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Ideal boundaries of pseudo-Anosov flows
and uniform convergence groups

with connections and applications to large scale geometry

SÉRGIO FENLEY

Given a general pseudo-Anosov flow in a closed three manifold, the orbit space of
the lifted flow to the universal cover is homeomorphic to an open disk. We construct
a natural compactification of this orbit space with an ideal circle boundary. If there
are no perfect fits between stable and unstable leaves and the flow is not topologically
conjugate to a suspension Anosov flow, we then show: The ideal circle of the orbit
space has a natural quotient space which is a sphere. This sphere is a dynamical
systems ideal boundary for a compactification of the universal cover of the manifold.
The main result is that the fundamental group acts on the flow ideal boundary as
a uniform convergence group. Using a theorem of Bowditch, this yields a proof
that the fundamental group of the manifold is Gromov hyperbolic and it shows that
the action of the fundamental group on the flow ideal boundary is conjugate to the
action on the Gromov ideal boundary. This gives an entirely new proof that the
fundamental group of a closed, atoroidal 3–manifold which fibers over the circle is
Gromov hyperbolic. In addition with further geometric analysis, the main result also
implies that pseudo-Anosov flows without perfect fits are quasigeodesic flows and
that the stable/unstable foliations of these flows are quasi-isometric foliations. Finally
we apply these results to (nonsingular) foliations: if a foliation is R–covered or with
one sided branching in an aspherical, atoroidal three manifold then the results above
imply that the leaves of the foliation in the universal cover extend continuously to the
sphere at infinity.

37C85, 37D20, 53C23, 57R30; 58D19, 37D50, 57M50

1 Introduction

The main purpose of this article is to analyze what information can be obtained about
the asymptotic structure or large scale geometry of the universal cover of a manifold
using only the dynamics of a pseudo-Anosov flow in the manifold. We introduce a
dynamical systems ideal boundary for a large class of such flows and a corresponding
compactification of the universal cover. The fundamental group acts on the flow ideal
boundary and compactification with excellent dynamical properties. These objects are
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2 Sérgio Fenley

later shown to be strongly related to the large scale geometry of the manifolds and of
the flows themselves. They also imply results about the geometry of foliations.

In three-manifold theory, the universal cover of the manifold plays a crucial role. Topo-
logically one is invariably interested that the universal cover is R3 ; see Waldhausen [66]
and Hempel [42]. In terms of geometry, for example, Thurston showed that a large class
of manifolds are hyperbolic (see Thurston [58; 59; 62], Morgan [46] and Otal [53; 52])
and the asymptotic or large scale structure of the universal cover was very important
for these results.

Our goal is to analyze what can a flow say about the asymptotic structure of the
universal cover of the manifold. Here we consider pseudo-Anosov flows as they have
rich dynamics and have been shown to be strongly connected to the geometry by
Thurston [62] and Otal [53] and topology of 3–manifolds by Gabai and Oertel [36]
and the author [26]. Gabai and Oertel proved for example that the universal cover of
the underlying manifold is R3 [36]. We will prove that under certain hypothesis the
dynamics of the flow creates a much richer asymptotic structure for the universal cover.

In this article all manifolds are connected.

We start by analysing the orbit space of the flow. Suppose that ˆ is a general pseudo-
Anosov flow in a closed 3–manifold M . Such flows are very common; see Thurston [60;
61], Casson and Bleiler [17], Mosher [48; 49; 50], Fenley [26] and Calegari [10; 11].
The flow has associated stable and unstable (possibly singular) 2–dimensional foliations
ƒs; ƒu . When there are no singularities the flow is called an Anosov flow. Let �̂ be
the lifted flow to the universal cover �M and let O be the orbit space of �̂ . This orbit
space is always homeomorphic to an open disk by work of the author alone [21] and
with Mosher [29]. The fundamental group of M acting on �M by covering translations,
leaves invariant the foliation of �M by flowlines of �̂ . Hence this induces an action
of the fundamental group on O . The stable and unstable foliations of ˆ lifted to the
universal cover also induce one-dimensional foliations in O .

Theorem A Let ˆ be a pseudo-Anosov flow in a closed 3–manifold M . There is
a natural construction of a compactification D D O [ @O , obtained solely from the
stable and unstable foliations in O . The boundary @O is homeomorphic to a circle
and the compactification D is homeomorphic to a disk, whose boundary circle is @O .
Since the fundamental group of M preserves the stable and unstable foliations in O ,
it follows that �1.M / acts by homeomorphisms on the compactification D and also
along the boundary circle @O .

We stress that compactifications of O are not unique, even compactifications to a closed
disk. For example given a point p in the above mentioned ideal boundary @O , one
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Ideal boundaries of pseudo-Anosov flows and uniform convergence groups 3

can blow each point of the �1.M / orbit of p to a segment. By doing this carefully
the ensuing compactification of O is again a closed disk where one can define a
(nonnatural) action of �1.M /.

The stable/unstable foliations zƒs; zƒu in the universal cover project to 1–dimensional
foliations Os;Ou in O . The possible singularities are only of p–prong type with
p� 3 (the condition p� 3 is necessary for all the results in this article). The prototype
here is a suspension pseudo-Anosov flow over a hyperbolic surface. In this case O is
identified with a lift of a fiber and it is possible to prove that the ideal circle boundary
of O constructed in Theorem A is identified with the circle at infinity of the lift of the
fiber. In this example Os;Ou in O correspond to the stable and unstable foliations of
the monodromy of the fiber lifted to the universal cover of the fiber. We stress that in
general there is no geometry (even coarse geometry) in the space O .

For general pseudo-Anosov flows, an ideal point of O will be defined as an equivalence
class of nested sequences of polygonal paths. A polygonal path is a properly embedded,
bi-infinite path in O made up of a finite collection of segments alternatively in Os;Ou

and 2 rays of Os or Ou at the ends. In general one needs to use polygonal paths rather
than just leaves of Os;Ou to define ideal points of O because of an obstruction which
is called a perfect fit, as explained below. Any ray of a leaf of Os;Ou is properly
embedded in O and defines an ideal point of O , but there are many other points. There
is a natural group invariant topology in D D O [ @O – this is a fundamental point
here: the ideal points (@O) and the topology in D are constructed using only the
foliations Os;Ou in O . Since these foliations are invariant under the action by the
fundamental group of M , this group acts on D by homeomorphisms. The proof that
D is homeomorphic to a closed disk is very involved and extremely long. We show
that @O has a natural cyclic order and that @O is metrizable, connected and more
importantly it is compact. The last property is very hard to prove. Point set topology
theorems and additional work show that @O is homeomorphic to a circle and D is
homeomorphic to a closed disk. This works for any pseudo-Anosov flow.

We remark that Calegari and Dunfield [13] previously showed that if ˆ is a pseudo-
Anosov flow, then �1.M / acts nontrivially on a circle, with very important conse-
quences for the existence question of pseudo-Anosov flows [13]. Their construction is
very different than ours. They show that the space of ends of the leaf space of say zƒs

is circularly ordered and maps injectively to a circle. By collapsing complementary
intervals one gets an action on S1 . It is not entirely clear how to use the space of ends
in order to produce an actual compactification of O , where the group acts naturally
and with good properties. For example, consider sequences escaping compact sets
in O with all points in the same stable leaf. As seen in the leaf space the points do not
go into any end, but they should have a convergent subsequence in a compactification
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of O . In this article we produce an actual compactification of the orbit space O as
a closed disk. In addition very specific properties of the compactification as related
to the stable/unstable foliations Os;Ou will be used for the geometric results in the
second part of this article.

One main goal in introducing an ideal boundary for O is that it leads to an understanding
of the asymptotic behavior of �M . Our objective is to give a fairly explicit dynamical
systems description of the asymptotic behavior of the universal cover. We do not know
how to do this in general – in this article we can only deal with pseudo-Anosov flows
without perfect fits.

We first discuss perfect fits and their importance. An unstable leaf G of zƒu makes a
perfect fit with a stable leaf F of zƒs if G and F do not intersect but they “almost”
intersect: any other unstable leaf sufficiently near G (and in the F side), will intersect F

and vice versa. See detailed definition in Section 2 and Figure 1(a). We also use the
terminology “perfect fits” for their projections to the orbit space. In the orbit space one
can think of a perfect fit as a proper embedding in O of a rectangle minus a corner.
Stable (unstable) leaves correspond to horizontal (vertical) segments. The 2 boundary
leaves without an endpoint form a perfect fit – one stable leaf (horizontal) and one
unstable leaf (vertical). Perfect fits are very important in the topological theory of
pseudo-Anosov flows; see Barbot [1; 2] and Fenley [21; 22; 24; 25]. They occur for
instance whenever there are closed orbits of ˆ which are freely homotopic [24; 25] or
when the leaf space of zƒs or zƒu is not Hausdorff [24; 25]. Examples of flows without
perfect fits are suspensions (with or without singularities) and many other interesting
examples as described later.

For the results in this article, perfect fits are one main obstruction to simple definitions
and proofs: For example consider a point p of @O which is associated to the ideal
point of (say) an unstable ray l of Ou . Let .zn/n2N be a nested sequence of stable
leaves intersecting l and so that the intersection with l escapes compact sets in l . What
one strongly expects and hopes is that the sequence .zn/n2N defines the ideal point p

associated to l . In particular one expects that the leaves zn escape compact sets in O
as n grows. This occurs in the suspension case and in many other situations, but in
fact it does not always happen. When it does not occur, then the sequence .zn/ limits
to a stable leaf r 0 in O and one can then show that there is a stable leaf r (possibly
r D r 0 ), so that r and l form a perfect fit in O . In this case the sequence .zn/ will
not define the ideal point p . Conversely any perfect fit generates a sequence .zn/ as
above. Because of perfect fits then to define ideal points of O , one needs to consider
not only leaves of Os;Ou , but rather sequences of polygonal paths in Os;Ou . The
definition of ideal points, implies that if r ray of Ou and l ray of Os form a perfect fit,
then these rays define the same ideal point of O . Suspension Anosov flows (without
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Ideal boundaries of pseudo-Anosov flows and uniform convergence groups 5

singular orbits) are special and have to be treated differently, because in that case a
sequence of stable leaves in Os escaping compact sets approaches infinitely many ideal
points of O .

When there are no perfect fits we construct the flow ideal boundary and compactification
of �M . The flow ideal boundary is a quotient of @O . The assumption of no perfect fits
is fundamental for this result:

Theorem B Let ˆ be a pseudo-Anosov flow without perfect fits, not topologically
conjugate to a suspension Anosov flow. Let O be its orbit space and @O be the ideal
boundary of Theorem A. Consider the equivalence relation in @O generated by: two
points are in the same class if they are ideal points of the same stable or unstable leaf
in O . Let R be the set of equivalence classes with the quotient topology. Then R is
homeomorphic to the 2–sphere. The fundamental group of M acts on R by homeo-
morphisms. There is a natural topology in �M [R making it into a compactification
of �M . The action of �1.M / on �M extends to an action on �M [R. The quotient
map from @O .Š S1/ to R .Š S2/ is a group invariant Peano curve associated to the
flow ˆ. All of this uses only the dynamics of the flow ˆ.

If x in @O is an ideal point of (say) a stable leaf in Os , then the condition of no perfect
fits implies that no unstable leaf has ideal point x . Hence if k is the maximum number
of prongs in singular leaves of Os (or Ou ), then any equivalence class has at most k

points.

Our goal is to relate the flow ideal compactification with well known objects in three
manifold topology. We have actions of �1.M / on a circle (@O) and a sphere (R).
Motivated by a lot of previous work in 2– and 3–dimensional topology, one asks
whether such actions are convergence group actions. For example a group that acts as a
uniform convergence group on the circle is topologically conjugate to a Moebius group
[63; 32; 18] with fundamental consequences for 3–manifold theory [32; 18]. Also
a fundamental question of Cannon [15] asks whether a uniform convergence group
acting on a 2–sphere is conjugate to a cocompact Kleinian group. This is related to the
geometrization of 3–manifolds.

A compactum is a compact Hausdorff space. A group � acts as a convergence group on
a metrizable compactum Z if for any sequence .n/n2N of distinct elements in � , there
is a subsequence .ni

/i2N and a source/sink pair y;x so that .ni
.t//i2N converges

uniformly to the constant map with value x in compact sets of Z �fyg; see Gehring
and Martin [37]. Notice that x;y may be the same point. This is equivalent to �
acting properly discontinuously on the set of distinct triples ‚3.Z/ of elements of Z ;
see Tukia [64] and Bowditch [8]. In addition the action is uniform if the quotient
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of ‚3.Z/ by the action is compact. If Z is perfect (no isolated points) then the
additional condition is equivalent to every point of Z being a conical limit point for
the action. A point x in Z is a conical limit point if there is a sequence .n/n2N in �
and b; c distinct in Z , with n.x/ converging to c but for every other point y in Z

then .n.y// converges to b .

The action of �1.M / on @O is not a convergence action. Here is the proof: Let g

nontrivial in �1.M / so that g fixes a point x in O . Equivalently g is associated to a
periodic orbit of ˆ. Up to taking a power assume that g leaves invariant all prongs
of Os.x/;Ou.x/. Hence it fixes the points in @O which are the ideal points of these
prongs. We show in this article that all these ideal points are distinct points of the circle.
In addition the fixed points alternate between contracting and expanding fixed points
for g . Now consider the sequence .gn/ acting on @O . The above facts imply that all
elements in this sequence of distinct elements of �1.M / (or any subsequence) will
share more than 2 fixed points and hence the sequence .gn/ does not have a single
source/sink pair. Hence the action of �1.M / on @O is not a convergence group action.

Main Theorem Let ˆ be a pseudo-Anosov flow without perfect fits, not topologically
conjugate to a suspension Anosov flow. Let R be the associated flow ideal boundary
with corresponding compactification �M [R of the universal cover. Then the action
of �1.M / on R is a uniform convergence group. In addition the action of �1.M / on�M [R is a convergence group.

The main part of the proof is to prove uniform convergence action on R. Here 1–
dimensional dynamics (action on the circle @O ) completely encodes the 2–dimensional
dynamics (action on R). A lot of the proof can be done using only this interplay and
the action on the 2–dimensional space O , but as expected the 3–dimensional setting
of the flow �̂ in the universal cover of M needs to be used in some crucial steps.

To prove the convergence group property, we break into three cases up to subsequences:
(1) every n is associated to a singular orbit of ˆ, (2) every n is associated to a
nonsingular closed orbit of ˆ, (3) every n acts freely on O . For example consider
case (2). Up to taking squares, the action of n in @O immediately has 4 fixed points,
associated to the two ideal points of the stable leaf of the periodic orbit and the two
unstable ones. By dynamics of pseudo-Anosov flows, the stable points are locally
attracting for the action of n on @O and the unstable ones are locally repelling. When
there are no perfect fits, this carries over to the whole of @O . As the 2 ideal points
of a stable leaf are identified in R, this produces a source/sink behavior for (powers
of) one n . An extended analysis shows the source/sink behavior for sequences. The
uniform property of the action is achieved by showing that every point of R is a conical
limit point. The proofs of these results are very involved.
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Ideal boundaries of pseudo-Anosov flows and uniform convergence groups 7

To prove the fact about the action on �M [R, consider a sequence of distinct elements
.n/n2N of �1.M /. At this point we will already know that up to subsequence it has a
source/sink pair y;x for the action restricted to R. We then show that y;x is a source
sink pair for the action on �M [R. This depends on a careful analysis of neighborhoods
in �M [R of points in R. The harder case is when such a point comes from an ideal
point of a leaf of Os or Ou . The Main Theorem implies in particular that the action
of �1.M / on R (or on @O ) is minimal.

We mention that when there are perfect fits it is not at all clear what the resulting
structure of the quotient space R is. For example consider ˆ an R–covered Anosov
flow; see Fenley [21]. There are infinitely many examples where M is hyperbolic [21].
In this case the quotient R (of the circle @O ) as defined in Theorem B, is a union of a
circle and two special points: each special point is nonseparated from every point in
the circle [21; 61]. Hence R is not even metrizable. Clearly in this case the quotient R
does not provide the expected ideal boundary of �M (which is a sphere).

This finishes the topological/dynamical systems part of the article. In the remainder
of the article we use the excellent properties of R and �M [R to relate them with
the large scale geometry of the manifold. This has geometric consequences for the
fundamental group of the manifold and also for flows and foliations. In particular we
give an entirely new proof that the fundamental group of closed, atoroidal 3–manifolds
that fiber over the circle is Gromov hyperbolic.

The key tool will be the following: Bowditch [7], following ideas of Gromov, proved
the very interesting theorem that if � acts as a uniform convergence group on a perfect,
metrizable compactum Z , then � is Gromov hyperbolic, Z is homeomorphic to
the Gromov ideal boundary @� and the action on Z is equivariantly topologically
conjugate to the action of � on its Gromov ideal boundary. This is a true geometrization
theorem (in the sense of groups): the hypothesis are entirely topological on the group
action and there is a strong geometric conclusion. The Main Theorem then immediately
implies the following:

Theorem D Let ˆ be a pseudo-Anosov flow without perfect fits, not topologically
conjugate to a suspension Anosov flow. Let R be the associated flow ideal boundary
of �M and �M [R the flow ideal compactification. Then �1.M / is Gromov hyper-
bolic and the action of �1.M / on R is topologically conjugate to the action on the
Gromov ideal boundary S2

1 . In addition the actions on �M [R and �M [S2
1 are also

topologically conjugate by a homeomorphism which is the identity in �M .

It was known that the Gromov boundary of �1.M / is a sphere by Bestvina and Mess [5]
because M is irreducible. To prove the last statement of Theorem D: Let � be the
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8 Sérgio Fenley

bijection between �M [R and �M [S2
1 , which is the identity in �M and the conjugacy

of the actions in R. Clearly this is group equivariant. We show that the bijection � is
continuous. This follows from the convergence group action properties for the action
on �M [R plus the conjugacy between the actions on R and S2

1 . Theorem D means
that the constructions of this article can be seen as a dynamical systems analogue to
Gromov’s geometric constructions in the case of this class of pseudo-Anosov flows.

A few remarks are in order here. In Theorem D, the result that �1.M / is Gromov
hyperbolic is not new and also follows from a result of Gabai and Kazez [35] and
additional work. The reason is: if M with a pseudo-Anosov flow is toroidal, then either
there is a free homotopy between closed orbits of the flow or the flow is topologically
conjugate to a suspension Anosov flow by Fenley [27]. The last option is disallowed by
hypotheses of Theorem D. If there is a free homotopy between closed orbits then there
are perfect fits, again by Fenley [24; 25]. Hence the hypothesis of Theorem D imply that
M is atoroidal. With further analysis using the topological theory of pseudo-Anosov
flows [24; 25] one can then show that ˆ has singular orbits. Therefore the (singular)
stable foliation blows up to an essential lamination which is genuine, so [35] implies
that �1.M / is Gromov hyperbolic. Gabai and Kazez showed that least area disks
in M satisfy a linear isoperimetric inequality. The proof of this last fact uses the
ubiquity theorem for semi-Euclidean laminations of Gabai [34]. This is a deep but very
mysterious result. In particular it provides no direct relationship with the Gromov ideal
boundary.

The important new feature of Theorem D is that it relates the flow structure with the
large scale geometric structure. Our construction gives a very explicit description of
the Gromov ideal boundary of �M – first as a purely dynamical systems object and
a posteriori implying that �1.M / is Gromov hyperbolic and totally relating the two
ideal boundaries. In particular this is a new approach to obtain Gromov hyperbolicity.
There are several important geometric consequences. First we obtain a new proof of a
classical result:

Corollary E Let ˆ be a suspension pseudo-Anosov flow with at least a singular orbit
in a closed 3–manifold M . Then �1.M / is Gromov hyperbolic.

This theorem has two well known proofs: the original by Thurston [62] and a later
proof by Bestvina and Feighn [4]. Thurston’s original proof uses quasiconformal maps,
Kleinian groups and the double limit theorem and obviously proves much more – it
proves that M admits a hyperbolic metric. Bestvina and Feighn’s proof is a geometric
group theory proof and introduces the extremely useful condition of flaring annuli.
Our proof is entirely new in the sense that it uses dynamical systems and convergence
groups via Bowditch’s theorem.

Geometry & Topology, Volume 16 (2012)



Ideal boundaries of pseudo-Anosov flows and uniform convergence groups 9

The proof of Corollary E is as follows: Let S be a cross section of ˆ. Since there
is a singularity of ˆ, S is a hyperbolic surface. We already mentioned that the orbit
space of �̂ is identified with the universal cover zS and the foliations Os;Ou in O are
identified with lifts zf s; zf u of the stable and unstable foliations of the monodromy of
the fibration. According to Theorem D all that is needed is to prove that there are no
perfect fits. Notice that this is a topological condition. We will check this for zf s; zf u .
Consider S with a hyperbolic metric, hence zS is the hyperbolic plane. If there is a
perfect fit between zf s and zf u , then there is a ray l of (say) zf s so that if sn is a
sequence of unstable leaves (of zf u ) intersecting l and with l \ sn escaping to the
appropriate end of l then sn does not escape compact sets in zS and converges to a
leaf s of zf u . Now use the fundamental property that leaves of zf s; zf u are uniform
quasigeodesics in zS ; see Thurston [60] and Fathi, Laudenbach and Poenaru [20].
It follows that s is unique and that l; s have a common ideal point in @ zS . This is
impossible [60; 20]. This finishes the proof of Corollary E.

As a remark for future reference, the case of pseudo-Anosov flows without perfect
fits shares many features with the suspension pseudo-Anosov situation: the property
alluded above about ideal points of l and s has an analogue for general pseudo-Anosov
flows without perfect fits. This is the content of the escape lemma (Lemma 4.4). The
escape lemma is extremely useful for the analysis of pseudo-Anosov flows without
perfect fits.

We should remark that if M is closed, irreducible, aspherical, atoroidal and with infinite
fundamental group then Perelman’s results [54; 55; 56] show that M is hyperbolic.
We do not make use of Perelman’s results here. We stress again that a fundamental
goal of this article is to analyze which geometric information can be obtained solely
from dynamical systems constructions.

We now describe other very important geometric consequences of Theorem D. Flow
objects (flowlines, stable/unstable leaves, foliations transverse to the flow) behave very
well in the compactification �M [R. Since this is homeomorphic to the Gromov
compactification, it is natural to expect that these objects also have good geometric
properties. First we study metric properties of such flows and their stable/unstable
foliations. In manifolds with Gromov hyperbolic fundamental group the relation
between objects in �M and their limit sets is extremely important (see Thurston [58;
59; 62], Gromov [40], Ghys and de la Harpe [38] and Coornaert, Delzant and Pa-
padopoulos [19]) and is related to the large scale geometry in �M . A flow in M is
quasigeodesic if flow lines in �M are uniformly efficient in measuring ambient distance
up to a bounded multiplicative distortion [58; 40; 38; 19]. It implies that each flow line
is a bounded distance from the corresponding geodesic which has the same ideal points.
Quasigeodesic flows are very useful; see Cannon and Thurston [16], Mosher [47; 48]
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and Fenley [22]. Usually it is very hard to show that a flow is quasigeodesic and there
is no general construction of quasigeodesic flows in hyperbolic manifolds – the known
class of examples is relatively small. Theorem D provides a powerful way to obtain
quasigeodesic flows:

Theorem F Let ˆ be a pseudo-Anosov flow without perfect fits. Then ˆ is a quasi-
geodesic flow in M . In addition ƒs; ƒu are quasi-isometric singular foliations in M .

First assume that ˆ is not topologically conjugate to a suspension Anosov flow. By
Theorem D, �1.M / is Gromov hyperbolic. To prove Theorem F we first prove some
properties in the flow compactification �M [R: (1) Each flow line  of �̂ has a
unique forward ideal point C in R and a backward ideal point � . (2) For each  the
points �; C are distinct. (3) The forward (backward) ideal point map is continuous.
Theorem D conjugates the action in �M [R to the action in �M [S2

1 , hence the same
properties are true in �M [S2

1 . A previous result of the author and Mosher [29] then
implies that ˆ is quasigeodesic.

Quasi-isometric behavior for ƒs; ƒu means that leaves of zƒs (or zƒu ) are uniformly
efficient in measuring distance in �M [58; 40; 19]. This is the analogue of quasigeodesic
behavior in the two-dimensional setting and again it is extremely useful [40; 58; 59; 62].
For example it implies that leaves of zƒs; zƒu are quasiconvex [58; 40]. Quasi-isometric
foliations are very useful [16; 61; 25; 28]. To prove the second part of Theorem F:
the lack of perfect fits implies that the leaf spaces of zƒs; zƒu are Hausdorff [24; 25].
Together with the fact that ˆ is quasigeodesic this now implies that ƒs; ƒu are quasi-
isometric foliations [25]. This provides a new way to obtain quasi-isometric singular
foliations in such manifolds.

If now ˆ is topologically conjugate to a suspension Anosov flow, then quasigeodesic
behavior of ˆ and quasi-isometric behavior of ƒs; ƒu are easy to prove.

Finally we apply these results to (nonsingular) foliations and their asymptotic properties
and we show that pseudo-Anosov flows without perfect fits are very common. A
foliation F in a 3–manifold is R–covered if the leaf space H of �F is Hausdorff
or equivalently homeomorphic to the real numbers. R–covered foliations are very
common [42; 21; 61; 9]. On the other hand if H is not Hausdorff then it is a simply
connected, non-Hausdorff, 1–dimensional manifold with a countable basis [3]. Hence
it is orientable. The nonseparated points in H correspond to branching in the negative
(positive) direction if they are separated on their positive (negative) sides. A foliation F
has one sided branching if the branching in �F is only in one direction (positive or
negative).
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If F is a Reebless foliation in M 3 aspherical with �1.M / Gromov hyperbolic then
each leaf F of �F is uniformly Gromov hyperbolic in its path metric and has an ideal
circle @1F compactifying it to a closed disk F [ @1F . The continuous extension
question asks what is the asymptotic behavior of the leaves of �F , that is, do they
approach the ideal boundary S2

1 in a continuous way? This is formulated as follows:
Does the inclusion i W F ! �M extend continuously to i W F [@1F ! �M [S2

1? If so
then i restricted to @1F is a continuous parametrization of the limit set of F , which
will be locally connected. When this happens for all leaves of �F , we say that F has
the continuous extension property [33; 16; 25]. This property is very hard to prove.

We use the geometric tools developed in this article to prove the following theorem. For
any codimension one R–covered foliation F if it is not transversely orientable there
is a transversely orientable lift F2 in a double cover M2 of M . If F is transversely
orientable we abuse notation and let M2 DM and F2 D F . If M is aspherical and
atoroidal then the author [26] and Calegari [10] proved that there is a pseudo-Anosov
flow ˆ which is transverse to F2 in M2 .

Theorem G Let F be an R–covered foliation in an aspherical, atoroidal 3–mani-
fold M . The pseudo-Anosov flow ˆ transverse to the transversely oriented foliation F2

associated to F does not have perfect fits and is not conjugate to a suspension Anosov
flow. It follows that ˆ is quasigeodesic by Theorem F and this in turn implies that F2

satisfies the continuous extension property. This trivially implies that F satisfies the
continuous extension property. In addition the stable/unstable foliations of ˆ (in the
cover M2 ) are quasi-isometric.

The aspherical property is used only to get rid of a manifold which is finitely covered by
S2 � S1 . The problem is that the R–covered property does not imply that the foliation
is Reebless. For example consider the foliation F of S2 � S1 which is obtained by
gluing two Reeb components appropriately. If one is careful, then F is R–covered. On
the other hand the author previously proved that if F is R–covered, but not Reebless,
then M is finitely covered by S2�S1 [28]. Apart from this special case, the universal
cover is homeomorphic to R3 and the results of the author and Calegari can be applied.

The continuous extension property was previously proved for: (1) fibrations in the
seminal work of Cannon and Thurston [16], (2) finite depth foliations and some other
classes by the author [25; 28], (3) slitherings or uniform foliations by Thurston [61].
The methods of the proof were very different from those in this article – in all of the
previous cases one always had a strong geometric property to start with. For example in
the case of finite depth foliations (not fibrations), the compact leaf is quasi-isometrically
embedded and therefore quasiconvex. After some work this implies that the almost
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transverse pseudo-Anosov flow is quasigeodesic. After substantial more work this
implies the continuous extension property for the foliation. The problem in general is
that for instance in an arbitrary R–covered foliation, the leaves have no good geometric
property to start with, so these methods do not work. In this article we obtain geometric
properties for the flow directly and solely from the dynamics of the pseudo-Anosov flow
and this can then be applied to the foliations. Theorem G implies the previous results
for fibrations and slitherings. Theorem G produces new examples of quasigeodesic
flows and quasi-isometric foliations.

In order to prove Theorem G assume that F is transversely oriented and start with a
pseudo-Anosov flow ˆ transverse to F as constructed in [26; 10]. We show that ˆ
is not conjugate to a suspension Anosov flow and has no perfect fits. By Theorem F,
the flow ˆ is quasigeodesic and its stable/unstable foliations are quasi-isometric. By
previous results [28], it follows that F has the continuous extension property.

We also consider foliations with one sided branching and prove:

Theorem H Let F be a foliation with one sided branching in M 3 aspherical, atoroidal.
Then F is transverse to a pseudo-Anosov flow ˆ without perfect fits and not conjugate
to a suspension Anosov flow. It follows that ˆ is quasigeodesic, its stable/unstable
foliations are quasi-isometric and F has the continuous extension property. If F is a
leaf of �F , then the limit set of F is not the whole sphere.

Under the conditions of this theorem, Calegari [11] proved that F is transverse to
a pseudo-Anosov flow ˆ. We show that such ˆ does not have perfect fits nor is
conjugate to a suspension Anosov flow. By Theorem F, the flow ˆ is quasigeodesic.
This implies that F has the continuous extension property. The last statement follows
from metric properties of leaves of zƒs; zƒu .

The geometric applications obtained here (Theorems F, G and H and Corollary E) were
the main motivation for the construction of the flow ideal boundary of �M and the ideal
circle of O .

The open case for the continuous extension question is contained in the case when
F branches in both directions. The case of finite depth foliations was resolved very
recently in [28] using work of Mosher and the author [49; 50; 29]. For general foliations
with two sided branching, Calegari [12] constructed a very full lamination transverse
to F , like the stable/unstable foliation of a flow. It is possible that in certain situations
there are 2 laminations, which perhaps are transverse to each other and these can be
possibly blowed down to produce a pseudo-Anosov flow transverse or almost transverse
to F [49; 50]. When the ideal dynamics of the case of a pseudo-Anosov flow with
perfect fits is better understood, then Calegari’s results could be very useful.
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The geometric properties of flows and foliations (Theorems F, G and H) are proved at
the end of the article, in Sections 6 and 7. The proofs use the Main Theorem, Theorem D
and previous results. Theorems G, H provide a large class of examples of pseudo-
Anosov flows without perfect fits and also quasigeodesic flows and quasi-isometric
foliations. The bulk of the article is proving Theorem A in Section 3, Theorem B and
the Main Theorem in Section 4. Gromov hyperbolicity and conjugacy are proved in
Section 5.

How to read this article The body of the article has two main parts: (1) Section 3
studies the ideal boundary of O and (2) Section 4 studies the flow ideal boundary for
flows without perfect fits and uniform convergence group action. For those mainly
interested in the geometric results (Sections 4–7) we highlight in Section 3 where the
case without perfect fits has simplified proofs.

Acknowledgements We thank Lee Mosher who told us about Bowditch’s theorem.
We also thank the reviewer who did an outstanding job of very carefully checking the
whole article and who had innumerable useful comments, many detailed suggestions
and corrections which were incorporated in this article.

2 Preliminaries: Pseudo-Anosov flows

Given M let �M !M be a fixed universal cover.

Let ˆ be a flow on a closed 3–manifold M . We say that ˆ is a pseudo-Anosov flow
if the following are satisfied:

� For each x 2M , the flow line t !ˆ.x; t/ is C 1 , it is not a single point, and the
tangent vector bundle Dtˆ is C 0 .

