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Effect of Legendrian surgery
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The paper is a summary of the results of the authors concerning computations of
symplectic invariants of Weinstein manifolds and contains some examples and ap-
plications. Proofs are sketched. The detailed proofs will appear in our forthcoming
paper [7].

In the Appendix written by S Ganatra and M Maydanskiy it is shown that the results
of this paper imply P Seidel’s conjecture from [42].

53D05, 53D42, 57R17

Introduction

We study how attaching of a Lagrangian handle in the sense of Weinstein [46], Eliash-
berg [22] and Cieliebak and Eliashberg [13] to a symplectic manifold with contact
boundary affects symplectic invariants of the manifold and contact invariants of its
boundary. We establish several surgery exact triangles for these invariants. As explained
in Section 8 below, symplectic handlebody presentations and Lefschetz fibration presen-
tations of Liouville symplectic manifolds are closely related. In this sense our results
can be viewed as generalizations of P Seidel’s exact triangles for symplectic Dehn
twists; see [38; 37; 39]. In particular, as shown in the Appendix written by S Ganatra
and M Maydanskiy, our results imply P Seidel’s conjecture from [42].

This is the first paper in a series devoted to this subject. In order to make the results
more accessible and the algebraic formalism not too heavy, we make here a number of
simplifying assumptions (like vanishing of the first Chern class). Though proofs are
only sketched, we indicate the main ideas and provide some details which should help
specialists to reconstruct the proofs. The general setup and detailed proofs will appear
in the forthcoming paper [7].
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Plan of the paper In Section 1 we review the notions related to Liouville and We-
instein manifolds and domains. In Section 2, various moduli spaces of holomorphic
curves needed for our algebraic constructions are defined. In Section 3 we define the
symplectic and contact invariants that are computed in this paper, namely linearized
contact homology and reduced and full symplectic homology. The definitions we use
are due to F Bourgeois and A Oancea [9]. In Section 4 we recall the definition of
Legendrian homology algebra (see Chekanov [10], Eliashberg, Givental and Hofer [23]
and Ekholm, Etnyre and Sullivan [18]) and define several constructions derived from it
in the spirit of cyclic and Hochschild homology. In Section 5 we formulate and sketch
the proof of our main results. These are

� Theorems 5.2, and 5.4, respectively 5.6, which describe surgery exact triangles
for linearized contact homology, and reduced, respectively full, symplectic
homology;

� Corollary 5.7, which gives a closed form formula for symplectic homology;

� Theorem 5.10, which relates the Legendrian homology algebras of a Legendrian
submanifold before and after surgery;

� Theorem 5.8, which provides a formula for the linearized Legendrian homology
of the so-called cocore (the meridian of the handle) Legendrian sphere after
surgery.

Section 7 is devoted to first examples and applications. It is worthwhile to point out
that already quite primitive computations yield interesting geometric applications. In
particular, we show that Legendrian surgery on Y Chekanov’s two famous Legendrian
.5; 2/–knots in S3 [10] give noncontactomorphic 3–manifolds and that attaching a
Lagrangian handle to the ball along stabilized trivial Legendrian knots produce examples
of exotic Weinstein symplectic structures on T �Sn (exotic structures on T �Sn were
first constructed by M McLean in [35] and also by M Maydanskiy and P Seidel in [34]).

In Section 8 we explain the relation between the Weinstein handlebody and the Lefschetz
fibration formalisms. In the Appendix, written by M Maydanskiy and S Ganatra,
this description is used to deduce P Seidel’s conjecture [42] from the results of the
current paper.
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1 Weinstein manifolds

Let .X; !/ be an exact symplectic manifold of dimension 2n. A primitive of ! , ie a
1–form � such that d�D ! , is called a Liouville form on X and the vector field Z

that is !–dual to �, ie such that the contraction iZ! satisfies iZ! D �, is called
the Liouville vector field. Note that the equation d�D ! is equivalent to LZ! D ! ,
where L denotes the Lie-derivative. Hence, if Z integrates to a flow ˆt

Z W X ! X

then .ˆt
Z /
�! D et! , ie the Liouville vector field Z is (symplectically) expanding,

while �Z is contracting. By a Liouville manifold we will mean a pair .X; �/, or
equivalently a triple .X; !;Z/ where Z is an expanding vector field for ! . Note that

(1-1) iZ�D 0; iZ d�D � and LZ�D �;

and hence the flow of Z expands also the Liouville form .ˆt
Z /
��D et�.

We say that a Liouville manifold .X; !;Z/ has a (positive) cylindrical end if there exists
a compact domain xX �X with a smooth boundary Y D @ xX transverse to Z , and such
that X n xX D

S1
tD0ˆ

t
Z .Y /. Then X n int xX is diffeomorphic to Œ0;1/�Y in such a

way that the Liouville vector field Z corresponds to @
@s

and the Liouville form �D iZ!

can be written as es˛ , where s 2 Œ0;1/ is the parameter of the flow and ˛ D �jY .
The form ˛ is contact, and thus .X n int xX ; !/ can be identified with the positive
half Œ0;1/�Y of the symplectization of the contact manifold .Y; � D ker˛/. In fact,
the whole symplectization of .Y; �/ sits in X as

S
t2Rˆ

t
Z .Y / and this embedding is

canonical in the sense that the image is independent of the choice of Y . Its complement
X n

S
t2Rˆ

t
Z .Y / is equal to

S
K

T
t>0ˆ

�t
Z
.K/, where the union is taken over all

compact subset K � X . It is called the core of the Liouville manifold .X; !;Z/
and is denoted by Core.X; !;Z/. The Liouville manifold .X; !;Z/ defines the
contact manifold .Y; �/ canonically. We will write .Y; �/ D @.X; !;Z/ and call it
the ideal contact boundary of the Liouville manifold .X; !;Z/ with cylindrical end.
Equivalently, we can view .Y; �/ as the contact boundary of the compact symplectic
manifold xX . We will refer to xX as a Liouville domain with contact boundary. Contact
manifolds which arise as ideal boundaries of Liouville symplectic manifolds with
cylindrical ends are called strongly symplectically fillable.
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Given a Liouville domain . xX ; �/ one can always complete it by attaching the cylindrical
end .Œ0;1/�Y; d.es˛//, Y D @ xX to get a Liouville manifold X . We will keep the
notation � and Z for the extended Liouville form and vector field. All Liouville
manifolds considered in this paper will be assumed to have cylindrical ends.

A map  W .X0; �0/! .X1; �1/ between Liouville manifolds is called exact symplectic
if  ��1��0 is exact.

Lemma 1.1 Given a symplectomorphism  W .X0; �0/! .X1; �1/ between Liouville
manifolds with cylindrical ends, there exists a symplectic isotopy �t W .X0; �0/ !

.X0; �0/, t 2 Œ0; 1�, �0 D id such that the symplectomorphism  ı �1 is exact,
and dist..x; s/; �1.x; s// � Ce�s for .x; s/ 2 E and any cylindrical metric on E D

Œ0;1/�Y .

Proof Let � WD  ��1 � �0 . The restriction of the closed 1–form � to the end
E D Œ0;1/ � Y can be written as ��x� C dH , where x� D � jY , � W E ! Y is the
projection and H W E!R is a smooth function. Take a cut-off function �W Œ0;1/!
Œ0; 1� which is equal to 1 near 0 and to 0 on Œ1;1/. Set z� WD ��x� C d.�.s/H / and
zH WD .1� �.s//H .

Let V be the symplectic vector field dual to the closed 1–form �z� with respect to d�0 .
Computing V on Œ1;1/ � Y we observe that V has the form e�s zV , where zV is
independent of s . Hence, V is integrable and integrates to an isotopy �t such that
dist..x; s/; �1.x; s// � Ce�s for any cylindrical metric on E . Computing the Lie
derivative LV �0 , we get LV �0 D�

z� C d.�0.V //. Hence

. ı�1/
��1 D �

�
1�0C�

�
1
z� C d zH ı�1 D �0C dG

for some smooth function G .

Remark 1.2 It is an open problem whether the isotopy in the above lemma can be
chosen in such a way that  ı�1 is Liouville at infinity, ie so that . ı�1/

��1��0DdH

for some function H with compact support.

Let .X; !;Z/ be a Liouville manifold with cylindrical end. It is called Weinstein1 (see
Eliashberg and Gromov [24]) if the vector field Z is gradient-like for an exhausting
(ie proper and bounded below) Morse function H W X !R.

Let us recall that Z is called gradient-like for a smooth Morse function H W X !R,
and H WX!R is called a Lyapunov function for Z if dH.Z/� ıjZj2 for some ı > 0,

1Weinstein manifolds are symplectic counterparts of Stein (or affine) complex manifolds; see
[24; 22; 13].
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where jZj is the norm with respect to some Riemannian metric on X . We will always
assume that H restricted to the end E D Œ0;1/�Y depends only on the coordinate s .
The corresponding compact Liouville domain xX will be called in this case a Weinstein
domain. Note that critical points of a Lyapunov Morse function for a Liouville vector
field Z have indices � nD 1

2
dim X , and that the stable manifold Lp of the vector

field Z for any critical point p of H is isotropic of dimension equal to the Morse index
of p . The intersection of these stable manifolds with regular levels H�1.c/ of the
function H are isotropic for the induced contact structure ker.�jH�1.c// on H�1.c/.

A Weinstein manifold is called subcritical if all critical points of H have index < n.
Symplectic topology of subcritical manifolds is not very interesting. According to a
theorem of K Cieliebak [11] any subcritical Weinstein manifold X of dimension 2n is
symplectomorphic to a product X 0�R2 , where X 0 is a Weinstein manifold of dimension
2n�2. A theorem from [24] states that any symplectic tangential homotopy equivalence
between two subcritical Weinstein manifolds is homotopic to a symplectomorphism.

A Liouville cobordism is a pair . SW ; �/, where SW is a compact manifold with bound-
ary @ SW partitioned into the union of two open-closed subsets, @ SW D @� SW t @C SW ,
and where � is a Liouville form such that the corresponding Liouville vector field Z

is transverse to @ SW , inward along @� SW and outward along @C SW . A Liouville
cobordism is called Weinstein if there exists a Morse function H W SW !R which is
constant on @� SW and on @C SW , which has no boundary critical points, and which is
Lyapunov for the corresponding Liouville vector field Z .

The completion of a Liouville cobordism SW is the manifold

W D .�1; 0�� @� SW [ SW [ Œ0;1/� @C SW

obtained by attaching to W along @� SW the negative part of the symplectization of the
contact manifold @� SW with contact form ˛�D �j@� SW , and attaching along @C SW the
positive part of the symplectization of the contact manifold @C SW with contact form
˛C D �j@C SW .

Important examples of Weinstein cobordisms are provided by domains H�1.Œc;C �/�X

in a Weinstein manifold .X; �;H / with all structures induced from X . Here c and C

are two regular values of the Lyapunov function H .

2 Moduli spaces of holomorphic curves

2.1 Preliminaries

In this section we will discuss the moduli spaces of holomorphic curves in a Liouville
manifold X , in the symplectization R� Y of its ideal contact boundary Y , and in
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completed symplectic cobordisms, which will be used in the algebraic constructions of
later sections. We will pretend that we are in a “transverse” situation, ie that all the
Fredholm operators involved are regular at their zeroes, that all evaluations maps are
transverse to the chosen targets, and in particular, that all moduli spaces have dimension
as predicted by the appropriate index formula. It is well known that this ideal situation
rarely can be achieved, and that one needs to work with objects more general than
holomorphic curves to be able to achieve the required transversality. However for the
purposes of this exposition we ignore this difficulty and claim that the correct version
can be built according to the scheme presented here using one of the, for this purpose,
currently developed technologies, notably, the polyfold theory of H Hofer, K Wysocki,
and E Zehnder [31; 32; 33].

Given a contact manifold Y with a fixed contact form ˛ , we say that an almost complex
structure J on the symplectization .R�Y; d.es˛// is adjusted to ˛ if it is independent
of the coordinate s on R, if it is compatible with d˛ on the contact hyperplanes ker˛
of the slices fsg � Y , and if J @

@s
D R˛ , where R˛ is the Reeb vector field of the

contact form ˛ .

Given a Liouville manifold .X; !;Z/ with a cylindrical end, we call an almost com-
plex structure J on X adjusted to the Liouville structure if it is compatible with !
everywhere, and if on the end E , which is identified with the positive part of the
symplectization of .Y; ker˛/, it is adjusted to ˛ in the above sense. Adjusted almost
complex structures on a completed Liouville cobordism are defined in a similar way.

Throughout this paper we will assume, for the sake of simplicity, that the first Chern
class of all symplectic manifolds considered is trivial, and moreover, that the canonical
bundle is trivialized. Note that at the cylindrical end the complex tangent bundle splits
as TX D �˚ "1 , where "1 is the trivial complex line bundle generated by the vector
field Z . We will assume that the trivialization of the canonical bundle at the end is
compatible with this splitting. Similarly, for each Lagrangian submanifold L � X

considered (eg the symplectization of a Legendrian manifold) we will assume that its
relative Maslov class vanishes. For Lagrangian L�X , the 1–dimensional determinant
of the cotangent bundle of L is a subbundle of the trivialized complex canonical bundle.
The triviality of the relative Maslov class first implies that this subbundle is trivial, and
hence it gives rise to an S1 DR=2�Z–valued function, and second allows us to lift
this function to a phase function �LW L!R which is unique up to additive constant.

Given a contact manifold .Y; �/ with a fixed contact form ˛ we will denote by P.Y /
the set of periodic orbits of the Reeb field R˛ , including multiples. We assume all
orbits to be nondegenerate. For 
 2P.Y /, let �.
 / denote its multiplicity. If 
 2P.Y /
then we write 
 for the simple geometric orbit underlying 
 . For each 
 2 P .Y / fix
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a point p
 2 
 and note that p
 determines a unique parameterization of 
 : use p

as starting point and then follow the flow of R˛ �.
 / times around 
 .

The chosen trivialization of the canonical bundle allows one to canonically assign an
integer Conley–Zehnder index CZ.
 / to any orbit 
 2 P.Y /. We will grade the orbits
by this index, j
 j WD CZ.
 /. The parity of CZ.
 /C n� 3 is called the parity of the
orbit 
 .2 The parity coincides with the sign of the determinant det.I �A
 /, where
A
 is the linearized Poincaré return map around the orbit 
 . An orbit 
 2 P.Y / is
called bad if it is an even multiple of another orbit x
 whose parity differs from the
parity of 
 . The set of bad orbits is denoted by Pbad.Y /. Nonbad orbits are called
good and the set of good orbits is denoted by Pgood.Y /.

Consider a Legendrian submanifold ƒ� Y . Assuming it is in general position with
respect to the Reeb flow of ˛ we have a discrete set C.ƒ/ of nondegenerate chords of the
Reeb foliation with ends on ƒ. One can assign (see Ekholm, Etnyre and Sullivan [18])
an integer grading jcj to each chord c 2 C.ƒ/. Note that with our assumptions this
grading can be defined as follows. Let x0;x1 be the beginning and the end points of the
chord c , respectively. The linearized Reeb flow along the chord allows us to transport
the tangent space Tx0

ƒ to all points of c . Let us denote by ˆc the transport operator
along the chord c . We can assume that for each chord c we have JTx1

ƒDˆcTx0
ƒ.

Indeed, this can be achieved by a homotopy of the almost complex structure J in a
neighborhood of the chords, while the defined grading depends only on the homotopy
class of J . Using the linearized Reeb flow we can also extend by continuity the phase
function �ƒ to c beginning from the point x0 . Let �� be the value of the extended
phase function at the top end x1 of the chord c . Then we define

jcj WD
�ƒ.x1/���

�
C

n� 3

2
:

See [18] for the details.

2.2 Holomorphic curves anchored in a Weinstein manifold

Let . xX ; !;Z/ be a Liouville domain and xX0 � int xX be a subdomain such that the
Liouville vector field Z is outward transverse to Y0 D @X0 . Then SW D xX n int xX0

is a Liouville cobordism with @� SW D Y0 and @C SW D Y D @ xX . Let W and X0 be
completions of SW and xX0 . Let xL be an exact Lagrangian submanifold .xL; @xL/ �
.W; @W / which intersect @W˙ along the Legendrian submanifolds ƒ˙ D xL\ @˙ SW ,

2It is customary in the contact homology theory to grade orbits by CZ.
 /C n� 3 . However, for the
linearized version of contact homology considered in this paper, and its relation with symplectic homology
the grading by CZ.
 / seems to be more natural.
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and which is tangent to Z along ƒ˙ . We complete xL to L by adding cylindrical
ends:

LD .�1; 0��ƒ�[ xL[ Œ0;1/�ƒC

� .�1; 0��Y0[
SW [ Œ0;1/�Y DW:

We will refer to L as an exact Lagrangian cobordism between the Legendrian subman-
ifolds ƒ� and ƒC , and to ƒ� and ƒC as the negative and positive ends of L.

Let † be a Riemann surface with conformal structure j. A set of punctures on † is a fi-
nite collection fz1; : : : ; zkg�† of distinct points. An asymptotic marker for an interior
puncture z of † is a half-line `� Tz†. The pair .z; `/ is called a decorated puncture.
Given a Riemann surface † with decorated punctures f.z1; `1/; : : : ; .zm; `m/g and
boundary punctures z0

1
; : : : ; z0m0 , the corresponding punctured decorated Riemann sur-

face is the Riemann surface † n fz1; : : : ; zm; z
0
1
; : : : ; z0m0g where the interior punctures

are equipped with the asymptotic markers `1; : : : ; `m . A map

f W † n fz1; : : : ; zm; z
0
1; : : : ; z

0
m0g !W

is holomorphic if df ı jD J ıdf . Holomorphic maps f of Riemann surfaces † with
nonempty boundary will be required to satisfy the Lagrangian boundary condition
f .@† n fz0

1
; : : : ; z0m0g/� L. We say that f is asymptotic to the orbit 
C 2 P.Y / of

period TC at the interior puncture zC decorated with the marker `C at C1 if

� f maps a pointed neighborhood UC of zC into Œ0;1/� Y , so that f .z/ D
.a.z/;u.z// for all z 2 UC ;

� limz!zC a.z/DC1;

� in holomorphic polar coordinates .�; �/ centered at zC such that �D0 along `C ,
lim�!0 u.�; �/D 
C

�
�

TC
2�
�
�

for the parametrization 
CW Œ0;TC�! Y of the
Reeb orbit 
C determined by p
C 2 
C

.

Similarly, we say that f is asymptotic to the orbit 
� 2 P.Y0/ of period T� at the
interior puncture z� decorated with the marker `� at �1 if

� f maps a pointed neighborhood U� of z� into .�1; 0��Y0 , so that f .z/D
.a.z/;u.z// for all z 2 U� ;

� limz!z� a.z/D�1;

� in holomorphic polar coordinates .�; �/ centered at z� such that �D0 along `� ,
lim�!0 u.�; �/ D 
�

�
T�
2�
�
�

for the parametrization 
�W Œ0;T��! Y0 of the
Reeb orbit 
� determined by p
� 2 
�

.
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We say that f is asymptotic to the chord cC 2 C.ƒ/ of length TC at the boundary
puncture z0C at C1 if
� f maps a pointed neighborhood UC of z0C into Œ0;1/� Y , so that f .z/ D
.a.z/;u.z// for all z 2 UC ;

� limz!z0
C

a.z/DC1;
� in holomorphic polar coordinates .�; �/, � 2 Œ��; 0� centered at z0C (where
� 2 f��; 0g along @†), lim�!0 u.�; �/D cC

�
�

TC
�
�
�
.

Similarly, we say that f is asymptotic to the chord c� 2 C.ƒ0/ of length T� at the
boundary puncture z0� at �1 if
� f maps a pointed neighborhood U� of z0� into Œ0;1/� Y , so that f .z/ D
.a.z/;u.z// for all z 2 U� ;

� limz!z0� a.z/D�1;
� in holomorphic polar coordinates .�; �/, � 2 Œ0; �� centered at z0� (where
� 2 f0; �g along @†), lim�!0 u.�; �/D c�

�
T�
�
�
�
.

Suppose now that there exists an exact Lagrangian cobordism L0 �X0 with positive
end ƒ� and empty negative end. We fix adjusted almost complex structures on W

and X0 which agree on the common part. Consider a punctured decorated Riemann
surface † with (possibly empty) boundary. A holomorphic map f W †!W anchored
in .X0;L0/, satisfying some specified conditions on the boundary (eg a Lagrangian
boundary condition) and at the punctures of † (eg being asymptotic to specified Reeb
orbit cylinders), consists of the following objects:

(i) a holomorphic map f W .† n fx1; : : : ;xlg; @† n fy1; : : : ;ymg/!W satisfying
the specified conditions on the boundary and at the punctures of †, which is
asymptotic to orbits ı1; : : : ; ıl 2 P.Y0/ at the additional interior, decorated
punctures x1; : : : ;xl at �1, and which is asymptotic to chords c0

1
; : : : ; c0m 2

C.ƒ�/ at the additional boundary punctures y1; : : : ;ym at �1;

(ii) holomorphic planes hj W C ! X0 asymptotic to the orbits ıj , j D 1; : : : ; l ,
at C1 (here the puncture is z D1 and the asymptotic marker is the positive
real axis);

(iii) holomorphic half-planes h0j W .D
2; @D2 n fxg/! .X0;L0/ asymptotic to the

chords c0j , j D 1; : : : ;m, at C1.

When there are no additional boundary punctures and no holomorphic half-planes, we
say that the holomorphic map f is anchored in X0 . See Figure 1.

At one occasion, we will also consider a slightly extended class of admissible anchors.
In addition to (ii) and (iii) above, we also allow
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ˇ

in W

in X0

in .W;L/

in .X0;L0/

c

b

Figure 1. On the left, a cylinder connecting 
 and ˇ anchored in X0 . On
the right, a strip connecting c to b anchored in .X0;L0/ .

(iv) holomorphic strips h00j W .D
2; @D2 n fx;yg/! .X0;L0/ asymptotic at C1 to

the chords c0j , c0i i; j D 1; : : : ;m, i ¤ j , provided that the punctures yi and yj

belong to different connected components of the holomorphic curve f .

When such anchors are present we say that the holomorphic curve f has generalized
anchors in .X0;L0/. We use disks with generalized anchors only in the definition
of the moduli space MY

ƒ;L.c1; c2I b/ in Section 2.5. In turn, this moduli space is
only needed at one point in Section 5.4 for the definition of the product on linearized
Legendrian homology.

