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Quilted Floer trajectories with constant components:
Corrigendum to the article ‘“Quilted Floer cohomology”

KATRIN WEHRHEIM
CHRIS T WOODWARD

We fill a gap in the proof of the transversality result for quilted Floer trajectories in [10]
by addressing trajectories for which some but not all components are constant. Namely
we show that for generic sets of split Hamiltonian perturbations and split almost
complex structures, the moduli spaces of parametrized quilted Floer trajectories of a
given index are smooth of expected dimension. An additional benefit of the generic
split Hamiltonian perturbations is that they perturb the given cyclic Lagrangian
correspondence such that any geometric composition of its factors is transverse and
hence immersed.

53D40; 57R56

1 Introduction

Quilted Floer homology is defined in [10] for a cyclic generalized Lagrangian correspon-
dence L, that is, a sequence of symplectic manifolds My, My, ..., M,, M, with
My = M, 4+ for some r > 0, and a sequence of compact Lagrangian correspondences

L01CM0_XM1, L12CM1_XM2,..., Lr(r+1)CM,,_XMr+1.

In [10] we moreover make monotonicity, grading, and Maslov index assumptions
that guarantee compactification properties. These are not required for the results
in this paper. Quilted Floer homology HF (L) can be defined as the standard Floer
homology of a pair of Lagrangians in the product manifold My x My X M x---X M,
given by products of the L;(; ). (For even r one adds a diagonal to the sequence
before making this construction.) As such, the differential counts moduli spaces of
pseudoholomorphic strips with Lagrangian boundary conditions for a choice of a
Hamiltonian perturbation and almost complex structure on this product manifold so
that the Cauchy—Riemann operator cuts out the space of pseudoholomorphic maps
transversely. Generically this choice would not be of split form, ie induced by a tuple of
Hamiltonian functions and almost complex structures on each symplectic manifold M .
The quilted definition of HF (L) in [10] on the one hand generalizes this construction
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128 Katrin Wehrheim and Chris T Woodward

by allowing a choice of widths § = (§; > 0)j—o,... , of the strips mapping to each M.
On the other hand, we claim in [10] that the quilted Floer complex can be constructed
(in particular transversality of the quilted Cauchy—Riemann operator can be achieved)
for Hamiltonians and almost complex structures of split type. That is, we restrict our
choice of perturbation data to a tuple of Hamiltonian functions and a tuple of almost
complex structures in the complete metric spaces

He(8) = B C(10. 8] x M. R).  T:(8) i= @)= (0. 51, T (Mj. ).

where J(Mj, wj) is the space of smooth w;j—compatible almost complex structures
on Mj . (The latter inherits a complete metric as a closed subset of the complete metric
vector space C*°([0, §;] x Mj,End(7T'Mj)).) While this split form is not necessary for
our strip-shrinking analysis in [11], it is particularly helpful for constructing relative
invariants (such as the functor associated to a correspondence in our article [9]) from
more complicated quilted surfaces, which cannot be interpreted as single surface
mapping to a product manifold. Unfortunately, the transversality proof in [10] for
the quilted Floer trajectory spaces for generic split perturbation data H € H(3)
and J € J;(8) has a significant gap: It fails to explicitly discuss trajectories u =
(uj: R x[0,8;] - Mj)j=o,...,, for which some but not all components are constant.
This intermediate situation is not an easy combination of the two extreme cases (all
components nonconstant, or all components constant) as we seem to claim in [10].

Results

In Theorem 3.2 below we complete the proof of the transversality claimed in [10] by
working with a more specific set of split Hamiltonian perturbations which may be of
independent interest. In Theorem 2.3 and Corollary 2.4 we find a dense open subset
of #;(8) for any given cyclic Lagrangian correspondence such that, after perturbation
by one of those split Hamiltonian diffeomorphisms, any geometric composition of its
factors is transverse and hence immersed. Starting from such a Hamiltonian perturbation,
we observe that quilted Floer trajectories with constant components induce quilted
Floer trajectories for a shorter cyclic generalized Lagrangian correspondence, given
by a localized version of geometric composition across the constant strips. Using this
point of view and a further technical restriction on the Hamiltonian perturbations (see
Theorem 2.9(b)), we are able to find generic sets of split almost complex structures
for which quilted Floer trajectories with constant components are regular, as well. In
fact, we show that quilted Floer trajectories with constant components are very rare
as summarized in Remark 3.3 and sketched below.

Note that the technical restriction on the Hamiltonians does not harm the applicability
to dynamics, since quilted Floer homology is always equivalent to a standard Floer
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Quilted Floer trajectories with constant components 129

homology of product Lagrangians. The latter is well defined for a given Hamiltonian
perturbation yielding transverse Lagrangians and generic (nonsplit) almost complex
structure. On the other hand, the same Floer homology can be calculated in the quilted
setting, using eg the strip-shrinking isomorphism of [11] or relative invariants defined
in [12].

Idea of Proof

A key role in the proof is played by certain families of isotropic subspaces which
arise in the proof of transversality for the universal moduli space of almost complex
structures and Floer trajectories. The elements of the cokernel of the linearized operator
of the universal moduli space are tuples of (—.J;)—holomorphic sections »; of u} T M;
for i =0,...,r with Lagrangian seam conditions determined by the tangent spaces of
L;+1). Ignoring Hamiltonian perturbations for simplicity, the problem of constant
components occurs for example when some u; is constant (with value say x; € M;)
but the adjacent components u; 1, u; 4 are nonconstant. Then variations in the almost
complex structures prove vanishing of 71, 1j+1, and hence n;: R x[0, 6;] — Tx; M;
is (—Jj)—holomorphic with boundary conditions in

Aj () = Try gy (T 651,906 Lj—1j 0 ({0} x Ty M) C Ty Mj,
A}(S) = HTx.Mj (T(xj,uj+1(0,S))Lj(j+1) N (Tx,- M] X {O})) C ij Mja

where Ilr, . M; denotes the projection onto T; M; (an injection in both cases). The
spaces Aj (s) A’ (s) are isotropic spaces varying with s € R, despite the fact that
uj = Xj 18 constant We can now proceed differently in three nonexclusive cases.

(a) The easiest case is to assume that Aj(s), A} (s) are s—independent. We may
then enlarge these isotropic spaces to constant Lagrangian subspaces and deduce
that n; lies in the kernel of an operator dy + A, where A4 is an s—independent
self-adjoint operator and invertible (since by choice of H the generators of the
Floer complex are cut out transversally). We then deduce vanishing of n; from
the general fact that operators of this form dg + A are isomorphisms.

(b) An intermediate case occurs when Aj(s) or A;. (s) fails to be Lagrangian (ie
have maximal dimension) for some s € R. For example, if L;_1); is the graph
of a symplectomorphism, then the intersection A; is trivial. We show that this
case of a quilted Floer trajectory with constant component does not occur for
generic (J;);«;-

(c) The most difficult case occurs when A (s) and A}. (s) are nonconstant families
of Lagrangian subspaces. We show that for generic H the locus on which such
varying Lagrangian subspaces are possible is of positive codimension in the
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space of boundary values (#;_1(8j—1,5),uj4+1(0,5)). Then we again exclude
this case for generic (J;);; .

Thus, for generic Hamiltonian perturbations A and almost complex structures J we
in fact show a splitting property for any quilted Floer trajectory with constant compo-
nents, namely along the seam (u; (s, 8;), uj+1(s,0)) € Lj(j4+1) wehave TLj(j41) =
Ajx Ajyq, where Aj C T'Mj is a constant Lagrangian subspace given as above, and
Aj 1 is the s—dependent projection of T'Lj;+1) N ({0} x TMj ). For a precise
statement see Remark 3.3.