� There is a finite number of periodic orbits fig, called singular orbits, such that
the flow is “topologically” smooth off of the singular orbits (see below).

� The flowlines of ˆ are contained in two possibly singular 2–dimensional foliations
ƒs; ƒu satisfying: Outside of the singular orbits, the foliations ƒs; ƒu are not singular,
they are transverse to each other and their leaves intersect exactly along the orbits of ˆ.
A leaf containing a singularity is homeomorphic to P � I=f where P is a p–prong
in the plane and f is a homeomorphism from P �f1g to P �f0g. We restrict to p at
least 2, that is, we do not allow 1–prongs.

� In a stable leaf all orbits are forward asymptotic, in an unstable leaf all orbits are
backwards asymptotic.

Basic references for pseudo-Anosov flows are [47; 49; 50].
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Notation/Definition The singular foliations lifted to �M are denoted by zƒs; zƒu . If x

is a point in M let W s.x/ denote the leaf of ƒs containing x . Similarly one defines
W u.x/ and in the universal cover �W s.x/; �W u.x/. If ˛ is an orbit of ˆ, similarly
define W s.˛/, W u.˛/, etc. . . . Let also �̂ be the lifted flow to �M .

We review the results about the topology of zƒs; zƒu that we will need. We refer to our
previous work [24; 25] for detailed definitions, explanations and proofs. Proposition 4.2
of [29] shows that the orbit space of �̂ in �M is homeomorphic to the plane R2 . This
orbit space is denoted by O Š �M =�̂ . Let ‚W �M !O Š R2 be the projection map.
If L is a leaf of zƒs or zƒu , then ‚.L/�O is a tree which is either homeomorphic
to R if L is regular, or is a union of k rays all with the same starting point if L

has a singular k –prong orbit. The foliations zƒs; zƒu induce singular 1–dimensional
foliations Os;Ou in O . Its leaves are the ‚.L/’s as above. If L is a leaf of zƒs or zƒu ,
then a sector is a component of �M �L. Similarly for Os;Ou . If B is any subset
of O , we denote by B�R the set ‚�1.B/. The same notation B�R will be used for
any subset B of �M : it will just be the union of all flow lines through points of B . If x

is a point of O , then Os.x/ (resp. Ou.x/) is the leaf of Os (resp. Ou ) containing x .

Definition 2.1 Let L be a leaf of zƒs or zƒu . A slice leaf of L is l �R where l is a
properly embedded copy of the real line in ‚.L/. For instance if L is regular then L

is its only slice leaf. If a slice leaf is the boundary of a sector of L then it is called a
line leaf of L. If a is a ray in ‚.L/ then AD a�R is called a half leaf of L. If � is
an open segment in ‚.L/ it defines a flow band L1 of L by L1 D � �R.

Important convention In general a slice leaf is just a slice leaf of some L in zƒs

or zƒu and so on. We also use the terms slice leaves, line leaves, perfect fits, lozenges
and rectangles for the projections of these objects in �M to the orbit space O .

If F 2 zƒs and G 2 zƒu then F and G intersect in at most one orbit. Also suppose that
a leaf F 2 zƒs intersects two leaves G;H 2 zƒu and so does L2 zƒs . Then F;L;G;H

form a rectangle in �M and there is no singularity of �̂ in the interior of the rectangle;
see [24, pages 637–638]. There will be two generalizations of rectangles: (1) perfect
fits, that is in the orbit space properly embedded rectangles with one corner removed
and (2) lozenges, that is, rectangle with two opposite corners removed.

Definition 2.2 (Perfect fits [22; 24]) Two leaves F 2 zƒs and G 2 zƒu , form a
perfect fit if F \G D∅ and there are half leaves F1 of F and G1 of G and also flow
bands L1 �L 2 zƒs and H1 �H 2 zƒu , so that the set

xF1[
xH1[

xL1[
xG1
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separates M and the joint structure of zƒs; zƒu in a complementary component R is that
of a rectangle as above without one corner orbit. Specifically, a stable leaf intersects H1

if and only if it intersects G1 and similarly for unstable leaves intersecting F1;L1 .

Refer to Figure 1(a) for perfect fits. We also say that the leaves F;G almost intersect.

(a) (b) (c)

F1

G1

H1 L1
S

�W s.p/

�W u.q/

�W s.q/

�W u.p/

p

q

Figure 1. (a) Perfect fits in �M (b) A lozenge (c) A chain of lozenges

Definition 2.3 [22; 24] A lozenge is an open region of �M whose closure in �M is
homeomorphic to a rectangle with two corners removed. More specifically two orbits
˛ D �̂R.p/; ˇ D �̂R.q/ form the corners of a lozenge if there are half leaves A;B

of �W s.˛/; �W u.˛/ defined by ˛ and C;D half leaves of �W s.ˇ/; �W u.ˇ/ so that A

and D form a perfect fit and so do B and C . The region in �M bounded by A;B;C;D

is the lozenge R and it does not have any singularities. See Figure 1(b).

This is Definition 4.4 of [25]. The sets A;B;C;D are the sides of the lozenge. There
may be singular orbits on the sides of the lozenge and the corner orbits. Two lozenges
are adjacent if they share a corner and there is a stable or unstable leaf intersecting
both of the lozenges; see Figure 1(c). Therefore they share a side. A chain of lozenges
is a collection fCig; i 2 I , of lozenges where I is an interval (finite or not) in Z, so
that if i; i C 1 2 I , then Ci and CiC1 share a corner; see Figure 1(c). Consecutive
lozenges may be adjacent or not. The chain is finite if I is finite.

Definition 2.4 Suppose A is a flow band in a leaf of zƒs . Suppose that for each
orbit  of �̂ in A there is a half leaf B of �W u. / defined by  so that: for any
two orbits ; ˇ in A then a stable leaf intersects Bˇ if and only if it intersects B .
This defines a stable product region S which is the union of the B . Similarly define
unstable product regions.

The main property of product regions is the following (see [25, page 641]): for any
F 2 zƒs , G 2 zƒu so that (i) F \S 6D∅ and (ii) G\S 6D∅, then F \G 6D∅. There
are no singular orbits of �̂ in S .
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We abuse convention and say that a leaf L of zƒs or zƒu is periodic if there is a
nontrivial covering translation g of �M with g.L/D L. This is equivalent to �.L/
containing a periodic orbit of ˆ, which may or may not be singular. In the same way,
an orbit  of �̂ is periodic if �. / is a periodic orbit of ˆ. Finally a leaf l of Os

or Ou is periodic if there is g 6D id in �1.M / with g.l/D l .

We say that two orbits ; ˛ of �̂ (or the leaves �W s. /; �W s.˛/) are connected by a
chain of lozenges fCig; 1 � i � n, if  is a corner of C1 and ˛ is a corner of Cn . If
a lozenge C has corners ˇ;  and if g in �1.M /� id satisfies g.ˇ/D ˇ , g. /D 

(and so g.C/D C ), then �.ˇ/; �. / are closed orbits of ˆ which are freely homotopic
to the inverse of each other.

Theorem 2.5 [25, Theorem 4.8] Let ˆ be a pseudo-Anosov flow in M closed
and let F0 6D F1 2

zƒs . Suppose that there is a nontrivial covering translation g

with g.Fi/D Fi ; i D 0; 1. Let ˛i ; i D 0; 1 be the periodic orbits of �̂ in Fi so that
g.˛i/D˛i . Then ˛0 and ˛1 are connected by a finite chain of lozenges fCig; 1� i � n,
and g leaves invariant each lozenge Ci as well as their corners.

The leaf space of zƒs (or zƒu ) is usually not a Hausdorff space. Two points of this
space are nonseparated if they do not have disjoint neighborhoods in the respective
leaf space. The main result concerning non-Hausdorff behavior in the leaf spaces of
zƒs; zƒu is the following:

Theorem 2.6 [25, Theorem 4.9] Let ˆ be a pseudo-Anosov flow in M 3 . Suppose
that F 6DL are not separated in the leaf space of zƒs . Then F and L are periodic. Let
F0;L0 be the line leaves of F;L which are not separated from each other. Let V0 be
the sector of F bounded by F0 and containing L. Let ˛ be the periodic orbit in F0 and
H0 be the component of . �W u.˛/�˛/ contained in V0 . Let g be a nontrivial covering
translation with g.F0/ D F0 , g.H0/ D H0 and g leaves invariant the components
of .F0 � ˛/. Then g.L0/D L0 . This produces closed orbits of ˆ which are freely
homotopic in M . Theorem 2.5 then implies that F0 and L0 are connected by a finite
chain of lozenges fAig; 1� i � n, consecutive lozenges are adjacent. They all intersect
a common stable leaf C . There is an even number of lozenges in the chain; see Figure 2.
In addition let BF;L be the set of leaves of zƒs nonseparated from F and L. Put
an order in BF;L as follows: The set of orbits of C contained in the union of the
lozenges and their sides is an interval. Put an order in this interval. If R1;R2 2 BF;L

let ˛1; ˛2 be the respective periodic orbits in R1;R2 . Then �W u.˛i/\C 6D∅ and let
ai D

�W u.˛i/\C . We define R1 <R2 in BF;L if a1 precedes a2 in the order of the
set of orbits of C . Then BF;L is either order isomorphic to f1; : : : ; ng for some n 2N;
or BF;L is order isomorphic to the integers Z. In addition if there are Z;S 2 zƒs so
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that BZ;S is infinite, then there is an incompressible torus in M transverse to ˆ. In
particular M cannot be atoroidal. Also if there are F;L as above, then there are closed
orbits ˛; ˇ of ˆ which are freely homotopic to the inverse of each other. Finally up
to covering translations, there are only finitely many non-Hausdorff points in the leaf
space of zƒs .

˛

C

H0

F0 L0

ˇ

A1 A2 A3 A4 A5 A6

Figure 2. The correct picture between nonseparated leaves of zƒs

Notice that BF;L is a discrete set in this order. For detailed explanations and proofs,
see [24; 25].

Scalloped regions Suppose that E D fEi j i 2 Zg is a bi-infinite collection of
leaves of zƒs or zƒu all of which are nonseparated from each other and ordered as in
Theorem 2.6. There is an associated structure in �M or O , which is called a scalloped
region, which we now describe. Let fAi j i 2Zg be the bi-infinite collection of lozenges
associated to E – consecutive Ai ’s are adjacent. For simplicity assume that E is a
collection of stable leaves, so that every Ai intersects a fixed stable leaf � . The Ai

are chosen so that each Ei has a half leaf in the boundary of A2i and another half
leaf in the boundary of A2i�1 . Each leaf Ei contains a periodic orbit i . Let Wi be
the half leaf of �W u.i/ which is in the boundary of both A2i and A2i�1 . In addition
since A2i and A2iC1 are also adjacent there is a stable leaf Gi which has half leaves
in the closure of each of A2i and A2iC1 . Hence fGi j i 2 Zg is another collection
of leaves of zƒs nonseparated from each other. Each Gi contains a periodic orbit ıi
and �W u.ıi/ has a half leaf Yi which is in the closure of both A2i and A2iC1 . The
scalloped region associated to E is

S D
[
i2Z

.Ai [Wi [Yi/

(see Figure 3).

Scalloped regions were introduced for Anosov flows in [23, Section 5, Theorem 5.2],
but the same analysis works for pseudo-Anosov flows, mainly because there can be no
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E�1 E0 E1

�1 0 1

A�2A�1 A0 A1

ı�1 ı0

G�1 G0

B0

B1

�0

�1

S0

S1

Figure 3. A scalloped region S . The collections fEigi2Z; fGigi2Z of stable
leaves are part of the boundary of S . In addition fSigi2Z are unstable leaves
in the boundary of S . For better viewing we indent a few of the nonseparated
leaves in (say) fEigi2Z into the square. Similarly for fGig; fSig .

singularities in the lozenges [24]. It is proved in [23] that such a scalloped region S
(where the Ei are stable leaves) is also the union of another bi-infinite collection of
lozenges fBi j i 2 Zg and stable half leaves in the boundary of pairs of consecutive
lozenges. All of the lozenges Bi intersect a fixed unstable leaf. Therefore the foliations
zƒs; zƒu restricted to S form a product structure in S , they both have leaf space
which is homeomorphic to R. In this way the boundary @S also has two bi-infinite
collections of leaves of Ou . In each collection all leaves are nonseparated from each
other. Let fSj gj2Z be the collection which is in the limit of the sequence �W u.i/ (or
equivalently �W u.ıi/) when i converges to plus infinity. The other bi-infinite collection
of unstable leaves is obtained as the limit of . �W u.i// as i converges to minus infinity.
We may choose the indexing of the fSj g so that Sj has one half leaf in the closure
of B2j and another in the closure of B2j�1 . Let �j be the periodic orbit in Sj . We
may also choose the indexing so . �W s.�j // converges to the collection fEigi2Z when
i !1 and . �W s.�j // converges to fGigi2Z when i !�1. We also call a scalloped
region the projection of S to the orbit space O .

Here is an actual model for a scalloped region in O . Let I;J be two properly
embedded, order preserving images of Z into .�1; 1/ which are intercalated, for
example J D f˙.1� 1=.2n// j n � 1g and I D f˙.1� 1=.2n� 1// j n � 1g. The
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closure of a scalloped region is a proper embedding of the set

V D .Œ�1; 1�� Œ�1; 1�/

�
�
.J � f1g/[ .f1g �J /[ .I � f�1g/[ .f�1g � I/[ .f�1; 1g � f�1; 1g/

�
into O satisfying the following conditions: The horizontal and vertical foliations of R2

restricted to V are mapped to the stable and unstable foliations in xS . The interior of V

maps to the scalloped region. It is crucial that I;J do not intersect. For example the
stable leaf .�1=2; 1=2/� f1g is one of the Ei , we may assume that it is E0 . Then
.0; 1/ is the periodic orbit 0 and f0g� .�1; 1/ is the half leaf of �W u.0/ which is in
the boundary of the lozenges A�1D .�1=2; 0/� .�1; 1/ and A0D .0; 1=2/� .�1; 1/.
It is crucial in this particular example that .0;�1/ is not in V . We may assume that
S0 D f1g � .�1=2; 1=2/.

In Figure 3 we indent the region along the boundary stable and unstable leaves to
highlight that they form collections of nonseparated leaves.

Theorem 2.7 [25, Theorem 4.10] Let ˆ be a pseudo-Anosov flow. Suppose that
there is a stable or unstable product region. Then ˆ is topologically conjugate to a
suspension Anosov flow. In particular ˆ is nonsingular.

3 Ideal boundaries of pseudo-Anosov flows

Let ˆ be a pseudo-Anosov flow in M . The orbit space O of �̂ (the lifted flow to �M )
is homeomorphic to R2 [29]. In this section we construct a natural compactification
of O with an ideal circle @O called the ideal boundary of the pseudo-Anosov flow.
We put a topology in D D O [ @O making it homeomorphic to a closed disk. The
induced action of �1.M / on O extends to an action on O[ @O . This works for any
pseudo-Anosov flow in a 3–manifold – no metric, or topological assumptions (such as
atoroidal) on M or on the flow ˆ. In addition there are no assumptions about perfect
fits for ˆ or concerning topological conjugacy to suspension Anosov flows.

One key aspect here is that we want to use only the foliations Os;Ou to define @O
and its topology.

Before formally defining ideal points of O we analyze some examples. Given g in
�1.M / it acts on �M and sends flow lines of �̂ to flow lines and hence acts on O . This
action preserves the foliations zƒs; zƒu;Os;Ou . Recall that a 2–dimensional foliation F
in a 3–manifold N is called R–covered if the leaf space of �F is homeomorphic to
the real line [21]. An Anosov flow is R–covered if ƒs (or equivalently ƒu [1]) is
R–covered.
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(1) Ideal boundary for R–covered Anosov flows: The product case A product
Anosov flow is an Anosov flow for which both ƒs; ƒu are R–covered and in addition
every leaf of Os intersects every leaf of Ou and vice versa [21; 1]. Barbot proved
that this implies that ˆ is topologically conjugate to a suspension [1]. Every ray in
Os or Ou generates a point of @O and they are all distinct. Furthermore there are 4
additional ideal points corresponding to escaping quadrants in O ; see Figure 4(a). The
quadrants are bounded by a ray in Ou and a ray in Os which intersect only in their
common starting point (or finite endpoints). In this case it is straightforward to put a
topology in DDO[ @O so that it is a closed disk and covering transformations act
on the extended object. If ƒs; ƒu are both transversely orientable, then any covering
translation g fixes the 4 distinguished points. It is associated to a periodic orbit if and
only if it fixes 4 additional ideal points: if x in O satisfies g.x/D x , then g fixes the
“ideal points” of rays of Os.x/;Ou.x/. When ƒs; ƒu are not transversely orientable,
there are other restricted possibilities.

We want to define a topology in D using only the structure of Os;Ou in O . A
distinguished ideal point p has a neighborhood basis determined by (say nested)
pairs of rays in Os;Ou intersecting at their common finite endpoint and so that the
corresponding quadrants “shrink” to p . For an ordinary ideal point p , say a stable
ideal point of a ray in Os.x/, we can use shrinking strips: the strips are bounded by 2
rays in Os and a segment in Ou connecting the endpoints of the rays. The unstable
segment intersects the original stable ray of Os.x/ and the intersections escape in that
ray and also shrink in the transversal direction. Already in this case this leads to an
important concept:

Definition 3.1 (Polygonal path) A polygonal path in O is a properly embedded,
bi-infinite path � in O satisfying: either � is a leaf of Os or Ou or � is the union
of a finite collection l1; : : : ln of segments and rays in leaves of Os or Ou so that l1
and ln are rays in Os or Ou and the other li are finite segments. We require that
li intersects lj if and only if ji � j j � 1. In addition the li are alternatively in Os

and Ou . The number n is the length of the polygonal path. The points li \ liC1 are
the vertices of the path. The edges of � are the flig.

In the product R–covered case, the exceptional ideal points need neighborhoods basis
formed by polygonal paths of length 2 and all the others need polygonal paths of
length 3.

(2) R–covered Anosov flows: Skewed case This is an Anosov flow so that ƒs; ƒu

are R–covered and the following is satisfied: Topologically the orbit space O is
homeomorphic to .0; 1/�R, a subset of the plane, so that stable leaves are horizontal
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(a) (b)

l

r

xi yi

zi

Figure 4. Ideal points for product R–covered Anosov flow. The dots repre-
sent the 4 special points. (b) The picture in skewed case

segments and unstable leaves are segments making a constant angle 6D �=2 with the
horizontal; see Figure 4(b). A leaf of Os does not intersect every leaf of Ou and
vice versa [21; 2]. Here again each ray of Os or Ou defines an ideal point of O .
However as is intuitive from the picture, rays of Os;Ou which form a perfect fit in
O should define the same ideal point of O . In addition to these ideal points of rays
of leaves in Os or Ou , there should be 2 distinguished ideal points – one from the
“positive” direction of R and one from the “negative” direction of R. Hence D is
equal to Œ0; 1��R union two points: one for the positive end of R and one for the
negative end. Put a topology in D so that Œ0; 1��R is homeomorphic to a disk minus
two boundary points. Covering translations act as homeomorphisms of this disk. A
transformation without fixed points in O fixes only the 2 distinguished ideal points in
@O , one attracting and another repelling. If a transformation g has a fixed point p in
O , then it leaves invariant the leaf l DOs.p/ of Os . If g switches the components
of l �fpg, then g does not fix any point in @O . Otherwise there are infinitely many
fixed points; see [21; 2].

A neighborhood basis of the distinguished ideal points can be obtained from leaves of
Os or Ou which escape in that direction (positive or negative). For nondistinguished
ideal points, we get sequences of polygonal paths of length 2 escaping every compact
set and “converging” to this ideal point; see Figure 4(b). More precisely if rays l; r of
Os;Ou respectively form a perfect fit defining the ideal point p , then choose xi in l

and escaping in the direction of the perfect fit and similarly chose yi in r . Consider
the polygonal path of length two containing rays in the stable leaf through yi and the
unstable leaf through xi intersecting in zi ; see Figure 4(b).

(3) Suspension pseudo-Anosov flows: Singular case The fiber is a hyperbolic sur-
face. The orbit space O is identified with the universal cover of the fiber which is
metrically the hyperbolic plane H2 . There is a natural ideal boundary S1

1 , the circle at
infinity of H2 . One expects that @O and S1

1 should be equivalent. But the construction
of S1

1 uses the metric structure on the surface – in general there is no metric structure
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in O , so again we want to define @O using only the structure of Os;Ou . From a
geometric point of view, there are some points of S1

1 which are ideal points of rays of
leaves of Os or Ou . But there are many other points in S1

1 . The foliations Os;Ou

can be split into geodesic laminations (of H2 ) which have only complementary regions
which are finite sided ideal polygons. This implies that given p in S1

1 there is always
a sequence of leaves li (in Os or Ou ) which is nested, escapes to infinity and “shrinks”
to the ideal point p . In this way one can characterize all points of S1

1 using only the
foliations Os;Ou and hence @OD S1

1 in this case. Also Os;Ou define a topology
in O[ @O compatible with the metric topology.

Now we analyze a potential difficulty. Let l be a nonsingular ray (say) in Os and let
xi in l , forming a nested sequence of points in l , escaping compact sets in l . For
simplicity assume that the leaves gi of Ou through xi are nonsingular. We would like
to say that the sequence .gi/ “defines” an ideal point of O . If the gi escape compact
sets in O , then this will be the case. However it is not always true that .gi/ escapes
in O . If they do not escape in O , then they limit on a collection of unstable leaves
fhj j j 2 J g. But there is one of them, call it h which makes a perfect fit with l on that
side of l . This nontrivial fact is proved in [24]. The perfect fit l; h is the obstruction to
leaves gi escaping in O .

We need a couple of definitions. A quarter at z is a component of O�.Os.z/[Ou.z//.
If z is nonsingular there are exactly 4 quarters, if z is a k –prong point there are 2k

quarters.

Definition 3.2 (Convex polygonal paths) A polygonal path ı in O is convex if there
is a complementary region V of ı in O so that at any given vertex z of ı the local
region of V near z is not a quarter at z . Let zı DO� .ı[V /. This region zı is the
convex region of O associated to the convex polygonal path ı .

The definition implies that if the region zı contains 2 endpoints of a segment in a leaf
of Os or Ou , then it contains the entire segment (proved later). This is why ı is called
convex. If ı is a single nonsingular leaf of zƒs or zƒu or if all the vertices of ı are
singularities, then it is possible that there are two regions zı which are convex. In the
future the context will make clear which region we are considering. If ı is a polygonal
path, V a complementary region and p a vertex for which V is a quarter at p , then p

is called a nonconvex vertex of O� .ı[V /.

Definition 3.3 (Equivalent rays) Two rays l; r of Os;Ou are equivalent if there
is a finite collection of distinct rays li ; 1 � i � n, alternatively in Os;Ou so that
l D l0; r D ln and li forms a perfect fit with liC1 for 1� i < n.
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It is important to notice that this is strictly about rays in Os;Ou and not leaves of
Os;Ou . More specifically we want consecutive perfect fits to be in the same rays of
the adjoining leaf. This implies for instance that if n� 3 then for all 1� i � n� 2 the
leaves li and liC2 are nonseparated from each other in the respective leaf space.

Definition 3.4 (Admissible sequences of paths) An admissible sequence of polygonal
paths in O is a sequence of convex polygonal paths .vi/i2N so that the associated
convex regions zvi form a nested sequence of subsets of O , which escapes compact
sets in O and for any i , the two rays at the ends of vi are not equivalent.

The fact that the zvi are nested and escape compact sets in O implies that the zvi are
uniquely defined given the vi .

Structure of this section The construction of the ideal compactification of O and
the analysis of its properties is very involved and complex. This will take all of
this very long section, so here is an outline of the section: Ideal points of O will
be defined by admissible sequences of polygonal paths, Definition 3.10. But many
admissible sequences generate the same ideal point, so we first define a relation in
the set of admissible sequences, Definition 3.5. We establish a technical result called
the fundamental lemma (Lemma 3.6) which implies that the relation above is an
equivalence relation, Lemma 3.7. In Definition 3.10 we define ideal points of O
producing @O and with union D D O[ @O . Some special ideal points are defined
in Definition 3.8 associated to ideal points of rays of Os or Ou and in Lemma 3.27
we deal with infinitely many leaves of Os or Ou all nonseparated from each other.
Not every admissible sequence is efficient to study ideal points of O and we define
master sequences in Definition 3.11: roughly the rays in the polygonal paths of these
sequences approach the ideal point of O from “both” sides. In Lemma 3.13 we prove
that any ideal point admits a master sequence and they are used to distinguish points
of @O . In Definition 3.15 we define a topology for DDO[ @O and in Lemma 3.16
we prove that this is indeed a topology in D . We then progressively prove stronger
properties of D : Lemma 3.19 shows that D is Hausdorff, Lemma 3.23 shows that
D is first countable and Lemma 3.24 shows that D is second countable – this last
one is a bit more complicated than the other ones. These and the structure of D
quickly imply that D is regular (Lemma 3.25) and hence metrizable. Then we study
compactness properties: first we prove a technical and very tricky lemma about a special
case (Lemma 3.28). This lemma considerably simplifies the proof of compactness
of D (Proposition 3.29). At this point we can quickly prove that the ideal boundary
@O is homeomorphic to a circle (Proposition 3.30). We then prove a harder result
(Theorem 3.31) that DDO[@O is homeomorphic to a closed disk. Finally in Lemmas
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3.20, 3.22, 3.27 and Proposition 3.33 we prove additional properties of the ideal points
of O and which types of admissible sequences are associated to different types of ideal
points.

An ideal point of O will be determined by an admissible sequence of paths. Clearly
this does not work for suspension Anosov flows because a sequence of escaping leaves
of Os approaches infinitely many different ideal points. Hence such flows are special
and are treated separately. We abuse notation and say that .vi/i2N is nested. For
notational simplicity many times we denote such a sequence by .vi/.

Two different admissible sequences may define the same ideal point and we first need to
decide when two such sequences are equivalent. At first it seems that any 2 sequences
associated to the same ideal point of O would have to be eventually nested with each
other. However it is easy to see that such is not the case. For example consider a nested
sequence of rays of a fixed leaf l . We will later see how to extend each ray on one
side of l to form an admissible sequence. Extend them also to the other side to form
another admissible sequence. Intuitively the two sequences should converge to the
intrinsic ideal point of l , but clearly they are not eventually nested.

Definition 3.5 Given two admissible sequences of chains C D .ci/, DD .di/, we say
that C is smaller or equal than D , denoted by C �D , if: for any i there is ki > i so
that zcki

� zdi . Two admissible sequences of chains C D .ci/; D D .di/ are equivalent
and we then write C Š D if there is a third admissible sequence E D .ei/ so that
C �E and D �E .

Ideal points of O will be defined as equivalence classes of admissible sequences of
polygonal paths. Hence we must prove that Š is an equivalence class and along the
way we derive several other properties. We should stress that the requirement that
the chains are convex is fundamental for the whole discussion. It is easy to see in the
skewed R–covered Anosov case, that given any two distinct ideal points p; q on the
“same side” of the distinguished ideal points, the following happens: Let l; r be stable
rays defining p; q respectively. Then there is a sequence of polygonal paths in O , that
escapes compact sets in O and so that each zci contains subrays of both l and r . The
polygonal paths can be chosen to satisfy all the properties, except that they are convex.
On the other hand convexity does imply important properties as shown in the next
lemma. This key lemma will be used throughout this section. After this lemma we
show that Š is an equivalence relation.

Singular foliations in surfaces with boundary and index formula Let F be a sin-
gular foliation on a compact surface S with boundary, so that interior singularities
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are all of k –prong type and k � 3. The foliation may be tangent to part of the
boundary. There is an Euler–Poincaré index formula so that the sum of the indices of
the singularities equals the Euler characteristic of the surface. An interior singularity
with k prongs has index 1� k

2
. A boundary singularity has index 1

2
�

k
2
�

t
4

, where k

is the number of prongs going into the surface and t is the number of prongs which are
part of the boundary. The possible values of t are 0; 1; 2. For example if k D 0; t D 0

the singularity is half of a center, which has index 1=2. This will be used for compact
subsets of O , which are foliated by Os or Ou .

Lemma 3.6 (Fundamental lemma) Assume that ˆ is not topologically conjugate
to a suspension Anosov flow. Let l; r be rays of Os or Ou , which are not equivalent.
Then there is no pair of admissible sequences of polygonal paths E D .ei/, F D .fi/

so that zei \
zfi 6D∅ (for all i ) and zei \ r 6D∅, zfi \ l 6D∅, for all i .

Proof We assume that both l and r are rays of Os , other cases are treated similarly. By
taking subrays if necessary, we may assume that l; r are disjoint, have no singularities
and miss a compact set containing the base point in O . Join the initial points of l; r

by an arc ˛0 missing this big compact set to produce a properly embedded bi-infinite
curve ˛D l[˛0[ r ; see Figure 5(b). Let V be the component of O�˛ which misses
the basepoint.

(a) (b)
ei

r0

ei

r

˛0

l

V

�

ui
ui

Figure 5. (a) Convexity implies connected intersection of r and Bi . (b) All
rays of ui stay in V forever. There is a nonconvex vertex at � .

Case 1 E D F .

Here we have to show that there is no admissible sequence of polygonal paths ED .ei/

such that zei always intersects l and r . This implies that the phenomenon described
above (in the skewed Anosov flow case) for nonconvex polygonal paths cannot happen
for convex polygonal paths. Suppose this is not true and let E D .ei/ be one such
sequence. Let Bi D zei [ ei .

Claim 1 If ei is a convex polygonal path with region zei and r is a leaf of Os (or
of Ou ), then .zei [ ei/\ r is connected.
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Otherwise there is a compact subarc r0 of r with @r0 in ei and the rest of ei contained
in O � Bi ; see Figure 5(a). There is a compact arc � in ei joining the endpoints
x;y of r0 . Let D be the disc in O bounded r0 [ � and consider the foliation Os

induced in D . The singularities in the interior are k prong type all with negative
index. At x there is a boundary prong of Os (since r0 is in the boundary of D ) so
the index is � 1=4 and similarly for y . If there are singularities in the interior of r0

then they have negative index as r0 is contained in a leaf of Os . Since the Euler
characteristic of the disc is 1 and there are no half centers in � , all singularities in �
have index � 1=4. It follows that there must be at least two boundary singularities in
� � fx;yg with index 1=4. Each one of these has to be a point z so that there is a
prong of Os and a prong of Ou locally contained in � � @D and no other prongs of
Os [Ou entering D . The unstable prong is transverse to Os . This shows there is a
quarter of D at z . But since r0�fx;yg� .O�Bi/ this means that zei has a nonconvex
vertex at z , contradiction to ei being convex. Therefore Bi \ r is connected and this
proves Claim 1. This is the convexity property of zei mentioned after Definition 3.2.

We continue the analysis of Case 1. Notice that .Bj \ r/j2N is a nested family of
nonempty sets in r . Since Bj escapes compact sets as j!1 and Bj\r is connected,
it follows that Bj\r is a subray of r for any j . If ej\r contains a nontrivial segment,
then again by convexity and Euler characteristic it follows that zej\r D∅ contradiction.
Hence ei intersects r in a single point. Let u0iDOu.ei\r/ be the unstable leaf through
the intersection. Up to subsequence, we may assume no two u0i are the same.

Since r has no singularities there are two components of u0i � .u
0
i \ r/. There is only

one of them denoted by ui which locally enters V at the intersection; see Figure 5(b).
There are two subcases:

Case 1.a Some ray of ui stays in V for all time.

Let this ray be s . Then s is properly embedded in V and together with a subray of r it
bounds a subregion W of V . It follows that by taking a bigger i if necessary we may
assume that all rays of ui stay in V forever, because they are in the region W above.
Take the ray s of ui starting at u0i \ r and farthest from r or equivalently closest to l .
Even though r; l are rays and do not separate O , this makes sense because V is an
open disc with boundary ˛ and l; r are disjoint subrays of ˛ . All rays of ui start in r

and the collection of rays of ui is (weakly) nested.

