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Quilted Floer trajectories with constant components:
Corrigendum to the article “Quilted Floer cohomology”

KATRIN WEHRHEIM

CHRIS T WOODWARD

We fill a gap in the proof of the transversality result for quilted Floer trajectories in [10]
by addressing trajectories for which some but not all components are constant. Namely
we show that for generic sets of split Hamiltonian perturbations and split almost
complex structures, the moduli spaces of parametrized quilted Floer trajectories of a
given index are smooth of expected dimension. An additional benefit of the generic
split Hamiltonian perturbations is that they perturb the given cyclic Lagrangian
correspondence such that any geometric composition of its factors is transverse and
hence immersed.

53D40; 57R56

1 Introduction

Quilted Floer homology is defined in [10] for a cyclic generalized Lagrangian correspon-
dence L, that is, a sequence of symplectic manifolds M0;M1; : : : ;Mr ;MrC1 with
M0 DMrC1 for some r � 0, and a sequence of compact Lagrangian correspondences

L01 �M�
0 �M1; L12 �M�

1 �M2; : : : ; Lr.rC1/ �M�
r �MrC1:

In [10] we moreover make monotonicity, grading, and Maslov index assumptions
that guarantee compactification properties. These are not required for the results
in this paper. Quilted Floer homology HF.L/ can be defined as the standard Floer
homology of a pair of Lagrangians in the product manifold M�

0
�M1�M�

2
�� � ��Mr ,

given by products of the Li.iC1/ . (For even r one adds a diagonal to the sequence
before making this construction.) As such, the differential counts moduli spaces of
pseudoholomorphic strips with Lagrangian boundary conditions for a choice of a
Hamiltonian perturbation and almost complex structure on this product manifold so
that the Cauchy–Riemann operator cuts out the space of pseudoholomorphic maps
transversely. Generically this choice would not be of split form, ie induced by a tuple of
Hamiltonian functions and almost complex structures on each symplectic manifold Mj .
The quilted definition of HF.L/ in [10] on the one hand generalizes this construction
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by allowing a choice of widths ı D .ıj > 0/jD0;:::;r of the strips mapping to each Mj .
On the other hand, we claim in [10] that the quilted Floer complex can be constructed
(in particular transversality of the quilted Cauchy–Riemann operator can be achieved)
for Hamiltonians and almost complex structures of split type. That is, we restrict our
choice of perturbation data to a tuple of Hamiltonian functions and a tuple of almost
complex structures in the complete metric spaces

Ht .ı/ WD
Lr

jD0 C1.Œ0; ıj ��Mj ;R/; Jt .ı/ WD
Lr

jD0 C1.Œ0; ıj �;J .Mj ; !j //;

where J .Mj ; !j / is the space of smooth !j –compatible almost complex structures
on Mj . (The latter inherits a complete metric as a closed subset of the complete metric
vector space C1.Œ0; ıj ��Mj ;End.TMj //.) While this split form is not necessary for
our strip-shrinking analysis in [11], it is particularly helpful for constructing relative
invariants (such as the functor associated to a correspondence in our article [9]) from
more complicated quilted surfaces, which cannot be interpreted as single surface
mapping to a product manifold. Unfortunately, the transversality proof in [10] for
the quilted Floer trajectory spaces for generic split perturbation data H 2 Ht .ı/

and J 2 Jt .ı/ has a significant gap: It fails to explicitly discuss trajectories u D

.uj W R� Œ0; ıj �!Mj /jD0;:::;r for which some but not all components are constant.
This intermediate situation is not an easy combination of the two extreme cases (all
components nonconstant, or all components constant) as we seem to claim in [10].

Results

In Theorem 3.2 below we complete the proof of the transversality claimed in [10] by
working with a more specific set of split Hamiltonian perturbations which may be of
independent interest. In Theorem 2.3 and Corollary 2.4 we find a dense open subset
of Ht .ı/ for any given cyclic Lagrangian correspondence such that, after perturbation
by one of those split Hamiltonian diffeomorphisms, any geometric composition of its
factors is transverse and hence immersed. Starting from such a Hamiltonian perturbation,
we observe that quilted Floer trajectories with constant components induce quilted
Floer trajectories for a shorter cyclic generalized Lagrangian correspondence, given
by a localized version of geometric composition across the constant strips. Using this
point of view and a further technical restriction on the Hamiltonian perturbations (see
Theorem 2.9(b)), we are able to find generic sets of split almost complex structures
for which quilted Floer trajectories with constant components are regular, as well. In
fact, we show that quilted Floer trajectories with constant components are very rare
as summarized in Remark 3.3 and sketched below.

Note that the technical restriction on the Hamiltonians does not harm the applicability
to dynamics, since quilted Floer homology is always equivalent to a standard Floer
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homology of product Lagrangians. The latter is well defined for a given Hamiltonian
perturbation yielding transverse Lagrangians and generic (nonsplit) almost complex
structure. On the other hand, the same Floer homology can be calculated in the quilted
setting, using eg the strip-shrinking isomorphism of [11] or relative invariants defined
in [12].

Idea of Proof

A key role in the proof is played by certain families of isotropic subspaces which
arise in the proof of transversality for the universal moduli space of almost complex
structures and Floer trajectories. The elements of the cokernel of the linearized operator
of the universal moduli space are tuples of .�Ji/–holomorphic sections �i of u�i TMi

for i D 0; : : : ; r with Lagrangian seam conditions determined by the tangent spaces of
Li.iC1/ . Ignoring Hamiltonian perturbations for simplicity, the problem of constant
components occurs for example when some uj is constant (with value say xj 2Mj )
but the adjacent components uj�1;ujC1 are nonconstant. Then variations in the almost
complex structures prove vanishing of �j�1; �jC1 , and hence �j W R� Œ0; ıj �!TxjMj

is .�Jj /–holomorphic with boundary conditions in

ƒj .s/ WD…Txj
Mj

�
T.uj�1.ıj�1;s/;xj /L.j�1/j \ .f0g �TxjMj /

�
� TxjMj ;

ƒ0j .s/ WD…Txj
Mj

�
T.xj ;ujC1.0;s//Lj.jC1/\ .TxjMj � f0g/

�
� TxjMj ;

where …Txj
Mj

denotes the projection onto TxjMj (an injection in both cases). The
spaces ƒj .s/;ƒ

0
j .s/ are isotropic spaces varying with s 2 R, despite the fact that

uj � xj is constant. We can now proceed differently in three nonexclusive cases.

(a) The easiest case is to assume that ƒj .s/;ƒ
0
j .s/ are s–independent. We may

then enlarge these isotropic spaces to constant Lagrangian subspaces and deduce
that �j lies in the kernel of an operator @sCA, where A is an s–independent
self-adjoint operator and invertible (since by choice of H the generators of the
Floer complex are cut out transversally). We then deduce vanishing of �j from
the general fact that operators of this form @sCA are isomorphisms.

(b) An intermediate case occurs when ƒj .s/ or ƒ0j .s/ fails to be Lagrangian (ie
have maximal dimension) for some s 2R. For example, if L.j�1/j is the graph
of a symplectomorphism, then the intersection ƒj is trivial. We show that this
case of a quilted Floer trajectory with constant component does not occur for
generic .Ji/i¤j .

(c) The most difficult case occurs when ƒj .s/ and ƒ0j .s/ are nonconstant families
of Lagrangian subspaces. We show that for generic H the locus on which such
varying Lagrangian subspaces are possible is of positive codimension in the
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space of boundary values .uj�1.ıj�1; s/;ujC1.0; s//. Then we again exclude
this case for generic .Ji/i¤j .

Thus, for generic Hamiltonian perturbations H and almost complex structures J we
in fact show a splitting property for any quilted Floer trajectory with constant compo-
nents, namely along the seam .uj .s; ıj /;ujC1.s; 0// 2Lj.jC1/ we have TLj.jC1/ D

ƒj �ƒjC1 , where ƒj � TMj is a constant Lagrangian subspace given as above, and
ƒjC1 is the s–dependent projection of TLj.jC1/ \ .f0g � TMjC1/. For a precise
statement see Remark 3.3.

The arguments in case (b) and (c) crucially rely on the following interpretation of
quilted Floer trajectories with constant components as quilted Floer trajectories for
a generalized Lagrangian correspondence obtained by a local version of geomet-
ric composition. If u D .u0; : : : ;ur / is a solution with uj � xj as above, then
.u0; : : : ;uj�1;ujC1; : : : ;ur / is a quilted Floer trajectory for the generalized correspon-
dence .L01; : : : ;L.j�1/j ıLj.jC1/; : : : ;Lr.rC1//. We show in Theorem 2.3 that, after
a generic Hamiltonian perturbation of L, any geometric composition L.j�1/j ıLj.jC1/

is an immersed Lagrangian correspondence. It becomes embedded if we restrict to
values in Mj near xj . Hence .u0; : : : ;uj�1;ujC1; : : : ;ur / can be viewed as quilted
Floer trajectory for a smooth generalized Lagrangian correspondence.

We showed in [11] that transversality for this composed correspondence implies transver-
sality for the original correspondence for sufficiently small widths ıj > 0. Here we
extend this transversality to solutions with constant uj for arbitrary ıj > 0 and generic
perturbation data H ;J .