The arguments in case (b) and (c) crucially rely on the following interpretation of
quilted Floer trajectories with constant components as quilted Floer trajectories for
a generalized Lagrangian correspondence obtained by a local version of geomet-
ric composition. If u = (ug,...,u,) is a solution with u; = x; as above, then
(to,... . uj_1,Ujs1,...,u,) is aquilted Floer trajectory for the generalized correspon-
dence (Lo1....,Lj—1)joLj(i+1)---+ Lr@+1)). We show in Theorem 2.3 that, after
a generic Hamiltonian perturbation of L, any geometric composition L(j_1)joLj(j+1)
is an immersed Lagrangian correspondence. It becomes embedded if we restrict to
values in M near x;. Hence (uy, ..., Uj— 1 Ujpysen ., u,) can be viewed as quilted
Floer trajectory for a smooth generalized Lagrangian correspondence.

We showed in [11] that transversality for this composed correspondence implies transver-
sality for the original correspondence for sufficiently small widths §; > 0. Here we
extend this transversality to solutions with constant u; for arbitrary §; > 0 and generic
perturbation data H, J .

Alternative approaches

It is perhaps worth remarking that all of the correspondences intended as applications
in [10; 14; 13] fit into the easiest case (a) described above since these Lagrangian
correspondences Loy C M x My are quasisplit in the following sense: The in-
tersection (Tx, Mo x {0}) N T(x, x,)Lo1 is independent of x; and the intersection
({0} x Tx; M1) N T(x,,x,)Lo1 is independent of xo. Examples are split correspon-
dences L x L1, graphs of symplectomorphisms, correspondences arising from fibered
coisotropics, and the embedded geometric composition of any two quasisplit corre-
spondences. If all Lagrangian correspondences are quasisplit then the simple argument
in case (a) above completes the transversality argument for the universal moduli space
in [10].

Note however that one can easily construct Lagrangian correspondences that are not
quasisplit by applying a nonsplit Hamiltonian diffeomorphism of M~ x M to a split
correspondence Lo X Lj.
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Quilted Floer trajectories with constant components 131

Another possibility for achieving transversality at quilted Floer trajectories with constant
components is to introduce nonsplit perturbations as in Perutz [5]. However, in order
to implement this perturbation scheme for more general relative quilt invariants, one
would have to replace each seam with seam condition L;; C M; x M; by a strip in
M; x Mj, one of whose boundaries takes values in L;;, and the other boundary gets
paired via a diagonal with the two adjacent patches in M; and M; — a novel type of
seam condition, relating three patches at one common boundary component. In that
setup we may use nonsplit perturbations on the strip.

Acknowledgement We thank Maksim Lipyanskiy for pointing out the question of
constant components, and the referee for substantial help in improving the exposition.

2 Hamiltonian perturbations of generalized Lagrangian cor-
respondences

Given a cyclic generalized Lagrangian correspondence L = (Ljj+1))j=0
d=(8j >0)j=o,...,r» and a tuple of Hamiltonian functions H = (Hj);=o,...,
the generators of the quilted Floer complex are tuples of Hamiltonian chords,

.....

.....

xj (1) = Xg; (x (1)), }
Z(L,H):= yx = (xj: [0,8;] = M;);= / v :
(Lot i= = 02 031 Mo | 65 G
They are canonically identified, via x — (x¢(8¢), x1(0), x1(81),...,xr(r), x0(0)),
with the fiber product

Xgflo (Lo Xgfh Lia - X fir Lr¢r+1))
T
:=(Lo1 X Li2 XX Ly(p41)) N (graph(cb,{’l) X graph(qﬁgz) X oo X graph(¢,§)1°)) ,

where ¢£IJ’ is the time §; Hamiltonian flow of H; and (- -)T denotes the exchange of
factors My x---x Mo x My — My x M7 x---x My. In this setting we proved in [10]
that Hamiltonians of split type suffice to achieve transversality for the generators. We
now strengthen this result to achieve transversality for all partial fiber products.

Convention 2.1 Here and in the following the indices are mostly used modulo r + 1
but still denoted by j € Ny in order to have the following notation: A pair of indices
j < j’ denotes a pair j, j' € Ny with j < j/ < j +r + 1. A pair of indices j < j'
denotes a pair j, j' € Ng with j +1 < j' < j +r + 1, that is, with at least one other
index between j and j’.
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For any proper subset I C {0,...,7} let I¢ € {0,...,r} be its complement. Then a
consecutive pair of indices j < j € I ¢ (resp. j < j' el € denotes a pair j < j’
(resp. j <1 j') as above such that j, j'€ I€ and {j +1,...,j =1} CI.

Definition 2.2 For any pair of indices j <1 j we define the partial fiber product

LjGi+1) ¥H; 41 LGi+0G+2) - ¥H_y Lir—1)j7

= (Lj(j+1) Xeee X L(j/_l)j/) N (Mj X graph(qﬁgfjl) X e X graph(¢(£1j:1) X Mj/).

We trivially extend this notation to the case ;' = j + 1 by Ljjs = Lj(j+1). Fora
general proper subset of indices I C {0, ..., r} we then define the partial fiber product

XraL = [T Ligeo>ma - >m Lo-ny
consec. j<j’elC
to be the product of the above fiber products for each consecutive pair of indices

j < j' e I€. We view the intersection Z(L, H) = X{o,...,r},H L as the full fiber
product case 1 ={0,...,r}.

Given L, we call a tuple of Hamiltonian functions H € H;(8) quilted regular if the
defining equations for x; g L forany I C {0,...,r} are transversal.

Theorem 2.3 The set Ham* (L) C H,(8) of quilted regular tuples of Hamiltonians is
a dense open subset of H;(§).

Proof Each of the fiber products under consideration is of the following form: It is
the set of tuples (mg,my,m},...,my,my41) € Loy X -+- X Ly41) satisfying

(D ¢£”'(m,~)=m;~ Viel.

It suffices to show that the subset of regular Hamiltonians for each of these problems
is dense and open, since the intersection of finitely many dense open subsets remains
dense and open. So we fix some choice of I C {0,...,r} and consider the univer-
sal moduli M"Y space of data (Hy, ..., Hy, my,my, ..., m,,m,) satisfying (1),
where now each H; has class ct*+1 for some £ > Y ieyc dim M;. It is cut out by the
diagonal values of the ct —map

r
Loy X Lz X Lygry1y x @ €10, 85 x My) — [ Mj x M;,

k=0 jel

(my.my,m'y,my,....my,mpy1, Hy, ..., H)r—> (d)aii(mi),m;)iel.
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The linearized equations for M"™" are

) vi— Dgli(hi,vi) =0 TM; Viel

for v; € Tpn, M;, v} € Tm;_M,-, and h; € CtT1([0,8;] x M;). The map
Cﬁ—i-l([O, 8i] x M) — T¢81-iii mMi,  hi— D¢£Ii (hi,0)

is surjective, which shows that the product of the operators on the left-hand side of (2)
is also surjective. So by the implicit function theorem M"Y is a C* Banach manifold,
and we consider its projection to @} _, C**T1([0,8x] x My). This is a Fredholm
map of class C* and index Y ;c;c dim M; (in particular 0 for the full intersection
I ={0,...,r}). Indeed, the Fredholm property and index follow eg from McDuff and
Salamon [4, A.3.6]); differentiability follows from being a restriction of the smooth
projection

Lot % .. Lygrany X @ CEH0, 851 x My) — @ CEH1([0, 8] x My)

to a C* Banach submanifold. Hence, by the Sard—Smale theorem the set of regular
values (which coincides with the set of functions H = (Hy, ..., H,) such that the
perturbed intersection is transversal) is dense in @} _, CtF1([0, 8] x My). Moreover,
the set of regular values is open for each £ > ) ;. ;c dim M;. Indeed, by the compact-
ness of Loy X Lip+++X L,y41),a C!—small change in H leads to a small change in
perturbed intersection points, with small change in the linearized operators.

Now, by approximation of C°°—functions with Ct*+1 _functions, the set of regular values
in @ —o C>([0, 8] x My) is dense in the Ct*+1 _topology for all £ > Y iegc dim M;,
and hence dense in the C°°—topology. Finally, the set of regular smooth H is open in
the C®—topology as a special case of the C! —openness. |

We now reformulate this Theorem by using the Hamiltonian flows of H to perturb
the Lagrangian correspondences and then applying a geometric composition in some
factors.

