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Rigidity of polyhedral surfaces, III

FENG LUO

This paper investigates several global rigidity issues for polyhedral surfaces including
inversive distance circle packings. Inversive distance circle packings are polyhedral
surfaces introduced by P Bowers and K Stephenson [4] as a generalization of An-
dreev and Thurston’s circle packing. They conjectured that inversive distance circle
packings are rigid. We prove this conjecture using recent work of R Guo [9] on
the variational principle associated to the inversive distance circle packing. We also
show that each polyhedral metric on a triangulated surface is determined by various
discrete curvatures that we introduced in [11], verifying a conjecture in [11]. As a
consequence, we show that the discrete Laplacian operator determines a spherical
polyhedral metric.
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1 Introduction

1.1 Background

This is a continuation of the study of polyhedral surfaces in [11; 13]. The paper focuses
on inversive distance circle packings introduced by Bowers and Stephenson and several
other rigidity issues. Using recent work of Guo [9], we prove a conjecture of Bowers
and Stephenson that inversive distance circle packings are rigid. Namely, a Euclidean
inversive distance circle packing on a compact surface is determined up to scaling by its
discrete curvature. This generalizes an earlier result of Andreev [1] and Thurston [16]
on the rigidity of circle packing with acute intersection angles.

In [11], using 2–dimensional Schlaefli formulas, we introduced two families of discrete
curvatures for polyhedral surfaces and conjectured that each of one these discrete
curvatures determines the polyhedral metric (up to scaling in the Euclidean case). We
verify this conjecture in the paper. One consequence is that the cotangent discrete
Laplacian operator determines spherical polyhedral metrics. We also reprove the similar
theorem for Euclidean polyhedral surfaces obtained by Gu, Guo, Luo and Zeng [8].
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The main theorems in the paper are proved using variational principles and are based
on the work of [9; 11]. The main idea of the paper comes from readings of Bobenko,
Pinkall and Springborn [2], Colin de Verdière [17] and Rivin [14]. We follow the
approach pioneered by Colin de Verdière [17].

1.2 Polyhedral rigidity through discrete curvatures

Recall that a triangulated surface is a surface obtained by gluing pairs of edges of
a collection of disjoint triangles by homeomorphisms. A Euclidean (or spherical
or hyperbolic) polyhedral surface is a triangulated surface with a metric, called a
polyhedral metric, so that each triangle in the triangulation is isometric to a Euclidean
(or spherical or hyperbolic) triangle. To be more precise, let E2 , S2 and H2 be the
Euclidean, the spherical and the hyperbolic 2–dimensional geometries. Suppose .S;T /
is a closed triangulated surface so that T is the triangulation, and E and V are the
sets of all edges and vertices. A K2 (D E2 , S2 or H2 ) polyhedral metric on .S;T /
is a map l W E!R so that whenever ei ; ej ; ek are three edges of a triangle in T , then

l.ei/C l.ej / > l.ek/;

and if K2 D S2 , in addition to the inequalities above, one requires

l.ei/C l.ej /C l.ek/ < 2�:

Given l W E ! R satisfying the inequalities above, there is a metric on the surface
S , called a polyhedral metric, so that the restriction of the metric to each triangle is
isometric to a triangle in K2 geometry and the length of each edge e in the metric
is l.e/. We also call l W E! R the edge length function. For instance, the boundary
of a generic convex polytope in the 3–dimensional space E3 , S3 or H3 of constant
curvature 0; 1 or �1 is a polyhedral surface. The discrete curvature k of a polyhedral
surface is a function kW V ! R so that k.v/D 2� �

Pm
iD1 ai where the ai ’s are the

angles at the vertex v . See Figure 1.
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Since the discrete curvature is built from inner angles of triangles, we consider inner
angles of triangles as the basic unit of measurement of curvature. Using inner angles,
we introduced three families of curvature-like quantities in [11]. The relationships
between the polyhedral metrics and curvatures are the focus of this paper.

Definition 1.1 [11] Let h 2 R. Given a K2 polyhedral metric on .S;T / where
K2DE2;S2 or H2 , the �h curvature of a polyhedral metric is the function �hW E!R
sending an edge e to

(1-1) �h.e/D

Z a

�=2

sinh.t/ dt C

Z a0

�=2

sinh.t/ dt;

where a; a0 are the inner angles facing the edge e . See Figure 1.

The  h curvature of the metric is the function  hW E! R sending an edge e to

(1-2)  h.e/D

Z .bCc�a/=2

0

cosh.t/ dt C

Z .b0Cc0�a0/=2

0

cosh.t/ dt;

where b; b0; c; c0 are inner angles adjacent to the edge e and a; a0 are the angles facing
the edge e . See Figure 1.

The curvatures �0 and  0 were first introduced by Rivin [14] and Leibon [10] re-
spectively. If the surface S D S2 , then these curvatures are essentially the dihedral
angles of the associated 3–dimensional hyperbolic polyhedra at edges. The curvature
��2.e/D� cot.a/� cot.a0/ is the discrete (cotangent) Laplacian operator on a poly-
hedral surface derived from the finite element approximation of the smooth Beltrami
Laplacian on Riemannian manifolds.

One of the remarkable theorems proved by Rivin [14] is that a Euclidean polyhedral
metric on a triangulated surface is determined up to scaling by its �0 discrete curvature.
In particular, he proved that an ideal convex hyperbolic polyhedron is determined up to
isometry by its dihedral angles.

