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Intersection theory of punctured pseudoholomorphic curves

RICHARD SIEFRING

We study the intersection theory of punctured pseudoholomorphic curves in 4–
dimensional symplectic cobordisms. Using the asymptotic results of the author
[22], we first study the local intersection properties of such curves at the punctures.
We then use this to develop topological controls on the intersection number of two
curves. We also prove an adjunction formula which gives a topological condition that
will guarantee a curve in a given homotopy class is embedded, extending previous
work of Hutchings [14].

We then turn our attention to curves in the symplectization R�M of a 3–manifold
M admitting a stable Hamiltonian structure. We investigate controls on intersections
of the projections of curves to the 3–manifold and we present conditions that will
guarantee the projection of a curve to the 3–manifold is an embedding.

Finally we consider an application concerning pseudoholomorphic curves in man-
ifolds admitting a certain class of holomorphic open book decomposition and an
application concerning the existence of generalized pseudoholomorphic curves, as
introduced by Hofer [7].

32Q65; 53D42, 57R58

1 Introduction

In this paper we will study the intersection theory of punctured pseudoholomorphic
curves which arise in symplectic field theory (Eliashberg, Givental and Hofer [4]).
Positivity of intersections for pseudoholomorphic curves has been an important tool in
applications of pseudoholomorphic curves to 4–dimensional symplectic topology. First
stated by Gromov in [6], rigorous proofs were subsequently provided by McDuff [17],
and Micallef and White [18]. Put simply, positivity of intersections states that isolated
intersections between two curves contribute positively to their intersection number and
that singular points contribute positively to the self-intersection number of a single
curve. These local statements translate into useful global topological statements for
closed pseudoholomorphic curves. If uW .†; j /! .M;J / and vW .†0; j 0/! .M;J /

are pseudoholomorphic maps with closed connected domains and nonidentical images,
then the intersection number Œu� � Œv� is always nonnegative and Œu� � Œv�D 0 if and only
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if u and v do not intersect. Moreover, if uW .†; j /! .M;J / is a simple, closed,
pseudoholomorphic map, then u satisfies the inequality

(1-1) Œu� � Œu�� hc1.TM;J /; Œu�iC�.†/� 0

and equality occurs if and only if u is an embedding.

While the local results on the intersections of pseudoholomorphic curves apply to
punctured curves appearing in symplectic field theory, finding generalizations of the
global results is subtle due to the fact that the intersection number is no longer homotopy
invariant when the domains of the curves are noncompact. Indeed, in a pair of smooth
homotopies of curves, intersections can escape or appear at the ends. One way to
deal with this issue is to perturb one of the curves being considered near the ends
and compute the intersection number between one curve and the perturbation of the
second curve. Given a sufficiently precise description of the asymptotic behavior,
it is then possible to compute this intersection number in terms of the intersection
number of the original curves and behavior near the punctures. This idea was studied by
Kriener in [16], where the self-intersection number of a single embedded half-cylinder
asymptotic to a multiply covered orbit is considered. These ideas were further pursued
by Hutchings [14; 15], who proved an index inequality for curves in symplectizations.
This index inequality, important for the foundations of embedded contact homology,
gives a topological criterion that will guarantee a curve is embedded and has asymptotic
behavior which satisfies a technical “admissibility” condition.

The goal of the present paper is to further develop some of the techniques used in
[14] and study algebraic controls on intersections and embeddedness of punctured
pseudoholomorphic curves. We first give a complete study of the local “asymptotic
intersection theory,” made possible by the asymptotic descriptions of curves in [22].
With this in hand, we introduce the notion of the “generalized intersection number”
of two smooth proper maps from punctured Riemann surfaces which are asymptotic
at the punctures to cylinders over periodic orbits. From the results we prove about
asymptotic intersection theory, it will follow that the generalized intersection number
of two distinct pseudoholomorphic maps is always nonnegative and is equal to zero if
and only if the curves do not intersect and the curves do not have any tangencies at
infinity, where the notion of tangency at infinity can be made precise in terms of the
asymptotic description from [22]. Moreover, we state a generalization of the adjunction
formula (1-1) in terms of the generalized intersection number.

Having addressed these things we specialize to the case of a cylindrical cobordism
R�M equipped with an R–invariant almost complex structure. Here we relate the
number of intersections of two curves with the number of intersections of each curve
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with the asymptotic limits of the other and the winding of the curves around their
asymptotic limits. This allows us to state a set of necessary and sufficient conditions
that will guarantee that the projection of the two curves to the 3–manifold M do
not intersect. These same techniques, used with the adjunction formula for punctured
curves, allow us to give conditions that will guarantee the projection of a curve to the
3–manifold is embedded. These results and ideas are useful in the study of finite energy
foliations, as initiated by Hofer, Wysocki and Zehnder [12]. As an application of these
results, we prove a result about the contact homology of a 3–manifold admitting a
special class of holomorphic open book decompositions.

Finally, we consider so-called generalized pseudoholomorphic curves as introduced by
Hofer in [7]. We show that the generalized intersection product can be used to develop
topological obstructions to the existence of these curves.

Acknowledgements This paper has its roots in work I began as a graduate student and
I would like to thank my advisor, Helmut Hofer, for his encouragement and support.

During the writing of this paper, I have had many in-depth conversations about this
material which have helped to clarify my thinking and have shaped the exposition here.
In particular I would like to thank Barney Bramham, Michael Hutchings, Al Momin,
Eric Schoenfeld and Chris Wendl for helpful conversations and for their interest in this
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2 Background and main results

2.1 Hamiltonian structures

In this section we describe a structure defined on 3–manifolds that is central to all
we do here. For further background and examples, see Bourgeois, Eliashberg, Hofer,
Wysocki and Zehnder [2, Section 2] or Eliashberg, Kim and Polterovich [5, Example
4.2].

Let M be a compact oriented 3–manifold equipped with a pair HD .�; !/ where �
is a 1–form and ! is a 2–form on M . Assume that

(H1) �^! is a volume form on M .

Then ! must be rank 2 everywhere and thus defines a line bundle `! � TM by

`! D[p2M .p; ker!p/
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where ker!p is the kernel of the linear map !pW TMp ! T �Mp defined by v 7!
!p.v; �/. The condition (H1) implies that � is non-zero on `! , that the hyperplane
distribution defined by

�H WD ker�

is everywhere transverse to `! and that ! is nondegenerate on �H . If we define a
vector field XH to be the unique section of `! satisfying �.XH/ D 1, we see that
condition (H1) implies that the pair .�; !/ determines a splitting

(2-1) TM D .`! ;XH/˚ .�
H; !/

of the tangent space of M into a framed line bundle .`! ;XH/ and a symplectic 2–plane
bundle .�H; !/.

If we further require that

(H2) ! is closed

then we can conclude that any section v 2 �.`!/ of `! , in particular XH , satisfies

Lv! D ivd!C d.iv!/D 0

so the flow of any section of `! preserves ! . Finally, if we require that

(H3) d� vanishes on `! ,

then we find that
LXH�D iXHd�C d.iXH�/D 0

so � is preserved by the flow of XH and hence the splitting (2-1) is also preserved by
the flow of XH . Following [5], we will refer to a pair HD .�; !/ satisfying (H1)–(H3)
as a stable Hamiltonian structure on M . We will refer to the vector field XH arising
from such a structure as the Reeb vector field associated to H , and we will refer the
hyperplane bundle �H as the hamiltonian hyperplane field associated to H .

In what follows the dynamics of the vector field XH will play an important role and
the periodic orbits of XH will be of particular interest. For our purposes, it will be
convenient to think of periodic orbits as maps parametrized by S1 �R=Z equipped
with the basepoint 0 2R=Z. More precisely, for � > 0 we define the set eP 0

� .M;H/
of simple � –periodic orbits of XH to be the set of all  2 C1.S1;M /, such that 
is an embedding and  satisfies the equation

d .t/@t D �XH. .t//
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for all t 2 S1 . We will denote the set of all simple periodic orbits by

eP 0
.M;H/ WD [�>0

eP 0

� .M;H/:

We note that each set eP 0

� .M;H/ is invariant under the S1 –action on C1.S1;M /

defined by c �  .t/ D  .t C c/ for c 2 R=Z and  2 C1.S1;M /. We define the
space of unparametrized simple periodic orbits

P0.M;H/D eP 0
.M;H/=S1

to be the space of S1 –orbits in eP 0
.M;H/. For some of the results we present (partic-

ularly the asymptotic results in Section 3.1.3) the choice of basepoint 0 2R=Z will be
important for precise statements. Otherwise, we will generally want to think of two sim-
ple orbits as the same if they belong to the same class in P0.M;H/D eP 0

.M;H/=S1 .
In what follows, we will use the same notation for an orbit  2 eP 0

.M;H/ and its
equivalence class in P0.M;H/ and if we write 2D 1 for two simple periodic orbits,
the “D” should be interpreted modulo the S1 –action on eP 0

.M;H/ unless otherwise
stated.

Given a  2 eP 0
.M;H/, we define for any m 2 Z n f0g a map m 2 C1.S1;M / by

m
D  ıpm

where pmW S
1! S1 is the m–fold covering map defined by pm.Œt �R=Z/D Œmt �R=Z .

We refer to m as a multiply covered periodic orbit with multiplicity m and we denote
the set of all periodic orbits (simple and multiply covered) by

P.M;H/:

Let  W R�M !M be the flow of the XH , ie

P t .x/DXH. t .x//

for all .t;x/ 2R�M . If  2 eP 0
.M;H/ is a simple T –periodic orbit, then it follows

from the fact that LXH� D 0 and LXH! D 0 observed earlier that d mT j�H
.0/
2

Sp.�H
.0/

; !.0// for all m 2 Z. We say that the periodic orbit m is nondegenerate
if d mT j�H

.0/
does not have 1 in its spectrum. We will say a Hamiltonian structure

H D .�; !/ is nondegenerate if all periodic orbits of the corresponding vector field
XH are nondegenerate. If m is nondegenerate we say that

� m is hyperbolic if d mT j�H
.0/

has real eigenvalues and that

� m is elliptic if d mT j�H
.0/

has complex eigenvalues.

Geometry & Topology, Volume 15 (2011)



2356 Richard Siefring

We will furthermore say that

� m is even if it is hyperbolic and d mT j�H
.0/

has positive eigenvalues, and

� m is odd if it is either elliptic or if it is hyperbolic and d mT j�H
.0/

has negative
eigenvalues.

The designation of a periodic orbit as even or odd will correspond to the parity of the
Conley–Zehnder index of that orbit (see Section 3.1.1).

2.2 Almost complex cobordisms

Let .M;H/ be a manifold equipped with a stable Hamiltonian structure HD .�; !/.
We would like to define a preferred class of almost complex structures on R�M which
interact in a specific way with the Hamiltonian structure. First recall that given any
symplectic vector bundle .E; !/, a complex structure J on E is said to be compatible
with ! if the bilinear form defined by

gJ .�; �/D !.�;J �/

is a metric on E . It is a well know fact that the space of all such J is nonempty
and contractible in the C1 topology (see eg Hofer and Zehnder [13, Section 1.3,
Proposition 5 and the discussion which follows]).

Recalling now that .�H; !/ is a symplectic vector bundle, we define the set J .M;H/
to be the set of complex structures on �H which are compatible with ! . Given a
J 2 J .M;H/, we can extend it to an R–invariant almost complex structure eJ on
R�M by requiring eJ @a DXH and eJ j�H D J

where a is the parameter along R. We will refer to the almost complex structure eJ
on R�M defined in this way as the standard cylindrical almost complex structure
associated to J 2 J .M;H/.

Let W be a 4–manifold without boundary. We define a positive Hamiltonian structured
end to be data eEC D .EC; ˆC;MC;HC/ where EC �W is an open subset of W ,
MC is a closed (possible disconnected) manifold equipped with a stable Hamiltonian
structure HC and ˆCW EC ! RC �MC is a diffeomorphism. Similarly we will
define a negative Hamiltonian structured end to be data eE� D .E�; ˆ�;M�;H�/
where everything is as before except that ˆ� is now a diffeomorphism mapping E�

to R� �M� . A 4–manifold W equipped with (possibly empty) cylindrical endseE˙ D .E˙; ˆ˙;M˙;H˙/ will be called a cobordism of Hamiltonian structures or a
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manifold with Hamiltonian structured ends if W nEC[E� is a compact manifold
with (possibly empty) boundary. If a manifold W with Hamiltonian structured endseE˙ D .E˙; ˆ˙;M˙;H˙/ is equipped with an almost complex structure J , we say
that J is compatible with the ends eE˙ if it is conjugated to a standard cylindrical
almost complex structure on the ends, that is, if dˆ˙ ı J D eJ ˙ ı dˆC for some
J˙ 2J .M˙;H˙/. We will refer to .R�M;J / as a cylindrical cobordism if J D eJ
is the standard cylindrical almost complex structure associated to J 2 J .M;H/ for
some Hamiltonian structure H on M . In practice, we will usually suppress the set E˙

and diffeomorphism ˆ˙ and just refer to the data .R˙ �M˙;H˙/ as a cylindrical
end, or .R˙ �M˙;H˙;J˙/ when we wish to specify the almost complex structure
on the ends.

Now, let .W1;J 1/ and .W2;J 2/ be cobordisms of Hamiltonians structures equipped
with compatible almost complex structures and assume that W1 is equipped with
negative cylindrical end .R� �M1;H1;J1/ and that W2 is equipped with positive
cylindrical end .RC�M2;H2;J2/. We say that .W1;J 1/ can be stacked on .W2;J 2/

if M1 DM2 DM , H1 DH2 and J1 D J2 . In this case, we define the concatenation
W1 ˇW2 of W1 and W2 to be the C 0 –manifold obtained by compactifying the
negative end of W1 with f�1g �M , compactifying the positive end of W2 with
fC1g�M and making the obvious identification of f�1g�M with fC1g�M .
This operation can obviously be generalized to an arbitrarily long list of cobordismsn
.W1;J 1/; .W2;J 2/; : : : ; .WN ;J N /

o
provided of course that the negative end of Wi

matches with the positive end of WiC1 .

We remark that in the setting of symplectic field theory, the cobordisms considered are
usually equipped with a symplectic form and it is assumed that the almost complex
structure is compatible with the symplectic form. In some cases, these conditions
allow one to obtain topological controls on energy and this control in turn is important
for compactness theorems necessary to define the algebraic structure of the theory.
However, here we are primarily concerned with intersection-theory-related algebraic
invariants which only require an almost complex structure with the correct asymptotic
behavior. Therefore, we will not make any assumptions about the behavior of the
almost complex structure away from the cylindrical ends.

2.3 Asymptotically cylindrical maps and pseudoholomorphic curves

Let .M;HD .�; !// be a closed manifold equipped with a stable Hamiltonian structure
and let  2 eP 0

.M;H/ be a simple � –periodic orbit of XH . For some m 2 Z n f0g,
consider the map

Qm
W R�S1

!R�M
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defined by
Qm.s; t/D .m�s; m.t// 2R�M:

We will refer to such a map as a cylinder over the periodic orbit m or simply as an
orbit cylinder. The reader should note that for any J 2 J .M;H/, orbit cylinders haveeJ –invariant tangent spaces.

In this paper, the main objects we will study are maps from a punctured Riemann
surface to a cobordism of Hamiltonian structures with the maps asymptotic at the
punctures to orbit cylinders. More precisely, we consider a quadruple .†; j ; �; Qu/
where .†; j / is a closed Riemann surface, � �† is a finite set and

QuD .a;u/W † n�!R�M

is a smooth map. We say that Qu is asymptotically cylindrical over m at z� 2 � if
there exists a holomorphic embedding

�W ŒR;1/�S1
�C= iZ!† n�

satisfying lims!1 �.s; t/D z� so that the maps

Qvc W ŒR;1/�S1
!R�M

defined by Qvc WD .a.�.sC c; t//�m�c;u.�.sC c; t///

satisfy lim
c!1

Qvc D Q
m
jŒR;1/�S1 in C 1.ŒR;1/�S1;R�M /:

The map Qu is said to be a smooth asymptotically cylindrical map if Qu is asymptotically
cylindrical at each z 2 � over some periodic orbit mz

z . In this case we will say
that mz

z is the asymptotic limit of Qu at z . Note that if mz > 0 (resp. < 0) then the
R–component of Qu approaches C1 (resp. �1) near z . If mz > 0, we will refer
to z as a positive puncture of Qu and similarly, if mz < 0, we will refer to z as a
negative puncture of Qu. When convenient we will write � D �C[�� to indicate how
� decomposes as positive punctures, �C and negative punctures �� .

We will denote the space of smooth asymptotically cylindrical maps in R�M from a
genus g surface with n punctures by

C1g;n.M;H/;

and we will let C1.M;H/ WD [g>0[n�0 C1g;n.M;H/

denote the space of all smooth asymptotically cylindrical maps in R�M .
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In a similar manner, we can define asymptotically cylindrical maps in a 4–manifold
W with Hamiltonian structured ends E˙ D .R˙ �M˙;H˙/. Let QuW † n� !W

be a smooth map and assume that each z 2 � has an open neighborhood Uz �† so
that the image Qu.Uz n fzg/ of the punctured neighborhood lies entirely within one of
the cylindrical ends EC or E� . Then we can think of the map QujUznfzg as a map
to R�M˙ and define what it means for Qu to be asymptotically cylindrical over a
periodic orbit as we did above. The map Qu is then said to be asymptotically cylindrical
if it is asymptotically cylindrical at each z 2 � over some periodic orbit mz

z . For
asymptotically cylindrical maps in a cobordism, the punctures approaching periodic
orbits mz

z in the positive cylindrical end RC �MC are always positive punctures (ie
have mz > 0) and similarly those punctures at which Qu approaches a periodic orbit


mz
z in the negative end R� �M� have mz < 0. We will denote the space of genus

g , n–punctured asymptotically cylindrical maps in W by

C1g;n.W;HC;H�/

and the space of all asymptotically cylindrical maps in W by

C1.W;HC;H�/:

Now, let .W1;J 1/ and .W2;J 2/ be almost complex cobordisms and assume that W1

is equipped with negative cylindrical end .R� �M;H;J / and that W2 is equipped
with positive cylindrical end .RC �M;H;J / so that we can form the concatenation
W1ˇW2 . For i 2 f1; 2g, let

Qui W †i n .�i;C[�i;�/!Wi

be asymptotically cylindrical maps. Assume that there exists a bijection

i W �2;C! �1;�

so that if Qu2 as asymptotic at z 2 �2;C to m , then Qu1 is asymptotic at i.z/ 2 �1;�

to �m . Then we can form the concatenated map

Qu1ˇ Qu2W †1ˇ†2 n .�
C

1
[��2 /!W1ˇW2

where †1 ˇ †2 is the topological surface formed by circle compactifying †1 at
its negative punctures, circle compactifying †2 at its positive punctures and then
identifying each negative circle with its corresponding (under the bijection i ) positive
circle in a way that makes Qu1ˇ Qu2 a continuous map. Note that when the asymptotic
data contains multiply covered orbits, †1ˇ†2 is only well-defined up to Dehn twists
unless further choices (namely so-called asymptotic markers) are made. The specifics
won’t be important here, so we won’t address this issue any further. We will refer to a
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map Qu1ˇ Qu2 constructed in this way as a smooth asymptotically cylindrical building
in W1ˇW2 .

Consider an asymptotically cylindrical map .†; j ; �; Qu/ 2 C1.W;HC;H�/ and
assume that W is equipped with an almost complex structure J compatible with the
cylindrical ends. If the map Qu satisfies the equation

(2-2) d Qu ı j D J ı d Qu

we say that .†; j ; �; Qu/ is an asymptotically cylindrical pseudoholomorphic map. We
define an equivalence relation on punctured pseudoholomorphic maps by saying that
.†; j ; �; Qu/ is equivalent to .†0; j 0; � 0; Qu0/ if there exists a biholomorphic map

�W †0!†

so that � D �.� 0/ and Qu ı� D Qu0 . An equivalence class of maps Œ†; j ; �;u� will be
referred to as an asymptotically cylindrical pseudoholomorphic curve. We will use the
notations

M.W;J ;HC;H�/ and M.M;H;J /

to denote the set of asymptotically cylindrical pseudoholomorphic curves in .W;J / or
.R�M; eJ / respectively, and similarly we will use

Mg;n.W;J ;HC;H�/ and Mg;n.M;H;J /:

if we wish to specify the genus and number of punctures.

Note To simplify our language, we will henceforth simply use the term “pseudoholo-
morphic curve/map” when we are referring to asymptotically cylindrical pseudoholo-
morphic curves/maps. The reader should always assume that all pseudoholomorphic
curves are asymptotically cylindrical unless stated otherwise.

As with smooth asymptotically cylindrical maps, we can concatenate pairs (or finite
lists) of asymptotically cylindrical pseudoholomorphic maps into cobordisms with
matching ends, providing the asymptotic data match appropriately. Following [2], we
will call such maps pseudoholomorphic buildings.

2.4 Main results

Throughout this section, we will let .M;HD .�; !// denote a 3–manifold equipped
with a nondegenerate stable Hamiltonian structure and we will let .W;J / denote an al-
most complex 4–manifold equipped with cylindrical ends E˙D .R˙�M˙;H˙;J˙/
where the stable Hamiltonian structures H˙ are assumed to be nondegenerate.
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The main results of this paper are concerned with the intersection properties of pseu-
doholomorphic curves in 4–manifolds with Hamiltonian structured cylindrical ends.
Due to the noncompactness of the domains of the curves we consider, the problem
of understanding intersection behavior becomes particularly subtle in the case that
the curves have multiple ends which approach coverings of the same orbit or – when
considering self-intersection problems – in the case that an end approaches a multiple
cover of an orbit. Indeed, while all intersections (or self-intersections and singularities)
must be isolated by the results of Micallef and White [18], it is not immediately obvious
why the algebraic intersection number of two curves – computed by summing local
intersection indices – must be finite since it is conceivable that a pair of curves could
have a sequence of intersections approaching the punctures. Similarly, it is not clear that
a single curve couldn’t have a sequence of self-intersections approaching a puncture
at which the curve is asymptotic to a multiple cover of an orbit or approaching a pair
of punctures at which the curve is asymptotic to coverings of the same orbit. While
we will see that the asymptotic results of [22] imply that the intersection number of
two curves or the self-intersection index of a single curve must in fact be finite (see
Corollary 3.10 and Corollary 3.11 below), an additional unavoidable complication is
that these quantities may not be stable under homotopies since intersections could run
in or out of the punctures at shared asymptotic limits. We thus seek to determine to
what degree these quantities are topologically controlled by the homotopy classes of
the maps in C1.M;H/ or C1.W;HC;H�/ (depending on the target manifold).

As a first step towards finding intersection-related topological invariants of a pair of maps
with common asymptotic limits, we perturb one of the maps in a prescribed direction
near the ends. This idea was studied locally for a single embedded pseudoholomorphic
half-cylinder by Kriener [16] and further pursued by Hutchings [14; 15] and the author
[21]. More precisely, let ˆ denote a choice of trivialization of the plane-field �H along
every simple periodic orbit. Then given two maps Qu, Qv 2 C1.W;J ;HC;H�/, we
define the relative intersection number iˆ. Qu; Qv/ of Qu and Qv by

iˆ. Qu; Qv/D int. Qu; Qvˆ/

where Qvˆ is the map obtained by perturbing Qv near the punctures in a direction
determined by the trivialization ˆ and where “int” denotes the algebraic intersection
number computed by perturbing Qu and Qvˆ on compact subsets of their domain so
that they are transverse and then counting intersections with sign. It is well known
that the resulting count is independent of the compactly supported perturbation of
Qu and Qvˆ since Qu and Qvˆ are disjoint outside of a compact set. Thus the relative
intersection number computed in this way depends on the homotopy classes of Qu and
Qv in C1.W;J ;HC;H�/ and the homotopy class of the trivialization ˆ.
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While the relative intersection number gives a topological invariant of a pair of asymp-
totically cylindrical maps, its relationship to the algebraic intersection number of
two (unperturbed) pseudoholomorphic curves is not clear and in particular it is not
immediately clear whether or how it can be used to find a bound on the algebraic
intersection number of two pseudoholomorphic curves. We will see below that through
careful consideration of the relative asymptotic behavior of the curves from [22], such a
bound depending only on the homotopy classes of the maps can be obtained by adding an
appropriate quantity to the relative intersection number which balances the trivialization
dependence. Motivated by the local analysis in Section 3, we define the generalized
intersection number Œ Qu� � Œ Qv� of two asymptotically cylindrical maps .†; j ; �; Qu/,
.†0; j 0; � 0; Qv/ 2 C1.W;HC;H�/ as follows: assuming that Qu is asymptotic at z 2 �

to a cylinder over mz
z and similarly that Qv is asymptotic at w 2 � 0 to a cylinder over


mw
w we define Œ Qu�� Œ Qv� by

(2-3) Œ Qu�� Œ Qv�D iˆ. Qu; Qv/C
X

.z;w/2��� 0
zDw

mz mw>0

mzmw max
�
b�ˆ.

mz
z /=2c

jmz j
;
b�ˆ.

mw
w /=2c

jmw j

�

where �ˆ.mz / denotes the Conley–Zehnder index of the periodic orbit mz
z (see

Hofer, Wysocki and Zehnder [8] and Section 3 below) and where b�c denotes the
greatest integer function. Note that the sum here is taken over all pairs of punctures
with the same sign where the maps in question are asymptotically cylindrical over
coverings of the same underlying simple (unparametrized) periodic orbit.

The following theorem summarizes the main properties of the generalized intersection
number.

Theorem 2.1 (Properties of the generalized intersection number) Let W , W1 and
W2 be 4–manifolds with Hamiltonian structured cylindrical ends and assume we can
form the concatenation W1ˇW2 . Then:

(1) If .†; j ; �; Qu/ and .†0; j 0; � 0; Qv/ 2 C1.W;HC;H�/ are asymptotically cylin-
drical maps then the generalized intersection number Œ Qu�� Œ Qv� depends only on
the homotopy classes of Qu and Qv in C1.W;HC;H�/.

(2) For any .†; j ; �; Qu/ and .†0; j 0; � 0; Qv/ 2 C1.W;HC;H�/

Œ Qu�� Œ Qv�D Œ Qv�� Œ Qu�:

(3) If .†; j ; �; Qu/, .†0; j 0; � 0; Qv/, .†00; j 00; � 00; Qw/ 2 C1.W;HC;H�/ then

Œ QuC Qv�� Œ Qw�D Œ Qu�� Œ Qw�C Œ Qv�� Œ Qw�

where “C” on the left hand side denotes the disjoint union of the maps Qu and Qv .
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(4) If Qu1ˇ Qu2 and Qv1ˇ Qv2 are asymptotically cylindrical buildings in W1ˇW2

then
Œ Qu1ˇ Qu2�� Œ Qv1ˇ Qv2�� Œ Qu1�� Œ Qv1�C Œ Qu2�� Œ Qv2�:

Moreover, strict inequality occurs if and only if there is a periodic orbit  so
that Qu1 has a negative puncture asymptotic to m , Qv1 has a negative puncture
asymptotic to  n and both m and  n are odd orbits.

In item .4/ above, the possibility of strict inequality has to do with the fact that at
an odd orbit (with a fixed multiplicity) the eigenvectors of the asymptotic operator
controlling the direction of approach of negative pseudoholomorphic ends must have
strictly greater winding (computed relative to the direction of the Reeb flow) than
those controlling the direction of approach of positive pseudoholomorphic ends. The
relevant details from Hofer, Wysocki and Zehnder [10; 8] are reviewed in Section 3.1
below. In some applications it is convenient to modify the generalized intersection
number to include information about shared odd orbits so that one has a product which
is level-wise additive, ie always satisfies equality in item .4/ above. This approach
is taken by Momin [19] to study a variation on contact homology where only curves
contained in the complement of a prescribed collection of elliptic orbits are included in
the differential.

One of the motivations for defining the generalized intersection number as we did is
the next theorem, which generalizes the fact that two closed curves without common
components have a nonnegative homological intersection number and that the inter-
section number vanishes only if the two curves do not intersect. The total asymptotic
intersection index ı1. Qu; Qv/ mentioned in the theorem is defined in Section 3 below.
For the moment the reader should know that it is a nonnegative quantity defined for
pairs of pseudoholomorphic curves having no common components that can be thought
of as a measure of the degree of tangency at infinity between the two curves. Here we
say the two maps Qu and Qv have no common components if there is no component of
the domain of Qu which has image identical to that of a component of the domain of Qv .

Theorem 2.2 Let .W 4;J / be an almost complex cobordism with cylindrical ends
.R˙ �M˙;J˙;H˙/ and let Œ†; j ; �; Qu�, Œ†0; j 0; � 0; Qv� 2 M.W;J ;HC;H�/ be
pseudoholomorphic curves in W with no common components. Then

(2-4) Œ Qu�� Œ Qv�D int. Qu; Qv/C ı1. Qu; Qv/;

where int. Qu; Qv/ is the algebraic intersection number of Qu and Qv and ı1. Qu; Qv/ is the
asymptotic intersection index of Qu and Qv . In particular

Œ Qu�� Œ Qv�� int. Qu; Qv/� 0;
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and Œ Qu�� Œ Qv�D 0

if and only if Qu and Qv do not intersect and the total asymptotic intersection index
vanishes, ie ı1. Qu; Qv/D 0.

As an immediate corollary to this, we can conclude that if a homotopy class of maps with
connected domains in C1.W;HC;H�/ has a negative generalized self-intersection
number, then that homotopy class can contain at most one pseudoholomorphic curve
for a given compatible almost complex structure.