Corollary 2.4 For H € Ham*(L) the perturbed generalized correspondence

.....

has the following intersection and composition properties:

(a) The generalized intersection
T(L',0) = (Loyy XX Lo 1y) N (Apgy XX Apgy)T

is transverse and canonically identified with Z(L, H).

Geometry € Topology, Volume 16 (2012)



134 Katrin Wehrheim and Chris T Woodward

(b) For the perturbed correspondence L’ the trivial Hamiltonian 0 € H;(8) is quilted
regular. That is, for any proper subset I C {0, ..., r} the partial fiber product
Xy, 0L’ is cut out transversally (and canonically identified with xp,gL). Itis a
product of the transverse intersections

/ / /
Lic+1) %8i41 L(j+1)(j+2) XAjpa XAy Ly jo
/ / /
= B X Liangan <o Lo ) 1 Bagy e Bagye, X Myr)
H' H/ i/
= (Idag; x s 7 XIdag 4 XX 7™ X¢s,.,’ Y(LjG+1)X¥Hy gy X Hyy L(r=1))7)

for consecutive pairs of indices j < j' € I€.

(c) By adirect generalization of [10, Lemma 2.0.5], the projection
/
HM XM/ Lj(j+l) XA]+1 . -XAJ.Ll L( —1)j’ —)M XM/
is an immersion onto the geometric composition

/ /

Ljgn oo Ly © Mjx Mj.

We will in particular be interested in the geometric composition near a fixed point in
Mj4q x---x Mj_y given by the components of an intersection point in Z(L’, 0). For
any such point there is a neighborhood U/ C M x---x Mj,_y such that the projection

/ /

[ ar; x ;, embeds (LJ(JJFI)XA]+l (j+1)(j+2)---x i 1L(J/ )’ DN(MjxUxM;)
into M; x Mj:. This is a localized version of the embedded geometric composition (as
studied in [10]) of the perturbed Lagrangians. We will be using the following analogue

of the perturbed geometric composition of unperturbed Lagrangian correspondences.

Definition 2.5 Let H € Ham*(L) be quilted regular. Then for a proper subset
I C{0,...,r} and x € Z(L, H) we define the locally composed cyclic Lagrangian
correspondence L1H.x between the underlying manifolds (Mj);crc to be the cyclic
sequence consisting of L * C Mj x Mj, for each consecutive pair of indices
j < j' eI, given by

H.,x R 77
L7 o= Tagyend;, (L) XE; 0 LGy - Xm_, Liir—n ) U, j,j7)

for Zj&j,j/ = M xUy,j,j» x Mj, where Uy, ;s is a chosen neighborhood of the point
(xj+1 0),xj 41 41) -+, xj7—1(0), xj7—1(8 ~/_1)) such that ITaz; xaz,, is injective on
the intersection.

Remark 2.6 Given a regular tuple of Hamiltonian functions H € Ham*(L) as in

Theorem 2.3 and a proper subset I C {0,...,r}, let §7 := (6j)jerc and HT =
(Hj)jerc - Then the transversality assertions of Theorem 2.3 moreover imply that for
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any x € Z(L, H) the intersection Z(LT-H-* H') is transverse. It contains (xj)jerc
and no other points if the neighborhoods Uy ;, j- are chosen sufficiently small.

In preparation for the analysis of quilted Floer trajectories with constant components,
we next study the lift from Lg,’l‘ to Mj 1 x Mj—y and its connection with the
intersections 7'Lj(j41)N ({0} x TMj4 1) and TL(jr—y1y;r N (TMj—1 x{0}). A priori,
the latter are isomorphic to collections of isotropic subspaces of 7'M 1 resp. TMj:_;
parametrized by L;(j41) resp. Ljs—1);s. As mentioned in the introduction, a first
step is to understand the locus where these subspaces are Lagrangian, and how they
H.x : : :
may vary along L ij - For that purpose we introduce the following notation.

Definition 2.7 Let j <1 j' be a pair of indices.

(a) Denoteby Sjjr CLjj4+1)xL(j—1)j the set of points! 9=(qj.49j+1.9j'-1.4j")
for which

A(j—l—l)(j’—l)(‘_]) = Tg(Lj(j—H) X L(j’—l)j’) N Tg({Qj} X Mj+1 X Mj/—l X {qj/})

induces a Lagrangian subspace in Ty, ., Mj 11 x Ty;,_ Mj—y (with the appro-
priate signs on the symplectic forms).

(b) Given moreover H € Ham*(L), x € Z(L, H), denote by
H77
ij/: Lﬁ,x — Mj+1 X M./_
the composition of the lift from LJ%I.,’E to
(LjG+1) XHyqy X Hyy Ljr—1yj7) NUx j jr
and the projection to the second and penultimate component, ie to a neighborhood

of (xj+1(0), xj:—1(8j7—1)).

The following Proposition shows that the set S;;- can equivalently be defined as the
locus where the linearized Lagrangian correspondences split, and that this splitting
locus is closely related to the vanishing of DP;jj.

Proposition 2.8 The following holds for any pair of indices j <1 j’.

(i) The subset Sjj» C Lj(j+1)X L(j—1)js is compact and coincides with the subset
for which both T(qj,qj+1)Lj(j+1) = Aj X Aj+1 and T(q;/_l,!Ij/)L(j'—l)j/ =
Ajr_y x Ajs are of split form given by Lagrangian subspaces A; C Ty, M.

ITo avoid confusion in the case j =02 j/ = r + 1 modulo r + 1 note that we work with indices in
Ny to explicitly allow ¢/ # g; .
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(ii) Forany H € Ham*(L), x € Z(L, H) the linearization
H.,x
DigyainPiirt Tagpan Lij™ = Tryjiaay.05) Mje1 X Myr—1)
is trivial if and only if (q;,Pjj(qj.qj'),q;’) € Sjj’.

Proof We begin by establishing the basic symplectic linear algebra facts that will be
used in the proof. Let V7, V> be symplectic vector spaces.

(a) Let Ajp CV; x V; be alinear Lagrangian correspondence. If the intersection
Ay =TIy, (A12 N ({0} x V3)) C V, is Lagrangian then A1, = Ay x A, splits
into A, and the complementary intersection A := Iy, (A12N(V; x{0})) C Vq,
which is Lagrangian as well.

(b) In the notation of (a), the intersection A, is Lagrangian if and only if Ay, =
A’ x A, is the product of two Lagrangian subspaces A} C V;.

(c) Let L(V1 x V,") be the Lagrangian Grassmannian of V; x V;~ and let § C
L(V1xV,") be the subset consisting of the Lagrangian subspaces A1, C V" x V3
for which A, asin (a) is Lagrangian. Then S is closed.

(d) The same statements hold with A; and A, interchanged.

To see (a), note that both A; C V; are automatically isotropic since they are identified
with the isotropic subspaces A1 x{0},{0}x A, C A1,. Now suppose A, is Lagrangian,
then for any (vq,v;) € Ay, we have v, € Ag)z = A,, which implies (0,v;) € Aq,,
and hence (v{,0) € Ay, thatis vy € Ay. This shows that A, splits, and since it
is Lagrangian, the first factor A; must be Lagrangian as well. This proves (a) and
one implication of (b); the reverse implication is immediate since A, = A/z. For (c)
note that {0} x V5 is a symplectic subspace and the projection I1y,: {0} x Vo — V3
a symplectic isomorphism. So A, C V> is Lagrangian if and only if the intersection
A12 N ({0} x V3) with the symplectic subspace {0} x V, has maximal dimension. This
condition is preserved in a limit, so occurs on a closed subset of L(Vy x V7).