Alternative approaches

It is perhaps worth remarking that all of the correspondences intended as applications
in [10; 14; 13] fit into the easiest case (a) described above since these Lagrangian
correspondences L01 � M�

0
�M1 are quasisplit in the following sense: The in-

tersection .Tx0
M0 � f0g/ \ T.x0;x1/L01 is independent of x1 and the intersection

.f0g � Tx1
M1/\ T.x0;x1/L01 is independent of x0 . Examples are split correspon-

dences L0�L1 , graphs of symplectomorphisms, correspondences arising from fibered
coisotropics, and the embedded geometric composition of any two quasisplit corre-
spondences. If all Lagrangian correspondences are quasisplit then the simple argument
in case (a) above completes the transversality argument for the universal moduli space
in [10].

Note however that one can easily construct Lagrangian correspondences that are not
quasisplit by applying a nonsplit Hamiltonian diffeomorphism of M�

0
�M1 to a split

correspondence L0 �L1 .
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Quilted Floer trajectories with constant components 131

Another possibility for achieving transversality at quilted Floer trajectories with constant
components is to introduce nonsplit perturbations as in Perutz [5]. However, in order
to implement this perturbation scheme for more general relative quilt invariants, one
would have to replace each seam with seam condition Lij �Mi �Mj by a strip in
Mi �Mj , one of whose boundaries takes values in Lij , and the other boundary gets
paired via a diagonal with the two adjacent patches in Mi and Mj – a novel type of
seam condition, relating three patches at one common boundary component. In that
setup we may use nonsplit perturbations on the strip.

Acknowledgement We thank Maksim Lipyanskiy for pointing out the question of
constant components, and the referee for substantial help in improving the exposition.

2 Hamiltonian perturbations of generalized Lagrangian cor-
respondences

Given a cyclic generalized Lagrangian correspondence LD .Lj.jC1//jD0;:::;r , widths
ıD .ıj > 0/jD0;:::;r , and a tuple of Hamiltonian functions H D .Hj /jD0;:::;r 2Ht .ı/,
the generators of the quilted Floer complex are tuples of Hamiltonian chords,

I.L;H / WD

�
x D .xj W Œ0; ıj �!Mj /jD0;:::;r

ˇ̌̌̌
Pxj .t/DXHj .xj .t//;

.xj .ıj /;xjC1.0// 2Lj.jC1/

�
:

They are canonically identified, via x 7! .x0.ı0/;x1.0/;x1.ı1/; : : : ;xr .ır /;x0.0//,
with the fiber product

��H0
ı0

�
L01 ��H1

ı1

L12 � � � ��Hr
ır

Lr.rC1/

�
WD
�
L01�L12� � � � �Lr.rC1/

�
\
�
graph.�H1

ı1
/� graph.�H2

ı2
/� � � � � graph.�H0

ı0
/
�T
;

where �Hj
ıj

is the time ıj Hamiltonian flow of Hj and .� � � /T denotes the exchange of
factors M1�� � ��M0�M0!M0�M1�� � ��M0 . In this setting we proved in [10]
that Hamiltonians of split type suffice to achieve transversality for the generators. We
now strengthen this result to achieve transversality for all partial fiber products.

Convention 2.1 Here and in the following the indices are mostly used modulo r C 1

but still denoted by j 2N0 in order to have the following notation: A pair of indices
j < j 0 denotes a pair j ; j 0 2N0 with j < j 0 � j C r C 1. A pair of indices j C j 0

denotes a pair j ; j 0 2N0 with j C 1< j 0 � j C r C 1, that is, with at least one other
index between j and j 0 .
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For any proper subset I � f0; : : : ; rg let IC � f0; : : : ; rg be its complement. Then a
consecutive pair of indices j < j 0 2 IC (resp. j C j 0 2 IC ) denotes a pair j < j 0

(resp. j C j 0 ) as above such that j ; j 0 2 IC and fj C 1; : : : ; j 0� 1g � I .

Definition 2.2 For any pair of indices j C j 0 we define the partial fiber product

Lj.jC1/ �HjC1
L.jC1/.jC2/ � � � �Hj 0�1

L.j 0�1/j 0

WD
�
Lj.jC1/� � � � �L.j 0�1/j 0

�
\
�
Mj � graph.�HjC1

ıjC1
/� � � � � graph.�Hj 0�1

ıj 0�1
/�Mj 0

�
:

We trivially extend this notation to the case j 0 D j C 1 by Ljj 0 D Lj.jC1/ . For a
general proper subset of indices I � f0; : : : ; rg we then define the partial fiber product

�I;H L WD
Y

consec. j<j 02I C

Lj.jC1/ �HjC1
� � � �Hj 0�1

L.j 0�1/j 0

to be the product of the above fiber products for each consecutive pair of indices
j < j 0 2 IC . We view the intersection I.L;H / D �f0;:::;rg;H L as the full fiber
product case I D f0; : : : ; rg.

Given L, we call a tuple of Hamiltonian functions H 2Ht .ı/ quilted regular if the
defining equations for �I;H L for any I � f0; : : : ; rg are transversal.

Theorem 2.3 The set Ham�.L/�Ht .ı/ of quilted regular tuples of Hamiltonians is
a dense open subset of Ht .ı/.

Proof Each of the fiber products under consideration is of the following form: It is
the set of tuples .m0

0
;m1;m

0
1
; : : : ;m0r ;mrC1/ 2L01 � � � � �Lr.rC1/ satisfying

(1) �Hi
ıi
.mi/Dm0i 8 i 2 I:

It suffices to show that the subset of regular Hamiltonians for each of these problems
is dense and open, since the intersection of finitely many dense open subsets remains
dense and open. So we fix some choice of I � f0; : : : ; rg and consider the univer-
sal moduli Muniv space of data .H0; : : : ;Hr ;m

0
0
;m1; : : : ;m

0
r ;mrC1/ satisfying (1),

where now each Hj has class C`C1 for some ` >
P

i2I C dim Mi . It is cut out by the
diagonal values of the C`–map

L01 �L12 � � � �Lr.rC1/ �

rM
kD0

C`C1.Œ0; ık ��Mk/ �!
Y
j2I

Mj �Mj ;

.m00;m1;m
0
1;m2; : : : ;m

0
r ;mrC1;H0; : : : ;Hr / 7�! .�Hi

ıi
.mi/;m

0
i/i2I :
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The linearized equations for Muniv are

(2) v0i �D�Hi
ıi
.hi ; vi/D 0 2 TMi 8 i 2 I:

for vi 2 Tmi
Mi , v0i 2 Tm0

i
Mi , and hi 2 C`C1.Œ0; ıi ��Mi/. The map

C`C1.Œ0; ıi ��Mi/! T�Hi
ıi
.mi /Mi ; hi 7!D�Hi

ıi
.hi ; 0/

is surjective, which shows that the product of the operators on the left-hand side of (2)
is also surjective. So by the implicit function theorem Muniv is a C` Banach manifold,
and we consider its projection to

Lr
kD0 C`C1.Œ0; ık � �Mk/. This is a Fredholm

map of class C` and index
P

i2I C dim Mi (in particular 0 for the full intersection
I D f0; : : : ; rg). Indeed, the Fredholm property and index follow eg from McDuff and
Salamon [4, A.3.6]); differentiability follows from being a restriction of the smooth
projection

L01 � : : :Lr.rC1/ �
Lr

kD0 C`C1.Œ0; ık ��Mk/!
Lr

kD0 C`C1.Œ0; ık ��Mk/

to a C` Banach submanifold. Hence, by the Sard–Smale theorem the set of regular
values (which coincides with the set of functions H D .H0; : : : ;Hr / such that the
perturbed intersection is transversal) is dense in

Lr
kD0 C`C1.Œ0; ık ��Mk/. Moreover,

the set of regular values is open for each ` >
P

i2I C dim Mi . Indeed, by the compact-
ness of L01 �L12 � � � �Lr.rC1/ , a C1 –small change in H leads to a small change in
perturbed intersection points, with small change in the linearized operators.

Now, by approximation of C1–functions with C`C1 –functions, the set of regular values
in
Lr

kD0 C1.Œ0; ık ��Mk/ is dense in the C`C1 –topology for all ` >
P

i2I C dim Mi ,
and hence dense in the C1–topology. Finally, the set of regular smooth H is open in
the C1–topology as a special case of the C1 –openness.

We now reformulate this Theorem by using the Hamiltonian flows of H to perturb
the Lagrangian correspondences and then applying a geometric composition in some
factors.

Corollary 2.4 For H 2 Ham�.L/ the perturbed generalized correspondence

L0 WD
�
L0 WD .IdMj ��

HjC1
ıjC1

/Lj.jC1/

�
jD0;:::;r

has the following intersection and composition properties:

(a) The generalized intersection

I.L0; 0/D .L001 � � � � �L0r.rC1//\ .�M1
� � � � ��M0

/T

is transverse and canonically identified with I.L;H /.
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(b) For the perturbed correspondence L0 the trivial Hamiltonian 02Ht .ı/ is quilted
regular. That is, for any proper subset I � f0; : : : ; rg the partial fiber product
�I;0L0 is cut out transversally (and canonically identified with �I;H L). It is a
product of the transverse intersections

L0j.jC1/ ��jC1
L0.jC1/.jC2/ ��jC2

� � � ��j 0�1
L0.j 0�1/j 0

WD .L0j.jC1/ �L0.jC1/.jC2/ � � � � �L0.j 0�1/j 0/\ .Mj ��MjC1
� � ��Mj 0�1

�Mj 0/

D .IdMj
��HjC1

ıjC1
�IdMjC1

�� � ���Hj 0�1
ıj 0�1

��Hj 0
ıj 0

/.Lj.jC1/�HjC1
� � ��Hj 0�1

L.j 0�1/j 0/

for consecutive pairs of indices j < j 0 2 IC .