In that case, in order for ei to reach l it leaves s at a point � where ei switches to
travel along a segment t in Os . There cannot be any other prong of Os.�/[Ou.�/

not in zei : since s is an unstable prong and t is contained in a stable prong, there would
have to be another unstable prong in zei . But this unstable prong is contained in V by
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construction and hence not contained in zei . Hence this shows that � is a nonconvex
vertex in ei ; see Figure 5(b). This is a contradiction to ei convex.

Case 1.b For any i , all rays of ui exit V .

We first want to show that the sequence ui does not escape compact sets in O . Then
we show that a leaf u in the limit of .ui/ has a ray which makes a perfect fit with r

and we restart the proof with u; l in place of the rays r; l .

Suppose first that all ui intersect l . In that case let zi be the part of ui between
l and r . If the zi escapes compact sets in O , then the region between l and r is
an unstable product region as in Definition 2.4. Theorem 2.7 then implies that ˆ is
topologically conjugate to a suspension Anosov flow. This is disallowed by hypothesis
(in fact the lemma fails for product R–covered Anosov flows). Hence the ui does not
escape compact sets in O . The other option is that the ui does not intersect l , hence
they intersect ˛0 . Since ˛0 is compact, then in all cases ui does not escape compact
sets in O .

The intersection of xui with r escapes in r , and .ui/ is a nested collection (as subsets
of V ), so ui converges to a collection of (line) leaves of Ou . Let u be one of the
limit leaves. Consider the set B of unstable leaves nonseparated from u and which are
either contained in V or intersect ˛ . By Theorem 2.6 there is an order in the set B

and there are only finitely many unstable leaves between any given u and r , so we
may assume that u is the leaf in B which is the closest one to r in terms of this order.

Claim 2 u makes a perfect fit with r .

Suppose that u does not make a perfect fit with r . We will produce a product region.
Let z a point in u. The stable leaf through z intersects ui for a fixed i big. For any
other w in u then Os.w/ intersects uj for some j > i . We say that w is closer to r

than z if the intersections Os.z/\uj ;Os.w/\uj ; xuj \ r are linearly ordered in u0j .
Hence Os.w/ also intersects the fixed ui . It follows that as w escapes in u in the
direction of r , the Os.w/ converge to a stable leaf r 0 which makes a perfect fit with u.
Hence r; r 0 are distinct. The region between r; r 0 is a product region because all the uj

(j � i ) intersect r; r 0 and there are no limit leaves of the .uj / between r; r 0 . As seen
above, this would imply ˆ is topologically conjugate to a suspension Anosov flow,
contradiction. This proves Claim 2.

The rest of Case 1 concerns only flows with perfect fits.

We now show that u is not contained in V . If u is contained in V , there are two
cases: (i) u� zei for all i , but this contradicts that zei escapes compact sets of O ; (ii)
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there is an i with u not contained in zei . But then ei has to cross u, and since u is
contained in V , then ei has to cross u again in order to intersect l . This produces two
intersections of ei with u, which is disallowed by Claim 1.

It follows that there is a ray of u exiting V . We now restart the argument with u; l

instead of r; l . The same arguments as above produce a line leaf v1 of Os making a
perfect fit with u and v1 exiting V . In addition v1 is nonseparated from r in the leaf
space of Os , because of the perfect fits r ! u! v1 . Now iterate to obtain v2; v3; : : : .
This is a nested collection and the sequence vj cannot accumulate anywhere in O ,
since vk ; vkC2 are nonseparated from each other in the corresponding leaf space. In
addition no two consecutive unstable leaves in the sequence can intersect l as they are
nonseparated from each other. It follows that none of them intersect l and so they all
intersect ˛0 , which is compact. This contradicts the fact that they escape in O . This
proves that no escaping sequence of convex polygonal paths can always intersect both
l and r . This finishes the analysis of Case 1.

Case 2 E 6D F .

Let r; l as in the statement of the lemma and suppose that E D .ei/;F D .fi/ are
admissible sequences with zei \

zfi 6D∅, r \ zei 6D∅; l \ zfi 6D∅, for all i . As before
consider the region V bounded by l; r and an arc ˛0 connecting them. By Case 1,
zei eventually stops intersecting l . Discarding the initial terms we can assume that
zei \ l D∅ and zfi \ r D∅ for all i .

We construct a polygonal path ci as follows: first consider the part of ei outside of V .
Then add the edges (or pieces of edges) of ei until it first meets fi , then switch to fi

and follow along the rest of fi in the direction that intersects l . There is only one such
direction as fi intersects l in a single point and notice that ei does not intersect l . This
path ci separates O and has a complementary component zci which contains subrays
of l; r . This component contains all of V except for a subset contained in a compact
set of O .

The vertices of ci are all convex for zci , except perhaps for the single vertex pi where
ci changes from ei to fi . Once the nonconvex vertex appears, all subsequent vertices
have to be convex.

As before consider the unstable leaf ui through ei \ r . If some ui has a ray which is
entirely in V , then as seen in Case 1, for j > i all rays of uj which enter V must be
entirely in V . This implies that the change from ei to fi has to be in ui . Here is why:
otherwise the next edge in ci is wi an edge still in ei . But since ci eventually has to
cross l , and ui is entirely contained in V , it follows that ci has to intersect ui twice.
As seen in the proof of Claim 1, this implies the existence of two nonconvex vertices
in ci . But ci has only one nonconvex vertex, contradiction.

Geometry & Topology, Volume 16 (2012)



Ideal boundaries of pseudo-Anosov flows and uniform convergence groups 29

We conclude that all rays of ui which enter V have to exit V . As seen in Case 1 they
cannot escape compact sets in O . They converge to a collection of (line) leaves in
Ou . As in Case 1, one of them, call it u makes a perfect fit with r . Since u; r make a
perfect fit and zei escapes compact sets, it follows that for i big ei intersects u and the
second edge of ei is in leaves vi of Os and vi intersects u.

The first possibility here is that u is contained in V . Let W be the component of O�u

contained in V . Since r;u make a perfect fit and zfi \zei 6D∅ it follows that zfi has to
intersect W . Since u� V , then ci has to intersect u twice – this is a contradiction as
seen before. The second possibility is that u is not contained in V and intersects ˛ .
Notice that u is a ray equivalent to r . We can now restart the proof of Case 2 with u; l

instead of r; l . The arguments above will produce a leaf v of Os making a perfect fit
with u. Figure 6 illustrates the impossible situation that v � V . In that case some cj

u

V

l

r

ci

vi

ui

v

cj

uj

Figure 6. Two polygonal chains and perfect fits

is forced to have 2 nonconvex vertices. Hence v intersects ˛ . As in Case 1, one can
iterate this argument to arrive at a contradiction.

This finishes the proof of Lemma 3.6.

Remarks If A D .ai/ is an admissible sequence and B D .aij / is a subsequence,
then clearly B is also an admissible sequence and furthermore A� B and B �A. It
is also immediate from the nesting property that if AD .ai/, C D .ci/ are admissible
sequences, then the condition that zai \ zcj 6D∅ for all i; j is equivalent to zai \ zci 6D∅
for all i .

Lemma 3.7 Suppose that ˆ is not topologically conjugate to a suspension Anosov
flow. Then the relation Š is an equivalence relation for admissible sequences of
polygonal paths.

Proof Clearly Š is reflexive and symmetric. Suppose now that AD .ai/, B D .bi/,
C D .ci/ are admissible sequences of polygonal paths and AŠB; BŠC . Then there
are D D .di/ with A�D; B �D and E D .ei/ with B �E; C �E . If for some
i; j the zdi and zej do not intersect this contradicts B �D , B �E .
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Claim Let j be given. Then either there is i > j with zai � zej or there is i > j with
zci �

zdj .

Along the proof we may replace j by a bigger number – by the nesting property the
result follows for the original j . The proof is by contradiction. So assume the claim
fails. For each i , then zai 6� zej and zci 6�

zdj . Clearly this implies that none of zdj ; zej is
contained in the other. Define

Z0 WD zej \
zdj

This is an open subset of O , which is noncompact as there is m� j with zbm� zej \
zdj .

It is conceivable that even though zdj ; zej are convex, Z0 may not be connected. In
any case let Z be the component of Z0 containing zbm . Obviously Z is noncompact.
Notice that @Z is made up of segments or rays in ej or dj . In addition @Z has at
least two infinite rays because Z is noncompact. It is easy to prove that @Z is convex
for Z because of this property for dj ; ej .

We first deal with the following situation. Suppose that @Z has two bi-infinite com-
ponents. Then ej ; dj do not intersect and the region between dj and ej is equal
to Z . Let ˛ be an arc intersecting ej ; dj only in its boundary. We can assume that
˛ does not intersect zbm . Since . zdk/ escapes compact sets in O , then it eventually
stops intersecting ˛ , so choose k > j with zdk [dk not intersecting ˛ . If ek does not
intersect dk , then either zek �

zdk or zdk � zek . This is because zek � zej , zdk �
zdj ; zdk ; zek

intersect and dk [
zdk does not intersect ˛ . Assume without loss of generality that

zek �
zdk . Choose i > k > j with zci � zek which is a subset of zdk and hence of zdj .

This proves the claim in this case.

Therefore by taking a bigger j if necessary we can assume that Z has only one bi-
infinite boundary component. Let y1;y2 be the rays of dj and z1; z2 be the rays of ej .
The bi-infinite component of @Z has two rays which are contained in y1[y2[z1[z2 .
If there are subrays of both rays in this boundary @Z which are contained in y1[y2 ,
then it follows that zdj[dj�.zej[ej / is contained in a compact set in O ; see Figure 7(a).
Since the decreasing sequence . zdk/k2N of open sets in O escapes compact sets in O ,
then there would be k with zdk � zej . But then there is i with zai �

zdk � zej and this
would yield the claim in this case.

The remaining possibility to be analyzed is that one and only one boundary ray of @Z
must be contained in y1[y2 and one and only one boundary ray of @Z is in z1[ z2 .
This last fact also implies that if a boundary ray is contained in y1[y2 then it cannot
have a subray in z1[ z2 . The argument here will be to produce two fixed rays r; l of
Os or Ou which always intersect zdi ; zei respectively and so that r; l are not equivalent.
This will contradict the fundamental lemma.
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Let lj be the boundary ray of Z contained in z1 [ z2 . Then this ray is in zdj [ dj

and since it cannot have a subray contained in dj it follows that it has a subray
contained in zdj . It also follows that the other ray of ej has to be eventually disjoint
from xZ . Similarly there is a ray rj of dj contained in zej ; see Figure 7(b). Recall that
zbm �

zdj \ zej . Now consider i � j . If zdi � zej then we are done. Otherwise

zdi \ zej 6D∅ and zdi 6� zej ;

so the same analysis as above produces a ray of ej contained in zdi . It can only be
lj \ zdi since the other ray of ej is disjoint from dj [

zdj , so certainly disjoint from
di [
zdi . It now follows that for any i � j there is a subray of the fixed ray lj which is

contained in zdi . Similarly for any i � j there is a subray of the fixed rj contained
in zei .

(a) (b)

dj dj

ej ejy1 y2

zdj
zej

lj rj

Figure 7. (a) The intersection of convex neighborhoods (b) Intersecting
master sequences

The set zdj \ zej has boundary which contains subrays of rj ; lj . If rj ; lj are equivalent
rays then as there is i with zbi � zej \

zdj , the two rays of bi would be equivalent,
contradiction. Hence rj ; lj are not equivalent. But for any i � j , then zdi [ zei is a
union of two convex regions containing subrays of lj and rj (j is fixed!). This is
disallowed by the fundamental Lemma 3.6. This proves the claim.

Suppose then there are infinitely many j ’s so that for each one of them, there is
i.j / > j with zai.j/ � zej . Then for any k there is one such j with j > k and so there
is i.j / > j with zai.j/ � zej � zek . This means that A�E and so AŠ C . The claim
shows that if this does not occur, then there are infinitely many j and for each such
j there is i.j /� j and zci.j/ �

zdj . This now implies that C �D and again C ŠA.
This finishes the proof that Š is an equivalence relation.

We first analyze admissible sequences associated to rays of Os or Ou – each ray
will define an ideal point of O . Later we define general points of O . We will be
interested in the asymptotic behavior as points escape the ray to infinity. A ray does
not separate O , but still one can define sides of a ray as follows: let l be a ray of
(say) Os . Fix a regular point p in l and consider the component W of O�Ou.p/
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which contains a subray of l . Then l \V separates V and we can talk about the sides
of l in V . This depends only on the ray l and not on the point p .

Definition 3.8 (Standard sequences) Let l be a ray in Os or Ou . For simplicity
assume that it is in Os . Fix a side of l . Let di be a nested sequence of leaves of Ou

intersecting l with di \ l escaping l . If di escapes compact sets in O then .di/ is
an admissible sequence which is called a standard sequence associated to l . If the di

do not escape in O , then they limit on a collection of unstable leaves. There is one of
them, call it h which makes a perfect fit with l on the fixed side of l . Consider now
ei stable (nonsingular) leaves intersecting h and so that h\ ei escapes compact sets
in h and moves in the direction toward the perfect fit with l . Since l and h form a
perfect fit, then for big enough i , the ei and di intersect and form a polygonal path of
length 2; see Figure 8.

ei

h1

h l

di

p

Figure 8. The process of creating standard sequences for rays of Os;Ou .
Here the sequence .di/ of Ou does not escape compact sets and limits to
a leaf h of Ou making a perfect fit with l . There is also the sequence .ei/

of leaves of Os whose intersection with h escapes in h and .ei/ limits to a
leaf h1 of Os making a perfect fit with h . The leaves l; h1 are not separated
from each other in the leaf space of Os .

We want to produce an escaping polygonal sequence in that side of l and we already
achieved that with di [ ei for the region between l and h. Therefore we want to
analyze what happens beyond h, that is, the side of h opposite to l or not containing l .
If the rays of ei�h in the side of h opposite to l escape in O then the polygonal paths
made up of a segment of di and a ray of ei escape compact sets in O . Otherwise the
rays of ei � h on that side of h limit to a stable leaf h1 making a perfect fit with h;
see Figure 8. Notice that h1 and l are not separated from each other in the leaf space
of Os , because the sequence .ei/ converges to both of these leaves. Now iterate this
process. If this stops after finitely many steps then take a sequence of polygonal paths
of fixed length. Otherwise there are infinitely many leaves hj ; j � 2, alternatively
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in Os;Ou , so that appropriate rays of hj make a perfect fit with hj�1 and hjC1 . In
this case use polygonal paths of increasing lengths, in order to cross over an increasing
number of perfect fits emanating from l ; see Figure 9. Do the same for the other side

p1p2

lhh1h2h3

Figure 9. A picture of an infinite perfect fit or a perfect fit horoball. Here
l; h1; h3 are rays of Os and h; h2 are rays of Ou . The arrows indicate the
direction of the rays. l and h1 are not separated from each other in the
leaf space of Os and similarly for h1; h3 and also for h; h2 (leaf space of
Ou for the last 2). The figure is intended to continue indefinitely in both
horizontal directions. The bold paths p1;p2 are 2 steps in producing a
standard sequence for the ray l . p1 is a polygonal path of length 1 and p2

is a polygonal path of length 3 (we are only describing what happens in one
side of l ).

of l . The ensuing sequence .ai/ is an admissible sequence associated to the ray l . It
is called a standard sequence for the ray l of Os or Ou .

Remark If there are no perfect fits then .di/ as in Definition 3.8 is a standard sequence
for the ray l .

There are several other important remarks here and they concern only the case with
perfect fits. Along the way we will introduce the concepts of infinite perfect fits and
perfect fit horoballs. First notice that standard sequences for a given ray l are not
unique. By construction it is easy to see that the ai are convex, the rays of each ai

are not equivalent to each other and the sequence .ai/ is nested. To check whether zai

is escaping: If the ai have fixed length with i then it is easy to see this. Otherwise
notice that the collection of rays equivalent to a given ray escapes compact sets in O ,
in fact the whole leaves do. That is, if h1; h2; h3; h4; : : : are the leaves produced by
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the construction in the definition, then hj ; hjC2 are not separated from each other in
the respective leaf space. Then the sequence .hi/ escapes compact sets in O . So the
sequence .ai/ again escapes compact sets. Hence .ai/ is admissible. In addition hi

separates hk from hj for any k < i < j .

Infinite perfect fits and perfect fit horoballs In the case that the process above does
not stop we call the infinite collection of perfect fits an infinite perfect fit. Associated to
this one can define a model for a perfect fit horoball in O as follows: take the punctured
square Œ�1; 1�� Œ�1; 1��f0; 0g with its horizontal and vertical foliations and lift it to
its universal cover U . A proper, foliation respecting (horizontal goes to stable, vertical
goes to unstable) embedding of U into O gives an intuitive “neighborhood” of an
ideal point associated to an infinite perfect fit as above. Such points clearly seem to
have a “parabolic” feel as one suspects there is a covering translation which preserves
the perfect fit horoball and acts as a translation in the collection of the perfect fits. This
is in analogy with Kleinian groups.

Two important questions arise: Is this possible for pseudo-Anosov flows? Also is there
a nontrivial isotropy group of this infinite perfect fit structure and why does it not
contradict that the action of �1.M / is cocompact? First of all this phenomenon does
happen, in fact there are several examples, even for Anosov flows. The first one is the
seminal example of Franks and Williams [30] of an intransitive Anosov flow in a closed
3–manifold. There is a simple picture of an infinite perfect fit in the figure on page 164
of [30]. A second, also famous example, is that of the Bonatti–Langevin [6] example
of a transitive Anosov flow with a transverse torus and not conjugate to a suspension.
The structure in the universal cover of this example is briefly described in [24].

Once existence of infinite perfect fits is established, one wants to understand its struc-
ture. Notice that infinite perfect fits have in particular infinitely many pairs of leaves
nonseparated from each other. The author previously proved [24; 25] that up to covering
translations there are only finitely leaves of Os or Ou which are not separated from
another leaf in the respective leaf space. Hence given the collection .hj / produced
above so that hj forms a perfect fit with hjC1 , there are j 6Dk and g in �1.M / so that
g.hj /D hk . This implies that the infinite sequence of perfect fits is in fact a bi-infinite
sequence, that is, it extends indefinitely in the other direction as well. It also justifies
the terminology parabolic used above. In addition if z in Os , Ou is nonseparated
from another leaf, then the isotropy group of z is nontrivial [24; 25]. In particular this
is true of every hj . With a little more work this implies that associated to an infinite
perfect fit there is a Z2˚Z2 subgroup of �1.M / which leaves the whole structure
invariant. Hence if M is atoroidal, there can be no infinite sequence of perfect fits.
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Finally, given the association of parabolic behavior with noncompact manifolds, how
does this interact with the fact that M is compact? In the case of a hyperbolic 3–
manifold and a Z˚Z cusp, then geodesics escaping to the cusp are asymptotic. In the
case of pseudo-Anosov flows, suppose that leaves l; h of Os and Ou make a perfect
fit. We need to analyze the situation in �M , not O . Let then (say) L in zƒs which
projects to l in O and similarly H in zƒu projecting to h. Then L;H make a perfect
fit. But they are not asymptotic as points escape in L or H . If they were, then in
fact L and H would intersect because of the local product structure of ƒs; ƒu . In
particular L;H would not form a perfect fit. At this point it is useful to stress once
more that the orbit space O is a topological and dynamical object, but it is not a metric
object. Even though topologically it may seem that rays of Os;Ou making a perfect
fit are getting close, this can only be checked in �M , where in fact one sees that their
lifts are not getting close.

Lemma 3.9 Let l be a ray in Os or Ou and let C D .ci/ be a standard sequence
associated to l . Let AD .ai/ be an admissible sequence so that for any i , then zai [ ai

contains a ray equivalent to l . Then A� C .

Proof Suppose the lemma is not true and fix an i so that for any j , zaj 6� zci . Notice
first that by the definition of a standard sequence, then for any m (in particular for
mD i ) and for any ray s equivalent to l , then s has a subray s0 contained in zcm . Since
for any j , zaj \ aj contains such a ray s then zaj \ zci 6D ∅. If in addition zaj 6� zci ,
then as seen in the fundamental lemma, for j big enough, there is at least one ray
of ci which has a subray contained in zaj . By the fundamental lemma, after discarding
finitely many terms in .aj / there is a fixed ray r of .ci/ which for every j has a subray
contained in zaj . Notice that r and l are not equivalent. We conclude that every zcj

contains a subray of the fixed ray l and every zaj contains a subray of the fixed ray r .
Since for any j ;m, zcj \ zam 6D∅ this is disallowed by the fundamental lemma. This
finishes the proof of the lemma.

We now define ideal points of O .

Definition 3.10 Suppose that ˆ is not topologically conjugate to a suspension Anosov
flow. A point in @O or an ideal point of O is an equivalence class of admissible
sequences of polygonal paths. Let DDO[ @O .

Given R, an admissible sequence of polygonal paths, let xR be its equivalence class
under Š. Notice that each ray l in Os;Ou has admissible sequences and the these
sequences are all equivalent. In this way l defines a single point in @O which is
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denoted by @l . This is generalized in the following way: if l is a leaf of Os or Ou ,
then we denote by @l the collection of ideal points of rays of l . If l is a ray of Os;Ou

associated to an infinite perfect fit then @l is called a parabolic ideal point in @O . We
will see later that in this case @l is the unique fixed point of the action of some g in
�1.M / which acts in a “parabolic” way on @O .

Definition 3.11 (Master sequences) Let R be an admissible sequence. An admissible
sequence C defining xR is a master sequence for xR if for any B ŠR, then B � C .

Why master sequences? Ideal points are defined by admissible sequences of polygonal
paths and not by sequences of points in O . Given the admissible sequence .ai/ defining
an ideal point p , one intuitively expects that a fixed zai will at least limit on all points
of @O near p (the topology in O[ @O will be defined formally later). However this
is not the case. For example given l a ray in Os with no perfect fits associated to it,
consider a sequence of regular leaves di in Ou with di \ l escaping in l . Then .di/

defines the ideal point @l . Now fix a side of l and consider the rays of di � l in this
side of l . For each i , this ray, together with an appropriate subray of l forms a convex
polygonal path bi and defines an admissible sequence .bi/. Intuitively zbi is zdi cut in
half by a ray of l . Clearly .di/ and .bi/ are equivalent, so .bi/ also defines the same
ideal point. But a fixed zbi only accumulates on one side of l . The master sequences
are those .di/ for which an individual zdi “limits on both sides” of the ideal point.

Remark Recall that a cyclic order on a set B is a partition of the set of pairwise
distinct triples .p; q; r/ into two sets, called the “positive and negative triples”, such
that cyclic permutations in .p; q; r/ preserve the sign, noncyclic permutations reverse
the sign and if .p; q; r/ and .r; s;p/ are positive triples, then .q; r; s/ is also a positive
triple.

Definition 3.12 (Order of sets in O) Let C D fcig; i 2 I � Z be a collection of
properly embedded bi-infinite arcs in O so that there are components zci of O � ci

with fci [ zcig pairwise disjoint. Suppose that C is locally finite: any compact set
in O intersects only finitely many of the ci . Fix x 2O not in any ci [ di and choose
paths i from x to ci which are pairwise disjoint except for x . This is all possible
since O Š R2 . Then the germs of the collection fig at x put a cyclic order in the
collection fig and hence on C . This order is independent of x or the paths i . If
all zci miss a fixed properly embedded infinite arc  starting at x , then there is a linear
order in C . The linear order depends on the path  .

Lemma 3.13 Given an admissible sequence R, there is a master sequence for xR.
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Proof Case 1 Suppose that for any AD .ai/; B D .bi/ in xR and for any i; j then
zai \
zbj 6D∅.

We claim that in this case any AŠR will serve as a master sequence. That is we do
not have the situation described above were one slices through the admissible regions
using a fixed ray of Os or Ou . Choose AŠR and let B ŠR. We want to show that
B �A. So by way of contradiction,

(�) assume that there is i so that for any j ; zbj 6� zai :

This also works for any k� i , but we will fix i from now on in Case 1. The contradiction
will be obtained by first showing that (�) implies that A is associated to an ideal point
of a ray of Os or Ou and then producing two admissible sequences in xR which fail
the hypothesis of Case 1.

In Case 1, zbj \zai is not empty for any j . Let u; v be the rays of ai . Since zbj escapes
compact sets in O as j !1, so does zbj \zai . The arguments of Lemma 3.7, referring
to Figure 7(a); show that zai [ ai cannot contain subrays of both rays in bj and in
fact for j big enough, then zbj contains at least one subray u or v and no singular
point. This implies that ai cuts zbj into at most 3 noncompact regions (all of which
are convex): at most one region contained in zai and at least one and at most 2 disjoint
from zai . The regions are convex because one can assume j is big enough so that the
bj \ ai does not contain any singularity. Up to discarding finitely many terms we may
assume that one region contains in its boundary a subray of (say) u. Call this region zcj

with boundary cj .

There are 2 possibilities: (i) For j big enough, the region zcj disappears, that is, there is
no such region with a subray u in the boundary. In that case there is another region zdj

of zbj cut along ai disjoint from zai and containing a subray of v in the boundary. If
zdj also eventually disappears, then some zbk is contained in zai , contrary to assumption
in this argument. So at least one of .zcj /, . zdj / is always nonempty. This reduces to the
following: (ii) (say) zcj is never empty for any j . Then zbj contains a subray of u for
any j . Let E D .ek/ be a standard sequence associated with the ray u. Eliminating
finitely many initial terms of E if necessary we can assume that u cuts every zek into
two components zfk and zgk , which are convex, with boundaries fk and gk respectively
and defining admissible sequences F D .fk/ and GD .gk/. Assume that zfk\zai D∅
for all k . Clearly F �E;G �E and zfk \ zgk D∅.

Suppose that for some m > i , am does not have a ray equivalent to u. Fix this m.
Notice that zbj contains a subray of a fixed ray of am and also a fixed subray of u (this
is a ray of ai with i fixed). This is now disallowed by the fundamental lemma.
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The remaining possibility in this case is that am always has a ray equivalent to u for
any m. By Lemma 3.9 it follows that A�E and so RŠAŠE Š F Š G . Hence
in xR there are F D .fk/, G D .gk/ with zfk \ zgk D∅ for some k . This contradicts
the hypothesis in Case 1 and implies that A is a master sequence for xR.

Case 2 There are A;B in xR and i so that zai ; zbi are disjoint.

Fix this i . In particular zak ; zbk are disjoint for k � i . Let C be an admissible sequence
with A � C; B � C . We claim that C is a master sequence for the class xR. Let
DŠA. Suppose that D 6�C . Hence there is m so that zdj 6� zcm for any j . Fix this m.
There are two options: (i) There is k with zdk \ zck D∅. (ii) For any k , zdk \ zck 6D∅,
in which case zdk \ zcj 6D∅ for any k; j .

In Subcase (i) up to deleting a few initial terms we may assume that zd1\ zc1 D∅. We
have A Š B Š D with zai ; zbi ; zdi disjoint. Choose E D .ej / with C � E;D � E .
Assume for simplicity that i is big enough so that zai ; zbi ; zdi are contained in ze1 . This
puts a linear order in ai ; bi ; di and we can assume without loss of generality that bi

is between ai and di . Since bi is between ai and di then: for any j , zej contains
subrays of the rays of bi (with i fixed!), which are not equivalent. The fundamental
Lemma 3.6 implies this is impossible.

We now consider option (ii). Since zai [ai and zbi [bi are disjoint and A�C;B �C ,
then there is a ray u of ai and a ray v of bi so that for any j , zcj contains subrays
of u and v . A priori u; v can be equivalent. Since zdj is not contained in zcm but has
to intersect zcm , we may assume up to eliminating a few initial terms that zdj always
contains a subray of a fixed ray y of cm . The rays y;u are not equivalent. Since
zdj \ zck 6D ∅ for any k; j , this contradicts the fundamental lemma. So this cannot
happen either.

We conclude that C is a master sequence for xR, finishing the proof of Lemma 3.13.

By definition for any 2 master sequences A;B in the class xR, it follows that both
A� B and B �A hold.

Lemma 3.14 Let p; q in @O . Then p; q are distinct if and only if there are master se-
quences AD .ai/;BD .bi/ associated to p; q respectively with .ai[zai/\.bj[

zbj /D∅
for some i; j .

Proof We first show that p; q are distinct if and only if there are master sequences
AD .ai/;B D .bi/, so that for some i; j , zai \

zbj D∅. In the proof we show that the
negations are equivalent. First suppose that p D q . Let A;B be any master sequences
associated to p D q . Then since A;B are master sequences associated to the same
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equivalence class then A� B and B �A. Therefore we can never have zai \
zbj D∅.

This is the easy implication.

To prove the converse, suppose that for any master sequences AD .ai/ and B D .bi/

associated to p; q respectively and any i; j then zai \
zbj 6D∅. Let A;B be such a pair.

Suppose first that for all i , zai \
zbi has 2 noncompact components. Then an argument

similar to one in the proof of Lemma 3.13 shows that there are nonequivalent rays u; v

with subrays contained in each zai \
zbi . This is disallowed by the fundamental lemma.

Similarly if zai \
zbi has a component with 4 boundary rays for infinitely many i . On

the other hand, zbi \zaj can never be contained in a compact set or else for some i 0 > i

then zaj \
zbi0 D ∅. One concludes that zai \

zbi eventually has a single noncompact
component. Let zci be this component of zai\

zbi and let ci D @zci . Let C D .ci/. Clearly
ci is convex and .ci/ is nested. But a priori, C may not be admissible, that is, the
boundary rays may be equivalent. Notice that the rays in ci are subrays of rays of ai

or bi .

The first case is that the rays of ci are not equivalent for any i . Then ci is a convex
polygonal path, nonempty and C is an admissible sequence. Also C � A; C � B ,
which implies that AŠ C Š B and hence p D q .

The second case is that there is i so that the rays u; v of ci are equivalent. Notice this can
only happen if there are perfect fits. There is a collection Y D fu0 D u;u1; : : : ;un D

vg of rays of Ou;Os so that uk ;ukC1 make a perfect fit for every k . Since the
sequence .zcj / is nested with j , the rays of cj for j > j0 have to be in the collection
Y . Up to subsequence we can assume they are all subrays of fixed rays r; l . Notice that
r 6D l , or else zbj \ zaj D∅ for some j > i . Since r; l are equivalent they cannot both
be rays of aj (or both of bj either). Hence up to renaming objects, aj has a subray in
r and bj has a subray in l , for all j > i ; see Figure 10.

aj
bj

dj

zej

zej zej

l r

xj
zj

Figure 10. Interpolating chains that intersect to produce a new convex chain

Let zj D aj \ l , xj D r \ bj . As in the proof of the fundamental lemma notice that
zbj contains a subray of r and zaj contains a subray of l . Then zj escapes in l and
xj escapes in r . Let a0j be the component of aj � zj not containing a subray of r
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and b0j the component of bj �xj not containing a subray of l . The above implies that
we can connect zj ;xj by a finite convex polygonal path dj which extends a0j [ b0j
to a convex polygonal path ej . see Figure 10. This is because l; r are connected by
finitely many perfect fits. If zj ;xj are very deep in the rays l; r then we can always
connect zj and xj by a convex polygonal path. Notice that aj has a subray of r so
it goes to r , but aj may reach r in a point different than xj . If we just connect this
to xj and then follow along bj this will produce a nonconvex switch in r . That is why
we use the interpolating polygonal path dj . Then the polygonal paths ej are convex
and one can construct the interpolating polygonal path dj so that ej escapes compact
sets as j !1. Then E D .ej / defines an admissible sequence of chains. Clearly
A�E and B �E so that AŠ B and again p D q .