Let f W †! W and zf W z†! W be two holomorphic maps anchored in .X0;L0/.
We say that f and zf are equivalent if † and z† have the same number of additional
internal and boundary punctures, and if there exist

� a biholomorphism 'W †! z† such that ' maps the punctures of † with their
asymptotic markers to the punctures of z† with their asymptotic markers, and
such that zf D f ı' ;

� biholomorphisms 'j W C ! C , j D 1; : : : ; l preserving the direction of the
positive real axis such that zhj D hj ı'j ;

� biholomorphisms '0j W D
2!D2 , j D 1; : : : ;m such that zh0j D h0j ı'

0
j .

The various moduli spaces of holomorphic curves considered in this paper will always
consist of equivalence classes of holomorphic maps.

When the positive asymptotics of a holomorphic curve is fixed then the total action
of the orbits and chords at the positive end bounds by Stokes’ formula the area of the
curve, and hence provides an a priori upper bound on the possible number of anchors.
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2.3 Moduli spaces MY .
Iˇ/ and MY .
Iˇ/

Let X be a Weinstein manifold with ideal contact boundary Y . Assume that X ,
R�Y , and the completion of any Weinstein cobordism in X are endowed with almost
complex structures adjusted to all considered symplectic objects, and that all these
almost complex structures agree in the common parts of the spaces considered.

We denote by MY .
; ˇ/ the moduli space of holomorphic cylinders in R�Y anchored
in X , asymptotic to orbits 
 at C1 and ˇ at �1. The dimension of MY .
 Iˇ/ is
equal to j
 j � jˇj and can be expressed as the sum of the dimensions of all the moduli
spaces of holomorphic curves involved in the anchored curve. In particular, when the
total dimension is equal to 1, all the moduli spaces of holomorphic planes in X which
are involved are necessarily 0–dimensional. The moduli space of punctured cylinders
in R�Y is then 1–dimensional, and hence consists of holomorphic curves which are
rigid up to translations. In what follows all holomorphic cylinders in R�Y will be
allowed to anchor in X , and we will not always explicitly mention this.

The asymptotic marker `C at C1 fixes a choice of parametrization for the S1 factor
of the domain R�S1 , where `C corresponds to 0 2 S1 DR=.2�Z/, for elements of
MY .
 Iˇ/. Evaluation at 0 2 S1 DR=.2�Z/ at �1 then defines an evaluation map
ev0WMY .
 Iˇ/! ˇ . Define

(2-1) }M0Y .
 Iˇ/D ev�1
0 .pˇ/:

Then }M0Y .
 Iˇ/ can be interpreted as the moduli space of holomorphic cylinders
such that the points pˇ and p
 are aligned along a single line R� ftg �R�S1 . In
particular, one may equivalently describe the space }M0Y .
 Iˇ/ by using a different
interpretation of (2-1) where the marker at �1 determines the parametrization of S1

and we use the preimage of p
 under the induced evaluation map ev0WMY .
 Iˇ/! 


instead.

Later we will use the moduli space }M0Y .
 Iˇ/ to describe parts of the differential in a
chain complex which computes symplectic homology in Morse–Bott terms following
Bourgeois and Oancea [9] (see also Frauenfelder [26] in the case of Morse theory). In
these terms elements of }M0Y .
 Iˇ/ correspond to degenerate “Morse–Bott” curves
with one holomorphic level only. There are similar contributions to the differential also
from Morse–Bott curves with two holomorphic levels connected by a Morse flow level.
We next define the moduli space }M00Y .
 Iˇ/ relevant for describing such objects.

Let 
; 
0; ˇ 2P.Y /. Let fC 2MY .
 I 
0/ and f� 2MY .
0Iˇ/. Then, as discussed
above, the markers `C at C1 in the domain of fC and `� at �1 in the domain of f�
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give evaluation maps evC
0
WMY .
 I 
0/! 
0 and ev�

0
WMY .
0Iˇ/! 
0 , respectively.

Let
�.
; 
0; ˇ/D .MY .
 I 
0/=R/�MY .
0Iˇ/

and define }M00Y .
 Iˇ/ as the subset of pairs .fC; f�/ 2�.
; 
0; ˇ/ for some 
0 2

P.Y /, such that the points p
0
, evC

0
.fC/, and ev�

0
.f�/ lie in the cyclic ordering�

p
0
; evC

0
.fC/ ; ev�0 .f�/

�
on 
0 with orientation induced by the Reeb field R˛ .

Finally, we define the moduli space}MY .
 Iˇ/D }M0Y .
 Iˇ/[ }M00Y .
 Iˇ/:

We have dim }MY .
 Iˇ/D j
 j � jˇj � 1: See Figure 2.

Figure 2. From left to right, cylinders in M , in M0 and in M00

2.4 Moduli spaces MX .
/ and MX .
I p/

Let H W X !R be any exhausting Morse function which in the end depends only on
the coordinate s , and let zZ be a vector field which is gradient-like with respect to it
and which at infinity coincides with @

@s
. If X is Weinstein, we will assume that zZ is

the Liouville vector field Z and that the function H is the Lyapunov function for Z ,
which is part of the Weinstein structure. Let Lp be the zZ–stable manifold for a critical
point p 2X . We have codim Lp D 2n� index p .

Consider the moduli space MX .
 / of holomorphic maps C!X with a marked point
at 02C , which are asymptotic to an orbit 
 2P.Y / at C1. We have dimMX .
 /D

j
 j C n � 1 (taking into account the quotient by reparametrizations preserving 0).
Consider the evaluation map at 0 2C , ev0WMX .
 /!X . Define the moduli space

MX .
 Ip/ WD ev�1
0 .Lp/�MX .
 /
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(see Figure 3). We have

dimMX .
 Ip/D j
 jC n� 1C index p� 2nD j
 j � jpj � 1;

where we let jpj WD n� index p . Thus jpj is the Morse index of p as a critical point
of the function �H , decreased by n. In particular, the space MX .
 Ip/ consists of
curves that are rigid up to reparametrization if and only if j
 j � jpj D 1.




p rH

Figure 3. A curve in MX .
;p/

2.5 Moduli spaces MY
ƒ
.cIb1;:: :;bm/, MY

ƒ;L
.cIb/ and MY

ƒ;L.c1;c2Ib/

Consider a Legendrian submanifold ƒ� Y . Let D denote the unit disk in the complex
plane. A holomorphic tree in .R�Y;R�ƒ/, connecting a chord c 2 C.ƒ/ and chords
b1; : : : ; bm 2 C.ƒ/, m� 0, anchored into X is a holomorphic map

f W
�
D; @D n fzC; z1; : : : ; zmg

�
! .R�Y;R�ƒ/;

anchored in X , where zC; z1; : : : ; zm , m� 0, are boundary punctures ordered counter-
clockwise, such that at zC the map is asymptotic to the chord c at C1, and at
the punctures z1; : : : ; zm the map is asymptotic to the chords b1; : : : ; bm at �1.
The moduli space of holomorphic trees in .R� Y;R�ƒ/, connecting a chord c 2

C.ƒ/ and chords b1; : : : ; bm 2 C.ƒ/, m � 0, anchored in X , will be denoted by
MY

ƒ
.cI b1; : : : ; bm/. We have

dimMY
ƒ.cI b1; : : : ; bm/D jcj �

mX
jD1

jbj j:

We will also consider the moduli spaces MY
ƒ
.cI b1; : : : ; bmI k/, k D 0; 1; : : : , of holo-

morphic trees in .R�Y;R�ƒ/, connecting a chord c 2 C.ƒ/ to chords b1; : : : ; bm 2

C.ƒ/, m� 0, anchored in X , and with k additional marked points on the boundary,
intertwined in an arbitrary way with the punctures zj . Hence, the moduli space
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MY
ƒ
.cI b1; : : : ; bmI k/ can be further specialized as

MY
ƒ.cI b1; : : : ; bmI k/D

a
P

kjDk

MY
ƒ.cI b1; : : : ; bmI k0; : : : ; km/;(2-2)

where MY
ƒ
.cI b1; : : : ; bmI k0; : : : ; km/ consists of the trees with exactly k0 marked

points preceding b1 and exactly kj marked points following bj , j D 1; : : : ;m. Note
that in this notation MY

ƒ
.cI b1; : : : ; bmI 0/ DMY

ƒ
.cI b1; : : : ; bm/. Evaluation at the

marked points give evaluation maps

evk WMY
ƒ.cI b1; : : : ; bmI k/!ƒ� � � � �ƒ„ ƒ‚ …

k

:

Suppose now that there exists an exact Lagrangian cobordism L�X with positive end
ƒ� Y . Then we can consider the moduli space MY

ƒ;L
.cI b/ of holomorphic strips in

.R�Y;R�ƒ/ anchored in .X;L/, with positive puncture at c and negative puncture
at b ; see Section 2.2 for the definition of holomorphic curves anchored in .X;L/. We
have

dimMY
ƒ;L.cI b/D jcj � jbj:

We also define the moduli spaces MY
ƒ;L.c1; c2I b/ in the case when ƒ is a union of

spheres. This moduli space is itself the union of two moduli spaces:

MY
ƒ;L.c1; c2I b/D

0MY
ƒ;L.c1; c2I b/[

00MY
ƒ;L.c1; c2I b/:

Here 0MY
ƒ;L.c1; c2I b/ is the moduli space of holomorphic disks in .R�Y;R�ƒ/ with

generalized anchors in .X;L/ (see Section 2.2), which have three boundary punctures:
two positive punctures mapped to the chords c1 and c2 , and one negative puncture
mapped to b . Our notation is such that the cyclic order or of the punctures induced by
the boundary orientation is .b; c1; c2/.

To define 00MY
ƒ;L.c1; c2I b/, we fix an auxiliary Morse function zgW ƒ!R, with one

minimum, one maximum, and no other critical points on each component. Define the
function gW R�ƒ! R as g D zgC s , s 2 R. We also consider a Morse function
L!R, also denoted by g , which at infinity coincides with zgC s . Define

(2-3) 00MY
ƒ;L.c1; c2I b/ WDMY

ƒ.c1I b/�g MY
ƒ.c2/[MY

ƒ.c1/�g MY
ƒ.c2I b/;

where an element in MY
ƒ
.c1I b/�g MY

ƒ
.c2/ consists of a pair of holomorphic disks

.u; v/ 2MY
ƒ
.c1I b/ �MY

ƒ
.c2/ and a flow line of rg which connects the boundary

of u to the boundary of v , and where elements in MY
ƒ
.c1/�gMY

ƒ
.c2I b/ are analogous
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configurations where the negative puncture is in the second disk instead.3 We have

dimMY
ƒ;L.c1; c2I b/D jc1jC jc2j � jbj � .n� 3/:

2.6 Moduli spaces MY
ƒ
.
I b1; : : : ;bm/, MY

ƒ
.
I b1; : : : ;bm/ and

MY
ƒ
.
I b1; : : : ;bm/

We denote by MY
ƒ
.
 I b1; : : : ; bm/ the moduli space of holomorphic maps

f W .D n f0g; @D n fz1; : : : ; zmg/! .R�Y;R�ƒ/

anchored in X , where z1; : : : ; zm 2 @D are boundary punctures ordered counter-
clockwise, which are asymptotic to the orbit 
 2 Pgood.Y / at the decorated puncture 0

at C1, and to chords b1; : : : ; bm 2 C.ƒ/ at punctures z1; : : : ; zm at �1. When
mD 0, the moduli space MY

ƒ
.
 I¿/ will simply be denoted by MY

ƒ
.
 /.

The interior puncture 0 and one boundary puncture, which we take to be z1 , determines
a coordinate system on D and gives, in particular, an identification @D D S1 D

R=.2�Z/ where we think of S1 as the polar coordinate circle at 0 and where z1

corresponds to 0 2R. The asymptotic marker `C at 0 then induces an evaluation map

ev0WMY
ƒ.
 I b1; : : : ; bm/! @D D S1;

which associates to a map u the coordinate of `C in the polar S1 . Define}M0Y
ƒ .
 I b1; : : : ; bm/ WD ev�1

0 .z1/D ev�1
0 .0/;�MY

ƒ.
 I b1; : : : ; bm/ WD ev�1 ..z1; z2// ;

where .z1; z2/ denotes the open arc in the boundary @D which starts at z1 and ends
at z2 . Thus }M0Y

ƒ
.
 I b1; : : : ; bm/ (respectively �MY

ƒ
.
 I b1; : : : ; bm/) is a subspace of

the moduli space MY
ƒ
.
 I b1; : : : ; bm/ which is distinguished by the condition that the

ray of asymptotic marker mapped to p
 intersects @D at the point z1 (respectively at
a point of the open arc .z1; z2/). See Figure 4.

Note that the moduli spaces MY
ƒ
.
 I b1; : : : ; bm/ and MY

ƒ
.
 I b0

1
; : : : ; b0m/ coincide if

the chords b1; : : : ; bm and b0
1
; : : : ; b0m differ by a cyclic permutation. We can, therefore,

limit ourselves to the study of the above moduli spaces with the specific boundary
puncture z1 and boundary arc .z1; z2/. Note also that }MY

ƒ
.
 I b1; : : : ; bm/ could be

defined by instead using the asymptotic direction `C at 0 to define a coordinate system
on D and then letting z1 induce an evaluation map ev1WMY

ƒ
.
 I b1; : : : ; bm/! S1

which maps f to the coordinate of the puncture z1 and taking the preimage of 0

under ev1 .

3Let us point out that the gradient flow line may lie in L and connect points on two anchor disks.
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`C z1

`C

z1

z2

Figure 4. A curve in MY
ƒ.
 I b1; b2/ . Lower line shows positions for markers

in the source for MY
ƒ
.
 I b1; b2/ , }MY

ƒ
.
 I b1; b2/ and �MY

ƒ
.
 I b1; b2/

As in the definition of the moduli spaces of Morse–Bott curves with two holomorphic
levels described in Section 2.3 we let

�.
; 
0; b1 � � � bm/DMY .
 I 
0/=R�MY
ƒ.
0I b1; : : : ; bm/:

If .fC; f�/2�.
; 
0; b1 � � � bm/ then the asymptotic marker `C at the positive puncture
of fC determines an evaluation map evC

0
WMY .
 I 
0/=R! 
0 and after composition

with f� , the evaluation map ev1 on MY
ƒ
.
 I b1; : : : ; bm/ discussed above gives an

evaluation map ev�
1
WMY

ƒ
.
0I b1; : : : ; bm/! 
0 .

Let }M00Y
ƒ
.
 I b1; : : : ; bm/ be the moduli space of pairs .fC; f / 2�.
; 
0; b1 � � � bm/,

for some 
0 2 P , such that the points p
0
, evC

0
.fC/, and ev�

1
.f�/ lie in the cyclic

ordering �
p
0

; evC
0
.fC/ ; ev�1 .f�/

�
on 
0 with orientation induced by the Reeb field R˛ .

Finally, we define the moduli space

}MY
ƒ.
 I b1; : : : ; bm/D }M0Y

ƒ .
 I b1; : : : ; bm/[ }M00Y
ƒ .
 I b1; : : : ; bm/:
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We have

dimMY
ƒ.
 I b1; : : : ; bm/D dim �MY

ƒ.
 I b1; : : : ; bm/D j
 j �

mX
jD1

jbj j;

dim }MY
ƒ.
 I b1; : : : ; bm/D j
 j �

mX
jD1

jbj j � 1:

2.7 Moduli spaces MW .
Iˇ/ and MW .
Iˇ/

Let X;X0 and W be as in Section 2.2. We fix adjusted almost complex structures
on W and X0 which agree on the common part.

Given two orbits 
 2 P.Y / and ˇ 2 P.Y0/ we define, similarly to above, the moduli
space MW .
 Iˇ/ of holomorphic cylinders in W , anchored in X0 , connecting 

at C1 with ˇ at �1. We next define moduli spaces of Morse–Bott curves (in
complete analogy with the corresponding definitions in Section 2.3) as follows:

The marker at C1 fixes a parametrization for the S1 –factor in the domain R�S1

of elements in MW .
 Iˇ/ which gives an evaluation map ev0WMW .
 Iˇ/! ˇ and
we let }M0W .
 Iˇ/D ev�1.pˇ/:

Further, the markers at C1 and �1 of elements in MW .
 I 
0/ and MY0.
0Iˇ/,
respectively, give evaluation maps

ev0WMW .
 I 
0/! 
0 and ev�0 WM
Y0.
0Iˇ/! 
0:

We let }M00W .
 Iˇ/ denote the set of pairs .f; f�/ 2MW .
; 
0/�MY0.
0; ˇ/=R
for some 
0 2 P.Y0/, such that ev0.f /, ev�

0
.f�/ and p
0

, lie in the cyclic order�
p
0

; ev0.f / ; ev�
0
.f�/

�
on 
0 .

Similarly, we use markers at C1 and �1 of elements in MY .
 I 
0/ and MW .
0Iˇ/

to define evaluation maps

evC
0
WMY .
; 
0/! 
0 and ev0WMW .
0; ˇ/! 
0:

We then let }M000W .
 Iˇ/ consist of pairs .fC; f / 2MY .
 I 
0/=R �MW .
0; ˇ/

for some 
0 2 P.Y /, such that evC
0
.fC/, ev0.f / and p
0

lie in the cyclic order�
p
0

; evC
0
.fC/ ; ev0.f /

�
on 
0 .

Finally, we define the moduli space}MW .
 Iˇ/D }M0W .
 Iˇ/[ }M00W .
 Iˇ/[ }M000W .
 Iˇ/:

We have dim.MW .
 Iˇ//D j
 j � jˇj and dim. }MW .
 Iˇ//D j
 j � jˇj � 1.
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2.8 Moduli spaces MW
L .cIb1; : : : ;bm/, MW

L .cIp/, and MW
L .c1;c2Ip/

Let L�W be an exact Lagrangian cobordism between the Legendrian submanifolds
ƒ� � Y0 and ƒC � Y . Given a chord c 2 C.ƒC/ and chords b1; : : : ; bm 2 C.ƒ�/
we denote by

MW
L .cI b1; : : : ; bm/

the moduli space of holomorphic maps

f W .D; @D n fzC; z1; : : : ; zmg/! .W;L/;

anchored in X0 , where zC; z1; : : : ; zm , m�0, are boundary punctures ordered counter-
clockwise, such that at zC the map is asymptotic to the chord c at C1, and at the
punctures z1; : : : ; zm the map is asymptotic to the chords b1; : : : ; bm at �1. We have

dimMW
L .cI b1; : : : ; bm/D jcj �

mX
jD1

jbj j:

Suppose that ƒ�D¿ and assume that the restriction H jL is a Morse function without
local maxima. Given a chord c 2 C.ƒC/, let MW

L .c/ denote the moduli space of
holomorphic disks f W .D; @D n fzg/! .W;L/ anchored in X0 , which are asymptotic
to the chord c at the puncture z . Let evWMW

L .c/!L be the evaluation map at the
point �z 2 @D opposite to the marked point z . We will assume that ev is transverse
to the stable manifolds Vp of all critical points p of the function H jL and, given a
critical point p 2L of the function H jL , we let

MW
L .c;p/ WD ev�1.Vp/:

We have

(2-4) dim.MW
L .c;p//D jcjC 1� nC index.p/;

where index.p/ is the index of the critical point p of the function H jL . In particular,
when index.p/D 0 then dim.MW

L .c;p//D jcj � nC 1.

Next, we define the moduli space MW
L .c1; c2/ as the union 0MW

L .c1; c2/[
00MW

L .c1; c2/,
where 0MW

L .c1; c2/ denotes the moduli space of holomorphic disks

f W .D; @D n fz1; z2g/! .W;L/

anchored in X0 , which are asymptotic at C1 to the chords c1 and c2 at the punc-
tures z1 and z2 , respectively. Let evW 0MW

L .c1; c2/!L be the evaluation map at point
z 2 @D midway between z1 and z2 (or midway between z2 and z1 ). Under similar
transversality conditions as above, we let

0MW
L .c1; c2Ip/ WD ev�1.Vp/:
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To define 00MW
L .c1; c2/ we fix, similarly to the way it was done in Section 2.5, an

auxiliary Morse function zgW ƒ!R with one minimum and one maximum and define
the function gW L!R which at the cylindrical end Œ0;1/�ƒ of L coincides with
zgC s , s 2R. Define

(2-5) 00MY
ƒ;L.c1; c2Ip/ WDMY

ƒ.c1Ip/�g MY
ƒ.c2/[MY

ƒ.c1/�g MY
ƒ.c2Ip/;

where an element in MY
ƒ
.c1Ip/�g MY

ƒ
.c2/ consists of a pair of holomorphic disks

.u; v/2MY
ƒ
.c1Ip/�MY

ƒ
.c2/ and a flow line of rg which connects the boundary of u

to the boundary of v , and where elements in MY
ƒ
.c1/�g MY

ƒ
.c2Ip/ are analogous

configurations where the negative puncture is in the second disk instead. We have

(2-6) dim.MW
L .c1; c2Ip//D jc1jC jc2j � .2n� 4/C index.p/:

2.9 Moduli spaces MW
L .
I b1; : : : ;bm/, MW

L .
I b1; : : : ;bm/ and
MW

L .
I b1; : : : ;bm/

Suppose now that W is a Weinstein cobordism, p1; : : : ;pk 2 int SW are critical points
of index n of the Lyapunov function H for the Liouville vector field Z , and that there
are no other critical points of H in W . We assume general position, so that there
are no Z–trajectory connections between critical points p1; : : : ;pk . Let L1; : : : ;Lk

be Lagrangian stable manifolds of the critical points p1; : : : ;pk , and ƒj DLj \Y0 ,
j D 1; : : : ; k be the corresponding Legendrian spheres. We write ƒ WD

Sk
jD1ƒj and

L WD
Sk

jD1Lj . Note that L is an exact Lagrangian cobordism between ƒ� Dƒ and
ƒC D¿.

