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On intrinsic geometry of surfaces in normed spaces

DMITRI BURAGO

SERGEI IVANOV

We prove three facts about intrinsic geometry of surfaces in a normed (Minkowski)
space. When put together, these facts demonstrate a rather intriguing picture. We
show that (1) geodesics on saddle surfaces (in a space of any dimension) behave
as they are expected to: they have no conjugate points and thus minimize length in
their homotopy class; (2) in contrast, every two-dimensional Finsler manifold can be
locally embedded as a saddle surface in a 4–dimensional space; and (3) geodesics
on convex surfaces in a 3–dimensional space also behave as they are expected to:
on a complete strictly convex surface, no complete geodesic minimizes the length
globally.

53C22, 53C60; 53C45

1 Introduction

The goal of this paper is to prove three facts about intrinsic geometry of surfaces in
a normed (Minkowski) space. When put together, these facts demonstrate a rather
intriguing picture. Namely, Theorem 1.2 asserts that geodesics on saddle surfaces (in a
space of any dimension) behave as they are expected to: they have no conjugate points
and thus minimize length in their homotopy class. In contrast, Theorem 1.4 says that
every two-dimensional Finsler manifold can be locally embedded as a saddle surface
in a 4–dimensional normed space.

Thus the fact that geodesics on saddle surfaces minimize the length is global and, unlike
in Riemannian geometry, it cannot be derived from studying local invariants such as
the Gaussian curvature. Note that the property that a surface is saddle has nothing to
do with various types of Finsler curvatures, for they can be negative or positive at some
points of cylindrical surfaces.

Furthermore, Theorem 1.7 asserts that geodesics on convex surfaces (in a 3–dimensional
space) also behave as they are expected to: on a complete strictly convex surface, no
complete geodesic minimizes the length globally (and therefore some geodesics have
conjugate points.) Therefore such a surface cannot be re-embedded as a saddle surface
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in any normed space (even though it can be re-embedded locally, hence this obstruction
is of global nature). The nature of these phenomena remains obscure to us.

Remark Interestingly enough, for polyhedral surfaces in normed spaces, global
minimality of geodesics can be deduced from local intrinsic geometry: a globalization
theorem holds. Studying Finsler geodesics has nice applications where there is no
word “Finsler” in the formulation. For instance, consider a braid of several strings
connecting two sets of nails in two parallel planes in R3 . Having fixed topological
type of the braid, one asks if the braid with the shortest total length of strings is unique
(and if so, how convex is the length function near the optimum; compare with Burago,
Grigoriev and Slissenko [2]). This question, having started from a purely Euclidean
setup, naturally reduces to a problem about Finslerian geodesics. (We are grateful to
Rahul [4] who brought this question to our attention.) We will address this aspect of
geometry of polyhedral Finsler manifolds along with a few others elsewhere.

Now we proceed to definitions and formulations. Let k � k be a norm on a finite
dimensional vector space V . Note that the norm is uniquely determined by its unit
ball B D fv 2 V W kvk � 1g which is a centrally symmetric convex body in V . The
boundary of B is the unit sphere of k � k; it also determines the norm uniquely.

We say that a norm is C r –smooth if it is a C r function on V away from the origin.
This is equivalent to the property that the unit sphere of the norm is a C r hypersurface
in V . If the C r prefix is omitted, the term “smooth” means C1 (though the results
are probably valid for C 2 , we just did not care to chase the number of derivatives
through the proofs).

A norm k � k is said to be strictly convex if its unit sphere does not contain straight line
segments. This is equivalent to the property that the triangle inequality

kvCwk � kvkCkwk; v; w 2 V

is strict unless v and w are proportional.

A norm k � k on V is said to be quadratically convex if for every v 2 V n f0g there
is a positive definite quadratic form on V whose square root majorizes the norm
everywhere and equals the norm on the vector v . For smooth norms, this is equivalent
to the following: the function k � k has positive definite second derivative at every point
of V n f0g. Smooth quadratically convex norms are called Minkowski norms.

A (reversible) Finsler metric on a smooth manifold M is a continuous map 'W TM!R
which is smooth away from the zero section and such that for every x2M the restriction
of ' to TxM is a Minkowski norm. A Finsler manifold is a manifold M equipped
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with a Finsler metric. A detailed treatise of differential geometry of Finsler manifolds
can be found eg in Bao, Chern and Shen [1]; below is a list of the basic definitions and
facts that we use.

The length of a smooth curve  W Œa; b�!M in a Finsler manifold M D .M; '/ is
defined by

length. /D
Z b

a

'. P .t// dt:

Geodesics in M are locally length minimizing curves. Equivalently, geodesics are
critical points of the energy functional  7!

R
'2. P /; they are determined by the

corresponding Euler–Lagrange equation. Smoothness and quadratic convexity of '
ensure that this equation is nondegenerate and imply the usual existence and uniqueness
properties of solutions. All geodesics in this paper are assumed parameterized by arc
length.

Surfaces in normed spaces are natural examples of Finsler manifolds. Namely if V

is a vector space with a Minkowski norm k � k and M is a smooth manifold, then
every smooth immersion f W M ! V induces a Finsler ' metric on M given by
'.v/D kdf .v/k for all v 2 TM . If ' , f and k � k are so related, one also says that
f is an isometric immersion of .M; '/ to .V; k � k/.

Definition 1.1 A two-dimensional smooth surface S in Rn (that is, a smooth immer-
sion S W M ! Rn where M is a two-dimensional manifold) is strictly saddle (resp.
saddle) at a point p 2M if, for every normal vector at p , the second fundamental form
of S with respect to this normal vector is indefinite (resp. indefinite or degenerate). A
surface is (strictly) saddle if it is (strictly) saddle at every point.

One easily sees that this definition is affine invariant (or, equivalently, is independent of
the Euclidean structure in the ambient space). Therefore it makes sense for surfaces in
a vector space (without any Euclidean structure). In a Euclidean space, saddle surfaces
have nonpositive Gaussian curvature and therefore their geodesics have no conjugate
points. Furthermore, only saddle surfaces preserve nonpositiveness of curvature under
all affine transformations; see Šefel’ [5].

The main result of this paper is the following theorem asserting that the “no conjugate
points” property of saddle surfaces holds true in non-Euclidean normed spaces as well.