Now for a point ¢ = (qj,qj+1,q},_1,qj/) € Ljj+1) X L(js—1)j» we may apply the
above facts to A12(q) =T(g; 4, Lji+1) and A, (g) = T(q]/./_l,qj/)L(j’—l)j’ inlocal
trivializations Ty, Mj x Ty, Mj 41 = VixVy and Ty, My x Ty, Mjr = V{x V.
Then Sjj is closed because it is the set of points q € Ljij+1) %X Lj—1yjs for which
A»(g) and A} (g) are Lagrangian, in other words such that the continuous map ¢ —
A2(g)x A (q) takes values in the closed set SxS’. Here S, S are closed by (c) above.
Moreover, by the above linear algebra (b), the Lagrangian property of the intersections
is equivalent to the split form of Ty 4., )Lj(j+1) and T(q]’.,_l,q,-/)L(j’—l)j“ This
proves (i).
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Next, (ii) is similar linear algebra. Any point

@) 9j+1-95—1-95") = ;. Pjj*(qj- 4j7) 4j7)

has a unique lift

(@ gj+1: D1 - 4r=1: G145 € (Lj Gy X By o1 ¥y Lr—1)j7) WU, j 7

Denote the symplectic spaces by V; := T, M;, V/ := qu{ M; , the linear Lagrangian
correspondences by A;+1) = T(g;,q;41)LiG+1), and the graphs of the linearized
Hamiltonian symplectomorphisms by gr; := graph(dgbgi (gi)) C V;~ x V/. Then our
choice of H guarantees that the intersection

Ajj’ = (A](]+1) XX A(j’—l)j’) (h (V] X gr 41 X - Xgrj’—l X Vj’)
is transverse and the projection
HV].X[/]./I Ajj’ — Ajj’ C VJ X Vj’
is an isomorphism to the Lagrangian subspace Aj;/ 1= Ty, ’qj,)Lf*]I.,’z. Now
P = Dg;.q,0Pjjr: Njjr = Vit1 X Vi

is the composition of the lift A;;» — A jj’ and the projection to Vjq x Vj/,_1 . Hence
P =0 is equivalent to I'IVJ.JFI)(V]_//_1 |1~\,~,~/ = ( and hence to

Ajjr CVix {0y x V] x Viqg X+ x V], _y x Vir_y x {0} x Vj.

Since Aj;jr =TIly, ij,ij/ is Lagrangian, the latter is equivalent to A ;(;1)N(V;x{0})
and A(jr—1)j7N({0}xV}/) projecting to Lagrangians in V; and V;-. By (b) above, this is
equivalent to A ;(j41) and A1) being of split form, and to A;(j4+1)N({0}xVj 1)
and A(jr—p)jr N (VJ.//_1 x {0}) projecting to Lagrangians in V4 and Vj/,_1 , which is
the definition of (g;,Pjj(qj.q;’).q;’) € Sjj. a

In the next section we will “generically” exclude quilted Floer trajectories with constant
components of the following two types: Firstly, those along whose seam values we have
DPjjr # 0 somewhere (ie whose seam values are not entirely contained in the splitting
locus); secondly, those along whose seam values DP;;» = 0 (ie with seam values
entirely contained in the splitting locus) but A (j1)(j’—1) varies. This will only leave
quilted Floer trajectories with constant components, for which transversality follows
from transversality for the moduli space of the locally composed cyclic Lagrangian
correspondence. The second part of this argument requires the following understanding
of the structure of the splitting locus S, the variation of the 1ntersect10n AG+nr—1)
and the intersection of S ;» with lifts of the local compositions L* =. We will describe
a set of functions that cuts out the splitting locus and show that solutions with seam
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values contained in the maximally singular part of the splitting locus have constant
Lagrangian intersection. In order to generically exclude other solutions, we then find
Hamiltonian perturbations which ensure that the defining functions for the splitting
locus pull back to regular functions (ie transverse to 0) on the subsets of the local
compositions Lg,’x where A(j41)(j7—1) may vary. (Note that the pullback of a regular
function by an embedding fails to be regular if the image of the embedding intersects

the zero set of the function nontransversely.)

Theorem 2.9 The following intersection properties hold for any pair of indices j <1 j'.

(a) Forany g € Sjjs there is an open neighborhood V4 C Lj(j+1) X L(j—1);- and
smooth functions

Gy: Vg—>R forn=1,..., nmax

with niyax := (dim M; + dim M;j,)(dim M; ;| + dim M;,_;)/4 that cut out the
splitting locus?,
Fmax
Sjj NV =) G, (0).
n=1
Moreover, if y: (—€,€) — (Mj XAGj+1} x4qjr—1} % Mj/) N Vg is a smooth
path contained in S;jj (that is, G,(y(t)) = 0 for all t € (—€,€) and n =
1,...,nmax ), along which no G, has a transverse zero (ie dG,(y(t)) =0 for
all t and n), then A (jy1)(j'—1)(y(?)) is constantin t € (—e€, €) as a subspace of
T5j+1Mj+1 X ng/_le/_l .
(b) Fix a finite open cover
Sjj/ C U Vg
QESJ']-/
by subsets as in (a) with Sj;» C Sjj finite, and for each q € Sjj/ fix functions
(Ghy,—, ... S In (). Then there is a dense open subset H (L) C Ham*(L)
such that the following holds: For every H € H;j (L), x € I(L, H). q € Sjj,
and 1 < n < npay the function
H, H, q
Gan: Vg > R, (gj.zj0) = Gu (2. Pjjr (2. 2j0). 2j)

2 Since L j(j+1) X L(js—1)j splits in some other way, we could choose these functions such that
%(mj mjs_1 +mjrmj 1) of them vanish identically, leaving %(mj mjs +mjymjs_q) possibly nonva-
nishing functions.
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is transverse to 0. It is the pullback of Gg to the open subset of the locally
composed Lagrangian Lg,’l‘ ,

> H, q
Vq nEZ:{(Zj,Zj/)ELj?/E } (Zj, ij/(Zj,Zj/),Zj/) EVQ, dGﬁ(Zj, 'ij/(Zj,Zj/),Zj/)?éO},

given by the fixed neighborhood of g and the regular locus of G% with respect
to its full domain.

Proof Let M, N be symplectic manifolds, L C M x N a Lagrangian submanifold,
and (m,n) € L a point at which the tangent space T(;, L = K x A splits into
Lagrangian subspaces K C T;, M and A C T, N . Then we may symplectomorphically
identify neighbourhoods Wys € M of m and Wy C N of n with unit balls in
B IK C KxK* and Bf\ C AxA*. Choosing these Darboux neighbourhoods sufficiently
small ensures that V := L N Wy x Wy') = graphdF C BIK X Bf\ x K* x A* is
identified with the graph of the differential of some function F: BIK X BlA — R.
Denote by 7: V — BIK X BlA the projection given by n(p) = z where p € V is
identified with (z, dF(z)) € graph dF. With that notation, the tangent spaces 7, L =
graph D? F(r(p)) for p € V are then the graphs of the Hessian. Hence the tangent
space T L is of split form if and only if the Hessian D> F(r(p)): K x A — K* x A*
is of split form D% F(r(p)) = D*(F|x) x D*(F|p).

We will moreover identify K o K* = RUmM/2 apd A = A* 2 R9mMN/2 apd use coordi-
nates (x, y) € K xA. Then D?F(r(p)): RImM/2  RdimN/2 _, dim M/2  pdim N/2
iS @ Nmay 1= %(dim M +dim N) square matrix, whose off-diagonal blocks give rise to
the tuple of functions

?F
dxxdye

(Gr)n=1,....nmp: VY — Rmax, p'—>( (Jr(p)))

k=1,..,} dim M L=1,..,(1/2)dim N
which locally cut out the splitting locus,

snv=|{JG, 0.

n=1
We now apply this construction to the Lagrangian embedding
L= Lj(j+1) X L(j’—l)j/ — M x N
given by exchange of factors into the product of M = Mjx M and N = M 1 xMjr_1.

This yields the desired local description of the splitting locus Sj -, consisting of points
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9 =1(4j.9j+1.9j'—1,9j’) = (m,n) at which both tangent spaces

0 0
T(qj,th+1)Lj(j+1) = Aj x Aj+1 C quMj x T‘Ij+1Mj+1’

_ AO 0 ) .
T(q,’»/,l,q,-/)L(j’—l)j’ = Aj’—l X Njr C Ty Mjr—y X Ty;, My

are products of Lagrangian subspaces. In that case we have
AG+nG—-1(@) = {03 X A X A X {0} = Ty L N ({0} X Ty N).