Given an orbit 
 2 P.Y / and chords b1; : : : ; bm 2 C.ƒ/ we define the moduli space
MW

L .
 I b1; : : : ; bm/ consisting of holomorphic maps

f W .D n f0g; @D n fz1; : : : ; zmg/! .W;L/

anchored in X0 , where z1; : : : ; zm 2 @D are boundary punctures, which are asymptotic
to the orbit 
 at the decorated puncture 0 at C1, and to chords b1; : : : ; bm at punctures
z1; : : : ; zm at �1. Similarly to the construction in Section 2.6, using z1 and 0 to fix
coordinates on D , the location of the asymptotic marker at 0 induces an evaluation map

ev0WMW
L .
 I b1; : : : ; bm/! @D D S1:

Define }M0W
L .
 I b1; : : : ; bm/ WD ev�1

0 .z1/D ev�1
0 .0/;�MW

L .
 I b1; : : : ; bm/ WD ev�1
0 ..z1; z2//:

Thus }M0W
L .
 I b1; : : : ; bm/ (respectively �MW

L .
 I b1; : : : ; bm/) is a subspace of the
moduli space MW

L .
 I b1; : : : ; bm/ which is distinguished by the condition that the ray
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of the asymptotic marker intersects @D at z1 (respectively at a point of the open arc
.z1; z2/). Since the chords b1; : : : ; bm are listed up to a cyclic permutation, we again
restrict ourselves to the boundary puncture z1 and the boundary arc .z1; z2/.

The asymptotic marker at C1 of an element in MY .
 I 
0/ gives an evaluation map
evC

0
WMY .
; 
0/! 
0 . Using the evaluation map ev1WMW

L .
0I b1; : : : ; bm/! 
0

discussed above, we define the moduli space }M00W
L .
 I b1; : : : ; bm/ as the set of pairs

.fC; f / 2MY .
 I 
0/=R�MW
L .
0I b1; : : : ; bm/, for some 
0 2 P.Y /, such that the

points p
0
, evC

0
.fC/, and ev1.f / lie in the cyclic order

�
p
0

; evC
0
.fC/ ; ev1.f /

�
on 
0 .

Finally, we define the moduli space}MW
L .
 I b1; : : : ; bm/D }M0W

L .
 I b1; : : : ; bm/[ }M00W
L .
 I b1; : : : ; bm/:

We have

dim.MW
L .
 I b1; : : : ; bm//D dim. �MW

L .
 I b1; : : : ; bm//D j
 j �

mX
jD1

jbj j;

dim. }MW
L .
 I b1; : : : ; bm//D j
 j �

mX
jD1

jbj j � 1:

2.10 Moduli spaces MW
Lj
.
/ and MW .
I p/

We use notation as in Section 2.9. Take 
 2 P.Y /. Then MW
Lj
.
 / is the moduli

space of holomorphic maps f W .D n f0g; @D/! .W;Lj / anchored in X0 , which are
asymptotic at 0 to the orbit 
 at C1.

Next, for 
 2 P.Y / we define the moduli space MW .
 /, consisting of holomorphic
planes in the split manifold W [X0 , ie holomorphic maps f W C!W anchored in X0

which are asymptotic to 
 at C1. Let MW
1
.
 / be the moduli space of the same

objects with an additional marked point at 0 2C . The evaluation map at this marked
point is a map ev0WMW

1
.
 /! W [X0 . Given a critical point p of the function

H W X0!R we will denote

MW .
 Ip/D ev�1
0 .Lp/;

where Lp is zZ–stable manifold of the critical point p .

2.11 Moduli spaces MW
.L;C /.cI b1; : : : ;bm/

As in Section 2.9 let W be Weinstein, p1; : : : ;pk 2 int SW be the critical points of
index n of the Lyapunov function H for the Liouville vector field Z in general
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position. Let L1; : : : ;Lk denote the Lagrangian stable manifolds of the critical points
p1; : : : ;pk , let ƒj D Lj \ Y0 , j D 1; : : : ; k denote the corresponding Legendrian
spheres, and write ƒ WD

Sk
jD1ƒj , L WD

Sk
jD1 Lj . We also consider the Lagrangian

unstable manifolds C1; : : : ;Ck of the critical points p1; : : : ;pk . Let �j D Cj \ Y ,
j D 1; : : : ; k denote the corresponding Legendrian spheres. Write � WD

Sk
jD1�j and

C WD
Sk

jD1Cj . Note that Ci \Lj is empty if i ¤ j and consists of one transverse
intersection point pi if i D j . For c 2 C.�/ and b1; : : : ; bm 2 C.ƒ/ let us denote by
MW

.L;C /.cI b1; : : : ; bm/ the moduli space of holomorphic maps

f W .D; @D n fz; zC; z1; : : : ; zm; z�g/! .W;C [L/;

anchored in X0 , which are asymptotic to the Reeb chord c at the puncture z at C1,
asymptotic to b1; : : : ; bm at the punctures z1; : : : ; zm at �1, and which maps z˙ to
intersection points in L\C . Here we have

dim.MW
.L;C /.cI b1; : : : ; bm//D jcj �

mX
jD1

jbj j � .n� 2/

(see Figure 5).

c

C C

L

b1 b2 b3

Figure 5. A disk in MW
.L;C /.cI b1; b2; b3/

Remark 2.1 Recall that the grading of a Reeb chord connecting a connected La-
grangian submanifold to itself was defined using a phase function, defined only up to
additive constant. In order to extend the definition to Lagrangian submanifolds with
many components we need to relate the phase functions of distinct components. To this
end, we order the components, pick paths connecting each component to its successor in
this order, and choose phase functions on the components which agree at the endpoints
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of the paths. Note that for any holomorphic disk with boundary on a Lagrangian
submanifold, punctures mapping to Reeb chords/intersection points between distinct
components appear in pairs and hence dimension formulas are insensitive to the choice
of paths.

3 Invariants of symplectic manifolds

Let . xX ; �/ be a Liouville domain with contact boundary Y and X its completion. We
will consider below three homology theories for the Liouville manifold X : linearized
contact homology C H , reduced symplectic homology SHC , and full symplectic
homology SH . We use the bold face font letter H for homology, for example C H.X /
denotes the linearized contact homology of X . For each of the theories, we will
also consider the underlying chain complex which we will denote in the same way
but using instead the usual H , for example CH.X / denotes the chain complex for
linearized contact homology. The homologies C H.X /, SHC.X /, and SH.X / are
invariant under symplectomorphisms of X . In the setting introduced below, invariance
under symplectomorphism can be established using Lemma 1.1 and the cobordism
maps introduced in Section 3.4 in combination with chain homotopies induced by
deformations (which will not be discussed in this paper).

We fix a field K of characteristic 0. All complexes and homology theories below are
considered over K. Given a set A we denote the vector space over K generated by the
elements of A by KhAi .

Choose adjusted almost complex structures on X and the symplectization Y � R.
As we already stated above, in this exposition we ignore all transversality problems
and assume that regularity is satisfied for all involved moduli spaces. As is also
well known, algebraic constructions over K require a choice of coherent orientation.
For holomorphic curves in .X;L/ (ie with Lagrangian boundary condition on the
Lagrangian submanifold L in the symplectic manifold X ) the existence of a system
of coherent orientations requires the existence of a relative spin structure on .X;L/
and the system of coherent orientations depends on the choice of relative spin structure.
In what follows the Lagrangian submanifolds we consider come with distinguished
spin structures; see Remark 4.2 and Remark 4.12 for details. These spin structures
induce a system of coherent orientations which then allows one to assign a sign to each
0–dimensional component of the moduli spaces

MX .
 /; MX .
 Ip/; MW .
 Iˇ/; MW
L .
 I b1; : : : ; bm/; }MW

L .
 I b1; : : : ; bm/;�MW
L .
 I b1; : : : ; bm/; MW

Lj
.
 / and MW .
 Ip/;
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as well as to each 1–dimensional component of the moduli spaces

MY
ƒ.
 I b1; : : : ; bm/; MY .
 Iˇ/; }MY

ƒ.
 I b1; : : : ; bm/ and �MY
ƒ.
 I b1; : : : ; bm/;

which were described in Section 2.

Remark 3.1 A standard argument from SFT [23] shows that when 
 is fixed the
union of all the above 0–dimensional moduli spaces in X and quotient by the R–
action 1–dimensional moduli spaces in the symplectization of Y with any possible
asymptotic at �1, are compact. Indeed, Stokes’ theorem provides an upper boundR

 � of the nonnegative energy

R
C d� for any such holomorphic curve C , end hence

compactness is guaranteed by a version of Gromov compactness theorem proven by
Bourgeois et al [8]. As a corollary of this observation we note that all the sums which
we use below to define the differential in various complexes and chain maps between
them are finite.

3.1 Linearized contact homology

The linearized contact homology complex CH.X /4 is the vector space KhPgood.Y /i

with the differential defined by

(3-1) dCH 
 D
X

jˇjDj
 j�1

n
ˇ

�.ˇ/
ˇ;

where the coefficient n
ˇ counts the algebraic number of 1–dimensional components
of the moduli space MY .
 Iˇ/ (see Section 2.3) and �.ˇ/ is the multiplicity of the
orbit ˇ .

Remark 3.2 (on the coefficient n
ˇ ) The count of components in the moduli space
MY .
 Iˇ/ is a count of curves anchored in X and hence a count of broken curves.
Explicitly, the contribution to n
ˇ from a 1–dimensional moduli space of spheres in
Y �R with positive puncture at 
 , kj negative punctures at ǰ , j D 1; : : : ;m, and a
distinguished negative puncture at ˇ , with anchoring curves in 0–dimensional moduli
spaces of planes with positive punctures at ǰ , j D 1; : : : ;m is

(3-2) nC
1

k1! � � � km!

�
n�

1

�.ˇ1/

�k1

� � �

�
n�m
�.ˇm/

�km

;

where nC is the algebraic number of components in the moduli space of spheres in
Y �R, n�j is the algebraic number of elements in the moduli space of planes in X

4Traditionally it is called the linearized contact homology of Y , but we want to stress its dependence
on the symplectic filling X .
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with positive puncture at ǰ , j D 1; : : : ;m, and where, as usual, �.
 / denotes the
multiplicity of the Reeb orbit 
 .

Proposition 3.3 We have d2
CH
D 0: The homology

C H.X /DH�.CH.X /; dCH /

is independent of all choices and is an invariant of X up to symplectomorphism.

The homology H�.CH.X /; dCH / is denoted by C H.X / and called the linearized
contact homology of X (or of Y ).

Remark 3.4 (on multiplicities) One could alternatively define the differential on
CH by the formula

(3-3) dCH 
 D
X

jˇjDj
 j�1

n
ˇ

�.
 /
ˇ;

instead of the differential dCH given by (3-1). Clearly the complexes .CH.X /; dCH /

and .CH.X /; dCH / are isomorphic via the change of variables 
 7! �.
 /
 .

Remark 3.5 (linearizations) It is well known that for a general (not necessarily sym-
plectically fillable) contact manifold, contact homology is defined only via a differential
graded algebra, rather than a complex generated by orbits. The linearization scheme
used in the above definition is a special case of a more formal linearization procedure
associated with an augmentation, ie a graded homomorphism of the differential algebra
to the ground ring endowed with the trivial differential. The collection of linearized
homologies obtained using all augmentations is a contact invariant.

This procedure was first used by Y Chekanov in [10] in the context of Legendrian
homology algebras of knots in R3 (see Section 4.1 below). The results of this paper
admit a straightforward generalization to this more formal setup.

3.2 Reduced symplectic homology

We define the reduced symplectic homology complex as

SHC.X /DzCH .X /˚bCH .X /;

where
zCH .X /DKhP.Y /i;
bCH .X /DKhP.Y /iŒ1�;
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ie as a vector space bCH .X / coincides with the complex zCH .X / with grading shifted
up by 1. The differential dSHC on SHC.X / is given by the block matrix

(3-4) dSHC D

�
d }CH

dM

ıSHC d �CH

�
:

Here ıSHC W
zCH !bCH is defined by

(3-5) ıSHC {
 D
X

jˇjDj
 j�2

m
ˇ
y̌;

where the coefficient m
ˇ is the algebraic number of 1–dimensional components of
the moduli space }MY .
 Iˇ/; see Section 2.3.

The differential d }CH
{
 is given by the formula (3-1), where 
 and ˇ are replaced by {


and {̌, respectively, and where the summation is over all orbits. The differential d �CH y


is given by the formula (3-3), where 
 and ˇ are replaced by y
 and y̌, respectively, and
where the summation again is over all orbits. The differential dMW bCH .X /!zCH .X /

vanishes on good orbits and dMy
 D˙2{
 if 
 is bad.

Remark 3.6 (on good and bad orbits in symplectic homology) Let us stress the point
that the complex SHC.X / is generated by all orbits from P.Y / and not only by the
good orbits as in the case of the contact homology complex CH.X /. We note that
KhPbad.Y /i � Ker.d }CH

/ and Im.d �CH /�KhPgood.Y /iŒ1�.

Proposition 3.7 We have d2
SHC D 0. The homology

SHC.X /DH�.SHC.X /; dSHC/

is independent of all choices and is an invariant of X up to symplectomorphism.

Note that the homomorphisms d }CH
, d �CH and ıSHC decrease the filtration which

assigns filtration degree j
 j to the elements in zCH .X / and bCH .X / which correspond
to 
 , while dM preserves it. Hence, the term E1 of the corresponding spectral
sequence, together with Proposition 3.7 yield the following exact triangle relating
C H.X / and SHC.X /:

(3-6)

C H.X /
zıSHC // C H.X /:

xx
SHC.X /

ff
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Note that the homomorphism zıSHC differs from the one induced on homology by ıSHC

because of the contribution from bad orbits.

Remark 3.8 F Bourgeois and A Oancea proved in [9] that SHC.X / is isomorphic to
the reduced symplectic homology of A Floer and H Hofer [25] (see also Viterbo [45])
and established the exact triangle (3-6).

3.3 Full symplectic homology

Let H W X !R be an exhausting (ie proper and bounded below) Morse function which
at infinity has no critical points and depends only on the parameter s of the symplecti-
zation. In the case when X is Weinstein we always choose as H the corresponding
Lyapunov function. Pick a gradient like vector field zZ on X which coincides with @

@s

at infinity. In the Weinstein case we assume that Z is the Liouville vector field.

The full symplectic homology complex is defined as

SH.X /D SHC.X /˚Morse.�H /Œ�n�;

where Morse.�H /Œ�n� is the Morse homology complex of the function �H . The
grading is given by Morse indices of the function �H shifted down by �n. Equivalently,
we can replace Morse.�H /Œ�n� by the Morse cohomology complex of the function H

with the grading by n� indexMorse . Note that the top index of this complex is � n,
while the minimal index in the Weinstein case is equal to 0.

The differential dSH is given by the block matrix

(3-7) dSH D

�
dSHC 0

ıSH dMorse

�
;

where the homomorphism ıSH W SHC D zCH .X /˚bCH .X /!Morse.�H /Œ�n� is
equal to 0 on bCH .X / and equal to

(3-8) ıSH {
 D
X

j
 j�jpjD1

l
p p;

where l
p is the algebraic number of 0–dimensional components of the moduli
space MX .
 Ip/ (see Section 2.4) on zCH .X /. We note that ıSH vanishes on
KhPbad.Y /i �zCH .X /.

Proposition 3.9 We have d2
SH
D 0: The homology

SH.X /DH�.SH.X /; dSH /
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is independent of all choices, is a symplectic invariant of X and coincides with the
Floer–Hofer symplectic homology.

Proposition 3.9 implies the existence of the following exact homology triangle:

(3-9)

H n��.X / // SH�.X /

xx
SHC� .X /

ıSH

ff

This triangle is well known for the traditional definition of symplectic homology.

Remark 3.10 Identifying SH.X / with the Floer–Hofer symplectic homology as in
Proposition 3.9 and SHC.X / with the reduced Floer–Hofer symplectic homology as
in Remark 3.8, the above exact triangle coincides with the tautological exact sequence
obtained via an action filtration argument [45].

Remark 3.11 (on grading) In the literature there is no uniform grading convention
for symplectic homology. It depends on

� different conventions in the definition of Maslov index;

� different choice of the sign of the action functional (
R
��H dt versus

R
H dt��);

� symplectic homology versus cohomology.

Our symplectic homology SH.X / coincides with the symplectic homology defined by
Abbondandolo and Schwarz [1]. In particular, SH�.T �M /DH�.ƒM / without any
grading shift, where ƒM denotes the free loop spaces of a closed spin manifold M .
Also SH.X / coincides with Seidel’s symplectic cohomology of X [42] up to sign
change of the grading.

3.4 Cobordisms

Here we discuss functorial properties of the homology theories C H , SHC , and SH .
Suppose we are in the framework of Section 2.7. Let . xX ; !;Z/ be a Liouville domain
and xX0 � int xX be a subdomain such that the Liouville vector field Z is outward
transverse to Y0D@X0 . Then SW D xX nint xX0 is a Liouville cobordism with @� SW DY0

and @C SW D Y D @ xX . Let W and X0 be the completions of SW and xX0 . We fix
adjusted almost complex structures on W and X0 which agree on the common part.
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Contact homology Define a homomorphism FW
CH
W CH.X /! CH.X0/ by the for-

mula
FW

CH .
 /D
X
jˇjDj
 j

n
ˇ

�.ˇ/
ˇ;

where n
ˇ is the algebraic number of 0–dimensional components of the moduli space
MW .
 Iˇ/ (see Section 2.7), and where the sum ranges over good orbits ˇ of grading
as indicated. We assume here that the differential on the complex CH.X / is defined
by the formula (3-1).

Reduced symplectic homology The homomorphism FW
SHC W SHC.X /!SHC.X0/

is defined by the matrix

(3-10) FW
SHC D

 
FW}CH

0

‰W
SHC FW�CH

!
;

where the entries are the following homomorphisms. The map FW}CH
W zCH .X / !

zCH .X0/ is defined by

(3-11) FW}CH
.{
 /D

X
jˇjDj
 j

n
ˇ

�.ˇ/
{̌;

the map FW�CH
W zCH .X /!zCH .X0/ is defined by

(3-12) FW�CH
.y
 /D

X
jˇjDj
 j

n
ˇ

�.
 /
y̌;

and the map ‰W
SHC W

zCH .X /!bCH .X0/ is defined by

(3-13) ‰W
SHC {
 D

X
jˇjDj
 j�1

m
ˇ
y̌;

where all three sums range over all orbits ˇ of grading as indicated, and where n
ˇ
and m
ˇ are the algebraic number of elements of the 0–dimensional moduli spaces
MW .
 Iˇ/ and }MW .
 Iˇ/, respectively; see Section 2.7. We note that KhPbad.Y /i�

ker.FW}CH
/ and that im.FW�CH

/�KhPgood.Y0/iŒ1��bCH .X0/.

Full symplectic homology The chain homomorphism FW
SH
W SH.X /! SH.X0/ is

defined by the matrix

(3-14) FW
SH D

 
FW

SHC 0

‰W
SH

FW
Morse

!
:
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Here the map ‰W
SH
W SHC.X / ! Morse.�H IX0/ vanishes on bCH .X / and it is

defined for a decorated orbit {
 2zCH .X / by

(3-15) ‰W
SH {
 D

X
j
 jDjpj

l
p p;

where the coefficient l
p is the algebraic number of 0–dimensional components of
the moduli space MW .
 Ip/; see Section 2.10. Note that �W .{
 / D 0 if 
 is bad.
The map

FW
MorseW Morse.�H IX /!Morse.�H;X0/

is the projection.

Proposition 3.12 The homomorphisms FW
CH

, FW
SHC and FW

SH
are chain maps which

are independent, up to chain homotopy, of the choice of gradient like vector field and
almost complex structure.

4 Legendrian homology algebra, three associated complexes
and linearization

4.1 The Legendrian homology algebra LHA.ƒ/

Let ƒ1; : : : ; ƒk be disjoint embedded Legendrian spheres in the contact manifold Y .
We assume that ƒD

Sk
iD1ƒi is in general position with respect to the Reeb flow on Y .

Recall that we always assume that the Maslov class of each of these submanifolds is
equal to 0 (for spheres this is an extra assumption only if dim.ƒj /D 1), and that the
chosen trivialization of the canonical bundle of R�Y belongs, along LDR�ƒ, to
the 1–dimensional real canonical subbundle of L.

For i ¤ j , we write Cij for the set of Reeb chords connecting ƒi to ƒj . Note that
Cij ¤ Cji . We write Cii D Ci for all Reeb chords connecting ƒi to itself. We will also
consider the empty Reeb chord ei which connects ƒi to itself. The set of all nonempty
chords for ƒ (there could be countably many of them) is denoted by C .

Nonempty chords from C are graded by the relative Conley–Zehnder index (see
Remark 2.1), and the grading of ej is 0 for each j . Let R denote the K–algebra with
underlying vector space Khe1; : : : ; eki and multiplication defined by

ei � ej D ıij ei ; 1� i; j � k;
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where ıij is the Kronecker delta. We endow KhCi with the structure of a left-right
R–module by letting R act as follows:

ei � c D

�
c if c 2 Cji for some j ;

0 otherwise;
c � ej D

�
c if c 2 Cji for some i ;

0 otherwise:

Define the Legendrian homology algebra as

LHA.ƒ/D

1M
kD0

KhCi˝
k
R DR˚KhCi˚KhCi˝R KhCi˚ � � � :

Note that the underlying vector space of LHA.ƒ/ is spanned by linearly composable
monomials, ie monomials c1˝ � � � ˝ cm such that the origin of the chord ci lies on
the same Legendrian sphere as the end of ciC1 , for i D 1; : : : ;m� 1. For simpler
notation, we will suppress the tensor symbol from the notation writing c1 � � � cm instead
of c1˝ � � �˝ cm .

Remark 4.1 The algebra LHA.ƒ/ is the path algebra of a quiver (see Assem, Simson
and Skowroński [5]) associated to the Legendrian submanifold ƒ. Vertices of the quiver
correspond to connected components ƒ1; : : : ; ƒk and edges of the quiver correspond
to Reeb chords.

The algebra LHA.ƒ/ carries a differential dLHAWLHA.ƒ/!LHA.ƒ/ which satis-
fies the graded Leibniz rule and acts on the generators c 2 C according to the formula

dLHAc D
X

jcjD
P
jbj jC1

ncIb1���bm
b1 � � � bm;

where ncIb1���bm
is the algebraic number of 1–dimensional components of the mo-

duli space MY
ƒ
.cI b1; : : : ; bm/; see Section 2.5. Note that if MY

ƒ
.cI b1; : : : ; bm/ is

nonempty and c 2 Cij , then the monomial b1 � � � bm is linearly composable. Let us
also point out that the differential dLHA acts trivially on all idempotents ej because
there are no holomorphic curves without positive ends.