This finishes the equivalence with the intersection condition on open sets. Finally
suppose that zai \

zbi D∅ for all sufficiently big i , but .ai [ zai/\ .bi [
zbi/ 6D∅ for

any i . This can only happen if there is a ray l of Os or Ou so that both ai and bi

have a subray of l . Let C D .ci/ be a standard sequence for l . By Lemma 3.9, A�C

and B � C , so AŠ B and p D q . This proves the lemma.

We now define the topology in DDO[ @O .

Definition 3.15 (Topology in D D O [ @O) Let T be the set of subsets U of
DDO[ @O satisfying the following two conditions:

(a) U \O is open in O .

(b) If p is in U \ @O and AD .ai/ is any master sequence associated to p , then
there is i0 satisfying two conditions: (1) zai0

� U \O and (2) For any z in @O ,
if it admits a master sequence B D .bi/ so that for some j0 , one has zbj0

� zai0

then z is in U .

First notice that if the second requirement works for a master sequence AD .ai/ with
index i0 , then for any other master sequence C D .ck/ defining p , we can choose k0

with zck0
�zai0

. Then zck0
�U . A point q of @O which has a master sequence BD .bj /

and j0 so that
zbj0
� zck0

I then zbj0
� zai0

so q is in U . Therefore (b) works for C instead of A with k0 instead of i0 . So we
only need to check the requirements for a single master sequence.

Lemma 3.16 T is a topology in DDO[ @O .
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Proof Clearly D;∅ are in T . Unions: If fV˛ j ˛ 2 Ag is a family of sets in T ,
then let V be their union. If x is in V and x is in O , there is open set O in O with
x 2 O � V˛ � V for some index ˛ , hence satisfying condition (a). Let now p in
V \ @O . There is ˇ 2A with p 2 Vˇ . Let AD .ai/ be a master sequence associated
to p . There is i0 with

zai0
� Vˇ \O � V \O �O:

In addition if q 2 @O and q has a master sequence B D fbj g and j0 with zbj0
� zai0

then q is in Vˇ � V . Hence this i0 works for V as well. This proves that V is in T .

Intersections: Let V1;V2 be in T and V D V1 \ V2 . Clearly V1 \ V2 \O is open
in O . Let u 2 V1\V2\@O . Given a master sequence AD .ai/ associated to u there
is i1 with zai1

� V1 and if q has master sequence B D .bj / with zbj0
� zai1

then q is
in V1 . Similarly considering u 2 V2 , there is index i2 satisfying the conditions for V2 .
Let i0 D max.i1; i2/. Then zai0

is contained in V1 and V2 (since zai are nested). If
now q in @O has a master sequence B D .bj / with zbj0

� zai0
for some j0 then q is

in V1 and is in V2 by choice of i1; i2 . Therefore q is in V . Hence V is in T . This
shows T is a topology in O[ @O .

Action of �1.M / on DDO[@O One key remark is that the action of �1.M / on O
preserves the foliations Os;Ou and sends convex polygonal paths to convex polygonal
paths. If follows that �1.M / acts by homeomorphisms on D .

Lemma 3.17 Suppose �1.M / preserves orientation in O . Then @O has a natural
cyclic order.

Proof Let p; q; r in @O pairwise distinct points. By Lemma 3.14, there are mas-
ter sequences A D .ai/;B D .bi/;C D .ci/ associated to p; q; r respectively with
a1[ za1; b1[

zb1; c1[ zc1 pairwise disjoint. By Definition 3.12 there is a cyclic order
on a1; b1; c1 . This defines a cyclic order on p; q; r . This is independent of the choice
of master sequences (since they are all equivalent). This order is also invariant under
the action of �1.M / on O , since �1.M / preserves orientation in O . This defines a
natural cyclic order in @O .

In general let E be the index 2 subgroup of �1.M / preserving orientation of O . Then
E preserves a cyclic order in @O and the elements in �1.M /� E reverse this cyclic
order.

In any case pick one orientation in O that defines a cyclic order in @O (invariant only
under E ).
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Definition 3.18 (The set Uc ) For any convex polygonal path c there is an associated
open set Uc of D : let zc be the corresponding convex set of O (if c has length 1 there
are two possibilities). Let

Uc D zc [ fx 2 @O j there is a master sequence AD .ai/ with za1 � zc g:

It is easy to verify that Uc is always an open set in D . In particular it is an open
neighborhood of any point in Uc \ @O . The rays of c are equivalent if and only if Uc

is contained in O . The notation Uc will be used from now on.

Given a cyclic order in O and p; q distinct in @O , let

.p; q/ WD fx 2 @O j .p;x; q/ is positive in the cyclic order of O g:

This is the interval from p to q in the cyclic order. Notice that if one changes the
cyclic ordering then .p; q/ of the new cyclic order is .q;p/ of the old cyclic order. So
the collection of intervals is independent of the order. Let Z be the topology in @O
generated by the intervals. Given t in .p; q/ there is a master sequence AD .ai/ for t

with Ua1
\@O� .p; q/. Hence .p; q/ is open in the topology of @O . Conversely if T

is open in @O and t 2 T , there is a master sequence AD .ai/ satisfying property (b)
of definition of the topology in @O , so that Ua1

\ @O � T . The endpoints of the rays
of a1 are p; q and then t 2 .p; q/� T . So the interval topology is exactly the induced
topology in @O .

Lemma 3.19 D is Hausdorff.

Proof Any two points in O are separated from each other. If p; q are distinct in @O
choose master sequences AD .ai/ and B D .bi/, where za1 \

zb1 D ∅. Let Ua1
be

the open set of D associated to a1 and Ub1
associated to b1 . By definition Ua1

is an
open neighborhood of p and likewise Ub1

for q . They are disjoint open sets of D .

Finally if p is in O and q is in @O , choose U a neighborhood of q coming from a
master sequence as above so that U\O does not have p in its closure – always possible
because master sequences are escaping sets. Hence there are disjoint neighborhoods
of p , q .

Our goal is to show that @O is homeomorphic to S1 and that D is homeomorphic to a
closed disk. We need a few simple results:

Lemma 3.20 For any ray l of Os or Ou , there is an associated point in @O . Two
rays generate the same point of O if and only if the rays are equivalent (as rays!).
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Proof Given a ray l any standard sequence .ci/ associated to it defines a point in @O .
Let r; l be rays of Os;Ou . If they define the same point of @O , then there is a master
sequence C D .ci/ for this point. Since both standard sequences associated to r; l

are � C , it follows that every zci contains subrays of both l; r . By the fundamental
lemma (where we use EDF DC in that lemma), this occurs if and only if the rays r; l

are equivalent.

Lemma 3.21 Suppose that A D .ai/ is an admissible sequence of polygonal paths
and that every ai contains a subray of a fixed ray l of Os or Ou . Then A is associated
to the ideal point @l of l and A is not a master sequence for the point @l of @O .

Proof The point @l was defined just before Definition 3.11. The first statement was
proved in Lemma 3.9. For the second statement, notice that each zai is contained in a
fixed side of O� l . Choose a standard sequence B associated to l and cut it along l .
Let C be the admissible sequence produced so that zc1\ za1 D∅. This shows that A

is not a master sequence for @l .

Lemma 3.22 Let AD .ai/ be an admissible sequence defining a point p in @O . Then
one of the following mutually exclusive possibilities occurs:

(i) There are infinitely many i in N and for each such i there is a ray li of ai which
is equivalent to a fixed ray l of Os or Ou . Then p is the ideal point of any of
the li and A is not a master sequence for p . In fact in this case the hypothesis is
true for any i sufficiently big.

(ii) There are only finitely many rays of paths in the collection faig which are
equivalent to any given ray of Os or Ou . In this case A is a master sequence
for p .

Proof Most of part (i) was proved in Lemma 3.9. The zai are nested and hence the
rays of ai are split into two sequences .ri/; .li/ each of which is also “nested”. It is
easy to check that only elements of one of the sequences can be equivalent to l . But if
(say) ri and rj (with j > i ) are both equivalent to l , then rk is equivalent to l for
any i < k < j . Hence the ri are equivalent to p for any sufficiently big i . It does not
follow however that for any big i; j , ri and rj share a subray. This is because there
may be an infinite perfect fit, so the rays ri can change with i escaping in the horoball
model of an infinite perfect fit. Finally a standard sequence for the ray l and cutting
shows that A is not a master sequence for @l . This proves (i).

To prove part (ii), let AD .ai/ be an admissible sequence so that there are only finitely
many rays of .ai/ which are equivalent to any given ray of Os or Ou . Suppose by
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way of contradiction that A is not a master sequence for p , so there is B Š A and
B 6�A. Fix some n so that for no j , zbj � zan . Hence this is true for any n0 > n.

The first possibility is there are i; j , with zbj \ zai D∅. let E D .ek/ be an admissible
sequence with A�E;B �E . Choose k > i; j , hence zbk \ zak D∅ and so that ak

does not have any rays equivalent to any rays of ai . Then any zem , m � k contains
a fixed subray of bk and a fixed subray of ak and they are not equivalent by choice
of k . This is disallowed by the fundamental lemma.

The second possibility is that zbj \ zai 6D ∅ for any i; j . Fix k > n so that ak does
not have any ray equivalent to a ray of an . If the 2 rays of bj have subrays contained
in zan[ an then zbj � .zaj [ aj / is contained in a compact set of O and as seen before
this implies that for some t > j , then zbt � zan , contrary to choice of n in part (ii). We
conclude that for any sufficiently big m, zbm[ bm is not contained in zan[ an but has
to intersect zak . This implies that for big m, zbm has to contain a subray of a ray of an

and a subray of a ray of ak . Again this is disallowed by the fundamental lemma. This
finishes the proof of the lemma.

Lemma 3.23 The space D is first countable.

Proof Let p be a point in D . The result is clear if p is in O so suppose that p is
in @O . Let ADfaig be a master sequence associated to p . We claim that fUai

; i 2Ng
is a neighborhood basis at p . Let U be an open set containing p . By Definition 3.15
there is i0 with zai0

� U and if z in @O admits a master sequence B D .bi/ so that
for some j0 then zbj0

� zai0
, then z is in U . By the definition of Uai0

, it follows that
Uai0
� U . Hence the collection fUai

; i 2 Ng forms a neighborhood basis at p .

More importantly we have the following:

Lemma 3.24 The space DDO[ @O is second countable.

Proof We first construct a candidate for a countable basis. Since O is homeomorphic
to R2 it has a countable basis B1 . Let Z D fl j l is a periodic leaf of Os [Oug. Let

B2 D fUbi
j bi 2 B D .bi/;B admissible; bi has all sides contained in leaves inZg:

There are countably many leaves in Z and so countably many intersections of these
leaves. Since any polygonal path is a union of a finite number of sides, it now follows
that B2 is a countable collection of open sets in D . We want to show that BDB1[B2

is a basis for the topology in D .
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Let p in D and V open set in D containing p . If p is in O there is U in B1 with
p 2U � V . Suppose then that p is in @O . Choose AD .ai/ a master sequence for p .
According to Definition 3.15 there is j with Uaj

� V .

We now modify the sides of the aj to a convex polygonal path with sides in Z . The
sides of aj in periodic leaves are left unchanged. A side in a nonperiodic leaf is pushed
slightly in the direction of zaj to a periodic leaf. Notice that the union of periodic
leaves of Os (or Ou ) is dense in O . The proof is done in 2 steps. First we do this
for the finite sides. The obstruction to pushing in a side of aj , still intersecting the
same adjacent sides is that there is a singularity in this side. But then this segment is
already in a periodic leaf and we leave it unchanged. Do this for all finite sides of ai

to produce a new polygonal path bi . Do this for all i . Given i , then since aj escapes
in O with increasing j , then the finite segments of aj are eventually contained in zbi .
Hence the finite segments of bj are contained in zbi . One can then take a subsequence
of the .bi/ so that B D .bi/ is nested. The bi are convex and also .bi/ is eventually
nested with the .ai/. This implies that B D .bi/ is also a master sequence for p .

The second step is to modify the rays of B D .bi/ to be in periodic leaves. Given i ,
consider one ray l of bi and lt ; t � 0 leaves of the same foliation as l , with lt

converging to l as t! 0. In addition the lt intersect the side of bi adjacent to l . Note
that this intersection of l and the adjacent side is not a singular point, otherwise l is
periodic and we do not need to change it. If the lt converges to another leaf (in zbi or
not) besides l , then l is in a non-Hausdorff leaf and Theorem 2.6 implies that l is in
a periodic leaf and again we leave l as is. So we may assume that as t ! 0 then lt

converges only to the leaf of Os or Ou containing l . There is ji > i so that l does
not have a subray which is a side of bji

, otherwise B D .bj / would not be a master
sequence, by Lemma 3.22. Then there is t sufficiently small so that lt separates l

from bji
. This is true because lt does not converge to any other leaf besides l . Choose

also one t for which lt is a periodic leaf and replace the ray l of bi by this ray of lt .
After doing this to both rays of bi this produces a convex polygonal path .ci/. For
each i then zbji

� zci , so zcji
� zci . So after taking a subsequence C D .cn/ is nested.

By the above, C Š B and C is a master sequence for p .

Hence we can find n with Ucn
� V . But all the sides of cn are periodic. This shows

that B is a basis for the topology of D and finishes the proof of the lemma.

Next we show that D is a regular space, which will imply that D is metrizable.

Lemma 3.25 The space D is a regular space.
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Proof Let p be a point in D and V be a closed set not containing p . Suppose first
that p is in O . Here V c is an open set with p in V c , so there are open disks D1;D2

in O , so that p 2D1 �
xD1 �D2 � V c , producing disjoint neighborhoods D1 of p

and .D2/
c of V .

Suppose now that p is in @O . Since p is not in the closed set V , there is an open set O

of D containing p and disjoint from V . Let AD .ai/ be a master sequence associated
to p . Then there is i0 so that Uai0

defined above is contained in O . We claim that
the closure of zai0

in D is Ui0
union ai0

plus the two ideal points of the rays in ai0
.

Clearly the closure of zai0
in D intersected with O is obtained by just adjoining ai0

.
An ideal points of a ray l of ai is clearly in the closure as any neighborhood of it
contains a subray of l . Any other point p in @O , if it is in Uai0

, then it is in the
closure of zai0

. If p is not in Ui0
and is not an ideal point of ai0

then find a master
sequence for p disjoint from master sequences of both ideal points of ai0

and hence
disjoint from Ui0

. Hence p is not in the closure of zai0
. This proves the claim.

Choose j big enough so that the rays of aj are not equivalent to any ray of ai0
, again

possible by Lemma 3.22. By the above it follows that the closure of zaj is contained
in Uai0

, hence
p 2 Uaj

� closure.zaj /� Uai0
�O � V c :

This proves that D is regular.

Corollary 3.26 The space D is metrizable.

Proof Since D is second countable and regular, the Urysohn metrization theorem
(see [51, page 215]) implies that D is metrizable.

Therefore in order to prove that D is compact it suffices to show that any sequence
in D has a convergent subsequence. But it is quite tricky to get a handle on an arbitrary
sequence of points in O or in @O and the proof that D is compact is hard. This
is the key property of D . We first analyze one case which seems very special, but
which in fact implies the general case without much additional work. Its proof is very
involved because there are many cases to consider. First a preliminary result involving
nonseparated leaves. By Theorem 2.6 this does not occur in the case without perfect fits.

Lemma 3.27 Let fEigi2Z be leaves of (say) Os which are all nonseparated from each
other and ordered as in Theorem 2.6. Associated to this collection there are two ideal
points of O , one for .Ei/ with i converging to infinity and another one for .Ei/ with
i converging to minus infinity. A master sequence for any one of them is obtained with
polygonal paths with length 2.
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Proof As explained in the end of Section 2, the collection fEig is part of the boundary
of a scalloped region S . We will follow the notation from that section. The region S
is the union of infinitely many lozenges Ai and parts of their boundaries so that a
half leaf of Ei is contained in the boundary of A2i and another half leaf of Ei is
contained in the boundary of A2i�1 . The lozenges Ai and AiC1 are adjacent for any
i 2 Z and they all intersect a single stable leaf C . This is depicted in Figure 3. Let
i be the periodic orbits in Ei . The collection of lozenges fAig also creates another
bi-infinite collection fGig; i 2 Z of leaves of Os , all of which are nonseparated from
each other and Gi has a half leaf in the boundary of A2i and another half leaf in the
boundary of A2iC1 . Let ıi be the periodic orbit in Gi . The boundary of S also has two
bi-infinite collections of nonseparated leaves from Ou : fSj gj2Z and fTj gj2Z . These
are chosen so that �W u.i/ converges to fSj g when i !1 and �W u.i/ converges
to fTj g when i ! �1. In addition Sj has a periodic orbit �j and we choose the
indexing so that �W s.�j / converges to fEig when i ! 1 and �W s.�j / converges
to fGig when i !�1. The collections fGig; fSj g are ordered with increasing i; j ;
see also Theorem 2.6.

Now we define the ideal point associated to fEigi2Z when i converges to 1. For each
positive i choose rays ai in Ou , bi in Os which intersect only in their starting point
ui which is a point in S and ai intersects Ei and bi intersects Si ; see Figure 11(a).
Let di D ai [ bi , let zdi be the component of O � di which contains Ek for k > i

(a) (b)
e1 e2

ai

ei

bi si

g

l1 l2

x

b˛

bˇ

Figure 11. (a) Infinitely many nonseparated leaves converge to a single ideal
point. (b) A more interesting situation

and Sk for k > i . The di are polygonal paths of length 2. It follows that di is convex
for zdi . This uses the particular ordering in fEig; fSj g described above and it also
follows that .di/ is a nested sequence of polygonal paths.

In the explicit model (V ) for a scalloped region given in the end of Section 2 we can
choose
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Notice that the ray ai of Ou is clearly not contained in xS , only the part contained in xS
has a description in the explicit model. Similarly the ray bi of Os is not contained
in xS . It remains to check that the sequence .di/ escapes compact sets in O as i!1.
In the explicit model the ai are subsets of the leaves �W u.i/. Any point in the limit
of the sequence . �W u.i// is nonseparated from the fSj gj2Z and hence has to be in
one of the Sj . It follows that the part of ai outside xS escapes compact sets in O . By
construction the sequence made up of the parts of ai in xS also does not limit in O ,
hence .ai/ escapes compact sets in O . The same is true for .bi/ so .di/ escapes
compact sets in O and so D D .di/ is admissible and defines an ideal point p of O .
This p is associated to the positive infinite direction of the fEigi2Z . By Lemma 3.22,
D is a master sequence. Similarly associated to the negative direction of the fEig

there is another ideal point q of O .

An ideal point p associated to infinitely many nonseparated leaves or equivalently to a
scalloped region is called a corner of the scalloped region.

The technical lemma in the special case is the following:

Lemma 3.28 Let .li/; i 2 N be a sequence of line leaves of Os (or Ou ) and let zi

in li . Suppose that for each i the set O� li has a component Ci so that each Ci [ li
contains Os.zi/ and also that the collection fCi [ lig is pairwise disjoint. Suppose
that the ordering of li (see Definition 3.12) is chosen so that the li are linearly ordered
with i . Then in D , the sequence .Ci [ li/ converges to a point p in @O .

Proof The proof of this lemma is very involved because there are many possibilities
and many places where the leaves li can slip through.

Suppose that li is always in Os as other cases are similar. If the li does not escape
compact sets in O when i !1 then there are ik and zik

in lik
with zik

converging
to a point z . But then the Cik

cannot all be disjoint, contradiction. Hence the .li/
escapes in O .

First notice that because the collection flig is linearly ordered with i , then if a subse-
quence .lik

[Cik
/ converges to p in D , then the full sequence .li[Ci/ also converges

to p in D . Choose zi in li .

Case 1 There is an infinite subsequence of the .lj /, which we may assume is the origi-
nal sequence so that lj are all nonseparated from l1 (in particular there are perfect fits).

Then the flj ; j 2Ng forms a subcollection of a collection fzigi2Z of nonseparated leaves
of Os as in Lemma 3.27. Hence we can find aj ; bj as in the previous lemma and for
any i , li intersects aji

where ji goes to infinity with i . As in the lemma let dj Daj[bj
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and DD .dj /. Then D is a master sequence defining a point p in @O . In addition given
any j then for i big enough li is contained in zdj . Hence li [Ci converges to p in D .

Case 2 Up to subsequence, for any distinct i; j , the li is separated from lj .

Let V DO�
S

i2N.Ci [ li/, an open set in O . The procedure will be to inductively
construct leaves gn so that either the sequence .gn/; n 2 N is nested with n and
escapes compact sets in O or is a sequence of nonseparated leaves. There are various
possibilities for the limiting behavior of .gj / which will eventually lead to a proof that
.li [Ci/ converges in D .

Given x in O consider the line leaves b of Os which separate x from ALL of the li .
For example given y not in the union of li[Ci , then Os.y/ is disjoint from this union
– this is because no prong of Os.zi/ is contained in V . For any x in a complementary
region of Os.y/ not intersecting this union will have such line leaves b . A singular
leaf has at most two line leaves with this property. The collection of line leaves b as
above is clearly ordered by separation properties so we can index then as fb˛ j ˛ 2 J g

where J is an index set. Put an order in J so that ˛ < ˇ if and only if b˛ separates
some point in bˇ from x . Equivalently bˇ separates some point in b˛ from x . Two
such line leaves in the same stable leaf may share the singular point or a half leaf. Since
the b˛ cannot escape O as ˛ increases (they are bounded by all the li ) then the fb˛g
limits to a collection of leaves of Os as ˛ grows without bound.

There are 2 options: (1) There are infinitely many line leaves sn of Os in the limit of
the b˛ so that for each n there is in with sn either equal to lin

or separating lin
from

every b˛ . (2) There is one line leaf s of Os in the limit of the b˛ so that this single s

separates infinitely many of the li from all of the g˛ . Notice that only option (2) can
happen when there are no perfect fits.

Consider first option (1). The collection of leaves nonseparated from the sn is infinite.
Because the li are ordered it now follows that each sn can separate only finitely many
of the li from all of the b˛ . Let p be the ideal point given by Lemma 3.27 associated
to the direction of the sn with n increasing. The proof of Lemma 3.27 implies that
.li [Ci/ converges to p .

Now consider option (2). Let g0 D s . The leaf t of Os containing s may have
singularities. By the condition of pairwise disjointness of the li [Ci , there is a single
line leaf g1 of t with a complementary component o1 in O which contains li for all
i � i0 . We will restart the process with the flig; i � i0 , instead of the original sequence.
We will remember g0 and the leaf g1 which separates x from all li [Ci , i � i0 .

Restart the process as follows. Throw out all the leaves until li0
and redo the process.

This iterative process produces .gj /; j 2 N which is a weakly nested sequence of line
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leaves. We explain the weak behavior. For instance in the first case, after throwing
out l1 (or whatever first leaf was still present), it may be that only g1 is a slice which
separates x from all other li ; see Figure 12(b). In that case g2 D g1 . So the gj may
be equal, but they are weakly monotone with j .

If the .gj / escapes in O with j then it defines a point p in @O . Since each gj

separates infinitely many li from x we quickly obtain as before that the li converge
to the point p in @O .

Suppose then that the .gj / does not escape in O . The first option is that there are
infinitely many distinct gj . Up to taking a subsequence assume all gj are distinct and
let gj converge to H D[hk , a collection of line leaves of Os . By construction, for
each j0 , the gj0

separates some li from x but for a bigger j , the gj does not separate li
from x ; see Figure 12(a). Also, for each i there is some j so that gj separates li
from x . In particular there is a component of O�H which contains all the li .

(a) (b)
li

An

r vi v2v1
h1 h2

gj

gj0
g

r

l1 l2 l3 l4

Figure 12. (a) Forcing convergence on one side (b) The case that all gj are equal.

We analyze the case there are finitely many line leaves of Os in H , the other case being
similar. As seen in Theorem 2.6 the set of leaves in H is ordered and we choose h1

to be the leaf closest to the li . Also there is a ray r of l which points in the direction
of the li ; see Figure 12(a). Let p be the ideal point of r in @O . We want to show that
li [Ci converges to p .

Choose points vn in r converging to p . For each n then Ou.vn/ intersects gj for j big
enough, since the sequence gj converges to H . Choose one such gj.n/ with j .n/

converging to infinity with n. We consider a convex set An of O bounded by a subray
of r starting at vn , a segment in Ou.vn/ between h1 and gj.n/ and a ray in gj.n/

starting in gj.n/\Ou.vn/ and going in the direction of the li ; see Figure 12(a). We
can choose j .n/ so that the .An/; n 2 N forms a nested sequence. Let an D @An .
Since h1 is the first element of H it follows that .an/ escapes compact sets in O and
clearly it converges to p in O[ @O . For each n and associated j , there is i0 so that
for i > i0 then gj separates li from x . If follows that li [Ci is contained in An and
therefore .li [Ci/ converges to p in D . This finishes the proof in this case.
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If H is infinite let H D fhk ; k 2 Zg with k increasing as hk moves in the direction
of the li . Then hi converges to a point p 2O . A similar analysis as in the case that
H is finite shows that .li [Ci/ converges to p in D . Use the convex chains aj [ bj

as described in Lemma 3.27.

The final case to be considered is that up to subsequence all gi are equal and let g be this
leaf. In particular no li is equal to g . This can certainly occur as shown in Figure 12(b).
If we remove finitely many of the li , then g is still the farthest leaf separating x from
all the remaining li . Notice also that g is a line leaf on the side containing all the li .

Consider the collection of leaves B of Os nonseparated from g in the side of g

containing the li . Let W be the component of O�B which accumulates on all of B
if B 6D fgg and otherwise let W be the component of O�fgg not containing x .

One possibility is that there are infinitely many i so that li is separated from g by an
element in B . Here we have 2 options. The first option is that there are infinitely many
distinct elements e in B for which there is some li with e separating li from g ; see
Figure 13(a). Since the li are nested then as seen before this implies that the li [Ci

converge to some p in @O . The second option here is that there is some fixed h0 in B
which separates infinitely many li from g . As the sequence .li/ is nested, this is true
for all i � i0 for some i0 . But then h0 would eventually take the place of g in the
iterative process, that is, some gk D h0 instead of gk D g . Then gk is not eventually
constant and this was dealt with previously.

p l4 l3 l2
g

l1 l2

g h

h0

a r

r1

r2

s

(a) (b)

Figure 13. (a) The li flip to the other side of a leaf nonseparated from g (b)
Convex neighborhood disjoint from all

The remaining case is that after throwing out a few initial terms we may assume that all li
are contained W ; see Figure 13(b). Fix an embedded arc  from g to l1 intersecting
them only in boundary points and not intersecting any other li . Let T be the component
of O� .g[  [ l1/ containing all other li . Put an order in B so that elements of B
contained in T are bigger than g in this order. For simplicity assume that B is finite.
The case where there are infinitely many leaves nonseparated from g on that side is
very similar with proof left to the reader. Let h be the biggest element of B , which
could be g itself. Let r be the ray of h associated to the increasing direction of the li
and let p in @O be the ideal point of r . We want to show that .li[Ci/ converges to p .

Let A be an arbitrary convex neighborhood of p in D bounded by a convex chain
a; see Figure 13(b). If A is small enough then a has a ray r1 contained in T . The
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rays r; r1 are not equivalent. Let h0 be a leaf of Os in W sufficiently close to g .
Because h is the biggest element in the ordered set B then h0 has to have a ray contained
in A. For h0 close enough to g , since the li are in T , then for some i0 the leaf h0

separates li ; 1� i � i0 , from g and hence from x . By the maximality property of g ,
then for some j the leaf h0 does not separate lj from g . Since lj is in T this forces lj
to be contained in A. As the fli ; i 2 Ng forms an ordered collection this forces li to
be contained in A for all i � j . Since A was an arbitrary neighborhood of p this
shows that .li [Ci/ converges to p in D .

This finishes the proof of Lemma 3.28.

Proposition 3.29 The space D is compact.

Proof Since D is metrizable, it suffices to consider the behavior of an arbitrary
sequence zi in D . We analyze all possibilities and in each case show there is a
convergent subsequence.

Up to taking subsequences there are 2 cases:

Case 1 Assume the zi are all in O .

If there is a subsequence of zi in a compact set of O , then there is a convergent
subsequence as OŠ R2 . So assume from now on that zi escapes compact sets in O .
Let bi D Os.zi/. Suppose first there is a subsequence .bik

/ converging to b and
assume that all bik

are in one sector of b or in b itself. If a subsequence of .bik
/ is

constant and hence equal to b then up to another subsequence the zi converges in D
to one of the ideal points of b , done. Otherwise a small transversal to b in a regular
unstable leaf intersects bik

for k big enough and up to subsequence assume all zik

are in one side of that unstable leaf. Suppose for simplicity there are only finitely
many leaves nonseparated from b in the side containing the bi . Let b0 be the last one
nonseparated from b in the side the bik

are in and let p be the ideal point of b0 in
that direction. The argument is similar to one in Case 2 of Lemma 3.28: let vn in b0

converging to p in @O with Ou.vn/ regular. Choose a convex polygonal path an made
up of the ray in b0 starting in vn and converging to p , then the segment in Ou.vn/

from vn to Ou.vn/\ bik
for appropriately big k and then a ray in bik

starting in this
point. As before we can choose the zan nested with n and so that .zan [ an/ escapes
compact sets in O , so converges to p in D . It follows that zik

converges to p and we
are done in this case. The case of infinitely many leaves nonseparated from l is treated
similarly to what is done in the proof of Lemma 3.28.

Suppose now that the sequence .bi/, i 2 N, escapes compact sets in O . The goal is to
reduce this case to a situation where we can apply Lemma 3.28. Fix a base point x
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in O and assume that x is not in any bi . Let li be the line leaf of bi (so li is a line
leaf of Os ) which is the boundary of the component of O� bi containing x . Let Ci

be the component of O� li not containing x . If bi is regular then Ci is a component
of O� bi . If bi is singular then Ci [ li contains all the prongs of bi . In this case it
follows that Ci escapes compact sets in O . If there is a subsequence .lik

/ so that .lik
/

is nested then this defines an admissible sequence of convex polygonal paths (of length
one) converging to an ideal point p .

Otherwise there has to be i1 so that there are only finitely many i with Ci � Ci1
.

Choose i2 > i1 with Ci2
6� Ci1

and hence Ci2
\Ci1

D ∅ and also so that there are
finitely many i with Ci � Ci2

. In this way we construct a subsequence ik ; k 2 N
with Cik

disjoint from each other. The collection of line leaves

f lik
j k 2 N g

is circularly ordered and if we remove one element of the sequence (say the first one)
then it is linearly ordered. As such it can be mapped injectively into the set of rational
numbers Q in an order preserving way. Therefore there is another subsequence (call it
still .lik

/) for which the set flik
g is now linearly ordered with k , either increasing or

decreasing. We can now apply Lemma 3.28 to the sequence lik
and obtain that .lik

/

converges to a point p in @O and hence so does zik
. It was crucial here that Ci [ li

contains all the prongs of bi in order to apply Lemma 3.28.

This finishes the analysis of Case 1.

Case 2 Suppose the zi are in @O .

We use the analysis of Case 1. We may assume that the points zi are pairwise distinct. To
start we can find a convex polygonal path a1 so that xUa1

contains a neighborhood of z1

in D and also it does not contain any other zi . Otherwise there is a subsequence of .zi/

which converges to z1 . Inductively construct ai convex polygonal paths with xUai
a

neighborhood of zi in D and the f xUaj
g; 1� j � i pairwise disjoint. By taking smaller

convex neighborhoods we can assume that the .Uai
/ escapes compact sets in O as

i !1. As in Case 1 we may assume up to subsequence that the fai j i 2 Ng forms
an ordered set of O with the order given by i . Let wi be a point in ai . Since ai

escapes compact sets in O , Case 1 implies that there is a subsequence wik
converging

to a point p in @O . Consider a master sequence B D .bj / associated to p . Let j be
an integer. If for all k we have that zaik

6� zbj , then zaik
has a point wik

converging
to p and also has points outside zbj . This contradicts the zaik

being all disjoint since
they are convex. Therefore zaik

� zbj for k big enough – this follows because the
sequence .aik

/ is ordered as a subset of O . In fact by increasing the index if necessary
then Uaik

� closure.zbj / in D . Since zik
is in Uaik

this shows that zik
!p . Therefore
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there is always a subsequence of the original sequence which converges to a point
in @O .