(c) By a direct generalization of [10, Lemma 2.0.5], the projection

…Mj�Mj 0
W L0j.jC1/ ��jC1

� � � ��j 0�1
L0.j 0�1/j 0 �!Mj �Mj 0

is an immersion onto the geometric composition

L0j.jC1/ ı : : : ıL0.j 0�1/j 0 �Mj �Mj 0 :

We will in particular be interested in the geometric composition near a fixed point in
MjC1�� � ��Mj 0�1 given by the components of an intersection point in I.L0; 0/. For
any such point there is a neighborhood U �MjC1�� � ��Mj 0�1 such that the projection
…Mj�Mj 0

embeds .L0
j.jC1/

��jC1
L0
.jC1/.jC2/

� � ���j 0�1
L0
.j 0�1/j 0

/\.Mj�U�Mj 0/

into Mj �Mj 0 . This is a localized version of the embedded geometric composition (as
studied in [10]) of the perturbed Lagrangians. We will be using the following analogue
of the perturbed geometric composition of unperturbed Lagrangian correspondences.

Definition 2.5 Let H 2 Ham�.L/ be quilted regular. Then for a proper subset
I � f0; : : : ; rg and x 2 I.L;H / we define the locally composed cyclic Lagrangian
correspondence LI;H ;x between the underlying manifolds .Mj /j2I C to be the cyclic
sequence consisting of L

H ;x
jj 0 � Mj � Mj 0 for each consecutive pair of indices

j < j 0 2 IC , given by

L
H ;x
jj 0 WD…Mj�Mj 0

��
Lj.jC1/ �HjC1

L.jC1/.jC2/ � � � �Hj 0�1
L.j 0�1/j 0

�
\ zUx;j ;j 0

�
for zUx;j ;j 0 WDMj �Ux;j ;j 0�Mj 0 , where Ux;j ;j 0 is a chosen neighborhood of the point�
xjC1.0/;xjC1.ıjC1/; : : : ;xj 0�1.0/;xj 0�1.ıj 0�1/

�
such that …Mj�Mj 0

is injective on
the intersection.

Remark 2.6 Given a regular tuple of Hamiltonian functions H 2 Ham�.L/ as in
Theorem 2.3 and a proper subset I � f0; : : : ; rg, let ıI

WD .ıj /j2I C and H I WD

.Hj /j2I C . Then the transversality assertions of Theorem 2.3 moreover imply that for
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any x 2 I.L;H / the intersection I.LI;H ;x;H I / is transverse. It contains .xj /j2I C ,
and no other points if the neighborhoods Ux;j ;j 0 are chosen sufficiently small.

In preparation for the analysis of quilted Floer trajectories with constant components,
we next study the lift from L

H ;x
jj 0 to MjC1 �Mj 0�1 and its connection with the

intersections TLj.jC1/\ .f0g�TMjC1/ and TL.j 0�1/j 0\ .TMj 0�1�f0g/. A priori,
the latter are isomorphic to collections of isotropic subspaces of TMjC1 resp. TMj 0�1

parametrized by Lj.jC1/ resp. L.j 0�1/j 0 . As mentioned in the introduction, a first
step is to understand the locus where these subspaces are Lagrangian, and how they
may vary along L

H ;x
jj 0 . For that purpose we introduce the following notation.

Definition 2.7 Let j C j 0 be a pair of indices.

(a) Denote by Sjj 0�Lj.jC1/�L.j 0�1/j 0 the set of points1 qD.qj ; qjC1; qj 0�1; qj 0/

for which

ƒ.jC1/.j 0�1/.q/ WD Tq.Lj.jC1/ �L.j 0�1/j 0/\Tq.fqj g �MjC1 �Mj 0�1 � fqj 0g
�

induces a Lagrangian subspace in TqjC1
MjC1 �Tqj 0�1

Mj 0�1 (with the appro-
priate signs on the symplectic forms).

(b) Given moreover H 2 Ham�.L/, x 2 I.L;H /, denote by

Pjj 0 W L
H ;x
jj 0 �!MjC1 �Mj 0�1

the composition of the lift from L
H ;x
jj 0 to

.Lj.jC1/ �HjC1
� � � �Hj 0�1

L.j 0�1/j 0/\ zUx;j ;j 0

and the projection to the second and penultimate component, ie to a neighborhood
of .xjC1.0/;xj 0�1.ıj 0�1//.

The following Proposition shows that the set Sjj 0 can equivalently be defined as the
locus where the linearized Lagrangian correspondences split, and that this splitting
locus is closely related to the vanishing of DPjj 0 .

Proposition 2.8 The following holds for any pair of indices j C j 0 .

(i) The subset Sjj 0 �Lj.jC1/�L.j 0�1/j 0 is compact and coincides with the subset
for which both T.qj ;qjC1/Lj.jC1/ D ƒj �ƒjC1 and T.q0

j 0�1
;qj 0 /

L.j 0�1/j 0 D

ƒj 0�1 �ƒj 0 are of split form given by Lagrangian subspaces ƒi � Tqi
Mi .

1To avoid confusion in the case j D 0Š j 0 D r C 1 modulo r C 1 note that we work with indices in
N0 to explicitly allow qj 0 ¤ qj .
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(ii) For any H 2 Ham�.L/, x 2 I.L;H / the linearization

D.qj ;qj 0 /
Pjj 0 W T.qj ;qj 0 /L

H ;x
jj 0 ! TPjj 0 .qj ;qj 0 /.MjC1 �Mj 0�1/

is trivial if and only if .qj ;Pjj 0.qj ; qj 0/; qj 0/ 2 Sjj 0 .

Proof We begin by establishing the basic symplectic linear algebra facts that will be
used in the proof. Let V1;V2 be symplectic vector spaces.

(a) Let ƒ12 � V �
1
�V2 be a linear Lagrangian correspondence. If the intersection

ƒ2 WD…V2
.ƒ12\ .f0g �V2//� V2 is Lagrangian then ƒ12 Dƒ1 �ƒ2 splits

into ƒ2 and the complementary intersection ƒ1 WD…V1
.ƒ12\.V1�f0g//�V1 ,

which is Lagrangian as well.

(b) In the notation of (a), the intersection ƒ2 is Lagrangian if and only if ƒ12 D

ƒ0
1
�ƒ0

2
is the product of two Lagrangian subspaces ƒ0i � Vi .

(c) Let L.V1 � V �
2
/ be the Lagrangian Grassmannian of V1 � V �

2
and let S �

L.V1�V �
2
/ be the subset consisting of the Lagrangian subspaces ƒ12�V �

1
�V2

for which ƒ2 as in (a) is Lagrangian. Then S is closed.

(d) The same statements hold with ƒ1 and ƒ2 interchanged.

To see (a), note that both ƒi � Vi are automatically isotropic since they are identified
with the isotropic subspaces ƒ1�f0g; f0g�ƒ2�ƒ12 . Now suppose ƒ2 is Lagrangian,
then for any .v1; v2/ 2 ƒ12 we have v2 2 ƒ

!2

2
D ƒ2 , which implies .0; v2/ 2 ƒ12 ,

and hence .v1; 0/ 2 ƒ12 , that is v1 2 ƒ1 . This shows that ƒ12 splits, and since it
is Lagrangian, the first factor ƒ1 must be Lagrangian as well. This proves (a) and
one implication of (b); the reverse implication is immediate since ƒ2 Dƒ

0
2

. For (c)
note that f0g �V2 is a symplectic subspace and the projection …V2

W f0g �V2! V2

a symplectic isomorphism. So ƒ2 � V2 is Lagrangian if and only if the intersection
ƒ12\ .f0g�V2/ with the symplectic subspace f0g�V2 has maximal dimension. This
condition is preserved in a limit, so occurs on a closed subset of L.V1 �V �

2
/.

Now for a point q D .qj ; qjC1; q
0
j 0�1

; qj 0/ 2 Lj.jC1/ �L.j 0�1/j 0 we may apply the
above facts to ƒ12.q/DT.qj ;qjC1/Lj.jC1/ and ƒ0

12
.q/DT.q0

j 0�1
;qj 0 /

L.j 0�1/j 0 in local
trivializations TqjMj �TqjC1

MjC1ŠV1�V2 and Tqj 0�1
Mj 0�1�Tqj 0Mj 0 ŠV 0

1
�V 0

2
.

Then Sjj 0 is closed because it is the set of points q 2Lj.jC1/ �L.j 0�1/j 0 for which
ƒ2.q/ and ƒ0

1
.q/ are Lagrangian, in other words such that the continuous map q!

ƒ2.q/�ƒ
0
1
.q/ takes values in the closed set S�S 0 . Here S;S 0 are closed by (c) above.