Theorem 1.2 Let .S;T / be a closed triangulated connected surface. Then for any
h 2 R,

(1) a Euclidean polyhedral metric on .S;T / is determined up to isometry and scaling
by its �h curvature,

(2) a spherical polyhedral metric on .S;T / is determined up to isometry by its �h

curvature,

(3) a hyperbolic polyhedral surface is determined up to isometry by its  h curvature.

Geometry & Topology, Volume 15 (2011)
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We remark that Theorem 1.2(1) for hD 0 was aforementioned Rivin’s theorem. How-
ever, our proof of Rivin’s theorem is different from that in [14] and we use the variational
principle established by Cohen, Kenyon and Propp [6]. Theorem 1.2(3) for h D 0

was first proved by Leibon [10]. Theorem 1.2(2) for h D 0 was proved in [12] and
Theorem 1.2(2) and (3) for h� �1 or h� 0 was proved in [11].

Taking hD�2 in Theorem 1.2, we obtain:

Corollary 1.3 (1) [8] A connected Euclidean polyhedral surface is determined up
to scaling by its discrete Laplacian operator.

(2) A spherical polyhedral surface is determined by its discrete Laplacian operator.

Note that for a Euclidean polyhedral surface, �h D  h . There remain two questions
on whether �h curvature determines a hyperbolic polyhedral surface or whether  h

curvature determines a spherical polyhedral surface. It seems the results may still be
true in these cases.

1.3 Rigidity of inversive distance circle packings

Inversive distance circle packings are polyhedral metrics on a triangulated surface
introduced by Bowers and Stephenson [4]. An expansion of the discussion of [4] is
in Bowers and Hurdal [3]. See also Stephenson [15]. They are generalizations of
Andreev and Thurston’s circle packings. Unlike the case of Andreev and Thurston
where adjacent circles are intersecting, Bowers and Stephenson allow adjacent circles
to be disjoint and measure their relative positions by the inversive distance. As observed
in [4], this relaxation of intersection condition is very useful for practical applications
of circle packing to many fields, including medical imaging and computer graphics.
Based on extensive numerical evidences, they conjectured the rigidity and convergence
of inversive distance circle packings in [4]. Our result shows that Bowers and Stephen-
son’s rigidity conjecture holds. The proof is based on recent work of Guo [9] which
established a variational principle for inversive distance circle packings. A very nice
geometric interpretation of the variational principle was given by Glickenstein [7].

We begin by briefly recalling the inversive distance in Euclidean, hyperbolic and
spherical geometries. See Bowers and Hurdal [3] for a more detailed discussion. Let
K2 be E2 , H2 or S2 . Given two circles C1;C2 in K2 centered at v1; v2 of radii r1

and r2 so that v1; v2 are of distance l apart, the inversive distance I D I.C1;C2/

between the circles is given by

(1-3) I D
l2� r2

1
� r2

2

2r1r2
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in the Euclidean plane,

(1-4) I D
cosh.l/� cosh.r1/ cosh.r2/

sinh.r1/ sinh.r2/

in the hyperbolic plane and

(1-5) I D
cos.l/� cos.r1/ cos.r2/

sin.r1/ sin.r2/

in the 2–sphere. See [9] for more details on (1-4) and (1-5). If one considers E2 , H2

and S2 as appeared in the infinity of the hyperbolic 3–space H3 , then C1 and C2

are the boundaries of two totally geodesic hyperplanes D1 and D2 . The inversive
distance I is essentially the hyperbolic distance (or the intersection angle) between D1

and D2 . In particular, for the Euclidean plane E2 , the inversive distance I.C1;C2/ is
invariant under the inversion and hence the name.

Bowers and Stephenson’s construction of an inversive distance circle packing with
prescribed inversive distance on a triangulated surface .S;T / is as follows. Fix once
and for all a vector I 2 Œ� 1;1/E , called the inversive distance.

In the Euclidean case, for any r 2RV
>0

, called the radius vector, define the edge length
function l 2 RE

>0
by the formula

(1-6) l.e/D

q
r.v/2C r.u/2C 2r.v/r.u/I.e/;

where the end points of the edge e is fu; vg. If for any three edges ei ; ej ; ek of a
triangle in T , the triangle inequality

(1-7) l.ei/C l.ej / > l.ek/

holds, then the length function l W E ! R sending e to l.e/ defines a Euclidean
polyhedral metric on .S;T / called the inversive distance circle packing with inversive
distance I.e/ at edge e . Note that if I.e/ 2 Œ0; 1� for all e , the polyhedral metric is
the circle packing investigated by Andreev and Thurston where the intersection angle
between two circles at the end points of an edge is arccos.I.e//.

In the hyperbolic geometry, one uses

(1-8) l.e/D cosh�1
�
cosh.r.v// cosh.r.u//C I.e/ sinh.r.v// sinh.r.u//

�
as the length of an edge. If (1-7) holds, then the lengths define a hyperbolic inversive
distance circle packing with inversive distances I on .S;T /. The spherical inversive
distance circle packing is defined similarly with additional condition on the l.e/’s that
for each triangle with edges ei ; ej ; ek ,

l.ei/C l.ej /C l.ek/ < 2�:

Geometry & Topology, Volume 15 (2011)
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The geometric meaning of these polyhedral metrics is the following. In each metric,
if one draws a circle of radius r.v/ at each vertex v , then inversive distance of two
circles at the end points of an edge e is the given number I.e/.

Our result which solves Bowers and Stephenson’s rigidity conjecture is the following.

Theorem 1.4 Given a closed triangulated connected surface .S;T / with the set of
edges E and I 2 RE

�0
considered as the inversive distance,

(1) a hyperbolic inversive distance circle packing metric on .S;T / of inversive
distance I is determined by its discrete curvature kW V ! R.