For the second part of (a) we consider a path y: (—€,€) — (M x {ng}) NV. In the
Darboux charts such a path is given by a point yog € A and a smooth path x: (—¢,¢€) > K
as y (1) = (x(1)., yo. VF(x(2), o)), where Va F(x(1), yo) is constant. We moreover
assume Gy (y(t)) = 0 for all £ and n, which by Proposition 2.8(a) this is equivalent to
the intersection A ;4 1)(j—1)(¥ (1)) = Ty L N ({0} x Ty, N ) inducing a Lagrangian
subspace in Ty, N . Indeed, it is spanned by the vectors

(1/2) dim N )

(o,@,o,( > b

i=1

F
(0.30))
dyidye =

for b € A = R/DAmN  Finally, we assume dG,(y(1)) = 0 for all ¢ and n, in

particular
3

e Gn:(lc,i)()_c(t)al’o) = (?_C(l),l/o) =0

0y¢0y;0xy
for all £,i,k. This guarantees that (32 F/dy;0y,)(x(2), Yo) and hence the vectors
spanning A (j11)(j'—1)(y(¢)) are independent of 7.

Approaching (b), note that we may reformulate the claim as transversal intersection of
Ljj+1) XH; 4 XH;,_, L(j—1)j- with the zero set of

~4 q
Gﬁ(g) = Gﬁ(Zj,Zj+],ZJ/'/_1,Zj/)
on the open set

. . / , .
{ (22 Zj 1o Zj gy oo 2y 277)

(Zj,Zj+1,Z,-/_1,Zj/)€Vg, }
€ L](]+1) X...X L(j’—l)j/

q
dGy(zj.zj+1.2}_y.2j)) #0

The universal moduli space of regularity m € N for this problem is the preimage of
{0} x Apgyyy X -+ Apg,,_ of the map

j’—1
LiG+1 % L4nG+2 X L=y x D €"FH(0.8:]x M;)
i=j+1 j'—1
— R x 1_[ M; x M;
i=j+1
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givenby (zj,...,zj, Hiyq1,.... Hj_y)

Hence the universal moduli space is a C"™ manifold if at every solution the operator

(Uj,...Uj/,hj+1,.,,hj/_1)

.....

is onto. Here surjectivity in the first component is guaranteed by the condition
d 6’%@) = 0, and in the second component already /; — Dd)fi (h;,0) is surjective as
in Theorem 2.3. Now as before the implicit function theorem and Sard—Smale theorem,
using m > dim M; +dim Mj—1 to satisfy the index condition, provide a dense subset

of EBz]=_]1-|-1 C™mT1([0, 8;] x M;) for which

Girt (LG40 Xy -+ ¥ Hy—y L—1)j7) Md Gy # 05 > R

is transverse to 0. Since this contains the lift of ng’)*c: V;jln’& — R, we find a dense
open set of regular Hamiltonians of class C"*! for any given ¢ € Sjj, 1<n <N,
x € Z(L, H), and sufficiently large m € N. Finally, C! —small changes in H lead to
small changes in intersection points and the linearized operators, hence we obtain open
dense sets of regular values, and may take countable intersections to find a dense open
subset H;s(L) C Ham* (L) of regular smooth Hamiltonians. O

3 Quilted Floer trajectories with constant components

Given a cyclic generalized Lagrangian correspondence L, widths §, a regular tuple
of Hamiltonian functions H € Ham* (L), we now consider the Floer trajectories for
some choice of almost complex structures J = (J;)j=o,...., € J¢(8). For any pair
x7,xT € I(L, H) of generators and index k € Z, the moduli space of quilted Floer
trajectories

ME(x= xt L, D)

is the space modulo simultaneous R—shift of tuples of perturbed holomorphic strips

3) 0y, 1,1 = Oguj + Jj(deuj — Xp, (uj)) =0V j=0,....r,
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satisfying the seam conditions
“ (uj(s,8j), uj41(s.0)) € Ljj41y Vj=0,....r, seR
as well as uniform limits

5) lim  u; (s, )—x]i Vj=0,...,r
s—=+o0

Moreover, we fixed the index of the linearized operator — as explained in the following.
By standard local action arguments as in Floer [2] any such solution also has finite
energy, and exponential decay analysis as in [11] shows that any solution is of Sobolev
regularity W -2 relative to the limits for any p > 2 in the following sense: If we
trivially extend x]i to maps R x [0,8;] — Mj, then there exists R > 0 such that
uj(=+s,t) takes values in an exponential ball (with respect to some and hence any
metric on M) around xjjE (s,t) for &5 > R, and such that foreach j =0,...,r we
have

©) (.0 exp L (uj(Es.0)) € WP (R, 00) x [0.8;]. x " TM;).

With this, the moduli space of Floer trajectories can be identified with the R—quotient
of the zero set of a section d: B — & of a Banach bundle, where

7 B:={u=(u; € WP (R x[0,8;], M) ..., @, (6)},

loc

& — B is the Banach bundle with fibers &, = @J —o L?(R x[0, 5], *TM]) and
F] J: B— & is the (R~invariant) Cauchy-Riemann operator F] J(Ww)= 0 Ji HiUj)j=0,...r
In [10] we proved that F] J is a Fredholm section, and in the definition of the moduli
space M¥(x~, xT) we fix the Fredholm index of its linearization Dua J:TyB—&,.
In order to achieve transversality of the section s, we now restrict ourselves to a further
dense open subset of Hamiltonian perturbations, as constructed in Section 2.

Definition 3.1 Given a cyclic generalized Lagrangian correspondence L and widths §,
let

Hreg(L) = (| Hjjr(L) C Hy(8)
JsJ’
be the intersection over all pairs of indices j <1 j’ of the dense open subsets of regular
Hamiltonians for some choices of covers of S;j- as in Theorem 2.9.

We now prove the main result.
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Theorem 3.2 For any cyclic generalized Lagrangian correspondence L and any choice
of widths § and regular Hamiltonians H C Hes(L), there exists a comeagre® subset
Jrea(L; H) C J;(8) such that for all J € Jreg(L; H), x* € Z(L, H), and k € Z the
Cauchy—Riemann section F] J: B — & defined above is transverse to the zero section.

Remark 3.3 In fact, we prove that for generic perturbation data H C Ham* (L) and
J e jtreg(I:; H) any solution u € Mk (x~,x™T; L, J) with some constant components
has split linearized seam conditions between constant and nonconstant components in
the following sense: If d5u; # 0 and u;1(s,?) = xj41(¢) for all (s,7) € R x[0, 1],
then Ty, (5,6;),x; 4100 Lj(j+1) = Aj(s) X Aj4y splits into two families of Lagrangian
subspaces

Aj () = Trag; (Tiu; s.87) .y 41 LiGi+1) N (T (5.8 My < {0})),
Ajr = Trmy (T (.85 0 ) LiG+1) NV (03 X T,y 0)Mj41))

of which the second is constant. The analogous statement holds for d;u; = 0 and
8su j+1 7_é 0.

Proof Since Z(L, H) has finitely many elements (due to the transversality in Theorem
2.3 and compactness of the Lagrangian correspondences), and countable intersections of
comeagre sets are comeagre in the complete metric space J;(8), it suffices to consider
a single pair x+ € Z(L, H) and indices k < kg for some fixed kg € N.

The standard universal moduli space approach, using unique continuation for each
strip separately, as discussed in the proof of [10, Theorem 5.2.4.], provides a comeagre
subset in J; (L) for which the section s is transverse at all zeros u for which dgu; £ 0
for all i = 0,...,r. In addition, s is automatically transverse at any completely
constant solution # = x* = x~, by a general argument (using spectral analysis,
elliptic regularity, and Sobolev embeddings) as in eg Salamon [8, Lemma 2.4] and
Donaldson [1, Chapter 3].

More precisely, the linearized operator at such a solution u = (x;) € Z(L, H) has the
form 0 + A: T,B — &, where T,B C L?(R, W?) is a subset of paths in

oor |

(5. &541(0) € Tix; 5y 1 o) LiGi+10) Y J }

WP .={(§ € Wl’p([ovfsj]vx}kTMJ'))j:o.