We note that in contrast to the case of closed pseudoholomorphic curves, positivity
of the generalized intersection number of two given curves does not guarantee that
the two curves intersect. This is because the algebraic intersection number of two
punctured curves is not a homotopy-invariant quantity and intersections between two
pseudoholomorphic curves can disappear out the punctures. The degree to which
intersections can escape or appear at the punctures is however topologically controlled:
even though both quantities on the right hand side of (2-4) can vary under homotopies of
curves, their sum is topologically determined and this fact coupled with the nonnegativity
of those quantities allows a topological bound on the total count of intersections
and “tangencies at infinity.” One might consider this fungibility of intersections and
“tangencies at infinity” as motivation to think of tangencies at infinity or “asymptotic
intersections,” as being somehow equivalent to actual intersections. This viewpoint is
further supported by the fact that considering weighted Fredholm theory arguments
(Hofer, Wysocki and Zehnder [11] and Dragnev [3]) one would expect that the space
of pairs of curves . Qu; Qv/ with ı1. Qu; Qv/ > 0 should have positive codimension in the
universal moduli space of pseudoholomorphic curves.

We next state a generalization for punctured curves of the adjunction formula (1-1). We
first establish some notation and terminology. Let .†; j ; �; Qu/ 2 C1.W;HC;H�/ be
an asymptotically cylindrical map and assume that at z 2 � , u is asymptotic to the
periodic orbit mz

z . A choice of complex trivialization of the hamiltonian plane-field
distribution .�H

˙

;J˙/ along each z induces a complex trivialization of the pull-back
bundle . Qu�T W;J / since on the cylindrical ends we have

.T W;J /� .R˚RXH˙ ˚ �
H˙ ; eJ ˙/�CXH˙ ˚ .�

H˙ ;J˙/:

Given such a choice of trivialization, ˆ, we can define the relative Chern number
cˆ

1
. Qu�T W / which is the obstruction to extending over † n � the trivialization of

. Qu�T W;J /!† n� that has been chosen at the ends (see [14; 21] or Section 4.2.1
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below for a precise definition). We define the total Conley–Zehnder index �. Qu/ of the

map Qu by �. Qu/ WD 2cˆ1 . Qu
�T W /C

X
z2�

�ˆ.mz
z /:

It follows from change of trivialization formulas given below for the relative first Chern
number and the Conley–Zehnder index that the total Conley–Zehnder index does not
depend on the choice of trivialization.

Next, assuming  is a simple periodic orbit of a Reeb vector field we define the spectral
covering number of the periodic orbit m by

N�.m/D gcd.m; b�ˆ.m/=2c/:

We observe that this quantity does not depend on a choice of trivialization since
changing the trivialization changes b�ˆ.m/=2c by an integer multiple of m (see
comments following Lemma 3.4). With u as in the previous paragraph, we then define
the total spectral covering number N�.u/ of u by

N�.u/D
X
z2�

N�.mz
z /:

We observe that the total spectral covering number of a map depends only on its
asymptotic limits and not on the map itself.

We now state a generalization of (1-1) involving the generalized intersection number.
The quantity ı. Qu/ in equation (2-5), which we call the self-intersection index, is a
nonnegative integer-valued quantity which records information about double points and
singular points and is zero if and only if u is an embedding (see [18] and Section 4.2.2
below). The asymptotic self-intersection index ı1. Qu/ of Qu is defined in Section 3.2
below. For the moment, the reader should know that it is a nonnegative, integer-valued
quantity, defined for a simple pseudoholomorphic curve that can be thought of as a
measure of the degree of self-tangency at infinity. Here, we say a pseudoholomorphic
curve is simple if it does not factor through a branched cover.

Theorem 2.3 Let Œ†; j ; �; Qu� 2M.W;J ;HC;H�/ be a connected pseudoholomor-
phic curve and assume that Qu is simple. Then

(2-5) Œ Qu�� Œ Qu��
1

2
�. Qu/C

1

2
#�oddC�.†/� N�. Qu/D 2Œı. Qu/C ı1. Qu/�;

where #�odd is the number of punctures of Qu with odd Conley–Zehnder indices. In
particular,

Œ Qu�� Œ Qu��
1

2
�. Qu/C

1

2
#�oddC�.†/� N�. Qu/� 0
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and equality occurs if and only if Qu is an embedding and the asymptotic self-intersection
index of Qu vanishes, ie ı1. Qu/D 0.

Note that in contrast to the case of closed pseudoholomorphic curves and (1-1), positivity
of the left-hand side of equation (2-5) does not guarantee a curve is not embedded. This
is because the self-intersection index ı. Qu/ is not, in general, topologically determined
for punctured curves since double points can escape out the ends in families of curves.
However, much like in the discussion following Theorem 2.2 above, this theorem shows
that the sum of the self-intersection index and the asymptotic self-intersection index
is topologically determined and that double points escaping out the ends are traded
for self-tangencies at infinity. Thus, we might think of having a positive asymptotic
self-intersection index as being somehow equivalent to having double points or singular
points, a point of view which is again supported by the fact that the Fredholm theory
suggests that curves with ı1. Qu/ > 0 should form strata of positive codimension in the
universal moduli space.

Results closely related to Theorem 2.3 have been proved by Hutchings [14; 15]. Due
to the specific application being pursued in those papers, no theorem equivalent to
Theorem 2.3 appears; [14, Equation (18) in Remark 3.2] identifies embedded curves,
but not in terms of quantities that are topologically determined. Still, the appropriate
analogue of that result to the present context is the key step in proving Theorem 2.3.
On the other hand, the index inequality in [14, Theorem 1.7] gives a purely topological
condition that guarantees a curve will be embedded, but only identifies those curves
whose asymptotic data satisfy an additional “admissibility” condition. Theorem 2.3
above, can thus be thought of as being intermediate between these two results.

2.4.1 Cylindrical cobordisms In this section we specialize to the case of a cylindri-
cal cobordism .R�M; eJ / equipped with an R–invariant almost complex structure eJ
arising from a compatible J 2 J .M;H/ for some nondegenerate stable Hamiltonian
structure HD .�; !/ on M .

An important (and well-known) observation is that space of curves M.M;H;J / is
equipped with an R–action, defined by translating the R–coordinate of the given
curve. More precisely, if Œ†; j ; �; Qu� is a pseudoholomorphic curve and we write
Qu D .a;u/ 2 R �M , then Œ†; j ; �; Quc � where Quc.z/ WD .a.z/C c;u.z// is also a
pseudoholomorphic curve. Furthermore, in the cylindrical case, the way the almost
complex structure is defined allows the pseudoholomorphic curve equation (2-2) for
the map .†; j ; �; .a;u// to be rewritten,

(2-6)
u�� ı j D da

��H ı du ı j D J ı��H ı du
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where ��H W TM DRXH˚ �
H! �H is the projection of TM onto �H determined

by the splitting (2-1). Thus, the M –component, u, of a curve in R�M determines
the R–component, a, up to a constant.

As an immediate consequence of the existence of the R–action, Theorem 2.2 and the
homotopy invariance of the generalized intersection number, we can conclude that if a
connected curve Œ†; j ; �; Qu� has no component whose image lies in an orbit cylinder,
then

Œ Qu�� Œ Qu�D Œ Qu�� Œ Quc �� 0

so such a curve must have a nonnegative self-intersection number.

Since, in the cylindrical case, the projection of the curve to the 3–manifold contains all
of the information (up to an R–shift), it is not surprising that generalized intersection
number of two curves in R�M can be computed in terms of 3–dimensional invariants
associated to the curves; namely we can state a formula in terms of the intersections
between one of the curves with periodic orbits which are asymptotic limits of the
other curve and how the ends of the curves wind around the periodic orbits (see
Theorem 5.8 below). Moreover, since the formula we give decomposes into a collection
of nonnegative terms, this computation then allows one to deduce necessary and
sufficient conditions for the generalized intersection number to vanish, which we state
in Corollary 5.9.

Part of the reason we seek to find conditions to characterize when the generalized
intersection number of two curves Œ†; j ; �; QuD .a;u/� and Œ†0; j 0; � 0; Qv D .b; v/� 2
M.M;H;J / is zero (or nonzero) is that Œ Qu�� Œ Qv�D 0 implies that the projections u,
v , of the maps to M do not intersect, provided that these maps have no components
projecting to identical images in M . Indeed, if we can find a z 2† and w 2†0 so that
u.z/D v.w/ then we can find a c so that Qu.z/D Qvc.w/, which in turn implies that
int. Qu; Qvc/ > 0 and hence Œ Qu� � Œ Qv�D Œ Qu� � Œ Qvc � � int. Qu; Qvc/ > 0 by Theorem 2.2. Thus
the vanishing of the generalized intersection number gives a sufficient condition for the
projection of the curves to the three-manifold to not intersect. The vanishing of the
generalized intersection number is not a necessary condition for the projected curves to
not intersect since it is possible for the algebraic intersection number of Qu and Qvc to be
zero for all c 2R, but still have Œ Qu�� Œ Qv� > 0, since the asymptotic intersection index
could be nonzero. However, in the R–invariant setting, the asymptotic intersection
number changes in a predictable manner when R–shifting one of the two curves and
we are able to establish a set of necessary and sufficient conditions for the two projected
curves to not intersect.

Before stating the relevant theorem we discuss some of the more immediate necessary
conditions for the projected curves u and v to not intersect. We first recall some facts
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from Hofer, Wysocki and Zehnder [10; 8]. Namely, if a curve Œ†; j ; �; Qu D .a;u/�
does not have any components with image lying in an orbit cylinder, then there is
a neighborhood of each puncture on which the map does not intersect any of its
asymptotic limits. Thus choosing a loop in one of these neighborhoods which winds
around the puncture once in a clockwise direction,1 and choosing a trivialization ˆ
of �H along the orbit, we get a well defined winding number windˆ1. QuI z/ for each
z 2 � . Moreover, it is shown in [8] (and reviewed in Lemma 3.13 below) that

windˆ1. QuI z/� b�
ˆ.mz

z /=2c

where we assume Qu to be asymptotic to mz
z at z 2� . If we consider a small torus T 2

z

bounding a tubular neighborhood of z and use the framing ˆ to identify H1.T
2
z
/

with Z˚Z, the intersection of the projected map u with T 2
z

will be a curve in the
homology class .mz;windˆ. QuI z//. If Qv also has an end approaching z at w 2� 0 , the
homology class of intersection of v with T 2

z
will then be given by .mw;windˆ. QvIw//.

Thus, if the projected maps u and v are to be disjoint, we must have that the intersection
number

.mz;windˆ. QuI z// � .mw;windˆ. QvIw//Dmz windˆ. QvIw/�mw windˆ. QuI z/

is zero or equivalently

(2-7) windˆ1.QuIz/
mz

D
windˆ1.QvIw/

mw
:

Therefore, if the projections u and v do not intersect, it is necessary that (2-7) holds at
any pair of punctures .z; w/ 2 � �� 0 at which u and v are asymptotic to coverings of
a common orbit.

Next suppose that u intersects one of the asymptotic limits of v . Then one can use
the asymptotic results of [10] (or see Theorem 3.7 below) with the fact that the orbit
is a projection to M of a pseudoholomorphic curve in R�M to argue that u must
intersect v . Thus if u and v do not intersect, it must be the case that u intersects none
of the asymptotic limits of v and vice versa.

As the following theorem shows, the necessary conditions we have just stated for the
projections of two curves to M to not intersect are also sufficient and in fact somewhat
weaker conditions are sufficient.

1This convention agrees with that used in [8] for positive punctures, but is opposite that used in [8] for
negative punctures. What this means geometrically is that we compute windings by traversing the orbit
in a direction determined by the orientation of the boundary of the S1 –compactified punctured surface,
while in [8] the convention is to compute windings by traversing the orbit in the direction determined by
the Reeb vector field. We use this convention because it simplifies the statements of most of our results.
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Theorem 2.4 Let Œ†; j ; �; QuD .a;u/� and Œ†0; j 0; � 0; Qv D .b; v/� 2M.M;H;J / be
pseudoholomorphic curves and assume that no component of Qu or Qv lies in in orbit
cylinder and that the projected curves u and v do not have identical image on any
component of their domains. Then the following are equivalent:

(1) The projected curves u and v do not intersect.

(2) All of the following hold:
(a) The map u does not intersect any of the positive asymptotic limits of v .
(b) The map v does not intersect any of the negative asymptotic limits of u.
(c) If  is a periodic orbit so that at z 2 � , Qu is asymptotic to mz and at

w 2 � 0 , Qv is asymptotic to mw , then:
(i) If mz and mw have the same sign then

wind1.QuIz/
mz

�
wind1.QvIw/

mw
:

(ii) If mz < 0 and mw > 0 then

windˆ1.QuIz/
mz

D
b�ˆ.mz /=2c

mz
D
b�ˆ.mw /=2c

mw
D

windˆ1.QvIw/
mw

(this is only possible if mz and mw are both even orbits).

(3) All of the following hold:
(a) The map u does not intersect any of the asymptotic limits of v .
(b) The map v does not intersect any of the asymptotic limits of u.
(c) If  is a periodic orbit so that at z 2 � , Qu is asymptotic to mz and at

w 2 � 0 , Qv is asymptotic to mw , then

wind1.QuIz/
mz

D
wind1.QvIw/

mw
:

When two curves, Œ†; j ; �; Qu� and Œ†0; j 0; � 0; Qv� 2M.M;H;J /, each have as an
asymptotic limit a cover of the same even periodic orbit, it is sometimes possible to
conclude that the generalized intersection number Œ Qu�� Œ Qv� is positive. Let  denote
either a simple, even orbit or the double cover of an odd, hyperbolic orbit. In this case
it is possible to use the asymptotic description from Theorem 3.7 below to define a
notion of two curves approaching a cover of  in the same direction. We delay the
precise definition to Section 5.3.1 because it is somewhat technical. The following
theorem then says that two curves approaching a cover of  in the same direction is a
sufficient condition for a positive generalized intersection number.

Theorem 2.5 Let  be a periodic orbit satisfying the above assumptions and let
Œ†; j ; �; QuD .a;u/� and Œ†0; j 0; � 0; Qv D .b; v/� 2M.M;H;J / be connected pseudo-
holomorphic curves. Assume that at punctures z 2 � and w 2 � 0 , Qu and Qv approach a
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cover of  in the same direction, and that there do not exist neighborhoods U of z and
V of w so that u.U n fzg/D v.V n fwg/. Then

Œ Qu�� Œ Qv� > 0:

Just as it is of use to know when the generalized intersection number of a pair of curves
vanishes, it is of use to know when the generalized self-intersection number of a single
curve Œ†; j ; �; QuD .a;u/�2M.M;H;J / vanishes. Combining the adjunction formula
(2-5) with the previously referenced formula (5-5) for the generalized intersection
number in terms of data associated to the projected curves, we get a collection of
conditions equivalent to the vanishing of the generalized self-intersection number
Œ Qu�� Œ Qu�, provided the map Qu is simple and does not have any components contained
in an orbit cylinder (Corollary 5.17 below). From this result we will see that under
the stated assumptions, Œ Qu�� Œ Qu�D 0 implies that Qu is an embedding which projects to
an immersion in M transverse to the flow of XH which does not intersect any of its
asymptotic limits.

Combining this with the above discussion, we see that if Qu is furthermore connected,
then Œ Qu�� Œ Qu�D 0 implies that Qu does not intersect any of its R–translates and thus that
the projected curve u is an embedding (since it is an injective immersion that never
intersects any of its asymptotic limits). We can therefore conclude that if the projected
map u is not an embedding then Œ Qu�� Œ Qu� > 0. As with the discussion above concerning
intersections of projections of curves to M , the converse is not true, since it could be
the case that the generalized intersection number Œ Qu�� Œ Quc � is positive, but still that the
intersection number int. Qu; Quc/ is zero for all c 2R n f0g.

However, again as above, the asymptotic intersection index of Qu and Quc changes in a
predictable manner as c varies and we can use this fact to come up with the following
criteria for the map u to be an embedding. As with Theorem 2.4, this result can be
viewed as saying that certain subsets of the “obvious” necessary conditions for u to
be an embedding are also sufficient. In condition .4/ below, the relative asymptotic
intersection number

iˆ1.Œ QuI z�; Œ QuIw�/

is a count of how many intersections appear between a neighborhood of z 2 � and a
neighborhood of w 2 � when Qu is perturbed near w in a direction determined by a
trivialization ˆ of the asymptotic limit of Qu at w . More detail on this quantity can be
found in Section 3.2 below.

Theorem 2.6 Let Œ†; j ; �; QuD .a;u/� 2M.M;H;J / be a connected, simple pseu-
doholomorphic curve and assume that Qu does not have image contained in an orbit
cylinder. Then the following are equivalent:
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(1) The projected map uW † n�!M is an embedding.

(2) The algebraic intersection number int. Qu; Quc/ between Qu and an R–translate
Quc D .aC c;u/ is zero for all c 2R n f0g.

(3) All of the following hold:
(a) u does not intersect any of its asymptotic limits.
(b) If  is a periodic orbit so that u is asymptotic at z 2 � to mz and u is

asymptotic at w 2 � to mw , then

wind1.QuIz/
mz

D
wind1.QuIw/

mw
:

(4) All of the following hold:
(a) The map Qu is an embedding.
(b) The projected map u is an immersion which is everywhere transverse to XH
(c) For each z 2 � , we have

gcd.mz;wind1. QuI z//D 1:

(d) If  is a periodic orbit so that u is asymptotic at z to mz and u is as-
ymptotic at w ¤ z to mw with mzmw > 0, then the relative asymptotic
intersection number of the ends Œ QuI z� and Œ QuIw� satisfies

iˆ1.Œ QuI z�; Œ QuIw�/D�mzmw max
�

windˆ1.QuIz/
mz

;
windˆ1.QuIw/

mw

�
:

We note that the conditions of this theorem simplify somewhat if every asymptotic
limit of Qu is geometrically distinct. In particular, condition .3/ implies that a simple
curve with geometrically distinct asymptotic limits projects to an embedding in M if
and only if the projection does not intersect any of its asymptotic limits. For planes,
this generalizes [8, Theorem 1.1].

As an application of some of these ideas, we can prove a result about the contact
homology of a manifold admitting a holomorphic open book decomposition satisfying
some additional assumptions. Recall that an open book decomposition of a 3–manifold
M is a pair .L; �/ where L �M is a link and � W M nL! S1 is a fibration, the
fibers ��1.�/ of which are embedded surfaces bounded by L. In this case the link
L is referred to as the binding of the open book decomposition and the fibers of the
fibration are referred to as pages of the open book decomposition.

Now consider M equipped with a stable Hamiltonian structure H and compatible
complex multiplication J 2 J .M;H/. We say that .M;H;J / admits a holomorphic
open book decomposition, if M admits an open book decomposition .L; �/ so that
the link L is comprised of elliptic periodic orbits of the vector field XH and the pages
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are projections of eJ –holomorphic curves in R�M . We say a holomorphic open book
decomposition is stable if the pseudoholomorphic curves which project to pages are
genus 0, have only positive simple punctures and have Fredholm index 2.

Theorem 2.7 Assume that .M;H;J / admits a stable, holomorphic open book decom-
position. Let Œ†; j ; �; QuD .a;u/� 2M.M;H;J / be a connected pseudoholomorphic
curve and assume that the image of u is not a page of the open book decomposition
and that Qu does not have image contained in an orbit cylinder. Then at least one of the
following is true:

(1) At least one of the positive punctures of Qu limits to an orbit that is not a binding
of the open book decomposition.

(2) At least one of the positive punctures of Qu limits to a multiple cover of a binding
orbit of the open book.

This result in particular immediately implies the following corollary. See Eliashberg,
Givental and Hofer [4] for the definition of contact homology and cylindrical contact
homology.

Corollary 2.8 Let .M;H;J / admit a stable, holomorphic open book decomposition
.L; �/, let  � L be a binding orbit and assume that the contact homology (resp.
cylindrical contact homology) of the triple .M;H;J / is well-defined. Then  is a
cycle in the contact homology (resp. cylindrical contact homology) of .M;H;J /.

2.4.2 Generalized pseudoholomorphic curves Finally we present a result concern-
ing the intersection properties of so-called generalized pseudoholomorphic curves.
These curves are introduced in Hofer [7] as a possible way to extend the theory of
finite-energy foliations (see eg Hofer, Wysocki and Zehnder [12]) to include curves
with nontrivial genus.

The generalized pseudoholomorphic curve equation for an asymptotically cylindrical
map .†; j ; �; .a;u// 2 C1.M;H/ is obtained by twisting the first of the two equa-
tions in .2-6/ by a harmonic form on †. More precisely, we consider quintuplets
.†; j ; �; Qu D .a;u/; �/ where the quadruple .†; j ; �; .a;u// is a smooth asymptot-
ically cylindrical map, (ie belongs to C1.M;H/) and where � is a 1–form on the
unpunctured surface †. Such a quintuple is called a generalized pseudoholomorphic
map in .M;H;J / if it satisfies

(2-8)

8̂<̂
:

u�� ı j D daC �

��H ı du ı j D J ı��H ı du

d� D 0D d.� ı j /:
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A generalized pseudoholomorphic curve is the equivalence class Œ†; j ; �; QuD .a;u/; ��
of the quintuple .†; j ; �; QuD .a;u/; �/ under the equivalence relation of holomorphic
reparametrization of the domain.

As with pseudoholomorphic maps, a finite energy condition guarantees that the maps
are asymptotically cylindrical. We will not give the definition of energy here, but will
instead just assume that we are dealing with asymptotically cylindrical maps. We will
denote the set of asymptotically cylindrical generalized pseudoholomorphic curves in
.M;H;J / by M�.M;H;J /

In contrast to genuinely pseudoholomorphic curves, generalized pseudoholomorphic
curves do not satisfy local positivity of intersections. Indeed, it is possible to construct
a pair of local solutions Qu D .a;u/ and Qv D .b; v/ to (2-8) which have an isolated
intersection of negative index (see Appendix B). In light of this, one might expect
that a pair of generalized pseudoholomorphic curves could have arbitrary generalized
intersection number, but as the following theorem shows, this is not the case.

Theorem 2.9 Let Œ†; j ; �; Qu; ��, Œ†0; j 0; � 0; Qv; �0� 2M�.M;H;J / be generalized
pseudoholomorphic curves and assume that no component of Qu or Qv is contained in an
orbit cylinder. Then

Œ Qu�� Œ Qv�� 0:

This result puts topological restrictions on what homotopy classes in C1.M;H/ can
contain generalized pseudoholomorphic maps. Indeed we have the following immediate
corollaries of Theorem 2.9.

Corollary 2.10 Let .†; j ; �; Qu/2C1.M;H/ be a smooth asymptotically cylindrical
map with no component homotopic to an orbit cylinder. If

Œ Qu�� Œ Qu� < 0

then there are no generalized pseudoholomorphic curves in the same relative homotopy
class as Qu.

Corollary 2.11 Let .†; j ; �; Qu/ 2 C1.M;H/ be a smooth asymptotically cylindri-
cal map with no component homotopic to an orbit cylinder. Assume there exists a
generalized pseudoholomorphic curve Œ†; j ; �; Qv; �� 2M�.M;H;J / so that

Œ Qu�� Œ Qv� < 0:

Then there are no generalized pseudoholomorphic curves in the same relative homotopy
class as Qu.
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2.5 Overview

The remainder of the paper is devoted to proving the results above concerning the
properties and applications of generalized intersection number. We review relevant
technical background material where appropriate.

As mentioned above, some difficulties arise in trying to understand the intersection
and embedding properties of punctured pseudoholomorphic curves when multiple ends
approach the same orbit or, when concerned with embedding controls, when an end
approaches a multiple cover of an orbit. First, it is not a priori clear that the algebraic
intersection number is finite since the domains are not compact. Second, even if the
algebraic intersection number is finite, in families of curves, intersections (or self-
intersections) can appear or disappear at the ends and thus, the algebraic intersection
number is not topologically determined.

A precise understanding of the asymptotic behavior of punctured pseudoholomorphic
curves is the key both to establishing finiteness of the algebraic intersection number
and to understanding to what degree intersections or self-intersections can appear
or disappear at the ends. The relevant asymptotic results are proved in [22] and are
reviewed in Section 3.1.3 after reviewing facts about asymptotic operators and the
Conley–Zehnder index in Section 3.1.1. With the appropriate asymptotic results in
hand, we study some local asymptotic winding invariants in Section 3.1.4 which are
convenient for encoding intersection related invariants we develop. Then in Section 3.2
we take up the study of local asymptotic intersection invariants. In particular we define
and establish the main properties of the asymptotic intersection index ı1.Œ QuI z�; Œ QvIw�/
of two ends and the asymptotic self-intersection index ı1.Œ QuI z�/ of a single end. For
pseudoholomorphic curves, these quantities can, in light of the asymptotic results of
[22], be thought of as measures respectively of tangency or self-tangency at infinity
and, in this case, these quantities give the upper bound on the count of intersections or
self-intersections that could appear that those ends.

The theorems stated above in Section 2.4 are then proved in Section 4 and Section 5
along with some complementary results. We establish the basic properties of the
relative and generalized intersection numbers in Section 4.1 building up to the proof of
Theorem 2.2. Section 4.2 is then devoted to proving Theorem 2.3 and some related
results. The proofs of these theorems rest on the fact that, in the cases we consider,
the generalized intersection number can be understood completely by combining facts
about the local behavior of pseudoholomorphic curves from Micallef and White [18]
with the asymptotic intersection invariants developed in Section 3. In Section 5, we
then specialize to the case of a cylindrical cobordism. The key idea here is that the
homotopy invariance of the generalized intersection number coupled with the existence
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of the R–action allows the generalized intersection number to be computed in terms of
quantities associated to the projection of the curve to the three-manifold.

Finally we close with two appendices. In Appendix A we adapt a proof of Hofer,
Wysocki and Zehnder from [8] to show that the projection to �H along XH of the
differential of a connected curve in M.M;H;J / either vanishes identically or has a
finite number of zeroes of positive order. In Appendix B we show that local solutions
to the generalized pseudoholomorphic curve equations (2-8) can exhibit intersection
behavior not found in genuinely pseudoholomorphic maps.

3 Local intersection numbers at punctures

3.1 Asymptotics and asymptotic winding numbers

3.1.1 Asymptotic operators and the Conley–Zehnder index Throughout this sec-
tion, we will assume that .M;H/ is a 3–manifold equipped with a stable Hamiltonian
structure HD .�; !/ and that J 2 J .M;H/ is a compatible complex multiplication
on �H .

We will associate to any periodic orbit a differential operator related to the linearized
flow. Let  2 P.M;H/ be a � –periodic orbit (possibly multiply covered) and let
h be a vector field along  , that is hW S1 ! TM is a smooth function satisfying
h.t/ 2 T.t/M for all t 2 S1 . Since h is defined along a flow line of XH we can
define the Lie derivative LXHh of h by

LXHh.t/D
d

ds

ˇ̌̌
sD0

d �s. .t C s=�//h.t C s=�/:

Since the flow  t of XH preserves the splitting (2-1), so must LXH and we can
conclude that if h.t/ 2 �H

.t/
for all t 2 S1 , then LXHh.t/ 2 �H

.t/
for all t 2 S1 .

Moreover, if r is a symmetric connection on TM , we can use d .t/@t D � �XH. .t//

to write

� �LXHhDL� �XHhDr� �XHh�rh.� �XH/Drth� �rhXH;

and therefore the differential operator rt ���r�XH maps sections of  ��H to sections
of  ��H and is independent of the choice of symmetric connection.

Choosing some J 2J .M;H/, we associate to each � –periodic orbit  2P� .M;H/ a
differential operator A;J W C1. ��H/! C1. ��H/ acting on the space of smooth
sections of �H along  defined by

A;J �D�J.rt�� �r�XH/:
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We note that the discussion of the previous paragraph implies that A;J does in fact
map the space of sections of �H along  to itself and that A;J is independent of
symmetric connection r used to define it. Define an inner product on C1. ��H/ by

hh; kiJ D

Z
S1

!.t/
�
h.t/;J. .t//k.t/

�
dt:

Recalling that LXH! D 0, we have for any h, k 2 C1. ��H/ that

@

@t
!.t/.h.t/; k.t//D !.t/

�
�.LXHh/.t/; k.t/

�
C!.t/

�
h.t/; �.LXHk/.t/

�
Noting that the compatibility of J with !j�H implies that !.J �;J �/ D !.�; �/ on
�H � �H , we integrate this to give

hh;A;J kiJ D hA;J h; kiJ

Therefore A;J is formally self-adjoint and A;J induces a self-adjoint operator

A;J W D.A;J /DH 1. ��H/�L2. ��H/!L2. ��H/:

We will refer to A;J as the asymptotic operator associated to the orbit  .

The kernel of A;J is closely related to the degeneracy of the orbit  . Indeed, if 
is degenerate then there is a nonzero v0 2 �

H
.0/

so that d � . .0//v0 D v0 . Defining
v 2 C1. ��H/ by v.t/D d � t . .0//v0 , we have that LXHv � 0, so v 2 ker A;J .
Conversely, if h 2 C1. ��H/ satisfies h 2 ker A;J , then we can conclude that
LXHh � 0 so we must have that h.t/ D d � t . .0//h.0/ and in particular h.0/ D

d � . .0//h.0/. Therefore  is nondegenerate if and only if A;J has trivial kernel.