Theorem 1.2 Let V be a finite dimensional space with a Minkowski norm and S a
smooth saddle surface in V . Then every geodesic segment on S minimizes the length
among all C 0 –nearby curves with the same endpoints.
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The standard argument (similar to the proof of the Cartan–Hadamard theorem) shows
that Theorem 1.2 implies the following.

Corollary 1.3 Let M be a complete simply connected two-dimensional Finsler mani-
fold which admits a saddle isometric immersion into a vector space with a Minkowski
norm. Then every two points of M are connected by a unique geodesic, and all
geodesics are length minimizers.

These results could make one think that Finsler metrics of saddle surfaces have some
special local properties (such as nonpositivity of some curvature-like invariants) that
imply these global properties. However the following theorem shows that this is not
the case: every Finsler metric (including positively curved Riemannian metrics) can be
locally realized as a metric of a saddle surface.

Theorem 1.4 Let M be a two-dimensional Finsler manifold. Then every point of M

has a neighborhood which admits a saddle smooth isometric embedding into a 4–
dimensional normed space with a Minkowski norm.

Remark 1.5 Every n–dimensional Finsler manifold can be locally isometrically
embedded into a 2n–dimensional normed space with a Minkowski norm; see Shen [6]
and the references therein. Globally, every compact Finsler manifold M can be
isometrically embedded in a finite dimensional normed space V but the dimension
of V cannot be bounded above in terms of dim M and moreover noncompact Finsler
manifolds in general do not admit such embeddings; see our earlier work [3].

Remark 1.6 It is still not clear whether saddle surfaces in 3–dimensional spaces are
intrinsically different from convex ones. In other words, can a strictly saddle surface
in a 3–dimensional normed space (with a Minkowski norm) be locally isometric to a
strictly convex surface in another such space?

There might be obstructions to such isometries: it seems that, unlike in the Rie-
mannian case, a generic Finsler metric does not admit any isometric embeddings into
3–dimensional spaces. So it would not be surprising that such an embedding, if it
exists at all, is essentially unique.

The “opposite” to the class of saddle surfaces is the class of convex surfaces. Convex
surfaces in R3 are the only surfaces such that all their affine transformations are
nonnegatively curved; see [5]. The next theorem shows that geodesics on complete
convex surfaces in normed spaces also possess properties typical for positive curvature.
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Theorem 1.7 Let V be a 3–dimensional normed space whose norm is C 1 –smooth
and strictly convex. Let B � V be a convex set with nonempty interior not containing
straight lines (in other words, B is not a cylinder). Then there are no geodesic lines
in @B (a geodesic line is a curve which is a shortest path between any pair of its points).

The rest of the paper is organized as follows. Theorems 1.2, 1.4 and 1.7 are proved in
Sections 2, 3 and 4, respectively. These sections are completely independent from one
another and each section introduces its own notation.

The proofs are mostly elementary although some parts involve cumbersome compu-
tations. We do not use any machinery of contemporary Finsler geometry (beyond
things like the geodesic equation in Section 2). In fact, as shown by Theorem 1.4, this
machinery would be useless here.

Acknowledgements The first author was partially supported by NSF grants DMS-
0604113 and DMS-0412166. The second author was partially supported by the Dynasty
foundation and RFBR grant 08-01-00079-a.

2 Geodesics on saddle surfaces

The goal of this section is to prove Theorem 1.2.

2.1 Preliminaries and notation

We consider a finite dimensional vector space V with a Minkowski norm denoted by ˆ.
As usual V � denotes the dual space (that is the space of linear functions from V to R).
By h ; i we denote the standard pairing between V � and V , that is, hL; vi D L.v/

for L 2 V � , v 2 V .

The dual space V � carries the dual norm ˆ� given by

ˆ�.L/D supfhL; vi Wˆ.v/D 1g;

this dual norm is also smooth and quadratically convex. The above supremum is
attained at a unique vector from the unit sphere of ˆ, the direction of this vector is
referred to as the direction of maximal growth, or the gradient direction, of L.

For a C 1 function f W V ! R and x 2 V , we denote by df .x/ the derivative of f
at x . This is an element of V � ; in our notation, the derivative of f at x along a vector
v 2 V is written as hdf .x/; vi. If df .x/¤ 0, then the gradient direction of f at x is
defined as that of the covector df .x/.
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The Legendre transform of ˆ is the map LˆW V ! V � defined by

Lˆ.v/D 1
2
dˆ2.v/:

One easily sees that this map features the following properties:

(i) It is positively homogeneous: Lˆ.tv/D tLˆ.v/ for all v 2 V and t � 0.

(ii) If ˆ.v/ D 1, then Lˆ.v/ is the unique linear function L 2 V � such that
ˆ�.L/D 1 and hL; vi D 1.

(iii) Lˆ preserves the norm: ˆ�.Lˆ.v//Dˆ.v/ for all v 2 V .

(iv) Lˆ is a diffeomorphism between V n f0g and V � n f0g, in particular, it is a
diffeomorphism between the unit spheres of ˆ and ˆ� .

(v) The inverse Legendre transform L�1
ˆ

coincides with the Legendre transform Lˆ�

(as usual, we identify V �� with V ).

We use these properties without explicitly referring to them.

Let  W I ! V , where I � R is an interval, be a smooth unit-speed curve (that is,
ˆ. P /� 1). The covector

K .t/ WD
d

dt
Lˆ. P .t//

is referred to as the curvature covector of  at t . (This covector takes the role of
the curvature vector in the first variation formula.) A curve  lying on a smooth
submanifold M � V is a geodesic in M if an only if K .t/ annihilates the tangent
space T.t/M � V for all t (that is, hK .t/; vi D 0 for all v 2 T.t/M ).

For a Finsler metric ' on a manifold M , the notation '� and L' denotes the fiberwise
dual norm and the fiberwise Legendre transform; '� is a function on T �M and L' is
a map from TM to T �M . Note that, if M � V is a smooth submanifold, ' is the
induced Finsler metric on M , x 2M and v 2 TxM , then L'.v/D LˆjTxM .

2.2 Calibrators

Let S W M ! V be a saddle surface and  W Œa; b�!M a geodesic of the induced
Finsler metric ' on M . We are going to prove that  minimizes length among C 0 –
nearby curves. It suffices to do this assuming that  is embedded (that is, has no
self-intersections in M ). Indeed, to reduce the general case to the special case when 
is embedded, construct an immersion

f W .a� "; bC "/� .�"; "/!M
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such that f .t; 0/ D  .t/ for all t 2 Œa; b� and apply the special case to the induced
metric f �' on .a� "; bC "/� .�"; "/ and the geodesic t 7! .t; 0/ there.

