatorg then for the vertices of C we have:

dXn
.�. 1/; �. 2//�M � dC. 1;  2/

For other points in C a similar inequality holds (by adding 2M ). The reverse inequality
is false.

Example 6.1 Let

 1 D id and  2 D

�
x! x

y! xym

Suppose �. 1/DR is a bouquet of 2 circles each of length 1
2

with the identity marking.
Then

dXn
.�. 1/; �. 2//D dXn

.R;R � 2/D log
� .mC1/=2

1=2

�
D log.mC 1/;

while dC. 1;  2/Dm.

Lemma 6.2 (� is proper) For all a>0 there is a b>0 such that: If dXn
.�. /; �.�//<

a then dC. ; �/ < b .

Proof Consider the set AD f j dXn
.�.id/; �. // < ag. Note that V .C/ is mapped

to the orbit of G which is in the � –thick part of Out.Fn/ hence A�Ba.G!/\X��n .
Hence A�Br .G / where r DD2:9a. Br .G / is compact thus A is finite. Let bD

maxfdC.id;  / j 2Ag. Suppose dXn
.�. /; �.�// < a then dXn

.�.id/; �.� �1// < a,
so dC.id; � �1/ < b and dC. ; �/ < b

Let pD Œid; �� be a geodesic path from id to � in C and define LW Z!C by k!�k .
L can be extended to a map R!

S1
iD�1 p ��i . L is a quasi-geodesic: for i < j 2Z

we have

d.L.i/;L.j //� 1
M

d.� ıL.i/; � ıL.j //D 1
M

d.G�i ;G�j /D 1
M
.j � i/ log�
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and d.L.i/;L.j //� .j � i/ len.p/.

Theorem 6.3 L is a Morse quasi-geodesic in C.

Proof Let ˛ be an .a; b/–quasi geodesic in C with endpoints on im L. We may
assume that ˛ is tame. Consider Q D � ı ˛ , then lenXn

QjŒt;t 0� �M � lenC ˛jŒt;t 0� �

Ma.t 0� t/CM b . By Remark 5.23, there exists a d , depending only on a; b;M;D

and � (where Lf is in the � thick part of Xn ) such that dHaus.imQ; imLf / < d . Since
� is proper (Lemma 6.2) we have dHaus.im L; im˛/ <D for some D depending only
on d .

6.2 The asymptotic cone of C

Definition 6.4 A nonprincipal maximal ultrafilter ! on the integers is a nonempty
collection of subsets of Z so that:

� ! is closed under inclusion

� ! is closed under finite intersection

� ! does not contain any finite sets

� A� Z, if A 62 ! then Z nA 2 !

Definition 6.5 Let ! be a nonprinciple maximal ultrafilter on the integers. Let
.Xi ;xi ; di/ be a sequence of based metric spaces. Define the following pseudo-distance
on
Q

i2N Xi :
d!.faig; fbig/D lim

!
dXi

.ai ; bi/

The ultralimit of .Xi ;xi/ is then

lim
!
.Xi ;xi ; di/D

�
y 2

Y
i2N

Xi j d!.y; fxig/ <1

��
�

where y � y0 if d!.y;y
0/D 0.

Consider a space X , a point x2X and a sequence of integers ki such that limi!1 kiD

1.

Definition 6.6 The asymptotic cone of .X;x; fkig/ relative to the ultrafilter ! is:

Cone!.X;x; ki/D lim
!

�
X;x; 1

ki
dX .�; �/

�
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The asymptotic cone of a geodesic metric space is a geodesic metric space.

We recall the following definition from Druţu and Sapir [18].

Definition 6.7 Let W be a complete metric space and let P be a collection of closed
geodesic subsets (called pieces). The space W is said to be tree-graded with respect to
P if the following properties are satisfied:

(1) The intersection of two pieces is either empty of a single point.

(2) Every simple geodesic triangle in X is contained in one piece.

The arcs starting in a given point w 2W intersecting each piece in at most one point
compose a real tree called a transversal tree.

In particular, if p is in a transversal tree then p is a cut point of W .

Theorem 6.8 (Druţu, Mozes and Sapir [17, Proposition 3.24]) Let X be a metric
space and let q be a quasi-geodesic. The following are equivalent:

� The image of q in every asymptotic cone of X is either empty or contained in a
transversal tree of X for some tree graded structure.