It will be important to understand the behavior – particularly the winding – of eigenvec-
tors of asymptotic operators associated to periodic orbits in trivializations of �H . We
establish our conventions for dealing with trivializations here. Given a simple periodic
orbit  2 P0.M;H/ we will use the term unitary trivialization of . ��H; !;J / to
refer to a trivialization

ˆ W S
1
�R2

! �Hj

of  ��H satisfying

!.ˆ �; ˆ �/D dx ^ dy

ˆ ıJ0 D J ıˆ

where J0 is the standard complex multiplication used to identify R2 with C . Having
chosen a unitary trivialization ˆ of . ��H; !;J /, we get an induced trivialization
for �H along the multiply covered orbit ..m/��H; !;J / by pulling back ˆ via the
m–fold covering map Œt �R=Z ! Œmt �R=Z . When dealing with trivializations of �H
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along an orbit m , we will always assume that the trivialization arises from a choice
of trivialization along the underlying simply covered orbit  2 eP 0

.M;H/. Moreover,
we will generally use the same notation to indicate the trivialization ˆ of �H along 
and that induced on �H along m .

In a unitary trivialization of the . ��H; !;J / along a simple periodic orbit  W S1!M ,
the asymptotic operator Am;J takes the form

.Am;J h/.t/D�i
d

dt
h.t/�S.t/h.t/;

where S.t/ is a symmetric, two-by-two matrix. An eigenvector of Am;J satisfies a
linear, first-order ordinary differential equation and therefore never vanishes since it does
not vanish identically. Hence every eigenvector gives a map from S1!R2 n f0g and
thus has a well defined winding number. Since �i d

dt
�S.t/ is a compact perturbation

of �i d
dt

, it can be shown that the winding is monotonic in the eigenvalue and that to
any k 2 Z there is a two dimensional space of eigenvectors with winding k . These
results are proved in [8, Section 3] and we restate them here as a lemma.

Lemma 3.1 Let  2 P0.M;H/ be a simple periodic orbit of XH , let Am;J denote
the asymptotic operator of m for m 2 Z n f0g and let T. ��H/ denote the set
of homotopy classes of unitary trivializations of . ��H; !;J /. There exists a map
wW �.Am;J /�T.

��H/! Z which satisfies

(1) If eW S1 ! .m/��H is an eigenvector of Am;J with eigenvalue �, then
w.�; Œˆ�/D wind.ˆ�1e/, that is, w.�; Œˆ�/ measures the winding with respect
to ˆ of any eigenvector of Am;J with eigenvalue �.

(2) For any fixed Œˆ� 2 T. ��H/ we have that

w.�; Œˆ�/ < w.�; Œˆ�/) � < �;

that is, the winding of eigenvectors of Am;J is (not strictly) monotonic in the
eigenvalue.

(3) If m.�/D dim ker.Am;J � �/ denotes the multiplicity of � as an eigenvalue
we have for every k 2 Z and Œˆ� 2 T. ��H/ thatX

f� jw.�;Œˆ�/Dkg

m.�/D 2;

that is, the space of eigenvectors of Am;J with any given winding has dimen-
sion 2.
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In this paper the relationship between the spectrum of the asymptotic operator associated
to a simply covered orbit  and that of the asymptotic operator associated to its k –fold
iterate  k will be important. First note that there is a Zk action on sections of . k/��H

defined by Œj �Z=kZ �k f .t/D f .t C
j

k
/. It is easily verified that Ak ;J is equivariant

with respect to this action and therefore that the eigenspaces of Ak ;J are fixed by this
action. We say an eigenvector e of Ak ;J is multiply covered if the isotropy group

G.e/D fj 2 Zk j j �k e D eg

is nontrivial and we define the covering number of e

cov.e/D jG.e/j

of e to be the order of this group. Put more simply, cov.e/ is the largest positive integer
m dividing k for which .k=m/�k � fixes e . It follows from the definition of A;J that
if e is an eigenvector of A;J with eigenvalue �, then the section ek 2C1.. k/��H/

defined by ek.t/D e.kt/ is an eigenvector of Ak ;J with eigenvalue k�. Furthermore,
it is straightforward to see that any eigenvector e of Ak ;J with covering number
mD cov.e/ is of the form e.t/D f .mt/ for some eigenvector f of Ak=m;J with
cov.f /D 1.

The following lemma is an easy consequence of the preceding discussion and Lemma 3.1.

Lemma 3.2 If e is an eigenvector of Ak ;J and ˆ is a trivialization of  ��H , then

cov.e/D gcd.wind.ˆ�1e/; k/:

Following [8] we define the Conley–Zehnder index of a periodic orbit  k in terms of the
spectrum of the asymptotic operator Ak ;J . We define a number ��max.

k/2�.Ak ;J /

by

(3-1) ��max.
k/Dmax.�.Ak ;J /\R�/

ie so that ��max.
k/ is the largest negative eigenvalue of Ak ;J . Given a trivialization

ˆ of  ��H , we define

(3-2) ˛ˆ. k/D w.��max.
k/I Œˆ�/

so that ˛ˆ. k/ is the winding relative to ˆ of any eigenvector of Ak ;J having the
largest possible negative eigenvalue. We define the parity of p. k/ of  k by

(3-3) p. k/D

(
0 if 9� 2 �.Ak ;J /\RC with w.�; Œˆ�/D ˛ˆ. k/

1 otherwise
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and we note that this definition does not depend on the choice of ˆ. We recall from
[8] that the parity defined here agrees with the designation of  k as even or odd as
defined in Section 2.1. The Conley–Zehnder index �ˆ. k/ of the orbit  k relative to
the trivialization ˆ is then defined by

(3-4) �ˆ. k/D 2˛ˆ. k/Cp. k/:

We will at times suppress the choice of trivialization in our notation for ˛ or �, but it
should always be understood that a choice of trivialization is necessary to define these
quantities. We also observe that even though the asymptotic operator Ak ;J depends
on a choice of J 2 J .M;H/, the Conley–Zehnder index of an orbit is independent of
this choice, as can be seen by the alternate definitions given in [8].

Understanding how the Conley–Zehnder index of  k behaves as a function of k for
fixed  will be important. This is well understood and the important facts will be
listed in the following lemma, the proof of which follows from basic facts about the
symplectic group Sp.1/ which can be found for example in [12, Appendix 8.1] or the
first chapter of Abbondandolo [1]. For our purposes, it will be more convenient to
state an iteration formula for ˛ rather than �, but the relationship between these two
is clear.

Lemma 3.3 Let  be a (not necessarily simple) periodic orbit and assume that m is
nondegenerate for all m 2 Z n f0g. Let k 2 Z n f0g be a nonzero integer.

� If  is an even orbit, then

(3-5) ˛. k/D k˛. /:

� If  is an odd hyperbolic orbit, then

(3-6) ˛. k/D bk.˛. /C
1

2
/c D k˛. /C

k�p.k/

2

where b�c is the least integer function and p.k/ denotes the parity of the integer
k .

� If  is an elliptic orbit, then there exists an irrational � 2R so that

(3-7) ˛. k/D bk�c:

It will be convenient for later to record how ˛ changes with changes of trivialization.
The only subtlety here is that since we always deal with trivializations of the underlying
simply covered orbits, we get a factor which accounts for the covering number of the
orbit. We note that if E! S1 is a Hermitian line bundle with unitary trivializations ˆ
and ‰ , the map ˆ�1 ı‰ determines a map S1! U.1/� S1 . We denote the degree
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of this map by deg.ˆ�1 ı‰/. We now state the formula as a lemma and omit the easy
proof.

Lemma 3.4 Let ˆ and ‰ be trivializations of  ��H . Then

(3-8) ˛ˆ. k/D ˛‰. k/C k deg.ˆ�1
ı‰/

for any nonzero k 2 Z.

We close this section by introducing a quantity that will be useful later. Given any eigen-
value � 2 �.Ak ;J / it is clear from Lemma 3.1 and Lemma 3.2 that all eigenvectors
with eigenvalue � have the same covering number. We will therefore write

cov.�/

to denote the covering number of any eigenvector with eigenvalue �. Given any simple
periodic orbit  2P0.M;H/, we will then define the spectral covering number N�. k/

of  k to be

(3-9) N�. k/ WD cov.��max.
k//

and note that by Lemma 3.2 that

N�. k/D gcd.k; ˛ˆ. k//

where ˛ˆ. k/ is computed relative to any trivialization of  ��H . Note that even
though ˛ˆ. k/ depends on a choice of trivialization, Lemma 3.4 above shows that
changing the trivialization changes ˛ by an integer multiple of k , so the gcd on the
right hand side of this equation is unchanged.

We note that as a consequence of Lemma 3.3, the spectral covering number of a
hyperbolic orbit can be computed knowing just the covering number of the orbit and
whether the underlying simple orbit is even or odd. We state this result as a lemma and
omit the straightforward proof.

Lemma 3.5 Let  be simple periodic orbit and let k 2 Z n f0g.

� If  is an even orbit, then

N�. k/D jkj:

� If  is an odd, hyperbolic orbit, then

N�. k/D

(
jkj=2 if k is even

1 if k is odd:
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3.1.2 Asymptotically cylindrical ends Here we will introduce a notion that will be
useful for framing the results of the next several sections. In this section we continue
to consider a 3–manifold M equipped with a stable Hamiltonian structure HD .�; !/
and a compatible J 2 J .M;H/.

Consider quadruples of the form .†; j ; z�;u/ where .†; j / is a (not necessarily closed)
Riemann surface without boundary, z� 2† is a point and uW † n fz�g !R�M is a
smooth map. We will call such a quadruple an asymptotically cylindrical end model if
there is a periodic orbit m so that u is asymptotically cylindrical over m .

We define an equivalence relation on end models in the following way. We say that
asymptotically cylindrical end models .†; j ; z�;u/ and .†0; j 0; w�; v/ are equivalent
if there exists an open neighborhood U � † of z� and a holomorphic embedding
 W U !†0 with  .z�/D w� so that

uD v ı :

on U n fz�g. An equivalence class Œ†; j ; z�;u� of asymptotically cylindrical end
models will be referred to as an asymptotically cylindrical end.

An asymptotically cylindrical end is said to be embedded if it has a representative
model .†; j ; z�;u/ for which u is an embedding. A pair of asymptotically cylindrical
ends are said to be nonintersecting, if they can be represented by models .†; j ; z�;u/
and .†0; j 0; w�; v/ satisfying

u.† n fz�g/\ v.†
0
n fw�g/D∅:

An asymptotically cylindrical end is said to be pseudoholomorphic if it can be repre-
sented by a model .†; j ; z�;u/ with uW .† n fz�g ; j /! .R�M; eJ / a pseudoholo-
morphic map.

By choosing holomorphic coordinates near a given point, it is clear that any asymptoti-
cally cylindrical end can be represented by a model of the form .D; i; 0;u/, where D
is the unit disk in C centered at 0 2C . We will call such a model, a unit disk model.
Given an asymptotically cylindrical end ŒD; i; 0;u� and a positive integer m, we can
define the m–multiple cover m � ŒD; i; 0;u� of ŒD; i; 0;u� by

m � ŒD; i; 0;u� WD ŒD; i; 0;u ı�m�

where �mW D!D is the map �.z/D zm . It is a straightforward exercise in complex
analysis to verify that the equivalence class of the end-model produced in this way
does not depend on the choice of unit disk model used in the definition.

It will be convenient for some of the following results to consider asymptotically cylin-
drical ends with one additional piece of data. We will call a quintuple .†; j ; z�; Nv;u/
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a decorated asymptotically cylindrical end model if the quadruple .†; j ; z�;u/ is an
asymptotically cylindrical end model and

Nv 2†0
z�
WD .Tz�† n f0g/=R

C

is a ray in the tangent space of † at z� . The ray in the data for a decorated end model
will be referred to as an asymptotic marker or decoration of the end. Two decorated
end models .†; j ; z�; ŒX �†0

z�
;u/ and .†0; j 0; w�; ŒY �†00w�

; v/ are said to be equivalent
when there is an open neighborhood U � † of z� and a holomorphic embedding
 W U !†0 with  .z�/D w� , Œd .z�/X �†00w�

D ŒY �
†00w�

and

uD v ı 

on U n fz�g. An equivalence class of decorated end models is called a decorated
asymptotically cylindrical end.

It is clear that any decorated asymptotically cylindrical end can be represented by a
model of the form .D; i; 0; Œ1�C�=RC ;u/. As with undecorated ends, we can define the
m–multiple cover by

m � ŒD; i; 0; Œ1�C�=RC ;u�D ŒD; i; 0; Œ1�C�=RC ;u ı�m�;

and it is easily verified that the equivalence class of end models produced in this way
does not depend on the unit disk model chosen to represent the end.

Finally, given a decorated end Œ†; j ; z�; ŒX �†0
z�
;u� and a 2C� we define the change

of decoration map taking Œ†; j ; z�; ŒX �†0
z�
;u� to a� Œ†; j ; z�; ŒX �†0

z�
;u� by defining

a� Œ†; j ; z�; ŒX �†0
z�
;u�D Œ†; j ; z�; ŒaX �†0

z�
;u�;

and again, it is easily verified that this is a well-defined operation on ends independent
of the choice of representing model and X 2 ŒX �†0

z�
.

3.1.3 Asymptotic normal forms and some consequences Underlying all of the
results of this paper is a precise description of the asymptotic behavior of pseudoholo-
morphic half-cylinders and of the relative asymptotic behavior of a pair of half-cylinders
limiting to the same periodic orbit. The key results are proved in [22] which builds
on previous results from Hofer, Wysocki and Zehnder [10; 9], Kriener [16] and Mora-
Donato [20]. In this section, we will review the relevant facts and some consequences.
Here we continue to assume .M;H;J / to be a 3–manifold equipped with a stable
Hamiltonian structure and compatible complex multiplication, but we now assume H
to be nondegenerate.
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Let Œ†; j ; z�; ŒX �; QuD .a;u/� be a decorated asymptotically cylindrical end in .R�
M; eJ / and assume that u is asymptotically cylindrical over  k for some � –periodic
 2 eP 0

.M;H/ and k 2 Z n f0g. Moreover, we assume that if � W Œ0; "/! † is a
smooth curve satisfying �.0/D z� and � 0.0/2 ŒX �, then limt!0 u.�.t//D  .0/, ie if
we extend the projected map u to the S1 compactification of †n fz�g, the asymptotic
marker ŒX � hits the point  .0/ on the orbit.

The assumption that Qu is asymptotically cylindrical allows us to find for some R 2R
an embedding2  W ŒR;1/�S1!† n� , with

lim
s!1

 .s; t/D z�

lim
s!1

�
@s .s;0/

j@s .s;0/j
2 ŒX � 2 .Tz�† n f0g/=R

C(3-10)

and a map U W ŒR;1/�S1! . k/��H with U.s; t/2�H
k.t/

for all .s; t/2 ŒR;1/�S1

so that

(3-11) Qu. .s; t//D .k�s; expk.t/ U.s; t//;

where exp denotes the exponential map of the metric

gH;J WD �˝�C!.�;J �/

on M . We will call a pair .U;  / satisfying (3-10)-(3-11) an asymptotic representative
of Œ†; j ; z�; ŒX �;u�. It is clear from the C 1 convergence of Qu to R�  k that (3-10)
and (3-11) uniquely determine .U;  / up to restriction of the domain.

Now let Œ†0; j 0; w�; ŒY �; Qv� be a second decorated asymptotically cylindrical end, which
is also asymptotically cylindrical over  k . Then we can find an asymptotic representa-
tive .V; �/ of Qv near w� so that we can write

Qv.�.s; t//D .k�s; expk.t/ V .s; t//

If the ends being considered are pseudoholomorphic, the asymptotic behavior of the
difference of the maps U and V is given by the following theorem. The proof can be
found in [22].

2 We remark that the embedding  above is not in general holomorphic with respect to the standard
almost complex structure j0 on ŒR;1/�S1 �R�S1 DC= iZ even if the end is pseudoholomorphic.
However it is easily seen from the results in [22] and the fact that nondegeneracy implies exponential
convergence that if the end is pseudoholomorphic, then there exist positive constants d and M so that

jN@j ;j0
 .s; t/j D j

1

2
.d C j ı d ı j0/.s; t/j �Me�.dC2�/s

for all .s; t/ 2 ŒR;1/�S1 , where the norm j � j on Hom0;1.R�S1;T†/ is defined with respect to the
euclidean metric on R�R=Z and any metric on the unpunctured surface † .
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Theorem 3.6 Assume that Œ†; j ; z�; ŒX �; Qu� and Œ†0; j 0; w�; ŒY �; Qv� are distinct, dec-
orated pseudoholomorphic ends asymptotically cylindrical over  k , with asymptotic
representatives .U;  / and .V; �/ respectively. Then the difference U � V , where
defined, can be written

U.s; t/�V .s; t/D e�s Œe.t/C r.s; t/�

where e is an eigenvector of the asymptotic operator Ak ;J with eigenvalue � < 0 and
where r satisfies

jr
i
sr

j
t r.s; t/j �Mij e�ds

for all .s; t/ 2 ŒR;1/ � S1 , .i; j / 2 N2 and some appropriate constants d > 0,
Mij > 0.

Some remarks about this theorem are in order. We first remark that if .U; �/ is an
asymptotic representative of Œ†; j ; z�; ŒX �; Qu�, then .U.�; � C

1

k
/; �.�; � C

1

k
// is an

asymptotic representative of the end

ei2�=k
� Œ†; j ; z�; ŒX �; Qu�D Œ†; j ; z�; Œe

i2�=kX �; Qu�:

Thus if ei2�l=k�Œ†; j ; z�; ŒX �; Qu�¤ ei2�j=k�Œ†0; j 0; w�; ŒY �; Qv�, the previous theorem
then lets us write

U.s; t C
l

k
/�V .s; t C

j

k
/D e�lj

�
elj .t/C rlj .s; t/

�
with each �lj , elj and rlj satisfying that same properties as the �, e and r appearing in
the theorem. When jkj>1, we can apply this observation to the case where QvD Qu so the
theorem gives an asymptotic description of each of the maps U.s; tC

i

k
/�U.s; tC

j

k
/.

Additionally, we remark that in the case that Qv is a cylinder over  k , we get that V � 0,
so this theorem reduces to give an asymptotic description of a single half-cylinder as
in [10; 20]. Combining these observations, we get the following description of the
asymptotic behavior of U which is a refinement of the results of [10; 20] in the event
that jkj> 1. For proof, see [22].

Theorem 3.7 With .U; �/ as defined above, there exists an s0 2R so that for .s; t/ 2
Œs0;1/�S1 , either U vanishes identically or

U.s; t/D

NX
iD1

e�i s.ei.t/C ri.s; t//

where

� The �i are a sequence of negative eigenvalues of Ak ;J which is strictly de-
creasing in i (ie �j < �i for j > i ).
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� Each ei.¤ 0/ is an eigenvector of Ak ;J with eigenvalue �i .

� The sequence of positive integers defined by setting k1 D cov.e1/ and ki D

gcd.ki�1; cov.ei//, is strictly decreasing in i .

� The ri satisfy ri.s; t/D ri.s; t C
1

ki
/. Moreover, each ri satisfies exponential

decay estimates of the formˇ̌̌
r

l
sr

m
t ri.s; t/

ˇ̌̌
<Mlme�ds:

The following two corollaries will be important for our later results. For proofs see
[22].

Corollary 3.8 Let Œ†; j ; z�; Qu� and Œ†0; j 0; w�; Qv� be pseudoholomorphic ends in
R�M . Then precisely one of the following is true:

� The ends are equal, ie Œ†; j ; z�; Qu�D Œ†0; j 0; w�; Qv�.

� One end is a multiple cover of the other, ie there exists an integer m� 2 so that
either

m � Œ†; j ; z�; Qu�D Œ†
0; j 0; w�; Qv�

or
Œ†; j ; z�; Qu�Dm � Œ†0; j 0; w�; Qv�:

� The ends Œ†; j ; z�; Qu� and Œ†0; j 0; w�; Qv� are nonintersecting.

Corollary 3.9 Let Œ†; j ; z�; Qu� be a pseudoholomorphic end in R �M . Then ei-
ther Œ†; j ; z�; Qu� is embedded or there exists an embedded pseudoholomorphic end
Œ†0; j 0; w�; Qv� and an integer m� 2 so that

Œ†; j ; z�; Qu�Dm � Œ†0; j 0; w�; Qv�:

Combining these corollaries with results about the local behavior of pseudoholomorphic
curves due to Micallef and White [18] or McDuff [17] gives the following generaliza-
tions of results that are well-known for closed curves.

The first such result is that two connected curves either have the same image or intersect
in at most a finite set.

Corollary 3.10 Let .W;J / be an almost complex 4–manifold with Hamiltonian
structured ends and let Œ†i ; ji ; �i ; Qui � 2M.W;J ;HC;H�/ be connected pseudoholo-
morphic curves. Then the sets Qu�1

i . Quj .†j n�j // are either finite or equal to †j n�j .
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We next address the question of double points and singularities for a connected curve. A
pseudoholomorphic curve Œ†; j ; �; Qu� 2M.W;J ;HC;H�/ is called multiply covered
it factors through another curve Œ†0; j 0; � 0; Qv� via a holomorphic map  W †!†0 with
deg � 2. If a curve is not multiply covered, it is said to be simple. We can now state
the following corollary.

Corollary 3.11 Let .W;J / be an almost complex 4–manifold with Hamiltonian
structured ends and let Œ†; j ; �; Qu� 2M.W;J ;HC;H�/ a connected, simple pseudo-
holomorphic curve. Then the set of double points of Qu

D. Qu/D
n
.p; q/ 2 .† n�/2 j Qu.p/D Qu.q/; p ¤ q

o
and the set of singular points3 of Qu

S. Qu/D fp 2† n� j d Qu.p/D 0g

are both finite.

A version of the following corollary is proved in [10] in the case that the stable
Hamiltonian structure arises from a contact form. The proof given there readily
generalizes to any stable Hamiltonian structure.

Corollary 3.12 Let Œ†; j ; �; Qu�2M.W;J ;HC;H�/ be a pseudoholomorphic curve,
let z� 2 � be a puncture and let � W T .R˙�M˙/! �H

˙

be the projection onto �H
˙

over the cylindrical ends determined by the splitting T .R˙�M˙/�R˚RXH˙˚�
H˙ .

Choose an open neighborhood U 0 �† of z� so that Qu.U 0 n fz�g/ lies entirely within
one of the cylindrical ends so that � ı d Qu is defined on U 0 n fz�g. Then there exists an
open neighborhood U 0 � U of z� so that � ı d Qu either vanishes identically on U 0 or
vanishes nowhere on U 0 .

3.1.4 Asymptotic winding numbers In this section we will define some invariants
associated to the ends of an asymptotically cylindrical map. Throughout .W;J /

will denote a 4–dimensional almost complex cobordism with positive/negative ends
.R˙ �M˙; eJ ˙;H˙ D .�˙; !˙//.
Let Œ†; j ; z; ŒX �; Qu� be a decorated (not necessarily pseudoholomorphic) end which is
asymptotically cylindrical over m for some  2 eP 0

.M;H/ and some m 2 Z n f0g.
We will abbreviate the end by Œ QuI z� for simplicity. Define:

˛ˆ. QuI z/ WD ˛ˆ.m/ with the right hand side as defined in (3-2).(3-12)

3 Note that the fact that Qu is pseudoholomorphic implies that either rank d Qu.p/D 2 or d Qu.p/D 0 for
every p 2† n� .
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�ˆ. QuI z/ WD �ˆ.m/ with the right hand side as defined in (3-4).(3-13)

N�. QuI z/ WD N�.m/ with the right hand side as defined in (3-9).(3-14)

We note that each of these quantities depends only on the asymptotic limit of the end and
not on the map or the decoration. In the case that the end Œ QuI z� is pseudoholomorphic
and the latter alternative of Theorem 3.7 holds, we define

e1. QuI z/ WD the leading eigenvector in the asymptotic expression of(3-15)

Qu at z from Theorem 3.7:

If jmj > 1 then e1. QuI z/ depends on the choice of asymptotic marker, but applying
the change of decoration map .ei2�=m/� 2 Hom.Tz†/ has the effect of replacing the
eigenvector e1 D e1. QuI z/ with e1.� C

1
m
/. Thus e1. QuI z/ determines a well-defined

m–fold multisection of �Hj which does not depend on the choice of marker.

We say that the end Œ QuI z� winds if it can be represented by a model .†; j ; z; ŒX �; QuD
.a;u// in which the map Qu does not intersect the cylinder over m or equivalently,
so that the projection u of the map to M does not intersect the asymptotic limit  .
In this case, we define the asymptotic winding windˆ1. QuI z/ of Qu at z relative to the
trivialization ˆ of  ��H by choosing a small clockwise loop around z and defining
windˆ1. QuI z/ to be the winding of the image of this loop around  computed in the
trivialization ˆ. The assumption that the image of u does not intersect  implies that
the resulting quantity is independent of the loop chosen. In the case that Œ QuI z� is a
pseudoholomorphic end, it is an easy consequence of Theorem 3.7 that

(3-16) windˆ1. QuI z/ WD wind.ˆ�1e1. QuI z//

Note that the comments of the previous paragraph show that windˆ1. QuI z/ depends
only on the undecorated end Œ†; j ; z; Qu� and not on the choice of asymptotic marker.
The following lemma collects some useful facts about wind1 .

Lemma 3.13 Let ˆ and ‰ be trivializations of  ��H and let Œ QuI z� denote an end
which winds and which is asymptotically cylindrical over m with m 2 Z n f0g. Then

(3-17) windˆ1. QuI z/D wind‰1. QuI z/Cm deg.ˆ�1
ı‰/:

and the quantity

(3-18) d0. QuI z/ WD ˛
ˆ. QuI z/�windˆ1. QuI z/
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is independent of the choice of trivialization. Moreover, if Œ QuI z� is pseudoholomorphic
then d0. QuI z/� 0 and4

(3-19) �1. QuI z/ WD .jmj � 1/d0. QuI z/� N�. QuI z/C cov.e1. QuI z//

is even, nonnegative and �1. QuI z/D 0 if and only if at least one of the following holds:

� jmj D 1

� d0. QuI z/D 0

� d0. QuI z/D 1 and N�. QuI z/D jmj.

Proof The change of trivialization formula follows as in (3-8) and we omit the
trivial proof. The trivialization independence of ˛ˆ. QuI z/ � windˆ1. QuI z/ is then a
consequence of the respective change-of-trivialization formulas. In the event that Œ QuI z�
is pseudoholomorphic, the nonnegativity of this quantity has been previously proved
in [8] and is an easy consequence the monotonicity of winding relative to eigenvalue
(Lemma 3.1) and the fact that e1. QuI z/ has negative eigenvalue (Theorem 3.7) and
therefore must have winding no greater than ˛ˆ. QuI z/ (by definition of ˛ ).

Next, still assuming that Œ QuI z� is pseudoholomorphic, we consider the quantity

�1. QuI z/D .jmj � 1/Œ˛ˆ. QuI z/�windˆ1. QuI z/�� N�. QuI z/C cov.e1. QuI z//;

and observe that if windˆ1. QuI z/ D ˛
ˆ. QuI z/ then cov.e1. QuI z// D N�. QuI z/ as a con-

sequence of Lemma 3.2, so then �1. QuI z/D 0. On the other hand, if jmj D 1, then
we must have cov.e1. QuI z//D N�. QuI z/D 1 since both of these quantities must divide
m. Again we have �1. QuI z/D 0 and we can conclude that �1. QuI z/D 0 whenever
.jmj � 1/d0. QuI z/D 0.

Assuming then that jmj � 2 and d0. QuI z/� 1, we get that

�1. QuI z/� jmj � 1� N�. QuI z/C cov.e1. QuI z//

which must be nonnegative since N�. QuI z/� jmj while cov.e1. QuI z//� 1. Moreover, the
only possibility for �1. QuI z/D 0 is if d0. QuI z/D 1, N�. QuI z/Djmj and cov.e1. QuI z//D

1. If we assume that N�. QuI z/D jmj, we can conclude from Lemma 3.2 that

gcd.jmj; ˛ˆ. QuI z//D N�. QuI z/D jmj

4 The significance of the quantity �1. QuI z/ is, at this point, likely not apparent to the reader, so we
give a brief preview here. As mentioned in the introduction, we will later introduce a quantity ı1. QuI z/
for embedded ends which is an upper bound on the number of self-intersections that can appear at that end
if pseudoholomorphic. The quantity �1. QuI z/ will be twice the contribution to ı1. Qu; z/ (if any) arising
from the failure of the leading eigenvector in the asymptotic formula to have extremal winding, ie failure
of d0. QuI z/ to be zero.
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so jmj divides ˛ˆ. QuI z/. If we further assume that d0. QuI z/D 1, we can use this with
Lemma 3.2 to argue

cov.e1. QuI z//D gcd.jmj;windˆ1. QuI z//

D gcd.jmj; ˛ˆ. QuI z/� d0. QuI z//

D gcd.jmj; ˛ˆ. QuI z/� 1/

D 1:

We can conclude that, if d0. QuI z/D 1 and N�. QuI z/D jmj, then cov.e1. QuI z//D 1 and
hence �1. QuI z/D 0. We have thus shown that �1. QuI z/� 0 and �1. QuI z/D 0 if and
only if .jmj � 1/d0. QuI z/D 0, or d0. QuI z/D 1 and N�. QuI z/D jmj.