Throughout the rest of the proof we assume that  is embedded and extended (as an
embedded geodesic) to an interval .a� "; bC "/. We abuse notation and denote the
image  .a� "; bC "/�M by the same letter  .

Definition 2.1 Let U �M be a neighborhood of  .Œa; b�/. A map hW U !R is said
to be a calibrator for  if the following holds:

(i) h. .t//D t for all t 2 .a� "; bC "/ such that  .t/ 2 U .

(ii) '�.dh.x//� 1 for all x 2 U .

If there is a calibrator for  defined on a neighborhood U , then  jŒa;b� is a unique
shortest path in U between  .a/ and  .b/. Indeed, let 1W Œc; d �! U be a piecewise
smooth path with the same endpoints. Then

length.1/D

Z d

c

'. P1.t// dt �

Z d

c

hdh.1.t//; P1.t/i dt D

Z d

c

d

dt
h.1.t// dt

D h.1.d//� h.1.c//D h. .b//� h. .a//D b� aD length. jŒa;b�/:

Here we used the fact that '�.dh.x//� 1 for all x 2 U and hence hdh.x/; vi � '.v/

for all v 2 TxM .

Definition 2.2 Let U �M be a neighborhood of  .Œa; b�/. A map hW U !R is said
to be an almost calibrator for  if the following holds:

(i) h. .t//D t for all t 2 .a� "; bC "/ such that  .t/ 2 U .

(ii) '�.dh.x//� 1C o.dist.x;  /2/ as dist.x;  /! 0.

Lemma 2.3 If  admits an almost calibrator, then  jŒa;b� is a shortest path in some
neighborhood of its image.

Proof By the definition of almost calibrator, we have hdh. .t//; P .t/i D 1 and
'�.dh. .t// � 1 for all t . Hence '�.dh. .t// D 1 and dh. .t// D L'. P .t//. We
may assume that dh¤ 0 on U .

Define a vector field V on U by

V .x/D L�1
' .dh.x//D L'�.dh.x//; x 2 U:
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For any covector � 2T �M such that h�;V .x/i, the derivative of '�x at dh.x/2T �M

along � equals zero (this follows from the definition of the Legendre transform L'� ).
Therefore

(2-1) '�.dh.x/C �/� '�.dh.x//CCk�k2

for some constant C , all x 2 U sufficiently close to  .Œa; b�/, and all � 2 T �M such
that h�;V .x/i D 0.

Recall that V . .t//D P .t/ for all t , so  is a trajectory of V . Hence if U is sufficiently
small, there is a smooth map f W U !R such that df ¤ 0 and f is constant along the
trajectories of V or, equivalently, hdf .x/;V .x/i D 0 for all x 2 U . We may assume
that f D 0 on  , then

c � dist.x;  /� f .x/� C � dist.x;  /

for some constants c;C > 0 and all x 2 U . Define a function gW U !R by

g.x/D
�
1� �f .x/2

�
� h.x/

for a small � > 0. Note that g D f on  . We have

dg.x/D
�
1� �f .x/2

��
dh.x/�

2�f .x/

1� �f .x/2
� df .x/

�
:

Since hdf .x/;V .x/i D 0, we can apply (2-1) to

� D�
2�f .x/

1� �f .x/2
� df .x/:

This yields

(2-2) '�.dg.x//�
�
1� �f .x/2

�
�'�.dh.x//CC �

4�2f .x/2

1� �f .x/2
� kdf .x/k2:

We may assume that U is so small that �f .x/2 < 1=2 for all x 2 U and kdf k is
bounded on U . Then the second summand in (2-2) is bounded above by C1�

2f .x/2

for some constant C1 > 0. By the assumption (ii) of Definition 2.2, we have

'�.dh.x//� 1C o.dist.x;  /2/D 1C o.f .x/2/; dist.x;  /! 0:

Hence we have the following estimate for the first summand in (2-2):

.1� �f .x/2/ �'�.dh.x//� 1� 1
2
�f .x/2

for all x sufficiently close to  . Thus (2-2) implies that

'�.dg.x//� 1� 1
2
�f .x/2CC1�

2f .x/2 D 1� 1
2
�f .x/2.1� 2C1�/
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for all x from a neighborhood U 0 � U of  .Œa; b�/. Hence '�.dg.x// � 1 for all
x 2 U 0 provided that � < .2C1/

�1 . Thus g is a calibrator for  in U 0 , therefore
 jŒa;b� is a shortest path in U 0 .

2.3 The construction

Our goal is to construct an almost calibrator h for an embedded geodesic  on our
saddle surface. Recall that our surface is parameterized by S W M !V . Let S DS ı .
We define hW U!R, where U is a neighborhood of  .Œa; b�/, by the following implicit
relation: the value h.x/ is a parameter t 2 .a� "; bC "/ such that

(2-3) hLˆ. PS .t//;S.x/� S .t/i D 0:

Observe that for x D  .t/ this equation is satisfied and the derivative of its left-hand
side with respect to t is nonzero (more precisely, it equals �1). Hence by the Implicit
Function Theorem there exists a neighborhood U of  and a unique smooth function
hW U !R such that h. .t//D t for all t and (2-3) holds for every x 2U and t Dh.x/.

We are going to show that h is an almost calibrator for  . The first requirement of
Definition 2.2 is immediate from the construction. The second requirement is local; it
suffices to verify it in a small neighborhood of every point of  . Therefore we may
assume that our surface is embedded and identify M with its image in the space. That
is, M D U is a submanifold of V and S is the inclusion map M ! V . Then (2-3)
takes the form

(2-4) hLˆ. P .t//;x�  .t/i D 0

where x 2M � V , t D h.x/.

Riemannian case Before proving that h is an almost calibrator, we briefly explain
why this is true in the case when the ambient space is Euclidean. First observe that the
condition (ii) in the definition of almost calibrator depends only on the derivatives of h

at  up to the second order. By (2-4), every level set h�1.t/ of h is the intersection
of M with the hyperplane orthogonal to  at  .t/. This normal section of the surface
has zero geodesic curvature at  .t/, therefore it suffices to prove the result for a similar
function whose level sets are geodesics orthogonal to  . Since the Gaussian curvature
of the surface in nonpositive, these geodesics diverge from one another, hence the
distance between level sets is minimal at the base curve  . This implies that the norm
of the derivative of our function attains its minimum (equal to 1) at  , hence the result.
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2.4 Computations

Lemma 2.4 Let x0 D  .t0/ where t0 2 .a� "; bC "/. Then

dh.x0/D Lˆ. P .t0//jTx0
M D L'. P .t0//

and therefore '�.dh.x0//D 1.