� q is a Morse quasi-geodesic.

We get the following corollary from Theorem 6.3.

Corollary 6.9 The image of an axis of an irreducible automorphism in Cone!C is
either empty or is contained in a transversal tree for some tree graded structure of
Cone!C.

Remark 6.10 It is tempting to try to define the asymptotic cone of Outer Space itself.
One would like to conclude that the cone is itself an asymmetric metric space. We
choose a basepoint x0 2 Xn and define:

lim
!
.Xn; fx0g; dLip/D

�
fyig 2

Y
i2N

Xn

ˇ̌̌̌
d!.fyig; fx0g/ <1

�
Note that by the asymmetry theorem d!.fx0g; fyig/ <1 but now it does not make
sense to mod out by the equivalence relation y� z if d.y; z/D0 because d.z;y/ might
be positive. For example, if we choose yi so that dLip.yi ;x0/D i and dLip.x0;yi/ is
bounded then d.fyig; fx0g/D 1 and d.fx0g; fyig/D 0. We could always restrict our
attention to the thick part of Outer Space where the distances are almost symmetric.
However, this space is quasi-isometric to C so we will not get anything new.
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6.3 Divergence in Outer Space

Definition 6.11 Let 
1; 
2 be two geodesic rays in Xn , with 
1.0/D 
2.0/D x . The
divergence function from 
1 to 
2 is:

div.
1; 
2; t/D inf
�

length.
 /
ˇ̌̌̌

 W Œ0; 1�! Xn XBt .x /


 .0/D 
1.t/; 
 .1/D 
2.t/

�
If f .t/ is a function such that:

(1) for every 
1; 
2 : div.
1; 
2; t/ � f .t/ (we use g.t/ � f .t/ to denote the
relationship f .t/� c �g.t/C c0 for all t )

(2) there exist geodesics 
1; 
2 such that div.
1; 
2; t/� f .t/.

then we say that the divergence function of Xn is on the order of f .t/. If only (1)
holds we say that f is an upper bound for the divergence of Xn , if only (2) holds we
say that f is a lower bound for the divergence of Xn .

Behrstock [3] proved that the divergence inMCG.S/ is quadratic. Duchin and Rafi [19]
prove that the divergence in Teichmüller space is quadratic. The proof that the diver-
gence is at least quadratic in the Outer Space setting needs very little modification, but
we include it for the reader’s convenience.

Proposition 6.12 Let 
 be a path in Xn , from x to y with d.�.x/; �.y//D 2R. Let
z the point on Lf in the middle of the segment Œ�.x/; �.y/�� L. Further assume that
the image of 
 lies outside the ball BR.z /. If R> 2D5:16 then there is a constant c

such that Len.
 /� cR2 where c only depends on the constants D5:16 and c5:12 .

Proof Subdivide 
 into n> 1 subsegments I1; I2; : : : ; In , each of which has length
R
2

except for possibly Len.In/ �
R
2

. Therefore Len.
 / � .n� 1/R
2

. Let L0 be the
subsegment of Lf centered at z of length R. Since L is b–contracting for b DD5:16

then L0 is b0–contracting for b0 D b C 4c5:12 C 3 (see Bestvina and Fujiwara [9,
Lemma 3.2]). Each segment Ij is contained in a ball BR=2.x

0
 / disjoint from L0 .

Thus the length of each �.Ij /� b0 , since these segments cover L0 we get R� nb0 .
Therefore Len.
 /� .n� 1/R

2
>
�

R
b0
� 1

�
R
2
D

1
2b0

R2�
1
2
R.

The exact behavior of the divergence function of Xn remains open.

Geometry & Topology, Volume 15 (2011)



Strongly contracting geodesics in Outer Space 2227

6.4 The Behrstock inequality

In this section let �; 2 Out.Fn/ be two irreducible outer automorphisms and f;g
their respective train-track representatives. Denote AD Lf , B D Lg and pA D �f
and pB D �g . Our first goal is to show that either A;B are parallel or the diameter of
pA.B/ is bounded, and we would like to understand what the bound depends on. We
introduce the following notation for the next lemma: if x;y 2A denote by Œx;y�A the
subinterval of A whose endpoints are x and y .

Lemma 6.13 There exist constants c; d such that if x;y2B with d.pA.x/;pA.y//>

c , then
ŒpA.x/;pA.y/�A �Nd .B/;

where c; d depend only on the constants s5:8; c5:8 applied to A and B and on D2:9.�/

where � is small enough so that A;B � Xn.�/.