Finally, to prove the evenness of �1. QuI z/, we observe that, as a result of Lemma 3.2,
the quantity is of the form

(3-20) .m� 1/.a� b/� gcd.m; a/C gcd.m; b/

(where here aD ˛ˆ. QuI z/ and b D windˆ1. QuI z/). If the term .m� 1/.a� b/ is odd
then it must be the case that m is even and a and b have opposite parity. In this case,
it follows that gcd.m; a/ and gcd.m; b/ must have opposite parity, so the sum of the
three terms is even. In the case that .m� 1/.a� b/ is even, we have either that m

is odd or that a and b have the same parity (or both). In either case, it follows that
gcd.m; a/ and gcd.m; b/ have the same parity and so the sum of the three terms must
be even.

Next we will introduce a quantity associated to an embedded end which records some
of the finer information about the asymptotic behavior in the event that the asymptotic
limit of the puncture is multiply covered. Let Œ QuI z� D Œ†; j ; z; ŒX �; Qu� still denote a
decorated end in .R�M; eJ / which is asymptotically cylindrical over m , but now
assume in addition that Œ QuI z� is an embedded end and that jmj � 2. Let .U;  / be an
asymptotic representative of Œ QuI z� as defined in the previous section, ie

Qu. .s; t//D .m�s; expm.t/ U.s; t//:

The assumption that Œ QuI z� is an embedded end implies that U.s; t/�U.s; t C j
m
/D 0

if and only if j is a multiple of m. Consequently, the winding of the map

t 2 S1
7!ˆ�1

m.t/

h
U.s; t/�U.s; t C

j

m
/
i
2R2

n f0g
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is well defined and independent of s . We define the secondary winding of Qu at z

relative to the trivialization ˆ by

windˆ2 . QuI z/ WD
jmj�1X
jD1

windˆ�1
h
U.s; �/�U.s; � C

j

m
/
i
:

As with the asymptotic winding, it is straightforward to show that the secondary winding
depends only on the undecorated end Œ†; j ; z; Qu� and not on the choice of asymptotic
marker.

In the event that the embedded end Œ QuI z� is pseudoholomorphic, the secondary winding
can be computed in terms of the eigenfunctions from Theorem 3.6. Letting .U;  / still
denote an asymptotic representative of Œ QuI z�, we have from Theorem 3.6, that

U.s; t/�U.s; t C
j

m
/D e�j s Œej .t/C rj .s; t/�

with �j < 0 an eigenvector of ADAm;J , ej ¤ 0 an eigenvector of A with eigenvalue
�j and rj converging exponentially to 0. We will write

(3-21) e�j . QuI z/D ej

to denote the eigenvector appearing in the formula for U.s; t/�U.sC
j

m
/. Since the

rj converge to 0 as s!1, it follows that

windˆ2 . QuI z/D
jmj�1X
jD1

wind.ˆ�1e�j . QuI z//:

We collect some useful properties of wind2 in the following lemma.

Lemma 3.14 Let Œ Qu; z�D Œ†; j ; z; Qu� be an embedded end in .R�M; eJ / and assume
that Œ QuI z� is asymptotically cylindrical over m . If ˆ and ‰ are trivializations of
 ��H then

windˆ2 . QuI z/D wind‰2 . QuI z/Cm.jmj � 1/ deg.ˆ�1
ı‰/:

If Œ QuI z� is pseudoholomorphic, then the quantities5

�2. QuI z/ WD .jmj � 1/windˆ1. QuI z/� cov.e1. QuI z//C 1�windˆ2 . QuI z/(3-22)

5 As with �1. QuI z/ before, the significance of the quantities �2. QuI z/ and �tot . QuI z/ is likely not
apparent to the reader at this point, so we give a brief preview here. As mentioned before, we will
later introduce a quantity ı1. QuI z/ for embedded ends which is an upper bound on the number of self-
intersections that can appear at that end if pseudoholomorphic. The quantity �2. QuI z/ will be twice the
contribution to ı1. Qu; z/ (if any) arising from the failure of the eigenvectors in the asymptotic formula
from Theorem 3.7 to be simply covered, while �tot . QuI z/ is the sum of �1. QuI z/ and �2. QuI z/ .
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�tot . QuI z/D .jmj � 1/˛ˆ. QuI z/� N�. QuI z/C 1�windˆ2 . QuI z/

are even, nonnegative and independent of the choice of trivialization. Moreover, we
have that �2. QuI z/D 0 if and only if the asymptotic representation of Qu near z (from
Theorem 3.7) has at most two terms and the winding of the eigenvectors appearing in
this formula differ precisely by 1. In particular

windˆ2 . QuI z/D .jmj � 1/windˆ1. QuI z/

if and only if cov.e1. QuI z//D 1.

Proof The change of trivialization formula follows as in (3-8) and we again omit
the easy proof. The trivialization independence of the two quantities �2. QuI z/ and
�tot . QuI z/ is then a straightforward consequence of the change of trivialization formu-
las.

Assuming now that Œ QuI z� is pseudoholomorphic, the nonnegativity and evenness of
�tot . QuI z/ will follow from the nonnegativity and evenness of �2. QuI z/ along with
Lemma 3.13, since �tot . QuI z/��2. QuI z/D�1. QuI z/, which was already shown to be
nonnegative and even.

To prove that �2. QuI z/ is even and nonnegative, we first write down an alternate formula
for wind2 in terms of the eigenvectors appearing in Theorem 3.7. According to the
theorem, we can write

(3-23) Qu. .s; t//D

 
m�s; expm.t/

NX
iD1

e�i s Œei.t/C ri.s; t/�

!
with �i < �i�1 , the sequence

k1 D cov.e1/ ki D gcd.ki�1; cov.ei//

strictly decreasing in i and the ri satisfying ri.s; tC
1

ki
/D ri.s; t/ and converging expo-

nentially to zero. We observe that Lemma 3.1 implies that windˆ�1ei�windˆ�1ei�1

since �i < �i�1 . Since ki�1 divides cov.ei�1/ and gcd.ki�1; cov.ei//D ki < ki�1

it follows that cov.ei/¤ cov.ei�1/, so Lemma 3.2 lets us conclude that we have the
strict inequality windˆ�1ei < windˆ�1ei�1 .

Abbreviating k0 D jmj and wi D windˆ�1ei , we claim that we can conclude from
(3-23) that

(3-24) windˆ2 . QuI z/D
NX

iD1

.ki�1� ki/wi :
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To see this, observe that if ei.�/� ei.� C
j

k0
/ is nonzero then Lemma 3.1 implies that

windˆ�1ei D windˆ�1Œei.�/� ei.� C
j

k0
/�

since ei and ei.�/� ei.� C
j

k0
/ are eigenvectors of A with the same eigenvalue. Then,

we can use that ri.s; t C
1

ki
/D ri.s; t/ and that

ei.t C
1

ki
/D ei.t C

cov.ei /=ki

cov.ei /
/D ei.t/

to conclude that if .U;  / is an asymptotic representative of Qu, then as j varies over
f1; : : : ; k0� 1g, precisely ki�1 � ki of the terms ˆ�1ŒU.s; �/ � U.s; � C

j

k0
/� have

winding wi for s large. The formula (3-24) follows immediately from this observation
and the definition of wind2 .

Using the formula (3-24), the quantity �2. QuI z/ of interest can be written

�2. QuI z/D .k0� 1/w1� k1C 1�

NX
iD1

.ki�1� ki/wi :

Using that kN D 1 since ŒuI z� is an embedded end, we can rewrite this as

�2. QuI z/D

NX
iD1

.ki�1� ki/w1� k1C 1�

NX
iD1

.ki�1� ki/wi

D 1� k1C

NX
iD1

.ki�1� ki/.w1�wi/

and since the i D 1 term of the sum vanishes, we continue

D 1� k1C

NX
iD2

.ki�1� ki/.w1�wi/

D 1� k1C

NX
iD2

iX
jD2

.ki�1� ki/.wj�1�wj /

D 1� k1C

NX
jD2

NX
iDj

.ki�1� ki/.wj�1�wj /

D 1� k1C

NX
jD2

.kj�1� 1/.wj�1�wj /
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D

NX
jD2

.kj�1� 1/.wj�1�wj /C kj � kj�1:(3-25)

Using that wj�1 �wj � 1 for each j and that the kj are a decreasing sequence of
positive integers, we find that each term in this sum in nonnegative (in fact positive
except possibly when j DN ). Using the definition of kj with Lemma 3.2, we have
that

(3-26) kj D gcd.kj�1; cov.ej . QuI z///D gcd.kj�1; gcd.k0; wj //D gcd.kj�1; wj /

since kj�1 divides k0 . Using further that kj divides wj , we can also write kj D

gcd.kj ; wj /. These observations allow us to rewrite this sum as

(3-27)
NX

jD2

.kj�1� 1/.wj�1�wj /C gcd.kj�1; wj /� gcd.kj�1; wj�1/:

Comparing this with (3-20), it easily follows that each term in the sum is even and
consequently that the sum is even.

Finally, to see the last claims are true, we observe that it follows from (3-25) that
�2. QuI z/D 0 if and only if wj�1�wj D 1 and kj D 1 for all values of j 2Z\ Œ2;N �

for which they are defined. Since the kj form a decreasing sequence of positive integers,
we conclude that �2. QuI z/ D 0 precisely when either k2 D 1 and w1 �w2 D 1 or
when k1 D 1, ie precisely when the asymptotic representation (3-23) has at most two
terms with the winding of the two eigenvectors (in the case of two terms) appearing
in that formula differing by 1. Moreover, there is one term in this representation if
and only if k1 D 1, which happens precisely when the leading eigenvector e1. QuI z/ is
simply covered, and in this case �2. QuI z/D 0 is equivalent to

windˆ2 . QuI z/D .jmj � 1/windˆ1. QuI z/:

We close this section by defining a quantity that records relative asymptotic information
about two nonintersecting ends limiting to a cover of the same orbit with the same
covering number. We again let Œ QuI z� D Œ†; j ; z; ŒX �; Qu� be a decorated end which
is asymptotically cylindrical over m , we let Œ QvIw�D Œ†0; j 0; w; ŒX �; Qv� be a second
decorated end which is also asymptotically cylindrical over m and assume that the
end Œ QuI z� and Œ QvIw� are nonintersecting. If we let .U;  / and .V; �/ be asymptotic
representatives of Œ QuI z� and Œ Qv;w� respectively, then the assumption that Œ QuI z� and
Œ QvIw� are nonintersecting implies that U.s; t/�V .s; tC j

m
/ is never zero. Consequently,

the maps
t 2 S1

7!ˆ�1
m.t/

h
U.s; t/�V .s; t C

j

m
/
i
2R2

n f0g
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have well-defined winding which is independent of s . We then define the total relative
winding of Œ QuI z� and Œ QvIw� relative to a trivialization ˆ of  ��H by

windˆrel.Œ QuI z�; Œ QvIw�/ WD

jmj�1X
jD0

windˆ�1
h
U.s; �/�V .s; � C

j

m
/
i
:

As with the secondary winding, the total relative winding of two nonintersecting ends
is easily verified to be independent of choice of asymptotic marker and therefore gives
a well-defined invariant of the pair of undecorated ends Œ†; j ; z; Qu� and Œ†0; j 0; w; Qv�.

In the event that the ends Œ QuI z� and Œ QvIw� are pseudoholomorphic, the total relative
winding can be computed in terms of the eigenfunctions appearing in Theorem 3.6.
Indeed the assumption that Œ QuI z� and Œ QvIw� are nonintersecting tells us that for each
j 2 f0; : : : ; jmj � 1g we can write

U.s; t/�V .s; t C
j

k
/D e�j s Œej .t/C rj .s; t/�

where ej is an eigenvector of the asymptotic operator with eigenvalue �j < 0 and
where rj converges exponentially to zero. The fact that the rj converge to zero as
s!1 lets us conclude that

windˆrel.Œ QuI z�; Œ QvIw�/D

jmj�1X
jD0

wind.ˆ�1ej /:

We collect some useful properties of windrel in the following lemma.

Lemma 3.15 Let Œ QuI z� D Œ†; j ; z; Qu� and Œ QvIw� D Œ†0; j 0; w; Qv� be nonintersecting
ends in .R�M; eJ / which are asymptotically cylindrical over m . If ˆ and ‰ are
trivializations of  ��H , then

windˆrel.Œ QuI z�; Œ QvIw�/D wind‰rel.Œ QuI z�; Œ QvIw�/Cmjmj deg.ˆ�1
ı‰/

and
windˆrel.Œ QuI z�; Œ QvIw�/D windˆrel.Œ QvIw�; Œ QuI z�/:

If Œ QuI z� and Œ QvIw� are pseudoholomorphic ends, the quantity

jmjmax
n
windˆ1. QuI z/;windˆ1. QvIw/

o
�windˆrel.Œ QuI z�; Œ QvIw�/

is nonnegative and independent of choice of trivialization and we have the strict inequal-
ity

jmjmax
n
windˆ1. QuI z/;windˆ1. QvIw/

o
�windˆrel.Œ QuI z�; Œ QvIw�/ > 0

Geometry & Topology, Volume 15 (2011)



Intersection theory of punctured pseudoholomorphic curves 2395

only if e1. QuI z/D j �me1. QvIw/ for some j 2Zjmj , where �m denotes the Zjmj–action
on .m/��H (or equivalently if e1. QuI z/ and e1. QvIw/ determine the same multisection
of  ��H ).

Proof As with Lemma 3.13 and Lemma 3.14, the change of trivialization formula
follows just as in (3-8) and we omit the trivial proof. The symmetry of the total relative
winding is an easy consequence of the fact that winding is fixed by negation and the
Zm action, while the fact that the quantity

jmjmax
n
windˆ1. QuI z/;windˆ1. QvIw/

o
�windˆrel.Œ QuI z�; Œ QvIw�/

is independent of choice of trivialization follows from the change-of-trivialization
formulas for windrel and wind1 .

Now assume that Œ QuI z� and Œ QvIw� are pseudoholomorphic. To see that

jmjmax
n
windˆ1. QuI z/;windˆ1. QvIw/

o
�windˆrel.Œ QuI z�; Œ QvIw�/� 0

we observe that the differences

U.s; t/�V .s; t C
j

k
/

cannot decay slower than both of U and V . This observation with the definition of
windrel and the monotonicity of winding with respect to eigenvalue imply that

windˆrel.Œ QuI z�; Œ QvIw�/� jmjmax
n
windˆ1. QuI z/;windˆ1. QvIw/

o
as claimed. To prove the final claim, we first assume that e1. QuI z/ and e1. QvIw/ have
different eigenvalues. Using the symmetry of the relative winding, we can assume
without loss of generality that the eigenvalue of e1. QuI z/ is strictly larger than that of
e1. QvIw/. In this case, it is immediate that e1. QuI z/ must be the eigenvector appearing
in the asymptotic formula for U.s; t/�V .s; t C

j

m
/ for all j 2 Zm . It follows from

the definition of the total relative winding and the monotonicity of winding in the
eigenvalue (Lemma 3.1) that

windˆrel.Œ QuI z�; Œ QvIw�/D jmjwindˆ1. QuI z/D jmjmax
n
windˆ1. QuI z/;windˆ1. QvIw/

o
as claimed. Next assuming that e1. QuI z/ and e1. QvIw/ have the same eigenvalue
(and hence the same winding), but belong to different Zm –orbits. Then it is again
straightforward to argue that the eigenvector appearing in the asymptotic formula of
U.s; t/�V .s; t C

j

m
/ is

e1. QuI z/� j �m e1. QvIw/;
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and hence

windˆrel.Œ QuI z�; Œ QvIw�/D

jmj�1X
jD0

windˆ�1 Œe1. QuI z/� j �m e1. QvIw/�

D jmjwindˆ1. QuI z/
�
D jmjwindˆ1. QvIw/

�
D jmjmax

n
windˆ1. QuI z/;windˆ1. QvIw/

o
:

The only remaining possibility is that e1. QuI z/ and e1. QvIw/ have the same eigenvalue
and that e1. QuI z/ is in the Zm –orbit of e1. QvIw/. Hence, this must be true if the strict
inequality is to occur.

3.2 Local intersection theory at 1

We now study local intersection properties of asymptotically cylindrical maps near
their punctures. The key idea, considered in a special case by Kriener in [16] and more
generally by Hutchings in [14], is to perturb the maps near the ends and compute an
intersection number which depends on the direction of the perturbation. We will see that
for pseudoholomorphic curves, this intersection number is always bounded from below
by a number which also depends on the direction of perturbation, but that the difference
between the intersection number and its lower bound is independent of this choice.
We can thus associate to each pseudoholomorphic end or pair of ends, an “asymptotic
self-intersection/intersection number” which, roughly speaking, measures tangencies
(or self-tangencies) at infinity. Many of our results in this section are analogous to
those in [14, Section 6]. We present full proofs here because our point of view and
conventions are somewhat different than those used in [14] and because in one case
we achieve a stronger bound than what is given in [14] which is important for our
applications.

We start by considering an embedded (not necessarily pseudoholomorphic) end model
.†; j ; z; Qu/ in R�M , which we assume is asymptotically cylindrical over m . Let
.U;  / denote an asymptotic representative for Qu, so that

Qu. .s; t//D .m�s; expm.t/ U.s; t//

with  W ŒR;1/�S1!†nfzg an embedding converging to z as s2 ŒR;1/ approaches
infinity.

Letting ˆW S1�C!  ��H be a unitary trivialization of  ��H and " 2RC �C be a
positive real number (thought of as lying in C ), we define a map Quz;";ˆW ŒR;1/�S1!

R�M by
Quz;";ˆ.s; t/D .m�s; expm.t/ŒU.s; t/Cˆ.mt/"�/
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so that Quz;";ˆ is a perturbation of Qu near z in a direction determined by ˆ.

Lemma 3.16 There exists an "0 > 0 so that the intersection number

int. Quj .ŒR;1/�S1/; Quz;";ˆ/

is well-defined, independent of " 2 .0; "0/ and invariant under homotopies ˆ� W S1 �

C!  ��H of unitary trivializations of  ��H .

Proof Abbreviating CR D ŒR;1/�S1 and IR D ŒR;RC 1��S1 , it follows from
the asymptotic behavior of Qu and the assumption that Quj .ŒR;1/�S1/ is an embedding
that we can find a number "0 > 0 so that for any " 2 .0; "0/ there exists an R."/ so
that

Qu. .IR [CR."///\ Quz;";ˆ.CR/D∅ and Qu. .CR//\ Quz;";ˆ.IR [CR."//D∅

for any unitary trivialization ˆ; that is, the preimages of all intersections of Qu and
Quz;";ˆ are contained in the cylinder ŒRC 1;R."/��S1 .

With this condition satisfied, we can apply standard transversality arguments to find
smooth homotopies v�; w�W Œ0; 1� � ŒR;1/ � S1 ! R �M so that v0 D Qu ı  and
w0 D Quz;";ˆ ,

v� jIR[CR."/
D Qu ı jIR[CR."/

and w� jIR[CR."/
D Quz;";ˆjIR[CR."/

;

v� .IR [CR."//\w� .CR/D∅ and v� .CR/\w� .IR [CR."//D∅

for all � 2 Œ0; 1� and so that v1 and w1 have only transverse intersections. These
conditions imply that the set S D f.p; q/ 2 CR �CR j v1.p/D w1.q/g is contained in
.ŒRC1;R."/��S1/2 and the transversality assumption implies that the set S is finite.
We can therefore define the intersection number int.v1; w1/ by counting with sign the
intersections of v1 and w1 and we define

int. Quj .ŒR;1/�S1/; Quz;";ˆ/D int.v1; w1/:

Considering a generic path of homotopies shows that this number does not depend on
the choice of homotopy. Moreover, if Qu�z and Qu�

z;";ˆ
are any homotopies starting at

Quj .ŒR;1/�S1/ and Quz;";ˆ respectively, we will have that

int. Quj .ŒR;1/�S1/; Quz;";ˆ/D int. Qu�z ; Qu
�
z;";ˆ/

provided that there exists an R1 so that

Qu�z.IR [CR1
/\ Qu�z;";ˆ.CR/D∅ and Qu�z.CR/\ Qu

�
z;";ˆ.IR [CR1

/D∅
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for all � 2 Œ0; 1�. In particular, this homotopy invariance implies that the intersection
number int. Quj .ŒR;1/�S1/; Quz;";ˆ/ is independent of " 2 .0; "0/ and invariant under
homotopies of unitary trivializations ˆ� W S1 �C!  ��H .

We use the above lemma to define an invariant of an embedded, asymptotically cylin-
drical end model. Let .†; j ; z; Qu/ still denote an embedded end model, let O be some
open neighborhood of z and let Quz;";ˆ denote a perturbation of QujO near z defined as
above. The preceding lemma shows that the intersection number

int. QujO ; Quz;";ˆ/

is independent of sufficiently small " > 0 and depends only on the map Qu and the
homotopy class of unitary trivialization ˆ. Using this observation, we define the
relative asymptotic self-intersection number iˆ1. QuI z/ of the end model .†; j ; z; Qu/
relative to ˆ by

iˆ1. QuI z/ WD int. QujO ; Quz;";ˆ/

for any sufficiently small " > 0 so that the conclusions of the preceding lemma hold.

Using Theorem 3.7, we can compute iˆ1. QuI z/ in terms of the winding invariants
defined in the previous section. We state this as a lemma.

Lemma 3.17 Let .†; j ; z; Qu/ be an embedded, asymptotically cylindrical end model
and let ˆ be a unitary trivialization of the plane-field �H along the asymptotic limit of
Qu at z . Then the asymptotic self-intersection number iˆ1. QuI z/ of Qu at z relative to ˆ
is given by

iˆ1. QuI z/D�windˆ2 . QuI z/:

We remark that this Lemma demonstrates that the asymptotic intersection number is an
invariant of the embedded pseudoholomorphic end Œ†; j ; z; Qu� and does not depend on
the choice of embedded model .†; j ; z; Qu/ representing Œ†; j ; z; Qu�.

Proof Assume that m is the asymptotic limit of the end and let .U;  / be an
asymptotic representative of the end, so we can write

Qu. .s; t//D .m�s; expm.t/ U.s; t//

Note that the assumption that Qu is an embedding implies U.s; t/�U.s; t C
j

m
/ has

no zeroes for j ¤ 0 mod m. By definition, the asymptotic self-intersection number
iˆ1. QuI z/ is computed by counting signed intersections of Qu and the map

Quz;";ˆ.s; t/D .m�s; expm.t/ŒU.s; t/Cˆ.mt/"�/:
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Considering the representations given for these maps, we see that

Qu ı .s; t/D Quz:";ˆ.s
0; t 0/

s D s0;if and only if

t D t 0C
j

m
for some j 2 Zm and

U.s; t/D U.s; t C
j

m
/Cˆ.mt/";

where in the last condition we have applied the previous two and have used the 1–
periodicity of ˆ and the 1

m
–periodicity of m . It clear then that the algebraic count of

intersections of Qu with Quz;";ˆ is equal to the sum of the algebraic count of zeroes of

U.s; t/�U.s; t C
j

m
/�ˆ.mt/"

as j varies over Zm , which in turn is equal to the algebraic count of zeroes of the
function Fj W ŒR;1/�S1!C defined by

Fj .s; t/Dˆ.mt/�1ŒU.s; t/�U.s; t C
j

m
/�� " 2C

as j varies over Zm n f0g.

Since all zeroes of the Fj lie in the interior of a compact cylinder of the form ŒR1;R2��

S1 , the algebraic count of zeroes of Fj will be equal to the difference in winding of
the loop t 7! Fj .s; t/ for s �R2 and s �R1 . For large s0 �R2 , the assumed decay
of U � j �U implies that

wind.Fj .s
0; �//D wind.ˆ.m �/�1ŒU.s; �/�U.s; � C

j

m
/�� "/D wind.�"/D 0:

Next, assuming we have chosen " < inft2S1 jU.R1; t/�U.R1; t C
j

m
/j, we have that

wind.Fj .R1; �//D wind.ˆ.m �/�1ŒU.R1; �/�U.R1; � C
j

m
/�� "/

D wind.ˆ.m �/�1ŒU.R1; �/�U.R1; � C
j

m
/�/:

Since ˆ.mt/�1ŒU.s; t/�U.s; t C
j

m
/� has no zeroes, we know that the winding is

independent of s . We these observations with the definition of wind2 from the previous
section to conclude that

iˆ1. QuI z/D

jmj�1X
jD1

wind.Fj .R2; �//�wind.Fj .R1; �//

D�

jmj�1X
jD1

wind.ˆ.m �/�1ŒU.R1; �/�U.R1; � C
j

m
/�/
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D�windˆ2 . QuI z/;

as claimed.

As an immediate corollary of this computation and Lemma 3.14 we get that the
asymptotic self-intersection number satisfies a number of properties. Note that (3-28)
below is an improvement on [14, Lemma 6.7] and reduces to the result given there
when cov.e1. QuI z//D 1.

Corollary 3.18 Let Œ QuI z�D Œ†; j ; z; Qu� be an embedded end, with asymptotic limit
m , and let ˆ and ‰ be unitary trivializations of  ��H . Then the relative asymptotic
self-intersection number of the end Œ QuI z� satisfies

iˆ1. QuI z/D i‰1. QuI z/�m.jmj � 1/ deg.ˆ�1
ı‰/

If Œ QuI z� is a pseudoholomorphic end, then:

� We have that

(3-28) iˆ1. QuI z/� �.jmj � 1/windˆ1. QuI z/C cov.e1. QuI z//� 1

and that
iˆ1. QuI z/D�.jmj � 1/windˆ1. QuI z/

if and only if cov.e1. QuI z//D 1.

� In particular, we have that

iˆ1. QuI z/� �.jmj � 1/˛ˆ. QuI z/C N�. QuI z/� 1

and that
iˆ1. QuI z/D�.jmj � 1/˛ˆ. QuI z/

if and only if d0. QuI z/D 0 and N�. QuI z/D 1.

The lower bounds on iˆ1. QuI z/ should be thought of as a sort of “positivity of intersec-
tions at infinity” for embedded pseudoholomorphic ends. Indeed, we have shown that
the quantity

iˆ1. QuI z/C .jmj � 1/˛ˆ. QuI z/

is independent of choice of trivialization and that

iˆ1. QuI z/C .jmj � 1/˛ˆ. QuI z/D windˆ2 . QuI z/C .jmj � 1/˛ˆ. QuI z/

D�1. QuI z/C�2. QuI z/C Œ N�. QuI z/� 1�
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where each of the three terms on the right hand side of this equation are nonnegative
quantities when Œ QuI z� is pseudoholomorphic. We will define the asymptotic self-
intersection index ı1. QuI z/ of the end Œ QuI z� to be

ı1. QuI z/ WD
1

2

h
iˆ1. QuI z/C .jmj � 1/˛ˆ. QuI z/� N�. QuI z/C 1

i
(3-29)

D
1

2
�tot . QuI z/:

We note that for pseudoholomorphic ends the asymptotic self-intersection index takes
values in the nonnegative integers as a result of Lemma 3.14 and Lemma 3.17. The
asymptotic self-intersection index can be thought of as a measure of the self-tangency
at infinity of an embedded pseudoholomorphic end. In any given trivialization, it
counts one half the difference between the number of intersections the end has with a
perturbed copy of itself and the minimum number that must occur for any embedded
pseudoholomorphic end with the same asymptotic data.

We now move on to considering the asymptotic intersection properties of a pair of
ends of curves which are asymptotic to coverings of the same simple periodic orbit
with the same sign. Our assumptions will be that .†; j ; z; Qu/ and .†0; j 0; w; Qv/ are
nonintersecting (not necessarily pseudoholomorphic) end models in R�M . We further
assume that Qu is asymptotically cylindrical near z over mz and Qv is asymptotically
cylindrical near w to mw and that mz and mw have the same sign.

We assume that .U;  / and .V; �/ are asymptotic representatives of Qu and Qv respec-
tively so that we can write

Qu ı .s; t/D .mz�s; expmz .t/ U.s; t//

Qv ı�.s; t/D .mw�s; expmw .t/ V .s; t//

for .s; t/ 2 ŒR;1/�S1 for some R 2R. If ˆ is a trivialization of  ��H , we define a
map Qvw;";ˆW ŒR;1/�S1!W as above by perturbing the map Qv on a neighborhood
of w in a direction determined by ˆ. As above we have the following lemma.

Lemma 3.19 There exists an "0 > 0 so that the intersection number

int. Qu; Qvw;";ˆ/

is well-defined and independent of "2 .0; "0/ and invariant under homotopies of unitary
trivializations ˆ.

Proof Again denoting CR D ŒR;1/�S1 and IR D ŒR;RC1��S1 , it follows from
the asymptotic behavior of . QuI z/ and . QvIw/ that there exists an "1 > 0 so that

Qu ı�.IR/\ Qvw;";ˆ.CR/D∅ and Qu ı�.CR/\ Qvw;";ˆ.IR/D∅
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for and "2 .0; "1/ and any unitary trivialization ˆ of  ��H . Moreover, the asymptotic
behavior of Qu and Qv implies that there exists an "2 so that for any "2 .0; "2/ we can find
an R."/ so that Quı�.CR."//\ Qvw;";ˆ.CR/D∅ and Quı�.CR/\ Qvw;";ˆ.CR."//D∅
for any unitary ˆ. Therefore choosing "0 > 0 less than min f"1; "2g, it follows that
for any " 2 .0; "0/ we have

Qu ı�.IR [CR."//\ Qvw;";ˆ.CR/D∅
Qu ı�.CR/\ Qvw;";ˆ.IR [CR."//D∅and

for any unitary ˆ. Given this, the claims of the lemma follow from standard transver-
sality and homotopy invariance arguments as in Lemma 3.16.