Proof Recall that h.x0/D t0 . By (2-4) we have

hLˆ. P .h.x///;x�  .h.x//i D 0

for all x 2M . Differentiate this identity at x D x0 along a vector v 2 Tx0
M . Since

the second term x�  .h.x// of the above product is zero for x D x0 , the derivative
of the first term cancels out, and the differentiation yields

hLˆ. P .t0//; v� P .t0/h0vi D 0

where h0v is the derivative of h at x0 along v , that is h0v D hdh.x0/; vi. Since
hLˆ. P .t0//; P .t0/i D 1, it follows that h0v D hLˆ. P .t0//; vi. Since v is an arbitrary
vector from Tx0

M , it follows that

dh.x0/D Lˆ. P .t0//jTx0
M :

Since P .t0/ is tangent to the surface, the right-hand side equals L'. P .t0//. The identity
'�.dh.x0//D 1 now follows from the fact that '�.L'.v//D '.v/ for every v 2 TM .

Now we introduce a special coordinate system .t; s/ in a neighborhood of  . The
s–coordinate lines of this system are level curves of h. The t –coordinate lines are
“gradient curves” of h (that is, curves tangent to the vector field L�1

' .dh/), in particular,
 itself is the t –coordinate line corresponding to s D 0.

More precisely, let r W .a� "; bC "/� .�"; "/!M � V be a local parameterization
(whose argument is denoted by .t; s/) such that for all .t; s/ the following holds:

(1) r.t; 0/D  .t/.

(2) h.r.t; s//D t .

(3) The first partial derivative r 0t of r at .t;s/ is proportional to the vector L�1
' .dh.x//

where x D r.t; s/.
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Lemma 2.4 ensures that these conditions are compatible. The third condition means that
the vector r 0t points in the direction of the maximal growth of h. Since the derivative
of h along this vector equals 1 (by the second condition), it follows that

'�.dh.x//D
1

'.r 0t .t; s//
D

1

ˆ.r 0t .t; s//

for x D r.t; s/. Therefore the requirement (ii) of Definition 2.2 for h is equivalent to
the following:

ˆ.r 0t .t; s//� 1� o.s2/; s! 0:

�.t; s/Dˆ2.r 0t .t; s//:Denote

Now it suffices to prove that

�.t; s/� 1� o.s2/; s! 0:

By Lemma 2.4 we have �.t; 0/ D 1 for all t , therefore it suffices to prove that
�0s.t; 0/D 0 and �00ss.t; 0/� 0 for all t .

Fix t0 2 .a � "; b � "/ and let us verify that �0s.t0; 0/ D 0 and �00ss.t0; 0/ � 0. We
introduce the following notation:

x0 D r.t0; 0/D  .t0/;

v.t; s/D r 0t .t; s/;

v0 D v.t0; 0/D P .t0/;

LD Lˆ.v0/D Lˆ. P .t0//;

K D d
dt

ˇ̌
tDt0

Lˆ. P .t//

Recall that K 2 V � is the “curvature covector” of  at t0 and it annihilates TxM

(since  is a geodesic). Using this notation, the definition of � can be written as

�.t; s/Dˆ2.v.t; s//:

Lemma 2.5 For all s 2 .�"; "/ we have

hL; v0s.t0; s/i D �hK; r
0
s.t0; s/i;(2-5)

hL; v0s.t0; 0/i D 0;(2-6)

hL; v00ss.t0; 0/i D �hK; r
00
ss.t0; 0/i:(2-7)

Proof The fact that h.r.t; s//D t and (2-4) imply that

hLˆ. P .t//; r.t; s/� r.t; 0/i D 0
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for all t; s . Differentiating this with respect to t yields˝
d
dt
Lˆ. P .t//; r.t; s/� r.t; 0/

˛
C
˝
Lˆ. P .t//; r 0t .t; s/� r 0t .t; 0/

˛
D 0:

hLˆ. P .t//; r 0t .t; 0/i D hLˆ. P .t//; P .t/i D 1;Since

it follows that˝
d
dt
Lˆ. P .t//; r.t; s/� r.t; 0/

˛
C
˝
Lˆ. P .t//; r 0t .t; s/

˛
� 1D 0;

or, equivalently,˝
Lˆ. P .t//; v.t; s/

˛
D 1�

˝
d
dt
Lˆ. P .t//; r.t; s/� r.t; 0/

˛
:

Substituting t D t0 and using the definitions of L and K yields

hL; v.t0; s/i D 1� hK; r.t0; s/� r.t0; 0/i:

Differentiating this with respect to s yields (2-5). Since r 0s.t0; 0/ is a tangent vector
to M at x0 , we have hK; r 0s.t0; 0/i D 0, hence substituting s D 0 into (2-5) yields
(2-6). Finally, differentiating (2-5) with respect to s at s D 0 yields (2-7).

Recall that LD Lˆ.v0/D
1
2
dˆ2.v0/

by the definitions of L and Legendre transform. Now we can verify that �0s.t0; 0/D 0:

�0s.t0; 0/D
d
ds

ˇ̌
sD0

ˆ2.v.t0; s//D hdˆ
2.v0/; v

0
s.t0; 0/i D 2hL; v0s.t0; 0/i D 0

(the last identity follows from (2-6)).

Define a quadratic form Q on V by

QD 1
2
d2ˆ2.v0/

(this is the second derivative at v0 of the function v 7! 1
2
ˆ2.v/ on V ). Since ˆ is a

quadratically convex norm, Q is positive definite. We use Q as an auxiliary Euclidean
structure on V .