Proof Denote c1 D D2:9.�/. For all z; w 2 Xn.�/: d.w; z/ < c1 � d.z; w/. Let
sA; cA be the constants from Lemma 5.8 applied to A, thus if z; w are points such
that d.pA.z/;pA.w// > sA then d.z; w/ > d.z;pA.z//Cd.pA.z/;pA.w//�cA . Let
aD 1C .c1/

2 , b D cA.1C c1/ and d D c5:24.a; b/ from Theorem 5.24 applied to B ,
that is, for every .a; b/–quasi-geodesic Q with endpoints on B , Nd .B/� imQ. We
prove that Œx;pA.x/�[ ŒpA.x/;pA.y/�A[ ŒpA.y/;y� is an .a; b/–quasi-geodesic.

First note

(14) d.x;y/ > d.x;pA.x//C d.pA.x/;pA.y//� cA:

Similarly,

d.y;x/ > d.y;pA.y//C d.pA.y/;pA.x//� cA

d.y;x/ > d.y;pA.y//� cA >
1
c1

d.pA.y/;y/� cA

So

(15) .c1/
2
� d.x;y/ > c1d.y;x/ > d.pA.y/;y/� c1cA

Adding equations (14) and (15) we get

.1C .c1/
2/d.x;y/ > d.x;pA.x//C d.pA.x/;pA.y//C d.pA.y/;y/� cA.1C c1/:

Therefore Œx;pA.x/�[ŒpA.x/;pA.y/�A[ŒpA.y/;y� is a .1C.c1/
2; cA.1Cc1//–quasi-

geodesic. Hence ŒpA.x/;pA.y/�A �Nd .B/.
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The next Lemma is motivated by the following observation. Let X is a proper, metric
space with a properly discontinuous isometric G –action. Let g; h 2G be hyperbolic
isometries of X and let Ag;Ah denote their axes. Then for every d there is a constant
k which depends only on d; tr.g/; tr.h/ such that either Ag;Ah are parallel, or the
length of Ag \Nd .Ah/ is shorter than k . In our case, Outer Space is not proper. The
closure of a ball Br .x!/D fy 2 Xn j d.x;y/ < rg need not be compact. However

Claim The closure of the ball Br .x /D fy 2 Xn j d.y;x/ < rg in SXn is contained
in Xn , hence the closure of the ball Br .x / in Xn is compact.

Proof For each y 2Br .x /, and for all conjugacy classes ˛ , l.˛;y/� l.˛;x/
er . Thus

the length functions are bounded away from 0 by some c D
shortest loop in x

er . Hence,
Br .x / is contained in the c–thick part of Xn , which is quasi-symmetric. Thus, there
is some h such that for all y 2 Br .x /, d.x;y/ < h. Let yn 2 Br .x / converge in
Xn . For each ˛ , the sequence l.˛;yn/ is bounded so there is a convergent subsequence.
Since there are countably many conjugacy classes, by a diagonal argument we can find
a subsequence of yn so that all length functions l.˛;yn/ converge without rescaling.
They must converge to a free simplicial tree since the length functions are bounded
away from zero. Thus the limit point in Xn is contained in Xn .

Recall that the Out.Fn/ action is properly discontinuous. Thus for every r there is a
number Nr such that Br .x / contains no more than Nr points of any orbit.

Definition 6.14 Let A;B be two axes in Xn.�/ and r > 0. Define the closed set

AB.r/D fx 2A j d.x;pB.x//� r and d.pB.x/;x/� rg

Lemma 6.15 For every r , there exists a constant c D c.tr.g/; previous constants/
such that either f;g have common powers, or the diameter of AB.r/ is smaller than
ctr.f /.

Proof Let ` denote the diameter of AB.d/. Let a be the leftmost point on AB.r/

assuming that f translates points to the right. Without loss of generality, assume f
and g translate points in the same direction. Denote b D pB.a/ and k D

�
l

tr.f /

˘
.

We will show that there is an R such that for each 1 � i � k there is a j such that
d.af ig�j ; a/ < R. There are at most NR points in fa �Out.Fn/g \BR.a / thus
there are two possibilities:

� k �NR .
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� There are i; j ; s; t such that af ig�j D af sg�t hence f igt�jf �s is in the
stabilizer of a. If k >NRjStab.a/j then there are integers i; j ; q; w; s; t such
that f igjf q D f wgsf t hence f;g have common powers.