We use this lemma to define a local invariant of a pair of nonintersecting asymptotically
cylindrical ends. Let .†; j ; z; Qu/ and .†0; j 0; w; Qv/ still denote nonintersecting end
models asymptotically cylindrical over mz and mw respectively, with mz and mw

having the same sign. Let O be some open neighborhood of w and let v";ˆ still
denote a perturbation of QvjO defined as above. The preceding lemma shows that the
intersection number

int. Qu; Qv";ˆ/

is independent of sufficiently small " > 0 and depends only on the maps Qu and Qv
and the homotopy class of the unitary trivialization ˆ. Using this observation, we
define the relative asymptotic intersection number of the end models .†; j ; z; Qu/ and
.†0; j 0; w; Qv/ relative to ˆ by

iˆ1.Œ QuI z�; Œ QvIw�/ WD int. QujO ; Qv";ˆ/:

where " > 0 is chosen small enough so that the conclusions of the previous lemma
apply.

As with the relative asymptotic self-intersection number, we can use Theorem 3.6 to
compute the relative asymptotic intersection number in terms of the local winding-
related invariants studied in the previous section.

Lemma 3.20 Let .†; j ; z; Qu/ and .†0; j 0; w; Qv/ be nonintersecting asymptotically
cylindrical end models and assume that .†; j ; z; Qu/ and .†0; j 0; w; Qv/ are asymptoti-
cally cylindrical over mz and mw respectively with mzmw > 0. Then the relative
asymptotic intersection number of . QuI z/ and . QvIw/ is given by

iˆ1.Œ QuI z�; Œ QvIw�/D�
1

mz mw
windˆrel.jmwj � Œ QuI z�; jmzj � Œ QvIw�/

where ˆ is a unitary trivialization of  ��H and m� is the operation of multiply covering
an asymptotically cylindrical end.
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We remark that, as with the relative asymptotic self-intersection number, this lemma
demonstrates that the relative asymptotic intersection number is an invariant of the ends
Œ†; j ; z; Qu� and Œ†0; j 0; w; Qv� and does not depend on the choice of models representing
these ends.

Proof We initially assume that the ends in question cover  with the same covering
number, ie that mz Dmw . In this case, an argument analogous to that in Lemma 3.17
shows that

iˆ1.Œ QuI z�; Œ QvIw�/D�windˆrel.Œ QuI z�; Œ QvIw�/:

Moreover, it is an easy consequence of the definition of windrel that

windˆrel.m � Œ QuI z�;m � Œ QvIw�/Dm2 windˆrel.Œ QuI z�; Œ QvIw�/

for any positive integer m so this is equivalent to the formula given in the statement of
the lemma.

In the case that Œ QuI z� and Œ QvIw� cover  with different covering numbers (ie mz¤mw )
then we can replace Œ QuI z� and Œ QvIw� with the multiply covered ends jmwj � Œ QuI z� and
jmzj � Œ QvIw� which both have covering number mzjmwjD jmzjmw . Then the reasoning
of the previous paragraph gives

iˆ1.jm2j � Œ QuI z�; jmzj � Œ QvIw�/D�windˆrel.jm2j � Œ QuI z�; jmwj � Œ QvIw�/:

Moreover, it is an easy consequence of the definition of the relative asymptotic inter-
section number that

iˆ1.k1 � Œ QuI z�; k2 � Œ QvIw�/D k1k2 iˆ1.Œ QuI z�; Œ QvIw�/

for any positive integers k1 and k2 . The claim of the lemma follows immediately from
these two equations.

This lemma used with the basic results about the total relative winding yields the
following corollary. Note that (3-30) below is analogous to [14, Lemma 6.9].

Corollary 3.21 Let Œ QuI z� and Œ QvIw� be nonintersecting ends asymptotically cylindrical
over mz and mw respectively and let ˆ and ‰ be unitary trivializations of  ��H .
Then the relative asymptotic intersection number satisfies

iˆ1.Œ QuI z�; Œ QvIw�/D iˆ1.Œ QvIw�; Œ QuI z�/

and
iˆ1.Œ QuI z�; Œ QvIw�/D i‰1.Œ QuI z�; Œ QvIw�/�mzjmwj deg.ˆ ı‰/:
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If Œ QuI z� and Œ QvIw� are pseudoholomorphic, then

iˆ1.Œ QuI z�; Œ QvIw�/� �mzmw max
�

windˆ1.QuIz/
jmz j

;
windˆ1.QvIw/
jmw j

�
(3-30)

iˆ1.Œ QuI z�; Œ QvIw�/� �mzmw max
�
˛ˆ.mz /

jmz j
;
˛ˆ.mw /

jmw j

�
:(3-31)

Proof The first two statements follow directly from Lemma 3.20 and Lemma 3.15.
The inequality (3-30) follows from these same Lemmas and the additional elementary
fact that

windˆ1.m � Œ QuI z�/Dm windˆ1. QuI z/

for any pseudoholomorphic end Œ QuI z� and any positive integer m. Finally, the inequality
(3-31) follows from (3-30) and that

windˆ1. QuI z/� ˛
ˆ. QuI z/

for pseudoholomorphic ends, as observed in Lemma 3.13.

In analogy to the the case of a single end, we define the asymptotic intersection index,
ı1.Œ QuI z�; Œ QvIw�/, of the pair of ends Œ QuI z� and Œ QvIw�, satisfying the assumptions of
the previous lemmas by

(3-32) ı1.Œ QuI z�; Œ QvIw�/ WD iˆ1.Œ QuI z�; Œ QvIw�/Cmzmw max
�
˛ˆ.mz /

jmz j
;
˛ˆ.mw /

jmw j

�
and we note that when Œ QuI z� and Œ QvIw� are pseudoholomorphic, this quantity is non-
negative as a result of the preceding corollary. The asymptotic intersection index can be
thought of as a measure of the tangency at infinity of the two pseudoholomorphic ends.
It counts the difference between the number of intersections that appear when one end
is perturbed and the minimum number that must appear for any two nonintersecting
pseudoholomorphic ends with the given asymptotic data.

4 Global intersection theory

4.1 The generalized intersection number and positivity of intersections

4.1.1 Relative intersection number In this section we introduce the relative intersec-
tion number and establish its basic properties. We consider two smooth asymptotically
cylindrical maps .†; j ; �; Qu/, .†0; j 0; � 0; Qv/ 2 C1.W;HC;H�/ where W is a 4–
manifold with Hamiltonian structured cylindrical ends. Given a trivialization ˆ of the
stable Hamiltonian hyperplane field along the periodic orbits, we define the relative
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intersection number iˆ. Qu; Qv/ of Qu and Qv relative to ˆ by perturbing Qv near its punctures
in a direction determined by ˆ and computing the algebraic intersection number of Qu
with the perturbation of Qv . More precisely, given a puncture w 2 � 0 of Qv , we can find
a neighborhood U of w which gets mapped entirely within one of the cylindrical ends
and so that

Qv.�.s; t//D .ms; expm.t/ h.s; t// 2R˙ �M˙

for some simple periodic orbit  and m2Znf0g, where �W ŒR;1/�S1!U nfwg is
a diffeomorphism. Choosing some smooth cutoff function ˇ supported in U and equal
to 1 in a neighborhood of w , we define the perturbed end QvU

ˆ;"
W U nfwg!R˙�M˙

by

(4-1) QvU
ˆ;" D .ms; expm.t/

�
h.s; t/Cˇ.�.s; t//ˆ .mt/"

�
/ 2R˙ �M˙

where ˆ W S1 �C!  ��H
˙

is a unitary trivialization of  ��H
˙

and " 2 RC 2 C
is a small, positive real number. We define the map Qvˆ;"W †0 n� 0!W by replacing
Qv in a neighborhood of each puncture with a perturbation as in (4-1). It then follows
from standard arguments that there exists an "0 > 0 so that for " 2 .0; "0/ the algebraic
intersection number

int. Qu; Qvˆ;"/

is independent of all choices made except for that of the homotopy class of trivialization
ˆ. We thus define the relative intersection number iˆ. Qu; Qv/ of Qu and Qv relative to ˆ
by

iˆ. Qu; Qv/ WD int. Qu; Qvˆ;"/

for some sufficiently small " > 0.

We summarize important properties of the relative intersection number in the following
proposition.

Proposition 4.1 Let Qu and Qv satisfy the assumptions of the previous paragraph and
let ˆ be a trivialization of �H

˙

along the asymptotic limits of Qu and Qv . Moreover,
assume that at z 2 � , Qu is asymptotic to mz

z and at w 2 � 0 , Qv is asymptotic to mw
w .

Then the relative intersection number iˆ. Qu; Qv/ satisfies:

(1) iˆ. Qu; Qv/ depends only on the homotopy classes of ˆ, Qu and Qv

(2) iˆ. Qu; Qv/D iˆ. Qv; Qu/

(3) If ‰ is another trivialization of �H
˙

along the periodic orbit set of the ends, then

iˆ. Qu; Qv/D i‰. Qu; Qv/C
X

.z;w/2�C��
0
C

zDw

�mzmw deg.ˆ�1
z
ı‰w /
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C

X
.z;w/2����

0
�

zDw

mzmw deg.ˆ�1
z
ı‰w /

Proof Part .1/ follows from standard transversality and homotopy-invariance argu-
ments and we omit the straightforward details.

To see that part .2/ is true, it suffices construct homotopies Qu� and Qv� , so that

Qu0 D Qu

Qu1 D Quˆ;"

Qv0 D Qvˆ;"

Qv1 D Qv

and so that there exist neighborhoods U of � and V of � 0 so that

Qu� .U n�/\ Qv� .†
0
n� 0/D∅

Qu� .† n�/\ Qv� .V n�
0/D∅:and

for all � 2 Œ0; 1�. This again is straightforward and we omit the details.

Finally .3/, follows from an argument analogous to that in [14, Lemma 2.5 (b)] and
we refer the reader there for more detail.

For pseudoholomorphic maps, it follows from Corollary 3.10 that the relative intersec-
tion number can be computed by summing local intersection numbers and asymptotic
intersection numbers as defined in the preceding section. Before stating the result,
we establish some notation and terminology. Consider pseudoholomorphic curves
Œ†; j ; �; Qu�, Œ†0; j 0; � 0; Qv� 2M.W;J ;HC;H�/. A small neighborhood of a puncture
z 2 � determines a pseudoholomorphic end (as defined in Section 3.1.2) which we
will abbreviate Œ QuI z�. Thus if Œ QuI z� and Œ QvIw� are nonintersecting and asymptotic to a
covering of the same orbit with the same sign, we can define the relative asymptotic
intersection number

iˆ1.Œ QuI z�; Œ QvIw�/

as in the previous section. Otherwise, we define

iˆ1.Œ QuI z�; Œ QvIw�/D 0

and we define the total relative asymptotic intersection number iˆ1. Qu; Qv/ of Œ†; j ; �; Qu�
and Œ†0; j 0; � 0; Qv� by

iˆ1. Qu; Qv/ WD
X

.z;w/2��� 0

iˆ1.Œ QuI z�; Œ QvIw�/:
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Next, we say that Œ†; j ; �; Qu� and Œ†0; j 0; � 0; Qv�2M.W;J ;HC;H�/ have no common
components if Qu�1. Qv.†0n� 0// does not contain an open set. In this case, it follows from
Corollary 3.10 that Qu and Qv intersect in a finite number of points. We can thus define the
algebraic intersection number of Qu and Qv by summing local intersection numbers. We
now state the result giving the relative intersection number of two pseudoholomorphic
curves. This result is analogous to [14, Lemma 8.5] in the case that the S1 and S2

considered there are pseudoholomorphic. The result follows immediately from local
intersection properties of pseudoholomorphic curves, Corollary 3.10 and the definitions
of the terms involved, and we omit the straightforward proof.

Theorem 4.2 Let Œ†; j ; �; Qu�, Œ†0; j 0; � 0; Qv� 2M.W;J ;HC;H�/ be a pair of pseu-
doholomorphic curves having no common components. Then

(4-2) iˆ. Qu; Qv/D int. Qu; Qv/C iˆ1. Qu; Qv/:

4.1.2 The generalized intersection number We now define the generalized inter-
section number of two asymptotically cylindrical maps. This quantity will be an
integer-valued symmetric product on the space of (homotopy classes of) smooth
asymptotically cylindrical maps, which for pseudoholomorphic curves will bound
the algebraic intersection number from above.

Motivated by the bounds on relative asymptotic intersection numbers given by
Corollary 3.21 above, we define a homotopy-invariant product on asymptotically
cylindrical maps by adding a term to the relative intersection pairing that balances
the trivialization dependence. Consider two smooth asymptotically cylindrical maps
.†; j ; �; Qu/ and .†0; j 0; � 0; Qv/ 2 C1.W;HC;H�/ with W as usual denoting a 4–
dimensional manifold with Hamiltonian structured ends. Assume that at z 2 �˙ that
Qu is asymptotic to mz

z and at w 2 � 0
˙

that Qv is asymptotic to over mw
w . Given

a trivialization of �H
˙

along the asymptotic limits of Qu and Qv , define a quantity
�ˆ. Qu; Qv/ by6

�ˆ. Qu; Qv/ WD
X

.z;w/2�C��
0
C

zDw

mzmw max
�
˛ˆ.

mz
z /

mz
;
˛ˆ.

mw
w /

mw

�

C

X
.z;w/2����

0
�

zDw

mzmw max
�
˛ˆ.

mz
z /

�mz
;
˛ˆ.

mw
w /

�mw

�
:

6 Note that this is the same quantity appearing in the sum on the right hand side of formula (2-3) from
the introduction, except here we use that ˛ˆ. k/D b�ˆ. k/=2c (see (3-4)) and we explicitly separate
the parts of the sum coming respectively from positive punctures and negative punctures.

Geometry & Topology, Volume 15 (2011)



2408 Richard Siefring

Note that this quantity depends only on the asymptotic data associated to the two maps
and not on the maps themselves. We then define the generalized intersection number
of two asymptotically cylindrical maps by

(4-3) Œ Qu�� Œ Qv�D iˆ. Qu; Qv/C�ˆ. Qu; Qv/:

We note that as an immediate consequence of the change of trivialization formulas for
iˆ and ˛ˆ from Proposition 4.1 and Lemma 3.4 the generalized intersection number
does not depend on the choice of trivialization.

We now prove Theorem 2.1 which gives the basic properties of the generalized inter-
section number. We restate the result here for the convenience of the reader.

Proposition 4.3 (Properties of the generalized intersection number) Let W , W1 and
W2 be 4–manifolds with Hamiltonian structured cylindrical ends and assume we can
form the concatenation W1ˇW2 . Then:

(1) If .†; j ; �; Qu/ and .†0; j 0; � 0; Qv/ 2 C1.W;HC;H�/ are asymptotically cylin-
drical maps then the generalized intersection number Œ Qu�� Œ Qv� depends only on
the homotopy classes of Qu and Qv .

(2) For any .†; j ; �; Qu/ and .†0; j 0; � 0; Qv/ 2 C1.W;HC;H�/

Œ Qu�� Œ Qv�D Œ Qv�� Œ Qu�:

(3) If .†; j ; �; Qu/, .†0; j 0; � 0; Qv/, .†00; j 00; � 00; Qw/ 2 C1.W;HC;H�/ then

Œ QuC Qv�� Œ Qw�D Œ Qu�� Œ Qw�C Œ Qv�� Œ Qw�

where “C” on the left hand side denotes the disjoint union of the maps Qu and Qv .

(4) If u1ˇ u2 and v1ˇ v2 are asymptotically cylindrical buildings in W1ˇW2

then
Œu1ˇu2�� Œv1ˇ v2�� Œu1�� Œv1�C Œu2�� Œv2�:

Moreover, strict inequality occurs if and only if there is a periodic orbit  so
that Qu1 has a negative puncture asymptotic to m , Qv1 has a negative puncture
asymptotic to  n and both m and  n are odd orbits.

Proof The first claim follows immediately from the fact that iˆ1. Qu; Qv/ and �ˆ. Qu; Qv/
are determined entirely by the homotopy classes of Qu, Qv and ˆ. Since their sum
does not depend on a choice of trivialization, the generalized intersection number only
depends on the homotopy class of Qu and Qv in C1.W;HC;H�/.

The second claim follows immediately from the symmetry of the relative intersection
number and the quantity �ˆ. Qu; Qv/ and the third claim follows immediately from the
definition and basic properties of intersection numbers.
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Before proving the final claim, we first establish some notation. We first observe that,
since we assume that the concatenation u1ˇu2 is defined, the asymptotic data at the
negative punctures of u1 must correspond with and match the asymptotic data at the
positive punctures of u2 . We will let �1;�D

˚
z�i
	

denote the set of negative punctures
of u1 and �2;C D

˚
zCi
	

denote the set of positive punctures of u2 . Moreover we
assume that at zCi , u2 is asymptotic to the periodic orbit mi

i , while at z�i , u1 is

asymptotic to the periodic orbit �mi

i . Similarly, let � 0
1;�
D

n
w�j

o
(� 0

2;C
D

n
wCj

o
)

be the set of negative (positive) punctures of v1 (v2 ) and assume that at wCj (w�j ) that
v2 (v1 ) is asymptotic to the periodic orbit O nj

j ( O�nj
j ).

With this notation set, it follows from the definition of the generalized intersection
number that

(4-4)

Œu1ˇu2�� Œv1ˇ v2�� Œu1�� Œv1�� Œu2�� Œv2�

D

X
i;j

iD Oj

�minj

�
max

�
˛ˆ.

mi
i
/

mi
;
˛ˆ. O

nj

j
/

nj

�
Cmax

�
˛ˆ.

�mi
i

/

mi
;
˛ˆ. O

�nj

j
/

nj

��

Consider then the expression

�.;m; n/ WD �mn

�
max

�
˛ˆ.m/

m
;
˛ˆ.n/

n

�
Cmax

�
˛ˆ.�m/

m
;
˛ˆ.�n/

n

��
with m and n positive integers. If  is an even orbit, then Lemma 3.3 implies that

�.;m; n/D�mn

�
max

�
m˛ˆ. /

m
;

n˛ˆ. /

n

�
Cmax

�
�m˛ˆ. /

m
;
�n˛ˆ. /

n

��
D 0:

If  is odd and hyperbolic, we get

�.;m; n/D�mn

 
max

(
m˛ˆ. /C

1

2
.m�p.m//

m
;

n˛ˆ. /C
1

2
.n�p.n//

n

)

Cmax

(
�m˛ˆ. /C

1

2
.�m�p.�m//

m
;
�n˛ˆ. /C

1

2
.�n�p.�n//

n

)!
D�mn

�
max

n
�

p.m/

m
;�

p.n/

n

o�
Dmin fnp.m/;mp.n/g � 0;
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and we get a strict inequality here if and only if m and n are both odd. Finally, if  is
elliptic, we get that there is an irrational � so that

�.;m; n/D�mn
�

max
n
bm�c

m
;
bn�c

n

o
Cmax

n
b�m�c

m
;
b�n�c

n

o�
Dmin f�nbm�c;�mbn�cgCmin f�nb�m�c;�mb�n�cg

� �bnm�c� b�nm�c

D dnm�e� bnm�c D 1:

Thus for each pair .i; j / with i D Oj and mi

i and O nj
j both having odd Conley–

Zehnder index, we get a positive term in the sum (4-4), which proves our claim.

We next prove Theorem 2.2 which is one of the main motivations for defining the
generalized intersection number as we have. It says that for a pair of asymptotically
cylindrical pseudoholomorphic curves with no common components, the generalized
intersection number is equal to the algebraic intersection number plus the total measure
of tangency at infinity between the two curves. Since the generalized intersection
number is a homotopy invariant quantity, while the algebraic intersection number in
general is not, this result demonstrates the utility of this quantity in situations where
one is hoping to obtain topological control over the total count of intersections between
two curves.

Before restating and proving the theorem we establish some notation. As previously
noted, each puncture z 2 � of an asymptotically cylindrical pseudoholomorphic curve
Œ†; j ; �;u� 2M.W;J ;HC;H�/ determines a pseudoholomorphic end ŒuI z� (as de-
fined in Section 3.1.2) in one of the ends of W . Given a second curve Œ†0; j 0; � 0; v�
having no common components with Qu and so that the ends ŒuI z� and ŒvIw� are
asymptotic to a covering of the same orbit with the same sign, we can define the
asymptotic intersection index

ı1.ŒuI z�; ŒvIw�/

as before in (3-32). Otherwise, we define

ı1.ŒuI z�; ŒvIw�/D 0;

and we then define the total asymptotic intersection index ı1.u; v/ of Œ†; j ; �;u� and
Œ†0; j 0; � 0; v� by

ı1.u; v/ WD
X

.z;w/2��� 0

ı1.ŒuI z�; ŒvIw�/:

We now restate and prove Theorem 2.2.
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Theorem 4.4 (Positivity of the generalized intersection number) Let .W 4;J / be
an almost complex cobordism with cylindrical ends .R˙ �M˙;J˙;H˙/ and let
Œ†; j ; �;u�, Œ†0; j 0; � 0; v� 2M.W;J ;HC;H�/ be pseudoholomorphic curves in W

with no common components. Then

(4-5) Œu�� Œv�D int.u; v/C ı1.u; v/:

In particular
Œu�� Œv�� int.u; v/� 0;

and
Œu�� Œv�D 0

if and only if u and v do not intersect and the total asymptotic intersection number
vanishes, ie ı1.u; v/D 0.

Proof The equation (4-5) follows immediately from adding �ˆ.u; v/ to both sides
of (4-2) and then applying the definition (3-32) of the asymptotic intersection index.

The final two claims are direct consequences of (4-5), local positivity of intersections
for pseudoholomorphic curves and the nonnegativity of the asymptotic intersection
index from (3-31) and (3-32).

4.2 The adjunction formula

4.2.1 Relative Chern numbers and the total Conley–Zehnder index In order to
state the appropriate generalization of (1-1), we will need to introduce a relative version
of the first Chern number of a complex vector bundle over a punctured Riemann surface.
This will then be used to define the total Conley–Zehnder index of an asymptotically
cylindrical map.

Let .†; j / be a closed Riemann surface and let � � † be a finite set. We will call
an open neighborhood U of � disk-like if the closure NU of U is diffeomorphic to
a disjoint union of closed disks and if each component of U contains precisely one
element of � . Let E! † n� be a complex vector bundle. Since for any disk-like
neighborhood U of � the set U n� has the homotopy type of a disjoint union of circles,
the restriction EjUn� is trivial. Let ˆW U n� �Cn!E be a trivialization of EjUn� .
If E is a line bundle, then we will define the first Chern number of E relative to ˆ,
denoted c1.EIˆ/ or cˆ

1
.E/, to be equal to the algebraic count of zeroes of a generic

extension of the section ˆ.z/1 of EjUn� to a section of E . If dimC E D n> 1, we
define the first Chern number of E relative to ˆ by

c1.EIˆ/D c1.ƒ
n
CEIƒn

Cˆ/
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where ƒn
CE is the determinant line bundle of E and ƒn

Cˆ is the trivialization of
ƒn

CEjUn� induced by ˆ. We can define an equivalence relation on the set of pairs
.U; ˆ/ of disk-like neighborhoods of � and trivializations ˆ of EjUn� be defining
.U; ˆ/ � .V; ‰/ provided there exists a disk-like neighborhood U 0 � U \ V of �
so that ˆjU 0n� is homotopic to ‰jU 0n� . The relative first Chern number c1.EIˆ/

clearly only depends on the equivalence class of the pair .U; ˆ/.

We collect some useful properties of the relative first Chern number in the lemma
below, but before stating the lemma we will establish some notation and terminology.
Given a punctured Riemann surface † n� , we will call a pair .U;  / a holomorphic
cylindrical coordinate system around � if U is a disk-like neighborhood of � and  
is a biholomorphic map  W q#�

iD1
.Œ0;1/�S1/i! NU n� . Using the coordinate fields

@s and @t to identify T.s;t/.Œ0;1/�S1/ with C , we note that the derivative of  is a
map

d W T .q#�
iD1.Œ0;1/�S1/i/� .q

#�
iD1.Œ0;1/�S1/i/�C! T†jUn�

and therefore determines a trivialization of .T†; j / over U n� . If E!†n� is a com-
plex bundle, and ˆ and ‰ are trivializations of EjUn� , then ˆ�1ı‰ determines a map
U n�!GLn.C/. If we denote  i D  j.Œ0;1/�S1/i

, then det..ˆ�1 ı‰/. i.s
0; �///

is an oriented loop in C n f0g for any fixed s0 2RC . We define deg.ˆ�1 ı‰/ by

deg.ˆ�1
ı‰/D

#�X
iD1

wind
�

det
�
.ˆ�1

ı‰/. i.s
0; �//

��
and note that this definition does not depend on the choice of holomorphic cylindrical
coordinates or on s0 .

Lemma 4.5 Let .†; j / be a closed Riemann surface and let � �† be a finite set. Let
E , E1 , E2!† n� be complex vector bundles over † n� and let U be a disk-like
neighborhood of � . Then

� If ˆ and ‰ are each trivializations of EjUn� then

(4-6) c1.EIˆ/D c1.EI‰/� deg.ˆ�1
ı‰/:

� If ˆi is a trivialization of Ei jUn� for i 2 f1; 2g, then

(4-7) c1.E1˚E2Iˆ1˚ˆ2/D c1.E1Iˆ1/C c1.E2Iˆ2/

and

(4-8) c1.E1˝E2Iˆ1˝ˆ2/D c1.E1Iˆ1/C c1.E2Iˆ2/:
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� If .U;  / is a holomorphic cylindrical coordinate system, then

(4-9) c1.T .† n�/I d /D �.† n�/D �.†/� #�

where �.S/ denotes the Euler characteristic of S .

Proof To see that (4-6) is true, we pick a holomorphic cylindrical coordinate system
.U;  / and choose a generic section h of EjUn� which is equal to ƒn

Cˆ.z/1 for
z 2 [i i.Œ0; 1��S1/ and equal to ƒn

C‰.z/1 for z 2 [i i.Œ2;1/�S1/. Extending
h to a generic section of ƒn

CE , the algebraic count of zeroes of h in †n� is equal to
c1.EI‰/ while the algebraic count of zeroes in †nU is equal to c1.EIˆ/. Therefore,
letting m represent the algebraic count of zeroes of h in the necks [i i.Œ1; 2��S1/,
we must have

c1.EIˆ/D c1.EI‰/Cm

so it suffices to show mD� deg.ˆ�1 ı‰/. This indeed follows from

mD

#�X
iD1

wind..ƒn
Cˆ. i.2; �///

�1h. i.2; �///�wind..ƒn
Cˆ. i.1; �///

�1h. i.1; �///

D

#�X
iD1

wind.1/�wind..ƒn
Cˆ. i.1; �///

�1.ƒn
C‰. i.1; �///1/

D

#�X
iD1

�wind.ƒn
C.ˆ

�1
ı‰/. i.1; �//1/D

#�X
iD1

�wind.det..ˆ�1
ı‰/. i.1; �////

D� deg.ˆ�1
ı‰/:

To prove (4-7) and (4-8), we first observe that there are natural isomorphisms

ƒ
n1Cn2

C .E1˚E2/! .ƒ
n1

C E1/˝ .ƒ
n2

C E2/

ƒ
n1n2

C .E1˝E2/! .ƒ
n1

C E1/˝ .ƒ
n2

C E2/and

where ni D dimC Ei . Furthermore, the trivializations ƒ
n1Cn2

C .ˆ1 ˚ ˆ2/ of
ƒ

n1Cn2

C .E1˚E2/jUn� and ƒn1n2

C .ˆ1˝ˆ2/ of ƒn1n2

C .E1˝E2/jUn� both induce
the trivialization .ƒn1

C ˆ1/˝ .ƒ
n2

C ˆ2/ on .ƒn1

C E1/˝ .ƒ
n2

C E2/jUn� under the given
isomorphisms. Therefore both (4-7) and (4-8) are equivalent to the special case of (4-8)
when E1 and E2 are line bundles. In this case, we let hi be a generic section of Ei

agreeing with ˆi1 over U n� , we assume that the zero loci of h1 and h2 are disjoint.
Then h1˝h2 is a section of E1˝E2 agreeing with .ˆ1˝ˆ2/1 over U n� and the
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algebraic count of zeroes of h1˝ h2 is given by the sum of the algebraic counts of
zeroes of h1 and h2 .

Finally, to see that (4-9) holds, we note that if .U;  / is holomorphic cylindrical
coordinate system then the section d .z/1 of U n� extends to a smooth section of U

with a simple zero of positive index at each point of � . Any extension of this section to
a generic section of T† will have �.†/ zeroes counted with sign, of which �.†/�#�
lie within † n� .

Having defined the relative first Chern number, we now define the total Conley–Zehnder
index. Let .†; j ; �;u/ 2 C1.W;HC;H�/ be an asymptotically cylindrical map in
a 4–manifold W with Hamiltonian structured ends and assume that W is equipped
with a compatible almost complex structure J . A choice of unitary trivialization of
.�H

˙

;J˙/ along each asymptotic limit of u induces a complex trivialization of the
pull-back bundle .u�T W;J / near the punctures of u since on the cylindrical ends we
have

.T W;J /� .R˚RXH˙ ˚ �
H˙ ; eJ ˙/�CXH˙ ˚ .�

H˙ ;J˙/:

We will use ˆ to denote both the chosen trivialization of .�H
˙

;J˙/ along the asymp-
totic limits and the induced trivialization of .u�T W;J / near the punctures. We then
define the total Conley–Zehnder index of �.u/ of u by

�.u/D 2cˆ1 .u
�T W;u�J /C

X
z2�

�ˆ.mz
z /:

where u is assumed to be asymptotic to mz
z at z 2 � . We note that this quantity is

independent of choice of trivialization as a result of Lemma 3.4 and Lemma 4.5, and
depends only on the homotopy classes of u and compatible J . We further note that
in applications, the 4–manifold W is typically equipped with a symplectic form with
which J must be compatible on all of W (as opposed to being just compatible on
the ends as we assume here). In this case, it is well known (see eg Proposition 5 and
discussion following in Section 1.3 of [13]) that the space of such J is contractible, so
the total Conley–Zehnder index would depend only on the homotopy class of the map
u.