(2) a Euclidean inversive distance circle packing metric on .S;T / of inversive
distance I is determined by its discrete curvature kW V ! R up to scaling.

Note that for I 2 Œ0; 1�E , the above result was Andreev and Thurston’s rigidity for
circle packing with intersection angles between Œ0; �=2�. It seems the similar result
may be true for I 2 Œ�1;1/E .

1.4 Plan of paper

The paper is organized as follows. In Section 2, we prove an extension lemma for
angles of triangles. We also establish a criterion for extending a locally convex function
to convex function. In Section 3, we prove Theorem 1.4. Theorem 1.2 is proved in
Section 4.

The following notation and conventions will be used in the paper. We use R, R>0 ,
R�0 , R<0 to denote the sets of all real numbers, positive real numbers, nonnegative
real numbers, and negative real numbers respectively. If X is a set, RX Dff W X!R}
is the vector space of all functions on X . If A is a subspace of a topological space X ,
then the closure of A in X is denoted by xA.

Acknowledgements We thank Ren Guo and the referee for comments and careful
reading of the manuscript.

The work is supported in part by a NSF grant number CCF-0830572.

2 Convex extension of locally convex functions

The main idea of extension in this section comes from reading of Bobenko, Pinkall
and Springborn [2] in which extension of a nonconvex action function to convex one
was first carried out in the field. We show that similar extensions can be established in
a very general setting.
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2.1 Continuous extension by constants

Definition 2.1 Suppose A is a subspace of a topological space X and f W A! Y is
continuous. If there exists a continuous function F W X ! Y so that F jA D f and F

is a constant function on each connected component of X �A, then we say f can be
extended continuously by constant functions to X .

Note that if each connected component of X �A intersects the closure of A, then the
extension function F is uniquely determined by f .

The key observation of the paper is the following simple lemma.

Lemma 2.2 Let l1; l2; l3 and �1; �2; �3 be the edge lengths and inner angles of a
triangle � in E2 , or H2 , or S2 so that the li –th edge is opposite to the angle �i .
Consider �i D �i.l/ as a function of l D .l1; l2; l3/.

(1) If � is Euclidean or hyperbolic, the angle function �i defined on

�D f.l1; l2; l3/ 2 R3
j l1C l2 > l3; l2C l3 > l1; l3C l1 > l2g

can be extended continuously by constant functions to a function z�i on R3
>0

.

(2) If � is spherical, the angle function �i defined on

�D f.l1; l2; l3/ 2 R3
j l1C l2 > l3; l2C l3 > l1; l3C l1 > l2; l1C l2C l3 < 2�g

can be extended continuously by constant functions to a function z�i on .0; �/3 .

We call the set � in the lemma the natural domain of the length vectors.

Proof In case (1), the extension function z�i of �i is given by z�iD� when li � ljClk ,
and z�i D 0 when lj � liC lk . To verify the continuity of z�i on R3

>0
, we use the cosine

law. Given a point LD .L1;L2;L3/ in the boundary S��� of � inside R3
>0

, we
may assume without loss of generality that L1 DL2CL3 . Continuity of z�i follows
from

lim
l!L

�1.l/D �; lim
l!L

�j .l/D 0; j D 2; 3:

Indeed, the cosine law says, in the case of �� E2 , that

(2-1) cos.�i/D
l2
j C l2

k
� l2

i

2lj lk
:

Geometry & Topology, Volume 15 (2011)
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One sees easily that when l tends to L, then the right-hand-side of (2-1) tends to 1

if i D 2; 3 and �1 if i D 1. This verifies the continuity in the Euclidean case. In the
hyperbolic case, the cosine law says

(2-2) cos.�i/D
cosh.lj / cosh.lk/� cosh.li/

sinh.lj / sinh.lk/
:

Thus one sees that as l tends to LD .L1;L2;L3/ with Lj > 0 and L1 DL2CL3 ,
the right-hand-side of (2-2) tends to 1 if i D 2; 3 and to �1 if i D 1. Thus z�i is
continuous.

To see (2), recall that the cosine law for spherical triangle says

(2-3) cos.�i/D
cos.li/� cos.lj / cos.lk/

sin.lj / sin.lk/
:

If l tends to L where L1 D L2CL3 with Li 2 .0; �/, then liml!L cos.�1/D �1

and liml!L cos.�i/D 1 when i D 2; 3. On the other hand, if L1CL2CL3 D 2�

for Li 2 .0; �/, then the cosine law implies that liml!L cos.�i/D�1 for all i , ie, all
inner angles are � in this case. Thus by setting the extended function z�i in .0; �/3 to
be z�i.l/D� if li � ljC lk , z�i.l/D 0 if lj � liC lk , and z�i.l/D� if liC ljC lk �� ,
(fi; j ; kg D f1; 2; 3g), we see that z�i is continuous.

2.2 Continuous extension of 1–forms and of locally convex functions

We establish some simple facts on extending closed 1–forms and locally convex
functions to convex functions in this subsection.

Definition 2.3 A differential 1–form w D
Pn

iD1 ai.x/ dxi in an open set U � Rn

is said to be continuous if each ai.x/ is a continuous function on U . A continuous
1–form w is called closed if

R
@� w D 0 for each Euclidean triangle � in U .

By the standard approximation theory, if w is closed and 
 is a piecewise C 1 –smooth
null homologous loop in U , then

R

wD 0. If U is simply connected, then the integral

F.x/ D
R x

a w is well defined, independent of the choice of piecewise smooth paths
in U from a to x . The function F.x/ is C 1 –smooth so that @F.x/=@xi D ai.x/.