Remark 4.2 The algebraic count of 1–dimensional components of moduli spaces
stems from coherent orientations of moduli spaces. In order to define such a system
of orientation one uses a spin structure on ƒ. Since the components of ƒ are .n�1/–
spheres each component has a unique spin structure for n>2. For nD2 any component
has two spin structures: the Lie group spin structure which corresponds to the two
component double cover of S1 and which generates the spin cobordism group of
1–manifolds, and the null-cobordant spin structure which correspond to the nontrivial
double cover of S1 . Here we will always use the null-cobordant spin structure on any
component of ƒ when nD 2.
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Given a component ƒi �ƒ we denote by LHA.ƒi Iƒ/ the differential subalgebra of
LHA.ƒ/ which consists of words which begin and end on ƒi .

Proposition 4.3 We have d2
LHA

D 0: The homologies

LHA.ƒ/DH�.LHA.ƒ/; dLHA/ and LHA.ƒi Iƒ/DH�.LHA.ƒi Iƒ/; dLHA/

are independent of all choices, and are Legendrian isotopy invariants of ƒ.

In the following sections, we associate several complexes with the differential graded
algebra .LHA.ƒ/; dLHA/.

Suppose now that we are in the framework of Sections 2.8 and 3.4, ie

� . xX ; !;Z/ is a Liouville domain and xX0 � int xX is a subdomain such that the
Liouville vector field Z is outward transverse to Y0 D @X0 ;

� SW D xX nint xX0 is a Liouville cobordism with @� SW DY0 and @C SW DY D @ xX ;

� W , X0 and X are the completions of SW , xX0 and xX ;

� L�W is an exact Lagrangian cobordism between Legendrian submanifolds
ƒ� � @�W D Y0 and ƒC � @CW D Y .

Then we can define a homomorphism FW
L W LHA.ƒC/! LHA.ƒ�/ by defining it

on the generators by the formula

FW
L .c/D

X
jcjD

P
jbj j

mcIb1���bm
b1 � � � bm;

where mcIb1���bm
is the algebraic number of elements in the 0–dimensional moduli

space MW
L .cI b1; : : : ; bm/, c 2 C.ƒC/ and b1; : : : ; bm 2 C.ƒ�/; see Section 2.8.

Proposition 4.4

(1) FW
L is a homomorphism of differential graded algebras which is independent,

up to chain homotopy, of all auxiliary choices.

(2) In the special case when L consists of components L0; L1; : : : ; Lk such that
Lj \ @C SW D ¿ for j ¤ 0 we have FW

L .LHA.ƒC// � LHA.ƒ0�Iƒ�/. In
particular, FW

L induces a homomorphism

.f W
L /�W LHA.ƒC/!LHA.ƒ0�Iƒ�/;

where ƒj� WDLj \ @�W and ƒ� WD
Sk

jD0ƒj� .
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4.2 The algebra LHA.ƒI q/

We define deformations of the algebra LHA.ƒ/ in the spirit of Symplectic Field
Theory, as follows.

Choose a cycle q representing a homology class q 2Hk.ƒ/, where 0 � k � n� 2.
We will assume that no point in q is the endpoint a Reeb chord of ƒ.5 Consider the
algebra

LHA.ƒIq/D
1M

kD0

KhC [fqgi˝
k
R

DR˚KhC [fqgi˚KhC [fqgi˝R KhC [fqgi˚ � � � ;

where q is an element of degree n�k�2. The differential dLHAIq satisfies the graded
Leibniz rule, acts trivially on q , and acts on the generators c 2 C according to the
formula

dLHAIqc D
X

jcjD
P
jbj jC1Ck.n�kC2/

kDk0C���Ckm

ncIb1���bmIk0;:::;km
qk0b1qk1 � � � qkm�1bmqkm ;

where ncIb1���bmIk0;:::;km
is the algebraic number of 1–dimensional components of the

moduli space

MY
ƒ.cI b1; : : : ; bmI k0; : : : ; km/\ ev�1

k .q � � � � � q„ ƒ‚ …
k

/

(see (2-2)).

Proposition 4.5 We have d2
LHAIq

D 0: The homology

LHA.ƒIq/DH�.LHA.ƒI q/; dLHAIq/

is independent of all choices, including the choice of cycle q in the homology class q,
and it is a Legendrian isotopy invariant of ƒ. The special element q is preserved under
the corresponding isomorphisms.

Given a Legendrian submanifold ƒ�Y , consider a small Legendrian unknot ƒf linked
(with linking number ˙1) with ƒ. Let q be a point generating H0.ƒ/. Consider the
unital subalgebra of the differential algebra .LHA.ƒI q/; dƒ;q/ that is generated by

5 Though this could be difficult to arrange for all endpoints, it can be done by a small perturbation
for all endpoints of Reeb chords below any given finite action. This problem, as well as the problem of
general position of the evaluation maps evk , belong to the class of transversality problems mentioned in
the beginning of Section 3 and will not be discussed further here.
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words which end with q but do not start with q . Take the quotient of this subalgebra by
the relation q2D0 and denote the resulting quotient algebra by B . The differential dƒ;q
descends to a differential dB on B .

It turns out that the Legendrian homology algebra of ƒf [ƒ is related to .B; dB/.
More precisely, we have the following result.

Proposition 4.6 The algebra LHA.ƒfIƒ [ ƒf/ is isomorphic to the algebra
H�.B; dB/, ie to the homology of .B; dB/.

Let us comment on the above isomorphism. For an appropriate choice of repre-
sentative of ƒf (as a small sphere concentrated near one point of ƒ), the algebra
LHA.ƒfIƒf[ƒ/ is the free differential associative graded algebra generated by words
of the form x�wxC , where w 2LHA.ƒ/, of grading jx�wxCj D jwjC .n� 2/, and
one additional element a with jaj D n�1 and with daD x�xC . Here x� 2 C.ƒ;ƒf/

and xC 2 C.ƒf; ƒ/. The homology isomorphism in Proposition 4.6 is induced by the
homomorphism

ˆW .B; dB/! .LHA.ƒfIƒ[ƒf/; dLHA/

of differential graded algebras which is given on generators wq; w 2LHA.ƒ/, by the
formula ˆ.wq/D x�wxC .

4.3 The cyclic complex LH cyc.ƒ/

Consider the subalgebra LHO.ƒ/�LHA.ƒ/ of cyclically composable monomials,
ie linearly composable monomials c1 � � � cm such that the end point of cm lies on the
same Legendrian sphere as the origin of c1 . We denote the restriction of dLHA to
LHO.ƒ/ by dLHO W LHO.ƒ/!LHO.ƒ/.

Since dLHO acts trivially on all units ej 2LHO.ƒ/, it induces a differential dLHOC

on the reduced complex LHOC.ƒ/ D LHO.ƒ/=R. (Note that LHOC.ƒ/ is the
algebra generated by nontrivial cyclically composable monomials of nonempty Reeb
chords.)

Let P W LHOC.ƒ/!LHOC.ƒ/ be the linear map induced by graded cyclic permu-
tation:

P .c1c2 � � � cl/D .�1/jc1j.jc2jC���Cjcl j/c2 � � � clc1

for any monomial c1 � � � cl 2LHOC.ƒ/. Then the image im.1�P / is a subcomplex of
LHOC.ƒ/. Let LH cyc.ƒ/ be the quotient complex LHOC.ƒ/= im.1�P /. Denote
by dcyc the differential induced by dLHOC . Note that LH cyc.ƒ/ is not an algebra. It
is a K–module generated by equivalence classes of cyclically composable monomials.

If w D c1 � � � cm is a monomial in LHOC.ƒ/ we will denote its image in LH cyc.ƒ/

by .w/ and define the multiplicity of .w/ as the largest integer k such that .w/D .vk/
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for some monomial v , where vk is the monomial which is the k –fold product of v . We
denote the multiplicity of .w/, by �..w//. We say that a monomial w 2LHOC.ƒ/

is bad if, after acting on it with a power of P , it is the product of an even number of
copies of an odd-graded monomial w0 . Nobad monomials are called good. Then for
any monomial w 2LHOC.ƒ/, we have .w/D 0 if and only if w is bad. Moreover,
LH cyc.ƒ/ is generated by the elements .w/, where w is a good word in LHOC.ƒ/.

Proposition 4.7 We have d2
cyc D 0: The homology

LHcyc.ƒ/DH�.LH cyc.ƒ/; dcyc/

is independent of all choices, and is a Legendrian isotopy invariant of ƒ.

4.4 The complex LH HoC.ƒ/

Consider the complex

LH HoC.ƒ/DQLHOC.ƒ/˚1LHOC.ƒ/;

where QLHOC.ƒ/DLHOC.ƒ/ and 1LHO
C
.ƒ/DLHOC.ƒ/Œ1�. Given a monomial

w D c1 � � � cl 2 LHOC.ƒ/ we denote by {w D }c1c2 � � � cl and yw D �c1c2 � � � cl the
corresponding elements of QLHOC.ƒ/ and 1LHOC.ƒ/ and use the same notation
for the linear maps defined in this way on generators. We will also sometimes view
elements of QLHOC.ƒ/ and 1LHOC.ƒ/ as monomials with the “check” or “hat” mark
on the variable which is not necessarily the first one. Such a monomial is meant to
be identified with the word obtained by the graded cyclic permutation which put the
marked letter in the first position.

Let S W LHOC.ƒ/!1LHOC.ƒ/ denote the linear operator defined by the formula

(4-1) S.c1 � � � cl/D �c1c2 � � � cl C .�1/jc1jc1�c2 � � � cl C � � �C .�1/jc1���cl�1jc1c2 � � ��cl :

The differential dHoCW LH HoC.ƒ/!LH HoC.ƒ/ is given by the matrix

(4-2) dHoC D

 
{dLHOC dM HoC

0 ydLHOC

!
;

where the maps in the matrix are defined as follows on generators.

� If w 2LHOC.ƒ/ is any monomial then

(4-3) {dLHOC. {w/ WD

rX
jD1

}vj ;
where each vj is a monomial and dLHOC.w/D

Pr
jD1vj .
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� If c is a chord and w0 2 LHA.ƒ/ is a monomial such that cw0 2 LHOC.ƒ/

then

(4-4) ydLHOC.ycw
0/D S.dLHOCc/ w0C .�1/jcjC1

yc .dLHOCw
0/:

Compare Section 5 in particular Corollary 5.6 in Ekholm and Kálmán [21].
� If w D c1 � � � cl 2LHOC.ƒ/ is any monomial then

(4-5) dM HoC. yw/D dM HoC.�c1 � � � cl/D }c1 � � � cl � c1 � � �}cl :

Proposition 4.8 We have d2
HoC D 0: The homology

LHHoC.ƒ/DH�.LH HoC.ƒ/; dHoC/

is independent of all choices, and is a Legendrian isotopy invariant of ƒ.

The following result is the Legendrian analogue of the exact homology triangle (3-6).
It is obtained by considering the second page of the spectral sequence associated to the
filtration of LH HoC.ƒ/ by grading of the underlying unmarked words in LHOC.ƒ/.

Proposition 4.9 There exists an exact homology triangle:

(4-6)

LHcyc.ƒ/ // LHcyc.ƒ/

ww
LHHoC.ƒ/

gg

4.5 The full complex LH Ho.ƒ/

Define LH Ho.ƒ/DLH HoC.ƒ/˚C.ƒ/, where C.ƒ/ is the vector space generated
by elements �1; : : : ; �k of grading 0, in bijective correspondence with the Legendrian
spheres ƒ1; : : : ; ƒk . Note that after identification of �j with ej for j D 1; : : : ; k , we
have C.ƒ/DRDKhe1; : : : ; eki and we may think of LH Ho.ƒ/ as

LH Ho.ƒ/D QLHO .ƒ/˚1LHOC.ƒ/;

where QLHO .ƒ/DQLHOC.ƒ/˚RDLHO.ƒ/ (as vector spaces).

The differential

dHoWLH Ho.ƒ/DLH HoC.ƒ/˚C.ƒ/!LH HoC.ƒ/˚C.ƒ/DLH Ho.ƒ/

is given by the matrix

(4-7) dHo D

�
dHoC 0

ıHo 0

�
;
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where ıHo.{c/ D
Pk

iD1 nci�i for any chord c 2 Ci , ıHo. {w/ D 0 for any nonlinear
monomial w 2LHOC.ƒ/ and ıHo. yw/D 0 for any w 2LHO.ƒ/. The coefficient nci

is the algebraic number of components of the 1–dimensional moduli space MY
ƒ
.c/

(see Section 2.5) of holomorphic disks with one positive and no negative boundary
punctures.

Proposition 4.10 We have d2
Ho D 0: The homology

LHHo.ƒ/DH�.LH Ho.ƒ/; dHo/

is independent of all choices, and is a Legendrian isotopy invariant of ƒ.

4.6 Linearized Legendrian homology

Let X be a Liouville manifold with @ xX D Y and let L�X be an exact Lagrangian
submanifold of X which bounds a Legendrian submanifold ƒ D L\ Y . Assume
that L is equipped with a spin structure which is used to define a system of coherent
orientations of moduli spaces. Let us assume that the restriction H jL is Morse and
denote by Morse.�H jL/ the Morse complex of the function �H jL . Consider the
complex

LH.ƒIL/DKhC.ƒ/i˚Morse.�H jL/

with differential dLH W LH.ƒIL/!LH.ƒIL/ given by

dLH D

�
dC 0

ıLH dMo

�
:

Here dMoW Morse.�H jL/!Morse.�H jL/ is the Morse differential

dC.c/D
X

jbjDjcj�1

ncb b;

where ncb is the algebraic number of components of the 1–dimensional moduli space
MY

ƒ;L
.cI b/ of holomorphic strips connecting c and b and anchored in .X;L/ (see

Section 2.5) and
ıLH .c/D

X
ncp p;

where ncp is the algebraic number of components of the 1–dimensional moduli space
MW

L .cIp/; see Section 2.8.

Proposition 4.11 We have d2
LH
D 0: The homology

LH.ƒIL/DH�.LH.ƒIL/; dLH /

is independent of all choices, and is invariant under continuous deformations of L

through exact Lagrangian submanifolds with Legendrian boundaries.
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We call LH.ƒIL/ the linearized Legendrian homology of ƒ. It coincides with
wrapped Lagrangian Floer homology of L in the sense of Abouzaid and Seidel [3] and
Fukaya, Seidel and Smith [29].

Remark 4.12 Below we will consider the linearized Legendrian homology of cocore
disks. In this case L is diffeomorphic to Rn and hence has a unique spin structure.

5 Legendrian surgery exact triangles

Let us return to the situation of Section 2.7. Let . xX ; !;Z/ be a Liouville domain and
xX0� int xX be a subdomain such that the Liouville vector field Z is outward transverse

to Y0 D @X0 . Then SW D xX n int xX0 is a Liouville cobordism with @� SW D Y0 and
@C SW D Y D @ xX . Let W and X0 be completions of SW and xX0 . We fix adjusted
almost complex structures on W and X0 which agree on the common part.

Let us assume that SW is a Weinstein cobordism, ie that there exists a Morse function
H W SW !R which is constant on the boundary components and which is Lyapunov for
the Liouville vector field Z . We assume that H has critical points p1; : : : ;pk 2 int W

of index n and no other critical points. We extend H to X0 as any Morse function (or
as a Lyapunov function for the Liouville field Z if X0 is Weinstein as well).

We denote the stable manifolds of the critical points of H by L1; : : : ;Lk and write
ƒj DLj\Y , j D1; : : : ; k for the attaching Legendrian spheres, and let ƒD

Sk
jD1ƒj .

The Weinstein cobordism structure on W is determined by the Legendrian embeddings
ƒj W S

n�1! Y0 ,6 j D 1; : : : ; k , up to homotopy in the class of Weinstein cobordism
structures with equivalent Lyapunov functions. In particular, the contact manifold Y

and the symplectic manifold X are determined by these data. We will say, that Y is
obtained from Y0 by a Legendrian surgery along ƒ1; : : : ; ƒk , and that X is obtained
from X0 by attaching Weinstein handles along these spheres. We will refer to the
spheres ƒ1; : : : ; ƒk � Y0 as a Legendrian surgery basis.

Let LHA.ƒ/, LH cyc.ƒ/, LH HoC.ƒ/, and LH Ho.ƒ/ be the Legendrian homology
algebra and the three complexes associated to it, as described in Section 4.

5.1 Linearized contact homology

The next theorem describes a complex which computes the linearized contact homol-
ogy CH.X /.

6Although the manifold W may depend on the parametrization of the Legendrian spheres, the
holomorphic curves invariants considered in this paper are independent thereof.
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Theorem 5.1 Consider the complex LCH.X0; ƒ/ D CH.X0/ ˚ LH cyc.ƒ/. Let
dLCH be the map given by

dLCH D

�
dCH 0

ıLCH dcyc

�
;

where

(5-1) ıLCH .
 /D
X

j
 j�jwjD1

n
.w/

�..w//
.w/:

Here �..w// is the multiplicity of the cyclic word .w/ and n
.w/ is the algebraic
number of components of the 1–dimensional moduli space MY0

ƒ
.
 I b1; : : : ; bk/ (see

Section 2.6) for any monomial w D b1 � � � bk which represents .w/ 2 LH cyc.ƒ/.
Then d2

LCH
D 0.

Figure 6. Two level holomorphic disks at the boundary of a 1–dimensional
moduli space of holomorphic disks (up to translation) which cancel in the
equation d2

LCH
D 0

Define the homomorphism

FW
LCH D FW

CH ˚FW
cycW CH.X /!LCH.X0; ƒ/D CH.X0/˚LH cyc.ƒ/;

where FW
CH
W CH.X /!CH.X0/ is the homomorphism induced by the cobordism W ,

which was defined in Section 3.4, and where FW
cycW CH.X /! LH cyc.ƒ/ is defined

by the formula

(5-2) FW
cyc.
 /D

X
j
 jDjwj

m
.w/

�..w//
.w/:
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Here �..w// is the multiplicity of .w/ and m
.w/ is the algebraic count of the number
of elements of the 0–dimensional moduli space MW

L .
 I b1; : : : ; bk/ for any monomial
w D b1 � � � bk representing the cyclic class .w/; see Section 2.9.

Theorem 5.2 The homomorphism FW
LCH
W CH.X /!LCH.X0; ƒ/ is a chain quasi-

isomorphism. In particular, there exists an exact triangle:

(5-3)

C H.X / // C H.X0/

xx
LHcyc.ƒ/

ff

5.2 Reduced symplectic homology

The next theorem describes a complex which computes the reduced symplectic homol-
ogy SHC.X /. We use notation as in Section 4.

Theorem 5.3 Consider the complex SLHC.X0; ƒ/D SHC.X0/˚LH HoC.ƒ/. Let
dSLHC be the map given by

dSLHC D

�
dSHC 0

ıSLHC dHoC

�
:

Here
ıSLHC.y
 /D

X
j
 j�jwjD1

n
.w/

�.
 /
S.w/;

where �.
 / is the multiplicity of 
 , n
.w/ is the algebraic count of components of
the moduli space MY0

ƒ
.
 I b1; : : : ; bm/ for any w D b1 � � � bm representing .w/ (see

Section 2.6), and

ıSLHC.{
 /D
X

j
 j�jwjD1

{n
w {wC
X

j
 j�jwjD2

yn
w yw;

where {n
w (respectively yn
w ) is the algebraic count of the number of elements of the
moduli space �MY0

ƒ
.
 I b1; : : : ; bm/ (respectively }MY0

ƒ
.
 I b1; : : : ; bm/), where w D

b1 � � � bm (see Section 2.6). Then d2
SLHC

D 0.

Consider the map

FW
SLHC

D FW
SHC ˚FW

HoCW SHC.X /! SLHC.X0; ƒ/D SHC.X0/˚LH HoC.ƒ/;
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where FW
SHC W SHC.X /! SHC.X0/ is the map induced by the cobordism W that

was defined above in Section 3.4 and

FW
HoCW SHC.X /DzCH .X /˚bCH .X /!LH HoC.ƒ/

is defined by the formula

FW
HoC.y
 /D

X
j
 j�j.w/jD0

m
.w/

�.
 /
S.w/;

FW
HoC.{
 /D

X
j
 j�jwjD0

{m
w {wC
X

j
 j�jwjD1

ym
w yw;

where m
.w/ is the algebraic number of elements of MW
L .
 I b1; : : : ; bm/ for any

w D b1 � � � bm representing .w/, and where {m
w (resp. ym
w ) is the algebraic num-
ber of elements of the space �MW

L .
 I b1; : : : ; bm/ (resp. }MW
L .
 I b1; : : : ; bm/); see

Section 2.9.

Theorem 5.4 The homomorphism FW
SLHC

W SHC.X /! SLHC.X0; ƒ/ is a chain
map and a quasi-isomorphism of the corresponding complexes. In particular, there
exists an exact triangle:

(5-4)

SHC.X / // SHC.X0/

ww
LHHoC.ƒ/

ff

5.3 Symplectic homology

The complex described below computes the (full) symplectic homology SH.X /.

Theorem 5.5 Consider the complex SLH.X0; ƒ/DSH.X0/˚LH Ho.ƒ/. Let dSLH

be the map given by

dSLH D

�
dSH 0

�SLH dHo

�
;

where

�SLH W SH.X0/DSHC.X0/˚Morse.�H jX0
/!LH Ho.ƒ/DLH HoC.ƒ/˚C.ƒ/

is given by the matrix

�SLH D

�
� 0
z�SLH dMorse �

�
:
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Here z�SLH WSHC.X0/D zCH .X0/˚bCH .X0/! C.ƒ/ is equal to 0 on bCH .X0/,
and on zCH .X0/ it is defined by the formula z�SLH .{
 / D

Pk
1n
j �j , where the co-

efficient n
j is the algebraic number of components of the 1–dimensional moduli
space MY0

ƒj
.
 / (see Section 2.6), and the homomorphism dMorse � W Morse.�H jX0

/!

C.ƒ/ is the boundary operator in Morse.�H / followed by projection to C.ƒ/.
Then d2

SLH
D 0.

ƒ�R

ƒ�R

Figure 7. On the left, a two level disk with boundary on ƒ � R at one
boundary point of a 1–dimensional moduli space of holomorphic disks (up
to translation). As the moduli space is traversed, the boundary of the disk
shrinks. On the right, a one level sphere which intersects ƒ�R in a point,
which is the configuration at the other boundary point of the moduli space.
These two configurations cancel in the equation d2

SLH
D 0 .