From the definitions, for any w 2 V we have

hK; wi D
˝

d
dt

ˇ̌
tDt0

Lˆ. P .t//; w
˛
DQ. R .t0/; w/

since Lˆ. P .t// D 1
2
dˆ2. P .t// and P .t0/ D v0 . In particular, the vector R .t0/ is

Q–orthogonal to the tangent plane Tx0
M . Let n be a Q–unit vector which is Q–

orthogonal to Tx0
M and proportional to R .t0/ if the latter is nonzero. Then

(2-8) hK; wi DQ. R .t0/; w/DQ. R .t0/; n/ �Q.w; n/
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for every w 2 V . Now we compute �00ss.t0; 0/ as follows:

(2-9) 1
2
�00ss.t0; 0/D

d2

ds2

ˇ̌̌̌
sD0

1
2
ˆ2.v.t0; s//DQ.v0s; v

0
s/CL.v00ss/

where the partial derivatives v0s and v00ss are taken at .t0; 0/. By (2-7), at .t; s/D .t0; 0/
we have

L.v00ss/D�hK; r
00
ssi D �Q. R .t0/; n/ �Q.r

00
ss; n/D�Q.r 00t t ; n/ �Q.r

00
ss; n/

where the second identity follows from (2-8). Using this identity and the fact that
v0s D r 00ts , we rewrite (2-9) as follows:

1
2
�00ss.t0; 0/DQ.r 00ts; r

00
ts/�Q.r 00t t ; n/ �Q.r

00
ss; n/:

With the trivial estimate Q.r 00ts; r
00
ts/�Q.r 00ts; n/

2 , this implies

1
2
�00ss.t0; 0/�Q.r 00ts; n/

2
�Q.r 00t t ; n/ �Q.r

00
ss; n/:

The right-hand side is minus the determinant of the second fundamental form of M

with respect to the Euclidean structure Q and the normal vector n. Since M is a
saddle surface, this determinant is nonpositive and we conclude that

�00ss.t0; 0/� 0:

As explained above, this inequality implies that h is an almost calibrator for  and
therefore (by Lemma 2.3)  is a shortest path in a neighborhood of  .Œa; b�/. This
finishes the proof of Theorem 1.2.

3 Existence of saddle embeddings

The goal of this section is to prove Theorem 1.4. Our plan is the following. First we
define a saddle map F W U ! R4 , where U is a small neighborhood of a point, and
then we define a norm on R4 such that F is an isometric embedding with respect to
this norm. For such a norm to exist, the images of '–unit vectors under dF should
lie on a smooth strictly convex hypersurface in R4 (this surface can be taken for the
unit sphere of the norm that we want to construct). Our construction ensures that dF

restricted to the set of '–unit vectors parameterizes a strictly convex hypersurface
located in a small neighborhood of a plane. Then a separate construction (described in
the first subsection) is used to extend this surface to a compact smooth strictly convex
hypersurface that can be taken for the unit sphere of a norm.
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3.1 Extending a convex surface

Definition 3.1 Let †�Rn be a smooth embedded hypersurface. We say that † is
preconvex if for every p 2† there is a linear function LW Rn!R such that

(3-1) L.q/�L.p/� c � jp� qj2

for some constant c > 0 and all q 2†.

Remark 3.2 The function L satisfying (3-1) is unique up to multiplication by a
constant: it must be zero on the tangent space Tp†�Rn .

Remark 3.3 If (3-1) holds for all q close to p , then the second fundamental form
of † at p (with respect to a suitable normal vector) is positive definite. Conversely, if
the second fundamental form of † at p is positive definite, then (3-1) holds for all q

from a sufficiently small neighborhood of p .

It follows that, if the requirement of Definition 3.1 is satisfied for all p from a compact
set K �†, then some neighborhood of K in † is preconvex.

Lemma 3.4 Let † � Rn be a preconvex hypersurface and K � † a compact set.
Then there exists a compact convex surface †0 (that is, a boundary of a convex body)
which is smooth, quadratically convex, and contains a neighborhood of K in †.

Furthermore, if † is symmetric with respect to the origin, then †0 can be chosen
symmetric as well.

Proof This is a standard type of argument, so we limit ourselves to a sketch. First of
all, there is a neighborhood of K whose closure K1 is compact and contained in †.
The most natural thing would be to take the convex hull of K1 , and the only problems
would be that it is not necessarily smooth and quadratically convex.

It is easy to make it quadratically convex by taking the intersection B1 of all balls of
radius R containing K1 , where R is larger that the reciprocal of normal curvatures
of † over K1 . Then, by choosing " > 0 smaller than the reciprocal of normal
curvatures of † over K1 and taking the inward "–equidistant of the surface of B1

and then the outward "–equidistant of the result, we obtain a surface of a body B2

which contains K2 , quadratically convex and C 1 –smooth; furthermore, its principal
curvatures are bounded between 1=R and 1=" in the barrier sense.

All is left is to smooth this surface further. This is done in a standard way by covering
the surface by two open sets one of which contains K and the other does not intersect K .
Then one approximates the radial function of B2 on the second set using convolutions.
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Sufficiently close approximations (with derivatives) will preserve quadratic convexity,
and one concludes the argument by gluing these approximations with the original
surface in a neighborhood of K using a partition of unity.

3.2 The case of constant metric

For a Finsler metric ' in a region U �R2 we denote by S'U the set of all '–unit
vectors in T U D U �R2 , that is,

S'U D fv 2 T U W '.v/D 1g:

Clearly S'U is a smooth 3–dimensional submanifold of T U .

We say that a Finsler metric on U �R2 is constant if it does not depend on a point, that
is there is a norm k � k on R2 such that '.x; v/D kvk for all x 2 U , v 2 TxU 'R2 .
Of course this is a coordinate-dependent definition (though invariant under affine
coordinate changes), however every flat Finsler metric locally admits a coordinate
system in which it is constant.

Lemma 3.5 For every constant Finsler metric ' on R2 there exist a neighborhood
U �R2 of the origin and a smooth saddle embedding F W U !R4 such that the map
dF jS'U is an embedding and its image dF.S'U / is a preconvex surface in R4 .

Proof Let B be the unit ball of ' centered at 0 and S D @B . Then S'U D U �S

for any open set U �R2 .

There is a parallelogram P containing B such that the midpoints of its for sides are
on S (for example, consider a minimum area parallelogram containing B ). Introduce
a new coordinate system .x;y/ in the plane such that in these coordinates

P D f.x;y/ W x;y 2 Œ�1; 1�g:

Now B � P D Œ�1; 1�2 and B contains the four points .˙1; 0/ and .0;˙1/.