Proposition 2.4 Suppose X is an open set in Rn and A � X is an open subset
bounded by a smooth .n�1/–dimensional submanifold in X . If w D

Pn
iD1 ai.x/ dxi

is a continuous 1–form on X so that wjA and wjX� xA are closed where xA is the
closure of A in X , then w is closed in X .

Geometry & Topology, Volume 15 (2011)



Rigidity of polyhedral surfaces, III 2307

Proof Since closedness is a local property and is invariant under smooth change of
coordinates in X , we may assume that X DRn and ADf.x1; : : : ;xn/2Rn j xn > 0g.
Take a Euclidean triangle � � X . To verify

R
@� w D 0, we may assume that � is

not in xA or X �A since otherwise
R
@� w D 0 follows from the assumption and the

standard approximation theorem. In the remaining case, � intersects both xA and
X �A. The plane xn D 0 cuts the triangle � into a triangle 
1 and a quadrilateral or
a triangle 
2 so that 
1 and 
2 are in the closure of xA and X �A. We can express, in
the singular chain level, @� D @
1C @
2 . By definition,

R
@
i
w D 0 for each i . ThusR

@� w D
R
@
1

wC
R
@
2

w D 0.

A real analytic codimension–1 submanifold Y in an open set X in Rn is a smooth
submanifold so that locally Y is defined by k.x/D 0 for a nonconstant real analytic
function k . Note that if L is a (compact) line segment in X , then either L � Y or
L\Y is a finite set. This is due to the fact that a nonconstant real analytic function on
an open interval has isolated zeros.

Recall that a function f defined on a convex set X � Rn is called convex if for all
p; q 2X and all t 2 Œ0; 1�, tf .p/C .1� t/f .q/� f .tpC .1� t/q/. It is called strictly
convex if for all p¤ q in X and all t 2 .0; 1/, tf .p/C.1� t/f .q/ > f .tpC.1� t/q/.
A function f defined in an open set U � Rn is said to be locally convex (or locally
strictly convex) if it is convex (or strictly convex) in a convex neighborhood of each point.

Proposition 2.5 Suppose X � Rn is an open convex set and A � X is an open
subset of X bounded by a codimension–1 real analytic submanifold in X . If w DPn

iD1 ai.x/ dxi is a continuous closed 1–form on X so that F.x/D
R x

a w is locally
convex in A and in X � xA, then F.x/ is convex in X .

Proof Since X is simply connected, the function F is well defined. To verify
convexity, take p; q 2 X and consider f .t/ D F.tp C .1 � t/q/ for t 2 Œ0; 1�. It
suffices to show that f .t/ is convex in t . Since F is C 1 –smooth, f is C 1 –smooth.
Let @AD xA�A and L be the line segment from p to q . Since @A is real analytic,
either L intersects @A in a finite set of points, or L is in @A. In the first case, let
0D t0< t1< � � �< tnD 1 be the partition of Œ0; 1� so that the line segment tpC.1� t/q

for t 2 .ti ; tiC1/ is either in A or in X � xA. By definition, f .t/ is convex in Œti ; tiC1�,
ie, f 0.t/ is increasing in Œti ; tiC1� for i D 0; : : : ; n� 1. Since f 0.t/ is continuous in
Œ0; 1�, this implies that f 0.t/ is increasing in Œ0; 1�, ie, f .t/ is convex in Œ0; 1�. In the
second case that L � @A, we take two sequences of points pm and qm converging
to p and q respectively in X so that pm; qm are not in @A. Then by the case just
proved, the functions fm.t/D F.tpmC .1� t/qm/ are convex in t . Furthermore, fm

converges to f . Thus f is convex.

Geometry & Topology, Volume 15 (2011)
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Corollary 2.6 Suppose X � Rn is an open convex set and A � X is an open sub-
set of X bounded by a real analytic codimension–1 submanifold in X . If w DPn

iD1 ai.x/ dxi is a continuous closed 1–form on A so that F.x/D
R x

a w is locally
convex on A and each ai can be extended continuously to X by constant functions to
a function �ai on X , then zF .x/D

R x
a

Pn
iD1 �ai dxi is a C 1 –smooth convex function

on X extending F .

We remark that the real analytic assumption in the Proposition 2.5 and Corollary 2.6
can be relaxed to C 1 –smooth. Indeed, one uses the transversality theorem to show that
for generic choice of points p; q in X , the line segment L from p to q intersects @A
in a finite set. The same argument shows that F jL is convex. By taking the limit, one
proves the same result.

3 A proof of Bowers and Stephenson’s Rigidity Conjecture

We begin by recalling Guo’s work on a variational principle associated to inversive
distance circle packings and then prove Theorem 1.4. We will work in Euclidean and
hyperbolic geometries only.

3.1 Guo’s variational principle for inversive distance circle packing

Suppose � is a triangle with vertices v1; v2; v3 and edges eij D vivj , i ¤ j . Fix
once and for all an inversive distance Iij 2 Œ0;1/ at each edge eij . Then for each
assignment of positive number ri at vi for i D 1; 2; 3, let

(3-1) lk D

q
r2
i C r2

j C 2rirj Iij

for Euclidean geometry and

(3-2) lk D cosh�1.cosh.ri/ cosh.rj /C Iij sinh.ri/ sinh.rj //

for hyperbolic geometry where fi; j ; kg D f1; 2; 3g.

Let � D f.x1;x2;x3/ 2 R3
>0
j xi C xj > xk ; fi; j ; kg D f1; 2; 3gg. If .l1; l2; l3/ is

in �, then we construct a Euclidean triangle � with length lk of eij given by (3-1) and
a hyperbolic triangle, still denoted by �, with length lk of eij given by (3-2). Suppose
the angle of the triangle at vi is �i and consider �i as a function of .r1; r2; r3/.