4.2.2 The adjunction formula In this section we prove Theorem 2.3 which is a
generalization of (1-1) for punctured curves that is stated in terms of the generalized
intersection number.

Before proving the result, we review some basic facts about the local intersection
properties of pseudoholomorphic curves which we will need. Proofs of these facts can
be found in McDuff [17] or Micallef and White [18]. Let uW .†; j /! .W 4;J / be a
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pseudoholomorphic map in an almost complex 4–manifold. Since duW Tz†!Tu.z/W

is complex linear, the derivative of u is always either rank 2 or rank 0. Define the
singular set S.u/ of u to be the set of points where the derivative of u is zero, ie

S.u/ WD fz 2† j du.z/D 0g :

Each point z2S.u/ has an open neighborhood U so that either ujUnfzg is an embedding
or ujUnfzg factors through an embedding via a holomorphic covering. Consequently,
the singular set of a pseudoholomorphic map is an isolated subset of the domain. For
an asymptotically cylindrical pseudoholomorphic map, this fact combined with the
assumed convergence to an orbit cylinder at the punctures implies that the singular set
is finite.

Given a point z 2 S.u/, assume that ujUnfzg is an embedding for some open neighbor-
hood U of z . We can define a quantity ı.uI z/ in the following way: there exists a
C 1 –small perturbation J 0 of J supported near u.z/ and C 1 –small perturbation u0 of
u supported in a neighborhood U of z so that u0jU is an immersed J 0–holomorphic
map with precisely ı.uI z/ transverse double points. This quantity is independent of
the choice of perturbation.

Now, let vW .†0; j 0/! .W 4;J / be another pseudoholomorphic map and assume that
u.p/D v.q/ for some .p; q/ 2†�†0 . Then there exist open neighborhoods U of p

and V of q so that either
V � v�1.u.U //

or
u.U n fpg/\ v.V n fqg/D∅:

In the latter case, when u and v have an isolated intersection at u.p/D v.q/, we will
denote the local intersection number of u at p with v at q by

ı..uIp/; .vI q//:

The local intersection number ı..uIp/; .vI q// is always greater than or equal to 1

and is equal to 1 if and only if u is immersed at p , v is immersed at q , and u and v
intersect transversely.

Assume next that uW .†; j / ! .W 4;J / is a simple map, that is that u does not
factor through a branched cover of Riemann surfaces. Define the double point set
Du �†�† n�† of u by

D.u/D f.p; q/ ju.p/D u.q/;p ¤ qg :

As observed in Corollary 3.11, the preceding discussion along with Corollary 3.8 and
Corollary 3.9 imply that an asymptotically cylindrical curve has at most a finite number
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of double points. For such a map, we define the self-intersection index ı.u/ of u by

(4-10) ı.u/D
X

z2S.u/

ı.uI z/C
1

2

X
.z;w/2D.u/

ı..uI z/; .uIw//:

We note that this quantity is an integer since the second sum counts .z; w/ and .w; z/
separately. A pseudoholomorphic map u is an embedding if and only if ı.u/ D 0.
Furthermore, ı.u/ has the following significance: if J 0 is a compactly supported,
perturbation of J and u0 is an immersed, J 0–holomorphic, compactly supported
perturbation of u having only transverse double points, then u0 has precisely ı.u/
double points, that is ı.u/D 1

2
#D.u/.

Now consider an almost complex cobordism of Hamiltonian structures .W;J ;HC;H�/
and let Œ†; j ; �;u� 2M.W;J ;HC;H�/ be a simple pseudoholomorphic curve. We
define the total asymptotic self-intersection index of u by

ı1.u/D
X
z2�

ı1.uI z/C
1

2

X
.z;w/2���

z¤w

ı1.ŒuI z�; ŒuIw�/;

where ı1.uI z/ is as defined in (3-29) and ı1.ŒuI z�; ŒuIw�/ is as defined in (3-32).
This quantity will be nonnegative integer-valued since the asymptotic intersection index
ı1.ŒuI z�; ŒuIw�/ is symmetric and each pair of distinct punctures is counted twice in
the second sum.

Letting Œ†; j ; �;u� 2M.W;J ;HC;H�/ still denote a simple curve, we now define
the singularity index7 sing.u/ of u by

sing.u/ WD ı.u/C ı1.u/:

The singularity index is nonnegative-integer-valued and equals zero for a given curve if
and only if that curve is embedded and has total asymptotic self-intersection index equal
to zero. Finally, recalling the definition (3-14) of the spectral covering number N�.uI z/
of a pseudoholomorphic end ŒuI z�, we define the total spectral covering number of u

by
N�.u/D

X
z2�

N�.uI z/:

The spectral covering number depends only on the asymptotic data of the map and not
on the map itself.

We now prove Theorem 2.3 which we restate here for the convenience of the reader (cf
[14, Remark 3.2] and [21, Theorem 3.13]).

7 Note This definition of sing.u/ is different from the one used in [21]
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Theorem 4.6 (Theorem 2.3) Let .W;J / be an almost complex 4–manifold with
cylindrical ends .R˙ �M˙;H˙;J˙/ and let Œ†; j ; �;u� 2M.W;J ;HC;H�/ be a
connected, simple pseudoholomorphic curve. Then

(4-11) Œu�� Œu��
1

2
�.u/C

1

2
#�oddC�.†/� N�.u/D 2 sing.u/

where #�odd denotes the number of punctures of u limiting to orbits with odd Conley–
Zehnder indices. In particular,

Œu�� Œu��
1

2
�.u/C

1

2
#�oddC�.†/� N�.u/� 0

and equality occurs if and only if u is an embedding and has total asymptotic self-
intersection index equal to zero.

Proof We first observe that it suffices to assume that u is an immersion having only
transverse double points. If not we can apply results of Micallef and White [18] to
find an immersion u1W † n � ! W which is homotopic to u via a homotopy that
is constant outside a compact subset of † n � , which has precisely ı.u/ transverse
double points and no other singularities and which is eJ 1 –holomorphic for some eJ 1

which is homotopic to eJ via a homotopy that is constant outside a compact set. Such a
homotopy leaves all the terms in (4-11) constant and it thus suffices to prove the result
for such a u1 .

Proceeding with these assumptions, we compute the relative intersection number of
u with itself for a given trivialization ˆ by pushing u off of itself with a section of
the normal bundle to u which is asymptotic at each puncture to ˆ."/. Using standard
homotopy invariance and transversality arguments, it can be shown that the zeroes of
the section contribute cˆ

1
.Nu/ to iˆ.u;u/ and the double points of u contribute 2ı.u/

to iˆ.u;u/. Moreover, the local asymptotic analysis in Section 3.2 shows that multiply
covered ends and distinct ends approaching coverings of the same orbits contributes a
total of X

z2�

iˆ1.uI z/C
X

.z;w/2���
z¤w

iˆ1.ŒuI z�; ŒuIw�/

so consequently we have that

(4-12) iˆ.u;u/D cˆ1 .Nu/C 2ı.u/C
X
z2�

iˆ1.uI z/C
X

.z;w/2���
z¤w

iˆ1.ŒuI z�; ŒuIw�/:

(This is equivalent to [15, formula (4.1)] and to the first formula on page 110 of [21]).
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Assuming that at a puncture z 2 �˙ , u is asymptotic to mz
z , we addX

.z;w/2���
zDw

mz mw>0

mzmw max
�
˛ˆ.

mz
z /

jmz j
;
˛ˆ.

mw
w /

jmw j

�

D

X
z2�

jmzj˛
ˆ.mz

z /C
X

.z;w/2���
z¤w
zDw

mz mw>0

mzmw max
�
˛ˆ.

mz
z /

jmz j
;
˛ˆ.

mw
w /

jmw j

�

to (4-12) and use the definitions of Œ��� Œ��, ı1.�/ and ı1.�; �/ to get

Œu�� Œu�D cˆ1 .Nu/C 2ı.u/C
X
z2�

Œ2ı1.uI z/C˛.uI z/C N�.uI z/� 1�

C

X
.z;w/2���

z¤w

ı1.ŒuI z�; ŒuIw�/

D cˆ1 .Nu/C 2 sing.u/C N�.u/� #�C
X
z2�

˛.uI z/

D cˆ1 .Nu/C 2 sing.u/C N�.u/� #� � 1

2
#�oddC

X
z2�

1

2
�ˆ.uI z/:

Finally, using the properties of the relative Chern number from Lemma 4.5, we have
that

cˆ1 .u
�T W /D �.† n�/C cˆ1 .Nu/

D �.†/� #�C cˆ1 .Nu/

which, combined with the above formula for Œu�� Œu�, gives that

Œu�� Œu��
1

2
�.u/C�.†/C

1

2
#�odd� N�.u/D 2 sing.u/:

as claimed.

It is useful in certain contexts to rewrite (4-11) in terms of the virtual dimension (or
Fredholm index) of the moduli space of the curve being considered. We define the
index of a pseudoholomorphic curve Œ†; j ; �;u� 2M.W;J ;HC;H�/ by the formula

(4-13) ind.u/D �.u/��.†/C #�:
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If u is simple, the index is equal to the dimension of the moduli space of unparametrized
curves near u for a generic choice of admissible almost complex structures on W (see
[11; 3]). Using this formula we can restate the adjunction formula as follows.

Corollary 4.7 Let .W;J / be an almost complex 4–manifold with cylindrical ends
.R˙�M˙;H˙;J˙/ and let Œ†; j ; �;u�2M.W;J ;HC;H�/ be a connected, simple
pseudoholomorphic curve. Then

(4-14) Œu�� Œu��
1

2
Œind.u/��.†/C #�even�C #� � N�.u/D 2 sing.u/:

Using the homotopy invariance of the generalized intersection number, we have the
following corollary which allows us to bound the number of intersections between two
pseudoholomorphic curves which are homotopic. This result is useful in the study of
finite energy foliations (see eg [12]).

Corollary 4.8 Let Œ†; j ; �;u� 2M.W;J ;HC;H�/ be a connected, simple pseu-
doholomorphic curve and let Œ†0; j 0; � 0; v� 2M.W;J ;HC;H�/ be a second curve,
distinct from u, which is homotopic to u in C1.W;HC;H�/. Then

int.u; v/� 1

2
Œind.u/��.†/C #�even�C N�.u/� #�C 2 sing.u/:

5 Cylindrical cobordisms

In this section we will consider some applications of the intersection theory we have
developed in previous sections to curves in a cylindrical cobordism. Throughout the
remainder of this section M will denote a 3–manifold equipped with the nondegenerate
stable Hamiltonian structure HD .�; !/ and a compatible almost complex structure
J 2 J .M;H/. As in previous sections, we will denote the associated R–invariant
almost complex structure on R�M by eJ .

It will be convenient for many of the results in this section to consider a special class
of smooth asymptotically cylindrical maps. Given an asymptotically cylindrical map
.†; j ; �; .a;u// 2 C1.M;H/, we say that .†; j ; �; .a;u// has ends which wind if
there is an open neighborhood U of � so that ujUn� does not intersect any of the
asymptotic limits of u, ie in the language of Section 3.1.4 a neighborhood of each
puncture determines an asymptotically cylindrical end which winds. If .†; j ; �; .a;u//
is an asymptotically cylindrical map with ends that wind, we can define for each puncture
z 2 � the asymptotic winding windˆ1.uI z/ as we do in Section 3.1.4 by choosing a
small clockwise loop � around z and computing the winding of u ı � relative to a
trivialization ˆ of �H along the asymptotic limit of u at z .
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5.1 Tangency to the flow and wind�

Let QuD .a;u/W † n�!R�M be a pseudoholomorphic curve and let ��H W TM D

RXH˚ �
H! �H be the projection onto �H determined by the splitting (2-1). Then

the projection ��H ı du of the derivative of u is a complex linear map

��H ı du.z/W .Tz.† n�/; j /! .�Hu.z/;J /

according to the second equation in (2-6). Thus for any z 2†n� , ��H ıdu.z/ has rank
0 or 2. In the case that the Hamiltonian structure on M arises from a contact form, it
is shown in [8] that ��H ıdu either vanishes identically or has isolated zeroes of finite
positive order. The proof given there readily generalizes to the case of an arbitrary
stable Hamiltonian structure (see Appendix A). Moreover, assuming that ��H ı du

does not vanish identically, it follows from Corollary 3.12 that ��H ı du has at most a
finite number of zeroes. Following [8], we will denote the algebraic count of the zeroes
of ��H ı du by wind�.u/.

Since ��H ıdu is a section of the complex line bundle, HomC.Tz.†n�/;u
��H/, the

algebraic count of zeroes of ��H ı du is determined by the behavior of u near the
punctures. Indeed in [8] it is shown that

wind�.u/C d0. Qu/D
1

2
.ind. Qu/��.†/C #�even/(5-1)

d0. Qu/D
X
z2�

d0. QuI z/;where

and d0. QuI z/ is as defined in (3-18). Substituting into (4-14) gives the following
corollary to Theorem 4.6 which will be useful for some results later in this section.

Corollary 5.1 Let Œ†; j ; �; QuD .a;u/� 2M.M;H;J / be a connected, simple pseu-
doholomorphic curve. If ��H ı du does not vanish identically, then

(5-2) Œ Qu�� Œ Qu�� Œwind�. Qu/C d0. Qu/�C #� � N�. Qu/D 2 sing. Qu/:

The results in this section will mostly be concerned with pseudoholomorphic curves
that have no component with image contained in an orbit cylinder. We collect in the
following lemma some conditions that are equivalent to this. This fact is well-known
and can be deduced using Corollary 3.12 and Corollary A.3. For further discussion
and proof see [8].

Lemma 5.2 Let Œ†; j ; �; QuD .a;u/� 2M.M;H;J / be a pseudoholomorphic curve.
The following are equivalent.

(1) ��H ı du does not vanish identically on any component of † n� .
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(2) No component of the map has image contained in an orbit cylinder.

(3) No component of the map is fixed by the R–action.

(4) The map Œ†; j ; �; Qu D .a;u/� has ends which wind, ie for each z 2 � and
trivialization ˆ of �H along the asymptotic limit of Qu at z , the asymptotic
winding windˆ1. QuI z/ is defined.

5.2 Intersections with orbit cylinders

In this section we compute intersection numbers of an orbit cylinder with an asymp-
totically cylindrical map with ends that wind. Throughout this section, we will be
dealing with an asymptotically cylindrical map .†; j ; �; Qu/ with ends that wind and
we will use the notation mz

z , with mz a nonzero integer and z 2P0.M;H/ a simple
periodic orbit, to indicate that at the puncture z 2 � , Qu is asymptotic to Qmz

z .

We first compute the relative intersection number.

Lemma 5.3 Let .†; j ; �; QuD .a;u// 2 C1.M;H/ be an asymptotically cylindrical
map with ends that wind and let Q k be the orbit cylinder over  k , with  a simple
periodic orbit and k a positive integer. Then the algebraic intersection number int.;u/
is well-defined and

(5-3) iˆ. Qu; Q k/D k

0BB@int.;u/�
X
z2�
zD

windˆ1.uI z/

1CCA :
Proof Since we assume that the map Qu has ends that wind, there is a neighborhood
of each puncture on which Qu does not intersect Q and hence on which the projected
map u does not intersect  . Applying standard transversality and homotopy-invariance
arguments, u can therefore be perturbed on a compact set to a map with a finite
number of isolated, transverse intersections with  and the total algebraic count of
these intersections is independent of the perturbation. The intersection number int.;u/
can then be defined to be the algebraic count of these intersections.

Using the definition of the relative intersection number and using the same reasoning
that leads to Theorem 4.2 we have

iˆ. Qu; Q k/D int. Q k ; Qu/C
X

z2�C
zD

iˆ1.Œ Q
k
I1�; Œ QuI z�/C

X
z2��
zD

iˆ1.Œ Q
k
I 0�; Œ QuI z�/:
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where we consider Q k as a map from S2 n f0;1g with 1 the positive puncture and
0 the negative puncture. Since Q is fixed by the R–action we have that8

(5-4) int. Q k ; Qu/D int. k ;u/D k int.;u/:

Moreover, it follows from Lemma 3.20 and the definitions of windrel and wind1 that
for a puncture z 2 �C with z D  we have

iˆ1.Œ Q
k
I1�; Œ QuI z�/D�

1

kmz
windˆrel.mz � Œ Q

k
I1�; k � Œ QuI z�/

D�
1

kmz
kmz windˆ1.k � Œ QuI z�/

D�k windˆ1. QuI z/:

Similarly, for z 2 �� with z D  we have

iˆ1.Œ Q
k
I 0�; Œ QuI z�/D�k windˆ1. QuI z/

which completes the proof.

Next we compute the generalized intersection number of an orbit cylinder with an
asymptotically cylindrical map with ends that wind. A variation on this is used in [19]
to study a variation on contact homology in which the curves in the differential are
required to not intersect a prescribed collection of elliptic orbits.

Corollary 5.4 Let .†; j ; �; QuD .a;u//2C1.M;H/ be an asymptotically cylindrical
map with ends that wind and let Q be a cylinder over a simply covered periodic orbit  .
Then for k > 0 we have

Œ Qu�� Œ Q k �D k
�

int .;u/

C

X
z2�C
zD

mz

�
max

�
˛.mz /

mz
;
˛.k/

k

�
�
˛.mz /

mz

�
C d0. QuI z/

C

X
z2��
zD

jmzj

�
max

�
˛.mz /

jmz j
;
˛.�k/

k

�
�
˛.mz /

jmz j

�
C d0. QuI z/

�
:

Proof The result follows from addingX
z2�C
zD

kmz max
�
˛.mz /

mz
;
˛.k/

k

�
C

X
z2��
zD

kjmzjmax
�
˛.mz /

jmz j
;
˛.�k/

k

�

8 Note that the orientation of M matters in the right-most expression since M is 3–dimensional. We
always orient M so that �^! is a positive volume form and R�M is oriented so that dx ^�^! > 0

where x is the coordinate along R .
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to (5-3) and using the definition of d0. QuI z/ and Œ Qu�� Œ Q k �.

We observe that in the event that the map .†; j ; �; Qu/ in this Corollary is pseudo-
holomorphic, then the formula given above expresses the generalized intersection
number Œ Qu� � Œ Q k � as a sum of nonnegative terms. Indeed, the terms of the form
max

n
˛.m/
jmj

; ˛.
k/
jkj

o
�
˛.m/
jmj

are nonnegative for any map. In the case that Qu is pseudo-
holomorphic, the terms d0. QuI z/ are nonnegative by Lemma 3.13. Moreover, when Qu
is pseudoholomorphic the fact that int.;u/ is nonnegative follows from the fact from
(5-4) that int.;u/D int. Q ; Qu/ and positivity of intersections for pseudoholomorphic
curves.

In the case that  is a hyperbolic orbit, the iteration formulas from Lemma 3.3 simplify
the formula from Corollary 5.4 somewhat. We state this result here and omit the
straightforward proof.

Corollary 5.5 Let QuD .a;u/ and  satisfy the assumptions of Corollary 5.4 and let
k > 0. If  is an even orbit, then

Œ Qu�� Œ Q k �D k

0BB@int .;u/C
X
z2�
zD

d0. QuI z/

1CCA :
If  is an odd, hyperbolic orbit and k is even, then

Œ Qu�� Œ Q k �D k

0BB@int .;u/C
X
z2�
zD

h
p.mz /

2
C d0. QuI z/

i1CCA
where p.m/ denotes the parity of m. If  is an odd, hyperbolic orbit and k is odd,
then

Œ Qu�� Œ Q k �D k int .;u/C
X
z2�
zD

h
p.mz /

2
.k �min fk; jmzjg/C kd0. QuI z/

i
:

Finally, we compute the generalized intersection number of an orbit cylinder with itself.

Proposition 5.6 Let  be a simple periodic orbit and let k > 0. Then

Œ Q k �� Œ Q k �D�kp. k/

where p. k/ is the parity of periodic orbit  k .
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Proof It follows immediately from the definition of the relative intersection number
that iˆ. Q k ; Q k/ vanishes for any trivialization ˆ of  ��H . Consequently, the definition
(4-3) of the generalized intersection number gives us that

Œ Q k �� Œ Q k �D�ˆ. Q k ; Q k/

D k
�
˛ˆ. k/C˛ˆ.�k/

�
:

If  is an even orbit, we have from (3-5) that

˛ˆ. k/C˛ˆ.�k/D k˛ˆ. /� k˛ˆ. /D 0

so Œ Q k �� Œ Q k �D 0D�kp. k/ in this case. If  is an odd hyperbolic orbit, we have
from (3-6) that

˛ˆ. k/C˛ˆ.�k/D k˛ˆ. /C
k�p.k/

2
� k˛ˆ. /C

�k�p.�k/

2

D�p.k/D�p. k/;

so Œ Q k �� Œ Q k �D�kp. k/ in this case as well. Finally, if  is elliptic, it follows from
(3-7) that there exists an irrational number � so that

˛ˆ. k/C˛ˆ.�k/D bk�cC b�k�c

D bk�c� dk�e D �1

so we have Œ Q k �� Œ Q k �D�k D�kp. k/ for elliptic orbits as well.

This computation has an application to curves in R �M equipped with a non-R–
invariant almost complex structure. We consider a stable Hamiltonian structure HD
.�; !/ on M and let c �H denote the stable Hamiltonian structure c �HD .c ��; c �!/.
Consider R �M equipped with an almost complex structure J which agrees on
Œ1;C1/�M with a standard cylindrical eJ 1 for c1 �H and agrees on .�1;�1��M

with a standard cylindrical eJ 2 for c2 �H . If  k is a periodic orbit for the structure
H , it is also a periodic orbit for the structure ci �H and the Conley–Zehnder index
of  k is the same relative to all three structures. We can consider the orbit cylinder
Q k , which in general will not be J –holomorphic, but is still a smooth asymptotically
cylindrical map. The preceding proposition still applies and implies that Q k has a
negative (generalized) self-intersection number if  k is an odd orbit. By the positivity of
intersections for the generalized intersection number (Theorem 4.4) and the homotopy
invariance of the generalized intersection number, we can conclude that there is at most
one J –holomorphic curve in the homotopy class of the orbit cylinder Q k .
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5.3 Counting intersections

In this section we will compute generalized intersection number of two maps in terms
of data that is entirely determined by the M –components of the maps: namely the
intersection numbers of each map with the asymptotic limits of the other, the asymptotic
winding invariants and the asymptotic data. We then identify necessary and sufficient
conditions for the generalized intersection number of two pseudoholomorphic curves
to be zero. Finally, we examine a set of necessary and sufficient conditions for the
projections of two pseudoholomorphic curves into the three manifold to not intersect.

We recall that there is an R–action on maps in cylindrical cobordisms, defined by
shifting in the R–direction of R�M . We will denote this action by c � QuD .aCc;u/ or
by Quc D .aC c;u/ where QuD .a;u/W †n�!R�M is an asymptotically cylindrical
map.

We also recall that [2] defines what it means for a pseudoholomorphic curve to con-
verge to a pseudoholomorphic building (see CHC1-CHC2 in [2, Section 7.3]). The
definition of convergence of pseudoholomorphic curves given there can be generalized
in straightforward way to asymptotically cylindrical maps converging to asymptotically
cylindrical buildings.

Lemma 5.7 Let .†k ; jk ; �k ; Quk/, .†0k ; j
0
k
; � 0

k
; Qvk/ 2 C1.M;H/ be sequences of

asymptotically cylindrical maps so that the disjoint union Quk C Qvk converges in the
sense of [2] to a 2–level building . Qu1;1ˇ Qu1;2/C . Qv1;1ˇ Qv1;2/. Then

lim
k!1

iˆ. Quk ; Qvk/D iˆ. Qu1;1; Qv1;1/C iˆ. Qu1;2; Qv1;2/:

We remark that the result and proof here easily adapt to the case where the limit
building has more than 2 levels and when the limiting curves are mapped into a
splitting symplectic manifold.

Proof According to definition of convergence in [2], our assumptions imply that there
exist constants ck and dk and holomorphic reparametrizations �k;i W †k q †

0
k
!

†k q†
0
k

so that ck � . Quk C Qvk/ ı �k;1 converges in C1
loc

to Qu1;1 C Qv1;1 and so
that dk � . Quk C Qvk/ ı �k;2 converges in C1

loc
to Qu1;2 C Qv1;2 . Moreover, we can

compactify .R �M /ˇ .R �M / and identify it with Œ0; 1� �M (equipped with a
C 0 structure) and can choose a sequence of identifications of the compactification of
R�M with Œ0; 1��M and diffeomorphisms  k W †k q†

0
k
! †k q†

0
k

in such a
way that . Quk C Qvk/ ı k converges uniformly to . Qu1;1ˇ Qu1;2/C . Qv1;1ˇ Qv1;2/, all
viewed as maps into Œ0; 1��M . It then follows from the properties of intersection
numbers and the definition of the relative intersection number that for large k we have
iˆ. Quk ; Qvk/D iˆ. Qu1;1; Qv1;1/C iˆ. Qu1;2; Qv1;2/ as claimed.
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As an immediate application of this, we have the following computation of the general-
ized intersection number of two asymptotically cylindrical maps with ends that wind.

Theorem 5.8 Let .†; j ; �; Qu D .a;u//, .†0; j 0; � 0; Qv D .b; v// 2 C1.M;H/ be
asymptotically cylindrical maps with ends that wind. Assume that at z 2 � that Qu is
asymptotic to mz

z and that at w 2 � 0 Qv is asymptotic to mw
w with mz , mw nonzero

integers and z , w 2 P0.M;H/, simple periodic orbits. Then

Œ Qu�� Œ Qv� D
X
w2� 0

C

jmwj

0BB@int.w;u/C
X

z2�C
zDw

jmzjƒ

�
˛.

mw
w /

jmw j
;
˛.

mz
z /

jmz j

�
C d0. QuI z/

1CCA

C

X
z2��

jmzj

0BB@int.z; v/C
X
w2� 0�
wDz

jmwjƒ

�
˛.

mz
z /

jmz j
;
˛.

mw
w /

jmw j

�
C d0. QvIw/

1CCA(5-5)

C

X
.z;w/2����

0
C

zDw

jmwjd0. QuI z/Cjmzjd0. QvIw/� jmwmzj

�
˛.

mz
z /

jmz j
C
˛.

mw
w /

jmw j

�

where

(5-6) ƒ.x;y/ WDmax fx;yg�y:

Proof We apply the R–action to Qu and note that

lim
c!1

.c � Qu/C Qv D . Quˇ ŒCz2�� Q
�mz
z �/C .ŒCw2� 0

C
Qmw
w �ˇ Qv/

where the limit is to be understood in the sense of [2] and “C” denotes the disjoint
union of the maps. Consequently, the homotopy invariance of the relative intersection
number along with Lemma 5.7 imply that

(5-7) iˆ. Qu; Qv/D lim
c!1

iˆ.c � Qu; Qv/D
X
w2� 0

C

iˆ. Qu; Qmw
w /C

X
z2��

iˆ. Qv; Q�mz
z /:

Applying Lemma 5.3 and the definition of d0. QuI z/, we have that

iˆ. Qu; Qmw
w /Dmw

0BB@int.w;u/�
X
z2�
zDw

windˆ1.uI z/

1CCA
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Dmw

0BB@int.w;u/C
X
z2�
zDw

Œd0. QuI z/�˛
ˆ.mz

z /�

1CCA

and similarly

iˆ. Qv; Q�mz
z /D jmzj

0BB@int.z; v/C
X
w2� 0
wDz

Œd0. QvIw/�˛
ˆ.mw

w /�

1CCA
Substituting these formulas in (5-7) and adding

�ˆ. Qu; Qv/D
X

.z;w/2��� 0
zDw

mz mw>0

mzmw max
�
˛.

mz
z /

jmz j
;
˛.

mw
w /

jmw j

�

to both sides gives

Œ Qu�� Œ Qv�D iˆ. Qu; Qv/C�ˆ. Qu; Qv/

D

X
w2� 0

C

jmwj

0BB@int.w;u/C
X

z2�C
zDw

jmzjƒ

�
˛.

mw
w /

jmw j
;
˛.

mz
z /

jmz j

�
C d0. QuI z/

1CCA

C

X
z2��

jmzj

0BB@int.z; v/C
X
w2� 0�
wDz

jmwjƒ

�
˛.

mz
z /

jmz j
;
˛.

mw
w /

jmw j

�
C d0. QvIw/

1CCA
C

X
.z;w/2����

0
C

zDw

jmwjd0. QuI z/Cjmzjd0. QvIw/� jmwmzj

�
˛.

mz
z /

jmz j
C
˛.

mw
w /

jmw j

�

as claimed, where we have abbreviated ƒ.x;y/Dmax fx;yg�y .