This finishes the proof of Proposition 3.29, compactness of D .

We now prove a couple of additional properties of D .

Proposition 3.30 The space @O is homeomorphic to a circle.

Proof The space @O is metrizable and circularly ordered. Also @O is compact, being
a closed subset of a compact space, since O is open in D . We now show that @O is
connected, no points disconnect the space and any two points disconnect the space.

Let p; q be distinct points in @O . Choose disjoint convex neighborhoods Ua; Ub

of p; q defined by convex polygonal paths a; b . There are ideal points of O in Ua

distinct from p , hence there is a point in @O between p; q . Hence any “interval”
in O is a linear continuum, being compact and satisfying the property that between
any two points there is another point. This shows that @O is connected and also that
no point in @O disconnects it. In addition as @O is circularly ordered, then any two
points disconnect @O . By Theorem I.11.21 of Wilder [67, page 32], the space @O is
homeomorphic to a circle.

We are now ready to prove that D is homeomorphic to a disk.

Theorem 3.31 The space DDO[ @O is homeomorphic to the closed disk D2 .

Proof The proof will use classical results of general topology, namely a theorem of
Zippin characterizing the closed disk D2 ; see Wilder [67, Theorem III.5.1, page 92].

First we need to show that D is a Peano continuum; see Wilder [67, page 76]. A
Hausdorff topological space C is a Peano space if it is not a single point, it is second
countable, normal, locally compact, connected and locally connected. Notice that
Wilder uses the term perfectly separable [67, definition on page 70] instead of second
countable. If in addition C is compact then C is a Peano continuum.

By Proposition 3.29 our space D is compact, hence locally compact. It is also Hausdorff
(Lemma 3.19), hence normal. By Lemma 3.24 it is second countable and it is clearly
not a single point. What is left to show is that D is connected and locally connected.

We first show that D is connected. Suppose not and let A;B be a separation of D .
Since @O is connected (this is done in the proof of Proposition 3.30), then @O is
contained in either A or B , say it is contained in A. Then B is contained in O . If
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B 6DO , then B;A\O disconnect O , contrary to O � R2 . If B DO , then AD @O
and so O is closed in O[ @O , which is not true. It follows that D is connected.

Next we show that D is locally connected. Since OŠR2 , then D is locally connected
at every point of O . Let p in @O and let W be a neighborhood of p in D . If AD .ai/

is a master sequence associated to p , there is i with Uai
contained in W and Uai

is a
neighborhood of p in D . Now Uai

\OD zai is homeomorphic to R2 also and hence
connected. The closure of zai in D is Uai

. Since

zai � Uai
� Uai

we have that Uai
is connected. This shows that D is locally connected and hence that

D is a Peano continuum.

To use [67, Theorem III.5.1] we need the idea of spanning arcs. An arc in a topological
space X is a subspace homeomorphic to a closed interval in R. Let ab denote an arc
with endpoints a; b . If K is a point set, we say that ab spans K if K\ ab D fa; bg.
We now state [67, Theorem III.5.1].

Theorem 3.32 (Zippin) A Peano continuum C containing a 1–sphere J and satisfy-
ing the following conditions below is a closed 2–disk with boundary J :

(i) C contains an arc that spans J .

(ii) Every arc that spans J separates C .

(iii) No closed proper subset of an arc spanning J separates C .

Here E separates C mean that C �E is not connected.

In our case J is @O . For condition (i) let l be a nonsingular leaf in Os or Ou . Then
l has 2 ideal points in @O which are distinct. The closure xl is an arc that spans @O .
This proves (i).

We prove (ii). Let � be an arc in D spanning @O . Then �\O is a properly embedded
copy of R in O . Hence O� .�\O/ has exactly two components A1;B1 . In addition
@O� .� \ @O/ has exactly two components A2;B2 and they are connected, since @O
is homeomorphic to a circle by Proposition 3.30. If p is in A2 and AD .ai/ is a master
sequence for p , then by definition of the topology in D there is i so that U D Uai

is disjoint from � as � is closed in D and p 62 � . Then U \O D Uai
\O D zai is

connected. Hence U \O is contained in either A1 or B1 . This also shows that a small
neighborhood of p in @O will be contained in either A2 or B2 . By connectedness of
A2;B2 , then after switching A1 with B1 if necessary it follows that: for any p 2A2

there is a neighborhood U of p in D with U \ � D∅ and U \O � A1 . Similarly
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B2 is paired with B1 . Let AD A1 [A2 and B D B1 [B2 . The arguments above
show that A;B are open in D and therefore they form a separation of D� � . This
proves (ii).

Since O� .� \O/ has exactly two components A1;B1 then � \O is contained in
xA1\

xB1 and so � � xA\ xB . It follows that no proper subset of � separates D . This
proves property (iii).

Now Zippin’s theorem implies that D is homeomorphic to a closed disk. This finishes
the proof of Theorem 3.31.

Notice that �1.M / acts on O by homeomorphisms. The action preserves the foliations
Os;Ou and also preserves convex polygonal paths, admissible sequences, master
sequences and so on. Hence �1.M / also acts by homeomorphisms on D . The next
result will be very useful in the following section.

Proposition 3.33 Let ˆ be a pseudo-Anosov flow in M 3 closed. Let p be an ideal
point of O . Then one of the 3 mutually exclusive options occurs:

(1) There is a master sequence LD .li/ for p where li are slices in leaves of Os

or Ou .

(2) p is an ideal point of a ray l of Os or Ou so that l makes a perfect fit with
another ray of Os or Ou . There are master sequences which are standard
sequences associated to the ray l in Os or Ou as described in Definition 3.8.

(3) p is a corner of a scalloped region as described in Section 2. Then a master
sequence for p is obtained as described in Lemma 3.27.

In addition the only conclusion that applies if there are no perfect fits is conclusion (1).

Proof The point p 2O is fixed in this proof. We first show that Cases (1)–(3) are
mutually exclusive. Case (2) it is disjoint from Case (1). This is because any master
sequence ED .ei/ in Case (2) has to have zei containing part of a fixed perfect fit for i

big enough. In particular the polygonal paths ei have to have at least 2 sides for i big
enough, so this cannot be Case (1). Suppose now that p is a point of type (3). Consider
a master sequence DD .di/ where di D ai[bi , ai a ray in Ou and bi a ray in Os as
described in Lemma 3.27. Notice that all ai intersect a common unstable leaf. If there
is a master sequence L D .lj / as in (1) then the lj have to weakly intercalate with
the di . But then they have to separate leaves of Ou intersecting a common leaf of Os

and vice versa. This is impossible. The same argument can be used to rule out Case (2):
consider a master sequence E D .ej / as in Case (2). The weak intercalation property
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of di with this sequence implies that the polygonal paths ej have to be eventually of
length 2 and both leaves have to be leaves intersecting the scalloped region. Hence E

is an admissible sequence as in Case (3) and does not converge to an ideal point of a
ray l associated to a perfect fit.

Now we prove that one of options (1)–(3) has to occur. Fix a basepoint x in O . Let
AD .ai/ be a master sequence defining p . Since .ai [zai/ escapes compact sets in O ,
we may throw out a few initial terms if necessary and assume that x is not in the
closure of any zai . Each ai is a convex polygonal path, ai D b1[ � � � [ bn where bj

is either a segment or a ray in Os or Ou . For simplicity we omit the dependence of
the bj ’s on the index i .

Claim For each i there is some bj as above, with bj contained in a slice z of a leaf
of Os or Ou , so that z separates x from zai .

In this claim i is fixed. Given j let y be an endpoint of bj . Without loss of generality
assume bj is in a leaf of Os and y is in bjC1 also. Since ai is a convex polygonal
path, we can extend bj along Os.y/ beyond y and entirely outside zai . The hypothesis
that zai is convex is necessary, for otherwise at a nonconvex switch any continuation
of bj along Os.y/ would have to enter zai . If one encounters a singular point in Os.y/

(which could be y itself), then continue along the prong closest to bjC1 . This produces
a slice cj of Os.y/ with bj � cj . There is a component Vj of O� cj containing zai .
Since we choose the prong closest to bjC1 then

n\
jD1

Vj D zai :

Since x is not in zai , then there is at least one j with x not in Vj and so cj separates x

from zai . Let z be this slice cj . This proves the claim.

Using the claim then for each i produce such a slice and denote it by li . Let zli be
the component of O� li containing zai . Up to subsequence assume all the li are in
(say) Os . Since A is a master sequence for p , we may also assume, by Lemma 3.22,
that all the li are disjoint from each other.

We now analyze what happens to the li . The first possibility is that the sequence .li/
escapes compact sets in O . Then this sequence defines an ideal point of O . As zai �

zli ,
it follows that LD .li/ is an admissible sequence for p and A�L. Since AD .ai/ is
a master sequence for p , then given zai , there is j > i with lj [zlj � zai and so L�A.
It follows that LD .li/ is also a master sequence for p . This is Case (1).
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Suppose from now on that for any master sequence AD .ai/ for p and any .li/ as
constructed above, then .li/ does not escape compact sets of O . Then .li/ converges
to a family of nonseparated line leaves in Os : C D fck ; k 2 I � Zg. If there are no
perfect fits then C is a singleton by Theorem 2.6. Assume C is ordered as described in
Theorem 2.6. Here I is either f1; : : : k0g or is Z.

Choose xi 2 bi D ai \ li . These points will be used for the remainder of the proof.
Since xi is in ai and .ai/ is a master sequence for p , the definition of the topology
in D (Definition 3.15) implies that .xi/ converges to the fixed point p in D . Here we
need to differentiate between the set C of leaves and the set

S
C of points in the leaves

in C . For any y in
S

C , then y 2 ck for some k and Ou.y/ intersects li for i big
enough in a point denoted by yi . Similarly for z in

S
C define zi DOu.z/\ li . This

notation will be used for the remainder of the proof.

Situation 1 Suppose there are y; z 2
S

C so that for big enough i , xi is between yi

and zi in li .

We refer to Figure 14(a). Suppose that z is in cj0
, y in cj1

, with j0 � j1 in the
given order of C . If j0 D j1 then the segment ui of li between zi ;yi converges
to the segment in Os.z/ between z and y . Then xi does not escape compact sets,
contradiction to AD .ai/ being an admissible sequence.

(a) (b)

zi

z
cj0

e

w

xi

D
cj1

yi

y

yn.i/ xi

yn

w

li

Figure 14. (a) The case that xi is between some unstable leaves (b) The
case that xi escapes to one side

For any k the leaves ck ; ckC1 are nonseparated from each other and there is a leaf e

of Ou making perfect fits with both ck and ckC1 . This defines an ideal point w of @O
which is an ideal point of equivalent rays of ck ; ckC1 and e ; see Figure 14(a) (k D j0

in the figure). Consider the open region D of O bounded by the ray of cj0
defined

by z and going in the y direction, the segment in Ou.z/ from z to zi , the segment ui

in li from zi to yi , the segment in Ou.y/ from yi to y , the ray in Os.y/ defined by y

and going towards the z direction and the leaves ck with j0 < k < j1 (this last set is
empty if and only if j1 D j0C 1). By the remark above, the only ideal points of D

in @O , that is the set xD\ @O (closure in D), are those associated to the appropriate
rays of ck with j0 � k � j1 . Since .xi/ converges to p which is in @O , then p is one
of these points. So p is an ideal point of a ray of Os or Ou which makes a perfect fit
with another leaf. There is a master sequence which is a standard sequence associated
to p . This is Case (2) of the proposition.
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Situation 2 For any y; z in
S

C the xi is eventually not between the corresponding
yi ; zi .

Let y 2
S

C . Then up to subsequence the xi are in one side of yi in li , say in the
side corresponding to increasing k in the order of C (this is in fact true for any big i

as xi converges in D ).

Suppose first that C is an infinite collection of nonseparated leaves. Let w be the ideal
point associated to the infinite collection C and in the increasing direction of C as
in Lemma 3.27. We follow the notation of Lemma 3.27: let dm D am [ bm and let
D D .dm/ be a master sequence associated to w as described in Lemma 3.27. Fix m.
Then xi is eventually in zdm . Therefore xi converges to w and it follows that w D p .
Here we are in Case (3).

Finally suppose that C is finite. Let w be the ideal point of the ray of ck0
corresponding

to the increasing direction in C . Let yn in ck0
converging to w ; see Figure 14(b). Let

yn.i/DOu.yn/\ li :

Fix n. Then eventually in i , the xi is in the component of li � yn.i/ in the w side;
see Figure 14(b). Consider a standard sequence defining w so that: it is arbitrary in
the side of O� ck0

not containing xi and in the other side we have an arc in Ou.yn/

from yn to yn.i/ and then a ray in li , which contains xi for i big. Since ck0
is the

biggest element in C , there is no leaf of Os nonseparated from ck0
in that side of Ck0

.
Hence the li cannot converge (in O) to anything on that side and those parts of li
escape in O . As the xi are in these subarcs of li then xi! w in D and so p D w .

Let rnDOu.yn/. If rn escapes compact sets in O as n!1, then it defines a master
sequence for p and we are in Case (1). Otherwise rn converges to some r making a
perfect fit with ck0

and we are in Case (2). This finishes the proof of Proposition 3.33.

4 Flow ideal boundary and compactification of the universal
cover

For the remainder of the article, unless otherwise stated, we will only consider pseudo-
Anosov flows without perfect fits, not conjugate to suspension Anosov flows. In this
section we compactify the universal cover �M with a sphere at infinity using only
dynamical systems tools.

Lemma 4.1 (Model precompactification) Let M be a closed 3–manifold with a
pseudo-Anosov flow without perfect fits, not conjugate to suspension Anosov. There is
a compactification D� Œ�1; 1� of �M which is a topological product.
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Proof Recall that D is a compactification of the orbit space O of �̂ and D is
homeomorphic to a closed disk. Consider D� Œ�1; 1� with the product topology. This
is compact and homeomorphic to a closed 3–ball. The set �M is homeomorphic to the
interior of D� Œ�1; 1� which is O�.�1; 1/. In fact choose a cross section f1W O! �M
and a homeomorphism f2W .�1; 1/! R. This produces a homeomorphism

f W O� .�1; 1/! �M ; f .x; t/D �̂f2.t/.f1.x//:

Clearly the topology in �M is the same as the induced topology from O� .�1; 1/. In
this way �M can be seen as an open dense subset of D� Œ�1; 1� and D� Œ�1; 1� is a
compactification of �M .

This construction is reminiscent of the one done by Cannon and Thurston [16] for
fibrations. Notice that this construction works for any pseudo-Anosov flow, even with
perfect fits.

Important remark We should stress that this precompactification D� Œ�1; 1� is far
from natural, because in general it is very hard to put a topology in @O�.�1; 1/ which
is group equivariant. In other words the section f1W O! �M is not natural at all. The
interior of D� Œ�1; 1� is homeomorphic to �M and clearly �1.M / acts on this open
set. The topology in D� f�1; 1g is what you would expect, since it is homeomorphic
to the topology of D , which is group equivariant. But the topology in @O � Œ�1; 1�

is really not well defined. Using the section f1 we can define a trivialization of
@O � Œ�1; 1�, connecting it to �M Š O � .�1; 1/. The problem here is that given a
covering translation h of �M , there is no guarantee that it will extend continuously
to @O� .�1; 1/ (but it does extend naturally and continuously to D� f�1; 1g). This
problem is easily seen even in the case of suspension pseudo-Anosov flows. Instead
of using the lift of a fiber as a section O! �M , use a section which goes one step
lower (with respect to the fiber) in certain directions. From the point of view of the new
trivialization of D� Œ�1; 1� certain covering translations will not extend to D� Œ�1; 1�.

But this will not be a problem for us, because we will collapse @D� Œ�1; 1�, identifying
each vertical interval fzg� Œ�1; 1� (z in @O ) to a point. In fact one could have adjoined
to �M just the top and bottom D � f�1; 1g. However it is much easier to describe
sets and neighborhoods in the D� Œ�1; 1� model as above, making many arguments
simpler. The topology of the quotient space will be completely independent of the
chosen section/trivialization and will depend only on the pseudo-Anosov flow.

The compactification of �M we desire will be a quotient of D � Œ�1; 1�, where the
identifications occur only in the boundary sphere. First we work only in the boundary
of D� Œ�1; 1� and later incorporate �M .
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We will use a theorem of Moore concerning cellular decompositions. A decomposi-
tion G of a space X is a collection of disjoint nonempty closed sets whose union is
X . There is a quotient space X=G and a map �W X !X=G . The points of X=G are
just the elements of G . The point �.x/ is the unique element of G containing x . The
topology in X=G is the quotient topology: a subset U of X=G is open if and only if
��1.U / is open in X .

A decomposition G of X satisfies the upper semicontinuity property provided that,
given g in G and V open in X containing g , the union of those g0 of G contained
in V is an open set in X . Equivalently � is a closed map.

A decomposition G of a closed 2–manifold B is cellular, provided that G is upper
semicontinuous and provided each g in G is compact and has a nonseparating embed-
ding in the Euclidean plane E2 . The following result was proved by R L Moore for
the case of a sphere:

Theorem 4.2 (Approximating cellular maps, Moore’s theorem) Let G denote a
cellular decomposition of a 2–manifold B homeomorphic to a sphere. Then the
identification map �W X ! X=G can be approximated by homeomorphisms. In
particular X and X=G are homeomorphic.

Theorem 4.3 (Flow ideal boundary) Let ˆ be a pseudo-Anosov flow in M 3 closed
which is not topologically conjugate to a suspension Anosov flow and there are no
perfect fits between leaves of zƒs; zƒu . Let D� Œ�1; 1� be the model precompactification
of �M . Then @.D � Œ�1; 1�/ has a quotient R which is a 2–sphere where the group
�1.M / acts by homeomorphisms. The space R and its topology are completely
independent of the model precompactification D � Œ�1; 1� and depend only on the
flow ˆ.

Proof The topology in D� f�1; 1g is well defined by the obvious bijections D!
D� f1g, D!D� f�1g. The structure of Os � f1g in D� f1g is then equivalent to
that of Os in D , etc. . . . We will stress where needed that arguments are independent
of parametrization/trivialization of @O� .�1; 1/.

We construct a cellular decomposition R of @D� Œ�1; 1� as follows. The cells are one
of the following types:

(1) Let l be a leaf of Os with ideal points a1; : : : ; an in @O . Consider the cell
element

gl D l � f1g[
[

1�i�n

ai � Œ�1; 1�:
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(2) Let l be a leaf of Ou with ideal points b1; : : : ; bm in @O . Consider the cell
element

gl D l � f�1g[
[

1�i�n

bi � Œ�1; 1�:

(3) Let z be a point of @O which is not an ideal point of a ray of Os or Ou . Consider
the cell element gz D z � Œ�1; 1�.

Later on we will think of R as a set of points with the quotient topology induced by
the map from @.D� Œ�1; 1�/ to R.

Since every point in O is in a leaf of Os , then elements of type (1) cover O � f1g.
Similarly elements of type (2) cover O� f�1g. Finally elements of type (3) cover the
rest of @O� Œ�1; 1�. Cover here means the union contains the set in question. Under
the hypothesis of no perfect fits, no two rays of Os or Ou have the same ideal point.
This implies that distinct elements of type (1), (2) or (3) are disjoint from each other.
This defines the decomposition R of @.D� Œ�1; 1�/.

We now show that R is a cellular decomposition of @.D� Œ�1; 1�/. Any element of
type (3) is homeomorphic to a closed interval, hence compact. An element g of type (1)
is the union of finitely many closed intervals in @O� Œ�1; 1� and a set .l [ @1l/�f1g

in D�f1g. The set l [@1l (contained in D ) is homeomorphic to a compact k –prong
in the plane. Therefore g is compact and homeomorphic to l [ @1l . In addition, any
g in R has a nonseparating embedding in the Euclidean plane.

Next we prove that R is upper semicontinuous. Let g in R and V an open set in
@.D � Œ�1; 1�/ containing g . Let V 0 be the union of the g0 in R with g0 � V . We
need to show that V 0 is open in @.D� Œ�1; 1�/. Since g is arbitrary it suffices to show
that V 0 contains an open neighborhood of g in @.D� Œ�1; 1�/. We do the proof for
elements of type (1) (see Figure 15), the other cases being very similar.

g

V
fa1g � Œ�1; 1�

D� f1g

@D� Œ�1; 1�

D� f�1g

Figure 15. An element of g type (1) in @D� Œ�1; 1� and a neighborhood of it
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Let g be generated by the leaf l of Os , let a1; : : : ; an be the ideal points of l in @O .
For each i there is a neighborhood Ji of ai in @O with Ji � Œ�1; 1� contained in V .
This is because @O� Œ�1; 1� is homeomorphic to a closed annulus. This conclusion is
independent of the parametrization we choose for @O� Œ�1; 1�.

Let .pk/k2N be a sequence of points in @.D � Œ�1; 1�/ converging to some point p

in g . Let gk be the element of R containing pk . We show that for k big enough, then
gk is contained in V and therefore pk has to be contained in V 0 . Hence V 0 contains
an open neighborhood of g in @D� Œ�1; 1�. This will prove the upper semicontinuity
property of the cellular decomposition.

Up to a subsequence we may assume that all pk are either in (I) O�f1g, (II) O�f�1g

or (III) @O� Œ�1; 1�. We analyze each case separately:

Case I Suppose first that pk is in O� f1g.

Hence pk 2D�f1g. Up to subsequence and reordering faig, assume that pk are in a
sector of l �f1g defined by b�f1g where b is a line leaf of l with ideal points a1; a2 .
Then gk is an element of type (1) and is the union

gk D lk � f1g [
S

j .fwkj g � Œ�1; 1�/;

where wkj ; 1 � j � j0 are the ideal points of lk , a leaf of Os . Notice that gk is
contained in the set .D� f1g/[ .@O� Œ�1; 1�/.

We need the following result which is also useful later. It shows the strength of the no
perfect fits hypothesis.

Lemma 4.4 (The escape lemma) Let ˆ be a pseudo-Anosov without perfect fits, not
conjugate to a suspension Anosov flow.

(i) Let .ln/n2N be a sequence of leaves or slices of leaves of (say) Os . Suppose that
.ln/ converges to a line leaf l of (say) Os . It follows that the ideal points of ln
converge to the ideal points of l .

(ii) Under the hypothesis of (i), if xnk
2 lnk

converges to x in D , then x is in l[@l .

(iii) Let ln in Os or Ou . Suppose there are xn;yn in ln[@ln so that xn;yn converge
to distinct points of @O . Then ln converges to a leaf l . In particular ln does not
escape compact sets in O .

Proof Suppose (i) is not true. Let p in l . Hence there is an ideal point a1 of l

in @O and there are rn rays of ln starting at pn and in the direction of the ray in l

with ideal point a1 so that: bn D @rn does not converge to a1 . This also works up
to subsequences. We may assume that .ln/ is nested. By separation properties bn is
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weakly monotone in @O and converges to a point c 6D a1 . Consider the interval .c; a1/

of @O not containing a2 . Suppose first that this interval has an ideal point of a leaf e

of Os or Ou . The leaf e is a barrier for the leaves ln , so this implies that ln also
converges to another leaf besides l . Since there are no perfect fits, this is impossible
by Theorem 2.6. We are left with the possibility that .c; a1/ does not have an ideal
point of a leaf of Os or Ou . But this is also impossible: let z in .c; a1/. If z is ideal
point of leaf of Os or Ou we are done. Since there are no perfect fits, option (1) of
Proposition 3.33 has to occur and there is a neighborhood system of z defined by a
sequence of stable leaves. This shows that any neighborhood of z in @O has points
which are ideal points of leaves of Os . These arguments show that these ideal points
of ln converge to a1 . This proves (i).

To prove (ii), up to taking a subsequence we assume the statement is for xn in ln .
Since the leaf space of Os is Hausdorff, if x is in O then x is in l . Suppose that x is
in @O . Using the notation from part (i) suppose that xn are in the rays rn as in part (i).
Suppose that xn does not converge to a1 and instead converges to c 6D a1 . Let U;V

small disjoint neighborhoods of a1; c . By conclusion (i) already proved, for n big rn

has ideal point in U . Fix one such n and so rn is entirely in U except for an initial
compact segment t . For any m > n the rm is constricted to be in the union of two
sets S1 and S2 : (1) S1 the compact region of O which is bounded by a polygon made
of 4 arcs: (A) t , (B) a compact arc l 0 in l from p to a point in U , (C) a compact arc
in U from the end of l 0 to the end of t and (D) a very small arc from the beginning
of t to the beginning of l ; (2) the second set S2 D U . Since .xm/ escapes compact
sets in O , then for big m, xm cannot be in S1 so it has to be in S2DU , contradiction
to xm 2 V . This shows that xi converges to a1 .

To prove (iii), without loss of generality, assume that ln are leaves of Os . Let xn;yn

converging to distinct points x;y of @O . If xn is in @O one can choose a point in ln
arbitrarily near xn , so we may assume that all xn;yn are in O . Let rn be the arc in ln
from xn to yn . If the sequence .rn/ escapes compact sets in O , then it limits on at
least one of the intervals .x;y/ or .y;x/ both of which are nondegenerate. But that
would imply that this interval does not contain an ideal point of a ray of Os or Ou

– this was proved to be impossible in the proof of part (i). Since ln does not escape
compact sets in O , there is a subsequence .lnk

/ and pnk
in lnk

with pnk
converging

to a point p in O . Let l be the leaf of Os , with p 2 l . Hence the sequence .lnk
/

converges to l (and to no other leaf when there are no perfect fits). Since xnk
is in lnk

and converges to x , part (ii) shows that x is an ideal point of l and so is y . Notice
in addition that in the case of no perfect fits there is only one leaf of Os with ideal
point x . But these arguments can be applied to any subsequence of .ln/ to show that
such a subsequence has another subsequence converging to a leaf l 0 which has an ideal
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point x . But as remarked before this implies that l D l 0 . It follows that the original
sequence .ln/ has to converge to l . This finishes the proof of (iii).

Notice that conclusion (iii) is false for suspension Anosov flows.

Continuation of the proof of Theorem 4.3 Recall the setup in Case I: pk 2O�f1g
converge to p in g D gl . The pk are in lk � f1g with lk all in a sector of b line
leaf of l with ideal points a1; a2 ; V is a neighborhood of g in @.D � Œ�1; 1�/. Let
pk D yk � f1g.

Case I.1 Suppose p 2O� f1g.

Then pk converges to pD y�f1g. By Lemma 4.4(ii) any limit point of xnk
with xnk

in lnk
is in b[fa1; a2g. Hence ln � f1g � V for n big. By Lemma 4.4(i), the ideal

points of rays in lk also converge to a1 or a2 and so wkj � Œ�1; 1�� V for k big. It
follows that gk � V for k big in this case.

Case I.2 Suppose p 2 @O� f1g.

Without loss of generality assume that p is a1�f1g. In this case suppose first that .lk/
does not escape compact sets in O . Assume up to subsequence that .lk/ converges to
a line leaf s of Os . Then we may assume that lk is nested. Since there are no perfect
fits, there is only one such leaf s in the limit. As pk 2 lk � f1g, Lemma 4.4(ii) shows
that the limit of yk is an ideal point of a ray of s . This limit is a1 so a1 is an ideal
point of s . This shows that s; l have rays with same ideal points. By definition the
rays are equivalent. But since there are no perfect fits, then s D l . This reduces the
proof to Case I.1.

Finally we suppose that .lk/ escapes compact sets in O . Since there are pk in lk �f1g

converging to a1�f1g we claim that gk \ .D�f1g/ converges to a1�f1g. Otherwise
up to subsequence there are zk in lk with zk converging to v 6D a1 . Hence lk has arcs
with endpoints in yk ! a1 and zk ! v . The escape lemma (Lemma 4.4(i)) implies
that lk does not escape compact sets in O , contradiction. This finishes the analysis of
Case I.

The next case in the proof of Theorem 4.3 is:

Case II Suppose that pk is in O� f�1g.

There is an asymmetry here because in Case I, g and gk are cells to type (1), whereas
in Case II, g is of type (1) and gk is of type (2). So we cannot just revert the direction
of the flow and use the proof of Case I to prove Case II.
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In this case it follows that gk is contained in .D� f�1g/[ .@O� Œ�1; 1�/. Since pk

converges to p in g and g is contained in .D� f1g/[ .@O� Œ�1; 1�/, it follows that
p is in @O� f�1g and p is say .a1;�1/, where a1 is one of the ideal points of l .

Here a1 is an ideal point of a ray in Os and there are no perfect fits and no non-
separated leaves of Os or Ou . Therefore Proposition 3.33 shows that there is a
neighborhood system of a1 in D defined by a sequence .rn/n2N of unstable leaves
(this is Proposition 3.33(1)). Since V is open in @.D� Œ�1; 1�/, then for n big enough
rn � f�1g is contained in V . The element gk is of the form

.sk � f�1g/[
[
j

.fbkj g � Œ�1; 1�/

where the sk are leaves of Ou with points converging to a1 . Since both rn and sk

are unstable leaves, they cannot intersect transversely. It now follows that for k big
enough sk � f�1g is contained in V . There is an interval J in @O with a1 in the
interior of J and with J � Œ�1; 1�� V – this is because V is open and a1� Œ�1; 1� is
contained in V . Hence the endpoints bjk

have to be in J for k big enough. It follows
that gk is entirely contained in V . This finishes the analysis of Case II.

Case III Suppose that pk is in @O� Œ�1; 1�.

Then pk converges to pD .c; t/ where c is in @O . Hence V contains J � Œ�1; 1� for
some interval J in @O , so that J contains c in its interior. Here gk can be type (1),
(2) or (3). If gk is of type (3) then for k big enough the gk is contained in J � Œ�1; 1�

and hence in V .

If gk is of type (2), then it has vertical stalks bkj � Œ�1; 1� which are eventually
contained in J � Œ�1; 1�. Hence bkj is an ideal point of a leaf sk in Ou . As k varies,
one of the ideal points of sk (namely bkj ) converges to a1 , which is an ideal point
of l . The proof then proceeds as in Case II to show that eventually gk is entirely
contained in V .

Finally if gk is of type (1), then as seen in Case I, gk is contained in V for k big
enough.

This proves that V 0 is open. We conclude that the decomposition satisfies the upper
semicontinuity property. By Moore’s theorem it follows that R is a sphere.

So far we have not really used the topology in @O� Œ�1; 1�. We still need to show that
the topology of R is independent of the choice of the trivialization @O� Œ�1; 1� and
that the fundamental group acts naturally by homeomorphisms on R.

To see the first statement, notice that the quotient map @.D� Œ�1; 1�/!R can be done
in two steps: first collapse each vertical stalk fzg� Œ�1; 1� to a point where z is in @O
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and then do the remaining collapsing of leaves of Ou in D�f�1g and leaves of Os in
D� f1g. After the first collapsing we have D� f1g union D� f�1g glued along the
points fwg � f�1; 1g. The topology now is completely determined since the topology
on the top D�f1g and the bottom D�f�1g is completely determined by the topology
in D . The fundamental group acts by homeomorphisms in this object and preserves the
foliations stable on the top and unstable on the bottom. Therefore the second collapse
produces a sphere RD @.D� Œ�1; 1�/=R. The topology in R is independent of any
choices. The fundamental group acts by homeomorphisms on the quotient space R,
since after the first collapse it acts by homeomorphisms and preserves the elements of
the decomposition. This finishes the proof of the Theorem 4.3.