Geometry & Topology, Volume 15 (2011)
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Theorem 3.1 (Guo [9]) Fix any .I12; I23; I31/ 2 Œ0;1/
3 .

(1) For Euclidean triangles, let ui D ln ri , then the differential 1–form w DP3
iD1 �idui is closed in the open subset of R3 where it is defined. The integral

F.u/D
R u

u0
w is a well defined locally concave function in uD .u1;u2;u3/ and

is strictly locally concave in u1Cu2Cu3 D 0. Furthermore, if c 2R and F.u/

is defined, then F.uC .c; c; c//D F.u/.

(2) For hyperbolic triangles, let ui D ln.tanh.ri=2//, then the differential 1–form
w D

P3
iD1 �idui is closed in the open subset of R3

<0
where it is defined.

Furthermore, the integral F.u/D
R u

u0
w is a well defined strictly locally concave

function in uD .u1;u2;u3/.

Guo also proved [9] that the open sets where the 1–forms w are defined in Theorem 3.1
are connected and simply connected. Theorem 3.1 is a generalization of an earlier result
obtained by Chow and Luo [5]. Guo proved a local and infinitesimal rigidity theorem for
inversive distance circle packing using Theorem 3.1. It says that a Euclidean inversive
distance circle packing is locally determined, up to scaling, by the discrete curvature of
the underlying polyhedral surface. He also proved the local and infinitesimal rigidity
for hyperbolic inversive distance circle packings.

3.2 Concave extension of Guo’s action functional

Our main observation is that Guo’s differential 1–forms w D
P3

iD1 �i dui can be
extended to a closed 1–form on R3 in the Euclidean case and on R3

<0
in the hyperbolic

case so that the integrations of the extended 1–forms are still concave.

Proposition 3.2 Let w be the 1–forms defined in Theorem 3.1.

(a) In the case of Euclidean triangles, the 1–form w can be extended to a continuous
closed 1–form zw on R3 so that the integration zF .u/D

R u
u0
zw is a C 1 –smooth

concave function.

(b) In the case of hyperbolic triangles, the 1–form w can be extended to a continuous
closed 1–form zw on R3

<0
so that the integration zF .u/D

R u
u0
zw is a C 1 –smooth

concave function.

We begin by focusing the 1–forms in its radius coordinate rD .r1; r2; r3/2R3
>0

. In this
case, the 1–forms are given by wD

P3
iD1 �i.dri=ri/ and wD

P3
iD1 �i.dri= sinh.ri//.

The 1–form w is defined on the open set U of R3
>0

where

(3-3) U D
˚
.r1; r2; r3/ 2 R3

>0 j li C lj > lk ; fi; j ; kg D f1; 2; 3g
	
;
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where li D li.r1; r2; r3/ is defined on R3
>0

. (Note that for hyperbolic and Euclidean
geometries, the sets U are different due to (3-1) and (3-2)). The extension of the 1–
form w is the natural one. Namely, we replace �i in w by z�i appeared in Lemma 2.2.
Thus the extended 1–form is zw D

P3
iD1
z�i.dri=ri/ or zw D

P3
iD1
z�i.dri= sinh.ri//.

It remains to show that zw is continuous and closed in R3
>0

so that its pull back to the
u–coordinate has a concave integration. To this end, we prove:

Lemma 3.3 Let xU be the closure of U in R3
>0

.

(1) �i is a constant function on each connected component of xU �U .

(2) For each connected component V of R3
>0
� U , the intersection V \ xU is a

connected component of xU �U .

Proof By (3-3), the boundary @U D xU �U is given by
S3

iD1@iU where @iU D˚
.r1; r2; r3/ 2 R3

>0
j li D lj C lk ; fj ; kg D f1; 2; 3g� fig

	
. Furthermore, R3

>0
�U DS3

iD1Vi where Vi D
˚
.r1; r2; r3/ 2 R3

>0
j li � lj C lk ; fj ; kg D f1; 2; 3g� fig

	
.

First, we note that if Iij � 1, then @kU D∅ and Vk D∅. Indeed, if Iij � 1, then by
(3-1) and (3-2),

lk � ri C rj :

But due to Iab � 0, (3-1) and (3-2), rj < li and ri < lj . Therefore, lk < li C lj . This
implies that @kU D∅ and Vk D∅.

Next @iU \ @j U D ∅ and Vi \ Vj D ∅ for i ¤ j . Indeed, if r 2 @iU \ @j U or
r 2 Vi \Vj , then li � lj C lk and lj � li C lk . Thus lk D 0. But lk > ri > 0.

We claim that if Iij > 1, then both Vk and @kU are nonempty and connected. Assume
the claim, then the lemma follows. Indeed, since ls > 0 for all indices s , it follows, by
Lemma 2.2, that �i is either 0 or � in @sU , ie, (1) holds. Next, Vs ’s are the connected
components of R3

>0
�U so that Vs \

xU D @sU . Thus (2) holds.

To see the claim, it suffices to show that there is a smooth function f .ri ; rj / defined
on R3

>0
so that its graph is @kU and Vk D f.r1; r2; r3/ 2 R3

>0
j 0< rk � f .ri ; rj /g.

To this end, consider the equation

(3-4) lk D li C lj ;

and let the right-hand-side of (3-4) be g.rk ; ri ; rj /. We will deal with the Euclidean
and hyperbolic geometry separately.