Moreover, by the above linear algebra (b), the Lagrangian property of the intersections
is equivalent to the split form of T.qj ;qjC1/Lj.jC1/ and T.q0

j 0�1
;qj 0 /

L.j 0�1/j 0 . This
proves (i).
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Next, (ii) is similar linear algebra. Any point

.qj ; qjC1; q
0
j 0�1; qj 0/D .qj ;Pjj 0.qj ; qj 0/; qj 0/

has a unique lift

.qj ; qjC1; q
0
jC1; : : : qj 0�1; q

0
j 0�1; qj 0/2

�
Lj.jC1/�HjC1

� � ��Hj 0�1
L.j 0�1/j 0

�
\ zUx;j ;j 0 :

Denote the symplectic spaces by Vi WD Tqi
Mi , V 0i WD Tq0

i
Mi , the linear Lagrangian

correspondences by ƒi.iC1/ WD T.qi ;qiC1/Li.iC1/ , and the graphs of the linearized
Hamiltonian symplectomorphisms by gri WD graph.d�Hi

ıi
.qi//� V �i �V 0i . Then our

choice of H guarantees that the intersection

zƒjj 0 WD
�
ƒj.jC1/ � � � � �ƒ.j 0�1/j 0

�
t
�
Vj � grjC1 � � � � � grj 0�1 �Vj 0

�
is transverse and the projection

…Vj�Vj 0
W zƒjj 0

�
�!ƒjj 0 � Vj �Vj 0

is an isomorphism to the Lagrangian subspace ƒjj 0 WD T.qj ;qj 0 /L
H ;x
jj 0 . Now

P WDD.qj ;qj 0 /
Pjj 0 W ƒjj 0 ! VjC1 �V 0j 0�1

is the composition of the lift ƒjj 0 !
zƒjj 0 and the projection to VjC1 �V 0

j 0�1
. Hence

P � 0 is equivalent to …VjC1�V 0
j 0�1
j zƒjj 0

� 0 and hence to

zƒjj 0 � Vj � f0g �V 0jC1 �VjC2 � � � � �V 0j 0�2 �Vj 0�1 � f0g �Vj 0 :

Since ƒjj 0D…Vj�Vj 0
zƒjj 0 is Lagrangian, the latter is equivalent to ƒj.jC1/\.Vj�f0g/

and ƒ.j 0�1/j 0\.f0g�Vj 0/ projecting to Lagrangians in Vj and Vj 0 . By (b) above, this is
equivalent to ƒj.jC1/ and ƒ.j 0�1/j 0 being of split form, and to ƒj.jC1/\.f0g�VjC1/

and ƒ.j 0�1/j 0 \ .V
0

j 0�1
�f0g/ projecting to Lagrangians in VjC1 and V 0

j 0�1
, which is

the definition of .qj ;Pjj 0.qj ; qj 0/; qj 0/ 2 Sjj 0 .

In the next section we will “generically” exclude quilted Floer trajectories with constant
components of the following two types: Firstly, those along whose seam values we have
DPjj 0 ¤ 0 somewhere (ie whose seam values are not entirely contained in the splitting
locus); secondly, those along whose seam values DPjj 0 � 0 (ie with seam values
entirely contained in the splitting locus) but ƒ.jC1/.j 0�1/ varies. This will only leave
quilted Floer trajectories with constant components, for which transversality follows
from transversality for the moduli space of the locally composed cyclic Lagrangian
correspondence. The second part of this argument requires the following understanding
of the structure of the splitting locus Sjj 0 , the variation of the intersection ƒ.jC1/.j 0�1/ ,
and the intersection of Sjj 0 with lifts of the local compositions L

H ;x
jj 0 . We will describe

a set of functions that cuts out the splitting locus and show that solutions with seam
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values contained in the maximally singular part of the splitting locus have constant
Lagrangian intersection. In order to generically exclude other solutions, we then find
Hamiltonian perturbations which ensure that the defining functions for the splitting
locus pull back to regular functions (ie transverse to 0) on the subsets of the local
compositions L

H ;x
jj 0 where ƒ.jC1/.j 0�1/ may vary. (Note that the pullback of a regular

function by an embedding fails to be regular if the image of the embedding intersects
the zero set of the function nontransversely.)

Theorem 2.9 The following intersection properties hold for any pair of indices j C j 0 .

(a) For any q 2 Sjj 0 there is an open neighborhood Vq �Lj.jC1/ �L.j 0�1/j 0 and
smooth functions

GnW Vq!R for nD 1; : : : ; nmax

with nmax WD .dim Mj C dim Mj 0/.dim MjC1C dim Mj 0�1/=4 that cut out the
splitting locus2,

Sjj 0 \Vq D

nmax\
nD1

G�1
n .0/:

Moreover, if  W .��; �/!
�
Mj � fzqjC1g � fzqj 0�1g �Mj 0

�
\ Vq is a smooth

path contained in Sjj 0 (that is, Gn. .t// D 0 for all t 2 .��; �/ and n D

1; : : : ; nmax ), along which no Gn has a transverse zero (ie dGn. .t//� 0 for
all t and n), then ƒ.jC1/.j 0�1/. .t// is constant in t 2 .��; �/ as a subspace of
TzqjC1

MjC1 �Tzqj 0�1
Mj 0�1 .

(b) Fix a finite open cover

Sjj 0 �

[
q2Sjj 0

Vq

by subsets as in (a) with Sjj 0 � Sjj 0 finite, and for each q 2 Sjj 0 fix functions
.G

q
n /nD1;:::;nmax as in (a). Then there is a dense open subset Hjj 0.L/�Ham�.L/

such that the following holds: For every H 2Hjj 0.L/, x 2 I.L;H /, q 2 Sjj 0 ,
and 1� n� nmax the function

G
H ;x
q;n W V

H ;x
q;n !R; .zj ; zj 0/ 7!G

q
n .zj ;Pjj 0.zj ; zj 0/; zj 0/

2 Since Lj.jC1/ �L.j 0�1/j 0 splits in some other way, we could choose these functions such that
1
4
.mj mj 0�1Cmj 0mjC1/ of them vanish identically, leaving 1

4
.mj mj 0 CmjC1mj 0�1/ possibly nonva-

nishing functions.
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is transverse to 0. It is the pullback of G
q
n to the open subset of the locally

composed Lagrangian L
H ;x
jj 0 ,

VH ;x
q;n WD

˚
.zj ; zj 0/2L

H ;x
jj 0

ˇ̌
.zj ;Pjj 0.zj ; zj 0/; zj 0/2Vq; dG

q
n .zj ;Pjj 0.zj ; zj 0/; zj 0/ 6�0

	
;

given by the fixed neighborhood of q and the regular locus of G
q
n with respect

to its full domain.

Proof Let M;N be symplectic manifolds, L�M �N a Lagrangian submanifold,
and .m; n/ 2 L a point at which the tangent space T.m;n/L D K � ƒ splits into
Lagrangian subspaces K�TmM and ƒ�TnN . Then we may symplectomorphically
identify neighbourhoods WM � M of m and WN � N of n with unit balls in
BK

1
�K�K� and Bƒ

1
�ƒ�ƒ� . Choosing these Darboux neighbourhoods sufficiently

small ensures that V WD L\ .WM �WN / Š graph dF � BK
1
�Bƒ

1
�K� �ƒ� is

identified with the graph of the differential of some function F W BK
1
� Bƒ

1
! R.

Denote by � W V ! BK
1
� Bƒ

1
the projection given by �.p/ D z where p 2 V is

identified with .z; dF.z// 2 graph dF . With that notation, the tangent spaces TpLD

graph D2F.�.p// for p 2 V are then the graphs of the Hessian. Hence the tangent
space TpL is of split form if and only if the Hessian D2F.�.p//W K�ƒ!K��ƒ�

is of split form D2F.�.p//DD2.F jK /�D2.F jƒ/.

We will moreover identify KŠK�ŠRdim M=2 and ƒŠƒ�ŠRdim N=2 and use coordi-
nates .x;y/2K�ƒ. Then D2F.�.p//W Rdim M=2�Rdim N=2!Rdim M=2�Rdim N=2

is a nmax WD
1
2
.dim M Cdim N / square matrix, whose off-diagonal blocks give rise to

the tuple of functions

.Gn/nD1;:::;nmax W V!Rnmax ; p 7!

�
@2F

@xk@y`
.�.p//

�
kD1;:::; 1

2
dim M;`D1;:::;.1=2/ dim N

;

which locally cut out the splitting locus,

S \V D
nmax[
nD1

G�1
n .0/:

We now apply this construction to the Lagrangian embedding

LDLj.jC1/ �L.j 0�1/j 0 ,!M �N

given by exchange of factors into the product of M DMj�Mj 0 and N DMjC1�Mj 0�1 .
This yields the desired local description of the splitting locus Sjj 0 , consisting of points
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q D .qj ; qjC1; qj 0�1; qj 0/Š .m; n/ at which both tangent spaces

T.qj ;qjC1/Lj.jC1/ Dƒ
0
j �ƒ

0
jC1 � TqjMj �TqjC1

MjC1;

T.q0
j 0�1

;qj 0 /
L.j 0�1/j 0 Dƒ

0
j 0�1 �ƒ

0
j 0 � Tqj 0�1

Mj 0�1 �Tqj 0Mj 0

are products of Lagrangian subspaces. In that case we have

ƒ.jC1/.j 0�1/.q/D f0g �ƒ
0
jC1 �ƒ

0
j 0�1 � f0g Š T.m;n/L\ .f0g �TnN /:

For the second part of (a) we consider a path  W .��; �/! .M � fn0g/\ V . In the
Darboux charts such a path is given by a point y02ƒ and a smooth path xW .��; �/!K

as  .t/D
�
x.t/;y0;rF.x.t/;y0/

�
, where rƒF.x.t/;y0/ is constant. We moreover

assume Gn. .t//D 0 for all t and n, which by Proposition 2.8(a) this is equivalent to
the intersection ƒ.jC1/.j 0�1/. .t//D T.t/L\ .f0g �Tn0

N / inducing a Lagrangian
subspace in Tn0

N . Indeed, it is spanned by the vectors�
0; b; 0;

� .1=2/ dim NX
iD1

bi
@2F

@yi@y`
.x.t/;y0/

�
`D1;:::;.1=2/ dim N

�
for b 2 ƒ Š R.1=2/ dim N . Finally, we assume dGn. .t// � 0 for all t and n, in
particular

@y`Gn'.�;i/.x.t/;y0/D
@3F

@y`@yi@x�
.x.t/;y0/� 0

for all `; i; � . This guarantees that .@2F=@yi@y`/.x.t/;y0/ and hence the vectors
spanning ƒ.jC1/.j 0�1/. .t// are independent of t .