3 A subset of a topological space is comeagre (or residual) if it is the intersection of countably many
open dense subsets. Many authors in symplectic topology would use the term “Baire second category”,
which however in classical Baire theory (see Royden [7, Chapter 7.8]) denotes more generally subsets that
are not meagre, ie not the complement of a comeagre subset. Baire’s Theorem applies to complete metric
spaces such as the spaces of smooth almost complex structures considered here, and implies that every
comeagre set is dense.
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and 4 = (Jj (xji)a,),-=0,,,_,, is independent of s € R. This operator extends to an
invertible self-adjoint operator A: W2 — H, where H is the L?—closure of W 7.
Now 95 + A: L2(R, W2) N WL2(R, H) — L%(R, H) is an isomorphism by Robbin
and Salamon [6, Proposition 3.1.12]. Here the domain and target are the W !-2, resp.
L?, closures of the compactly supported smooth maps in T, uB resp. £,. Now a
standard method (worked out eg in [8; 1]) allows to transfer the isomorphism result
to the case of W 1-? domain and L? target. In our case, we can copy the proof of [8,
Lemma 2.4] word-for-word and simply replace the elliptic regularity and estimates for
the Cauchy—Riemann operator ds + A on finite cylinders with those for the tuple of
Cauchy-Riemann operators ds + A on tuples of finite strips with linearized Lagrangian
seam conditions.

It remains to consider solutions u for which a proper subset u; fori e I C {0,...,r}
of components is constant. Here and in the following we call a component #; constant
if d5u; =0, and hence d;u; = X, (u;), so u; is a Hamiltonian trajectory in 7, indepen-
dent of 5. A necessary condition for such solutions to existis x;” = xl.+ foralli € I, and
hence the locally composed cyclic Lagrangian correspondences L2 xT o L1Hx™
are the same. Note that any solution u € Mk (x~,x*; L, J) with the I components con-
stant induces a solution (#;);cjc € Mk((xi_)ielc, (x;r)ielc; Ll’g’ﬁi, (Ji)jegc) in
the moduli space of same index (see [10, 3.1.8] for the index calculation) for the locally
composed correspondence. Indeed, for consecutive pairs of indices j <1 j' € I€ we

have
(u] (S, 8])’ xj—l—l (O)v xj+1 (5]-’-1)9 s xj/—l (8'/—1)9 l/lj/(S, O))
€ (Lj(j+1) XHy 4y - XHy_y Lr—1)jr) NUx,j,j7-

+
The converse is rarely true since the lifts from Lg,’E 0 Lj(j+1) XHjyy " % Hy_,
L jr—1)j» may not be constant. Part of this is encoded by the lift map

P LA Mo x M,
jj’. jj’ - j+1 X j’—1

from Definition 2.7. In the following six steps we substantiate the intuition laid out
in the introduction: Automatic transversality can fail for Floer trajectories with a
mix of constant and nonconstant components. However, those are in fact nongeneric
solutions. We denote by jf (8) the closure of J;(8) in the topology of C%—maps
[0, 5j] X TMj - TMj.

Step 0 In preparation we need to fix some choices for each pair of indices j <1 j'.
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. . . H,xi .
Firstly, we fix a metric on each M;. Then, since Lﬁﬁ is compact, we may fix an
open cover

H.x*
by a finite number (indexed by Cjj» C M1 x Mj,_;) of exponential balls W£ C
M; 1 x Mj—1 on which

expzlz Wp = Be,(0) C Tp(Mjt1 x Mjr—y)

is a diffeomorphism. We also fix a collection of 1-dimensional subspaces (Z,) for
m=1,...,dim M;; +dim M;/_; spanning Tg(Mj+1 x M;/_1) for each peCjj.

Secondly, as in Theorem 2.9 we fix a finite open cover S C qeS; Vg4 and choose H
such that the submanifold -

{2€Vy|Gn(2) =0.dGu(2) # 0} C Lj(j+1) X L(j—1)j7

. = H x*
is transverse to Lﬁ,l forevery g € Sjjsandn=1,...,N.

Step 1.a We start by reviewing the regularity of the linearized operator at solutions
without constant components, more precisely we prove the following:

For every integer £ > kg there exists a comeagre subset 7. 16 cJ, te (8) such that for any
Je jle the linearized operator D0 is surjective for all u € Uksko ME(x— . xT:L,J)
with no constant components.

This is what the arguments of [10] actually prove. To be precise, we consider the
operator jf (8) X Boe = E|B,e» (J,u) = dyu on the open subset

nc ?

Buc:={ueB|du; #0Vi=0,....r} CB.

This operator cuts out the universal moduli space and is a C’ section of a Banach
bundle whose linearized operator at a zero dyu = 0 is

(K = (Ki)i=o,...r-£) > (Dydy)E — (Ki Jidsui)i=.....r-

Here the second summand is already surjective by the same arguments as in Floer, Hofer
and Salamon [3]. Indeed, the unique continuation theorem applies to the interior of every
single nonconstant strip #;: R x (0, §;) — M; and implies that the set of regular points,
(s0,%0) € R x (0,6;) with dsu;(sg,%p) # 0 and ui_l(u,-(R U {£o00}),20) = {(s0,%0)},
is open and dense. This suffices to prove surjectivity by contradiction. So by the
implicit function theorem {(J, u) | d Ju=0}isa ¢t Banach manifold. Its projection
to J, f (8) is a Fredholm map of class C* and index Ind Dy, < ko <{—1. Hence, by the
Sard—Smale theorem, the set of regular values, which coincides with the set J € 7, f )
such that Dyg J is surjective for all solutions u, is comeagre as claimed.
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Step 1.b Next, a similar argument provides the following regularity of the linearized
operator for the locally composed cyclic generalized Lagrangian correspondences:

For every proper subset I C {0, ..., r} such that (x_),e 1= (x )ier and every integer
£ > kg there exists a comeagre subset jl 1 C j, (8) such that for any J € \71 1 and
any solution v € Uk<k0M ((x )jeIC (x )jeIcs LD H.x* . J1) with no constant
components the linearized operator D, 01 is surjective.

The locally composed cyclic Lagrangian correspondence L2 H.x* Consists of smooth,

yet not compact, Lagrangian submanifolds. However, the compactness is not relevant for
the universal moduli space arguments. Hence as in Step 1.a we find a comeagre subset
of the C*—closure of P ierc C([0,6;], T (M}, wj)) with the transversahty properties.
Then we let ~71 ; be the preimage under the projection J — JI = (; i)jerc-

Step 2 In this first nonstandard step we show that for quilted Floer trajectories with
respect to generic almost complex structures the differential DP;;- of the lift map
from Definition 2.7 vanishes along the seams bounding constant components. More
precisely:

For every integer £ > ko and pair of indices j < j such that x; = x fori =
j+1,...,j —1 there exists a comeagre subset jz . C jt ()] such that for any
J € ‘72_] ., and u € Uk<koM (x~, x+ L,J) with ujqq,...,uj_; constant we

have Dy, (s,(g]),u]/(s,o))P”/ =0 forall s € R.

Given £, j, j' weset I :={j +1,...,j  — 1} and start by proving an intermediate
Lemma, Wthh asserts emptiness of the moduli spaces of quilted Floer trajectories
for LT-H- x* Wwith DPjjr # 0 but a weak form of constant lifts P;;- at sufficiently
many points along the seam. (Note that we make sure to only introduce a countable
set of data (k, p, Z,,, (5o, ...,S;)) since we will later need to take the intersection of
comeagre subsets for each choice and wish to still obtain a comeagre set of J.)

Lemma for Step 2 Fix a choice of k <k, one of the fixed centers of exponential balls
p € Cjj, and one of the fixed 1-dimensional subspaces Zy, C Tp(Mj 1 x Mjr—y).
For all s € R and Floer trajectories

Jh

- +
ve MA((x])ieres (x)epes LIEAT,
such that Pjj(vj(s,§;),vj(s,0)) € W£ denote

3(v,5) 1= T z,, exp, (P (v (5,67), vjr(5,0))),
D(,s):=Tlgz,0oD expz,l 0D (s5,8;),/ (5,00 Pjj-
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Then for any tuple of rationals sy < --- < Sg4+1 € Q there exists a comeagre subset
J(p,m,sg,...,Sk+1) C Jte(ﬁ) such that for any J € J(p,m,sq,...,Sk+1) there
exists no Floer trajectory

_ +
ve MM((x)iese. ()i LIEXT g1

satisfying Pj ;s (vj(s7,85), vj’(s;,0)) € Wp and D(v,s7) #0 forall [ =0,....k +1,
and moreover

3(v,50) = 3(v,51) =+ =3(v,57).