Geometry & Topology, Volume 15 (2011)



Rigidity of polyhedral surfaces, III 2311

Case 1 (Euclidean triangles) In this case, the function g.rk ; ri ; rj / is given by

(3-5) g.rk ; ri ; rj /D

q
r2
k
C r2

j C 2Ikj rkrj C

q
r2
i C r2

k
C 2Iikrirk

Evidently, for a fixed .ri ; rj / 2 R2
>0

, g.rk ; ri ; rj / is a strictly increasing function of
rk 2 R>0 so that

g.0; ri ; rj /D ri C rj <

q
r2
i C r2

j C 2Iij rirj

(due to Iij > 1) and limrk!1 g.rk ; ri ; rk/D1. By the intermediate value theorem,
there exists a unique positive number f .ri ; rj / so that

g.f .ri ; rj /; ri ; rj /D

q
r2
i C r2

j C 2rirj Iij D lk :

The smoothness of f .ri ; rj / follows from the implicit function theorem applied to
(3-4). Indeed,

@g

@rk

D
rk C 2Ikj rj

li
C

rk C 2Iikri

lj
> 0:

Thus, f .ri ; rj / is smooth.

This shows @kU is the graph of the smooth function f defined on R2
>0

, ie,

@kU D f.r1; r2; r3/ 2 R3
>0 j rk D f .ri ; rj /g:

Thus it is connected. Now g.rk ; ri ; rj / is an increasing function of rk , so Vk D˚
r 2R3

>0
j 0< rk � f .ri ; rj /; fi; j g D f1; 2; 3g� fkg

	
. Thus Vk is connected.

Case 2 (Hyperbolic triangles) By the same argument as in Case 1, it suffices to show
the same properties established in Case 1 hold for g.rk ; ri ; rj / given by

(3-6) cosh�1.cosh.ri/ cosh.rk/C Iik sinh.ri/ sinh.rk//

C cosh�1.cosh.rk/ cosh.rj /C Ikj sinh.rk/ sinh.rj //:

Fix .ri ; rj / 2 R2
>0

. Then the function g.rk ; ri ; rj / is clearly strictly increasing in
rk 2 R>0 so that limrk!1 g.rk ; ri ; rj /D1 and due to Iij > 1,

g.0; ri ; rj /D ri C rj

D cosh�1.cosh.ri C rj //

D cosh�1.cosh.ri/ cosh.rj /C sinh.ri/ sinh.rj //

< cosh�1.cosh.ri/ cosh.rj /C Iij sinh.ri/ sinh.rj //D lk :
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By the intermediate value theorem, there exists a unique positive number f .ri ; rj / so
that g.f .ri ; rj /; ri ; rj /D lk . The smoothness of f .ri ; rj / follows from the implicit
function theorem that
@g

@rk

D
cosh.ri/ sinh.rk/C Iik sinh.ri/ cosh.rk/p

.cosh.ri/ cosh.rk/C Iik sinh.ri/ sinh.rk//
2� 1

C
cosh.rj / sinh.rk/C Ijk sinh.rj / cosh.rk/q

.cosh.rj / cosh.rk/C Ijk sinh.rj / sinh.rk//
2� 1

> 0:

By the same argument as in Case 1, we see that @kU , being the graph of the smooth
function f , is connected and Vk , being the region below the positive function f
over R2

>0
, is also connected.

Now back to the proof of Proposition 3.2, for part (1), consider the real analytic
diffeomorphism u D u.r/W R3

>0
! R3 where ui D ln ri . The differential 1–form

w D
P3

iD1 �i.dri=ri/ pulls back (via r D u�1.r/) to w D
P3

iD1�i dui as appeared
in Theorem 3.1. By Lemma 3.3, the extension zw D

P3
iD1
z�i dui is obtained from w

by extending each coefficient �i by constant functions on R3 � u�1.U /. Thus, by
Corollary 2.6, the function zF .u/D

R u
0 zw is a C 1 –smooth concave function in u 2 R3

so that

(3-7) @ zF=@ui D
z�i :

The same argument also works for part (2) since uD u.r/ with ui D ln tanh.ri/ is a
real analytic diffeomorphism from R3

>0
onto R3

<0
.

3.3 Proof of Theorem 1.4 for Euclidean inversive distance circle packing

Suppose d1; d2 are two inversive circle packing metrics on .S;T / with the same
inversive distance I 2 Œ0;1/E and the same discrete curvature a 2RV . We will show
that d1 and d2 differ by a scalar.

We will use the notation that if i 2 V and x 2 RV , then xi D x.i/. Let T .2/ be
the set of all triangles in T . If a triangle s 2 T .2/ has vertices i; j ; k 2 V , then we
denote the triangle by s D fi; j ; kg. For circle packing metrics of radii r 2 RV

>0
with

a given inversive distance I , we use u 2 RV to denote their logarithm coordinate
where ui D ln ri . Let p and q in RV be the logarithmic coordinates of d1 and d2

respectively.