Approaching (b), note that we may reformulate the claim as transversal intersection of
Lj.jC1/ �HjC1

� � � �Hj 0�1
L.j 0�1/j 0 with the zero set of

zG
q
n .z/ WDG

q
n .zj ; zjC1; z

0
j 0�1; zj 0/

on the open set�
.zj ; zjC1; z

0
jC1

; : : : ; z0
j 0�1

; zj 0/

2Lj.jC1/ � : : :�L.j 0�1/j 0

ˇ̌̌̌
.zj ; zjC1; z

0
j 0�1

; zj 0/ 2 Vq;

dG
q
n .zj ; zjC1; z

0
j 0�1

; zj 0/ 6� 0

�
:

The universal moduli space of regularity m 2N for this problem is the preimage of
f0g ��MjC1

� � � ��Mj 0�1
of the map

Lj.jC1/ �L.jC1/.jC2/ � � � �L.j 0�1/j 0 �

j 0�1M
iDjC1

CmC1.Œ0; ıi ��Mi/

�!R�
j 0�1Y

iDjC1

Mi �Mi
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given by .zj ; : : : ; zj 0 ;HjC1; : : : ;Hj 0�1/

7�!
�
G

q
n .zj ; zjC1; z

0
j 0�1; zj 0/; .�

Hi
ıi
.zi/; z

0
i/iDjC1;:::;j 0�1

�
:

Hence the universal moduli space is a Cm manifold if at every solution the operator

.vj ; : : : vj 0 ; hjC1; : : : hj 0�1/

7�!
�
dG

q
n .vj ; vjC1; v

0
j 0�1; vj 0/; .v

0
i �D�Hi

ıi
.hi ; vi//iDjC1;:::;j 0�1

�
is onto. Here surjectivity in the first component is guaranteed by the condition
d zG

q
n .z/ 6� 0, and in the second component already hi 7!D�Hi

ıi
.hi ; 0/ is surjective as

in Theorem 2.3. Now as before the implicit function theorem and Sard–Smale theorem,
using m> dim MjCdim Mj 0�1 to satisfy the index condition, provide a dense subset
of
Lj 0�1

iDjC1
CmC1.Œ0; ıi ��Mi/ for which

zG
q
n W
�
Lj.jC1/ �HjC1

� � � �Hj 0�1
L.j 0�1/j 0

�
\fd zG

q
n ¤ 0g !R

is transverse to 0. Since this contains the lift of G
H ;x
q;n W V

H ;x
q;n !R, we find a dense

open set of regular Hamiltonians of class CmC1 for any given q 2 Sjj 0 , 1 � n �N ,
x 2 I.L;H /, and sufficiently large m 2N . Finally, C1 –small changes in H lead to
small changes in intersection points and the linearized operators, hence we obtain open
dense sets of regular values, and may take countable intersections to find a dense open
subset Hjj 0.L/� Ham�.L/ of regular smooth Hamiltonians.

3 Quilted Floer trajectories with constant components

Given a cyclic generalized Lagrangian correspondence L, widths ı , a regular tuple
of Hamiltonian functions H 2 Ham�.L/, we now consider the Floer trajectories for
some choice of almost complex structures J D .Jj /jD0;:::;r 2 Jt .ı/. For any pair
x�;xC 2 I.L;H / of generators and index k 2 Z, the moduli space of quilted Floer
trajectories

Mk.x�;xCIL;J /

WD
˚
uD

�
uj W R� Œ0; ıj �!Mj

�
jD0;:::;r

ˇ̌
.3/; .4/; .5/; Ind Du

x@J D k
	
=R

is the space modulo simultaneous R–shift of tuples of perturbed holomorphic strips

(3) x@Jj ;Hj uj D @suj CJj

�
@tuj �XHj .uj /

�
D 0 8 j D 0; : : : ; r;
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satisfying the seam conditions

(4) .uj .s; ıj /;ujC1.s; 0// 2Lj.jC1/ 8 j D 0; : : : ; r; s 2R

as well as uniform limits

(5) lim
s!˙1

uj .s; � /D x˙j 8 j D 0; : : : ; r:

Moreover, we fixed the index of the linearized operator – as explained in the following.
By standard local action arguments as in Floer [2] any such solution also has finite
energy, and exponential decay analysis as in [11] shows that any solution is of Sobolev
regularity W 1;p relative to the limits for any p > 2 in the following sense: If we
trivially extend x˙j to maps R � Œ0; ıj � ! Mj , then there exists R > 0 such that
uj .˙s; t/ takes values in an exponential ball (with respect to some and hence any
metric on Mj ) around x˙j .s; t/ for ˙s >R, and such that for each j D 0; : : : ; r we
have

(6)
�
.s; t/ 7! exp�1

x˙
j
.t/
.uj .˙s; t//

�
2W 1;p.ŒR;1/� Œ0; ıj �;x

˙
j

�
TMj /:

With this, the moduli space of Floer trajectories can be identified with the R–quotient
of the zero set of a section x@J W B! E of a Banach bundle, where

(7) B WD
˚
uD

�
uj 2W

1;p
loc .R� Œ0; ıj �;Mj /

�
jD0;:::;r

ˇ̌
.4/; .6/

	
;

E ! B is the Banach bundle with fibers Eu D
Lr

jD0 Lp.R� Œ0; ıj �;u�j TMj /, and
x@J W B!E is the (R–invariant) Cauchy–Riemann operator x@J .u/D.x@Jj ;Hj uj /jD0;:::;r .
In [10] we proved that x@J is a Fredholm section, and in the definition of the moduli
space Mk.x�;xC/ we fix the Fredholm index of its linearization Du

x@J W TuB! Eu .
In order to achieve transversality of the section s , we now restrict ourselves to a further
dense open subset of Hamiltonian perturbations, as constructed in Section 2.

Definition 3.1 Given a cyclic generalized Lagrangian correspondence L and widths ı ,
let

Hreg.L/D
\
j ;j 0

Hjj 0.L/�Ht .ı/

be the intersection over all pairs of indices j C j 0 of the dense open subsets of regular
Hamiltonians for some choices of covers of Sjj 0 as in Theorem 2.9.

We now prove the main result.
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Theorem 3.2 For any cyclic generalized Lagrangian correspondence L and any choice
of widths ı and regular Hamiltonians H �Hreg.L/, there exists a comeagre3 subset
Jreg.LIH /� Jt .ı/ such that for all J 2 Jreg.LIH /, x˙ 2 I.L;H /, and k 2 Z the
Cauchy–Riemann section x@J W B! E defined above is transverse to the zero section.

Remark 3.3 In fact, we prove that for generic perturbation data H � Ham�.L/ and
J 2J reg

t .LIH / any solution u 2Mk.x�;xCIL;J / with some constant components
has split linearized seam conditions between constant and nonconstant components in
the following sense: If @suj 6� 0 and ujC1.s; t/D xjC1.t/ for all .s; t/ 2 R� Œ0; 1�,
then T.uj .s;ıj /;xjC1.0//Lj.jC1/Dƒj .s/�ƒjC1 splits into two families of Lagrangian
subspaces

ƒj .s/D…TMj

�
T.uj .s;ıj /;xjC1.0//Lj.jC1/\ .Tuj .s;ıj /Mj � f0g/

�
;

ƒjC1 D…TMjC1

�
T.uj .s;ıj /;xjC1.0//Lj.jC1/\ .f0g �TxjC1.0/MjC1/

�
;

of which the second is constant. The analogous statement holds for @suj � 0 and
@sujC1 6� 0.

Proof Since I.L;H / has finitely many elements (due to the transversality in Theorem
2.3 and compactness of the Lagrangian correspondences), and countable intersections of
comeagre sets are comeagre in the complete metric space Jt .ı/, it suffices to consider
a single pair x˙ 2 I.L;H / and indices k � k0 for some fixed k0 2N .

The standard universal moduli space approach, using unique continuation for each
strip separately, as discussed in the proof of [10, Theorem 5.2.4.], provides a comeagre
subset in Jt .L/ for which the section s is transverse at all zeros u for which @sui 6� 0

for all i D 0; : : : ; r . In addition, s is automatically transverse at any completely
constant solution u � xC D x� , by a general argument (using spectral analysis,
elliptic regularity, and Sobolev embeddings) as in eg Salamon [8, Lemma 2.4] and
Donaldson [1, Chapter 3].

More precisely, the linearized operator at such a solution u� .xj / 2 I.L;H / has the
form @sCAW TuB! Eu , where TuB �Lp.R;W p/ is a subset of paths in

W p
WD
˚�
�j 2W 1;p.Œ0; ıj �;x

�
j TMj /

�
jD0;:::;r

ˇ̌
.�j .ıj /; �jC1.0// 2 T.xj .ıj /;xjC1.0//Lj.jC1/8 j

	
3 A subset of a topological space is comeagre (or residual) if it is the intersection of countably many

open dense subsets. Many authors in symplectic topology would use the term “Baire second category”,
which however in classical Baire theory (see Royden [7, Chapter 7.8]) denotes more generally subsets that
are not meagre, ie not the complement of a comeagre subset. Baire’s Theorem applies to complete metric
spaces such as the spaces of smooth almost complex structures considered here, and implies that every
comeagre set is dense.
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and A D .Jj .x
˙
j /@t /jD0;:::;r is independent of s 2 R. This operator extends to an

invertible self-adjoint operator zAW W 2 ! H , where H is the L2 –closure of W p .
Now @sC

zAW L2.R;W 2/\W 1;2.R;H /!L2.R;H / is an isomorphism by Robbin
and Salamon [6, Proposition 3.1.12]. Here the domain and target are the W 1;2 , resp.
L2 , closures of the compactly supported smooth maps in TuB resp. Eu . Now a
standard method (worked out eg in [8; 1]) allows to transfer the isomorphism result
to the case of W 1;p domain and Lp target. In our case, we can copy the proof of [8,
Lemma 2.4] word-for-word and simply replace the elliptic regularity and estimates for
the Cauchy–Riemann operator @sCA on finite cylinders with those for the tuple of
Cauchy–Riemann operators @sCA on tuples of finite strips with linearized Lagrangian
seam conditions.