The proof is by a universal moduli space argument. LeﬂtE B be the Banach manifold as
in the definition of ./\/lk((xi_)ielc, (xF)ieres LIEXT 1) Then

B {v B ‘ Pjjrj(s1.87).vjr(s1.0)) €Wy YO<I<k+ 1,}

D(v,s5) A0 YO<I<k+]1

is an open subset of B, and

.....

defines a C¢ section of the bundle &|p x (Z)k+! — jf (8) x B'. TIts linearized
operator at a zero maps (I_( = (Ki)i=0,...r.§ = (Ei)ielc) to

(Dygll)g_ (KiJidsvi)ec
(@@, Sl)(fj (57,67),&jr(s1, 0)) - D(v, So)(fj (50.687). &) (0. O)))lzl,...,k—l—l

Here the second summand in the first component is surjective by the same arguments
as in Step 1.a, using just the freedom in K. The second component is surjective since
by definition of B’ each map

H, +
©(y7Sl): T(vj(sl,éj),vj/(sl,o))Lﬁ/z - Zm

is nonzero, ie surjective onto this one dimensional subspace, and £ can be chosen tp
assume any given tuple of values on the linearized Lagrangian corresﬁondence TL%,’E
at distinct 51, ..., Sx+1 € R. So by the implicit function theorem {(J, v) | s(J,v) =0}
is a C¢ Banach manifold. Its projection to 7, te (8) is a Fredholm map of class C* and
index Ind Dy — (k + 1) = —1. Hence, by the Sard—Smale theorem, the set of regular
values is comeagre. Finally, since the index is negative, the set of solutions for a
regular J is empty, which proves the Lemma.

We now obtain a comeagre subset JZZ i C jf (8) by taking the countable inter-
section of the comeagre sets J(p,m, o, ...,Sk+1) given by the Lemma for each
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choice of p, m, and finite subset {sq,...,Sx+1} C Q. Then suppose by contra-
diction that for some J € jzej jwe have a solution u € MK (x~,xt; L, J) for
some k =< ko with u;y,...,ujs_; constant but D (50.8;)ur(s0,00 Pij’ # 0 for
some so € R. As discussed at the beginning of the proof of thisitheorem, u in-
duces a solution v := (uj);eyc € ./\/lk((xi_)ielc, (xN)ieyc: LIEXT 1) such that
Pjjr(vj(s,685),vj:(s,0)) = (uj41(s,0),ujs—1(s,8;-—1)) is constant in s € R. More-
over, for some 5o € R we have Dy, (50,5j),vj,(50’0))73jj/ # 0. Since this is an open
condition, we may also find 5o € Q with the same nonvanishing. Then we have
Pjjr(vj(s0,8j),vj:(s0,0)) € W, for some p € Cj;s and

D(v.50) =TIz, © Dexp,' Dy, (50.6;).0;s0.0) Pij’ # 0

for one of the spanning subspaces Z,;, C Tp(Mj4+1 x Mj—1). Again, these are open
conditions, so we may find rational numbers s¢o < s§; < --+ < s with the same
properties. This contradicts the Lemma since 3(v,s) = Pjj/(vj(s,d;),vj’(s,0)) =
(xj41(0), xj7—1(8;,—1)) is independent of s € {sg,...,s7}.

Step 3 Extending Step 2, we show that for quilted Floer trajectories with respect to
generic almost complex structures in fact the splitting condition of Proposition 2.8 on
the linearized seam conditions holds along the seams bounding constant components.
More precisely:

For every integer { > ko and pair of indices j < j’ such that x; = x;r =:x; for
i =j+1,...,j —1 there exists a comeagre subset Jf’j,j, C j,e(é) such that for
any J € Jf,j,j, and u € Uksko MKk(x=,xt;L,J) with Ujyq,....uj—1 constant
the intersection at y(s) := (u;(s,68;),Xj4+1(0), x;—1(8;7—1),u;j(s,0))

Tyis)(Ljj+1) X Ljr—nj) N ({0} X Ty @) M1 % Ty 5,0y Mjr—1 X {0})

projects to a Lagrangian subspace Tx; «)yMj+1 X Tx;,_,(s,,_;)Mj—1 that is inde-
pendent of s € R.

Given £, j, j' weset I :={0,...,j,j’,...,r} and start by proving an intermediate
Lemma which asserts emptiness of the moduli spaces of quilted Floer trajectories
for LT-H 2% with d G, # 0 but G, = 0 at sufficiently many points along the seam.
This will be relevant since by Theorem 2.9 the splitting locus is locally given by the
intersection of the zero sets G, !(0), and since d G, = 0 along a path in the splitting
locus ensures s—independence of the Lagrangian subspace of TMj | x T Mj:_; that
arises from the splitting.
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Lemma for Step 3 For every k < ko, g € Sjjs, 1 =n = N, and tuple of rationals
Sg < -++ < S € Q there exists a comeagre subset j(g n,80,...,8) C jt () such
that for J €J(g.,n,Sso,...,Sk) there exists no solution

_ +
ve MA((x)iercs (x)iepcs LEEXT 1)

with vjjr(sr) == (vj(s1,685), Pjjr(vj(sg, 85), vjr(s1,0)), vjr(s7,0)) € Vg,
Gn(vjj'(s1)) =0 and dGp(vjj (sp)) #0
for0</=<k.

Let B be the Banach manlfold in Equation (7) as in the definition of
Mk ((x;)ierc (x )ierC: LIHx , J1) and recall from Theorem 2.9(b) the transver-
sality of the function

H,xi H,xi
Ggi,nf Ingn* —>R, (Zj,Zj/)l—)Gn(Zj,ij/(Zj,Zj/),Zj/)

on the open set

H,xi H,xi
Vgno o = {(Zj,Zj/) € Lﬁﬁ ‘

(zj, Pjj(zj,zjr), zjr) € Vq, dGy(zj, Pjj(zj,zjr), zjr) # 0}.

Then B” := {v € B| (vj(s1.8;).vj:(57,0)) € ngf V0 <1/ <k} is an open subset

of B and
s(J,v) = (asz) (G qn’x (vj(SlejLUj’(sl’o))l=0,...,k)

defines a C¢ section of the bundle £ |B X RK+T jf (8) x B”. Its linearized operator
at a zero maps (K = (Kj)i=o,...r.& = (&i)jesc) to

((Dﬁy)i— (KiJi0svi);e pc

.....

As before, the second summand in the first component is surjective using just the
freedom in K. The second component is surjective since by Theorem 2.9(b) each
map Dy, (s,.5;), v/ (s1, O))Gq n 1s surjective, and 5 can be chosen to zgsugzne any given
tuple of values on the linearized Lagrangian correspondence 7'L7; i at distinct
50s--.,Sk+1 € R. So by the implicit function theorem {(J,v)|s(J,v) = 0} is a
¢* Banach manifold and its projection to jf@ is a Fredholm map of class ¢t and
negative index Ind Dy — (k 4+ 1) = —1. As before, by the Sard—Smale theorem, the
set of regular values is comeagre, and for each regular J the set of solutions is empty.
This proves the Lemma.
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We now obtain a comeagre subset J3 . C N , () by taking the countable intersection
of the comeagre sets J(q,n, 5o, ..., Sk) glven by the Lemma with j2 L Now
consider any J € J3J i and u € Uk<k MF(x= xF L, J) with ujyy, ... ujy—
constant. As before, this induces a solution

:I: JI)

vi= (uiiere € MA(O7)iere . () ierei LTE
such that Pjjr(vj(s,85),vjr(s,0)) = (uj41(s,0),ujr—1(s,8j7—1))
= (xj+1(0), xj7—1(8j7—1))
is independent of s € R. Moreover, by Step 2, we know Dy, (50,8)),v;/ (0,00 Pjjr =0
for all s € R, and hence by Proposition 2.8 the intersection A(vj;/(s)) at

vjjr(s) := (vj(5,87), Xj+1(0), xj7—1(8j7—1), vjs (5, 0))

induces a Lagrangian subspace of T, o) Mj+1% Ty ;- Mjr—1 for every s € R.
Suppose by contradiction that it is not constant on any neighborhood of o € R. Fix
g € Sjjr such that vjj/(s) €V, for [s—o| < € sufficiently small, then by Theorem 2.9(a)
we have G (vjjr(s)=---= GN(vjj/(s)) =0 forall [s—o| <€, but dG,(vjj(c’)) #0
for some 1 <n < N and ¢’ € (0 —€,0 + €). Since the nonvanishing is an open
condition, we may also find 5o <--- <sx € QN (0 —€,0 +¢) with dGp(vjj(s7)) #0,
in contradiction to the Lemma.