We now show that the action of �1.M / in R has excellent properties, that is, it is a
uniform convergence group action. A topological space X is a compactum if it is a
compact Hausdorff topological space. Let X be a compactum and � a group acting
by homeomorphisms on X . Let ‚3.X / be the space of distinct triples of X with
the subspace topology induced from the product space X �X �X . Then ‚3.X / is
locally compact and there is an induced action of � on ‚3.X /. Here local uniform
convergence means uniform convergence in compact sets. For simplicity we state
results for X metrizable (in the general case one uses nets instead of sequences [8]).
Notice we identify the group with the action.

Definition 4.5 [37] � is a convergence group if the following holds: If .i/i2N is
an infinite sequence of distinct elements of � , then one can find points a; b in X

and a subsequence .ik
/k2N of .i/, such that the maps ik

jX�fag converge locally
uniformly to the constant map with value b .

Notice that it is not necessary that a; b are distinct, which in fact does not happen
always. It is simple to see that this is equivalent to the following property: the action
of � on ‚3.X / is properly discontinuous [64; 8]. This means that for any compact
subset K of ‚3.X /, the set f 2 � j K\K 6D∅g is finite [64; 8]. The action of �
is cocompact if ‚3.X /=� is a compact space. If the action is a convergence group
and cocompact it is called an uniform convergence group action.

Definition 4.6 (Conical limit points) Let � be a group action on a metrizable com-
pactum X . A point z in X is a conical limit point for the action of � if there are
distinct points a; b of X and a sequence .i/i2N in � such that iz! a and iy! b

for all y in X �fzg.

Here it is crucial that a; b are distinct for otherwise the convergence group property
would yield the result for many points. Basic references for conical limit points are
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Tukia [65] and Bowditch [8]. It is a simple result that if � is a uniform convergence
group action then every point of X is a conical limit point [65; 8]. The opposite
implication is highly nontrivial and was proved independently by Tukia [65] and
Bowditch [7]. Recall that X is perfect if it has no isolated points.

Theorem 4.7 [65; 7] Suppose that X is a perfect, metrizable compactum and that �
is a convergence group action on X . If every point of X is a conical limit point for the
action, then � is a cocompact action. Consequently � is a uniform convergence group
action.

Hence both properties of uniform convergence group action can be checked by analysing
sequences of elements of � . Our main technical result is the following:

Theorem 4.8 Let ˆ be a pseudo-Anosov flow in M 3 closed so that ˆ does not have
perfect fits and is not topologically conjugate to a suspension Anosov flow. Consider
the induced quotient R of @.D� Œ�1; 1�/ and the induced action of � D �1.M / on R.
Then � is a uniform convergence group.

We first prove that �1.M / acts as a convergence group on R using the sequences
formulation and then we show that every point of R is a conical limit point for the
action of � on R. The space R is homeomorphic to a sphere, hence it is a perfect,
metrizable compact space and Theorem 4.7 can be used.

First we define an important map which will be used throughout the proofs in this
section. Recall there is a continuous quotient map �W @.D � Œ�1; 1�/!R. Identify
@O with @O� f1g by z! .z; 1/ in @.D� Œ�1; 1�/. Then there is an induced map

(�) 'W @O!R; '.z/D �..z; 1//:

The map ' is continuous. Every g of R contains intervals of the form fyg � Œ�1; 1�

where y 2 @O , so ' is surjective. Hence ' encodes all of the information of the map � .
In addition �1.M / acts on @O . The proof will use deep knowledge about the action
of � D �1.M / on the circle S1 D @O in order to obtain information about the action
of � on R.

Notice that the map ' is group equivariant producing examples of group invariant
sphere filling curves.

Remarks (1) A very important fact is the following. Suppose that x;y distinct
in @O are identified under ' , that is '.x/ D '.y/. Because of the no perfect fits
condition, there are no distinct leaves of Os;Ou sharing an ideal point in @O . This
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implies there is a leaf l of Os or Ou so that x;y are ideal points of l . In particular
there are at most k preimages under ' of any point, where k is the maximum number
of prongs at a singular point of Os or Ou .

(2) (Important convention) Recall that Hs;Hu are the leaf spaces of zƒs; zƒu re-
spectively. If  is an element of �1.M / then  acts as a homeomorphism in all of
the spaces �M , O , @O;R;Hs and Hu . For simplicity, the same notation  will be
used for all of these homeomorphisms. The context will make it clear which case is in
question. With this understanding, the fact that ' is group equivariant means that for
any  in �1.M / then

 ı' D ' ı 

where the first  acts on R and the second acts on @O . The reader should be aware
that this convention will be used throughout this section.

Recall that if l is a ray or leaf of Os or Ou , then @l denotes the ideal point(s) of l

in @O . Before proving Theorem 4.8, we first show in the next 2 lemmas that for any 
in �1.M /, the action of  on @O and R is as expected. In the first lemma we do not
assume that there are no perfect fits.

Lemma 4.9 Suppose that ˆ is pseudo-Anosov flow not conjugate to suspension
Anosov. Suppose there is no infinite collection of leaves of zƒs or zƒu which are all
nonseparated from each other. Let  in �1.M / with no fixed points in O . Then the
action of  on @O either (1) has only 2 fixed points one attracting and one repelling
and is of hyperbolic type or (2) it has a single fixed point in @O , which is of parabolic
type. In the second case, the fixed point of  is a parabolic point in @O associated to a
perfect fit horoball. Finally if there are no perfect fits only option (1) can occur.

Proof If  leaves invariant a leaf F in Hs , then there is an orbit z̨ in F with
 .z̨/D z̨ . Then  does not act freely on O , contradiction.

The space Hs is what is called a non-Hausdorff tree [26; 57]. Very roughly a non-
Hausdorff tree is a “one-dimensional” space with a tree like behavior, except that one
allows non-Hausdorff behavior. It is simply connected and is the union of countably
many “segments”. Since  acts freely on Hs then [26, Theorem A] implies that  has
a translation axis for its action in Hs . The transformation g leaves invariant this axis
and acts as a translation on it. The points in the axis are exactly those leaves L of zƒs

so that  .L/ separates L from  2.L/. This implies that the f n.L/; n 2 Zg form a
nested collection of leaves.

As explained in [26], the axis does not have to be properly embedded in Hs , that is,
there may be an in the axis, escaping in the axis, but not escaping compact sets in the
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leaf space Hs . Let L be in the axis. If . n.L//n2N does not escape compact sets in O ,
then by the nested property, the  n.L/ converges to some F in zƒs as n converges to
infinity. If  .F /D F we have an invariant leaf in zƒs , contradiction. If  .F /;F are
distinct let B be the set of leaves of zƒs nonseparated from F in the side the  n.L/ are
limiting to. By Theorem 2.6, the set B is order isomorphic to either Z or f1; : : : ; j g
for some j . The first option is disallowed by hypothesis. Consider the second option.
The transformation  leaves B invariant. If  preserves the order in B then as B
is finite,  will have invariant leaves in zƒs , contradiction. If  reverses order in B ,
then there are consecutive elements F0;F1 in B which are swapped by  . There is
a unique unstable leaf E which separates F0 from F1 . This E makes a perfect fit
with both F0 and F1 ; see Theorem 2.6. By the above this leaf E is invariant under 
again leading to a contradiction. This argument shows that the axis of  is properly
embedded in Hs .

Let L0 be in the axis of  acting on Hs . As  .L0/ separates L0 from  2.L0/, there
is a unique line leaf L of L0 so that the sector defined by L contains  .L0/ (if L0

is nonsingular then LDL0 ). Recall that ‚W �M !O is the projection map: it sends
a point x in �M to the orbit of �̂ containing x . Then . n.‚.L///n2N is a nested
sequence of convex polygonal paths, which escapes in O . Hence this sequence defines
a unique ideal point b in @O . Similarly .�n.‚.L///n2N defines an ideal point a

in @O . Notice that

(��)  n.@‚.L//! b as n!1 and  n.@‚.L//! a as n!�1:

Clearly  .a/D a;  .b/D b . For any other z in @O , then either z is an ideal point of
some  n.�.L// or z is in an interval of @O defined by ideal points of  n.‚.L// and
 nC1.‚.L// for some n in Z. It follows that property (��) above also holds for z .

If a; b are distinct then the above shows that a; b form a source/sink pair for  and 
has hyperbolic dynamics in the circle @O .

If aD b then  has parabolic dynamics in @O with a its unique fixed point. In addition
‚.L/ has a ray l with ideal point a. The collection f n.l/gn2Z of pairwise distinct
rays all have ideal point a. By Lemma 3.20 any two elements in this collection are
connected by a chain of perfect fits. Then f n.l/gn2Z is an infinite perfect fit and is
associated to a perfect fit horoball. The perfect fit horoball is invariant under  . This
finishes the proof of the lemma.

Notice that if there are infinitely many leaves of zƒs or zƒu not separated from each
other, then there are covering translations acting freely on O and leaving invariant a
scalloped region S ; see [24]. If  is of this type then  will fix the 4 ideal points in @O
associated to the scalloped region S . Hence the hypothesis in Lemma 4.9 is needed
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and this is the only additional possibility that can occur in general: if the  n.L/ does
not escape compact sets for either n!1 or n!�1, then the proof in the lemma
shows that  n.L/ converges to a bi-infinite collection of leaves nonseparated from
each other. Let S be the associated scalloped region. Here  acts a translation in each
collection of nonseparated leaves in @S . It follows that  has exactly 4 fixed points
in @O . Finally if  has a fixed point in O , then there are many more possibilities for
the set of fixed points in @O , in particular it can be infinite.

Lemma 4.10 Suppose that ˆ does not have perfect fits and is not conjugate to sus-
pension Anosov. For each  6D id in �1.M /, there are distinct y;x in R which are
the only fixed points of  in R and x;y form a source/sink pair (y is repelling, x is
attracting).

Proof As with almost all the proofs in this section, the proof will be a strong interplay
between the pseudo-Anosov dynamics action on @O and the induced action on R.
By Remark (1) on page 68 the only identifications of the map ' come from the ideal
points of leaves of Os or Ou .

Any  in �1.M / has at most one fixed point in O : if  fixes 2 points in O , then it
produces 2 closed orbits of ˆ which are freely homotopic to each other (or maybe
freely homotopic to the inverse of each other or certain powers). By Theorem 2.5, the
lifts of the closed orbits are connected by a chain of lozenges and this produces perfect
fits in the universal cover, disallowed by hypothesis.

Suppose first that  is associated to a periodic orbit of ˆ – singular or not. Also
 need not correspond to an indivisible closed orbit. Let ˇ be the orbit of �̂ with
 .ˇ/D ˇ and b D‚.ˇ/ be the single fixed point of  in O . Suppose without loss of
generality that  is associated to an orbit of ˆ being traversed in the forward direction.
We will show that the set of fixed points of  (or a power of  ) in @O is the union
@Os.b/[ @Ou.b/ and also that @Os.b/ is the set of attracting fixed points for  and
Ou.b/ is the set of repelling fixed points of  .

Assume first that  leaves invariant the prongs of Ou.b/ and Os.b/ and that  is
nonsingular. Let c1; c2 in @O be the ideal points of Os.b/ and d1; d2 the ideal points
of Ou.b/; see Figure 16(a).

Notice that '.c1/D '.c2/ and similarly '.d1/D '.d2/. Let x D '.c1/;y D '.d1/.

Clearly  fixes c1; c2; d1; d2 . Let I be the interval of @O with endpoints c1; d1 and
not containing d2 . Since there are no perfect fits, then option (1) of Proposition 3.33
has to occur. As d1 is an ideal point of an unstable leaf, then d1 has a neighborhood
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Figure 16. (a) The action of  in D and @O . (b) Action of  in �W u.ˇ/

system in D formed by stable leaves, all of which have to intersect Ou.b/. Let l be
one such leaf with ideal point z in I .

The action of  in the set of orbits of �W u.ˇ/ is contracting; see Figure 16(b). This is
because  is associated with the forward flow direction. Therefore  n.l/ converges
to Os.b/ as n converges to infinity. It follows that  n.z/ converges to c1 and so  n.a/

converges to c1 . This shows that  has only 2 fixed points in I and d1 is repelling,
c1 is attracting. The other intervals of @O defined by @Os.b/[ @Ou.b/ are treated in
the same fashion.

We claim that y;x form the source/sink pair for the action of  in R. Here

 .x/D  .'.c1//D '. .c1//D '.c1/D x;

and similarly  fixes y . For any other w in R there is z in O�fc1; c2; d1; d2g with
w D '.z/. Without loss of generality assume that z is in I . Then  n.z/ converges
to c1 and

 n.w/D  n.'.z//D '. n.z//!  .c1/D x:

Similarly  n.w/! y when n!�1. So if  leaves invariant the components of
@O�fc1; c2; d1; d2g then y;x form a source/sink pair for the action of  in R.

In the general case take a power of  so that in @O it fixes all points in @Os.b/; @Ou.b/

and preserves orientation in @O . Then apply the above arguments. The arguments
show that, as a set, @Os.b/ is invariant and attracting for the action of  in @O and
@Ou.b/ is invariant and repelling for the action. All the points in @Os.b/ are mapped
to x by ' and all points in @Ou.b/ are mapped to y . Hence y;x is the source/sink
pair for the action of  in R. This finishes the analysis of the case when  does not
act freely in O .

We now analyze the case that  acts freely in O . The previous lemma produces a; b

which are a source/sink pair for the action of  on @O . Since there are no perfect fits,
the previous lemma shows that a 6D b . In fact the arguments of the previous lemma
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show that none of a; b can be the ideal point of a ray of a leaf of Os or Ou . Therefore
'.a/; '.b/ are also distinct.

Given L in the axis of  in Hs , let l D‚.L/. The ideal points of Os.l/ separate a

from b in @O . Then the source/sink property for the action of  on @O immediately
translates into a source/sink property for the action of  on R with source '.a/ and
sink '.b/. This finishes the proof of Lemma 4.10.

We now prove the first part of Theorem 4.8.

Theorem 4.11 Suppose that ˆ does not have perfect fits and is not conjugate to a
suspension Anosov flow. Then �1.M / acts on R as a convergence group.

Proof Let i be a sequence of distinct elements of � . Up to subsequence we can
assume that either

(1) each i is associated to a singular closed orbit of ˆ;

(2) each i is associated to a nonsingular closed orbit of ˆ;

(3) each i is not associated to a closed orbit of ˆ.

Notice that (3) is equivalent to i having no fixed points in the orbit space O . There is
some similarity between Cases (1) and (2) which will be explored as we go along the
proof.

Case 1 Suppose the i are all associated to singular orbits of the flow ˆ.

Let ˛i be orbits of �̂ with i.˛i/D ˛i . There are only finitely many singular orbits
of ˆ, so we may assume up to subsequence that all �.˛i/ are the same. We may
also assume that i are associated to (say) the positive flow direction of ˛i , that is,
if pi is in ˛i then i.pi/ D �̂ti

.pi/ with ti bigger than zero. Let xi D ‚.˛i/ and
li DOs.xi/.

Case 1.a .li/ does not escape compact sets in O .

It could be that, up to subsequence, li is constant. This means that there is  in
�1.M / so that i D 

ni and jni j converging to 1. By the previous lemma there is a
source/sink pair for the sequence .i/.

Hence we may assume that up to subsequence all li are distinct and converge to a line
leaf l of Os . Up to subsequence assume the li are nested and all in a fixed sector of l .
Let u; v be the ideal points of l .
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Figure 17. The case of line leaves converging to a limit

Claim 1 There is an ideal point (say) v of l so that all ideal points of li except for
one converge to v . The remaining ideal point of li converges to u.

Otherwise up to subsequence there are at least 2 ideal points u1
i ;u

2
i of li converging

to u and likewise to v . Let xi be the singular point of li . There is at least one unstable
prong of Ou.xi/ with an ideal point in @O between u1

i ;u
2
i very near u and similarly

an unstable prong of Ou.xi/ with ideal point very near v . Their union is a slice si

of Ou.xi/ with one ideal point near u and one ideal point near v . This slice is not a
line leaf of Ou.xi/ since there are 2 prongs of Os.xi/ on both sides of this slice. The
sequence .si/i2N is nested and is bounded by l . Hence it converges to a leaf s of Ou .
By Lemma 4.4 the ideal points of si converge to the ideal points of s and hence s has
ideal points u; v . But u is also an ideal point of the line leaf l of Os . Since there are
no perfect fits, no leaves of Os;Ou share an ideal point. This proves Claim 1.

Since at least 2 ideal points of Os.xi/ converge to v (as i !1) and ideal points
of Os.xi/;Ou.xi/ alternate in @O , then at least one ideal point of Ou.xi/ converges
to v as i !1. Suppose for a moment that not all endpoints of Ou.xi/ converge
to v . Then up to subsequence assume one of the endpoints converges to w distinct
from v . By the escape lemma (Lemma 4.4) up to subsequence .Ou.xi// converges to
a leaf ı of Ou which has an ideal point v . But v is also an ideal point of line leaf l

of Os , contradiction to no perfect fits by Lemma 3.20. We conclude that all ideal
points of Ou.xi/ converge to v .

In order to finish the analysis of Case 1.a it is enough to analyze the following situation,
which we state as a separate case as it will be useful later on:

Case 1.b Suppose that Ou.xi/ escapes compact sets in O , but Os.xi/ does not
escape compact sets in O .
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Up to subsequence suppose that Os.xi/ converges to a line leaf l of Os . Since Ou.xi/

escapes compact sets it converges to an ideal point of l , which we denote by v (again
this follows from Lemma 4.4). Let u be the other ideal point of l .

Let Zi be the component of @O � @Ou.xi/ which contains u. In this case .Zi/

converges to the set @O� fvg. Let ui be the ideal point of Os.xi/ very close to u.
Suppose first up to subsequence that i.Zi/ is not equal to Zi for all i . Then i.Zi/

is an arbitrary small interval very close to v . This shows that i j.@O� v/ converges
locally uniformly to v and so in R it follows that i j.R� '.v// converges locally
uniformly to '.v/. So we assume from now on that i.Zi/DZi for all i and hence
i.ui/D ui . As the i are associated to positive direction of the flow then the ideal
points of li DOs.xi/ are attracting for the action of i in @O (Lemma 4.10).

Claim 2 i j.@O� v/ converges locally uniformly to u.

We already know that i.Zi/DZi for all i . As v is an ideal point of a leaf of Os and
ˆ has no perfect fits then v has a neighborhood basis defined by unstable leaves. So it
suffices to show that for a fixed unstable leaf s intersecting l , the endpoints of i.s/

converge to u. Assume for simplicity that s is nonsingular.

Notice first that it may be that the sectors of li are not invariant under i . A priori it
may seem that this cannot happen because i.Zi/DZi . But in fact this occurs when
i acts in an orientation reversing way on O or equivalently on @O . Then the other
components of @O�@Ou.xi/ are not i invariant (there are �2 such other components
as xi is singular), and the components of @O�Os.xi/ are also not invariant.

To analyze Claim 2, notice that i.s/ intersects li . If one endpoint of i.s/ converges
to u (as i !1), then as seen above (using the escape lemma) the other endpoint
of i.s/ also converges to u and so i j.@O�fvg/ converges locally uniformly to u

as desired.

The remaining case is up to subsequence i.s/ converges to a leaf r of Ou . See
Figure 18. Here u cannot be in @r and so r intersects l . Let � be the segment
of l between s and r and D0 a neighborhood of it in O . Let D be the image of a
smooth section c1W D0!

�M of ‚ restricted to D0 . Recall the orbits ˛i of �̂ with
i.˛i/D ˛i . Let ˇi D �.˛i/, closed orbits of ˆ. Then �W s.˛i/\D are segments of
bounded length. Let

pi D
�W s.˛i/\D\ .s �R/; ai D‚.pi/; bi D‚.i.pi//:

In D we have a segment ri of bounded length from �̂R.pi/ to a point in i.�̂R.pi//.
This is a segment in a stable leaf which contracts in positive flow direction. Flow
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Figure 18. The case when i.s/ converges to a leaf r

forward pi by time ti until it is distance 1 from ˛i along �W s.˛i/. Notice that pi is far
from ˛i for i big since xi escapes compact sets in O , hence ti� 1. The segment ri

flows to a segment of arbitrary small length under �̂ti
since ri has bounded length

and ti is very big. This is a contradiction: the endpoints of �̂ti
.ri/ both project in M

to the same orbit in W s.ˇi/ and the same local sheet of the foliation ƒs , but not the
same local flowline of ˆ. Hence these endpoints cannot be too close since the endpoint
�.�̂ti

.pi// is distance 1 from ˇi in W s.ˇi/. We conclude that this cannot happen.

It follows that i.s/ cannot converge to a leaf intersecting l and so as seen before,
i.s/ converges to u in D and the endpoints of i.s/ also do. This proves Claim 2.

This completes the analysis of Case 1.b, and hence also of Case 1.a that is, when the
li DOs.xi/ do not escape compact sets in O . The same proof applies when Ou.xi/

do not escape compact sets.

Case 1.c The sequences Os.xi/;Ou.xi/ escape compact sets in O and up to subse-
quence all ideal points of Os.xi/;Ou.xi/ converge to the point v of @O .

We can assume that v has a neighborhood basis defined by (say) stable leaves. Given
a compact set C in @O� v let s be a nonsingular stable leaf with ideal points very
close to v and separating v from C in D . For i big enough all the ideal points of
Os.xi/;Ou.xi/ are separated from C by @s . Then s is contained in a single interval
of @O� .@Os.xi/[ @Ou.xi// where i does not have fixed points. If i leaves this
interval invariant then since i.s/ does not intersect s transversely, then i.s/ has
both ideal points closer to v than those of s and so i.C / is very close to v in D . If
i does not leave that interval invariant then as seen above i.C / is also very close
to v . As s is arbitrary this shows i.C /! v uniformly. Therefore in R it follows
that i j.R�'.v// converges locally uniformly to '.v/.

This finishes the analysis of Case 1: the i are associated to singular orbits.
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Case 2 i is associated to nonsingular periodic orbits.

This is very similar to Case 1 and we can use a lot of the previous analysis. We also
use the following fact, which is a uniform statement that orbits in leaves of ƒu are
backwards asymptotic:

Fact Let ˆ be a pseudo-Anosov flow in M 3 . For each a0> 0 and � > 0 there is time
t0 > 0 so that if p; z are in the same leaf of zƒu and there is a path ı in �W u.p/ from
p to z with length bounded above by a0 , then there is a path from �̂

t .p/ to �̂R.z/

in �W u.p/ of length less than � for all t � �t0 .

Equivalently the orbits �̂R.p/; �̂R.z/ are � close to each other backwards of �̂�t0
.p/.

This is proved in [26, pages 486–487]. Notice it is not at all implied that �̂�t0
.p/ and�̂

�t0
.z/ are �–close, which may not be true since p; z may be out of phase.

Case 2.a Suppose that both Os.xi/ and Ou.xi/ escape compact sets in O .

This is very similar to the singular situation. A proof exactly as in Case 1.c yields the
result.

Case 2.b Suppose that exactly one of Os.xi/ or Ou.xi/ escapes compact sets.

Without loss of generality assume that Ou.xi/ escapes compact sets and Os.xi/

converges to a line leaf l of Os . Then a proof exactly as in Case 1.b yields the result.

Case 2.c Assume up to subsequence that xi converges to x in O .

If xi D x for infinitely many i then Lemma 4.10 finishes the proof. So we may assume
up to subsequence that xi are all nonsingular, distinct from each other and all in the
same sectors of Os.x/ and Ou.x/. This did not occur in the previous case because
the set of singular points in O is a discrete subset of O . Let e be the boundary of this
sector of Ou.x/, a line leaf of Ou.x/. Assume without loss of generality that up to
subsequence i is associated to positive flow direction in ˛i . Hence @Os.xi/ is the
attracting fixed point set for i and @Ou.xi/ is the repelling fixed point set for the
action of i on @O .

We will show that @Ou.x/; @Os.x/ forms a source/sink set for the sequence i acting
on @O . Then a D '.@Ou.x//; b D '.@Os.x// forms a source/sink pair for the
sequence i acting on R. For simplicity assume that i preserves the components of
Os.xi/�xi ; Ou.xi/�xi . A similar proof works in the general case.

Let ˛i D fxig�R and �.˛i/ closed orbits of ˆ. Assume all �.˛i/ are distinct. Let v
be a point in @e (which is a subset of @Ou.x/). For any small neighborhood A of v
in D let l nonsingular stable leaf intersecting Ou.x/ and contained in A. As Ou.xi/
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converges to e (a line leaf in Ou.x/) then for i big enough Ou.xi/ intersects l and
has an ideal point vi near v . Since vi is a repelling fixed point for i then i.l/ is
closer to Os.xi/ than l is. Here Os.xi/ is close to Os.x/ as well. Let Li = i.l/�R,
a leaf of zƒs .

The fact that is going to be used here is that the lengths of the periodic orbits �.˛i/

converge to infinity, which occurs because they are all distinct orbits. Draw a disk D

transverse to �̂ containing segments ri in �W u.˛i/ from pi in ˛i to

zi D .l �R/\ �W u.˛i/\D

and ri transverse to �̂ in �W u.˛i/. We can assume the ri converges to r , which is a
segment in �W u.p/ (here pDfxg�R) and so the ri have diameter uniformly bounded
above. Consider i.ri/ which are segments of diameter bounded above, connecting
i.pi/ to i.zi/. Notice that i.zi/ is in Li . Choose

ti 2 R with i.pi/D �̂ti
.pi/:

ti!1 and pi D
�̂
�ti
.i.pi//:Then

By the fact above there are segments from pi to �̂R.i.zi// in �W u.˛i/ with diameter
converging to 0 as i !1. As the pi are converging to the point p in fxg �R, this
shows that i.l/ is converging to (a line leaf of) Os.x/.

This shows that @Ou.x/ is the repelling fixed point set for i and @Os.x/ is the
attracting set. This finishes the analysis of Case 2.

Case 3 All the i act freely on O .

This case is extremely long.

By Lemma 4.9 and Lemma 4.10 each i acts on @O with only two distinct fixed
points vi ;ui forming a source/sink pair, that is, hyperbolic dynamics in @O . Assume
up to subsequence that ui converges to u and vi converges to v in @O . It may be
that u is equal to v . Ideally we would like to show that i j.@O� v/ converges locally
uniformly to u. Very surprisingly this is not true in general; see the counterexample
after the end of the proof.

We first consider the situation that uD v . This is dealt with exactly as in Case 1.c.

Hence from now on suppose that u 6D v . Assume without loss of generality that v is
not an ideal point of a leaf of Os and hence by Proposition 3.33, v has a neighborhood
system defined by stable leaves. Let l be a nonsingular stable leaf with ideal points
near v , separating it from u. This uses the fact that u 6D v . If some subsequence
of .i.l// escapes compact sets in O , then by the escape lemma (Lemma 4.4(iii)), the

Geometry & Topology, Volume 16 (2012)



Ideal boundaries of pseudo-Anosov flows and uniform convergence groups 79

ideal points of i.l/ have to be very near each other. Then these ideal points have to be
very near ui and hence very near u. If this happens for l arbitrarily near u, then this
implies the convergence property: compact sets of @O�fvg converge to u under i .
Hence by way of contradiction assume for the remainder of Case 3:

Running hypothesis for the remainder of Case 3 Up to subsequence suppose that
there is lc with ideal points very near v and separating it from u, so that i.l

c/

converges to a line leaf ld of some leaf of Os .

There are 2 possibilities.

Case 3.1 The point v is not an ideal point of a leaf of Ou .

Then there is a neighborhood system of v defined by unstable leaves as well. For a
stable leaf l as above let @l D fa1; a2g, where we suppress the dependence on l for
notational simplicity. Consider the collection of unstable leaves fs 2Ou j s\ l 6D∅g.

We claim that if l is close to v then so are all the possible s . Otherwise vary l and take
limits of l approaching v and also take limits of such s with one ideal point not close
to v , then using the escape lemma one produces an unstable leaf with ideal point v ,
contrary to assumption.

In the same way if s \ l is near a1 in D then s is near a1 in D and has all ideal
points near a1 . Otherwise consider a sequence sn 2Ou with sn\ l converging to a1 .
If sn does not escape in O , then the escape lemma produces an unstable leaf with
ideal point a1 , contrary to hypothesis in this case. Since sn escapes compact sets and
has sn\ l converging to a1 , Lemma 4.4 again implies that the ideal points of sn also
converge to a1 . Similarly if s\ l is near a2 in D then s is near a2 in D . It follows
that there is a unique unstable leaf s0 intersecting l so that s0 has a singularity in W

and has at least 2 prongs contained in W and enclosing v . Enclosing v means that if
b0

1
; b0

2
are the ideal points of these 2 prongs then a1; b

0
1
; v; b0

2
; a2 are all distinct and

circularly ordered in @O (under some circular order in @O ). There is then one prong
of s0 exiting W so that together with a prong inside W it defines a small neighborhood
of v . The union of these two prongs is a slice s1 in s0 . Let @s1 D fb1; b2g with b1 an
ideal point of W . Let l1 D l . This was the first step of the process, which is going
to be done twice. We know that i.l1/ does not limit to u and we can assume up to
subsequence that i.l1/ converges to l0 a stable leaf with no limit point in u.

Now redo the process above to obtain a leaf l2 of Os and a slice s2 of Ou which are
closer to v . Let @l2Dfc1; c2g and @s2Dfd1; d2g. By doing this procedure 3 or 4 times,
we can arrange the construction so that for instance a1; b1; c1; d1; v; c2; d2; a2; b2 are
all distinct and circularly ordered in @O ; see Figure 19(a).
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Figure 19. (a) Set up in O (b) Producing fixed points

The i.l2/; i.s2/ do not escape to u, because they are bounded by ld . Let j D 1; 2.
We may assume that the sequence .i.lj // is nested and converges to l 0j and likewise
.i.sj // is nested and converges to s0j , as i !1 for j D 1; 2. Because of the set
up of the ideal points as above then l 0

1
has no common ideal point with l 0

2
. If for

instance lim i.a1/D lim i.c1/ then it is also equal to lim i.b1/ and one produces
one unstable leaf s0

1
sharing an ideal point with a stable leaf l 0

1
, disallowed by no

perfect fits. It follows that all four limits of ideal points are distinct. Fix n very big and
let m� n. Since m.l1/; n.l1/ are both very near l 0

1
and m.s1/; n.s1/ are very

near s0
1

then
m.l1\ s1/ is very near n.l1\ s1/D pn;

or m ı 
�1
n .pn/ is very near pn ; see Figure 19(b). If l 0

1
\ s0

1
is singular assume

up to subsequence that all i.l1\ s1/ are in the intersection of closures of sectors of
Os.l 0

1
\s0

1
/ and Ou.l 0

1
\s0

1
/. With these conditions and the fact that m; n are distinct,

then the shadow lemma for pseudo-Anosov flows [41; 44] implies that m ı 
�1
n has a

fixed point very near pn . Similarly there is a fixed point of m ı 
�1
n near n.l2\ s2/.

Since l 0
1
\ s0

1
; l 0

2
\ s0

2
are different, then for n;m sufficiently big these two fixed points

are different. But then m ı 
�1
n would have two distinct fixed points in O , which

is disallowed by the no perfect fits condition. This cannot happen. Therefore i.l/

converges to u for any l close enough to v and this finishes the analysis of Case 3.1.

Case 3.2 Suppose that v is an ideal point of a leaf s of Ou .

The proof of this case is very long. In this case we do not necessarily obtain that
i j.@O� v/ converges locally uniformly to u. Suppose l is nonsingular, intersects s

and W \ s has no singular points. As in Case 3.1 we only have to deal with the case
that i.l/ does not escape compact sets in O .

From now on in this case fix this leaf l of Os .

Assume that i.l/ converges to a line leaf l� of a leaf l0 of Os . Let l 0 be any stable
leaf intersecting s and closer to v than l is.
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The first situation is that up to subsequence i.l
0/ converges to l 0

0
different from l0 .

Then l0; l
0
0

do not share an ideal point, because of the no perfect fits hypothesis. Since
i.s/ intersects i.l/; i.l

0/ and i.l/; i.l
0/ converge to l0; l

0
0

not sharing an ideal
point then i.s/ cannot escape in O . This follows directly from the escape lemma.