We note that in the case that the maps Qu and Qv from this theorem are pseudoholomorphic
that (5-5) expresses the generalized intersection number Œ Qu��Œ Qv� as a sum of nonnegative
terms. Indeed the nonnegativity of each of the terms is discussed following Corollary 5.4,
with the exception of the terms of the form

�jmwmzj

�
˛.

mz
z /

jmz j
C
˛.

mw
w /

jmw j

�
:
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The fact that these terms contribute nonnegatively to Œ Qu�� Œ Qv� is addressed in the proof
of Corollary 5.9 below.

The fact that (5-5) expresses Œ Qu� � Œ Qv� for pseudoholomorphic curves as a sum of
nonnegative terms allows us to prove the following result which gives necessary and
sufficient conditions for two curves to have generalized intersection number equal to
zero.

Corollary 5.9 Let Œ†; j ; �; QuD .a;u/� and Œ†0; j 0; � 0; QvD .b; v/�2M.M;H;J / be
pseudoholomorphic curves and assume that no component of Qu or Qv lies in an orbit
cylinder. Then the following are equivalent:

(1) The generalized intersection number Œ Qu�� Œ Qv�D 0.

(2) All of the following hold:
(a) The map u does not intersect any of the positive asymptotic limits of v .
(b) The map v does not intersect any of the negative asymptotic limits of u.
(c) If  is a periodic orbit so that at z 2 � , Qu is asymptotic to mz and at

w 2 � 0 , Qv is asymptotic to mw , then:
(i) If mz and mw are both positive then d0. QuI z/D 0 and

˛.mz /

mz
�
˛.mw /

mw
:

(ii) If mz and mw are both negative then d0. QvIw/D 0 and

˛.mw /

jmw j
�
˛.mz /

jmz j
:

(iii) If mz < 0 and mw > 0 then d0. QuI z/ D d0. QvIw/ D 0 and mz and
mw are both even orbits; or equivalently

wind1.QuIz/
mz

D
wind1.QvIw/

mw
:

(3) All of the following hold:
(a) The map u does not intersect any of the asymptotic limits of v .
(b) The map v does not intersect any of the asymptotic limits of u.
(c) If  is a periodic orbit so that at z 2 � , Qu is asymptotic to mz and at

w 2 � 0 , Qv is asymptotic to mw , then d0. QuI z/D 0, d0. QvIw/D 0. Further
(i) if  is elliptic, then mz and mw have the same sign and

˛.mz /

mz
D

˛.mw /

mw
:

(ii) if  is odd, hyperbolic then either mz and mw are both even or mz D

mw .

Geometry & Topology, Volume 15 (2011)



Intersection theory of punctured pseudoholomorphic curves 2429

Proof As discussed preceding the statement of this corollary, this will follow from
Theorem 5.8 and in particular the fact that Theorem 5.8 gives an expression of Œ Qu�� Œ Qv�
as a sum of nonnegative quantities. Indeed, as discussed following Corollary 5.4, it
follows from (5-4) that the terms involving intersections of the projected maps u and
v with periodic orbits are nonnegative. Moreover, Lemma 3.13 establishes that the d0

terms are nonnegative, while it is clear that each other grouped term on the right hand
side of equation (5-5) is nonnegative except possibly for the term in the final sum of
the form

�1.;m; n/ WD �jmnj
h
˛.m/

jmj
C
˛.n/

jnj

i
where here m and n have opposite sign. The nonnegativity of this term will follow
from Lemma 3.3. Without loss of generality, assume that m > 0 and n < 0. So that
the expression takes the form

�1.;m; n/Dmn
h
˛.m/

m
C
˛.n/

�n

i
If  is an even orbit then (3-5) gives us

�1.;m; n/DmnŒ˛. /�˛. /�D 0:

If  is odd, hyperbolic, (3-6) gives us

�1.;m; n/D
1

2
Œmp.n/� np.m/�

which is nonnegative since m > 0 and n < 0 and equals zero if and only if both m

and n are even. Finally if  is elliptic, by (3-7) there is an irrational � so that

�1.;m; n/D nbm�c�mbn�c

� dnm�e� bnm�c D 1;

where the inequality follows from the assumptions that n < 0, m > 0 and that � is
irrational. To summarize, we have seen that for m and n integers with opposite sign,
we have that

�jmnj
h
˛.m/

jmj
C
˛.n/

jnj

i
� 0

and equality occurs if and only if m and  n are both even orbits.

Given this, it is clear from (5-5) that Œ Qu�� Œ Qv�D 0 if and only if:

� int.w;u/D 0 for all w 2 � 0C ,
� int.z; v/D 0 for all z 2 �� ,
� d0. QuI z/D 0 and

max
�
˛.

mz
z /

jmz j
;
˛.

mw
w /

jmw j

�
�
˛.

mz
z /

mz
D 0
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for all .z; w/ 2 �C �� 0C with z D w ,

� d0. QvIw/D 0 and

max
�
˛.

mz
z /

jmz j
;
˛.

mw
w /

jmw j

�
�
˛.

mw
w /

mw
D 0

for all .z; w/ 2 �� �� 0� with z D w and

� d0. QuI z/D d0. QvIw/D 0 and

(5-8) �jmzmwj

�
˛.

mz
z /

jmz j
C
˛.

mw
w /

jmw j

�
D 0

for all .z; w/ 2 �� �� 0C with z D w .

The discussion of the previous paragraph tells us that (5-8) is true if and only if mz
z

and mw
w are both even orbits. Moreover, we have from Lemma 3.13 together with

mz < 0, mw > 0 and the previously observed nonnegativity of the left-hand-side of
(5-8) that

wind1.QvIw/
mw

�
˛.

mw
w /

mw
�
˛.

mz
z /

mz
�

wind1.QuIz/
mz

in general. This together with the definition (3-18) of d0 tells us that the last listed
condition above, that is d0. QuI z/D d0. QvIw/D 0 and (5-8), is true precisely when

wind1.QvIw/
mw

D
wind1.QuIz/

mz

so the two conditions given in item 2(c)iii are equivalent. The fact that .1/() .2/

in the statement of the corollary follows immediately then from the above list of
conditions.

To see that .2/() .3/, we use the symmetry of the generalized intersection number
with the asymmetry of statement .2/. Indeed if .2/ is true as written, then .1/ is true
and thus .2/ will be true with the roles of Qu and Qv reversed. We immediately find that
.2/ holds precisely when

� int.w;u/D 0 for all w 2 � 0 ,

� int.z; v/D 0 for all z 2 � ,

� d0. QuI z/D d0. QvIw/D 0 and

˛.
mz
z /

jmz j
D

˛.
mw
w /

jmw j

for all .z; w/ 2 � �� 0 with z D w and mzmw > 0, and
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� d0. QuI z/D d0. QvIw/D 0 and

�jmzmwj

�
˛.

mz
z /

jmz j
C
˛.

mw
w /

jmw j

�
D 0

for all .z; w/ 2 � �� 0 with z D w and mzmw < 0.

Using (3-5) we see that
˛.m/

jmj
D

˛.n/

jnj

for any m and n with mn> 0 if  is even and using (3-6) we see that

˛.m/

jmj
D

˛.n/

jnj
()

p.m/

m
D

p.n/

n

if  is odd hyperbolic. This last statement is true exactly when m and n are both even
or m and n are equal. These observations with the discussion of the first paragraph
shows that the conditions listed above are equivalent to those listed in .3/, so we see
that .2/() .3/.

We note that if Œ Qu� � Œ Qv� D 0 then Œ Qu� � Œc � Qv� D 0 for all c 2 R and in particular,
Theorem 4.4 implies that the actual algebraic intersection number int. Qu; c � Qv/ is zero
for all c 2R, provided Qu and Qv do not have any components with images that differ
by an R–shift. By positivity of intersections, this implies that Qu is disjoint from every
R–translate of Qv which implies that the projected curves u and v in the 3–manifold
M either have identical image or do not intersect. Thus the preceding corollary gives
sufficient conditions for the projected curves u and v to not intersect. The converse
is not true, as is it possible that projected pseudoholomorphic maps u and v do not
intersect, but still have Œ Qu�� Œ Qv�¤ 0 since the asymptotic intersection number of the two
curves could be nonzero. However, since R–shifting a curve changes the asymptotic
description from Theorem 3.7 in a predictable way, it is possible to use Theorem 5.8
to identify necessary and sufficient conditions for two projected pseudoholomorphic
curves to not intersect.

The key element in understanding this problem is the following lemma concerning the
behavior of the total asymptotic intersection number of two curves under R–shifting.

Lemma 5.10 Let Œ†; j ; �; Qu� and Œ†0; j 0; � 0; Qv� 2M.M;H;J / be asymptotically
cylindrical pseudoholomorphic curves and let Qvc D .bC c; v/ be the curve resulting
from translating Qv in the R–coordinate by c . Assume no component of Qu or Qv has
image contained in an orbit cylinder. Then the algebraic intersection number int. Qu; Qvc/
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and the total asymptotic intersection index ı1. Qu; Qvc/ are defined for all but a finite
number of values of c 2R. Moreover

ı1. Qu; Qvc/�
X

.z;w/2��� 0
zDw

mz mw>0

mzmw

�
max

n
˛.QuIz/

jmz j
;
˛.QvIw/

jmw j

o
�max

n
wind1.QuIz/
jmz j

;
wind1.QvIw/
jmw j

o�
;

with equality occurring for all but a finite number of the values of c 2 R for which
ı1. Qu; Qvc/ is defined. Furthermore,

int . Qu; Qvc/� Œ Qu�� Œ Qv�

�

X
.z;w/2��� 0
zDw

mz mw>0

mzmw

�
max

n
˛.QuIz/

jmz j
;
˛.QvIw/

jmw j

o
�max

n
wind1.QuIz/
jmz j

;
wind1.QvIw/
jmw j

o�

and strict inequality occurs for at most a finite set of values of c2R for which int . Qu; Qvc/

is defined.

Proof There will be values of c for which the algebraic intersection number int. Qu; Qvc/

and the total asymptotic intersection index ı1. Qu; Qvc/ will not be defined if there are
components of Qu and Qv which project to the same image in the three-manifold, but it
is clear the lifted maps Qu and Qvc can have components with identical image in R�M

only for finite number of values of c 2R, since we assume that no components of the
curves are fixed by the R–action.

We consider a pair of end models .†; j ; z; Qu/ and .†0; j 0; w; Qv D .b; v// and assume
that there is a  so that Qu is asymptotic to m and Qv is asymptotic to  n with m and
n having the same sign. Assume we have the asymptotic representations

Qu.�.s; t//D .m�s; expm.t/ e�1s Œe1.t/C r1.s; t/�/

Qv. .s0; t 0//D .n�s0; expn.t 0/ e�2s0 Œe2.t
0/C r2.s

0; t 0/�/:

with the �i /ei eigenvalues/eigenvectors of the appropriate asymptotic operators and
the ri converging exponentially to 0 as s!1. Then, according to Lemma 3.20 and
Lemma 3.15, we have that

(5-9) iˆ.Œ QuI z�; Œ QvIw�/� �mn max
�

windˆ1.QuIz/
jmj

;
windˆ1.QvIw/
jnj

�
with strict inequality occurring only if there is an integer j so that

e1.nt/D e2.mt C
j

mn
/
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for all t 2 S1 . Considering the shifted end

Qvc D .bC c; v/

we have, for  c.s; t/ WD  .sC
c

n�
; t/ that

Qvc. c.s; t//D .n�s; expn.t/ e
�2.sC

c

n�
/
Œe2.t/C r2.sC

c

n�
; t/�

D .n�s; expn.t/ e�2s Œe
c
�

n� e2.t/C r3.s; t/�

with r3.s; t/ D e
c
�

n� r2.sC
c

n�
/ converging exponentially to zero as s !1. Thus,

R–shifting an end has the effect of scaling the eigenvalue appearing in the asymptotic
formula (once the formula has been rewritten so that the first component does not
contain an R–shift). Consequently, we get either the strict inequality

iˆ.Œ QuI z�; Œ Qvc Iw�/ > �mn max
�

windˆ1.QuIz/
jmj

;
windˆ1.Qvc Iw/

jnj

�
D�mn max

�
windˆ1.QuIz/
jmj

;
windˆ1.QvIw/
jnj

�
or that iˆ.Œ QuI z�; Œ Qvc Iw�/ is not defined for at most one value of c 2R. For all other
values we will have

iˆ.Œ QuI z�; Œ Qvc Iw�/D�mn max
�

windˆ1.QuIz/
jmj

;
windˆ1.QvIw/
jnj

�
:

Adding mn max
n
˛.m/

jmj
;
˛.n/

jnj

o
to both sides of this, we can conclude that the asymp-

totic intersection number of the two ends satisfies

ı1.Œ QuI z�; Œ QvIw�/�mn

�
max

n
˛.m/

jmj
;
˛.n/

jnj

o
�max

�
windˆ1.QuIz/
jmj

;
windˆ1.QvIw/
jnj

��
with the strict inequality occurring for at most one value of c 2R.

The claims of the Lemma now follow from applying the results of the previous paragraph
pairwise to ends of Qu and Qvc which are asymptotic to coverings of the same orbit with
the same sign, together with (4-5).

As a corollary of Theorem 5.8 and Lemma 5.10 we have the following.

Corollary 5.11 Let Œ†; j ; �; Qu D .a;u/�, Œ†0; j 0; � 0; Qv D .b; v/� 2M.M;H;J / be
pseudoholomorphic curves and let QvcD .bCc; v/ be the curve resulting from translating
Qv in the R coordinate by c . Assume that no component of Qu or Qv has image contained
in an orbit cylinder and let mz

z and mw
w denote the asymptotic limits of Qu at z 2 �
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and Qv at w 2 � 0 as in Theorem 5.8. Then the algebraic intersection number int. Qu; Qvc/

is defined for all but a finite number of values of c 2R. Moreover, with ƒ as defined
in (5-6), we have that

int . Qu; Qvc/�
X
w2� 0

C

jmwj

0BB@int.w;u/C
X

z2�C
zDw

jmzjƒ
�

wind1.QvIw/
jmw j

;
wind1.QuIz/
jmz j

�1CCA

C

X
z2��

jmzj

0BB@int.z; v/C
X
w2� 0�
wDz

jmwjƒ
�

wind1.QuIz/
jmz j

;
wind1.QvIw/
jmw j

�1CCA(5-10)

C

X
.z;w/2����

0
C

zDw

jmwjd0. QuI z/Cjmzjd0. QvIw/� jmwmzj

�
˛.

mz
z /

jmz j
C
˛.

mw
w /

jmw j

�

and strict inequality occurs for at most a finite set of values of c2R for which int . Qu; Qvc/

is defined.

Proof This follows from subtractingX
.z;w/2��� 0
zDw

mz mw>0

mzmw

�
max

n
˛.QuIz/

jmz j
;
˛.QvIw/

jmw j

o
�max

n
wind1.QuIz/
jmz j

;
wind1.QvIw/
jmw j

o�

from (5-5) and using Lemma 5.10.

We can now prove Theorem 2.4, which gives necessary and sufficient conditions for
two projected curves to not intersect. We restate the result here for the convenience of
the reader.

Theorem 5.12 (Theorem 2.4) Let Œ†; j ; �; QuD .a;u/� and Œ†0; j 0; � 0; QvD .b; v/� 2
M.M;H;J / be pseudoholomorphic curves and assume that no component of Qu or
Qv lies in in orbit cylinder and that the projected curves u and v do not have identical
image on any component of their domains. Then the following are equivalent:

(1) The projected curves u and v do not intersect.

(2) All of the following hold:
(a) The map u does not intersect any of the positive asymptotic limits of v .
(b) The map v does not intersect any of the negative asymptotic limits of u.
(c) If  is a periodic orbit so that at z 2 � , Qu is asymptotic to mz and at

w 2 � 0 , Qv is asymptotic to mw , then:
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(i) If mz and mw have the same sign then

wind1.QuIz/
mz

�
wind1.QvIw/

mw
:

(ii) If mz < 0 and mw > 0 then d0. QuI z/ D d0. QvIw/ D 0 and mz and
mw are both even orbits; or equivalently

wind1.QuIz/
mz

D
wind1.QvIw/

mw
:

(3) All of the following hold:
(a) The map u does not intersect any of the asymptotic limits of v .
(b) The map v does not intersect any of the asymptotic limits of u.
(c) If  is a periodic orbit so that at z 2 � , Qu is asymptotic to mz and at

w 2 � 0 , Qv is asymptotic to mw , then

wind1.QuIz/
mz

D
wind1.QvIw/

mw
:

Proof The fact that .1/() .2/ follows from an argument similar to that in the proof
of Corollary 5.9 using now (5-10) instead of (5-5). Indeed, we have that the projected
curves u and v are disjoint if and only if Qu and Qvc are disjoint for all c 2R, which by
positivity of intersections is true precisely when int. Qu; Qvc/D 0 for all c 2R. Again,
by positivity of intersections and Corollary 5.11 it is necessary and sufficient for the
right hand side of (5-10) to vanish. Since the right hand side of (5-10) decomposes into
nonnegative terms, we need to require each of these terms to vanish. We can argue as
in Corollary 5.9 that the vanishing of each of these terms corresponds to the conditions
listed in .2/ above. Therefore .1/() .2/ as claimed.

The fact that .2/() .3/, like in Corollary 5.9, follows from the symmetry of the
intersection number and the asymmetry of statement .2/. Indeed, if .2/ holds for Qu
and Qv as stated, then .2/ holds with the roles of Qu and Qv reversed. Thus .2/ holds
precisely when:

� int.w;u/D 0 for all w 2 � 0 ,

� int.z; v/D 0 for all z 2 � ,

� for every .z; w/ 2 � �� 0 with z D w and mzmw > 0

wind1.QuIz/
mz

D
wind1.QvIw/

mw
;

and

� for every .z; w/ 2 � �� 0 with z D w and mzmw < 0

wind1.QuIz/
mz

D
wind1.QvIw/

mw
:
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These conditions are equivalent to those in statement .3/ and thus .2/() .3/ as
claimed.

5.3.1 Positive asymptotic intersection indices and direction of approach to even
orbits In this section we give a sufficient condition for positivity of the generalized
intersection number of two curves in terms of direction of approach to shared hyperbolic
orbits.

Before stating and proving the result, we will need to establish some terminology. Let
 be a periodic orbit of XH and assume that either

�  is a simple even orbit or

�  D O 2 where O is a simple, odd, hyperbolic orbit.

In either of these cases, let ��D ��max. /2 �.A;J / be the largest negative eigenvalue
of A;J .

Lemma 5.13 With  , �� satisfying the assumptions above, m�� is the largest
negative eigenvalue of Am;J for any positive integer m. Moreover, the eigenspace

ker.Am;J �m��/

is one dimensional for all positive integers m and, if e� 2 ker.A;J � ��/ is a basis,
then e�m WD e�.m�/ is a basis for ker.Am;J �m��/.

Proof By the assumption that  is an even orbit and the definition of parity (3-3),
there exists a �C > 0 so that eigenvectors with eigenvalue �� and eigenvectors with
eigenvalue �C have the same winding number in any choice of trivialization of  ��H .
Therefore, by Lemma 3.1, we know that

ker.A;J ���/

ker.A;J ��C/and

are both 1–dimensional.

Let e˙ be a basis for ker.A;J � �˙/. By the discussion following Lemma 3.1, we
know that e˙m defined by e˙m.t/ D e˙.mt/ are eigenvectors with eigenvalue m�˙ .
Moreover, eCm and e�m will have the same winding in any trivialization, so it follows
from Lemma 3.1 that e˙m is a basis for ker.Am;J �m�˙/ and, since winding is
monotonic in eigenvalue, we know that m�� must be the largest negative eigenvalue
of Am;J .
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Now, with  as above, consider a pseudoholomorphic end Œ†; j ; z; Qu� which is asymp-
totic to m for some positive integer m. Let .U; �/ be an asymptotic representation
of u near z , so that

(5-11) Qu.�.s; t//D .m�s; expm.t/ U.s; t//:

Then, it follows from a special case of Theorem 3.7 that there exists a (possibly zero)
eu 2 ker.A;J ���/ satisfying

e�m��s ŒU.s; t/� eu.mt/�! 0

as s!1. Considering a second end Œ†0; j 0; z0; Qv� asymptotic to  n with n> 0, we
find an asymptotic representative .V;  / and a vector ev 2 ker.A;J ���/ so that we
can write

(5-12) Qv. .s; t//D .n�s; expn.t/ V .s; t//

with V satisfying
e�n��s ŒV .s; t/� ev.nt/�! 0

as s!1. If there exists a positive real number c so that

eu D cev

then we say that the ends Œ†; j ; z; Qu� and Œ†0; j 0; z0; Qv� approach coverings of  in the
same direction. Note that in the case that one of eu or ev is zero, this condition would
imply that both of eu and ev are zero.

For simplicity in this discussion, we have only considered ends with positive punctures,
but we can analogously define what it means for ends with negative punctures to
approach a covering of  in the same direction by describing the direction of approach
with elements of ker.A�;J � O��/ where � D  .�1/ is  traversed backwards and
O�� is the largest negative eigenvalue of A�;J .9

Theorem 5.14 Let  be an even periodic orbit satisfying the assumptions above, let
Œ†; j ; z; Qu� and Œ†0; j 0; z0; Qv� be distinct (nonintersecting) pseudoholomorphic ends in
R�M satisfying the assumptions above and let eu , ev 2 ker.A;J ���/ be defined
as above. If eu D ev , then the asymptotic intersection index ı1.Œ QuI z�; Œ QvIw�/ of the
two ends is positive.

9 Alternatively, we could use the fact that if Œ†; j ; z; .a;u/� is an end with a positive puncture in
R�M where M is equipped with the Hamiltonian structure .�; !// , then Œ†; j ; z; .�a;u/� is an end
with a negative puncture in R�M where M is now equipped with the Hamiltonian structure .��; !/ .
This approach is employed in some proofs in [14].
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Proof For simplicity we assume m and n are both positive, but the proof readily
adapts to the case where m and n are both negative.

Letting eu and ev be as above, we first assume that eu D ev D 0. Then, it follows that
the eigenvalue of the leading eigenvector in the formulas for Qu from Theorem 3.7 is
strictly less than m�� and similarly the eigenvalue for the leading term in the formula
for Qv is strictly less than n�� . Since  is an even orbit, Lemma 3.1 and (3-3) imply
that

(5-13)
windˆ1. QuI z/ < ˛

ˆ.m/Dm˛ˆ. /

windˆ1. QvIw/ < ˛
ˆ. n/D n˛ˆ. /

where we have used Lemma 5.13 to conclude that ˛ˆ. k/D k˛ˆ. / for any positive
integer k . In the case that  is a simply covered even orbit, we consequently get from
(3-30) and (5-13) that

iˆ1.Œ QuI z�; Œ QvIw�/� �mn max
�

windˆ1.QuIz/
m

;
windˆ1.QvIw/

n

�
> �mn˛ˆ. /

D�mn max
�
˛ˆ.m/

m
;
˛ˆ.n/

n

�
and so

ı1.Œ QuI z�; Œ QvIw�/D iˆ1.Œ QuI z�; Œ QvIw�/Cmn max
�
˛ˆ.m/

m
;
˛ˆ.n/

n

�
> 0

as claimed. If  D O 2 with O a simple, odd, hyperbolic orbit, we have from (3-6) that

˛. /D ˛. O 2/D 2˛. O /C 1:

Consequently we find, again using (3-30) and (5-13), that

iˆ1.Œ QuI z�; Œ QvIw�/� �.2m/.2n/max
�

windˆ1.QuIz/
2m

;
windˆ1.QvIw/

2n

�
> �2mn.˛ˆ. //

D�2mn.2˛ˆ. O /C 1/

D�.2m/.2n/max
�
˛ˆ. O2m/

2m
;
Ǫˆ. O2n/

2n

�
;

where in the last line we have used

˛ˆ. O 2k/D k.2˛. O /C 1/
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from (3-6). Again we conclude that

ı1.Œ QuI z�; Œ QvIw�/D iˆ1.Œ QuI z�; Œ QvIw�/C .2m/.2n/max
�
˛ˆ. O2m/

2m
;
˛ˆ. O2n/

2n

�
> 0

as claimed.

Next we assume that euD ev¤ 0. With .U; �/ and .V;  / satisfying (5-11) and (5-12)
respectively, we can apply Theorem 3.6 to write

U.ns; nt/�V .ms;mt/D e�s Œe.t/C r.s; t/�

with � < 0 an eigenvalue of Amn;J , e and eigenvector with eigenvalue � and r

converging exponentially to zero as s!1. The assumption that euD ev then implies
that � <mn�� , which, since mn is an even orbit, implies that

windˆ�1e < windˆ�1eu.mn�/Dmn windˆ�1eu Dmn˛ˆ. /:

We can therefore conclude that

windˆrel.n � Œ QuI z�;m � Œ QvIw�/ <m2n2˛ˆ. /

which by Lemma 3.20 implies that

iˆ1.Œ QuI z�; Œ QvIw�/ > �mn˛ˆ. /:

Since  is assumed to be either a simple even orbit or a double covered odd hyperbolic
orbit, it follows as in the previous paragraph that

ı1.Œ QuI z�; Œ QvIw�/ > 0

in either case.

We now prove the main result of this section.

Theorem 5.15 (Theorem 2.5) Let  be a periodic orbit satisfying the above as-
sumptions and let Œ†; j ; �; QuD .a;u/� and Œ†0; j 0; � 0; Qv D .b; v/� 2M.M;H;J / be
connected pseudoholomorphic curves. If there are punctures z 2 � and w 2 � 0 so that
the ends Œ QuI z� and Œ QvIw� approach a cover of  in the same direction and so that Œ QuI z�
is distinct from the R–shifted end Œ.bC c; v/Iw� for all c 2R then

Œ Qu�� Œ Qv� > 0:

Proof For simplicity we assume both punctures z and w are positive, but the argument
readily adapts to the case where they are both negative.
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Let .U; �/ and .V; �/ satisfy (5-11) and (5-12) and let eu and ev be as defined above.
We first consider the case that eu D ev D 0. In this case, the lemma above shows
that the asymptotic intersection index ı1.Œ QuI z�; Œ QvIw�/ is positive and thus the total
asymptotic intersection index ı1. Qu; Qv/ is positive. Thus, Theorem 4.4 gives us

Œ Qu�� Œ Qv�D int. Qu; Qv/C ı1. Qu; Qv/� ı1. Qu; Qv/ > 0

as claimed.

In the case that euD cev¤ 0 for some positive real number c , we apply the observation
from the proof of Lemma 5.10 that R–shifting a curve has the effect of scaling the
eigenvector describing the approach. Indeed, if we let Qvc0 denote the map

Qvc0 D .bC c0; v/

and let .Vc0 ;  c0/ denote an asymptotic representative of Qvc0 , we can choose a c0 so
that evc0

, chosen to satisfy

e�n��s.Vc0.s; t/� evc0
.nt//! 0 as s!1;

is equal to eu . The previous lemma then applies to show that ı1.Œ QuI z�; Œ Qvc0 ; w�/ > 0

and hence, by the homotopy invariance of the generalized intersection number, that

Œ Qu�� Œ Qv�D Œ Qu�� Œ Qvc0 �� ı1.Œ QuI z�; Œ Qvc0 ; w�/ > 0

as claimed.

5.4 Generalized self-intersection numbers and embeddedness of the pro-
jection

In this section we investigate conditions under which a curve in a cylindrical cobordism
has generalized self-intersection number equal to zero and we investigate controls on
the embeddedness of the projection of a pseudoholomorphic curve in R�M into the
three manifold M . The key observation for this latter question, originally made by
Hofer, Wysocki and Zehnder in [8], is that the projected curve is injective if and only
if the nonprojected curve does not intersect any of its R–translates.

We first state Theorem 5.8 in the special case that QuD Qv .

Corollary 5.16 Let .†; j ; �; Qu D .a;u// 2 C1.M;H/ be an asymptotically cylin-
drical map with ends that wind and assume that at z 2 � , Qu is asymptotic to mz

z , with
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z 2 P0.M;H/ a simple periodic orbit and mz a nonzero integer. Then

Œ Qu�� Œ Qu�D
X
z2�

jmzj

0BBBB@int.z;u/C
X
w2�
wDz

mz mw>0

jmwjƒ

�
˛.

mz
z /

jmz j
;
˛.

mw
w /

jmw j

�
C d0. QuIw/

1CCCCA
C

X
.z;w/2�C���

zDw

jmwjd0. QuI z/Cjmzjd0. QuIw/� jmzmwj

�
˛.

mz
z /

jmz j
C
˛.

mw
w /

jmw j

�

with ƒ as defined in (5-6).

As a corollary to this and Corollary 5.1 we prove the following result which gives a set
of equivalent conditions to Œ Qu�� Œ Qu�D 0 for a simple curve.

Corollary 5.17 Let Œ†; j ; �; QuD .a;u/� 2M.M;H;J / be a simple pseudoholomor-
phic curve and assume that no component of Qu lies in an orbit cylinder. Then the
following are equivalent:

(1) The generalized self-intersection number of Qu vanishes, ie Œ Qu�� Œ Qu�D 0

(2) All of the following hold:
(a) The projected map u does not intersect any of its asymptotic limits.
(b) For all z 2 � , d0. QuI z/D 0.
(c) If  is a periodic orbit so that at z 2� , Qu is asymptotic to mz and at w 2� ,
Qu is asymptotic to mw , then

˛.mz /

mz
D

˛.mw /

mw
:

(3) All of the following hold:
(a) ind. Qu/��.†/C #�even D 0

(b) N�. QuI z/D 1 for all z 2 � .
(c) sing. Qu/D 0 or equivalently, Qu is embedded and has total asymptotic self-

intersection index, ı1. Qu/, equal to zero.