For every � > 0, define a map

F� W R
2
!R4

DR2
�R�R

F� .x;y/D .f� .x;y/;x
2
�y2;xy/by

f� .x;y/D .1� �
2x2
� �2y2/ � .x� �x3;y � �y3/ 2R2:where

Notice that F� converge to F0 as � ! 0, where

F0.x;y/D .x;y;x
2
�y2;xy/:
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Observe that the derivative of F� at the origin is the standard inclusion of R2 into R4 :
.�; �/ 7! .�; �; 0; 0/. Therefore F� when restricted to a small neighborhood of the
origin is a smooth embedding. We are going to show that F� satisfies the requirements
for F for all sufficiently small � > 0.

First we prove that, if � is sufficiently small and U � R2 is a sufficiently small
neighborhood of the origin, then F� jU is strictly saddle and dF� jS'U is an embedding.
Since F� converges to F0 with the derivatives as � ! 0, it suffices to verify these
facts for F0 .

Let us show that F0 is strictly saddle at the origin (by continuity of the second
fundamental form, this implies that it is strictly saddle near the origin). For a unit
vector � normal to F0 at the origin, denote by Q� the second fundamental form of F0

with respect to � . A unit normal vector � can be written as � D ˛e3C ˛e4 where
˛2Cˇ2 D 1. Then Q� D ˛Qe3

CˇQe4
, and the quadratic forms Qe3

and Qe4
are

given by
Qe3

.x;y/D x2
�y2; Qe3

.x;y/D xy

for all x;y 2 R. The forms Qe3
and Qe4

are linearly independent, hence Q� ¤ 0.
Furthermore, since Qe3

and Qe4
are traceless, so is Q� , and thus Q� is indefinite.

Hence F0 is saddle at 0.

Now we show that dF0jS'U is an embedding provided that U �R2 is a sufficiently
small neighborhood of 0. For brevity, we denote dF0W T R2 DR2 �R2!R4 by G .
In coordinates, G is given by

G.x;y; �; �/D .�; �; 2.x� �y�/; 2.x�Cy�//

where .x;y/ are coordinates in R2 and .�; �/ are coordinates in T.x;y/R
2 .

Recall that S'U D U � S and observe that dF0jf0g�S is injective. Therefore it
suffices to verify that the partial derivatives of G at every point of f0g�S are linearly
independent. And this is trivial because

@G

@x
.x;y; �; �/D .0; 0; 2�; 2�/;

@G

@y
.x;y; �; �/D .0; 0;�2�; 2�/;

@G

@�
.x;y; �; �/D .1; 0; 2x; 2y/;

@G

@�
.x;y; �; �/D .0; 1;�2y; 2x/;

so det.dG/D �2C �2 , and .�; �/¤ .0; 0/ if .�; �/ 2 S .
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It remains to show that the set † WD dF� .S'U / D dF� .U � S/ is preconvex for
some � > 0 and some neighborhood U � R2 of the origin. We are going to show
that for every sufficiently small � there exists U such that † is preconvex. In other
words, we assume that � � 1 and jxj; jyj � � for all .x;y/ 2 U . By Remark 3.3,
it suffices to verify that the requirement of Definition 3.1 is satisfied for every point
p 2 dF� .f0g �S/.

Let pD dF� .0; 0; �0; �0/D .�0; �0; 0; 0/ where v0 WD .�0; �0/ 2S . Let L0W R
2!R

be the supporting linear function for B at v0 , that is, L0.v/ � 1 for all v 2 B and
L0.v0/D 1. Since ' is a quadratically convex norm, we have

(3-2) L0.v/� 1� c0 � jv� v0j
2

for some c0 > 0 and all v 2 B . Define LW R4!R by

L.x;y; z; t/DL0.x;y/:

We are going to show that L satisfies (3-1) for all q 2 dF� .U �S/. Since we have
already verified that dF� jU�S is a smooth embedding, it suffices to show that

L.dF� .x;y; �; �//� 1� c � .x2
Cy2

C .� � �0/
2
C .�� �0/

2/

for some c > 0 and all .x;y/ 2 U , .�; �/ 2 S . Note that

L.dF� .x;y; �; �//DL0.df� .x;y; �; �//

by the definitions of L and F� , so we need to show that

(3-3) L0.df� .x;y; �; �//� 1� c � .x2
Cy2

C .� � �0/
2
C .�� �0/

2/

for some c > 0.

Since the definition of df� is symmetric with respect to the changes x 7!�x , y 7!�y

and x$y , it suffices to consider the case when �0��0�0. Since B is inscribed in the
square Œ�1; 1�2 and touches its sides at the points .1; 0/ and .0; 1/, the assumption �0�
�0�0 implies that �0� 1

2
and the function L0 has the form L0.x;y/DaxCby where

aDL0.1; 0/ 2 .0; 1�

b DL0.0; 1/ 2 Œ0; 1/:and

Moreover the coefficient a is bounded from below by a constant a0 > 0 determined by
the shape of B , since the only supporting functions vanishing at .1; 0/ are those at the
points .0;˙1/ 2 S , and these points are separated away from the range f�0 � �0 � 0g

that we restrict ourselves to.
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Differentiating the definition of f�

f� .x;y/D .1� �
2x2
� �2y2/ � .x� �x3;y � �y3/;

@f�

@x
.x;y/D .1� �2x2

� �2y2/ � .1� 3�x2; 0/� 2�2x.x� �x3;y � �y3/yields

D .1�A11;�A21/

A11 D 3�x2
C �2x2.3� 5�x2/C �2y2.1� 3�x2/;where

A21 D 2�2xy.1� �y2/

@f�

@y
.x;y/D .�A12; 1�A22/and, similarly,

A12 D 2�2xy.1� �x2/;where

A22 D 3�y2
C �2y2.3� 5�y2/C �2x2.1� 3�y2/:

Now for every .�; �/ 2 S we have

df� .x;y; �; �/D .�; �/� .A1;A2/

A1 D �A11C �A12; A2 D �A21C �A22where

and hence

(3-4)
L0.df� .x;y; �; �//DL0.�; �/�L0.A1;A2/

� 1� c0.� � �0/
2
� c0.�� �0/

2
�L0.A1;A2/

by (3-2). If .�; �/ is separated away from .�0; �0/ by a constant (eg by 1
10

), this
inequality implies (3-3), since Aij are small when � , jxj and jyj are small. Thus
we may assume that .�; �/ is 1

10
–close to .�0; �0/ and therefore � � 1

3
. We need to

estimate from below the term L0.A1;A2/ in (3-4). Recall that

(3-5) L0.A1;A2/D aA1C bA2 D a�A11C a�A12C b�A21C b�A22:

Assuming �; jxj; jyj< 1
10

, we estimate

(3-6)
ja�A12j � jA12j � �

2xy;

jb�A21j � jA21j � �
2xy

(since jaj; jbj; j�j; j�j � 1), and

A11 � 3�x2
C

2
3
�2y2

� �x2
C

1
6
�2y2

C 2�3=2xy
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where the last inequality follows from the Cauchy inequality applied to 2�x2 and
1
2
�2y2 , namely 2�x2C

1
2
�2y2 � 2�3=2xy . Since a� a0 , � � 1

3
, and

2�3=2xy D ��1=2.2�2xy/� ��1=2
ja�A12C b�A21j

by (3-6), it follows that

a�A11 � c1�
2.x2

Cy2/C c2�
�1=2
ja�A12C b�A21j

where c1 D a0=18 and c2 D a0=3. Assuming � < c�2
2

, it follows that

a�A11C a�A12C b�A21 � c1�
2.x2

Cy2/:

This and (3-5) imply that

L0.A1;A2/� c1�
2.x2

Cy2/C b�A22

and then from (3-4) we have

(3-7) L0.df� .x;y; �; �//� 1�c0.���0/
2
�c0.���0/

2
�c1�

2.x2
Cy2/�b�A22:

To achieve our goal (3-3), it suffices to get rid of the last term b�A22 . Observe that
A22 � 0. Therefore in the case � � 0 we have b�A22 � 0 and the result follows. It
remains to consider the case �� 0. Observe that A22 � 4�.x2Cy2/, therefore

(3-8) jb�A22j � 4j�j�.x2
Cy2/:

In the case j�j< c1�=10, this implies that

jb�A22j �
1
2
c1�

2.x2
Cy2/;

so the term b�A22 in (3-7) is majorized by the term c1�
2.x2Cy2/. And in the case

j�j � c1�=10, the fact that �� 0� �0 implies

c0.�� �0/
2
� c0�

2
� c3�

2

where c3 D c0c2
1
=100. Recall that jxj; jyj � � (we are choosing U after � ), so we

may assume that x2Cy2 < c3�=10. Then (3-8) implies that

jb�A22j �
1
2
c3�

2
�

1
2
c0.�� �0/

2;

so the term b�A22 in (3-7) is majorized by the term c0.�� �0/
2 .

Thus we have proved (3-3). This finishes the proof of Lemma 3.5.
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3.3 General case

Since every metric is close to a constant one in a neighborhood of the origin, Lemma 3.5
easily generalizes to arbitrary Finsler metrics on the plane. Namely the following holds.

Lemma 3.6 Let ' be a Finsler metric on R2 . Then there exist a neighborhood U �R2

of the origin and a smooth saddle embedding F W U !R4 such that the map dF jS'U

is an embedding and its image dF.S'U / is a preconvex surface in R4 .

Proof Let '0 D 'jT0R2 . We also consider '0 as a constant Finsler metric on R2 .
For every " > 0, define a “blow-up” metric '" on R2 defined by

'".x; v/D '."
�1; v/; x 2R2; v 2 TxR2:

Note that '" converge to '0 with all derivatives on compacts sets as "! 0.

By Lemma 3.5, there is a neighborhood U � R2 of the origin and a strictly saddle
embedding F W U ! R4 such that †0 WD dF.S'0

U / is a preconvex surface in R4 .
Fix a neighborhood U 0 b U of the origin. Since the surfaces †" WD dF.S'"

U /

converge to †0 with all derivatives on compact sets as "! 0, the smaller surfaces
†0" WD dF.S'"

U 0/ are preconvex for all sufficiently small " > 0. Fix such an " and
observe that the map

F"W x 7! "�1F."�1x/;

from the neighborhood "U 0 of the origin to R4 , parameterizes a surface homothetic
to F in R4 (and hence is strictly saddle) and dF".S'."

�1U 0//D†0" . Thus F" and
"U 0 suit for F and U from the statement of the lemma.

Now we are in position to prove Theorem 1.4. Since the statement of the theorem is
local, it suffices to prove it for M D .R2; '/ and x D 0 where ' is a Finsler metric
on R2 . By Lemma 3.6, there is a neighborhood U �R2 of the origin and a smooth
saddle embedding F W U !R4 such that the map dF jS'U parameterizes a preconvex
hypersurface †�R4 . Note that † is symmetric with respect to the origin.

By Lemma 3.4, there exists a symmetric, compact, smooth, quadratically convex surface
†0 �R4 which contains a neighborhood U0 of the set K D dF.S0/�† where S0

is the unit sphere of ' in T0R2 . This surface is the unit sphere of some smooth and
quadratically convex norm k � k on R4 .

For a sufficiently small neighborhood U 0 � U of 0, we have dF.S'U 0/� U0 �†
0 .

Therefore kdF.x; v/k D 1 for every x 2 U 0 and every '–unit vector v 2 TxR2 . This
means that F is an isometric embedding of .U 0; '/ to .R4; k � k/. This finishes the
proof of Theorem 1.4.
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4 Complete convex surfaces

The goal of this section is to prove Theorem 1.7. Our plan is the following. Assuming
that there is a geodesic line on a surface of a convex set B in a 3–dimensional normed
space V , we rescale B with coefficients going to zero and pass to the limit. This
yields a geodesic line on the surface of the asymptotic cone of B , and this geodesic
line contains the cone’s apex. However on a surface of a sharp convex cone no shortest
path can pass through the apex, as shown in Lemma 4.2.

A straightforward realization of this plan would require us to prove that intrinsic metrics
of converging convex surfaces converge to the intrinsic metric of their limit (which is
not necessarily smooth). While this fact is standard in Euclidean spaces and certainly
true in general normed spaces, we do not know an elegant proof and do not want to mess
with a cumbersome one here. We work around this issue by constructing shortcut paths
lying in planar sections of our surfaces (and for planar convex curves the convergence
of lengths is easy; see Lemma 4.1).

Notation For a vector space V and points p1;p2; : : : ;pn 2 V , let Œp1;p2; : : : ;pn�

denote the broken line composed of segments ŒpipiC1�, i D 1; : : : ; i � 1. If V is
equipped with a norm k � k, the length of this broken line is given by

lengthŒp1;p2; : : : ;pn�D

n�1X
iD1

kpi �piC1k:

We need the following standard fact about perimeters of two-dimensional convex sets
(supplied with a proof for the sake of completeness).