Hence assume i.s/ converges to a leaf s1 of Ou . Notice that s1 intersects l0 and l 0
0

for otherwise, by the escape lemma again, s1 will share ideal point with at least one of
l0; l
0
0

, again disallowed by the no perfect fits condition. Therefore i.l \ s/ converges
to l0\ s1 and i.l

0\ s/ converges to l 0
0
\ s1 . As seen before, if n;m are big enough

this produces 2 distinct fixed points of mı
�1
n – one near l0\s1 and one near l 0

0
\s1 .

This is disallowed.

We conclude that for any l 0 stable leaf intersecting s and separating v from l , the
sequence i.l

0/ also converges to l� . Let

w;w0 be the ideal points of l�:

Let z; z0 be the ideal points of l . Let I; I 0 be the disjoint half open intervals of @O
with one ideal point in z; z0 and the other in v , that is, z 2 I but v is not in I (for
some orientation of O then I D Œz; v/; I 0D .v; z0�). Assume without loss of generality
that i.z/ converges to w . The arguments above show that i.I/ converges locally
uniformly to w and i.I

0/ converges locally uniformly to w0 .

The strategy to prove Case 3.2 is as follows: Using the no perfect fits condition we
will incrementally upgrade the property above to show that i j.@O� @s/ converges
locally uniformly to @l� – this last one is a set, not a single point. This means that for
any C compact contained in @O� @s , then for i big enough i.C / is contained in
a small neighborhood of @l� . Notice that s may be singular so the set @O� @s may
have more than 2 components.

Recall that in Case 3.2 the leaf l of Os is fixed. Consider an arbitrary unstable leaf s0

intersecting l , with s0 6D s . Then s0 has at least one ideal point in either I or I 0 . If
s0 has an ideal point t in I then i.t/ converges to w . Since no unstable leaf has
ideal point w it follows from the escape lemma that i.s

0/ converges to w in D . Let
now J (J 0 ) be the component of .@O� @s/ containing z (z0 ) (hence I � J; I 0 � J 0 ).
The above arguments imply that i.J / converges locally uniformly to w and i.J

0/

converges locally uniformly to w0 . To prove this use the fact that for any c 2 J � xI

there is s0 unstable leaf with s0\ l 6D∅ and @s0 separating @s from c in @O . This last
statement follows from the escape lemma and the fact that there are no leaves in Ou

nonseparated from s .

If s is nonsingular we are done. This is because if v; t are the ideal points of s , then
'.v/ D '.t/ D y and '�1.y/ D fv; tg. For any compact set C in R� y there is a
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compact set V in @O � fv; tg with C � '.V /, since '�1.y/ D fv; tg. Hence V is
contained in the union of 2 compact intervals V1;V2 in @O�fv; tg so up to reordering
V1 � J and V2 � J 0 . Hence

i j V1 converges to w and i j V2 converges to w0:

Notice '.w/ D '.w0/ and let this be x . This shows that in R, i jC converges
uniformly to x . Hence y;x is the source/sink pair for i . With more analysis one can
show that u is not an ideal point of s and u is an ideal point of l0 . We do not provide
the arguments as we will not use that.

(a) (b)

a1

r2

a2

r3

a3

r1 D v

J

J 0

s

e

s
e

s

e

p

l p

s

 .l/

 .p/

 .s/

Figure 20. (a) Trapping the orbits in the singular case (n D 3) (b) An
interesting counterexample

To finish the analysis of Case 3.2, we suppose from now on that s is singular with n

prongs. Let r1 D v , let r2 be the other endpoint of J – this is also an ideal point of s

and let rn be the similar endpoint of J 0 . Complete the ideal points of s circularly to
r1; : : : ; rn . Let p be the singular point in s ; see Figure 20(a). Let e be the stable leaf
through p . Then e has a prong with ideal point a1 in J and one with ideal point an

in J 0 . Order the other endpoints of e as a1; : : : ; an . Let e� be the line leaf of e with
ideal points a1; an . We proved above that i.a1/ converges to w and i.an/ converges
to w0 . There are two options: (1) i.p/ does not escape compact sets in O ; (2) i.p/

escapes compact sets in O .

Option 1 Suppose that i.p/ does not escape compact sets in O .

Up to subsequence i.p/ converges in O so assume that i.p/D p0 for i � i0 (using
the fact that p is singular). Let f be the generator of the isotropy group of p0 fixing
also i0

.a1/Dw; i0
.an/Dw

0 and f associated to the forward direction in the orbit
fp0g �R. Since i.a1/; i.an/ converge to w;w0 , there is i0 so that for i > i0 ,

i D f
mi ı i0

; mi 2 Z:
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Here w is an attracting point, so mi converges to C1. Lemma 4.10 now implies that
for any compact set C in @O�@s then i.C / is in a small neighborhood of @Os.p0/.
All points of @s are identified under ' and similarly for @Os.p0/. Let y D '.@s/,
x D '.@Os.p0//. Then in R, i j.R� y/ converges locally uniformly to x . This
finishes the argument for Option 1.

Option 2 Suppose that i.p/ escapes compact sets in O .

Since i.e
�/ converges to l� and i.p/ is in i.e

�/, the escape lemma implies that
i.p/ converges to either w or w0 . Suppose without loss of generality that i.p/

converges to w . Then i.an/ converges to w0 and all the ideal points a1; : : : ; an�1

converge to w under i . Here is the justification of this statement: If for some j in
2; : : : ; n� 1, i.aj /! w0 , then also i.an�1/! w0 . Hence i.rn/! w0 . But since
i.p/! w , then that unstable prong of Ou.p/ converges to an unstable leaf with one
ideal point in w and another in w0 . This is disallowed under no perfect fits (in fact
this cannot happen in general, but we will not need that). Therefore i.an/! w0 and
i.aj /! w for j D 1; : : : ; n� 1.

Let J2 be the interval of @O bounded by v (D r1 ) and rn and so that J2 is disjoint
from J 0 , that is, J2D @O�J 0 . If A is the region of J2 between an�1 and rn we claim
that i.J2�A/ converges to w . Here .i.aj // converges to w , 1� j � n� 1. The
nonsingular unstable leaves s0 intersecting Os.p/ in the prong with ideal point an�1

have one ideal point in A and another ideal point y in J2�A. Since i.an�1/! w ,
then i.y/! w . This implies that the ideal points of s0 both have to converge to w
under i . Since i is a homeomorphism of @O it now follows that n.J2/ converges
locally uniformly to w . As i.J

0/ converges locally uniformly to w0 then

i j .@O� @s/ converges locally uniformly to fw;w0g:

Notice that @O is the disjoint union of J2;J
0; r1; rn . If y D '.@s/ and xD '.w/ then

y;x is the source/sink pair for a subsequence i acting on R. This finishes Case 3.2.

This shows that �1.M / acts as a convergence group on R and finishes the proof of
Theorem 4.11.

Remark We construct an example as in Case 3.2 where the sequence .i/i2N does
not have source/sink pair the points v;u for the action on @O as naively expected in
Case 3.2. In fact the source is a collection of points and so is the sink. We start with ˆ
a pseudo-Anosov flow without perfect fits, not conjugate to suspension Anosov. For
simplicity assume that everything is orientable. In addition assume that ˆ is transitive.
The tricky thing is to get i to act freely on O . Let s DOu.p/; l DOs.p/ where p

is periodic, nonsingular. Let  in �1.M / with  .s/ intersecting l and so that  .l/
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does not intersect s ; see Figure 20(b). Since ˆ is transitive it is always possible to
find such  unless there is a product region in that quarter of p , but then ˆ would be
conjugate to a suspension Anosov flow, contrary to assumption. Let f be the generator
of the isotropy group of  .p/ leaving invariant all points in @Os. .p//; @Ou. .p//

and associated to the positive direction of the flow line. Let i D f
i ı . Then figi2N

are all distinct.

Suppose that for some j , the j has a fixed point. Fix j and let hD j . Notice that
l; h.l/ (D  .l/) both intersect a common unstable leaf  .s/; also s; h.s/ (D  .s/)
intersect the stable leaf l and s; h.l/ do not intersect. If hm.l/ converges to r as
m!1 then h.r/D r . This is because the leaf space Hs of zƒs is Hausdorff. Hence
h has a fixed point q in r . Then h.Ou.q// D Ou.q/ and Ou.q/ intersects hm.l/

for m big enough and hence for all m. But since h contracts hm.l/ towards Os.q/

then it expands unstable leaves away. In particular s cannot intersect r . However by
construction h moves s and l in the same direction and hence j .s/ is closer to Ou.q/

than s is. It follows that hm.s/ converges to a leaf t and t does not intersect r .
Hence h.r/ D r , h.t/ D t and r \ t D ∅. This produces two fixed points of h

in O . Hence Theorem 2.5 implies that there are perfect fits, contrary to assumption.
This contradiction shows that h does not have any fixed point in the component of
O� l containing h.l/. Now consider h�1 : h�1.l/D �1.l/ does not intersect l and
h�1.s/D �1.s/ intersects l . So the same argument as above shows that h does not
have a fixed point in the component of O� l containing h�1.l/. Hence h does not
have fixed points in O and acts freely.

It follows that each i acts freely on O and has 2 fixed points vi ;ui in @O . In addition
as i !1, ui converges to an ideal point of  .l/ and vi converges to an ideal point
of s – the one separated from  .l/ by l . So this is exactly the situation in Case 3.2 of
Theorem 4.11. Notice also that i.s/D  .s/ and i.l/D  .l/ so the collection figi2N
does not act properly discontinuously on O . Here i.@s/D  .@s/ and i.@l/D @ .l/,
so there are not two points in @O forming a source/sink pair for the action of .i/

on @O . Still i j.@O� @s/ converges locally uniformly to @ .l/.

The next goal is to show that every point in R is a conical limit point.

Theorem 4.12 Let ˆ a pseudo-Anosov flow without perfect fits, not conjugate to a
suspension Anosov flow. Let R be the associated sphere quotient of @O . Then every
point in R is a conical limit point for the action of �1.M / on R. Hence �1.M / acts
as a uniform convergence group on R.

Proof The last statement follows from the first because Theorem 4.7 implies that the
action of �1.M / on the space of distinct triples of R is cocompact.
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We show that any x in R is a conical limit point for the action of �1.M /. There are
3 cases:

Case 1 x D '.z/ where z is the ideal point of l of Os or Ou and there is  6D id in
�1.M / with  .l/D l .

Since all ideal points of l are taken to x under ' and  permutes the ideal points of l ,
it follows that  .x/D x . Assume that x is the repelling fixed point of  , up to taking
an inverse if necessary. Let i D 

i ; i � 0. Then i.x/D x so i.x/ converges to x .
Let c be the other fixed point of  in R. For any y distinct from x in R it follows
from Lemma 4.10, that i.y/D .

i/.y/ converges to c . Hence x is a conical limit
point.

Case 2 x D '.z/ where z is an ideal point of l of Os or Ou and l is not invariant
under any  of �1.M /.

Suppose without loss of generality that l is an unstable leaf. Let L D l �R a leaf
of zƒu . Here �.L/ does not have a periodic orbit of ˆ. Let ˛ be an orbit of �̂ in L.
We look at the asymptotic behavior of �.˛/ in the negative direction (all orbits in L

are backward asymptotic, so this argument is independent of the orbit ˛ in L). If �.˛/
limits only in a singular orbit then �.˛/ must be in the unstable leaf of a singular orbit,
contrary to assumption.

For each i choose pi in ˛ with .pi/ escaping in the negative direction and .�.pi//

converging to a nonsingular point � in M . By discarding a number of initial terms, we
can assume that all �.pi/ are in a neighborhood V of � to which the shadow lemma
can be applied. There are i in �1.M / with i.pi/ in V . By the shadow lemma
the i correspond to closed orbits ˇi of the flow ˆ. In particular we assume that V

is sufficiently small, so that there is still a small neighborhood U of � with xV � U

and there are lifts ži of ˇi with points in U . We assume that xU does not intersect
any singular orbit. It follows that no ˇi is a singular orbit. Since ži ; i.˛/ have points
near p1 , we may also assume up to subsequence that both sequences converge. Let �
be the limit of . ži/. Hence � is also not a singular orbit. Notice that a priori there is no
relation between � and � except that � is near � . Let also ı be the limit of .i.˛//.
Notice that �.ı/ has a point in xV .

Each i takes pi to a point very close to p1 and the pi escape in �M with i , so up to
subsequence we can assume that the i are all distinct. Hence the length of ˇi goes to
infinity (the ˇi does not have to be an indivisible closed orbit). Let qi D ‚. ži/, so
.qi/ converges to q0 D‚.�/. Let

@Ou.q0/D fs; s
0
g; @Os.q0/D ft; t

0
g; @Ou.qi/D fsi ; s

0
ig; @Os.qi/D fti ; t

0
ig:
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Since the points pi are flow backwards of p1 in ˛ and pi is sent near p1 by i ,
then i corresponds to the flow lines ˇi being traversed in the forward direction. By
Lemma 4.10, fsi ; s

0
ig is the repelling set for the action of i on @O and fti ; t 0ig is the

attracting set.

Here Os.qi/ intersects l D Ou.˛/ and Ou.i.˛// for every i . As described above
i.l/ converges to the unstable leaf r WD Ou.‚.ı//. Since Ou.i.˛// converges
and the length of ˇi goes to infinity, then the arguments of Case 2.c of the proof of
Theorem 4.11 show that the only possibility is that Ou.qi/ converges to l DOu.˛/,
otherwise l would be pushed farther and farther away from Ou.qi/. This shows that �
is in L and s; s0 are the ideal points of l . Up to renaming the ideal points of l , z D s .
Up to another subsequence assume that

si! s; s0i! s0; ti! t; t 0i ! t 0:

Again the arguments in Case 2.c of Theorem 4.11 show that i j.@O�fs; s0g/ converges
locally uniformly to the set ft; t 0g in @O . Also i.z/ converges to a point d in @r . As
zD s then xD '.s/ and we have in R that i j .R�fxg/ converges locally uniformly
to '.t/. Since d is a unstable ideal point and t is a stable ideal point, it follows that
'.t/ 6D '.d/. Summing it all up:

i.x/! '.d/ and i.y/! '.t/ for any y 2R�fxg:

This shows that x is a conical limit point.

Remark Obviously it is crucial in this proof that z is an ideal point of a leaf of Os

or Ou . Since z is an unstable ideal point and we want to push points away from the
unstable ideal point, then in the proof above we use i associated to positive flow
direction (recall Lemma 4.10), while keeping track of what i does to z . The only
difference is that here we were careful to make sure i.z/ did not converge to a certain
stable ideal point in the limit. This proof does not work at all in the case z is not ideal
point of a leaf of Os or Ou .

Case 3 x D '.z/ where z is not ideal point of a leaf of Os or Ou .

This case is much more interesting. Since z is not ideal point of a leaf of Os or Ou ,
by Proposition 3.33 there is a neighborhood system of z in D defined by a sequence
of stable leaves, which can be assumed to be all nonsingular. Let l1 be one of these
leaves. The construction here will be inductive. Let W be the component of O� l1
which has z in its closure. Let @l1 D fb0; b1g. Let .b0; z/ be the interval of @O
contained in the closure of W in D and similarly define .b1; z/. Let s be a leaf
of Ou intersecting l1 . If s is near b0 then all ideal points of s are near b0 , by the
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escape lemma (Lemma 4.4(iii)). If s is near b1 then all ideal points are near b1 . The
ideal points of the prongs of s entering W vary monotonically in @O as one moves
s across l1 . Since no unstable leaf has ideal point z and the leaf space of Ou is
Hausdorff, then there is a single leaf – call it s1 intersecting l1 and having at least
one prong contained in W with an ideal point in .b0; z/ and another prong with ideal
point in .b1; z/; see Figure 21(a). Let p1 be the singular point in this leaf which has
to be in W . Let v1 be the ideal point of Ou.p1/ in .b0; z/ closest to z and u1 the
one in .b1; z/ closest to z . Let a1 be the ideal point of the (unique) prong of Ou.p1/

intersecting l1 .

(a) (b)
a1

b1

w1 u1

wi

ui

z

vi

yi

aiv1y1

b0

l1

s1

W

p1

li

si

pi

a1

j .vi/

j .ui/

I
h.a0/

a0
w1 u1

J

v1

y1

Figure 21. (a) Splitting in the stable leaves (b) Mapping back to a compact region

We can now proceed inductively: assuming that li�1 has been chosen and si�1;pi�1

have been constructed, let li be a stable leaf separating z from Ou.pi�1/. As before
construct si ;pi ;ui ; vi ; see Figure 21(a). Let wi be the ideal point of Os.pi/ in .ui ; b1/

closest to b1 and yi the ideal point of Os.pi/ in .vi ; b0/ closest to b0 – do this also
for i D 1. There are such points because Ou.pi/ intersects li which is a stable leaf.
Let ai be the ideal point of the prong of Ou.pi/ which intersects li .

We will now take subsequences at will and rename points and transformations, in order
to simplify notation. Every pi is singular, so up to subsequence assume the pi are all
translates of each other. Hence there are i in �1.M / with i.pi/Dp1 . Up to another
subsequence either every i preserves orientation in O , or every i reverses orientation
in O . In the second case throw out p1 (that is start with p2 which will be renamed p1

and also rename the i to have i.pi/ D p1 for the new p1 , etc. . . ). So we can
assume that every i preserves orientation in O . Up to a further subsequence assume
that i.ai/ D a1 (where as before throw out initial terms and rename if necessary).
Under these conditions, it now follows that i.ui/D u1 , i.vi/D v1 , i.wi/D w1 ,
i.yi/D y1 . Let .ai ; wi/ be the interval in @O defined by ai ; wi and not containing z .
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Assume also up to subsequence that for j > i then yi ; vi ;ui ; wi are in .aj ; wj /; see
Figure 21(a). This is because there are 2 possibilities for the placement of aj .

Since p1 is singular, let h be a generator of the isotropy group of p1 which leaves all
prongs of Os.p1/ (and hence of Ou.p1/) invariant. Ideally we would like to obtain
transformations which send more and more of @O�fzg to a compact set in .a1; w1/.
However in order to simplify the argument and the notation with indices we will prove
that this is true for a fixed compact set of O�fzg and then use that and the convergence
group property to show that '.z/ is a conical limit point. For each i let Ti be the
closed interval of @O defined by ui ; vi and not containing z .

For the remainder of the proof we fix i very big and let C D Ti – this is almost
all of @O � fzg. Let a0 be a point in .a1; w1/. By construction for any j then
j .uj / D u1; j .aj / D a1 . Let j > i . Since ui is in .aj ; wj / then j .ui/ is in
.a1; w1/. Now for each j > i there is a single nj in Z so that

hnj .j .ui// is in Œ a0; h.a0//;

where Œa0; h.a0/� is the subinterval of Œa1; w1� bounded by these points. Suppose that
w1 is a repelling fixed point of h (that is, h is associated to backwards flow direction).
Since j preserves orientation in D then tj D hnj .j .vi// is closer to a1 in Œa1; w1�

than hnj .j .ui// is. We claim that tj is in a compact set I of .a1; w1/ as j varies
(in particular j .C /� I ). See Figure 21(b). Otherwise there are j with tj arbitrarily
close to a1 . Here

hnj j .Ou.pi//

is an unstable leaf with a point in Œa0; h.a0/� and another very close to a1 . Take a
subsequence and find in the limit an unstable leaf ı with an ideal point in Œa0; h.a0/�
and another in a1 – a consequence of the escape lemma (Lemma 4.4(iii)). Since ı
is not Ou.p1/ this would force the existence of perfect fits, contradiction. Hence
there is a compact subinterval I in .a1; w1/ with tj always in I . We now define the
transformations

gj D hnj j ; j > i; hence gj .C /� I:

Let J be the closed interval of @O bounded by u1; v1 and not containing a1 . Then
gj .z/ is in J for any j �2 so up to a subsequence we may assume that gj .z/ converges
to a point c in J .

We will show that there is a subsequence of .gj / which proves that x is a conical limit
point.

We first claim that '.I/; '.J / are disjoint. Suppose that '.I/ intersects '.J /. Then
there has to be a leaf of Os or Ou with ideal points in both I and J . Consider first the
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unstable case. The endpoints of J are ideal points of Ou.p1/. The other ideal points
of Ou.p1/ are not in I by construction of the interval I in .a1; w1/. Any other leaf
of Ou either has all ideal points in J or has no ideal point in J . Hence no unstable
leaf has ideal points in I and J .

Consider now stable leaves: Os.p1/ has one ideal point in J and all others in the
interval of @O defined by w1;y1 and not containing I . Hence Os.p1/ it does not
have an ideal point in I . Let r be any other leaf of Os . If r has an ideal point in J

then r is separated from the interval I by Os.p1/, hence r cannot limit in I . We
conclude that '.I/; '.J / are 2 disjoint compact subsets of R.

Recall that .gn.z// converges to c and x D '.z/. Hence in R the sequence .gn.x//

converges to '.c/ 2 '.J /. In Theorem 4.11 we have already shown that �1.M / acts
as a convergence group on R, so assume up to subsequence that .gn/ has a source/sink
pair (for notational simplicity we still denote this subsequence by .gn/). That means
there are a; b 2R so that gn.A/ converges to b for any compact set A of R� fag.
In particular if we find three distinct points d1; d2; d3 of R so that gn.d1/;gn.d2/

converge to e1 and gn.d3/ converges to e2 with e1 6D e2 , then d3 is the source and
e1 is the sink.

The image '.C / contains infinitely many points, so take 3 distinct points d0; d1; d2

in '.C /. By the above, for at least two of these points the sequence .gn.dk// converges.
So assume without loss of generality that .gn.d1//; .gn.d2// converge – the limit is
in '.I/. The sequence .gn.x// also converges and the limit is in '.J /. As '.I/; '.J /
are disjoint, it follows that the limits of .gn.d1//; .gn.d2// have to be the same point t .
By the previous paragraph t is the sink and x is the source for the sequence .gn/

acting on R. Since t 2 '.I/;x 2 '.J / it follows that t 6D x . Hence the sequence .gn/

of �1.M / shows that x is a conical limit point.

This shows that all points of R are conical limit points for the action of �1.M /.
Hence �1.M / acts as a uniform convergence group in R. This finishes the proof of
Theorem 4.12.

We now analyze the space �M [R. We first establish some notation. Let

�W D� Œ�1; 1�! �M [R

be the projection map. Recall also the sphere filling map 'W @O!R. We consider
the quotient topology in �M [R. Let T be this topology. Recall that @.D� Œ�1; 1�/

is a sphere, let �1 D � j @.D� Œ�1; 1�/. With the subspace topology from T , then R
is a sphere also. We stress that in all arguments here we implicitly identify �M with
O� .�1; 1/ and in particular also think of �M as a subset of D� Œ�1; 1�.
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Notice that �1.M / naturally acts on �M [R by homeomorphisms as it preserves stable
and unstable foliations. Our main goal to finish this section is to show that this action
is a convergence group action.

One problem is that it is hard to verify directly whether a set in �M [R is open or
not. To make it more explicit we define another topology T 0 in �M [R and then
show it is the same as the quotient topology. The new topology will be defined using
neighborhood systems. Recall [43, Chapter 1] that a neighborhood system Ux of a
point x is a collection satisfying

(1) if U is in Ux then x is in U ;

(2) if U;V are in Ux then U \V is in Ux ;

(3) if U in Ux and U � V then V is in Ux .

Define U to be open if U is a neighborhood of any of its points. This defines a
topology in the space.

(a) (b)

r1 � f1g

l3 � f1g
r3 � f1g

.a3; 1/

l2 � f1g

r2 � f1g

fa2g � Œ�1; 1�

l1 � f1g

fa1g � Œ�1; 1�

B � f1g

�.B/� �M
Figure 22. (a) The neighborhoods of certain points (b) Flow forward of sections

Definition 4.13 (Neighborhood systems in �M [R) Let ˆ be a pseudo-Anosov flow
without perfect fits, not topologically conjugate to suspension Anosov.

(i) If x is in �M then V is in Ux if V contains an open set of �M (with its usual
topology) containing x .

(ii) Let x in R so that '�1.x/ D fbg, a single point. The point b of @O is not
identified to any other point of @O , hence b is not an ideal point of a leaf of Os or Ou .
In this case b has a neighborhood system in D defined by sequences of nonsingular
stable or unstable leaves. Let l be one such leaf and Ul the corresponding open set
of D , as in Definition 3.18, where b is in Ul . Let Vl D Ul � Œ�1; 1� a subset of
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D� Œ�1; 1�. We say that V is in Ux if for some l as above then Vl � �
�1.V /. Notice

��1.V / is a subset of D� Œ�1; 1�.

(iii) Let x in R with '�1.x/D fa1; : : : ; ang. For simplicity assume that a1; : : : ; an

are the ideal points of a stable leaf l . Let g be the cellular decomposition element
of R of @.D � Œ�1; 1�/ associated to l (that is g D l � f1g [

S
i.faig � Œ�1; 1�/ or

equivalently g is identified to the point x ). For each i , choose ri unstable leaves
defining small neighborhoods of ai in D . Let Vri

D Uri
� Œ�1; 1� as in (ii), where ai

is in Uri
. See Figure 22(a).

Let l1; : : : ; ln stable leaves (Os ) very near each line leaf of l and so that for each i ,
then li ; liC1 intersect ri transversely (i mod.i0/). Then l1; : : : ; ln; r1; : : : ; rn bound
a compact region B in O . Choose any section � W B! �M of ‚ restricted to B . Let
H� be the union of B�f1g together with the set of points w in �M (or in O� .�1; 1//

with w D �̂t .b/ for some b in �.B/ and t � 0. See Figure 22(b). Let ı denote the
collection .l1; : : : ; ln; r1; : : : ; rn; �/. We use the notation Aı to denote the following:

ADAı DA.l1; : : : ; ln; r1; : : : ; rn; �/DH� [Vr1
[ � � � [Vrn

Let Ux be the collection of the sets Z so that for some ı as above then Aı � �
�1.Z/.

In the case of ideal points of unstable leaves, one switches stable and unstable objects
and chooses points flow backwards from a section and backward ideal points.

Lemma 4.14 The collection Ux for x in �M [R defines a neighborhood system and
consequently a topology T 0 in �M [R.

Proof For x in �M this is clear. In the other 2 cases it is easy to see that Properties (1)
and (3) of neighborhood systems always hold: (3) is obvious by definition and (1) holds
because the cell decomposition elements (in @.D� Œ�1; 1�/) are always contained in
the sets Vl or Aı .

We now check Property (2). Suppose first that x is of type (ii). Let x D '.b/. Let
V1;V2 in Ux , with V1 defined by l and V2 defined by r leaves of Os or Ou . Then
there is l 0 in Os or Ou so that l 0 [ @l 0 separates b from r [ l in D . Then Ul 0 is
contained in Ul \Ur and we are done.

Let now x be of type (iii). Let U1;U2 be neighborhoods of x , where Ui contains Ai

of the form Ai DA.l i
1
; : : : ; l i

n; r
i
1
; : : : ; r i

n; �i/ as in Definition 4.13, so that for each i ,
l1
i ; l

2
i are close to the same line leaf of l and r1

i ; r
2
i define small neighborhoods of ai .

Choose l3
i closer to l than both l1

i and l2
i and r3

i closer to ai than both r1
i and r2

i .
Let B3 be the compact region of O defined by the l3

i ; r
3
i . Choose a section �3 in B3

so that in the intersection B3\ .B1[B2/ then �3 is greater than max.�1; �2/. Then
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A3DA.l3
1
; : : : ; l3

n ; r
3
1
; : : : ; r3

n ; �3/ is in Ux and A3 �A1\A2 �U1\U2 . Hence Ux

is a neighborhood system for x in �M [R.

Therefore the collection fUx;x 2 �M [Rg defines a topology in �M [R.

Lemma 4.15 The quotient topology T in �M [R and the neighborhood system
topology T 0 are the same topology. This implies that the quotient topology in R and
the subspace topology from T 0 in R are also the same topology.

Proof First let U in T 0 and let x in U . If x is in �M , then (i) of Definition 4.13
shows that there is V open in (usual topology) of �M with x 2 V � U . If x is in R
let g D ��1.x/. By construction if x is of type (ii) or (iii) as in Definition 4.13, then
��1.U / contains an open set in D� Œ�1; 1� which contains g . This shows that ��1.U /

is an open set in D� Œ�1; 1� and hence U is in T .

Conversely let U in T . Then ��1.U / is open in D � Œ�1; 1�. Let x in U . If x is
in �M , then x is in the open set ��1.U /\ �M � ��1.U / so ��1.U / is in Ux .

Suppose then that x is in R and let g the cell element of R associated to x . For
simplicity we assume that x is of type (iii) in Definition 4.13, as type (ii) is analogous
and easier to deal with. Let l (as in Definition 4.13(iii)) be the leaf of (say) Os with
l � f1g a subset of g . Then ��1.U / is an open set in D� Œ�1; 1� containing g . For
any ideal point b of l , then ��1.U / contains an open neighborhood of b � Œ�1; 1� in
D� Œ�1; 1�. Since b is a stable ideal point, there is an unstable leaf z defining a small
neighborhood of b in D so that Vz � �

�1.U /. We also consider for each line leaf of l

a regular leaf e of Os close to this line leaf. Choose each e sufficiently close to l so
that these e ’s and the z ’s as above define a compact polygon B in O . As ��1.U / is
open and contains l � f1g, it follows that if the e ’s are sufficiently close to l and the
z ’s sufficiently close to @l , then B � f1g � ��1.U /. As B is compact, there is a high
enough section � W B! �M so that H� � �

�1.U /. This shows that ��1.U / contains
one set of form Aı as in Definition 4.13(iii) and so U is in Ux . Since U is in Ux for
any x in U , it follows that U is open with respect to T 0 . Hence T is equal to T 0 .

Lemma 4.16 The space �M [R is compact.

Proof Let fZ˛g˛2I be an open cover of �M [R. This provides an open cover of R
which is compact. Hence there is a finite subcollection Z˛1

; : : : ;Z˛n
whose union

contains R. Then

C D �M [R�
� n[

iD1

Z˛i

�
� �M
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is closed. Since the topology in �M is the same as the induced topology from �M [R,
it follows that C is closed in �M and hence compact and it has a finite subcover. This
finishes the proof.

Here is another way to see that �1.M / acts on �M[R: Let  in �1.M /. Then  takes
sets of the form Vl (of (ii) of Definition 4.13) for l in Os or Ou to V.l/ . Sections
� W B! �M over compact sets B in O are taken to sections over compact sets  .B/
by  . Hence �1.M / preserves the collection of sets described in Definition 4.13(ii)–
(iii). Therefore  takes neighborhoods �M [R to neighborhoods and consequently
�1.M / acts by homeomorphisms on �M [R.

We stress that it is hard to find open sets in �M [R explicitly: for example if l is a
nonsingular leaf of Os , with corresponding open set Vl in D� Œ�1; 1�, it is not true
that �.Vl/ is open in �M [R, because Vl is not saturated by the equivalence relation
defining the quotient: Certainly Vl \

�M is open in �M and Vl \ .D�f1g/ is both open
and saturated in D� f1g. However Vl \ .D� f�1g/ is not saturated. Take any leaf s

of Ou intersecting l . Then s � f�1g intersects Vl but is not contained in Vl . Those
leaves s�f�1g would have to be contained in a saturation of Vl . But their ideal points
propagate through @O� Œ�1; 1� and then propagate in the top D� f1g through stable
leaves.

Lemma 4.17 The space �M [R is first countable.