Note that the complex SLH.X0; ƒ/ can be rewritten as

SLH.X0; ƒ/D .SHC.X0/˚LH HoC.ƒ//˚ .Morse.�H jX0
/˚C.ƒ//

D SLHC.X0; ƒ/˚Morse.�H /

and the differential takes the form

dSLH D

�
dSLHC 0

ıSLH dMorse

�
:

Using this observation we define a homomorphism

FW
SLH W SH.X /D SHC.X /˚Morse.�H /! SLH.X0; ƒ/

D SLHC.X0; ƒ/˚Morse.�H /

by the block matrix

FW
SLH D

 
FW

SLHC
0

‰W
SLH

id

!
;
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where the homomorphism ‰W
SLH
WSHC.X /DzCH .X /˚bCH .X /!Morse.�H / is

equal to 0 on bCH .X /, and is defined by the formula ‰W
SLH

.{
 / D
P
j
 jD1 n
pi

�i ,
where the coefficient n
pi

is the algebraic number of elements of the 0–dimensional
moduli space MW

Li
.
 /; see Section 2.9.

Theorem 5.6 The map FW
SLH
W SH.X /! SLH.X0; ƒ/ is a chain map and a quasi-

isomorphism. In particular, there exists an exact triangle:

(5-5)

SH.X / // SH.X0/

xx
LHHo.ƒ/

ff

Corollary 5.7 Suppose that X0 is a subcritical Weinstein manifold. Then SH.X /D
LHHo.ƒ/.

Indeed, according to a theorem of K Cieliebak [12], we have SH.X0/D 0, and hence
the exact triangle (5-5) implies the claim. Note that any Weinstein manifold X with
cylindrical end can be obtained by attaching Lagrangian handles to a subcritical X0 .

5.4 Linearized Legendrian homology of cocore spheres

Let .W;L;C / be as in Section 2.11. We use notation as there: ƒDL\Y0 , �DC\Y .
Furthermore, L and C are decomposed as LDL1[� � �[Lk and C D C1[� � �[Ck

with corresponding subdivisions of ƒ and � .

Let us notice that the linearized Legendrian homology LH.�;C / in this case is the
homology of the complex

LH.�;C /DKhC.�/i˚Khf1; : : : ; fki:

Here fj corresponds to the unique critical point (the minimum) mj of the function
H jCj , has grading jfj j D n � 2 � index.mj / D n � 2, and satisfies dLH .fj / D 0,
j D 1; : : : ; k .

We introduce a product operation ? on the complex LH.�;C /. If c1 and c2 are Reeb
chords then define their product as

c2 ? c1 D

X
c2KhC.�/i

Nc1;c2Ib bC

kX
jD1

Nc1;c2Ifj fj :
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Here Nc1;c2Ib and Nc1;c2Ifj are the algebraic number of components of the 1–dimen-
sional moduli spaces MY

�;C
.c1; c2I b/ and MW

C
.c1; c2Imj /, respectively; see Sec-

tions 2.5 and 2.8. Let us also define

fj ? c D

�
c if c 2 Cji for some i ;

0 otherwise;
and c ?fj D

�
c if c 2 Cij for some i ;

0 otherwise;

where c 2 Cij , where Cij is the set of chords connecting �i with �j , j D 1; : : : ; k .

Consider the map

FW
.L;C /W LH.�;C /!LHA.ƒ/

defined as follows. For generators c 2 C.�/,

FW
.L;C /.c/D

X
jcjD

Pm
jD1 jbj jC.n�2/

kcIb1;:::;bm
b1 � � � bm;

where c2C.�/; b1; : : : ; bm2C.ƒ/, j D1; : : : ; k , and where the coefficient kcIb1;:::;bm

is equal to the algebraic number of elements of the 0–dimensional moduli space
MW

.L;C /.cI b1; : : : ; bm/; see Section 2.11. (If mD0 then MW
.L;C /.c/ can be nonempty

only if c is a chord with both endpoints on one component �j and the algebraic number
of elements in a moduli spaces MW

.L;C /.c/ of rigid disks with boundary on Cj [Lj

and no negative punctures equals the coefficient of ej in the expansion of FW
.L;C /.c/.)

For generators f1; : : : ; fk ,

FW
.L;C /.fj /D ej ; j D 1; : : : ; k:

We then have the following:

Theorem 5.8 The operation ? descends to an associative product on LH.�;C /. The
map FW

.L;C /W LH.�;C /!LHA.ƒ/ is a chain map which induces an algebra isomor-
phism on homology. (Here we view LHA.ƒ/ as a module generated by monomials
and with product induced by the standard (concatenation) product on LHA.ƒ/.)

Remark 5.9 Similarly to the product m2D?, one can define on LH.�;C / operations
ml ; l > 2, using anchored in .X;C / holomorphic discs in R�Y with l positive and
1 negative punctures. These operations define an A1–structure on LH.�;C /. The
homomorphism FW

.L;C / can be included into an A1–quasi-isomorphism between
the A1–algebra LH.�;C / and LHA.ƒ/ with the trivial A1–structure, where the
product is just the tensor product and all the higher operations are equal to 0.
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5.5 Legendrian homology algebra

Let ƒ�
0
� Y0 be a Legendrian submanifold disjoint from ƒD

Sk
1 ƒj . Trajectories

of Z in W which begin at points of ƒ�
0

form a Lagrangian cylinder L0 which
intersects Y along a Legendrian submanifold ƒC

0
� Y . Then xL0 D

Sk
0
xLj , where

xLj DLj \W is a Lagrangian cobordism between ƒ0 Dƒ�
0
[ƒ� Y0 and ƒC

0
� Y .

According to the second part of Proposition 4.4 there is defined a homomorphism

.FW
L0 /
�
W LHA.ƒC

0
/!LHA.ƒ�0 Iƒ

0/:

Theorem 5.10 .FW
L0
/�W LHA.ƒC

0
/!LHA.ƒ�

0
Iƒ0/ is an isomorphism.

Note that Theorem 5.10 allows us to compute the full Legendrian homology algebra of
the cocore sphere � .

Restricting to the case k D 1 we note that it is possible to disjoin � from itself by
a small Legendrian isotopy. The pushoff � 0 of � can then be pushed further down
to Y0 using the Liouville flow of Z . Different choices of perturbation of � give
different Legendrian spheres in Y0 which are generally not Legendrian isotopic. It is,
in particular, possible to choose perturbations either so that the pushdown of � 0 is a
small Legendrian sphere ƒf � Y0 linking the attaching sphere ƒa once, or so that it is
a parallel copy ƒp of ƒa . Choosing ƒf� Y0 as ƒ�

0
and the corresponding pushoff � 0

of � as ƒC
0

, we are in a situation where Proposition 4.6 applies, and it provides
an explicit description of the algebra LHA.ƒfIƒf [ƒ/ in terms of the deformed
algebra LHA.ƒI q/, where q is a generator of H0.ƒ/. According to Theorem 5.10
the homology LHA.ƒfIƒf[ƒ/ is isomorphic to LHA.� 0/DLHA.�/.

Note that the complex in Theorem 5.8 which is quasi-isomorphic to LH.�;C / looks
like the linearization of the differential algebra LHA.ƒfIƒf[ƒ/ which corresponds
to the trivial augmentation. Nevertheless, it is not clear that the formula in Theorem 5.8
follows from Theorem 5.10 and Proposition 4.6 because the algebra LHA.ƒfIƒf[ƒ/

may have other augmentations with isomorphic linearizations.

6 About the proofs

We sketch in this section the main ideas which enter the proofs of the results discussed
in this paper.
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6.1 Dynamics of the Reeb flow after Legendrian surgery

We first explain the mechanism of creation of new periodic Reeb orbits as a result
of Legendrian surgery. To clarify the picture we begin with the case when Y0 is
just R2n�1 with the standard contact form �0 D dz �

Pn�1
1 yj dxi and when the

surgery locus ƒ consists of one Legendrian sphere. In particular, the Reeb vector field
R0D

@
@z

has no periodic orbits. We assume further that the Reeb flow isotopy ˆt
R0
.ƒ/

intersects ƒ transversely. In particular, the set C.ƒ/ consists of finitely many Reeb
chords c1; : : : ; cm in general position.

Consider the contact manifold .Y; �/ which results from surgery on ƒ. The Reeb
vector field R on Y satisfies R D R0 outside of a tubular neighborhood U of ƒ.
Under surgery, U is replaced by the unit cotangent bundle of the n–disk which is the
Lagrangian core disk of the attached handle. One can choose the contact form � so that
away from a small neighborhood of @U the Reeb dynamics inside the handle is the
geodesic flow of the flat disk. Moreover, the perturbation necessary for the boundary
adjustment can be made arbitrarily small.

The dynamics of the flow of R on Y can then be described as follows. Consider the
1–jet space J 1.Sn�1/�T �Sn�1�R of the .n�1/–sphere endowed with its standard
contact form ˛ D dzCp dq , where .q;p/ are canonical coordinates on T �Sn�1 and
z is a coordinate in the R–factor. Let S � J 1.Sn�1/ denote the 0–section and define
U" D fjzj � "; kpk � "g, " > 0, where we view of S as the unit sphere in Rn in order
to define kpk. Note that U" is a neighborhood of S of size ". Let V˙ D fz D˙"g.
The form !˙ D d˛jVC˙ is symplectic and .V˙; !˙/ is symplectomorphic to the
cotangent disk bundle of Sn�1 of radius ". For " > 0 sufficiently small, there exists an
embedding j W U"! Y0 with j ��0 D ˛ and j .S/Dƒ, and which hence allows us to
identify U" with a neighborhood of ƒ� Y0 . We will keep the notation U" and V˙ for
the images of U" and V˙ , respectively, under the contact embedding j . The Reeb flow
of � defines a symplectomorphism i W .V�; d�jV�/! .VC; d�jVC/. Now the effect
of the surgery on Reeb dynamics can be described as follows. Outside U" we have
RDR0 , all the trajectories which enter U" through V� exit through VC and thus there
is defined a holonomy symplectomorphism z� W .V�; d�jV�/! .VC; d�jVC/. One can
show that z� D � ı i , where � W .VC; d�jVC/! .VC; d�jVC/ is a generalized symplectic
Dehn twist (see Arnol’d [4]), where we identify .VC; d�jVC/ with the cotangent disk
bundle of the sphere Sn�1 of radius " .

In the case under consideration (Y0 D R2n�1 ) there are no closed orbits of R in Y

outside U" . Hence, if 
 is a closed orbit then it has to first exit U" and then reenter it
again. We claim that if "> 0 is chosen sufficiently small then the outside portion of any
closed trajectory 
 has to be contained in a neighborhood of a union of Reeb chords
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from C.ƒ/. Indeed, the assumption that the isotopy ˆt
R0
.ƒ/ intersects ƒ transversely

implies that for any ı > 0 there exists an " > 0 such that a Reeb trajectory at distance
at least ı from the union of the chords in C.ƒ/ which starts on VC never intersects U"
again.

Conversely, we claim that if w D .ci1
� � � ciN

/ 2LH cyc.ƒ/ is a cyclic word, then for
all sufficiently small ı > 0 there is " > 0 a unique periodic orbit 
 which passes
through the ı–neighborhoods of chords ci1

; : : : ; ciN
in the given cyclic order and

exactly once through the flow tube around c for each index ij such that cij D c . We
will consider here only the case N D 1. The general case is similar. Thus, assume
w D .c/ for a chord c 2 C.ƒ/. Let a; b 2 ƒ be the beginning and the end points of
the chord c . Let T denote the action of the chord c , T D

R
c �. Then ˆT

R0
.a/D b .

Write a˙ D ˆ
˙"
R0
.a/ 2 V˙ . The isotopy ˆt

R0
.ƒ/, t � 0 intersects ƒ transversely

at t D T in the point b . Fix � > 0 such that 3� is smaller than the action of any
chord in C.ƒ/. Call a path 
 W Œ0; 1�! VC with 
 .0/D aC small if for any t 2 Œ0; 1�

there exists s 2 ŒT � �;T C �� such that ˆs
R
.
 .t// 2 V� . Denote by A the set of all

endpoints of small paths. The holonomy along leaves of the Reeb flow of R defines an
embedding f WA! V� . We need to show that there exists a unique point x 2A such
that z�.f .x//D x . If a point x 2A satisfies this equation then

x 2Z WD

1\
�1

.z� ıf /k.A/:

Note that we have ZD
T1

1 Zj , where Zj WD
Tj
�j .z� ıf /

k.A1/, Z1�Z2� � � � �Z .
One can check that the closed sets Zj are nonempty and that diam.Zj / ! 0 as
j !1. Hence Z consists of one point x 2Z , but if x 2Z then z�.f .x//2Z . Thus,
x D z�.f .x//, ie x belongs to a unique periodic orbit of R which intersects A and
passes once in a neighborhood of c .

In the case of a general contact manifold Y0 we can similarly show that if the contact
form �0 on Y0 is chosen in such a way that ƒ does not intersect any periodic orbits of
its Reeb field, then given any C > 0 one can find a sufficiently small " > 0 such that all
orbits of R of period smaller than C survive the surgery and all newly created orbits of
period smaller C are in 1-1 correspondence with cyclic words from LH cyc.ƒ/. We call
these orbits essential. Thus essential periodic orbits in Y are in 1-1 correspondence with
the generators of the contact homology complex LCH.X0; ƒ/DCH.X0/˚LH cyc.ƒ/.
On the other hand, as we discuss next, passing to the limit C !1 the contribution of
other, nonessential, orbits can be discarded.

Indeed, consider monotonically decreasing and increasing sequences "n ! 0 and
Ck !1, respectively, and let �n be the corresponding sequence of contact forms
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on Y . Let CH�Ck .ƒn/ be the subcomplex of CH.�n/ generated by closed Reeb
orbits 
 with

R

�n � Ck . We denote the corresponding homology by C H�Ck .�n/.

We can assume that �n � �nC1 , n D 1; 2; : : : ; and hence we have the following
commutative diagram:

�� �� ��
// C H�Ck .�n/

//

��

C H�CkC1.�n/
//

��

: : : C H.�n/

��
// C H�Ck .�nC1/

//

��

C H�CkC1.�nC1/
//

��

: : : C H.�nC1/

��
:::

:::
:::

:::
:::

// C H�Ck .�1/
// C H�CkC1.�1/

// : : :

Here the vertical arrows are monotonicity homomorphisms, the horizontal arrows are
action window extension homomorphisms, and

C H�Ck .�1/ WD lim
�!

n

C H�Ck .�n/:

We define an essential complex

CH ess.f�ng/ WD lim
�!

k

lim
�!

n

CH�Ck .�n/:

Note that the vertical arrows in the last column are all isomorphisms and hence
lim
�!n

C H.�n/ D C H.Y /. On the other hand, it is straightforward to check that the
vertical and the horizontal limits commute, so that lim

�!k
C H�Ck .�1/ D C H.Y /.

But lim
�!k

C H�Ck .�1/ is equal to the homology of the essential complex, which is
generated by essential orbits only.

In symplectic homology orbits are parametrized, and os every generator of LH cyc.ƒ/

corresponds to a circle of orbits in symplectic homology. To connect this Morse–Bott
case to the complex LH HoC.ƒ/, we choose on every orbit an auxiliary Morse function
with one minimum and one maximum on every of the above chords generating the orbit.
The minimum and maximum marked orbits correspond, respectively, to the generators
of the complexes QLHOC.ƒ/ and 1LHOC.ƒ/, which together generate LH HoC.ƒ/.
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Similarly, the generators of LHA.ƒ�
0
Iƒ/ (resp. of the vector space LHA.ƒ/) corre-

spond to (essential) chords connecting points on the Legendrian manifolds ƒC
0
� Y

(resp. � � Y ) after a Legendrian surgery with a basis ƒ disjoint from ƒ�
0

.

6.2 Filtration argument

The statements that d2 D 0 in Theorems 5.1, 5.3 and 5.5, as well as the chain map
statements in Theorems 5.2, 5.4, 5.6 and 5.8 follow from a detailed analysis of bound-
aries in the compactification of the moduli spaces involved. In order to prove the
isomorphism part in Theorems 5.2, 5.4, 5.6, and 5.8 we use a filtration argument.
Observe first that all the maps preserve the natural action filtrations. Consider, for
instance, the map FW

LCH
W CH.X /!LCH.X; ƒ/D CH.X0/˚LH cyc.ƒ/. As was

pointed out above, for an appropriate choice of contact form on Y , the new orbits in Y

are in 1-1 correspondence with the generators of the complex LH cyc.ƒ/, while the old
orbits correspond to generators of CH.X0/. If we order these generators according to
their action values, then the fact that the homomorphism FW

LCH
is action decreasing

translates into the fact that the matrix of FW
LCH

is lower triangular with respect to
action. The most delicate part of the proof is the analysis of the diagonal elements of
this matrix. In the next section we sketch an argument that for an appropriate regular
choice of the almost complex structure, all the diagonal elements are equal to ˙1, and
hence for such a choice of extra data, the map FW

LCH
is an isomorphism already on the

chain level. The proofs of Theorems 5.8 and 5.10 follow similar lines of arguments.

The claim that the product is preserved in Theorem 5.8 follows from analyzing the
boundary of the 1–dimensional moduli spaces MW

.L;C /.c1; c2I b1; : : : ; bm/ obtained
by gluing moduli spaces MY

ƒ;L.c1; c2I c/ and MW
.L;C /.cI b1; : : : ; bm/. This two-

story holomorphic building represents the pushforward FW
.L;C /.c/ 2LHA.ƒ/ of the

product c D c2 ? c1 by the isomorphism FW
.L;C / . Besides splittings which contribute

to boundary terms, the only other possible splitting is a configuration of two curves
from MW

.L;C /.c2I b1; : : : ; bl/ and MW
.L;C /.c1I blC1; : : : ; bm/, l D 1; : : : ;m� 1, on

the same level connected at an intersection point from L \ C . This configura-
tion can be interpreted as the pushforward of the pair .c2; c1/ to the tensor prod-
uct FW

.L;C /.c2/F
W
.L;C /.c1/ of the images FW

.L;C /.c2/ and FW
.L;C /.c1/ in the alge-

bra LHA.ƒ/:

6.3 Analysis of diagonal elements

In this subsection we sketch an argument that shows that the lower triangular chain
map FW

LCH
has all diagonal elements equal to ˙1. As explained above in Section 6.1,

it is sufficient to deal only with essential orbits. For the old orbits this is obvious: the
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diagonal elements correspond to trivial holomorphic cylinders in the symplectization
of Y0 . For new orbits corresponding to words of Reeb chords we will prove this as
follows.

(A) First, we establish the following: for each Reeb chord a of ƒ and the Reeb
chord a0 of the cocore sphere � that corresponds to it there is algebraically ˙1

holomorphic strip in W with boundary on L[C positive puncture at a0 and
negative puncture at a.

(B) Second, we construct holomorphic disks counted in the map FW
LCH

from these
disks by gluing, and arguing by compactness and small action we find that the
count of these disks must equal ˙1 as well.

To verify (A) take a Reeb chord a of ƒ. Choose a parameterization of the handle so
that the endpoints of a on ƒ correspond to antipodal points of the attaching sphere. In
a suitable model for the handle the existence of one disk D with required properties is
then obvious: the disk lies in a flat complex line in this model. Furthermore, in this
model it is immediate that the linearization of the x@–operator at this disk is surjective. In
order to show uniqueness of the disk one thus need to show that any other disk with the
given properties lies in a small neighborhood of D . To see that this is the case we use
a local projection to the normal bundle of D in combination with an action argument:
if the disk is not contained in the neighborhood of D its area is bigger than the action
difference between a0 and a. Thus we conclude that for this choice of attaching map
there is exactly one geometric disk from a0 to a. Deforming the attaching map we
get a parameterized moduli space of disks connecting a0 to a. By compactness this
parameterized moduli space is a 1–manifold up to splittings. However, in this case
there can be no splittings due to the small action difference between a0 and a. We
conclude that (A) holds.

In order to show (B) let us first verify that (A) implies (B) for orbits corresponding to
1–letter words of Reeb chords and also that it implies that for every Reeb chord w0

of � corresponding to a 2–letter word wD a1a2 of Reeb chords there is algebraically
˙1 disk connecting w0 to w . In the orbit case we consider the orbit za corresponding
to a Reeb chord a on ƒ and the gluing of the disk connecting a0 to a to itself at the
Lagrangian intersection punctures. This gives a 1–dimensional space of holomorphic
annuli with one boundary puncture on each component mapping to a0 and a respectively.
The other end of such a moduli space must correspond to a broken curve. Since the
orbit za is the only orbit or chord with action between a0 and a we find that the annulus
must break into two disks, one in the symplectization of Y connecting a0 to za and one
in W connecting za to a. Counting curves in the boundary shows that (B) holds for
1–word orbits za.
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The claim for 2–letter word chords w of � can be proved in a similar way by gluing
the strip connecting a0

1
to a1 to that connecting a0

2
to a2 at a Lagrangian intersection

puncture. Studying the boundary of the resulting 1–dimensional moduli space one
finds one disk in the symplectization of Y connecting a0

1
a0

2
to w and one disk in W

connecting w to a1a2 .

The general case then follows by applying this argument inductively: self-gluing of
a disk from a chord w0 of � to the corresponding word of chords w gives a disk
from the orbit zw to w , and gluing the basic strip connecting a chord c0 of � to the
corresponding chord c of ƒ to the disk connecting w0 to w gives a disk connecting
the chord of � corresponding to the word cw to the word cw .

7 Examples and applications

7.1 Legendrian unknots

Assume that ƒ� @X0 is a Legendrian sphere. Then LHA.ƒ/ is a unital algebra with
unit e corresponding to the empty word of Reeb chords. For simplicity, we write 1

instead of e for the empty word of Reeb chords in this case.

The Legendrian unknot ƒU �R2n�1 D J 1.Rn�1/ is depicted in Figure 8. It has one
Reeb chord a with grading jaj � 1; see Ekholm, Etnyre and Sullivan [19]. Using an
adapted almost complex structure J0 on J 1.Rn�1/�RD T �Rn�1�C induced from
the standard complex structure on Cn�1D T �Rn�1 , the moduli space MR2nC1

ƒU
.aI¿/

of J0 –holomorphic disks with positive puncture at a and boundary on ƒU �R is
C 1 –diffeomorphic to Sn�2�R and the boundary evaluation map to ƒU has degree 1.
(For n D 2, there is an orientation issue here: the degree is one provided we use
the orientation on the moduli space induced by the null-cobordant spin structure on
ƒU � S1 .)

The algebra LHA.ƒU / is then the algebra on one generator

LHA.ƒU /DQŒa�

with trivial differential da D 0, where we write d D dLHA . We next describe the
computation of LH cyc.ƒU / and LH Ho.ƒU /. Note that LHOC.ƒU / can be identified
with the vector space generated by the set of monomials fakg1

kD1
.