Step 4 Next we explicitly state Step 3 as a splitting property and deduce surjectivity
of part of the linearized operator:

Ifue MK(x—,xt:L,J) with u;(s, 1) = xl.i(t) =:x;(t) fori =j+1,...,j —1
gives rise to a constant Lagrangian subspace as in Step 3, then the linearized seam
conditions

T (s.8)j 11600 LjG+1) = 8j () X Ajyi,
Ty .8y s.on L =17 = Njr—1 X Ajr(s)
split into the Lagrangian subspaces
A= T 1) LiG+0 WLy 5,8) M x{0}) = Tyy5,8) M
Ajrr12= T 00 LiG+ NE0X Ty, @ Mj+1) = Ty Mj+1

Ajr—1 2= Ty 5y oo L= N Ty 55 Mjr—1340})
— ij/(sz/)M",

Ajr(8) 2 Ty 85—ty s L= N{OYX Ty .00 M) > Ty (s.0) M-
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Moreover, the operator Djj: := (as + Ji(xi)0r — Ji(xi) Dx, XH, ) maps

i=j+1,..., j’—1

i1 (Ei(svai)’éi-i-l(s, 0)) € TLi(i+1) Vi
Ee@l ) WIPRX[0.8]. X7 TM;) | &41(5.0) € A1,
éj/—l(S, 8"—1) EAj’—l

onto LP R x[0,68;], xFTM;).

1 j+1

We can express the operator Dj;» = d5 + A in terms of an s—independent operator
A= (Ji(x;)0; — Ji(xi) Dx; X@; )i=j+1,...,j7—1

which is self-adjoint on @ L2([0,8;]. x} T M;) with domain

i= j+1

. (8 (8).8i41(0)) € T(x; 8;),x1410) LiGi+1) Vi
te @I W08 TM;)| £511(0) € Aj 41,
8jr—1(8jr—1) € Njr—1

Moreover, the nondegeneracy of the intersection points Z(L, H) implies that A is
invertible. Indeed, the linearized operator cutting out Z(L, H) as trajectory space splits
at x* into 4 and (J; (xl.i)a, — J,~(xl.i)DxiiXH,.)ie{ij,j/_]}c with the analogous
linearized seam conditions. Now a general spectral analysis and Sobolev embedding
argument proves that Dj;- is in fact an isomorphism. This is the same analysis as
outlined at the beginning of the proof, using the elliptic estimates for the quilted
Cauchy—Riemann operator in the general proof method given by eg [8, Lemma 2.4;
1, Chapter 3].

Step 5 We deduce from the previous steps that the set of almost complex structures
of class C¢, for which the linearized operators are surjective, is dense in the following
sense:

For every integer £ > ko let jrﬁg be the set of J € Jt(8) for which the linearized
operators DMBJ are surjective at all u € Uy <, M¥(x~,xt;L,J). Then Jrﬁg

JE(8) is dense.

The density will follow from proving that Jrﬁg contains the intersection of J¥, al
j , and all j £ 3. ie a comeagre and hence dense set. So we need to cons1der a
glven

¢ ¢ ¢
JeTy N\ Iy N0 Iy,

and show surjectivity of D,d g for all solutions u.

Step 1.a ensures surjectivity if # has no constant components, so it remains to consider
ue Uksko MK(x—,xt: L, J) with 5u; =0 < i € I for some subset I C {0, ...,r}.
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If all components are constant, then surjectivity follows as in Step 4 from the fact that
D,0; = 05 + A is given by the s—independent self-adjoint operator

A= (Ji(x;)9; — Ji(xi) Dx; Xm,)i=o,....r
with constant Lagrangian seam conditions.

If u is a solution with constant components for a proper subset I C {0, ...,r}, then as
before this induces a solution
kifo— + g LHx* I
(uj)jelc € M ((x )jEIC9 (x' )jEIC9L 2.X ’J )
et .
for the locally composed cyclic Lagrangian correspondence L1~ consisting of

Lj+1) for j,j+1€1€,
H,;ci

L=

i CMjxMj for each pair of consecutive indices j <1 j' € I =

iewith j+1,...,//—1el.

Moreover, Step 3 implies that the linearized seam conditions at each consecutive
j <1 j' e I€ split as in Step 4. As a direct consequence, the locally composed
correspondence also splits:

T, LEX® _ A () x A;
(wj (s.8))uy s Ly~ = Nj(8) X Ajr(s).

That is, the seam conditions in the linearized operator D, )erC F] g1 for the moduli
space associated to the local composition coincide with the seam conditions in noncon-
stant components of the linearized operator D, F) J - Hence the linearized operator for
the full problem D,,a J is the dlrect sum of D(uj 8 g1 and the operators Dj; as in
Step 4 for each consecutive j <1 j’ € I€. The latter are surjective by Step 4, whereas
the former is surjective by Step 1.b. This shows that D, F) J 1s indeed surjective for all
solutions u of index up to ko, and hence J € jrﬁg
Step 6 As final step we use an intersection argument due to Taubes to transfer from
Ct to C* almost complex structures. For fixed x* € Z(L, H), ko € N this proves
the following:

Let Jreg ko (X7, x1) be the set of J € J;(8) for which the linearized operators Dug J
are surjective for all u € Uksko MKk(x=,xT:L,J). Then jreg,ko(ic_,)_c"r) C J:(d)
is comeagre.

reg C Jt(8) and jrﬁgR C jt (8) for £ > k¢ be the sets of J for
which the linearized operators Dua J are surjective atall u €| J, < ko ME(x—,xT: L, J)
with [|05uleo := max; [|dsuilloo < R.

For every R > 0 let J, R
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Then \-7r£g and jreg are open in the C*°—, resp. ct —topology, by the following compact-
ness and gluing argument as in [3]: Suppose by contradiction that J¥ — J*° € jregR
the C! —topology but D, F) Jv fails to be surjectlve for some solutions 9 Jvu” =0 with
19su” ||co < R. Then a subsequence of u” converges to a broken trajectory, consisting
of a finite number of nonconstant solutions with respect to J°°, and satisfying the same
uniform derivative bound. These components cannot have negative index since J*°
is regular for indices up to kq. So, by index additivity, all components of the broken
trajectory have index at most kg, and thus the linearized operators at these solutions
are surjective. Now a standard gluing construction shows that in fact Dﬂvg Jv must be

surjective for some large v.

Moreover, Jreg C .7, (8) is dense since it contains the dense set j from Step 5. Now
jrfg C J¢(8) is dense in the C°°—topology since jreg = jreg N J; (5) where jreg C
N ,(8) is open and dense in the C*—topology for all £ > k. Finally Treg ko (X7, X )=
NReN jreg is a countable intersection of open dense subsets, ie comeagre.

To finish the proof of the Theorem, let Jeo(L; H) be the set of J € J; L) for which
the linearized operators D, F) J are surjective for all u € /\/lk(x xt:L,J) with

lC € I(L’ ﬂ) and k € Z. Then L7reg(L’ 1_1) - kaGN mzie_’[(é,g) \-7reg,k0 (K_’ £+)
is comeagre in J;(8) since it is the countable intersection of comeagre sets. a
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