Proof We only need to check this for x in R since �M is a manifold and is open
in �M [R. Suppose '�1.x/D fa1; : : : ; ai0

g, all ideal points of a stable leaf l . The
other cases are either similar or simpler. For each 1 � i � i0 , we will construct a
nested sequence of unstable leaves .sn

i /n2N forming a master sequence defining ai .
For each line leaf li of l we will construct a nested sequence of nonsingular stable
leaves .ln

i /n2N converging to li in that sector of l . Suppose that ln
i ; l

n
iC1

(i mod.i0/)
bound a small segment T n

i in @O containing ai in its interior. We do the construction
so that for all n and i , the leaves ln

i ; l
n
iC1

intersect sn
i transversely. Then for each n

ln
1 ; : : : ; l

n
i0
; sn

1 ; : : : ; s
n
i0

defines a compact set Bn in O . It is not true that Bj � Bi if j > i . Fix a section
�1W B1!

�M . We will choose sections �nW Bn!
�M so that for each n, �n.Bn�1\Bn/

is flow forward of �n�1.Bn�1 \ Bn/ and the flow length from �1.Bn \ B1/ to
�n.Bn\B1/ goes to infinity uniformly in n.

Let An D A.ln
1
; : : : ; ln

i0
; rn

1
; : : : ; rn

i0
; �n/. Notice that �.An/ is not open in �M [R

because An is not saturated. However we will choose An inductively so that there is
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an open set Un in �M [R satisfying

�.An�1/� Un � �.An/

Here is the construction. Suppose that ln�1
1

; : : : ; ln�1
i0

; sn�1
1

; : : : ; sn�1
i0

have been cho-
sen. We choose one set ln

i ; 1 � i � i0 closer to l than ln�1
i and sn

i closer to ai

than sn�1
i . We will adjust these choices as needed.

Let x in �.An/. Certainly we can choose the section �n so that if x is in �.An/ and
x is in �M then x is in the interior of �.An�1/. Therefore assume that x is in R and
let y in ��1.x/. There are 3 possibilities:

(A) First suppose that y is in O� f�1g.

Then y is in the region of D � f�1g bounded by some sn
i � f�1g, which is strictly

smaller than the region bounded by sn�1
i � f�1g. Let v be the leaf of Ou with y in

v� f�1g. Then v is contained in the region Usn�1
i

and hence there is a set Aı as in
Definition 4.13(iii) associated to v and so that

Aı � Usn�1
i
�An�1:

By definition �.An�1/ is in Ux because

��1.�.An�1//�An�1 �Aı:

(B) The second case is that y is in @O� Œ�1; 1�, but y is not equivalent to any point
in O� f1g or O� f�1g, that is, y does not come from an ideal point of a leaf of Os

or Ou . Then y is in some Vsn
i

and by Definition 4.13(ii), �.An�1/ is a neighborhood
of x in �M [R.

(C) Finally suppose that y is in O� f1g.

If y is in the region of D bounded by the ln
i ; 1� i � i0 , then the proof as in part A)

applies. The last case to analyze is y is Vsn
i

for some i . Here y is in u�f1g with u a
leaf of Os . In this case we adjust sn

i so that its endpoints are in the open interval T n�1
i .

Then all stable leaves near u are in the region bounded by ln�1
i ; ln�1

iC1
. This shows that

�.An�1/ is a neighborhood of x D �.y/.

The modification in part C) makes the Usn
i

smaller and hence one has to rechoose the ln
i

closer to l accordingly so that sn
i intersects both ln

i and ln
iC1

. With this modification
it follows that �.An�1/ is a neighborhood of any point x in �.An/ so there is an open
set Un in �M [R with �.An�1/� Un � �.An/.

As the sequence .ln
i / converges to a line leaf of l for each i , .sn

i / converges to ai

and �n.Bn/ escapes in the positive direction, then it is now clear that the collection
fUngn2N forms a countable basis for the topology of �M [R at x .
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This result will be used in Section 5.

Finally we show that the action of �1.M / on �M [R is a convergence group action.
The description of the topology in �M [R using neighborhood systems is extremely
useful for this result.

Theorem 4.18 Let ˆ be a pseudo-Anosov flow without perfect fits, not conjugate
to a suspension Anosov flow. Then the induced action of �1.M / on �M [R is a
convergence group action.

Proof Let .n/n2N be a sequence of distinct elements in �1.M /. Since the action of
�1.M / on R is a convergence group action, then up to subsequence we can assume
there are x;y in R with .n/ converging locally uniformly to x in R�fyg. We want
to show that .n/ converges locally uniformly to x when acting on . �M [R/�fyg.
Let C be a compact set in �M [R�fyg. Recall the surjective map 'W @O!R.

Case 1 '�1.y/D feg – a single point.

Then ��1.y/ is a vertical segment in @O�I . For any neighborhood U of y in �M [R,
there is l an unstable (or stable) leaf defining a small neighborhood of e in D so that
Vl � �

�1.U /, Vl as in Definition 4.13. If C is disjoint from U then

��1.C /�D� I �Vl :

Let Z be the closure of the segment of .@O� @l/ not containing e (this is almost all
of @O). By the source/sink property of y;x for the sequence .n/ acting on R, the
set n.Z/ is very near '�1.x/ for n big. As n.Z/ is a segment in @O , then there is a
single point b in '�1.x/ with n.Z/ near b for n big. It follows that n.D� I �Vl/

is very near fbg� Œ�1; 1� in D� Œ�1; 1� and so n.�
�1.C // is very near fbg� Œ�1; 1�

in D� Œ�1; 1�. We conclude that n.C / is very near x D �.fbg � Œ�1; 1�/ in �M [R
as desired. This finishes the analysis of Case 1.

Case 2 '�1.y/D fa1; : : : ; ai0
g, with i0 � 2.

Suppose for simplicity that fa1; : : : ; ai0
g are the ideal points of Os.p/D l for some p

in O . Let C be a compact set in �M [R�fyg. As before there are flig1�i�i0
regular

leaves of Os very near the line leaves of l and there are frig1�i�i0
, regular leaves

of Ou defining small neighborhoods of ai so that the li ’s together with the ri ’s define
a compact set B in O and there is a section � W B! �M with

ADA.l1; : : : ; li0
; r1; : : : ; ri0

; �/ and ��1.C /�D� Œ�1; 1��A:

Assume that ri intersects li ; liC1 (mod i0 ) and has ideal points near ai . Since ri ; li
are regular we need to be careful. Let zri be the component of O� ri which has ai in
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its closure (in DDO[ @O). Let also zli be the component of O� li not containing
the other lj . Then consider the sets Uri

and Uli
as in Definition 3.18. The endpoints

of li bound a closed interval Ii in @O contained in the closure of Uli
(they do not

contain any aj ). Similarly the endpoints of ri bound a very small closed interval Ji in
@O containing ai . As in Definition 4.13, let Vri

DUri
� Œ�1; 1� and let H� D f

�̂
t .z/ j

z 2 �.B/ and t � 0g [ .B � f1g/. The sets C and A will be fixed for the rest of the
proof of Case 2.

Let '�1.x/D fb1; : : : ; bj0
g.

Case 2.a The union [in.@li/ is eventually (with n) always very near a single point b1

in '�1.x/.

Since n restricted to compact sets of .@O�'�1.y// has image very close to '�1.x/

for n big, it follows that for all i , 1� i � i0 then n.Ii/ is very close to b1 in D . This
implies that n.Vli

/ is very close to fb1g � Œ�1; 1� in D � Œ�1; 1�. In addition since
the n are homeomorphisms of @O , then there is a single i (assume for simplicity that
i D 1) so that n.J1/ is almost all of @O and hence n.@O�J1/ is very close to b1 .
Notice that

D� Œ�1; 1�� .H� [Vr1
[ � � � [Vrn

/�D� Œ�1; 1��Vr1
:

By the above n.D � Œ�1; 1��Vr1
/ is very close to fb1g � Œ�1; 1� in D � Œ�1; 1�. It

follows that n.C / is very close to x for n big. This finishes the analysis in this case.

Case 2.b The union
S

i n.@li/ gets closer to more than one point in '�1.x/.

We first explain why the bi are ideal points of an unstable leaf in this case. To start
we claim that, for a single i ,the ideal points of n.li/ are close to a single point
in '�1.x/ for n big. Let c1; c2 be the endpoints of li . If the claim is not true, then up
to subsequence the sequences .n.c1//; .n.c2// converge to two distinct points d1; d2

in '�1.x/. If follows that n.Uli
\ @O/ contains most of a segment with endpoints

d1; d2 . This contradicts the fact that n.Uli
\ @O/ converges to points in '�1.x/.

This proves the claim.

The hypothesis of Case 2.b implies that there is some i so that the ideal points of
n.li/; n.liC1/ are not close. But n.ri/ intersects both of these leaves, hence the
escape lemma implies that up to subsequence .n.ri// converges to a leaf s of Ou .
The source/sink property for y;x implies that the ideal points of n.ri/ have to be
getting close to points in '�1.x/. It follows that '�1.x/D @s with s an unstable leaf,
as we desired to show.

For any neighborhood W of x in �M [ R there is a set D in D � Œ�1; 1� as in
Definition 4.13: D is defined by s1; : : : ; sj0

regular leaves of Ou near line leaves of s ;
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also t1; : : : ; tj0
regular leaves of Os , where tj defines a small neighborhood Utj of bj

in D . The sj ; tj ; 1� j � j0 jointly bound a compact set B0 in O , consider a section
�W B0! �M and E� the set of points flow backwards from �.B0/ union .B0� Œ�1; 1�/:

E� D �̂.�1;0�.�.B0//[ .B0 � f�1g/

D DD.s1; : : : ; sj0
; t1; : : : ; tj0

; �/D

� [
1�j�j0

Vti

�
[E� :Let

Then there is such a D so that D � ��1.W /. Fix one such D . We want to
show that n.C / is eventually contained in W in �M [R. It suffices to show that
n.D� Œ�1; 1��A/�D in D� Œ�1; 1�. In Case 2.b an argument in �M will be needed.
For the fixed B as above with section � W B ! �M , let E� be the set of points flow
backwards from the section �.B/ union B � f�1g (just as E� was defined). Hence
B � Œ�1; 1� is the union of E� ;H� and the intersection of E� ;H� is equal to �.B/.
Notice that

D� Œ�1; 1��A�

� [
1�i�i0

Vli

�
[E� :

Choose leaves li close enough to l so that the length of any segment of zƒu \ �.B/

from �.li/ to �.lj / is very small. This yields a smaller neighborhood of y (Vli
is

bigger) and we show that the complement of this neighborhood of y goes near x

under n . For any i , the endpoints of n.li/ converge to a single point in '�1.x/ as
n!1. Hence n.li/ also does and so n.Vli

/ gets very near '�1.x/� Œ�1; 1� in
D� Œ�1; 1�.

In order to finish the proof in Case 2.b we need to analyze n.E� /. We modify the
leaves sj to be close enough to s , and the leaves tj to be close enough to bj and
extend the section �.B0/ so that any unstable segment in �.B0/ connecting tj �R to
tk �R has very large length. This decreases the set D , so we still have D � ��1.W /.

Up to subsequence suppose there are z0n in E� so that n.z
0
n/ are not in D . If c is an

ideal point of ri in @O , then n.c/ converges to a point in '�1.x/ in @O . Let Cn be
the closed, connected region in D bounded by the union of the n.ri/; 1� i � i0 union
its ideal points. Then n.z

0
n/ is in Cn � Œ�1; 1�. The bottom of this set is Cn � f�1g

which is contained in D for n big. Hence if n.z
0
n/ is not in D the following happens:

First n.z
0
n/ is in B0 � .�1; 1/, in particular n.z

0
n/ is in �M DO� .�1; 1/. Second,

as n.z
0
n/ is not in E� then n.z

0
n/ is flow forward from a point in �.B0/. As z0n 2E� ,

flow z0n forward to a point zn in the section �.B/. Hence n.zn/ is still flow forward
of a point in �.B0/.

Now consider the segment vn which is the intersection of �W u.zn/ with the sec-
tion �.B/. By construction this segment has arbitrarily small length and hence so
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does the segment n.vn/ in �W u.n.zn//, because n acts as an isometry on �M . This
segment n.vn/ is entirely flow forward of �.B0/. Flow n.vn/ backwards until it hits
the section �.B0/. The unstable length gets decreased when flowing backwards or at
least it does not increase too much, so it is a small length.

The segment vn has endpoints in li � R and lj � R for some i; j . The endpoints
of n.vn/ are in Gi D n.li �R/ and Gj D n.lj �R/ which, for n sufficiently big,
are contained in the union of Vtk

; 1 � k � j0 . Notice that the boundary of Vtk
is

the stable leaf tk �R. If both Gi and Gj are contained in the same Vtk
this forces

n.li/ to be contained in Vtk
because its endpoints are in this set and an unstable leaf

cannot intersect the stable leaf boundary more than once. But then n.z
0
n/ is in D and

we finish the analysis. The remaining possibility is that Gi is in some Vtk
and Gj

is in some Vtm
with j 6Dm. Therefore n.vn/ flows back to a segment which has a

subsegment from tk �R to tm �R in �.B0/. This subsegment has fairly small length
and this contradicts the choice of leaves fsj ; tj ; 1 � j � j0g and the section � . This
shows that n.z

0
n/ are in D contradiction to assumption.

This shows that n.E� / is contained in D � ��1.W /. Hence in �M [R, the sets
n. �M [R � fyg/ converge locally uniformly to x . This finishes the analysis of
Case 2.b and hence finishes the proof that �1.M / acts as a convergence group on�M [R.

5 Connections with Gromov hyperbolicity

In this section we relate the flow ideal boundary and compactification with the large
scale geometry of �M and Gromov hyperbolic spaces. Bowditch [7], following ideas
of Gromov, gave a topological characterization of the action of a hyperbolic group on
its ideal boundary.

Theorem 5.1 (Bowditch [7]) Suppose that X is a perfect, metrizable compactum.
Suppose that a group � acts on X , such that the induced action on the space of
distinct triples is properly discontinuous and cocompact. Then � is a hyperbolic group.
Moreover there is a natural � –equivariant homeomorphism of X into @� , where @�
is the Gromov ideal boundary of � .

The �–equivariant homeomorphism ˛W X ! @� satisfies: if f is an element of �
and a is the attracting fixed point of the action of f in X , then ˛.a/ is the attracting
fixed point of the action of f in @� . In our situation X DR and � D �1.M /, which
acts on X .
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If �1.M
3/ is Gromov hyperbolic, Gromov also showed that �M has a compactification

with an ideal boundary [40; 38; 19]. It is equivariantly homeomorphic to the Gromov
boundary of �1.M /, which is denoted by S2

1 . The following is now an immediate
consequence of Theorem 4.12.

Theorem 5.2 Let ˆ be a pseudo-Anosov flow without perfect fits, not conjugate to
a suspension Anosov flow. Let R be the flow ideal sphere. Theorem 4.12 shows that
�1.M

3/ acts as a uniform convergence group on R. Bowditch’s theorem implies
that �1.M / is Gromov hyperbolic and the action of �1.M / on R is topologically
conjugate to the action of �1.M / on the Gromov ideal boundary S2

1 of �M .

Let �W R! S2
1 be the conjugacy given by Theorem 5.2. It is uniquely defined.

In addition to Theorem 5.2 we also prove that the group equivariant compactification�M [R is equivariantly homeomorphic to the Gromov compactification of �M . First
we define a bijection

�W �M [R! �M [S2
1 by �.x/D x if x 2 �M and �.x/D �.x/ if x 2R:

Clearly this map � is group equivariant: if  is in �1.M / then �. .x//D  .�.x//.

Theorem 5.3 The map �W �M [R! �M [S2
1 is a group equivariant homeomorphism.

The map '1 D � ı'W @O! S2
1 is a group invariant Peano curve.

Proof We only need to show that � is a homeomorphism. We know that �M is open
in both �M [R and in �M [S2

1 and the induced topology from both of these is the
original topology of �M . Hence � is continuous in �M . Let x in R. Lemma 4.17
showed that �M [R is first countable. Hence to check continuity of � at x we only
need to verify what happens for sequences. Let then pn in �M [R converging to x as
n converges to infinity. Theorem 5.2 shows that � restricted to R is continuous. Hence
we may assume that pn is in �M . Then there are qn in a fixed compact set in �M and
n in �1.M / with n.qn/D pn . We may assume that the n are distinct otherwise
up to subsequence all n D  and n sends qn into a fixed compact set, contradiction.

By the convergence group action of �1.M / on �M [R (Theorem 4.18), there is a
source/sink pair y; z for some subsequence of .n/ (still denoted .n/). Since �1.M /

also acts as a convergence group on �M [ S2
1 [31; 37], then for this subsequence

there is another subsequence (denoted .ni
/) with a source/sink pair b; a for the action

in �M [S2
1 . As the action of �1.M / on R is equivariantly conjugate to the action

on S2
1 , it follows that �.y/D b and �.z/D a. Now

pni
D ni

.qni
/ converges to x in �M [R
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with qni
in a fixed compact set of �M . It follows that x is the sink of the sequence

.ni
/ acting on �M [R, so x D z .

Consider now the situation in �M [ S2
1 . Here �.pni

/ D ni
.�.qni

// with qni
in a

compact set of �M . Then �.qni
/ is in a compact set of �M . By the convergence group

property of �1.M / acting on �M [ S2
1 , then up to subsequence we may assume

that ni
.�.qni

// converges to the sink a D �.z/ D �.x/. This shows that for any
sequence .pn/ converging to x in �M [R, there is a subsequence .pni

/i2N with
�.pni

/ converging to �.x/ in �M [S2
1 . It follows that � is continuous at x and so �

is continuous. Since �M [R is compact and Hausdorff then � is a homeomorphism.

Using this fact the second statement follows from the fact that the map 'W @O!R is
group equivariant. This finishes the proof of the theorem.

6 Quasigeodesic flows and quasi-isometric singular foliations

In the last two sections of the article we obtain geometric consequences for flows and
foliations. A flow ˆ in a manifold N is quasigeodesic if in zN , distance along flow
lines of �̂ is a bounded multiplicative distortion of ambient distance. Quasigeodesic
flows are extremely useful [58; 40; 16; 29]. In this section we show that if ˆ is a
pseudo-Anosov flow without perfect fits, then ˆ is quasigeodesic. This will produce
new examples of quasigeodesic pseudo-Anosov flows. A foliation E (singular or not)
is quasi-isometric if distance along leaves of zE is a bounded multiplicative distortion
of ambient distance in zN . This property is very important [58; 59; 46; 40; 16; 25; 28].
We show that the stable/unstable foliations of pseudo-Anosov flows without perfect
fits are quasi-isometric. These results are consequences of Theorems 5.2, 5.3 and
previous results. Notice that both properties are invariant under quasi-isometries: if
ˆ is a quasigeodesic flow and ˆ0 is topologically conjugate to ˆ, then ˆ0 is also
quasigeodesic. The same holds for the quasi-isometric property for foliations. A
quasi-isometry is a map so that when lifted to the universal cover it is bilipschitz in the
large.

Theorem 6.1 Let ˆ be a pseudo-Anosov flow without perfect fits. Then ˆ is a
quasigeodesic flow. In addition the foliations ƒs; ƒu are quasi-isometric foliations.

Proof Suppose first that ˆ is topologically conjugate to a suspension Anosov flow.
If ˆ0 is a suspension Anosov flow and M has the solv metric, then �̂0 is a flow by
minimal geodesics and the stable and unstable foliations zƒs 0; zƒu0 are foliations by
totally geodesic surfaces. Therefore ˆ is quasigeodesic and zƒs; zƒu are quasi-isometric
foliations.
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For the remainder of the proof assume that ˆ is not conjugate to a suspension Anosov
flow. Since ˆ has no perfect fits, Theorem 5.2 shows that �1.M / is Gromov hyperbolic.
We now show that ˆ is quasigeodesic. We will prove 3 topological properties of the
flow lines in �M [R (and then transfer them to �M [S2

1 ):

Property 1 For each flow line ˛ of �̂ then it limits in a single point of R denoted
by ˛C and similarly for the backwards direction.

The flow line ˛ can be seen as a vertical segment fyg � .�1; 1/ in D� Œ�1; 1� where
y is in O . Let q in ˛ . Let z D .y; 1/ and let x D '.z/ a point in R. We claim that
x is the limit of ˛ in �M [R. Let g be the decomposition element of @.D� Œ�1; 1�/

associated to z . For any neighborhood U of x in �M [R there is a set type A D

A.l1; : : : ; ln; r1; : : : ; rn; �/ (Definition 4.13) with A � ��1.U /. The description of
type (iii) in Definition 4.13, shows that since z is in g any such set A as above contains�̂

t .q/ for all t bigger than some t0 . This shows that in �M [R the flow line ˛ forward
converges to x .

Similarly let ˛� be the negative ideal point of ˛ . In fact for any q in �M let ˛D �̂R.q/

and define �C.q/D ˛C and ��.q/D ˛� . This defines functions �C; ��W �M !R.

Property 2 For each flow line ˛ of �̂ , then the ideal points ˛C; ˛� are distinct.

Let ˛ be an orbit of �̂ which is fyg � .�1; 1/ for some y in @O . Suppose that
.y; 1/; .y;�1/ project to the same point in R. By the construction of Theorem 4.3, if
a point in D� 1 is identified to a point in D� f�1g then at least one of them has to
be in @O� Œ�1; 1�. Since y is in O , this is not the case here. Therefore ˛C; ˛� are
distinct in R.

Property 3 The endpoint functions �C; ��W �M !R are continuous.

Given p in �M , p is in fyg � .�1; 1/ for some y in O . For any neighborhood U

of �C.p/ then ��1.U / contains a set of type A.l1; : : : ; ln; r1; : : : ; rn; �/. By the
description of neighborhoods in Definition 4.13, then for any q sufficiently near p

then the forward orbit of q is eventually in A.l1; : : : ; ln; r1; : : : ; rn; �/ and so �C.q/
is in U . This shows continuity of the map �C at x .

Since the map �W �M [R! �M [S2
1 is a homeomorphism then as seen in �M [S2

1

Properties 1–3 also hold for orbits of �̂ . This is the key fact here: properties in �M [R
get transferred to �M [S2

1 . We now use a result of Fenley and Mosher [29] which
states that if �1.M / is Gromov hyperbolic and Properties 1–3 hold for orbits of a
flow �̂ then ˆ is a uniform quasigeodesic flow. Hence ˆ is a quasigeodesic flow.
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We now prove that ƒs; ƒu are quasi-isometric singular foliations. Given that ˆ is a
quasigeodesic pseudo-Anosov flow, then it was proved in [25, Theorem 3.8] that ƒs

is quasi-isometric if and only if zƒs has Hausdorff leaf space and similarly for ƒu .
Suppose that zƒs does not have Hausdorff leaf space and let F;L not separated in zƒs .
Theorem 2.6 shows that F;L are connected by a chain of lozenges. A lozenge has
2 perfect fits, which are disallowed by hypothesis. Hence ƒs; ƒu are quasi-isometric
foliations. This finishes the proof of Theorem 6.1.

7 Asymptotic properties of foliations

Here we show that R–covered foliations and foliations with one sided branching in
atoroidal manifolds are transverse to pseudo-Anosov flows without perfect fits and
therefore satisfy the continuous extension property. This parametrizes and characterizes
their limit sets. In addition this shows that pseudo-Anosov flows without perfect fits
are very common.

Theorem 7.1 Let F be a Reebless R–covered foliation in M 3 closed, atoroidal and
not finitely covered by S2 � S1 . Then �1.M / is Gromov hyperbolic and F satisfies
the continuous extension property. This produces new examples of group invariant
Peano curves.

Proof Up to a double cover, we may assume that F is transversely orientable. Recall
that R–covered means that the leaf space of �F is homeomorphic to the reals R. If
F is R–covered and M is not finitely covered by S2 � S1 , then it was proved in
[26; 10] that either there is a Z˚Z subgroup of �1.M / or there is a pseudo-Anosov
flow ˆ transverse to F and regulating for F . Since M is (homotopically) atoroidal
the second option occurs. Regulating means that every orbit of �̂ intersects an arbitrary
leaf of �F and vice versa. Therefore the orbit space of �̂ can be identified to the set of
points in a leaf F of �F . Using Candel’s theorem [14] we can assume that all leaves
of F are hyperbolic. In this situation the set DDO[ @O is naturally identified to the
compactification of F with a circle at infinity @1F . Here is why: The construction of
ƒs; ƒu in [26; 10] is obtained by blowing down 2 transverse laminations which intersect
the leaves of F in geodesics. Therefore there are 2 geodesic laminations (stable and
unstable) in F , whose complementary regions are finite sided ideal polygons [26; 10].
It follows that the ideal points of F are either ideal points of leaves of zƒs\F; zƒu\F

or have neighborhood systems defined by leaves of these. Hence @1F is naturally
homeomorphic to @O and F [ @1F is homeomorphic to O[ @O . This works for
any F in �F .
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Suppose there is a perfect fit between a leaf L of zƒs and a leaf H of zƒu . Then in O
there are rays of ‚.L/;‚.H / defining the same ideal point in @O . By the above
description there is a pair of geodesics in F , one stable and one unstable with the same
ideal point in @1F . By hyperbolic geometry considerations these 2 geodesics are
asymptotic in F , so projecting to M and taking limits we obtain a leaf of F so that
there is a geodesic which is a leaf of both the stable and unstable laminations. This
contradicts the fact that the stable and unstable laminations are transverse.

It follows that ˆ has no perfect fits. By Theorem 5.2 it follows that �1.M / is Gromov
hyperbolic (this particular fact was already known, by the Gabai–Kazez theorem [35]
and results in [26; 10; 27]). By Theorem 6.1 it follows that ˆ is a quasigeodesic
pseudo-Anosov flow and in addition the map '1W @O! S2

1 is a group equivariant
Peano curve. The previously known examples of such group invariant Peano curves
occurred for fibrations [16] and slitherings by work of Thurston [61]. The results here
are useful because Calegari [9], showed that there are many examples of R–covered
foliations in hyperbolic 3–manifolds which are not slitherings or uniform foliations.
The results here imply the previous results for fibrations and slitherings.

Now we analyze the continuous extension property for the leaves of �F . Since ˆ is
quasigeodesic and transverse to F , then the main theorem in [28] implies that leaves
of �F extend continuously to S2

1 . Hence F has the continuous extension property.
This finishes the proof of Theorem 7.1. We remark that there is a direct proof of the
continuous extension property in this case since @O is naturally identified to @1F .
For simplicity we just quote the result of [28]. Notice that the leaves of �F have limit
set the whole sphere, so each leaf F of �F produces a sphere filling curve.

We now turn to foliations with one sided branching.

Theorem 7.2 Let F be a Reebless foliation with one sided branching in M 3 closed,
atoroidal and not finitely covered by S2 � S1 . Then �1.M / is Gromov hyperbolic.
There is a pseudo-Anosov flow ˆ transverse to F which has no perfect fits and hence
is a quasigeodesic flow and its stable/unstable foliations are quasi-isometric. It follows
that F has the continuous extension property.

Proof Recall that F has one sided branching if the leaf space of �F is not Hausdorff,
but the non-Hausdorff behavior occurs only in (say) the negative direction. Since F
has one sided branching it is transversely oriented. Suppose that �F has branching only
in the negative direction. When M is atoroidal and not finitely covered by S2 � S1 ,
Calegari [11] produced a pseudo-Anosov flow ˆ which is transverse to F and forward
regulating for F . Forward regulating means that if x is in a leaf F of �F and L is
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a leaf of �F , for which there is a positive transversal from F to L, then the forward
orbit of x intersects L.

As in the R–covered case this is obtained from 2 laminations transverse to F which
intersect the leaves of �F in a collection of geodesics. Suppose there is G in zƒs and
H in zƒu forming a perfect fit. Then G intersects F0 leaf of �F and H intersects F1 .
Since F has one sided branching there is a leaf F of �F with positive transversals from
F0 to F and from F1 to F . By the above property G and H intersect F . There are
rays in ‚.G/ and ‚.H / with same ideal point p in @O .

The ideal circle of O is the same as the universal circle for the foliation F in this
case [11]. The universal circle is obtained as the inverse limit of circles at infinity
escaping in the positive direction. Given A;B leaves of �F we write A< B if there is
a positive transversal from A to B . Given A < B in �F then there is a dense set of
directions in A which are asymptotic to B [11]. This is not symmetric – there is not a
dense set of directions from B which is asymptotic to A. In our situation with F0 <F

and F1<F then the asymptotic directions from F to F0 form an unlinked set with the
asymptotic directions from F to F1 [10; 11]. This implies there are natural surjective,
continuous, weakly circularly monotone maps @1F ! @1Fi . The universal circle V
is obtained as an inverse limit of these maps.

The stable/unstable laminations are obtained by analysing the action of �1.M / in V
and producing laminations, that is, a collection of pairs of points in V which are
unlinked. They produce a collection of geodesics in leaves of �F , without transverse
intersections, which vary continuously in the transversal direction. Therefore if rays
of ‚.G/;‚.H / define the same ideal point in @O , then in the leaf F which they
jointly intersect the following happens: the associated stable/unstable geodesics are
asymptotic. As in the R–covered case this leads to a contradiction to zƒs; zƒu being
transverse.

We conclude that ˆ has no perfect fits. From this point on the proof follows the same
arguments as in the R–covered case.

Corollary 7.3 Let F be a Reebless foliation with one sided branching in M 3 atoroidal
and not finitely covered by S2�S1 . For any leaf F of �F , then the limit set of F is not
the whole sphere S2

1 .

Proof The limit set of a set B in �M is the set of accumulation points of B in S2
1 .

Suppose that there is branching of �F only in the negative direction. Choose E;L

nonseparated from each other and so that F <E . Branching in the negative direction
means that there is a sequence of leaves .Gn/ on the positive side of E;L which
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converges to both E;L. Since E;L are nonseparated from each other, then they
do not intersect the same orbit of �̂ . Recall the projection map ‚W �M ! O . The
sets ‚.E/;‚.L/ are disjoint. Since E;L are nonseparated from each other in their
positive sides, then the analysis in [28, Section 4], shows that there is a slice leaf S of
an unstable leaf of zƒu , so that s D ‚.S/ is a boundary component of ‚.L/ and s

separates ‚.L/ from ‚.E/.

Then the limit set of S , ƒS is a Jordan curve C – this is shown in [21; 25]. This uses
the fact that ƒs is a quasi-isometric foliation. The construction implies that the leaf E

separates F from S – here we use that E;L are nonseparated from each other on
their positive sides and F is in the back of E . Since S is disjoint from F then the
limit set of F is contained in the closure of one complementary component of ƒS

in S2
1 . Therefore ƒF is not S2

1 .

Remarks (1) The remaining open situation for the continuous extension property
is that of F with two sided branching. This means that the leaf space of �F has non-
Hausdorff behavior in both the positive and negative directions. The particular case of
finite depth foliations was recently solved in [28] using completely different methods
than this article. In particular in [28] one starts with strong geometric properties, namely
that M is hyperbolic and there is a leaf which is quasi-isometrically embedded (the
compact leaf) and this has enormous geometric consequences. The tools here are purely
from dynamical systems.

(2) Many R–covered examples in hyperbolic 3–manifolds which are not slitherings
were constructed by Calegari in [9]. Many explicit examples of foliations with one
sided branching were constructed by Meigniez in [45].

(3) Suppose that F is Reebless in M 3 with �1.M / negatively curved. It is asked in
[23; 28]: is F R–covered if and only if for some F in �F then the limit set ƒF DS2

1?
If F is R–covered then ƒF D S2

1 for every F in �F [23]. The converse is true if
there is a compact leaf in F [39; 23]. The previous theorem shows that if F has one
sided branching then ƒF is not S2

1 for any F in �F . Therefore the remaining open
case for this question is also when F has 2 sided branching.

(4) The results of this article show that foliations in manifolds with Gromov hyperbolic
fundamental group are very similar to surface Kleinian groups: the R–covered case
corresponds to doubly degenerate surface Kleinian groups, where the limit sets are the
whole sphere. The foliations with one sided branching correspond to singly degenerate
Kleinian groups where there is a single component of the domain of discontinuity. It
remains to be seen whether foliations with 2 sided branching behave like nondegenerate
surface Kleinian groups.
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