Since jaj D n� 1 we find that .a2j /D 0 in LH cyc.ƒU / if and only if n is even. The
grading of an element .w/ in LH cyc.ƒU / is given by j.w/j D jwj. Thus, if n is odd
then LH cyc.ƒU / is as in Table 1, and if n is even then it is as in Table 2.
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x1

xn�1

z

a

Figure 8. The front of the Legendrian unknot, ie the projection of ƒU to
J 0.Rn�1/ , .x1; : : : ;xn�1/ are coordinates on Rn�1 and z is a coordinate
for the function values of 0–jets.

Degree Generator

n� 1 .a/

2n� 2 .a2/

:::
:::

k.n� 1/ .ak/

:::
:::

Table 1. The complex
LH cyc.ƒU / for n odd. The
differential on the complex
is trivial.

Degree Generator

n� 1 .a/

3n� 3 .a3/

:::
:::

.2kC 1/.n� 1/ .a2kC1/

:::
:::

Table 2. The complex
LH cyc.ƒU / for n even.
The differential on the
complex is trivial.

Decorated cyclically composable monomials are in 1–1 correspondence with decorated
monomials. We write yak and {ak for the class of the monomial a

k
� � � a decorated with

a “hat” and with a “check” respectively. If w is a monomial of Reeb chords and yw ( {w )
denotes w with one variable decorated with “hat” (“check”) then the grading on the
complex LH Ho.ƒU / is j ywj D jwjC1 and j {wj D jwj and the complex LH Ho.ƒU / is
as in Tables 3 and 4 when n is odd and even respectively.

We next consider ƒU �R2n�1�S2n�1D @B2n where we include ƒU by embedding
it in a (small) Darboux chart. Consider the contact form on S2n�1 induced by looking

Geometry & Topology, Volume 16 (2012)



352 Frédéric Bourgeois, Tobias Ekholm and Yasha Eliashberg

Degree Generator

0 �

n� 1 {a

n ya

2n� 2 {a2

2n� 1 ya2

:::
:::

k.n� 1/ {ak

k.n� 1/C 1 yak

:::
:::

Table 3. The complex
LH Ho.ƒU / for n odd. The
differential on the complex
is trivial.

Degree Generator

0 �

n� 1 {a

n ya

2n� 2 {a2

"

2n� 1 ya2

:::
:::

.2k � 1/.n� 1/ {a2k�1

.2k � 1/.n� 1/C 1 ya2k�1

2k.n� 1/ {a2k

"

2k.n� 1/C 1 ya2k

:::
:::

Table 4. The complex
LH Ho.ƒU / for n even. The
differential on the complex
is as indicated by the arrows.

at it as the ellipsoid

E D

�
.z1; : : : ; zn/ 2Cn

W

nX
jD1

jzj j
2

aj
D 1

�
;

where aj are real numbers with a1 > a2 > � � �> an > 0 which are linearly independent
over Q. To facilitate calculations we take a1 D 1 and aj � 1 for j ¤ 1. Reeb orbits
in E correspond to intersections of E with the complex coordinate lines. Furthermore,
the Conley–Zehnder index increases linearly with the length of Reeb orbits and thus
for homology computations we may take aj , j > 1 sufficiently large and consider
input only from the shortest Reeb orbit in the z1 –line and its iterates. If 
 k denotes

Geometry & Topology, Volume 16 (2012)



Effect of Legendrian surgery 353

the k –th multiple of the shortest orbit then its Conley–Zehnder index satisfies

j
 k
j D n� 1C 2k:

Consider next the inclusion of ƒU into a small Darboux chart located near the shortest
Reeb orbit. Straightforward calculation shows that the Reeb flow on S2n�1 outside
the Reeb orbit preserve the n–tori which are products of circles in the coordinate
planes and that the Reeb flow in such an n–torus is translation along a vector with
components which are independent over Q. It follows that if we choose the Darboux
chart sufficiently small then the only Reeb chords of ƒU which have action (and hence
index) below a given constant is the one completely contained in the chart. As above
we denote it a.

We first note that for grading reasons the augmentation induced by the filling of S2n�1

is trivial. Furthermore, a straightforward monotonicity argument shows that any holo-
morphic disk which contributes to the contact homology differential of ƒU � S2n�1

must be entirely contained in the Darboux chart. In particular it follows that the complex
LH Ho.ƒU / above computes the symplectic homology of the manifold which results
from attaching a handle to B2n along ƒU . Attaching a Lagrangian handle to B2n

along ƒU gives the manifold T �Sn . Using Table 3 we get

SHj .T
�S2mC1/D

8̂̂̂̂
<̂
ˆ̂̂:

Q for j D 0;

Q for j D 2rm; r D 1; 2; : : : ;

Q for j D 2rmC 1; r D 1; 2; : : : ;

0 otherwise.

and similarly using Table 4 we find

SHj .T
�S2m/D

8̂̂̂̂
<̂
ˆ̂̂:

Q for j D 0;

Q for j D r.2m� 1/; r D 1; 3; 5 : : : ;

Q for j D r.2m� 1/C 1; r D 1; 3; 5; : : : ;

0 otherwise,

We consider next the linearized contact homology of @.T �Sn/. The complex which
gives that homology is CH.B2n/˚LH cyc.ƒU /. The grading of the generators of
CH.B2n/ is

j
 k
j D n� 1C 2k

and of the generators of LH cyc.ƒU /

j.aj /j D j .n� 1/:
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Thus, if nD 2mC1 is odd then all generators have even degree and the differential on
the complex vanishes. We find that

f
 k ; .aj /g1j ;kD1

gives a basis of
C H.T �S2mC1/:

If on the other hand nD 2m is even then .a2j /D 0 2LH cyc.ƒU / since jaj D n� 1

is odd. A nontrivial differential on CH.B2n/˚LH cyc.ƒU / would have to take an
orbit 
 k to a cyclic word .al/ and we would have

n� 1C 2k � l.n� 1/D 1:

Hence l is even and .al/D 0. We conclude that there is no nontrivial differential in
this case either and that

f
 k ; .a2j�1/g1j ;kD1

gives a basis of
C H.T �S2m/:

Finally, we consider the reduced symplectic homology. The corresponding complex
is SHC.B2n/˚LH HoC.ƒU /. The complex SHC.B2n/ is generated by Reeb orbits
with critical points on them. We write y
 k and {
 k for 
 k with a maximum and
minimum, respectively. Then

j{
 k
j D n� 1C 2k;

jy
 k
j D n� 1C 2kC 1:

Furthermore, there is a holomorphic curve with marker connecting {
 kC1 to y
 k and
we find that the reduced symplectic homology is given by

SHCj .T
�Sn/D SHj .T

�Sn/

if j ¤ 0; nC 1 and that

SHC
nC1

.T �Sn/DQ; SHC
0
.T �Sn/D 0:

Remark 7.1 Note that SH.T �Sn/ is a ring with unit where the grading of the unit
is n. This implies that the element in LH Ho.ƒU / which represents the unit is .ya/. Here
it can be noted that a represents the fundamental class of the linearized Legendrian
contact homology of ƒU ; see Ekholm, Etynre and Sullivan [17]. Generally, the
fundamental class of Legendrian contact homology seems intimately related to the
multiplicative unit in symplectic homology.
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Remark 7.2 More generally, the structure of the complex SH.X /˚LH Ho.ƒ/ can
be used to prove the chord conjecture for Legendrian spheres ƒ in the boundary of
a symplectic manifold X0 with vanishing symplectic homology: SH.X0/ D 0. If
the manifold resulting from handle attachment along ƒ has nonvanishing symplectic
homology, then there must exists some element in LH Ho.ƒ/ which is homologous
to the fundamental class of the manifold (the minimum of the Morse function). For
grading reasons it is not � . Thus there is a chord in this case. (As well as a holomorphic
curve with marker connecting an orbit decorated by a minimum to a cyclic word
decorated by a maximum. For the unknot it can be found explicitly.) If on the other
hand 1D 0 then something in LH Ho.ƒ/ must be mapped by the differential to � and
there is again a chord.

7.2 Vanishing results

We show that if the equation dc D 1 holds for some Reeb chord c in the Legendrian
homology algebra LHA.ƒ/, where we write d D dLHA , then it follows that surgery
along ƒ does not change symplectic homology: SH.X / D SH.X0/, where X is
the result of attaching a handle along ƒ. To this end we use a left-right module over
LHA.ƒ/ defined as follows. Let C denote the set of Reeb chords of ƒ and let M.ƒ/

denote the left-right LHA.ƒ/–module generated by

� hat-decorated Reeb chords yc for c 2 C , where jycj D jcjC 1;

� an auxiliary variable x of grading jxj D 0.

Define dM W M.ƒ/!M.ƒ/, where

� dM acts as the algebra differential on coefficients: dM cDdLHAc , where dLHA

is the contact homology differential;

� dM yc D xc � cx � S.dM c/, where S is as in the differential on LH HoC.ƒ/

(see (4-1));

� dM x D 0.

Consider the quotient M cyc.ƒ/DM.ƒ/=� where

c1 � � � cm u b1 � � � bl � .�1/jcj.jubj/u b1 � � � blc1 � � � cm:

Here cj 2 C , j D 1; : : : ;m, bj 2 C , j D 1; : : : ; l , u D ya, a 2 C or u D x , and
cD c1 � � � cm , bD b1 � � � bl . Then M cyc is a K–module and the map dM descends to
a map on M cyc.ƒ/ which we still denote dM .
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Lemma 7.3 (Ekholm–Ng) The map dM is a differential. The homology of M cyc.ƒ/

is isomorphic to the homology of LH Ho.ƒ/. The isomorphism takes x to � , takes
words of the form c1 � � � cj xcjC1 � � � cm to c1 � � � }cj cjC1 � � � cm and takes words of the
form c1 � � � cj ycjC1cjC2 � � � cm to the corresponding hat-decorated monomial word.

It is straightforward to check that stable tame isomorphisms of LHA.ƒ/ induces
isomorphisms on the homology of M.ƒ/. Consequently, Lemma 7.3 implies that
Legendrian spheres with stable tame isomorphic DGAs give rise to symplectic manifolds
with isomorphic symplectic homologies.

Remark 7.4 The left-right module M.ƒ/ also has a geometric interpretation as
follows. Consider the Legendrian sphere ƒ0 obtained by pushing ƒ slightly off of
itself using the Reeb flow. Then we introduce a Morse–Bott situation with one short
Reeb chord connecting ƒ to ƒ0 starting at each point of ƒ. Perturbing out of this
degenerate situation using a Morse function on ƒ with one maximum and one minimum,
we find that the Reeb chords connecting ƒ to ƒ0 are the following: one chord yc near
each chord c of ƒ and two short chords which we denote by x and y where x

corresponds to the minimum of the Morse function and y to the maximum.

Consider next the Lagrangian n–plane L in the cobordism W which looks like
ƒ� .�1; 0� in the negative end of W . In order to continue the shift of ƒ along all
of L we extend the Morse function on ƒ to a Morse function on L with exactly one
maximum. Letting L0 denote the shift of L determined by this function we find that
L\L0 consists of one transverse double point which we take to lie near the critical
point � in the added handle and which we denote by z .

Consider the module FH.L;L0/ generated by Reeb chords starting on ƒ and ending
on ƒ0 and by the intersection point z DL0\L which is a left LHA.ƒ/–module and
right LHA.ƒ0/–module. This complex has a differential dFH which when acting
on a mixed chord yc counts holomorphic disks with boundary on ƒ [ƒ0 , positive
puncture at yc and exactly one mixed negative puncture, which when acting on z counts
holomorphic disks in W with one puncture at z and exactly one mixed negative
puncture, and which acts as dLHA on the coefficients. We call this complex the Floer
homology of L with coefficients in LHA.ƒ/. (Similar constructions were considered
by Ekholm [16] and the invariance of the homology this complex under Legendrian
isotopies can be deduced from there.)

It is straightforward to check that

dFH .z/D y:
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Indeed, the holomorphic strip corresponds to a flow line from the interior maximum
to the maximum on the boundary and an action argument shows this strip is unique.
Observing that there is a canonical isomorphism LHA.ƒ/�LHA.ƒ0/, this implies
that FH.L;L0/ is quasi-isomorphic to M.ƒ/. In particular, if the homology or
FH.L;L0/ vanishes so does the homology of M.ƒ/. It follows that the homology of
M cyc.ƒ/ vanishes as well.

If there exists c 2LHA.ƒ/ with dcD 1 then the homology of FH.L;L0/ vanishes: if
w is any cycle then dFH cw D w . It thus follows from Remark 7.4 that the homology
of M.ƒ/ vanishes and hence by Lemma 7.3 that LH Ho.ƒ/D 0. The surgery exact
triangle for symplectic homology then shows that if a Legendrian sphere ƒ in the
boundary of a Weinstein domain has a Reeb chord c with dc D 1, then attaching a
handle along it does not change the symplectic homology.

We use this result to construct exotic Weinstein symplectic structures on T �Sn .7

Note that attaching a Weinstein handle to B2n along a Legendrian sphere ƒ in S2n�1

produces a Weinstein manifold diffeomorphic to T �Sn and with the standard homotopy
class of its almost complex structure, provided that the knot is topologically trivial,
its Thurston–Bennequin invariant is equal to tb.ƒU /D .�1/n�1 , and it is Legendrian
regularly homotopic to the Legendrian unknot ƒU . The Legendrian spheres described
below have these properties, while they have chords c with dc D 1, and hence the
corresponding symplectic homology vanishes. Thus this construction produces exotic
Weinstein structures on T �Sn .

Consider the Legendrian sphere ƒT depicted in Figure 9. Note that each of the shown
Reeb chords gives rise to a Morse–Bott manifold Sn�2 of Reeb chords for ƒT . After
perturbation with a function with only one max and one min, each Morse–Bott sphere
gives two Reeb chords. Thus, using self-evident notation, the chords of ƒT are a

(similar to the Reeb chord of ƒU ), cmin; cmax , emin
j ; emax

j , j D 1; 2; 3, and bmin
k
; bmax

k
,

k D 1; 2. Their gradings are as follows:

jaj D jcmax
j D jbmax

1 j D jb
max
2 j � 1;

jemax
j j D n� 2;

jcmin
j D jbmin

1 j D jb
min
2 j D 1;

jemin
j j D 0:

7The first examples of exotic symplectic Weinstein structures on T �Sn were constructed by M McLean
in [35] and also by M Maydanskiy and P Seidel in [34]. We refer the reader to these papers and also to
Abouzaid and Seidel [2] as a guide on how this result can be also used for construction of other exotic
symplectic objects.
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x�

z

z y

x x

c
e1e2e3

b1

b2

Figure 9. The Legendrian sphere ƒT . The lower picture shows the front of
ƒT by showing its intersection with any 2–plane spanned by a unit vector
� 2 Rn�1 and a unit vector in the z–direction. The upper two pictures
indicates how Reeb chords arise.

In particular, X
c2C.ƒT /

.�1/jcj D .�1/jaj

and we conclude that the self linking number of ƒT agrees with that of ƒU .

Let us verify that ƒT is Legendrian regularly homotopic to ƒU . Figure 10 shows the
fronts of a Legendrian regular homotopy connecting the knot used to construct ƒT

to a straight line. Using the instances of this regular homotopy in the same way that
the original knot was used to construct ƒT gives a Legendrian regular homotopy
connecting ƒT to ƒU .

Finally, we show that dbmin
k
D 1, k D 1; 2. To this end, we use the characterization of

rigid disks in terms of Morse flow trees; see Ekholm [15]. The flow trees in question
start at bmin

k
, k D 1; 2. Since these Reeb chords correspond to local minima of the

height between sheets no flow line goes out, bmin
k

splits into two flow lines each of
which ends in the cusp-edge; see Figure 11.

We conclude that surgery on ƒT gives exotic symplectic structures on T �Sn for n> 3.
For nD 2, the Legendrian knot in Figure 9 is knotted and the surgery does not give
the same manifold as the surgery on the unknot.
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Figure 10. A Legendrian regular homotopy. The first step involves crossing
changes (corresponding to self tangencies of the front), the second step is an
isotopy which consists of three consecutive first Reidemeister moves.

x�

z

b1 b2

Figure 11. Rigid flow trees giving dbmin
k
D 1

7.3 Surgery on the Chekanov knots give different contact manifolds

Consider the two Legendrian knots (see Chekanov [10]) ƒa and ƒc in R3 D J 1.R/
depicted in Figure 12. As in Section 7.2 we write 1 for the empty word of Reeb chords
in LHA.ƒ�/, � 2 fa; cg.

Their Legendrian homology DGAs are as follows: The algebra LH.ƒa/ is generated
by a1; : : : ; a9 of gradings

jaj j D 1; 1� j � 4; ja5j D 2; ja6j D �2; jaj j D 0; j � 7:
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a2a1

a4a3

a5

a6

a9

a8

a7

c2c1

c4

c3

c5

c6
c9

c8

c7

Figure 12. Projections of the Chekanov knots into T �RDR2 , ƒa left and
ƒc right

The differential is (up to signs which are of no importance for our argument below)
given by

da1 D 1C a7C a7a6a5;

da2 D 1C a9C a5a6a9;

da3 D 1C a8a7;

da4 D 1C a8a9;

da5 D @a6 D @a7 D @a8 D @a9 D 0:

The algebra LH.ƒc/ is generated by c1; : : : ; c9 of gradings

jcj j D 1; 1� j � 4; jcj j D 0; j � 5:

Consider now inclusions of ƒa and ƒc respectively in the sphere S3 in a small coor-
dinate chart as above. The complex computing the linearized contact homology of the
manifold which results from Legendrian surgery on ƒ� is then CH.B4/˚LH cyc.ƒ�/.
In particular, the gradings of the generators of CH.B4/˚LH cyc.ƒc/ are nonnegative.
On the other hand, the generator .a6/ of LH cyc.ƒa/ has degree �2. We show that it
survives in homology. To see this, we use an argument suggested by L Ng. Consider
the algebra ADQha6i and the map of differential graded algebras �W LHA.ƒa/!A

given by

�.a6/D a6; �.a7/D �.a9/D 1; �.a8/D�1; �.aj /D 0; j < 6:

This map induces a map LH cyc.A/!Acyc which is nontrivial on homology.
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Recall from the remark on linearizations in Section 3.1 that the collection of linearized
Legendrian homologies for all augmentations is a contact invariant. The above argument
shows that, for some augmentation, the linearized contact homology of the result of
ƒa –surgery on S3 has a generator in degree �3 and that, for any augmentation, all
generators of the linearized contact homology of the result of ƒc –surgery on S3

have degree at least �1. Since these properties are independent of the choice of an
augmentation, we conclude that the contact manifolds which arise, respectively, through
surgery on ƒa and ƒc are different.

8 Case of a Lefschetz fibration

Symplectic Lefschetz presentation of a Weinstein manifold can be viewed as a special
case of Weinstein handlebody presentation.

8.1 Lefschetz fibrations and Lefschetz type Legendrian surgeries

Given two Liouville manifolds, .X1; �1/ and .X2; �2/, the product Liouville structure
is .X1�X2; �1˚�2/. Consider R2DC with coordinates uC iv . The standard Liou-
ville structure on R2 is given by the Liouville form 1

2
.u dv� v du/. The stabilization

.X st; �st/ of a .2n�2/–dimensional Liouville manifold .X; �/ is the product of X

and R2 with the standard Liouville structure:

.X st; �st/D .X; �/�
�
R2; 1

2
.u dv� v du/

�
:

Let Y D @X be the ideal contact boundary of .X; �/. We make a special choice of
contact form on the ideal boundary Y st of X st as follows. Let H W X ! Œ0;1/ be a
smooth exhausting function which is equal to 0 on xX , and which, in the end E , is
of the form h.s/, where s is the parameter of the flow ˆZ of the Liouville vector
field Z , and h0.s/ > 0. Consider the function H stW X �R2!R defined by

H st.x; w/DH.x/Cjwj2; x 2X; w D uC iv 2C:

Let xX stD xX st
" WD f.x; w/WH

st.x; w/� "g. Then xX st is star-shaped with respect to the
flow ˆZ st of the Liouville vector field Zst corresponding to the Liouville form �st .
Hence X st is the completion of the Liouville domain xX st and we can identify Y st

with @ xX st . Note that the projection X �R2!X maps xX st onto xX" D fH � "g �X .
Consider the decomposition Y st D Y st

1
[Y st

2
, where Y st

1
D Y st\ . xX �C/ and Y st

2
D

Y stnint Y st
1

. Note that Y st
1

splits as xX�S1 and that the induced contact form ˛D�stjY st
1

takes the form �C " dt where t 2R=2�Z.
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We say that a collection of parameterized Legendrian spheres ƒ1; : : : ; ƒk in Y st
1
D

xX �S1 form a basis for Lefschetz type Legendrian surgery if they satisfy the following
conditions.

� For j D 1; : : : ; k , the projection of ƒj to the xX –factor is an embedded sphere.

� For j D 1; : : : ; k , the projection of ƒj to the S1 –factor is contained in an
arc �j � S1 and �i \�j D¿ if i ¤ j . For convenient notation, we choose
numbering so that �1; : : : ; �k is the order in which the arcs appear if we start
at �1 and traverse the circle in the counter-clockwise direction.

The connection of this construction with Lefschetz fibration presentations is as follows.

Proposition 8.1

(1) Let ƒ1; : : : ; ƒk � Y st
1

be a basis for Lefschetz type Legendrian surgery. Let
L1; : : : ;Lk denote the Lagrangian spheres obtained by projecting ƒ1; : : : ; ƒk

to xX �X . Then the result yX of attaching Weinstein handles along ƒ1; : : : ; ƒk

is symplectomorphic to the Lefschetz fibration with fiber X determined by the
vanishing cycles L1; : : : ;Lk .

(2) Conversely, if L1; : : : ;Lk are exact Lagrangian spheres in xX which are the
vanishing cycles of a Lefschetz fibration, then L1; : : : ;Lk can be lifted to Y st

as a basis ƒ1; : : : ; ƒk of Lefschetz type Legendrian surgery. Moreover, " > 0

in the definition of xX st
" can be chosen arbitrarily small.