Therefore if f;g don’t have common powers then k < C and ` < .C C 1/tr.f /. We
now prove the existence of R:

For 1� i � k there is a unique j such that

d.pB.a/;pB.af
i/g�j / < tr.g/

Next we want to show that d.pB.af
i/; af i/ is bounded. y D af i is in the interval

Œa; a0�A where a; a0 are the endpoints of AB . Œpb.a/; a� [ Œa; a
0� [ Œa0;pB.a

0/� is a
.1; 2d/ quasi-geodesic thus it is contained in the r1 neighborhood of ŒpB.a/;pB.a

0/�B
by 5.24. Thus there is some point b0 2B such that d.y; b0/ < r1 hence d.y;pB.y// <

r1 . By making r1 a bit larger we can also satisfy d.pB.y/;y/ < r1 (we are in the
thick part).

Since d.pB.af
i/; af i/ < r1 then d.pB.af

i/g�j ; af ig�j / < r1 hence

d.a; af ig�j /� d.a;pB.a//C d.pB.a/;pB.af
i/g�j /C d.pB.af

i/g�j ; af ig�j /

� r1C tr.g/C r1

D tr.g/C 2r1

Therefore, d.af ig�j ; a/ < c1.tr.g/C 2r1/DR where c1 DD2:9.�/.

Corollary 6.16 There exists a constant k , depending only on the constants from
Lemma 6.15 and Lemma 6.13, such that either f;g have common powers or

diamfpA.B/g< k

Proof Let fxig; fyig be sequences on B so that xi converges to one end of B

and yi to the other. If d.pA.xi/;pA.yi// > c6:13 then ŒpA.xi/;pA.yi/�A � Nd .B/.
Thus ŒpA.xi/;pA.yi/�A is contained in AB.d/. Therefore by Lemma 6.15 there is a
cD c6:15tr.f / such that either f;g have common powers or the diameter of AB.d/< c

and hence the diameter of ŒpA.xi/;pA.yi/�A is smaller than c .

Let us go back for a moment to the surface case. We denote by M.S/ the marking
complex of S . Let Y;Z be subsurfaces of S , denote by C.Z/; C.Y / the curve
complexes of Z;Y . For definitions of the curve complex and the marking complex
consult Behrstock [3]. Define the projections (slightly abusing notation) pY W C.S/!
C.Y /, pY WM.S/ ! C.Y / and pZ W C.S/ ! C.Z/, pZ WM.S/ ! C.Z/. In [3,
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Theorem 4.3], Behrstock proved that if Y;Z are overlapping subsurfaces of S , neither
of which is an annulus, then for any marking � of S :

dC.Y /.pY .@Z/;pY .�// >M H) dC.Z/.pZ .@Y /;pZ .�// <M

And the constant M depends only on the topological type of S . We prove an analogous
estimate for our projections.

Suppose f;g; h are stable train-track maps representing fully irreducible automor-
phisms and A;B;C are their axes. Suppose that no two of these automorphisms have
common powers. We define the coarse distance from B to C with respect to A as

dA.B;C /D diamfpA.C /[pA.B/g

Lemma 6.17 There exists a constant M > 0 depending only on the constants from
Lemma 5.8 and Corollary 6.16 such that at most one of dA.B;C /; dB.A;C / and
dC .A;B/ is greater than M .

Proof Let sA; cA; sB; cB; sC ; cC be the constants from Lemma 5.8 applied to any of
the geodesics A;B;C respectively. Let b � k6:16 the constant from Corollary 6.16
applied to any two of the three geodesics. Let M >maxfsA; cA; sB; cB; sC ; cC gC 2b .
We claim that if dB.A;C />M then dC .A;B/<M . Assume by way of contradiction
that both are greater than M . Let y 2A and q 2 B such that d.y; q/D dHaus.A;B/.
Let z D pC .y/ � pC .A/, p D pB.z/ � pB.C / and x D pC .q/ � pC .B/ (see
Figure 7).

A
y Cz

x

B
pq

Figure 7: If d.p; q/ >M then d.x; z/ <M .