Lemma 4.1 Let V be a two-dimensional normed space and B � V a compact convex
set with nonempty interior.

(1) For every compact convex set B0 � B one has length.@B/� length.@B0/.

(2) If fBig is a sequence of convex sets in V converging to B (in the Hausdorff
metric), then length.@Bi/! length.@B/.

Proof (1) Since the length of @B is a limit of lengths of inscribed polygons, it suffices
to prove the lemma in the case when B is a polygon. Let @B D Œp1;p2; : : : ;pn;p1�.
If we cut B0 along a line containing a segment ŒpipiC1� and remove the piece that
does not contain B , the perimeter of B0 can only get smaller, by the triangle inequality.
Thus we can make B from B0 by finitely many operations each of which does not
increase the perimeter. Hence length.@B/� length.@B0/.
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(2) Choose the origin in the interior of B . Then the assumption that Bi ! B is
equivalent to

.1� "i/B � Bi � .1C "i/B

for some sequence "i! 0. By the first part of the lemma, this implies that

.1� "i/ length.@B/� length.@Bi/� .1C "i/ length.@B/;

hence the result.

Lemma 4.2 Let V be a 3–dimensional normed space whose norm is C 1 –smooth and
strictly convex. Let K � V be a sharp cone. Then for every two points p; q 2 @K n f0g

there exists a path that connects p and q in @K , is strictly shorter than the broken line
Œp; 0; q�, and is contained in some plane ˛ � V .

Proof Let H1 and H2 be supporting planes to K at p and q respectively. Since the
cone is sharp, there is a third supporting plane H3 that does not contain the intersection
line H1\H2 . Consider the trihedral cone K0DHC

1
\HC

2
\HC

3
where HCi denotes

the half-space bounded by Hi and containing K .

It suffices to prove the lemma for K0 in place of K . Indeed, suppose that for some
plane ˛ � V a boundary arc � 0 of F 0 WD ˛ \K0 between p and q is shorter than
Œp; 0; q�. Consider the corresponding (that is, lying in the same half-plane with respect
to the line hpqi � ˛ ) boundary arc � of F WD ˛ \K . Since F � F 0 , Lemma 4.1
implies that

length.�/� length.� 0/ < lengthŒp; 0; q�

and the lemma follows from its restatement for K0 .

Thus now we restrict ourselves to proving the assertion for K0 .

Let v be a nonzero vector in the line H1 \H2 pointing outwards K0 (that is, �v
points in the direction of an edge of K0 ). Define

f .t/D lengthŒp; vt; q�D kp� vtkCkq� vtk:

Note that f is a strictly convex function differentiable at 0.

If f 0.0/ > 0, then f .�t/ < f .0/ for a small t > 0. Observe that f .�t/ is the length
of the broken line Œp;�vt; q� which lies on @K0 and is contained in a plane (since
it has only two edges). Thus we have found a desired broken line in the case when
f 0.0/ > 0.

It remains to consider the case when f 0.0/ � 0. For every t � 0, let a.t/ and b.t/

denote the intersection points of segments Œp; vt � and Œq; vt � with the plane H3 . Note
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that a.t/ and b.t/ lie on edges of K0 and the broken line Œp; a.t/; b.t/; q� is contained
in @K0 . For t D 0, we have a.0/D b.0/D 0.

One easily sees that a.t/ and b.t/ are differentiable in t and their derivatives at 0
are nonzero vectors (pointing in the directions of the respective edges). Denote these
vectors by v1 and v2 and define

g.t/D lengthŒp; a.t/; b.t/; q�:

f .t/�g.t/D kvt � a.t/kCkvt � b.t/k�ka.t/� b.t/k:Then

lim
t!C0

f .t/�g.t/

t
D kv� v1kCkv� v2k�kv1� v2k> 0Therefore

by the strict triangle inequality for the norm k � k. Hence

lim
t!C0

g.t/�f .0/

t
D f 0.0/� lim

t!C0

f .t/�g.t/

t
< 0

since f 0.0/ � 0. Therefore g.t/ < f .0/ for all sufficiently small t > 0. Thus, for a
small t > 0, the broken line Œp; a.t/; b.t/; q� is shorter than Œp; 0; q�. By construction,
this broken line lies in the plane through the points p , q and vt .

Proof of Theorem 1.7 We may assume that the origin is contained in the interior
of B . Suppose that there is a geodesic line  W .�1;1/! @B . For every � > 1, let
H�W V !V denote the homothety with coefficient ��1 , that is, H�.x/D��1x for all
x2V . Let B�DH�.B/ and  �W Œ�1; 1�!@B� is a path defined by  �.t/DH�.�t//.
Note that  � is a homothetic image of  jŒ��;�� reparameterized by arc length. Since
 is a geodesic line on @B ,  � is a shortest path on @B� .

Now let � ! 1. The sets B� converge to the asymptotic cone K WD
T
�>1 B� .

Since B does not contain straight lines, K is a sharp cone. We assume that K has
nonempty interior (the case when K is contained in a plane is similar and left to
the reader). Therefore the endpoints of the curves  � lie within a compact region
in V . Choose a subsequence f�ig, �i !1, such that pi WD  �i .�1/ and qi WD

 �i .1/ converge to some points p; q 2 @K . Since the curves  �i are 1–Lipschitz and
 �i .0/D ��1

i  .0/! 0, the distances from p and q to the origin are not greater than 1.
Therefore by Lemma 4.2 there is a plane ˛ � V such that a boundary arc � of ˛\K

between p and q has length.�/ < 2.

We assume that p¤ q (the case pD q is trivial). Fix a point o 2 ˛\ int.K/. For each
i � 1, let ˛i � V be the plane through o, pi and qi . Note that these planes converge
to ˛ , hence there are boundary arcs �i of ˛i \B�i that converge to � . Consider a
“triangle” T � ˛ bounded by � and the segments Œop�, Œoq�. Applying Lemma 4.1
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to T and suitable projections of corresponding “triangles” in the planes ˛i (and taking
into account that the norms on ˛i Lipschitz converge to the norm on ˛ ) yields that
length.�i/! length.�/ < 2. Hence length.�i/ < 2 D length. �i / for a sufficiently
large i . Therefore  �i is not a shortest path on @B�i , a contradiction.
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