Let us comment here on the second statement. The Liouville form � is exact on the
vanishing cycles L1; : : : ;Lk : �jLj D dFj , j D 1; : : : ; k . If

(8-1) kFjk Dmax Fj �min Fj <
2�"

k

then the vanishing cycle Lj lifts to the Legendrian spheres

ƒj D f.x; t/ 2X �R=2�Z W x 2Lj ; t D�Fj .x/CCj g;

where Cj is a constant, and for an appropriate choice of constants C1; : : : ;Ck , the
Legendrian spheres ƒ1; : : : ; ƒk form a basis of Lefschetz type Legendrian surgery.

As above, let Z be the Liouville vector field on X dual to the Liouville form �

and let ˆs
Z W X !X denote the corresponding time s flow. Then .ˆ�s

Z /��D e�s�,
and hence, replacing the vanishing cycles Lj by ˆ�s

Z .Lj /, which in view of the
exactness condition are Hamiltonian isotopic to Lj , we can make the C 0 –norms kFjk,
j D 1; : : : ; k sufficiently small so that the bound (8-1) holds for any given " > 0.
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8.2 Legendrian homology algebra and Fukaya–Seidel categories

Let ƒ1; : : : ; ƒk � Y st
1

be a basis for Lefschetz type Legendrian surgery and let
L1; : : : ;Lk � X be their Lagrangian projections. We assume that for i ¤ j , Li

and Lj intersect transversely. We also can assume, without loss of generality, that
the intervals �1; : : : ; �k which contain projections of the Legendrian spheres to the
S1 –factor of Y st

1
are all contained in an arc Œ0; �

2
� � S1 (see (2) in Proposition 8.1

above).

8.2.A Generators of the Legendrian algebra The Reeb vector field of the form
˛ D �stjY st

1
D �C " dt is proportional to @

@t
. Therefore, all Reeb orbits in Y st

1
are

closed and we are in a Morse–Bott situation. J Sabloff [36] has developed a formalism
for describing Legendrian homology algebras in S1 –bundles which is appropriate for
this situation and which we discuss below8.

The generators of the Legendrian homology algebra are the Reeb chords of the Legen-
drian link ƒDƒ1[� � �[ƒk , which can be described as follows. For convenience we
choose a trivialization of the canonical bundle on X st which on xX �C is induced by
the projection xX �C! xX from a trivialization of the canonical bundle of xX . We first
describe mixed chords with their endpoints on different components. Let i < j and
recall that we have �j � Œ0;

�
2
� for j D 1; : : : ; k . Each intersection point a 2Li \Lj

corresponds to infinitely many Reeb chords connecting ƒi to ƒj and ƒj to ƒi . We
use the following notation:

(8-2) !
q .p/a ; p D 0; 1; 2; : : : ;

denotes the Reeb chord corresponding to a which connects ƒi to ƒj and which passes
p times through the point � 2 S1 , and similarly,

(8-3)  
q .p/a ; p D 1; 2; 3; : : : ;

denotes the Reeb chord corresponding to a which connects ƒj to ƒi and which passes
p times through the point � 2 S1 . We will refer to the integer p as the multiplicity of
the chord. Increasing the multiplicity of a chord by 1 increases its grading by 2. It is
convenient to organize all the chords corresponding to a into two power series. We
write

!qa D

1X
pD0

!
q .p/a T p and  qa D

1X
pD1

 
q .p/a T p;

8The authors thank J Sabloff for adjusting his formalism specially for our purposes.
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where T is a formal variable. If jaj denotes the grading of the shortest Reeb chord
corresponding to a then the grading of these generators are

j
!
q .p/a j D jajC 2p; j

 
q .p/a j D .n� 3/� jajC 2p:

Second, we describe pure chords which connect a component to itself. For each ƒi ,
there is a sphere’s worth of chords of given multiplicity connecting ƒi to itself. In the
spirit of Morse–Bott formalism (see the sketched proof of Proposition 8.5 below for a
more detailed description), we fix two points mi˙ on Li and associate with them two
series of chords,

qi˙ D

1X
pD1

q
.p/
i˙ T p:

Together with idempotents e1; : : : ; ek corresponding to the empty words of pure
chords, the mixed and pure chords described above are all the generators of the algebra
LHA.ƒ/. The gradings of the pure generators are

jq
.p/
i� j D 2p� 1; jq

.p/
iC j D 2p� 1C .n� 1/; jei j D 0; i D 1; : : : ; k:

Let ID
S

i<j Li\Lj be the set of all intersection points between distinct components
L1; : : : ;Lk . Write

IC1 WD I [fm1�; : : : ;mk�g; I�1 WD I [fm1C; : : : ;mkCg:

Remark 8.2 In our “Morsification” scheme explained below in the sketched proof
of Proposition 8.5, mi� and miC will correspond, respectively to the minimum and
the maximum of an auxiliary Morse function on Li . The sign ˙ in I˙1 refers to
conditions at the positive and negative ends of the symplectization. In the Morse–Bott
formalism prescribing an image of a point at C1 means constraining it to a minimum,
while at �1 to a maximum. This is the reason for the apparent discrepancy in the
above notation.

8.2.B Admissible words and monomials We say that a word

w D a0.Li1
/a1.Li2

/a2 � � � ar .LirC1
/;

with a0 2 IC1 and a1; : : : ; ar 2 I�1 is admissible if the following conditions hold:

� if irC1 ¤ i1 then a0 2Li1
\LirC1

, otherwise a0 Dmi1� ;

� if ij ¤ ijC1 , j D 1; : : : ; r , then aj 2Lij \LijC1
, otherwise aj DmijC .
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We associate two monomials Qw and qw to an admissible word w as follows. Let
w D a0.Li1

/a1.Li2
/a2 � � � ar .LirC1

/. The monomial Qw is the monomial in the
variables ˚

qiC;
 qa;
!qa

	
1�i�kI a2I

obtained from w by removing a0 and all .Lij / and replacing each aj , j > 0 by !qaj

if ijC1 < ij , by  qaj if ijC1 > ij , or by qijC if ijC1 D ij . We write

Qw D
1X

pD0

Q.p/
w T p;

and note that each Q
.p/
w is a sum of monomials in the variables

fq
.p/
iC ;

 
q .p/a ;

!
q .p/a g1�i�kI a2II p�0:

The monomial qw is defined as

qw D

8̂<̂
:

qj� if a0 Dmj� 2 fm1�; : : : ;mk�g;
!qa if a0 D a 2 I and irC1 < i1;
 qa if a0 D a 2 I and irC1 > i1:

We write

qw D
1X

pD0

q.p/w T p:

Our next goal is to define the moduli spaces which enter in the expression for the
differential dLHA on LHA.ƒ/.

8.2.C Generalized holomorphic disks We first define the notion of generalized
holomorphic disks. Let T be a fat rooted tree, where the word “fat” means that the
edges adjacent to a given vertex are cyclically ordered. Let us orient the edges away
from the root, so that any vertex in T which is not the root has one incoming edge
and several outgoing edges. If v is a vertex of a fat rooted tree we write o.v/ for the
number of outgoing edges at v . Fix Morse functions

(8-4) fi W Li!R; i D 1; : : : ; k;

with exactly two critical points: maximum at miC and minimum at mi� . We write f
for the function on the disjoint union of the components of L such that f jLj D fj ,
j D 1; : : : ; k and call it the chord function.

A generalized holomorphic disk with underlying fat rooted tree T consists of the
following data:
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.v/ for each vertex v 2 T there is a holomorphic disk uvW .D; @D/! .X;L/ with
boundary punctures of two types, external and internal; if v is the root then uv
has one distinguished external boundary puncture �C ;

.e/ for each edge e connecting vertices v1 and v2 there are interior punctures
�v1;e and �v2;e of the holomorphic disks uv1

and uv2
and a component Lj

of L such that uv1
.�v1;e/ and uv2

.�v2;e/ both lie in Lj , and an orientation
preserving diffeomorphism of the edge e onto a nonzero length segment of a
gradient trajectory of fj connecting uv1

.�v1;e/ and uv2
.�v2;e/. Each internal

puncture corresponds to the endpoint of an edge in T and the internal punctures
corresponding to different edges are disjoint.

We think of a generalized holomorphic map as a map of a collection of disks joined by
line segments according to the underlying fat rooted tree and write uW �! .X;L/. Note
that there is a canonical “counter-clockwise” order of the external boundary punctures
of any generalized holomorphic disk uW �! .X;L/, where the distinguished puncture
on the root holomorphic disk is chosen as the first one. See Figure 13.

C

�rf

�rf

�rf

�rf

Figure 13. A generalized holomorphic disk. The C sign indicates the distin-
guished puncture in the root disk.

8.2.D Moduli spaces of generalized holomorphic disks for the differential Con-
sider an admissible word w D a0.Li1

/a1.Li2
/a2 � � � ar .LirC1

/. A maximal subword
of w of the form mjC.Lj /mjC.Lj / � � �mjC.Lj / will be called an mjC–block. We
will associate with w generalized holomorphic disks with distinguished external (posi-
tive) puncture corresponding to a0 and external (negative) punctures corresponding
to aj , 1 � j � r . The description of the differential requires moduli spaces where
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punctures corresponding to letters in the same block may collide. This is the reason for
the jet conditions that appear below.

Associate to w the half open interval .0; r �. Let †.w/ denote the set of all partitions

(8-5) .0; r �D

N.�/[
tD1

.st�1; st �

of .0; r � into half open intervals with the following properties:

� all interval endpoints st , t D 0; : : : ;N.�/ are integers;

� if aj 2 I then j D st for some t and st�1 D st � 1 (ie if aj corresponds to an
intersection point then it has a corresponding interval in � of length equal to 1);

� if the length of the interval .st�1; st � in � is > 1 then there exists j 2 f1; : : : ; kg

such that for any two integers s0; s00 2 .st�1; st �, the letters as0 and as00 belong
to the same mjC–block of w .

If � 2†.w/ then, as indicated above, we write N.�/ for the number of intervals in � .
We write `.t/ for the length of the interval .st�1; st �, 1� t �N.�/. Thus `.t/� 1,
t D 1; : : : ;N.�/, and

PN.�/
tD1

`.t/D r:

Choose for each j D 1; : : : ; k a germ at the point mjC of a smooth oriented 1–
dimensional submanifold �j �Lj . Given � 2†.w/ we define the (noncompactified)
moduli space Mw;� of generalized holomorphic disks in X with N.�/C 1 external
boundary punctures denoted by zC; zs1

; : : : ; zsN.�/
,

uW .�; @�/!
�
X;LD

Sk
iD1 Li

�
;

which satisfies the following conditions:

(1) u maps the distinguished puncture zC to the intersection point a0 if a0 2 I or
to the marked point a0 Dmi� if a0 2 fm1�; : : : ;mk�g;

(2) if asj 2 I , j 2 f1; : : : ;N.�/g then the map u maps the puncture zsj to the
intersection point asj ;

(3) u maps the boundary arc bounded by zC and zs1
to Lis1

, that bounded by zsj

and zsjC1
to LsjC1

, and that bounded by zsN .�/ D zr and zC to LirC1
;

(4) if asj D miC then u.zsj / D miC and if, in addition `.j / D sj � sj�1 > 1

then the derivative u0.zsj / does not vanish and defines the given orientation
of �i , and furthermore, the germ of the curve uj@D is .`.j /�1/–tangent to �i at
u.zsj /DmiC (ie fixing a 1–submanifold x�i �Li which represents the germ �i

at miC , the curve uj@D is contained in x�i up to order `.j /� 1 at miC ).
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Write
Mw WD

[
�2†.w/

Mw;� :

The moduli space Mw can be compactified. The boundary strata include, besides
the standard Deligne–Mumford–Gromov type strata corresponding to nodal disks also
strata, where the derivative u0.zsj / vanishes at some of the punctures and strata where
the length of gradient segments degenerates to 0. We denote the union of these strata
by Msing

w . Details about Msing
w will not be important below, what will be important

is that generically one has dim.Msing
w / < dimMw , and hence if dim.Mw/D 0 then,

under our transversality assumption, we have Msing
w D¿ and Mw is compact.

Lemma 8.3 below, which follows from the implicit function theorem, clarifies the mean-
ing of the moduli space Mw . For each i D 1; : : : ; k let us consider a parameterization
z�i W .�1; 1/!Li of the curve �i such that z�i.0/DmiC and the vector z�0i.0/ defines
the given orientation of �i . Let Ni.w/ be the maximal length of an miC–block in w .
Take Ni.w/ points 0� t1

i < � � �< t
Ni .w/
i < 1 and for a ı 2 .0; 1/ consider the points

m
j ;ı
iC D

z�i.ıt
j
i /; j D 1; : : : ;Ni.w/.

We say that the boundary punctures �1; : : : ; �r corresponding to an miC–block con-
stitutes an miC–cluster. Define the moduli space Mı

w;� by replacing condition (4)
above by:

.4ı/ if �j is the j –th point in an miC–cluster then u.�j /Dm
j ;ı
iC

(see Figure 14). Note that the formal dimensions satisfies dim.Mı
w;� /D dim.Mw;� /

for any � 2†.w/.

�1�2 �3 �4 �5

m
1;ı
iC

m
2;ı
iC

m
3;ı
iC

Figure 14. The top picture shows the boundary punctures of two clusters in
the source and the bottom picture shows the corresponding picture in the
target.

Lemma 8.3 Suppose that Mw is 0–dimensional, regular and Msing
w D¿. Then for

any � 2†.w/ and for all sufficiently small ı > 0 the moduli space Mı
w;� is regular

and diffeomorphic to Mw;� .
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The following proposition describes the differential d D dLHA .

Remark 8.4 As mentioned above, the perturbation scheme for dim.L/ D n � 1

used to compute the differential involves Morse theory on the .n�1/–dimensional
sphere Sn�1 . Here the lowest dimensional case nD 2 is spacial since Morse flow lines
have codimension 0 in S1 . For this reason we us the following constructions when
nD 2. Consider LDL1[ � � � [Lk . The orientation of Lj together with the choice
of the point mjC on Lj induces an order on the intersection points a 2 I which lie in
Lj . If a and b are intersection points in Lj we write a>j b if a precedes b in this
order. We next introduce a global order on I as follows for a; b 2 I : Let a 2Li \Lj ,
i < j and b 2Ls \Lt , s < t then

a> b if

8̂<̂
:

j > t or,

j D t and i > s; or,

j D t; i D s and a>j b:

Furthermore we will use the following subsets of I : for 1� i � k , let

I<i D fa 2 IW a 2Li \Lj ; j < ig;

I>i D fa 2 IW a 2Li \Lj ; j > ig;

Ii D I<i [ I>i :

Proposition 8.5 The differential d can be written as d D dconstC dMBC dh , where
the summands satisfy the following.

(i) If a 2 I then

dconst
!qa D dconst

 qa D 0:

For 1� i � k ,

dconst q
.1/
i� D ei ; dconst q

.1/
iC D dconstq

.p/
i˙ D 0 for all p > 1:

(ii) For 1� i � k ,

dhqiC D 0;

and on other generators dh is determined by the moduli spaces Mw , w admissi-
ble, with dim.Mw/D 0 as follows: If the moduli space Mw is 0–dimensional
then every element in it contributes the term ˙Qw to dhqw .
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(iii) For 1� i � k , let us denote
(1) Suppose n> 2. Then

dMBqi� D qi�qi�;

dMBqiC D qi�qiCC .�1/n�1qiCqi�C

X
a2I<i

!qa
 qaC

X
a2I>i

 qa
!qa:

If a 2 I is an intersection point in Li \Lj , i < j , then

dMB.
!qa/D qj�

!qaC .�1/jaj�1!qaqi�;

dMB.
 qa/D qi�

 qaC .�1/.n�2/�jaj qaqj�:

(2) Suppose nD 2. Then

dMBqi� D qi�qi�;

dMBqiC D qi�qiC�qiCqi�C

X
a2I<i

!qa
 qaC

X
a2I>i

 qa
!qa

C

X
a2I<i

qiC
!qa
 qaC

X
a2I>i

qiC
 qa
!qa;

If a 2 I is an intersection point in Li \Lj , i < j , then

dMB
!qa D qj�

!qaC .�1/jaj�1!qaqi�

C .�1/jaj�1

� X
b2I<i ; b<a

!qa
!qb
 qbC

X
b2I>i ; b<a

!qa
 qb
!qb

�

�

� X
c2I<j ; c<a

!qc
 qc
!qaC

X
c2I>j ; c<a

 qc
!qc
!qa

�
;

dMB.
 qa/D qi�

 qaC .�1/jaj
 qaqj�

�

� X
b2I<i ; b<a

!qb
 qb
 qaC

X
binI>i ; b<a

 qb
!qb
 qa

�

C .�1/jaj
� X

c2I<j ; c<a

 qa
!qc
 qc C

X
c2I>j ; c<a

 qa
 qc
!qc

�
:

Here dconst is the contribution of disks which are not entirely contained in the sym-
plectization of the S1 –invariant part Y st

1
, dMB is responsible for the contribution of

gradient trees of auxiliary Morse functions on the spheres Lj which are used for the
“Morsification” of the Morse–Bott picture, and dh counts the contribution of generalized
holomorphic disks in Y st

1
. We sketch a proof of Proposition 8.5 in the next section.
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8.3 Sketch of proof of Proposition 8.5

To compute the differential one needs to count holomorphic disks in the symplectization
Y st �R. We first consider disks entirely contained in Y st

1
�R� Y st �R. Recall that

each intersection point a 2 I corresponds to two series !q .p/a , p D 0; 1; 2; : : : and
 
q
.p/
a , p D 1; 2; 3; : : : of mixed Reeb chords between distinct components of ƒ (see

(8-2) and (8-3)) and that each component Li of the Lagrangian L contributes with
Morse–Bott families fq.p/x;i gx2Li

, iD1; : : : ; k , pD1; 2; : : : of pure chords connecting
a component of ƒ to itself. In fact, we are in a “double Morse–Bott” situation since
xX is a Bott-family of periodic orbits.

Note that in this Bott degenerate situation, holomorphic disks in Y st
1
�R� xX �C�

with boundary on ƒ �R project to holomorphic disks in xX with boundary on L.
Conversely, a holomorphic disk in xX with boundary on L and a meromorphic section
over it determines a holomorphic disk in Y st

1
�R with boundary on ƒ�R and with

punctures mapping to Reeb chords and Reeb orbits as determined by the meromorphic
section. In line with the Morse–Bott philosophy one expects that holomorphic disks
after small perturbation can be described in terms of holomorphic disks in the Bott
degenerate case in combination with Morse theory on the chord and orbit spaces. As we
shall see below, this is indeed the case, and rigid holomorphic disks in .Y st

1
�R; ƒ�R/

can be described in terms of rigid generalized holomorphic disks in . xX ;L/.

In order to establish this relation between rigid disks in the symplectization and rigid
generalized holomorphic disks in the base of the fibration, we begin with a brief
description of a perturbation scheme that achieves transversality for Mw;� . We
consider the source of a generalized holomorphic disk as a collection of disks with
boundary punctures connected by finite length edges according to the underlying fat
rooted tree. The generalized disk maps the disks holomorphically to . xX ;L/ and the
edges to gradient flow segments. The space of generalized disk sources has a natural
compactification consisting of broken configurations. Here there are two types of
breaking, either two disks can be joined at a puncture mapping to an intersection point
in Li \Lj , i ¤ j or the length of some edge can go to infinity. We call this space
extended Deligne–Mumford space.

We next consider transversality for generalized disks. Note that any holomorphic
component of generalized holomorphic disk must have at least two punctures. Taking
into account that each Lagrangian Li is embedded, we observe that the disks with � 3

punctures must contain a non–multiply covered puncture (ie the image of this puncture
is not the image of any other puncture). Thus in this case it is possible to achieve
transversality by perturbing the almost complex structure; see [20, Lemma 4.5(1)] for
the proof. In order to make the whole moduli space regular we use a slightly modified
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version of Gromov’s transversality scheme [30] and consider an inhomogeneous x@–
equation, where the right-hand side depends not only on points of the source disk,
but also of its domain viewed as a point of the extended Deligne–Mumford space.
The perturbation required here is constructed inductively over strata of the extended
Deligne–Mumford space. Standard arguments show that we can achieve transversality
for the holomorphic parts in the generalized disk using such perturbations that are
supported in the interiors of the disks in the source, also including transversality with
respect to jet conditions.

We also require transversality with respect to the Morse flow as follows. Consider the
unstable sphere Si of the maximum miC of fi and note that the Morse flow determines
a projection pri WLi �fmiC;mi�g ! Si . We require that the following transversality
condition holds: the evaluation maps at additional boundary punctures on any moduli
space of holomorphic disks forming a generalized tree with additional internal boundary
punctures are transverse to fmiC;mi�g and in general position with respect to the
projections pri outside neighborhoods of the inverse images under the evaluation
maps of small neighborhoods of miC and mi� . We also require transversality for the
products of evaluation maps. In this set up, Mw;� is related to intersection points
of the evaluation maps of the disks components of a generalized holomorphic disk
composed with the projections pri , and it is possible to include transversality of this
Morse data in the Gromov scheme.

Note that in general some of the disks forming a generalized holomorphic disk could
be small, ie perturbations of constant holomorphic disks. However, we show that in the
situation under study here it is possible to organize the perturbation scheme in such
a way that generalized disks with constant components and at least one nonconstant
component do not contribute to the differential. Indeed, let us note that each small disk
must have at least three internal punctures. By choosing a sequence of perturbations
which converge to 0 on small disks we find gradient lines that intersect more than two
nonsmall disks, and a dimension count shows that configurations with r constant disks
c1; : : : ; cr , have codimension d D

Pr
jD1.i.cj /� 2/, where i.cj / is the number of

internal punctures in cj . In particular, since d � 1 for configurations with at least one
constant disk, our transversality assumptions implies that configurations with constant
disks and at least one nonconstant disk are impossible in 0–dimensional moduli spaces.

Consider the dynamics of the Reeb vector field of the contact form ˛st D �stjY st on
Y st . The part Y st

1
D xX �S1 is foliated by closed Reeb trajectories in the class of the

factor S1 . The action of these orbits is equal to 2�". The action of all other orbits is
bounded below by the action of the minimal closed orbit of the contact form �jY . We
refer to the former orbits as short and to the latter ones as long. Thus the moduli space
of short orbits is diffeomorphic to xX . To deal with the double Morse–Bott situation, we

Geometry & Topology, Volume 16 (2012)



Effect of Legendrian surgery 373

choose in addition to the chord functions fi W Li !R as in (8-4), an auxiliary Morse
function �W xX !R which is constant on the boundary @ xX and attains its minimum
there. We call � the orbit function. The differential of the algebra LHA.ƒ/ can then
be computed using moduli spaces of generalized holomorphic curves in the sense of
Bourgeois [6]. (We will call them Bott curves here in order not to confuse them with
generalized holomorphic disks.) According to [6] (see also Fukaya, Oh, Ohta and
Ono [28], Fukaya and Oh [27] and Ekholm [15]), Bott curves are multilevel objects,
which have a certain number of genuine holomorphic levels, as well as cylinders swept
by orbits of R which project to gradient arcs of the orbit function � and strips swept
by flow segments which project to gradient arcs of the chord function f . We call the
latter cylindrical and striplike horizontal levels, respectively.