It remains to consider solutions u for which a proper subset ui for i 2 I � f0; : : : ; rg

of components is constant. Here and in the following we call a component ui constant
if @suiD 0, and hence @tuiDXHi

.ui/, so ui is a Hamiltonian trajectory in t , indepen-
dent of s . A necessary condition for such solutions to exist is x�i DxCi for all i 2I , and
hence the locally composed cyclic Lagrangian correspondences LI;H ;xC DLI;H ;x�

are the same. Note that any solution u2Mk.x�;xCIL;J / with the I components con-
stant induces a solution .ui/i2I C 2Mk..x�i /i2I C ; .xCi /i2I C ILI;H ;x˙ ; .Ji/i2I C / in
the moduli space of same index (see [10, 3.1.8] for the index calculation) for the locally
composed correspondence. Indeed, for consecutive pairs of indices j C j 0 2 IC we
have�
uj .s; ıj /;xjC1.0/;xjC1.ıjC1/; : : : ;xj 0�1.ıj 0�1/;uj 0.s; 0/

�
2
�
Lj.jC1/ �HjC1

� � � �Hj 0�1
L.j 0�1/j 0

�
\ zUx;j ;j 0 :

The converse is rarely true since the lifts from L
H ;x˙

jj 0 to Lj.jC1/ �HjC1
� � � �Hj 0�1

L.j 0�1/j 0 may not be constant. Part of this is encoded by the lift map

Pjj 0 W L
H ;x˙

jj 0 !MjC1 �Mj 0�1

from Definition 2.7. In the following six steps we substantiate the intuition laid out
in the introduction: Automatic transversality can fail for Floer trajectories with a
mix of constant and nonconstant components. However, those are in fact nongeneric
solutions. We denote by J `

t .ı/ the closure of Jt .ı/ in the topology of C `–maps
Œ0; ıj ��TMj ! TMj .

Step 0 In preparation we need to fix some choices for each pair of indices j C j 0 .
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Firstly, we fix a metric on each Mi . Then, since L
H ;x˙

jj 0 is compact, we may fix an
open cover

Pjj 0.L
H ;x˙

jj 0 /�
S

p2Cjj 0
Wp

by a finite number (indexed by Cjj 0 �MjC1 �Mj 0�1 ) of exponential balls Wp �

MjC1 �Mj 0�1 on which

exp�1
p W Wp! B�p

.0/� Tp.MjC1 �Mj 0�1/

is a diffeomorphism. We also fix a collection of 1–dimensional subspaces .Zm/ for
mD 1; : : : ; dim MjC1C dim Mj 0�1 spanning Tp.MjC1�Mj 0�1/ for each p 2 Cjj 0 .

Secondly, as in Theorem 2.9 we fix a finite open cover Sjj 0�
S

q2Sjj 0
Vq and choose H

such that the submanifold˚
z 2 Vq

ˇ̌
Gn.z/D 0; dGn.z/¤ 0

	
�Lj.jC1/ �L.j 0�1/j 0

is transverse to zLH ;x˙

jj 0 for every q 2 Sjj 0 and nD 1; : : : ;N .

Step 1.a We start by reviewing the regularity of the linearized operator at solutions
without constant components, more precisely we prove the following:

For every integer ` > k0 there exists a comeagre subset J `
1
� J `

t .ı/ such that for any
J 2J `

1
the linearized operator Du

x@J is surjective for all u2
S

k�k0
Mk.x�;xCIL;J /

with no constant components.

This is what the arguments of [10] actually prove. To be precise, we consider the
operator J `

t .ı/�Bnc! E jBnc , .J ;u/ 7! x@J u on the open subset

Bnc WD
˚
u 2 B

ˇ̌
@sui 6� 0 8 i D 0; : : : ; r

	
� B:

This operator cuts out the universal moduli space and is a C` section of a Banach
bundle whose linearized operator at a zero x@J uD 0 is�

K D .Ki/iD0;:::;r ; �
�
7! .Du

x@J /� � .KiJi@sui/iD0;:::;r :

Here the second summand is already surjective by the same arguments as in Floer, Hofer
and Salamon [3]. Indeed, the unique continuation theorem applies to the interior of every
single nonconstant strip ui W R� .0; ıi/!Mi and implies that the set of regular points,
.s0; t0/ 2 R� .0; ıi/ with @sui.s0; t0/¤ 0 and u�1

i .ui.R[ f˙1g/; t0/D f.s0; t0/g,
is open and dense. This suffices to prove surjectivity by contradiction. So by the
implicit function theorem f.J ;u/ j x@J uD 0g is a C` Banach manifold. Its projection
to J `

t .ı/ is a Fredholm map of class C` and index Ind Du � k0 � `�1. Hence, by the
Sard–Smale theorem, the set of regular values, which coincides with the set J 2J `

t .ı/

such that Du
x@J is surjective for all solutions u, is comeagre as claimed.
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Step 1.b Next, a similar argument provides the following regularity of the linearized
operator for the locally composed cyclic generalized Lagrangian correspondences:

For every proper subset I � f0; : : : ; rg such that .x�i /i2I D .x
C
i /i2I and every integer

` > k0 there exists a comeagre subset J `
1;I
� J `

t .ı/ such that for any J 2 J `
1;I

and
any solution v 2

S
k�k0

Mk..x�j /j2I C ; .xCj /j2I C ILI;H ;x˙ ;J I / with no constant
components the linearized operator Dv

x@J I is surjective.

The locally composed cyclic Lagrangian correspondence LI;H ;x˙ consists of smooth,
yet not compact, Lagrangian submanifolds. However, the compactness is not relevant for
the universal moduli space arguments. Hence as in Step 1.a we find a comeagre subset
of the C`–closure of

L
j2I C C1.Œ0; ıj �;J .Mj ; !j // with the transversality properties.

Then we let J `
1;I

be the preimage under the projection J ! J I D .Jj /j2I C .

Step 2 In this first nonstandard step we show that for quilted Floer trajectories with
respect to generic almost complex structures the differential DPjj 0 of the lift map
from Definition 2.7 vanishes along the seams bounding constant components. More
precisely:

For every integer ` > k0 and pair of indices j C j 0 such that x�i D xCi for i D

j C 1; : : : ; j 0 � 1 there exists a comeagre subset J `
2;j ;j 0

� J `
t .ı/ such that for any

J 2 J `
2;j ;j 0

and u 2
S

k�k0
Mk.x�;xCIL;J / with ujC1; : : : ;uj 0�1 constant we

have D.uj .s;ıj /;uj 0 .s;0//
Pjj 0 D 0 for all s 2R.

Given `; j ; j 0 we set I WD fj C 1; : : : ; j 0 � 1g and start by proving an intermediate
Lemma, which asserts emptiness of the moduli spaces of quilted Floer trajectories
for LI;H ;x˙ with DPjj 0 6� 0 but a weak form of constant lifts Pjj 0 at sufficiently
many points along the seam. (Note that we make sure to only introduce a countable
set of data .k;p;Zm; .s0; : : : ; sk// since we will later need to take the intersection of
comeagre subsets for each choice and wish to still obtain a comeagre set of J .)

Lemma for Step 2 Fix a choice of k�k0 , one of the fixed centers of exponential balls
p 2 Cjj 0 , and one of the fixed 1–dimensional subspaces Zm � Tp.MjC1 �Mj 0�1/.
For all s 2R and Floer trajectories

v 2Mk..x�i /i2I C ; .xCi /i2I C ILI;H ;x˙ ;J I /

such that Pjj 0.vj .s; ıj /; vj 0.s; 0// 2Wp denote

z.v; s/ WD…Zm
exp�1

p .Pjj 0.vj .s; ıj /; vj 0.s; 0///;

D.v; s/ WD…Zm
ıD exp�1

p ıD.vj .s;ıj /;vj 0 .s;0//
Pjj 0 :
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Then for any tuple of rationals s0 < � � � < skC1 2 Q there exists a comeagre subset
J .p;m; s0; : : : ; skC1/ � J `

t .ı/ such that for any J 2 J .p;m; s0; : : : ; skC1/ there
exists no Floer trajectory

v 2Mk..x�i /i2I C ; .xCi /i2I C ILI;H ;x˙ ;J I /

satisfying Pjj 0.vj .sl ; ıj /; vj 0.sl ; 0// 2Wp and D.v; sl/¤ 0 for all l D 0; : : : ; kC 1,
and moreover

z.v; s0/D z.v; s1/D � � � D z.v; sl/:

The proof is by a universal moduli space argument. Let B be the Banach manifold as
in the definition of Mk..x�i /i2I C ; .xCi /i2I C ILI;H ;x˙ ;J I /. Then

B0 WD
�
v 2 B

ˇ̌̌̌
Pjj 0.vj .sl ; ıj /; vj 0.sl ; 0// 2Wp 8 0� l � kC 1;