We will show d1 D �d2 by using the locally concave function F and its concave
extension zF D

R u
0 zw appeared in Proposition 3.2 associated to Theorem 3.1(1).
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Define a C 1 –smooth function W W RV ! R by

(3-8) W .u/D�
X

s2T .2/; sDfi;j ;kg

zF .ui ;uj ;uk/C
X
i2V

.2� � ai/ui :

The function W is convex since it is a summation of convex functions. Furthermore,
by the definition of W , (3-7), and the definition of discrete curvature .ai/, p and q

are both critical points of W . Since W is convex in RV , it follows that

W .tpC .1� t/q/DW .p/

for all t 2 Œ0; 1�. Since

W .tpC .1� t/q/D
X

s2T .2/; sDfi;j ;kg

fijk.t/C
X
i2E

.2� � ai/.tpi C .1� t/qi/;

where the function

(3-9) fijk.t/D� zF .tpi C .1� t/qi ; tpj C .1� t/qj ; tpk C .1� t/qk/

is convex, it follows that fijk.t/ is linear in t 2 Œ0; 1� for all triangles s with vertices
i; j ; k . This is due to the simple fact that a summation of a convex function with
a strictly convex function is strictly convex. By Theorem 3.1 on the local strictly
convexity of �F.u1;u2;u3/ on u1Cu2Cu3 D 0 and F.uC .c; c; c//D F.u/, we
see that pi�qi Dpj �qj Dpk�qk for each triangle with vertices i; j ; k 2 V . (To be
more precise, if .pi ;pj ;pk/� .qi ; qj ; qk/¤ .c; c; c/ for any c , then by Theorem 3.1
fijk jŒ0;�� is strictly convex for small � > 0 even though fijk may not be strictly
convex in Œ0; 1�). Since the surface is connected and each fijk is linear, we have that
p� q D .c; c; : : : ; c/ 2 RV . This shows that d1 and d2 differ by a scalar.

3.4 Proof of Theorem 1.4 for hyperbolic inversive distance circle packing

The proof is essentially the same as in Section 3.3 and is simpler. For any r 2 RV
>0

,
define uD u.r/ 2 RV

<0
by ui D ln tanh.ri=2//. Define the u–coordinate of the circle

packing metric to be uD u.r/ for a circle packing with radii r 2 RV
>0

.

We use the same notation as in Section 3.3. Suppose p; q 2RV
<0

are the u–coordinates
of the two hyperbolic circle packing metrics having the same hyperbolic inversive
distance I 2 RE

�0
and the same discrete curvature aD .ai/ 2 RV . Define the action

functional W on RV
<0

by the same formula (3-8) where zF is the concave function in
Proposition 3.2 associated to Theorem 3.1(2). Then the same proof as in Section 3.3
shows that p D q .
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4 Two-dimensional Schlaefli type action functionals and their
extensions

The following was proved by the author in [11]. The proof is a straight forward
calculation.

Theorem 4.1 Suppose � is a triangle in the Euclidean plane E2 , or the hyperbolic
plane H2 , or the 2–sphere S2 so that its edge lengths are l1; l2; l3 and its inner angles
are �1; �2; �3 where the li –th edge is opposite to the angle �i . Let h 2 R and let � be
the natural domain for length vectors appeared in Lemma 2.2.

(1) For a Euclidean triangle,

wh D

3X
iD1

R �i

�=2 sinh.t/ dt

lhC1
i

dli

is a closed 1–form on �. The integral
R u
�.h;h;h/wh is locally convex in variable

uD .u1;u2;u3/ where uiD ln li for hD0 and uiD�l�h
i =h for h¤0. Further-

more,
R u
�.h;h;h/wh is locally strictly convex in hypersurface u1Cu2Cu3 D 0.

(2) For a spherical triangle,

wh D

3X
iD1

R �i

�=2 sinh.t/ dt

sinhC1.li/
dli

is a closed 1–form on �. The integral
R u

0 wh is locally strictly convex in
uD .u1;u2;u3/ where ui D

R li

�=2 sin�h�1.t/ dt .

(3) For a hyperbolic triangle,

wh D

3X
iD1

R �i

�=2 sinh.t/ dt

sinhhC1.li/
dli

is a closed 1–form.

(4) For a hyperbolic triangle,

wh D

3X
iD1

R 1
2
.�i��j��k/

0
cosh.t/ dt

cothhC1.li=2/
dli

is a closed 1–form. The integral
R u

0 wh is locally strictly convex in u D

.u1;u2;u3/ where ui D
R li

1 coth�h�1.t=2/ dt .
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We remark that Theorem 4.1(1) for h D 0 was first proved by Cohen, Kenyon and
Propp [6]. In this case, they showed that F.u C .c; c; c// D F.u/. In the case
of Theorem 4.1(1) with h ¤ 0, we have F.cu/ D c�hF.u/ for any constant c .
Theorem 4.1(4) for h D 0 was first proved by Leibon [10]. It is proved in [11]
that above are the complete list of all 2–dimensional Schlaefli type identities up to
scaling.

Next we provide some ingredients which will be used in the proof of Theorem 1.2.

Recall that the natural domain � of the edge length vectors is given by

�D f.l1; l2; l3/ 2 R3
>0 j li C lj > lk ; fi; j ; kg D f1; 2; 3gg

for Euclidean and hyperbolic triangles and

�D f.l1; l2; l3/ 2 R3
>0 j li C lj > lk ; l1C l2C l3 < 2�; fi; j ; kg D f1; 2; 3gg:

Let J be the natural interval for each individual length li , ie, JDR>0 for Euclidean and
hyperbolic triangles and J D .0; �/ for spherical triangles. In each case of Theorem 4.1,
there exists a real analytic diffeomorphism gW J!g.J / from J onto the open interval
g.J / so that ui D g.li/. To be more precise, g.t/ D ln t in the case of h D 0 of
Theorem 4.1(1), g.t/ D �t�h=h (h ¤ 0) in the case of h ¤ 0 in Theorem 4.1(1),
g.t/D

R t
�=2 sin�h�1.x/ dx in the case (2) of Theorem 4.1, g.t/D

R t
1 sinh�h�1.x/ dx

in case (3) of Theorem 4.1 and g.t/D
R t

1 coth�h�1.x/ dx in case (4). The real analytic
diffeomorphism u.l1; l2; l3/D .u1;u2;u3/ where ui D g.li/ sends J 3 onto the open
cube g.J /3 in R3 .