(4) All of the following hold:
(a) The map u is an immersion that is everywhere transverse to XH .
(b) d0. QuI z/D 0 for all z 2 � .
(c) N�. QuI z/D 1 for all z 2 � .
(d) sing. Qu/D 0 or equivalently, Qu is embedded and has total asymptotic self-

intersection index, ı1. Qu/, equal to zero.
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Proof The fact that .1/() .2/ follows from Corollary 5.16 and an argument very
similar to that in Corollary 5.9. We omit the details.

The fact that .1/() .4/ follows from rewriting (5-2) as

Œ Qu�� Œ Qu�D 2 sing. Qu/Cwind�. Qu/C d0. Qu/C N�. Qu/� #�

D 2 sing. Qu/Cwind�. Qu/C
X
z2�

.d0. QuI z/C Œ N�. QuI z/� 1�/

and noting that each term on the right hand side of this is nonnegative.

Finally, the fact that .4/() .3/ follows directly from (5-1). Note that (5-1) implies
that the quantity ind. Qu/� �.†/C #�even is nonnegative for curves in a cylindrical
cobordism provided it has no components with image contained in an orbit cylinder.

We observe that for a connected curve Œ†; j ; �; Qu� satisfying the hypotheses of the
previous result, if Œ Qu�� Œ Qu�D 0 then the projected curve u is an embedding in the three-
manifold. Indeed, the result shows that u must be an immersion which does not intersect
any of its asymptotic limits. Moreover, since for the R–translates Quc D .aC c;u/, we
have

0� int. Qu; Quc/� Œ Qu�� Œ Quc �D Œ Qu�� Œ Qu�D 0;

it follows from positivity of intersections that Qu does not intersect any of its R–translates
and hence that the projection u is injective. As observed in [8], the asymptotic behavior
of u then allows us to conclude that u is an embedding. As with the discussion of
intersections of curves with distinct projections to the three-manifold, the converse
is not true: it could well be the case that u is an embedding and Œ Qu� � Œ Qu� ¤ 0 since
we could have that the total asymptotic intersection index ı1. Qu; Quc/ positive for all
c 2 R n f0g for which it is defined. Again, in this case, since R–shifting the curve
changes the asymptotic intersection numbers in a predictable way, we can modify
the above argument to find necessary and sufficient conditions for a curve to have an
embedded projection.

Towards this end, we state the following special case of Corollary 5.11 when Qv D Qu.

Corollary 5.18 Let Œ†; j ; �; QuD .a;u/� 2M.M;H;J / be a connected pseudoholo-
morphic curve and assume that the image of Qu is not contained in an orbit cylinder.
Then, with ƒ as defined in (5-6), we have for any c 2R n f0g that

int. Qu; Quc/�
X
w2�

jmwj

0BBBB@int.w;u/C
X
z2�
zDw

mz mw>0

jmzjƒ
�

wind1.QuIw/
jmw j

;
wind1.QuIz/
jmz j

�
1CCCCA
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C

X
.z;w/2����C

zDw

�jmzmwj

�
wind1.QuIz/
jmz j

C
wind1.QuIw/
jmw j

�

with strict inequality occurring for at most a finite number of values of c 2R n f0g.

Along similar lines, keeping track of how the asymptotic intersection numbers change
with R–shifts allows the following adjustment to Corollary 5.1

Lemma 5.19 Let Œ†; j ; �; QuD .a;u/� 2M.M;H;J / be a connected, simple pseu-
doholomorphic curve and assume the image of Qu is not contained in an orbit cylinder.
Then, for any c 2R n f0g we have that

(5-14)

int. Qu; Quc/� wind�. Qu/C 2ı. Qu/C
X
zi2�

Œcov.e1. QuI zi//� 1C�2. QuI zi/�

C

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

i1.Œ QuI zi �; Œ QuI zj �/Cmzi
mzj max

`Di;j

n
wind1.QuIz`/
jmz`
j

o

where e1. QuI zi/ is as defined in (3-15), ı.u/ is as defined in (4-10) and �2. QuI zi/ is
as defined in (3-22). Moreover equality occurs in (5-14) for all but a finite number of
values of c 2R n f0g.

Proof By a special case of Corollary 5.11 we have that

int. Qu; Quc/� Œ Qu�� Œ Qu�

�

X
zi ;zj2�
zi
Dzj

mzi
mzj

>0

mzi
mzj

�
max
`Di;j

n
˛.QuIz`/

jmz`
j

o
� max
`Di;j

n
wind.QuIz`/
jmz`
j

o�

WD I. Qu/

with equality occurring for all but a finite number of values of c ¤ 0. Applying the
adjunction formula (5-2) we have that the right hand side of this inequality is equal to

I. Qu/D wind�. Qu/C d0. Qu/C Œ N�. Qu/� #��C 2 sing. Qu/

�

X
zi ;zj2�
zi
Dzj

mzi
mzj

>0

mzi
mzj

�
max
`Di;j

n
˛.QuIz`/

jmz`
j

o
� max
`Di;j

n
wind.QuIz`/
jmz`
j

o�
:
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We rewrite the final sum in this by grouping the terms with zi D zj and using the
definition (3-18) of d0. QuI z/ and (3-19) to get

X
zi ;zj2�
zi
Dzj

mzi
mzj

>0

mzi
mzj

�
max
`Di;j

n
˛.QuIz`/

jmz`
j

o
� max
`Di;j

n
wind.QuIz`/
jmz`
j

o�

D

X
zi2�

jmzi
jd0. QuI zi/

C

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

mzi
mzj

�
max
`Di;j

n
˛.QuIz`/

jmz`
j

o
� max
`Di;j

n
wind.QuIz`/
jmz`
j

o�

D d0. Qu/C
X
zi2�

�1. QuI zi/C N�. QuI zi/� cov.e1. QuI zi//

C

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

mzi
mzj

�
max
`Di;j

n
˛.QuIz`/

jmz`
j

o
� max
`Di;j

n
wind.QuIz`/
jmz`
j

o�

D d0. Qu/C N�. Qu/� #�C
X
zi2�

�1. QuI zi/C 1� cov.e1. QuI zi//

C

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

mzi
mzj

�
max
`Di;j

n
˛.QuIz`/

jmz`
j

o
� max
`Di;j

n
wind.QuIz`/
jmz`
j

o�
;

and we therefore have

I. Qu/D wind�. Qu/C 2 sing. Qu/C
X
zi2�

Œcov.e1. QuI zi//� 1��1. QuI zi/�

�

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

mzi
mzj

�
max
`Di;j

n
˛.QuIz`/

jmz`
j

o
� max
`Di;j

n
wind.QuIz`/
jmz`
j

o�
:
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Further, rewriting

2 sing. Qu/D 2ı. Qu/C 2ı1. Qu/

D 2ı. Qu/C
X
zi2�

2ı1. QuI zi/C
X

zi ;zj2�
zi¤zj

ı1.Œ QuI zi �; Œ QuI zj �/

D 2ı. Qu/C
X
zi2�

�1. QuI zi/C�2. QuI zi/

C

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

i1.Œ QuI zi �; Œ QuI zj �/Cmzi
mzj max

`Di;j

n
˛.QuIz`/

jmz`
j

o

D 2ı. Qu/C
X
zi2�

�1. QuI zi/C�2. QuI zi/

C

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

i1.Œ QuI zi �; Œ QuI zj �/Cmzi
mzj max

`Di;j

n
wind1.QuIz`/
jmz`
j

o

C

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

mzi
mzj

�
max
`Di;j

n
˛.QuIz`/

jmz`
j

o
� max
`Di;j

n
wind1.QuIz`/
jmz`
j

o�

allows us to write

I. Qu/D wind�. Qu/C 2ı. Qu/C
X
zi2�

Œcov.e1. QuI zi//� 1C�2. QuI zi/�

C

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

i1.Œ QuI zi �; Œ QuI zj �/Cmzi
mzj max

`Di;j

n
wind1.QuIz`/
jmz`
j

o
:

We therefore conclude that

int. Qu; Quc/� wind�. Qu/C 2ı. Qu/C
X
zi2�

Œcov.e1. QuI zi//� 1C�2. QuI zi/�
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C

X
zi ;zj2�
zi¤zj
zi
Dzj

mzi
mzj

>0

i1.Œ QuI zi �; Œ QuI zj �/Cmzi
mzj max

`Di;j

n
wind1.QuIz`/
jmz`
j

o
:

with equality occurring for all but a finite number of values of c 2R n f0g.

We now prove Theorem 2.6 which gives necessary and sufficient conditions for the
projection of a curve to the 3–manifold to be embedded.

Theorem 5.20 (Theorem 2.6) Let Œ†; j ; �; Qu D .a;u/� 2M.M;H;J / be a con-
nected, simple pseudoholomorphic curve and assume that Qu does not have image
contained in an orbit cylinder. Then the following are equivalent:

(1) The projected map uW † n�!M is an embedding.

(2) The intersection number int. Qu; Quc/ between Qu and an R–translate QucD .aCc;u/

is zero for all c 2R n f0g.

(3) All of the following hold:

(a) u does not intersect any of its asymptotic limits.
(b) If  is a periodic orbit so that u is asymptotic at z 2 � to mz and u is

asymptotic at w 2 � to mw , then

wind1.QuIz/
mz

D
wind1.QuIw/

mw
:

(4) All of the following hold:

(a) The map Qu is an embedding.
(b) The projected map u is an immersion which is everywhere transverse to XH

(equivalently wind�.u/D 0).
(c) For each z 2 � , we have

gcd.mz;wind1. QuImz//D 1

(equivalently cov.e1. QuI z//D 1).
(d) If  is a periodic orbit so that u is asymptotic at z to mz and u is asymp-

totic at w ¤ z to mw with mzmw > 0, then the asymptotic intersection
number of the ends Œ QuI z� and Œ QuIw� achieves the bound from (3-30), ie

iˆ1.Œ QuI z�; Œ QuIw�/D�mzmw max
�

windˆ1.QuIz/
mz

;
windˆ1.QuIw/

mw

�
:
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Proof We first address .2/() .3/. This follows from Corollary 5.18 and positivity
of intersections by an argument analogous to that in Corollary 5.17. We omit the details.

Next we prove .2/() .4/. This is also similar to a part of Corollary 5.17. It follows
from positivity of intersections and Lemma 5.19, particularly the nonnegativity of
the each of the terms on the right hand side of (5-14) . Indeed, from positivity of
intersections and (5-14) we can conclude that int. Qu; Quc/D 0 for all c 2R n f0g if and
only if:

� wind�. Qu/D 0,

� ı. Qu/D 0 (ie Qu is an embedding),

� cov.e1. QuI z//D 1 for all z 2 � ,

� �2. QuI z/D 0 for all z 2 � and

� the asymptotic intersection numbers satisfies

iˆ1.Œ QuI z�; Œ QuIw�/D�mzmw max
�

windˆ1.QuIz/
mz

;
windˆ1.QuIw/

mw

�
for each pair of distinct punctures .z; w/ 2 � �� at which u is asymptotic to
coverings of a the same underlying orbit with the same sign.

Recalling from Lemma 3.14 that cov.e1. QuI z// D 1 implies that �2. QuI z/ D 0 and
from Lemma 3.2 and (3-16) that

cov.e1. QuI z//D gcd.wind.ˆ�1e1. QuI z//;mz/D gcd.windˆ1. QuI z/;mz/

we see that these conditions are equivalent to those listed in .4/ above.

Next we observe that .1/) .2/. This has been previously observed by Hofer, Wysocki
and Zehnder in [8], but we include the argument here for completeness, since it is
short and illustrative. Indeed if there exists a c 2R n f0g so that QuD .a;u/ intersects
Quc D .aC c;u/, then there is a pair of points distinct points z , w 2 † n � so that
Qu.z/D Qu.w/ which in turn implies that u.z/D u.w/. Thus .2/ failing to hold implies
that the projected map has a double point and hence cannot be an embedding.

Finally we show that .2/; .3/; .4/) .1/. Indeed if .2/, .3/ and .4/ are all true, then the
projected curve u is an injective (by .2/ and the argument of the previous paragraph)
immersion (by .3/), which does not intersect any of its asymptotic limits (by .4/).
As observed in [12], this with the asymptotic behavior implies that the map u is an
embedding.
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5.5 Holomorphic open book decompositions

In this section we examine an application of results from the previous sections to
properties of holomorphic curves in manifolds admitting a holomorphic open book
decomposition. Recall from the introduction .M;H;J / is said to admit a stable,
holomorphic open book decomposition if there is a link L�M made up of elliptic
periodic orbits of XH and a fibration � W M nL! S1 so that for any � 2 S1 , ��1.�/

is an embedded surface bounded by L, for which we can write

��1.�/D u.S2
n�/

for some punctured eJ –holomorphic sphere ŒS2; i; �; .a;u/� 2 M.M;H;J / with
Fredholm index ind. Qu/ D 2 having only positive punctures asymptotic to simply
covered orbits.

Theorem 5.21 (Theorem 2.7) Assume that .M;H;J / admits a stable, holomorphic
open book decomposition. Let Œ†; j ; �; Qu D .a;u/� 2M.M;H;J / be a connected
pseudoholomorphic curve and assume that the image of u is not a page of the open
book decomposition and that Qu does not have image contained in an orbit cylinder.
Then at least one of the following is true:

(1) At least one of the positive punctures of Qu limits to an orbit that is not a binding
of the open book decomposition.

(2) At least one of the positive punctures of Qu limits to a multiple cover of a binding
orbit of the open book.

Proof Let Qv D .b; v/W S2 n � 0! R�M be any simple pseudoholomorphic curve
which projects to a page v.S2 n� 0/ of the open book decomposition. We apply (5-5)
with the roles of Qu and Qv reversed to find that

Œ Qu��Œ Qv�D
X

z2�C

mz

0BB@int.z; v/C
X
w2� 0
wDz

�
max

�
˛.

mz
z /

mz
; ˛.w/

�
�˛.w/

�
C d0. QvIw/

1CCA
where we have used the assumption that Qv only has positive, simply-covered punctures.
Moreover, by the assumption that ind. Qv/D 2, we have from (5-1) that

0� wind�.v/C d0. Qv/� ind. Qv/��.S2/C #�even. Qv/D 2� 2C 0D 0

so we conclude that d0. Qv/D 0 (and that wind�.v/D 0, but this already follows from
Theorem 5.20 since v parametrizes a page of the open book decomposition and is thus
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an embedding). Consequently, our formula for the generalized intersection number of
Qu and Qv simplifies to

(5-15) Œ Qu�� Œ Qv�D
X

z2�C

mz

0BB@int.z; v/C
X
w2� 0
wDz

�
max

�
˛.

mz
z /

mz
; ˛.w/

�
�˛.w/

�1CCA :
Now, the assumption that u does not have image lying in a page of the open book
decomposition, implies that u intersects some page of the open book decomposition,
which in turn, by Theorem 4.4, implies that Qu has positive generalized intersection
number with a pseudoholomorphic curve which projects to that page of the open book
decomposition. Moreover, by homotopy invariance of the generalized intersection
number, Qu has positive generalized intersection number with every page of the open
book decomposition. Using this observation with the formula (5-15) for the generalized
intersection number of Qu with a page of the open book, we see that Œ Qu�� Œ Qv� > 0 implies
that either:

(1) there exists a z 2 � so that int.z; v/ > 0 or

(2) there exists a z 2 � and w 2 � 0 so that z D w and

max
�
˛.

mz
z /

mz
; ˛.w/

�
�˛.w/ > 0;

which in turn implies that mz > 1.

These two conditions are equivalent to the two listed in the statement of the theorem,
so this completes the proof.

Remark 5.22 We remark that in the event that the first alternative of the preceding
theorem does not hold, ie when all the positive punctures of the curve Qu limit to
coverings of binding orbits of the open book decomposition, the proof can be refined
to give a bound on the covering numbers of the punctures guaranteed by the second
alternative in terms of the iteration formula for the Conley–Zehnder index of the orbit
in question. Indeed, given an elliptic periodic orbit  2 P.M;H/ and a trivialization
ˆ of �Hj , Lemma 3.3 guarantees that there is an irrational � so that

˛ˆ. k/D bk�c:

While the number � here depends on the choice of trivialization, the change of trivial-
ization formula from Lemma 3.4 allows us to conclude that the fractional part

f�g WD � �b�c 2 .0; 1/

Geometry & Topology, Volume 15 (2011)



2450 Richard Siefring

of � is independent of the choice of trivialization. We will refer to the number f�g as
the rotation index of  and denote it by rot . /.

Now, assume that ŒS2; i; � 0; Qv D .b; v/� is a page of the open book decomposition and
Œ†; j ; �; Qu� is a pseudoholomorphic curve with every positive puncture limiting to a
covering of a binding orbit of the open book decomposition. Then the terms of the form
int.z; v/ in formula (5-15) all vanish. Writing the remaining terms of the formula
using rotation indices we find that

Œ Qu�� Œ Qv�D
X

.z;w/2�C��
0

zDw

bmz rot.z/c

which the reasoning of the proof allows us to conclude must be positive. We can thus
conclude that for at least one z 2 � , mz > 1= rot.z/.

5.6 Generalized holomorphic curves

In this section we prove the that the generalized intersection number of two generalized
pseudoholomorphic curves with no common components in nonnegative.

Recall from the introduction that a generalized pseudoholomorphic map in R�M is a
quintuple .†; j ; �; .a;u/; �/ satisfying

��H ı du ı j D J ı��H ı du

u�� ı j D daC �

d� D d.� ı j /D 0;

and a generalized pseudoholomorphic curve Œ†; j ; �; .a;u/; �� is an equivalence class
of generalized pseudoholomorphic maps, where two maps are considered equivalent if
they differ by holomorphic reparametrization of the domain.

A key observation from [7] is that if Œ†; j ; �; .a;u/; �� is a generalized pseudoholo-
morphic curve, then on any simply connected subset U of †, the M –part u of the
map has a pseudoholomorphic lift. Indeed, if hW U ! R satisfies dh D �jU then
.aCh;u/W U !R�M is eJ –holomorphic. A consequence of this is the following,
again first observed in [7], which states that for generalized pseudoholomorphic curves,
one still obtains the first term of the asymptotic formula from Theorem 3.7.

Lemma 5.23 Let .†; j ; �; QuD .a;u/; �/ be a generalized pseudoholomorphic map
in R�M with no component having image contained in an orbit cylinder and assume
at z 2 � , u is asymptotic to m . Then there is an embedding

 W ŒR;1/�S1
!† n fzg
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satisfying lims!1  .s; t/D z so that

Qu. .s; t//D
�
m�s; expm.t/ e�s Œe.t/C r.s; t/�

�
where � < 0 is an eigenvalue of Am;J , e is an eigenvector of Am;J with eigenvalue
� and r.s; t/! 0 exponentially as s!1.

As a consequence of this Lemma, we observe that the quantities windˆ1 and d0 D

windˆ1�˛
ˆ , defined in (3-16) and (3-18) respectively are well-defined for ends of

generalized pseudoholomorphic curves, provided the images of the maps are not orbit
cylinders.

We can now prove Theorem 2.9 which we restate here.

Theorem 5.24 (Global positivity of intersections for generalized holomorphic curves)
Let Œ†; j ; �; QuD .a;u/; ��, Œ†0; j 0; � 0; QvD .b; v/; �0� 2M�.M;H;J / be generalized
pseudoholomorphic curves and assume that no component of Qu or Qv is contained in an
orbit cylinder. Then

Œ Qu�� Œ Qv�� 0:

Proof As a consequence of Lemma 5.23, we know that Qu and Qv have ends that wind,
so Theorem 5.8 tells us that the generalized intersection number of Qu and Qv is given by

Œ Qu�� Œ Qv�D
X
w2� 0

C

jmwj

0BB@int.w;u/C
X

z2�C
zDw

jmzjƒ

�
˛.

mw
w /

jmw j
;
˛.

mz
z /

jmz j

�
C d0. QuI z/

1CCA

C

X
z2��

jmzj

0BB@int.z; v/C
X
w2� 0�
wDz

jmwjƒ

�
˛.

mz
z /

jmz j
;
˛.

mw
w /

jmw j

�
C d0. QvIw/

1CCA
C

X
.z;w/2����

0
C

zDw

jmwjd0. QuI z/Cjmzjd0. QvIw/� jmwmzj

�
˛.

mz
z /

jmz j
C
˛.

mw
w /

jmw j

�
;

with ƒ as defined in (5-6). The theorem would follow immediately if we knew that
each term appearing in this formula were nonnegative. The nonnegativity of the d0

terms is an immediate consequence of the asymptotic description from Lemma 5.23
and reasoning identical to that in Lemma 3.13. Every other term has previously
been shown to be nonnegative in the proof of Corollary 5.9 except for the terms
int.w;u/ and int.z; v/ since in Corollary 5.9 we were assuming that Qu and Qv were
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pseudoholomorphic, while here we only assume generalized pseudoholomorphic. It
remains true in this case that intersections of a projected generalized pseudoholomorphic
curves with a periodic orbit of XH always occur with positive local intersection index.
Indeed, assume at z� 2† that u.z�/D .t/ where  is a periodic orbit or XH . Then let
NuD .aCh;u/W U !R�M be a local pseudoholomorphic lift of u on a neighborhood
U of z� . Then Nu.z�/ intersects the orbit cylinder Q . By the assumption that Qu does
not have any components with image contained in an orbit cylinder, it follows that the
intersection of Nu with Q is isolated and has positive local index and it follows as in
(5-4) that the intersection of  with u is isolated and has positive local index.

Appendix A Zeroes of ��H ıdu

Here we will prove that for a connected pseudoholomorphic curve Œ†; j ; �; .a;u/� 2
M.M;H;J /, the projection of the derivative of u onto the hyperplane distribution
�H either vanishes identically or has a finite number of isolated zeroes of finite positive
order. This is proved in [8] in the case that the Hamiltonian structure comes from a
contact form and the proof here is an adaptation of the argument given there.

We start with a local coordinate lemma which is a straightforward modification of the
well known version of Darboux’s theorem for presymplectic manifolds. Because it may
be of independent interest, we prove the result for stable Hamiltonian structures on
manifolds of arbitrary odd dimension. In the definition of stable Hamiltonian structure
for a 2nC 1–dimensional manifold M , the condition (H1) needs to be changed to

�^!n > 0

but otherwise remains the same. The definitions of XH and �H are identical and it
remains true that � and ! are preserved by the flow of XH . For more details see
eg [2; 22]. For the following we equip R2nC1 with the coordinates f.z;x;y/g D
f.z;xi ;yi/g 2R�Rn �Rn .

Lemma A.1 (Darboux’s theorem for stable Hamiltonian structures) Let .M;H/ be
a closed, 2nC 1–dimensional manifold equipped with a stable Hamiltonian structure
.�; !/. For any p0 2M , there exists an " > 0 and an embedding

�W .�"; "/2nC1
!M

with �.0/D p0 and

���D dz�

nX
iD1

.gi.x;y/dxi C hi.x;y/dyi/
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��! D !0 D

nX
iD1

dxi ^ dyi

where the gi ; hi W .�"; "/
2n!R are smooth real-valued functions satisfying gi.0/D

hi.0/D 0.

Proof Let  W R�M !M denote the flow of XH , ie P t .p/DXH ı t .p/ for all
.t;p/ 2R�M . Let fei ; fig be a symplectic basis for .�Hp0

; !/, that is, assume that

!.ei ; ej /D !.fi ; fj /D 0

for any i; j and that

!.ei ; fj /D ıij :

Define a map �0W R
2nC1!M by

�0.z;xi ;yi/D  z.expp0
.

nX
iD1

xiei Cyifi//

where exp is the exponential map of any Riemannian metric on M . It follows from
the definition that �0 satisfies:

� d�0.z;x;y/@z DXH for all .z;x;y/ 2R2nC1 ,

� d�0.0/@xi
D ei and d�0.0/@yi

D fi and thus

� �0 is an embedding on some neighborhood of the origin,

� ��
0
.0/! D !0 and ��

0
.0/�D dz .

Since the flow of XH preserves � and ! , we can conclude that ��
0
� and ��

0
! are

independent of the z–variable. Since ��
0
�.@z/D �.XH/D 1, we thus have

��0�D dz�

nX
iD1

�
Qgi.x;y/dxi C

Qhi.x;y/dyi

�
��0! D !0C r.x;y/

where Qgi , Qhi are smooth, real-values functions on some neighborhood of the origin in
R2n satisfying Qgi.0/D Qhi.0/D 0 and where r.x;y/ is a two-form on R2n satisfying
r.0;0/D 0. The result then follows from applying a Moser trick in the x and y variables
(see eg [13, Theorem 1, Section 1.3]).
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Next we show that for Œ†; j ; �; .a;u/�2M.M;H;J /, ��Hıdu can only have isolated
zeroes of positive order. It suffices to prove this in “Darboux coordinates” provided
by the preceding lemma. In the following D" will denote the disk of radius " in
C D fsC i tg. We observe this argument readily generalizes to higher dimensions, but
is of most use in dimension 3 in which case the algebraic count of zeroes of ��H ı du

is topologically controlled.

Lemma A.2 Let g; hW R2! R be smooth functions and let J 2 J .R3;H0/ where
H0 D .�0; !0/ is the Hamiltonian structure defined by

�0 D dz�g.x;y/ dx� h.x;y/ dy

!0 D dx ^ dy:

Moreover, let � W RXH0
˚�H0! �H0 be the projection onto �H0 D ker�0 along XH0

.
If QuD .a;u/W .D"; i/! .R�R3; eJ / is a pseudoholomorphic map, then � ıdu either
vanishes identically or has isolated zeroes of finite positive order.

Proof We will show that in an appropriate basis for �H0 the section .� ı du/.@s/

satisfies a perturbed Cauchy–Riemann equation. The result will then follow from the
similarity principle (see eg [13, Appendix A.6]).

We first note that the vector fields e D @xCg @z and f D @y C h @z form a basis for
�H0 and that XH0

D @z . Moreover, for any vector field v D vx @xC v
y @yC v

z @z on
R3 we have that

�v D v��0.v/XH0

D vx @xC v
y @y C .v

xgC vyh/ @z

D vxeC vyf

so the coordinates of �v in the basis fe; f g are given by the x and y components of
v in the standard basis for R3 .

Now, writing u D .uz;ux;uy/ 2 R3 and v D .ux;uy/, the equation � ı du ı i D

J ı� ı du applied to @s and expressed in the basis fe; f g becomes

vsCJ .s; t/vt D 0:

Here J .s; t/ is J.u.s; t// represented in the basis fe; f g and hence satisfies J
2
D�I .

Letting w D vs and differentiating the above equation with respect to s leads to

wsCJ .s; t/wt CA.s; t/w D 0
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with
A.s; t/D J s.s; t/J .s; t/:

As explained in the first paragraph, the result is now an easy consequence of the
similarity principle.

Corollary A.3 Let Œ†; j ; �; Qu D .a;u/� 2 M.M;H;J / be a connected pseudo-
holomorphic curve for some cylindrical eJ associated to a J 2 J .M;H/ and let
��H W TM DRXH˚ �

H! �H be the projection onto �H along XH . Then ��H ı du

either vanishes identically or has a finite number of isolated zeroes each of finite positive
order.

Proof Assume that ��H ıdu does not vanish identically. By the previous two lemmas,
the zeroes of ��Hıdu must be isolated and of finite positive order. Moreover, according
to Corollary 3.12, ��H ı du is nonvanishing in some neighborhood of each puncture
since we assume it does not vanish identically on † n� . We conclude that ��H ı du

has a finite number of isolates zeroes of finite positive order.

Appendix B Local intersections of generalized pseudoholo-
morphic curves

In this appendix, we construct local examples of generalized pseudoholomorphic curves
exhibiting intersection behavior that cannot occur for (genuine) pseudoholomorphic
curves. The author first learned that such examples should exist from C. Abbas.

We consider R3 D f.z;x;y/g equipped with the stable Hamiltonian structure H D
.�; !/D .dz; dx^dy/. Then XHD @z and �HD span

˚
@x; @y

	
. Define J on �H by

J@x D @y . The projection ��H W T R3 DRXH˚ �
H! �H is given by

.z;x;y/ 7! .x;y/:

Letting D denote the unit disk in C D fsC i tg, the generalized holomorphic curve
equations (2-8) for a map QuD .a;u1;u2/W D!R�R�R2 reduce to

(B-1)

8̂<̂
:

d.du1 ı i � da/D 0

d.du1C da ı i/D 0

@su2CJ@tu2 D 0:

Consider maps Qu, QvW D!R�R3 defined by

Qu.s; t/D .0; 0; s; t/
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and
Qv.s; t/D .cs; t; s; t/

where c 2 R is constant. Then it is straightforward to check that Qu and Qv satisfy
(B-1) and we moreover observe that Qu is genuinely holomorphic. If c D 0 then Qu
and Qv intersect along the line Qu.s; 0/D Qv.s; 0/D .0; 0; s; 0/, which cannot happen for
two genuinely pseudoholomorphic maps. If c D �1, then Qu and Qv have an isolated
transverse intersection at Qu.0; 0/D Qv.0; 0/D .0; 0; 0; 0/ and the sign of the intersection
is given by

det
�
@s Qu @t Qu @s Qv @t Qv

�
.0; 0/D det

2664
0 0 �1 0

0 0 0 1

1 0 1 0

0 1 0 1

3775D�1

so the local intersection number is �1.
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