D.v; sl/¤ 0 8 0� l � kC 1

�
is an open subset of B , and

s.J ; v/ WD
�
x@J I .v/;

�
z.v; sl/� z.v; s0/

�
lD1;:::;kC1

�
defines a C` section of the bundle E jB0 � .Zm/

kC1 ! J `
t .ı/ � B0 . Its linearized

operator at a zero maps
�
K D .Ki/iD0;:::;r ; � D .�i/i2I C

�
to0@ �

Dv
x@J I

�
� � .KiJi@svi/i2I C�

D.v; sl/
�
�j .sl ; ıj /; �j 0.sl ; 0/

�
�D.v; s0/

�
�j .s0; ıj /; �j 0.s0; 0/

��
lD1;:::;kC1

1A :
Here the second summand in the first component is surjective by the same arguments
as in Step 1.a, using just the freedom in K . The second component is surjective since
by definition of B0 each map

D.v; sl/W T.vj .sl ;ıj /;vj 0 .sl ;0//L
H ;x˙

jj 0 !Zm

is nonzero, ie surjective onto this one dimensional subspace, and � can be chosen to
assume any given tuple of values on the linearized Lagrangian correspondence TL

H ;x˙

jj 0

at distinct s1; : : : ; skC1 2R. So by the implicit function theorem f.J ; v/ j s.J ; v/D 0g

is a C` Banach manifold. Its projection to J `
t .ı/ is a Fredholm map of class C` and

index Ind Dv � .kC 1/D�1. Hence, by the Sard–Smale theorem, the set of regular
values is comeagre. Finally, since the index is negative, the set of solutions for a
regular J is empty, which proves the Lemma.

We now obtain a comeagre subset J `
2;j ;j 0

� J `
t .ı/ by taking the countable inter-

section of the comeagre sets J .p;m; s0; : : : ; skC1/ given by the Lemma for each
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choice of p , m, and finite subset fs0; : : : ; skC1g � Q. Then suppose by contra-
diction that for some J 2 J `

2;j ;j 0
we have a solution u 2Mk.x�;xCIL;J / for

some k � k0 with ujC1; : : : ;uj 0�1 constant but D.uj .s0;ıj /;uj 0 .s0;0//Pjj 0 ¤ 0 for
some s0 2 R. As discussed at the beginning of the proof of this theorem, u in-
duces a solution v WD .ui/i2I C 2Mk..x�i /i2I C ; .xCi /i2I C ILI;H ;x˙ ;J I / such that
Pjj 0.vj .s; ıj /; vj 0.s; 0// D .ujC1.s; 0/;uj 0�1.s; ıj 0�1// is constant in s 2 R. More-
over, for some s0 2 R we have D.vj .s0;ıj /;vj 0 .s0;0//Pjj 0 ¤ 0. Since this is an open
condition, we may also find s0 2 Q with the same nonvanishing. Then we have
Pjj 0.vj .s0; ıj /; vj 0.s0; 0// 2Wp for some p 2 Cjj 0 and

D.v; s0/D…Zm
ıD exp�1

p ıD.vj .s0;ıj /;vj 0 .s0;0//Pjj 0 ¤ 0

for one of the spanning subspaces Zm � Tp.MjC1 �Mj 0�1/. Again, these are open
conditions, so we may find rational numbers s0 < s1 < � � � < skC1 with the same
properties. This contradicts the Lemma since z.v; s/ D Pjj 0.vj .s; ıj /; vj 0.s; 0// D

.xjC1.0/;xj 0�1.ıj 0�1// is independent of s 2 fs0; : : : ; slg.

Step 3 Extending Step 2, we show that for quilted Floer trajectories with respect to
generic almost complex structures in fact the splitting condition of Proposition 2.8 on
the linearized seam conditions holds along the seams bounding constant components.
More precisely:

For every integer ` > k0 and pair of indices j C j 0 such that x�i D xCi DW xi for
i D j C 1; : : : ; j 0 � 1 there exists a comeagre subset J `

3;j ;j 0
� J `

t .ı/ such that for
any J 2 J `

3;j ;j 0
and u 2

S
k�k0

Mk.x�;xCIL;J / with ujC1; : : : ;uj 0�1 constant
the intersection at y.s/ WD .uj .s; ıj /;xjC1.0/;xj 0�1.ıj 0�1/;uj 0.s; 0//

Ty.s/.Lj.jC1/ �L.j 0�1/j 0/\ .f0g �TxjC1.0/MjC1 �Txj 0�1.ıj 0�1/
Mj 0�1 � f0g

�
projects to a Lagrangian subspace TxjC1.0/MjC1 � Txj 0�1.ıj 0�1/

Mj 0�1 that is inde-
pendent of s 2R.

Given `; j ; j 0 we set I WD f0; : : : ; j ; j 0; : : : ; rg and start by proving an intermediate
Lemma which asserts emptiness of the moduli spaces of quilted Floer trajectories
for LI;H ;x˙ with dGn 6� 0 but Gn D 0 at sufficiently many points along the seam.
This will be relevant since by Theorem 2.9 the splitting locus is locally given by the
intersection of the zero sets G�1

n .0/, and since dGn � 0 along a path in the splitting
locus ensures s–independence of the Lagrangian subspace of TMjC1 �TMj 0�1 that
arises from the splitting.

Geometry & Topology, Volume 16 (2012)



Quilted Floer trajectories with constant components 149

Lemma for Step 3 For every k � k0 , q 2 Sjj 0 , 1 � n � N , and tuple of rationals
s0 < � � � < sk 2 Q there exists a comeagre subset J .q; n; s0; : : : ; sk/ � J `

t .ı/ such
that for J 2 J .q; n; s0; : : : ; sk/ there exists no solution

v 2Mk..x�i /i2I C ; .xCi /i2I C ILI;H ;x˙ ;J I /

vjj 0.sl/ WD .vj .sl ; ıj /;Pjj 0.vj .sl ; ıj /; vj 0.sl ; 0//; vj 0.sl ; 0// 2 Vq;with

Gn.vjj 0.sl//D 0 and dGn.vjj 0.sl//¤ 0

for 0� l � k .

Let B be the Banach manifold in Equation (7) as in the definition of
Mk..x�i /i2I C ; .xCi /i2I C ILI;H ;x˙ ;J I / and recall from Theorem 2.9(b) the transver-
sality of the function

G
H ;x˙

q;n W VH ;x˙

q;n !R; .zj ; zj 0/ 7!Gn.zj ;Pjj 0.zj ; zj 0/; zj 0/

on the open set

VH ;x˙

q;n WD
˚
.zj ; zj 0/ 2L

H ;x˙

jj 0

ˇ̌
.zj ;Pjj 0.zj ; zj 0/; zj 0/ 2 Vq; dGn.zj ;Pjj 0.zj ; zj 0/; zj 0/¤ 0

	
:

Then B00 WD
˚
v 2 B

ˇ̌ �
vj .sl ; ıj /; vj 0.sl ; 0/

�
2 VH ;x˙

q;n 8 0 � l � k
	

is an open subset
of B and

s.J ; v/ WD
�
x@J I .v/;

�
G

H ;x˙

q;n

�
vj .sl ; ıj /; vj 0.sl ; 0/

�
lD0;:::;k

�
defines a C` section of the bundle E jB00 �RkC1! J `

t .ı/�B00 . Its linearized operator
at a zero maps

�
K D .Ki/iD0;:::;r ; � D .�i/i2I C

�
to��

Dv
x@J I

�
� �

�
KiJi@svi

�
i2I C ;�

D.vj .sl ;ıj /;vj 0 .sl ;0//G
H ;x˙

q;n

�
�j .sl ; ıj /; �j 0.sl ; 0/

�
lD0;:::;k

�
:

As before, the second summand in the first component is surjective using just the
freedom in K . The second component is surjective since by Theorem 2.9(b) each
map D.vj .sl ;ıj /;vj 0 .sl ;0//G

H ;x˙

q;n is surjective, and � can be chosen to assume any given
tuple of values on the linearized Lagrangian correspondence TL

H ;x˙

jj 0 at distinct
s0; : : : ; skC1 2 R. So by the implicit function theorem f.J ; v/ j s.J ; v/ D 0g is a
C` Banach manifold and its projection to J `

t .ı/ is a Fredholm map of class C` and
negative index Ind Dv � .k C 1/D �1. As before, by the Sard–Smale theorem, the
set of regular values is comeagre, and for each regular J the set of solutions is empty.
This proves the Lemma.
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We now obtain a comeagre subset J `
3;j ;j 0

�J `
t .ı/ by taking the countable intersection

of the comeagre sets J .q; n; s0; : : : ; sk/ given by the Lemma with J `
2;j ;j 0

. Now
consider any J 2 J `

3;j ;j 0
and u 2

S
k�k0

Mk.x�;xCIL;J / with ujC1; : : : ;uj 0�1

constant. As before, this induces a solution

v WD .ui/i2I C 2Mk..x�i /i2I C ; .xCi /i2I C ILI;H ;x˙ ;J I /

Pjj 0.vj .s; ıj /; vj 0.s; 0//D .ujC1.s; 0/;uj 0�1.s; ıj 0�1//such that

D .xjC1.0/;xj 0�1.ıj 0�1//

is independent of s 2R. Moreover, by Step 2, we know D.vj .s0;ıj /;vj 0 .s0;0//Pjj 0 D 0

for all s 2R, and hence by Proposition 2.8 the intersection ƒ.vjj 0.s// at

vjj 0.s/ WD .vj .s; ıj /;xjC1.0/;xj 0�1.ıj 0�1/; vj 0.s; 0//

induces a Lagrangian subspace of TxjC1.0/MjC1�Txj 0�1.ıj 0�1/
Mj 0�1 for every s 2R.