By Lemma 2.2, each of the angle function �i.l/W �!R can be extended continuously
by constant functions to a continuous function z�i.l/W J

3! R. Define a continuous
1–form fwh on J 3 by replacing �i in the definition of wh in Theorem 4.1 by z�i .

Lemma 4.2 The continuous differential 1–form fwh is closed in J 3 .

Proof By Proposition 2.4 where we take X D J 3 and AD�, it suffices to show thatfwh is closed in each connected component U of J 3 � S�. By Theorem 4.1 zwjA is
closed, the restriction of fwh to U is of the form

P3
iD1ci dui where ui D g.li/ and

ci is a constant. Thus fwh jU is closed.

Proposition 4.3 The pull back 1–form .u�1/�.fwh / on g.J /3 is a closed 1–form.
Furthermore, if F.u/D

R u
wh is locally convex in u.�/ (ie, in cases (1), (2), (4) of

Theorem 4.1), then zF .u/D
R u
.u�1/�.fwh/ is convex in u in g.J /3 .
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Note that by the construction, if u 2 u.�/ and wh D
P3

iD1 ˛i;h.u/ dui (as shown in
Theorem 4.1) then

(4-1)
@ zF .u/

@ui
D ˛i;h.u/:

Furthermore, by definition, the �h and  h curvatures are sum of two of ai;h.u/’s.

Proof By Corollary 2.6 where we take X D g.J /3 and AD u.�/, it suffices to show
that u.�/ is bounded by a real analytic surface in X and zF .u/ is convex in u.�/ and
in each component of g.J /3�u.�/.

Since � in J 3 is bounded by hyperplanes and u.l/D .g.l1/;g.l2/;g.l3// is a real
analytic diffeomorphism, it follows that u.�/ is bounded by a real analytic surface
in g.J /3 .

By the assumption zF .u/ is convex in u.�/. If U is a connected component of
g.J /3 � u.�/, then zF .u/ is linear on U since its partial derivatives are constants
on U by the construction. Thus by Corollary 2.6, the result follows.

5 Proof of Theorem 1.2

The argument is essentially the same as that in Section 3.3. Recall that E is the set
of all edges in the triangulated surface .S;T /. If x 2 RE and i 2 E , we use xi

to denote x.i/. If s 2 T .2/ is a triangle with edges i; j ; k 2 E , we denote it by
s D fi; j ; kg.

5.1 Proof of Theorem 1.2(3)

Suppose two hyperbolic polyhedral metrics on .S;T / have the same  h curvature
aD .ai/ 2 RE . We want to show that these two metrics are the same.

Recall that a polyhedral metric on .S;T / is given by its edge length map l W E!R>0 .
In using the variational principle in Theorem 4.1(4), the natural variable is given by
uW E ! R where u.e/ D g.l.e// with g.t/ D

R t
1 cothhC1.s=2/ds . We call it the

u–coordinate of the polyhedral metric l and we will use the u–coordinate to set up
the variational principle. Let p; q 2 g.R>0/

E be the u–coordinates of the two metrics
so that their  h curvatures are the same a 2 RE . Define a C 1 –smooth function
W W g.R>0/

E! R by

W .u/D
X

s2T .2/; sDfi;j ;kg; i;j ;k2E

zF .ui ;uj ;uk/�
X
i2E

aiui :
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The function W is convex since it is a summation of convex functions. Furthermore,
by the definition of W , (4-1), and the definition of  h and .ai/, p and q are critical
points of W . Since W is convex, we get

W .tpC .1� t/q/DW .p/

for all t 2 Œ0; 1�. On the other hand,

W .tpC .1� t/q/D
X

i;j ;k2E; fi;j ;kg2T .2/

fijk.t/�
X
i2E

ai.tpi C .1� t/qi/;

where the function

(5-1) fijk.t/D zF .tpi C .1� t/qi ; tpj C .1� t/qj ; tpk C .1� t/qk/

is convex, it follows that fijk.t/ is linear in t 2 Œ0; 1�. By Theorem 4.1, the function
fijk.t/ is strictly convex for t near 0; 1 unless .pi ;pj ;pk/ D .qi ; qj ; qk/. By the
linearity of fijk and connectivity of the surface, it follows p D q .

5.2 Proof of Theorem 1.2(2)

The proof is exactly the same as above using the extended convex function zF in
Proposition 4.3 associated to Theorem 4.1(2).

5.3 Proof of Theorem 1.2(1)

The proof is the same as that in Section 5.1 using the similarly defined function W .
To be more precise, let g.t/D �t�h=h for h¤ 0 and g.t/D ln t . By the same set
up as in Section 5.1, we conclude that fijk.t/ given by (5-1) is linear in t . We claim
this implies that the two Euclidean polyhedral metrics u�1.p/ and u�1.q/ differ by
a scalar multiplication. There are two cases to be discussed depending on hD 0 or
h¤ 0.

Case 1 h D 0. By Theorem 4.1(1), the function fijk.t/ is strictly convex for t

close to 0 or 1 unless .pi ;pj ;pk/� .qi ; qj ; qk/D .c; c; c/ for some c . Thus by the
connectivity of the surface and linearity of fijk , it follows that the two Euclidean
polyhedral metrics u�1.p/ and u�1.q/ differ by a scalar multiplication.

Case 2 h¤ 0. By Theorem 4.1(1), the function fijk.t/ is strictly convex for t close
to 0 or 1 unless .pi ;pj ;pk/D c.qi ; qj ; qk/ for some c . By the same argument, we
see that the two metrics differ by a scaling.
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