Because d.pC .y/;pC .q//D d.z;x/ >M � 2b > sC ,

d.y; q/ > d.y; z/C d.z;x/� cC > d.y; z/CM � 2b� cC :
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Since d.pB.y/;pB.z//D d.q;p/ >M � 2b > sB we have

d.y; z/ > d.y; q/C d.q;p/� cB > d.y; q/CM � 2b� cB:

Therefore
d.y; q/ > d.y; q/C 2M � cC � cB � 4b;

which implies 2M < cC C cBC 4b which is a contradiction.

Theorem 6.18 Let �1; : : : ; �k be fully irreducible outer automorphisms such that no
two have common powers and f1; : : : ; fk their respective train track representatives
with axes A1; : : : ;Ak . Let F be the set of translates of A1; : : : ;Ak under the action
of Out.Fn/. Then there exists a constant M > 0 such that for any A;B;C 2 F then

dA.B;C / >M H) dB.A;C / <M:

References
[1] Y Algom-Kfir, The Lipschitz metric on Outer Space, PhD thesis, University of Utah

(2010)

[2] Y Algom-Kfir, M Bestvina, Asymmetry of Outer Space, Geom. Dedicata (to appear)
arXiv:0910.5408v1

[3] J A Behrstock, Asymptotic geometry of the mapping class group and Teichmüller
space, Geom. Topol. 10 (2006) 1523–1578 MR2255505

[4] M Bestvina, A bers–like proof of the existence of train tracks for free group automor-
phisms arXiv:1001.0325v2

[5] M Bestvina, M Feighn, Outer limits, preprint (1994) Available at http://
andromeda.rutgers.edu/~feighn/research.html

[6] M Bestvina, M Feighn, The topology at infinity of Out.Fn/ , Invent. Math. 140 (2000)
651–692 MR1760754

[7] M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms
of free groups, Geom. Funct. Anal. 7 (1997) 215–244 MR1445386

[8] M Bestvina, M Feighn, M Handel, The Tits alternative for Out.Fn/ I: Dynamics
of exponentially-growing automorphisms, Ann. of Math. .2/ 151 (2000) 517–623
MR1765705

[9] M Bestvina, K Fujiwara, A characterization of higher rank symmetric spaces via
bounded cohomology, Geom. Funct. Anal. 19 (2009) 11–40 MR2507218

[10] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math.
.2/ 135 (1992) 1–51 MR1147956

Geometry & Topology, Volume 15 (2011)

http://arxiv.org/abs/0910.5408v1
http://dx.doi.org/10.2140/gt.2006.10.1523
http://dx.doi.org/10.2140/gt.2006.10.1523
http://www.ams.org/mathscinet-getitem?mr=2255505
http://arxiv.org/abs/1001.0325v2
http://andromeda.rutgers.edu/~feighn/research.html
http://andromeda.rutgers.edu/~feighn/research.html
http://dx.doi.org/10.1007/s002220000068
http://www.ams.org/mathscinet-getitem?mr=1760754
http://dx.doi.org/10.1007/PL00001618
http://dx.doi.org/10.1007/PL00001618
http://www.ams.org/mathscinet-getitem?mr=1445386
http://dx.doi.org/10.2307/121043
http://dx.doi.org/10.2307/121043
http://www.ams.org/mathscinet-getitem?mr=1765705
http://dx.doi.org/10.1007/s00039-009-0717-8
http://dx.doi.org/10.1007/s00039-009-0717-8
http://www.ams.org/mathscinet-getitem?mr=2507218
http://dx.doi.org/10.2307/2946562
http://www.ams.org/mathscinet-getitem?mr=1147956


2232 Yael Algom-Kfir

[11] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der
Mathematischen Wissenschaften 319, Springer, Berlin (1999) MR1744486

[12] Y-E Choi, K Rafi, Comparison between Teichmüller and Lipschitz metrics, J. Lond.
Math. Soc. .2/ 76 (2007) 739–756 MR2377122

[13] M M Cohen, M Lustig, Very small group actions on R–trees and Dehn twist automor-
phisms, Topology 34 (1995) 575–617 MR1341810

[14] D Cooper, Automorphisms of free groups have finitely generated fixed point sets, J.
Algebra 111 (1987) 453–456 MR916179

[15] M Culler, J W Morgan, Group actions on R–trees, Proc. London Math. Soc. .3/ 55
(1987) 571–604 MR907233

[16] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent.
Math. 84 (1986) 91–119 MR830040
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