Suppose by contradiction that it is not constant on any neighborhood of � 2 R. Fix
q 2Sjj 0 such that vjj 0.s/2Vq for js�� j<� sufficiently small, then by Theorem 2.9(a)
we have G1.vjj 0.s//D� � �DGN .vjj 0.s//D0 for all js�� j<� , but dGn.vjj 0.�

0//¤0

for some 1 � n � N and � 0 2 .� � �; � C �/. Since the nonvanishing is an open
condition, we may also find s0< � � �< sk 2Q\.���; �C�/ with dGn.vjj 0.sl//¤ 0,
in contradiction to the Lemma.

Step 4 Next we explicitly state Step 3 as a splitting property and deduce surjectivity
of part of the linearized operator:

If u 2Mk.x�;xCIL;J / with ui.s; t/ D x˙i .t/ DW xi.t/ for i D j C 1; : : : ; j 0 � 1

gives rise to a constant Lagrangian subspace as in Step 3, then the linearized seam
conditions

T.uj .s;ıj /;ujC1.s;0//Lj.jC1/ Dƒj .s/�ƒjC1;

T.uj 0�1.s;ıj 0�1/;uj 0 .s;0//
L.j 0�1/j 0 Dƒj 0�1 �ƒj 0.s/

split into the Lagrangian subspaces

ƒj .s/Š T.uj .s;ıj /;xjC1.0//Lj.jC1/\
�
Tuj .s;ıj /Mj�f0g

�
,! Tuj .s;ıj /Mj ;

ƒjC1 Š T.uj .s;ıj /;xjC1.0//Lj.jC1/\
�
f0g�TxjC1.0/MjC1

�
,! TxjC1.0/MjC1;

ƒj 0�1 Š T.xj 0�1.ıj 0�1/;uj 0 .s;0//
L.j 0�1/j 0\

�
Txj 0�1.ıj 0�1/

Mj 0�1�f0g
�

,! Txj 0 .ıj 0 /
Mj 0 ;

ƒj 0.s/Š T.xj 0�1.ıj 0�1/;uj 0 .s;0//
L.j 0�1/j 0\

�
f0g�Tuj 0 .s;0/

Mj 0
�

,! Tuj 0 .s;0/
Mj 0 :
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Moreover, the operator Djj 0 WD
�
@sCJi.xi/@t �Ji.xi/Dxi

XHi

�
iDjC1;:::;j 0�1

maps8<:� 2Lj 0�1
iDjC1

W 1;p.R� Œ0; ıi �;x�i TMi/

ˇ̌̌̌
ˇ̌
�
�i.s; ıi/; �iC1.s; 0/

�
2 TLi.iC1/ 8 i

�jC1.s; 0/ 2ƒjC1;

�j 0�1.s; ıj 0�1/ 2ƒj 0�1

9=;
onto

Lj 0�1
iDjC1

Lp.R� Œ0; ıi �;x�i TMi/.

We can express the operator Djj 0 D @sCA in terms of an s–independent operator

AD .Ji.xi/@t �Ji.xi/Dxi
XHi

/iDjC1;:::;j 0�1;

which is self-adjoint on
Lj 0�1

iDjC1
L2.Œ0; ıi �;x

�
i TMi/ with domain8<:� 2Lj 0�1

iDjC1
W 1;2.Œ0;ıi �;x

�
i TMi/

ˇ̌̌̌
ˇ̌
�
�i.ıi/;�iC1.0/

�
2 T.xi .ıi /;xiC1.0//Li.iC1/8i

�jC1.0/ 2ƒjC1;

�j 0�1.ıj 0�1/ 2ƒj 0�1

9=;:
Moreover, the nondegeneracy of the intersection points I.L;H / implies that A is
invertible. Indeed, the linearized operator cutting out I.L;H / as trajectory space splits
at x˙ into A and .Ji.x

˙
i /@t �Ji.x

˙
i /Dx˙

i
XHi

/i2fjC1;:::;j 0�1gC with the analogous
linearized seam conditions. Now a general spectral analysis and Sobolev embedding
argument proves that Djj 0 is in fact an isomorphism. This is the same analysis as
outlined at the beginning of the proof, using the elliptic estimates for the quilted
Cauchy–Riemann operator in the general proof method given by eg [8, Lemma 2.4;
1, Chapter 3].

Step 5 We deduce from the previous steps that the set of almost complex structures
of class C` , for which the linearized operators are surjective, is dense in the following
sense:

For every integer ` > k0 let J `
reg be the set of J 2 J `

t .ı/ for which the linearized
operators Du

x@J are surjective at all u 2
S

k�k0
Mk.x�;xCIL;J /. Then J `

reg �

J `
t .ı/ is dense.

The density will follow from proving that J `
reg contains the intersection of J `

1
, all

J `
1;I

, and all J `
3;j ;j 0

, ie a comeagre and hence dense set. So we need to consider a
given

J 2 J `
1
\
T

I J `
1;I
\
T

j ;j 0 J `
3;j ;j 0

and show surjectivity of Du
x@J for all solutions u.

Step 1.a ensures surjectivity if u has no constant components, so it remains to consider
u2

S
k�k0

Mk.x�;xCIL;J / with @sui � 0, i 2 I for some subset I �f0; : : : ; rg.
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If all components are constant, then surjectivity follows as in Step 4 from the fact that
Du
x@J D @sCA is given by the s–independent self-adjoint operator

AD .Ji.xi/@t �Ji.xi/Dxi
XHi

/iD0;:::;r

with constant Lagrangian seam conditions.

If u is a solution with constant components for a proper subset I � f0; : : : ; rg, then as
before this induces a solution

.uj /j2I C 2Mk..x�j /j2I C ; .xCj /j2I C ILI;H ;x˙ ;J I /

for the locally composed cyclic Lagrangian correspondence LI;H ;x˙ consisting of8̂<̂
:

Lj.jC1/ for j ; j C 1 2 IC ;

L
H ;x˙

jj 0 �Mj �Mj 0 for each pair of consecutive indices j C j 0 2 IC ,
ie with j C 1; : : : ; j 0� 1 2 I .

Moreover, Step 3 implies that the linearized seam conditions at each consecutive
j C j 0 2 IC split as in Step 4. As a direct consequence, the locally composed
correspondence also splits:

T.uj .s;ıj /;uj 0 .s;0//L
H ;x˙

jj 0 Dƒj .s/�ƒj 0.s/:

That is, the seam conditions in the linearized operator D.uj /j2IC
x@J I for the moduli

space associated to the local composition coincide with the seam conditions in noncon-
stant components of the linearized operator Du

x@J . Hence the linearized operator for
the full problem Du

x@J is the direct sum of D.uj /j2IC
x@J I and the operators Djj 0 as in

Step 4 for each consecutive j C j 0 2 IC . The latter are surjective by Step 4, whereas
the former is surjective by Step 1.b. This shows that Du

x@J is indeed surjective for all
solutions u of index up to k0 , and hence J 2 J `

reg .

Step 6 As final step we use an intersection argument due to Taubes to transfer from
C` to C1 almost complex structures. For fixed x˙ 2 I.L;H /, k0 2 N this proves
the following:

Let Jreg;k0
.x�;xC/ be the set of J 2 Jt .ı/ for which the linearized operators Du

x@J

are surjective for all u 2
S

k�k0
Mk.x�;xCIL;J /. Then Jreg;k0

.x�;xC/ � Jt .ı/

is comeagre.

For every R� 0 let J R
reg � Jt .ı/ and J `;R

reg � J `
t .ı/ for ` > k0 be the sets of J for

which the linearized operators Du
x@J are surjective at all u2

S
k�k0

Mk.x�;xCIL;J /

with k@suk1 WDmaxi k@suik1 �R.
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Then J R
reg and J `;R

reg are open in the C1–, resp. C`–topology, by the following compact-
ness and gluing argument as in [3]: Suppose by contradiction that J �! J1 2J `;R

reg in
the C1 –topology but Du�

x@J � fails to be surjective for some solutions x@J �u� D 0 with
k@su�k1 �R. Then a subsequence of u� converges to a broken trajectory, consisting
of a finite number of nonconstant solutions with respect to J1 , and satisfying the same
uniform derivative bound. These components cannot have negative index since J1

is regular for indices up to k0 . So, by index additivity, all components of the broken
trajectory have index at most k0 , and thus the linearized operators at these solutions
are surjective. Now a standard gluing construction shows that in fact Du�

x@J � must be
surjective for some large � .

Moreover, J `;R
reg �J `

t .ı/ is dense since it contains the dense set J `
reg from Step 5. Now

J R
reg �Jt .ı/ is dense in the C1–topology since J R

regDJ `;R
reg \Jt .ı/, where J `;R

reg �

J `
t .ı/ is open and dense in the C`–topology for all `> k0 . Finally Jreg;k0

.x�;xC/DT
R2N J R

reg is a countable intersection of open dense subsets, ie comeagre.

To finish the proof of the Theorem, let Jreg.LIH / be the set of J 2 Jt .ı/ for which
the linearized operators Du

x@J are surjective for all u 2 Mk.x�;xCIL;J / with
x˙ 2 I.L;H / and k 2Z. Then Jreg.LIH /D

T
k02N

T
x˙2I.L;H / Jreg;k0

.x�;xC/

is comeagre in Jt .ı/ since it is the countable intersection of comeagre sets.
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