We first argue that if a Bott disk D which contributes to the differential has a nonempty
generalized holomorphic part, then it does not contain horizontal cylindrical parts over
flow lines of � . Indeed, suppose that a holomorphic level C is connected to a horizontal
cylindrical part at least one of its negative ends. Then the multiplicity of the chord at
the positive end of C is strictly bigger than the sum of the multiplicities of chords at
the negative end of C . Hence, one can decrease the multiplicity of the chord at the
positive end and still find a lift to the symplectization. But increasing the multiplicity
of a chord increases its grading. It follows that the dimension of the moduli space
containing the Bott disk D is > 0 and thus D does not contribute to the differential.
We also claim that given any integer N > 0 we can arrange that any holomorphic part
of a Bott disk entering into the differential of a chord of multiplicity � N projects
to a generalized holomorphic disk which does not intersect Y D @ xX . Indeed, the
symplectic area of the projection of the holomorphic part of such a generalized curve
is bounded above by the action of the chord at its positive puncture, which is � 2�"N .
According to Proposition 8.1 the constant " can be made arbitrarily small, and hence
the claim follows from a monotonicity argument. We conclude that the differential can
be described in terms of generalized holomorphic disks.

We conclude that any disk which contributes to the differential limits to a Bott disk
which project to a generalized holomorphic disk. Conversely, any rigid generalized
holomorphic disk in Mw;� lifts to a unique Bott disk in the symplectization of Y st

1

if we assign appropriate multiplicities to chords which project to images of bound-
ary punctures of the generalized disk. We conclude that the contribution (ii) to the
differential is as claimed.

We show below that the descriptions of the other summands of the differential are as
claimed in (i) and (iii).

We first study Bott curves without nonconstant holomorphic part and without horizontal
cylindrical parts over flow lines of � . Such curves are disks projecting to gradient trees
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and give rise to the summand dMB . The disks giving

dMB
!qa D

!qaqi�Cqj�
!qaI dMB

 qa D
 qaqj�Cqi�

 qa:

correspond to gradient trajectories connecting the intersection point a in Li \Lj to
the minimum of the chord function in Li or in Lj . The disk giving

dMBqi� D qi�qi�

corresponds to a small disk with three punctures, including a positive puncture at the
minimum of the chord function fi where the disk is asymptotic to q

.p/
i� . To the negative

punctures are attached two flow lines which end at the minimum of fi where the disk is
asymptotic to q

.s/
i� respectively q

.t/
i� , pD sCt . The terms qi�qiCC.�1/n�1qiCqi� in

the expression for dMBqiC correspond to small disks with three punctures, including a
negative puncture at the maximum of the chord function fi where the disk is asymptotic
to q

.s/
iC . A flow line emanating from the maximum of fi is attached to the positive

puncture of the small disk, where the disk is asymptotic to q
.p/
iC . To the second negative

puncture is attached a flow line which ends at the minimum of fi where the disk is
asymptotic to q

.t/
i� , p D s C t . The terms

P
a2I<i

!qa
 qa and

P
a2I>i

 qa
!qa in the

expression for dMBqiC correspond to gradient trajectories connecting the maximum
of the chord function with intersection points of Li with other components. Using
grading arguments one can check that these are the only rigid configurations if n> 2.

If nD 2 there are several more gradient tree configurations contributing to dMB . The
easiest way to account for all of them is probably via an explicit perturbation scheme, as
in Sabloff [36]. The additional cubic terms correspond to narrow quadrangles formed by
the mesh of perturbed 1–dimensional Lagrangian submanifolds. The exact expression
for the differential, for example the order of the intersection points, is related to a specific
choice of perturbation. To get the differential as stated it is important to choose chord
functions so that the minima mi� lies very close to the maxima miC , i D 1; : : : ; k , and
so that the following hold: if a 2Ls \Lt then fi.miC/ > fs.a/C ft .a/ > fi.mi�/

for all i , and if b 2 Ii is such that b �i c for all c 2 Ii then fi.b/ > fs.a/ for all
a 2 Is , s < i such that a … Ik for some k � i .

It remains to show that all other contributions are covered by .i/. Since rigid holomor-
phic curves the projection of which contains a nonconstant polygon does not contain
any horizontal cylindrical parts over gradient flow lines of � , any Bott curve which
contributes to the differential and which contains such a flow line must consist of that
flow line only, ie it must project to a gradient trajectory of the orbit function � . Our
assumption that � is constant and achieves its minimum on Y D @ xX implies that
through every point of L there is a unique (negative) gradient trajectory of � going to
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the boundary. Disks projecting to gradient trajectories are generalized holomorphic
curve which consists of the following parts:

� A holomorphic disk with a boundary puncture and an interior puncture which is
mapped onto the fiber of the projection Y st

1
�R!X . At the interior puncture

it is asymptotic at �1 to a small (possibly multiply covered) orbit, and at the
boundary puncture to a pure chord q

.p/
i˙ .

� A horizontal part which projects to the gradient arc of � in xX that connects
mi� to a (multiple of a) short orbit 
y over a point y 2 Y D @X .

� A plane in Y st
2
�R asymptotic at C1 to the orbit 
y .

Such a curve contributes only ˙ei to the differential. Hence, for grading reasons, we
have jq.p/i˙ j D 1, which implies that q

.p/
i˙ D q

.1/
i� .

To establish (i), we prove that for q
.1/
i� such Bott disks indeed exist and that the algebraic

count of them equals ˙1. To this end, recall from [23] that given a general contact
manifold Y for which one can define the linearized contact homology C H.Y /, there
is an invariantly defined element h1 D h1.Y / 2 C H.Y / which in the corresponding
contact homology complex CH.Y /D .KhPgood.Y /i; dCH / is represented byX


2Pgood;j
 jDnC1

n

;

where n
 is an algebraic count of components of the 1–dimensional moduli space
MY .
;p/ of augmented holomorphic planes in the symplectization of Y asymptotic
to 
 and having one marked point mapped to R � p � R � Y for a generic point
p 2 Y . To simplify the language we will use the term “holomorphic curve” also for
the projection of a holomorphic curve in R�Y to Y , and hence equivalently we can
say that n
 counts the algebraic number of holomorphic planes in Y asymptotic to 

and passing through a fixed point p .

Denote the critical points of the orbit function � by a0; : : : ; aK , where a0 is its unique
maximum. Choose an almost complex structure J0 on X adjusted to the Liouville
form � and an almost complex structure J on the symplectization of Y st which is
adjusted to the contact form ˛st and which is such that the projection R�Y st

1
! xX is

.J;J0/–holomorphic.

We compute the invariant h1.Y
st/. According to [47; 6] (see also [23]), and taking

into account an argument from Section 6.1 to discard the contribution of long orbits,
we come to the following algorithm for computing the linearized contact homol-
ogy C H.Y st/. Associate with each critical point aj a sequence of variables 
 k

aj
,

k D 1; 2; : : : corresponding to multiples of the orbit over the point aj , and assign
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to 
 k
aj

the grading j
 k
aj
j D index.aj / � nC 2k C 1, where index.aj / is the Morse

index of the critical point aj . In particular, j
 1
a0
j D nC 1. Let dMorse.aj /D

P
i mi

j ai

be the Morse differential on the Morse complex for the relative homology H�. xX ;Y /

generated by critical points aj ; j D 0; : : : ;K . Then the complex

C D CH.Y st/ WD .Khf
ak
j
; j D 0; : : : ;K; k D 1; : : : gi; dM /;

where dM .
 k
aj
/D

P
i mi

j

k
ai

, computes the homology C H.Y st/.

Lemma 8.6 The invariant h1.Y
st/ 2 C H.Y st/ is represented by the element ˙
 1

a0
2

C D CH.Y st/.

Sketch of proof Our proof uses the fact that since X is a Weinstein manifold, Y st

bounds the Weinstein manifold W D X �C with SH.W / D 0 (in fact W is even
subcritical).

Note that the index formula implies that h1 2C HnC1.Y
st/, and hence it is represented

by a linear combination h1 2 C of classes 
 1
a0

and 
 k
aj

, where index.aj /D 2n� 2k .
We claim that the coefficients with 
 k

aj
is 0 unless j D 0; kD 1. Indeed any Bott curve

which is a plane asymptotic to 
 k
aj

must contain a flow line part that converges to aj .
Hence, if j ¤ 0 and one chooses the point p not over the stable manifold of aj then
there will be no generalized holomorphic curves converging to 
 k

aj
. Thus, h1 DN
 1

a0

for some integer N .

It remains to prove that the coefficient N with 
 1
a0

is equal to ˙1. Here we use
SH.W /D 0 and the Morse–Bott description of symplectic homology. The minimum
of the Morse function on W is a cycle in SH.W / which must then be a boundary.
Thus there is a holomorphic sphere with positive puncture at 
 1

a0
through every point

in W and in particular through every point in p�R.

We can now prove that there is algebraically one holomorphic plane in Y st
2
�R as-

ymptotic to a small simple orbit 
y over a fixed point y 2 Y . Note that generically
the gradient trajectory from y ends at the maximum point a0 . Let us choose a point
p 2 Y st

1
which projects to a point on the arc ı of this trajectory connecting a0 and y .

Then the moduli space MY .
 1
a0
;p/ consists of generalized 2–level curves with a flow

line part which projects to ı and a genuine holomorphic plane in the symplectization
of Y st

2
asymptotic to 
y . But according to Lemma 8.6 the algebraic count of such

planes is ˙1, and hence the algebraic count of planes in Y st
2
�R asymptotic to 
y

is ˙1 as well.

This implies that (i) gives a description of the remaining part of the differential and
concludes the sketch of the proof of Proposition 8.5.
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In the 4–dimensional case the above description of the differential algebra LHA.ƒ/,
together with Theorem 5.6 and Corollary 5.7 provides a purely combinatorial recipe
for computing the complex SH.X / for any symplectic Lefschetz fibration.

Remark 8.7 (1) An argument, similar to one used in the above proof also shows
that if there exists an embedded Lagrangian disk � � xX with Legendrian
boundary � � Y , and which transversely intersects Li in exactly one point and
does not intersect Lj for j ¤ i , then dq

.1/
i� D ei .

(2) More generally, let W be a 2n–dimensional Liouville manifold with cylindri-
cal end, and SW the corresponding compact Liouville domain. Let C be the
coisotropic unstable manifold of a zero of index n� 1 of the Liouville field Z

on W . Suppose that C intersects V D @ SW along an n–sphere S � V . Let
ƒ � V be a Legendrian sphere which intersects S transversely at one point.
Then for an appropriate choice of a contact form on Y and an almost complex
structure, there exists a Reeb chord c of ƒ, such that dc D 1 in the algebra
LHA.ƒ/.

Indeed, to verify Remark 8.7(1) consider a small neighborhood U of the Lagrangian
disk �. Then U intersects Li in a disk Oi and we can view Oi and � as the core
and cocore disks, respectively, of a Lagrangian handle attachment yielding xX . It
follows in particular that there is a Liouville vector field Z on xX which vanishes at
p D Li \�, with Li contained in the stable manifold of p , with � equal to the
unstable manifold of p , and with a Morse function H for which Z is gradient like
such that H.p/ >H.q/ for every critical point q ¤ p of H . The maximum principle
then implies that there is no nonconstant holomorphic disk in xX with boundary on L

which passes through p . Thus, for a chord function fi with minimum mi� D p ,
Proposition 8.5 implies that dq

.1/
i� D dconstq

.1/
i� D ei . We also note, for future reference,

that we can choose the orbit function so that the gradient flow line connecting mi�

to Y lies near �.

To show Remark 8.7(2) we observe that the contact structure in a neighborhood N

of the coisotropic sphere S � V is contactomorphic to a neighborhood of the sphere
T D��1.�/\Y st

" �Y st
" . Moreover, one can arrange that this contactomorphism sends

the part ƒ\N of the Legendrian sphere ƒ � V to the part of the Legendrian lift
ƒi � Y st

" of the Lagrangian sphere Li (we recall that we denote by � the projection
X st D X � C ! X ) which lies in the neighborhood of T . Furthermore, one can
arrange that the Reeb chord corresponding to q

.1/
i� is arbitrarily short. In particular any

holomorphic disk with positive puncture at this Reeb chord must stay inside N and
the argument we used for Remark 8.7(1) also applies to prove Remark 8.7(2).
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Remark 8.7(2) is consistent with the fact that attaching handles of index .n� 1/ and n

canceling each other does not change the symplectic manifold, and hence its symplectic
homology.

Appendix Legendrian surgery formula and P Seidel’s con-
jecture

SHEEL GANATRA AND MAKSIM MAYDANSKIY

Appendix A Introduction

The goal of this text is to provide a dictionary between the language used in the
current paper and the formalism of Seidel in [42; 40], in particular establishing that
Conjectures 6.3 and 6.4 in [40] follow from the results of the current paper. In an
attempt to assist readability, some of the material is repeated from these references. In
this preliminary version we ignore all signs and gradings, although some degree shifts
appear in the notation in anticipation of a latter version with gradings.

Appendix B The categories

We start with an exact Lefschetz fibration � W E 7!D , with fiber F and vanishing cycles
L1; : : : ;Lm . We recall the construction of a curved A1 category D which proceeds in
several steps. The material describing this construction is taken from [42]. Throughout
we adopt the perspective from [42, Section 3; 40, Remark 2.2] that identifies A1
categories with m objects L1; : : : ;Lm with A1 algebras over the semisimple ring
RDKmDKe1˚� � �˚Kem , by taking category Z to the algebra

L
i;j HomZ.Li ;Lj /

(see also Section 4.1). To begin, we have the category B which is the full subcategory
of the Fukaya category of the fiber with vanishing cycles Li as objects. Then we have
its directed version A, with same objects and morphisms

HomA.Li ;Lj /D

8̂<̂
:

HomB.Li ;Lj / if j > i ;

Kei if i D j ;

0 if j < i :

Here Kei is a one dimensional vector space over our base field K spanned by the
formal symbol ei . The A1 operations �k when none of the inputs are ei are inherited
from B . When one of the inputs is ei we declare �2.ej ; c/ D c and �2.c; ei/ D c

(here we use the reverse of Seidel’s convention for composition so c 2HomA.Lj ;Li/).
All other �k ’s with ei inputs are set to zero. This is what it means for A to be a strictly
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unital category with strict identity morphisms ei . Thinking of A as an A1 algebra
over R, we have an obvious projection to R and the kernel of it we call AC . This is
the nonunital version, with identity morphisms taken out. Note that AC injects into B .
Assuming B is strictly unital (by, say passing to a quasi-isomorphic A1 structure as
in Seidel [41], more on this in Section C.3), we can extend this embedding to all of A.
Next, the category C DA˚ tBŒŒt �� has the same objects as A and B , and morphisms
given by formal power series xDx0C tx1C� � � with x0 a morphism of A and the rest
of xi ’s - morphisms of B . The A1 structure is extended from B by t-linearity (using
the inclusion A ,! B ; the strict unitality of ei ’s implies that A1 relations still hold
in C ). To get from C to D we add a curvature term �0

D D tei 2 HomD.Li ;Li/. We
need to verify the curved A1 relations for D and this again relies on strict unitality of
the tei ’s. Finally, the corresponding (nonunital) reduced version of D is denoted DC .

We should say a few words about the perturbation scheme arising in the construction of
the Fukaya category. In [41], the maps �k are determined by counting perturbed pseudo-
holomorphic discs with appropriate Lagrangian boundary conditions, ie solutions to an
inhomogeneous Cauchy–Riemann equation with inhomogeneous term a disc-dependent
Hamiltonian. Such a count depends on a choice of perturbation datum, which, roughly,
assigns to each representative of the Stasheff moduli space a choice of (disc-dependent)
perturbing Hamiltonian term and time-shifting maps. That this can be done in such a
way as to be smoothly compatible with the Deligne–Mumford compactification of the
moduli space is shown in [41].

There is a version of this construction that is Morse–Bott in flavor, which uses a variant
of the Cornea–Lalonde “cluster” technology [14]. This was discussed by Seidel [43]
and rigorously constructed by Sheridan [44]. In this scheme, morphisms are given
by counting trees of holomorphic discs joined by gradient flow lines of some choices
of Morse function on each Lagrangian submanifold. The resulting category is quasi-
isomorphic to the version in [41]; see [44, Section 4] for more details.

For what follows, we will implicitly use the Morse–Bott variant of D . See also
Section C.3 for more on this issue.

We will use the following notation for individual coefficients of �D :

�k
D.a1; : : : ; ak/D

X
a

nD.aI a1; : : : ; ak/a:

Note that we are still composing our morphisms from left to right - the target of a1 is
the source of a2 etc.
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Appendix C The Legendrian homology algebra LHA is dual
to T.DCŒ1�/

C.1 The vector spaces

As in Section 8.2 the LHA is generated by q
.k/
a for intersection points a 2Li \Lj

with k � 0 if j > i (these are !q .p/a in notation of Section 8.2) and k � 1 if j < i

( q .p/a correspondingly), together with points q
.k/
i˙ for each i � 1 (Morse–Bott case).

Specifically, q
.k/
a is the Reeb chord between ƒi ; ƒj corresponding to the intersection

point a 2 Li \ Lj passing k times above the reference point ei� 2 S1 . Given a
chord c between ƒi and ƒj , we denote by p.c/ the corresponding intersection point
of Li and Lj . Note that the morphisms of AC are exactly the intersection points a

for j > i and the morphisms of B are all intersection points of Li and Lj (and critical
points of a Morse function on Li if i D j ). This allows us to identify the Reeb chords
with morphisms in DC DAC˚ tBŒŒt ��: the Reeb chord q

.k/
a for k � 1 corresponds to

the morphism tka 2 tkB and similarly the chord q
.0/
a corresponds to the morphism in

aD t0a 2 AC . Note that the morphisms in DC are precisely the t-adic completion
of the K vector space spanned by Reeb chords, and so are naturally identified with
the dual of that vector space. The algebra LHA is the free algebra generated by the
Reeb chords and the underlying vector space is the span of words c1 � � � ck . In our
dictionary its dual is the tensor algebra T .DCŒ1�/; note that LHA includes empty
words ei based at each component of ƒ. Correspondingly, the zeroth tensor power
piece in T .DCŒ1�/ is a copy or R. Indeed, as a vector space, the tensor algebra is the
t-adic completion of the same span, and so is naturally identified with its dual. We
remark on a technical note, that to go back from morphism of DC to Reeb chords
and from T .DCŒ1�/ to LHA, respectively, one needs to take the continuous dual with
respect to the t-adic topology. In what follows we will use c to denote both chords
q
.k/
a and the corresponding morphisms tka.

C.2 The differentials

We now proceed to establish the duality of differentials. In the general setup of
Section 4.1, the differential on LHA is given on generators by

dc D
X
m

X
c1;:::;cm

ncIc1;:::;cm
c1 � � � cm;

where ncIc1;:::;cm
the algebraic number of 1–dimensional components of the moduli

space MY
ƒ
.cI c1; : : : ; cm/. In the present case Y is the boundary of a stabilization X st ,

and the Morse–Bott version of MY
ƒ
.cI c1; : : : ; cm/ should be used. We see that Y is
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split into the vertical (or mapping torus) part Y v (Y st
1

in the notation of Section 8.1) and
horizontal (or binding) part Y h (correspondingly Y st

2
), with ƒ� Y v . Correspondingly

n contains contributions from discs contained in Y v�R, nv , and the ones not contained
in Y v �R, nbind (the contributions from dconst in Section 8).

C.3 Reconstruction

The basic idea for relating differentials is that holomorphic discs contained in Y v�RD
F�S1�R can be projected to F . Conversely, given a collection of chords c1; : : : ; cm ,
and a holomorphic disc u with punctures asymptotic to p.c1/; : : : ;p.cm/ with appro-
priate Lagrangian boundary conditions, one can uniquely lift u to a disc in Y v �RD
F �S1 �R, provided that the total power of t for the negative chords is equal to the
power of t of the positive chord. This last requirement is the condition for lifting u as
a continuous map and corresponds in the “dictionary” to t-linearity of A1 operations
in D . Furthermore, the algebraic counts from the moduli spaces with and without
being anchored (see Section 2.2) agree.

If structure constants nvcIc1;:::;cm
and nD.c; c1; : : : ; cm/ were given simply by counts

of such holomorphic curves, this would imply

nvcIc1;:::;cm
D nD.cI c1; : : : ; cm/

whenever the set of ci ’s is not empty.

However, the present case of a Lefschetz fibration does not fall into the general scheme
of Section 4. Rather, it’s a “double Morse–Bott” situation as explained in Section 8.3. As
a result the moduli spaces involved are more complicated, and part ii of Proposition 8.5
establishes a more refined version of the correspondence. The result is that the relevant
moduli spaces in F are the generalised holomorphic discs of Section 8.2.C, or holo-
morphic pearly trees from [44, Section 4.3]. This is why we work with Morse–Bott
versions of categories A, B , C and D .

We will now discuss perturbations and unitality. As discussed above, while constructing
the Morse–Bott Fukaya category of the fiber F , in order to define the self-hom space
Hom.L;L/ one picks a Floer datum for the pair .L;L/, one part of which is a Morse
function H supported on L. On a sphere, such a function then can be chosen to have
just two critical points, one maximum and one minimum, producing a 2–dimensional
Hom.L;L/. The generator eL corresponding to the minimum then descends to a
homological level identity morphism. However, picking all additional data in such
a way that the Fukaya category of the fiber is strictly unital on the chain level is a
nontrivial matter. That this can be done for (the Morse–Bott version of) the category B
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follows from calculations made in Section 8.3 and the above mentioned correspondence,
in a manner we will now explain.

Proposition 8.5 computes the LHA differential in the Lefschetz case. Families of
multilevel Bott curves in Y st

1
(with different powers of t , and including ones without any

actual holomorphic components) contributing to the LHA differential correspond to the
generalized holomorphic discs computing Morse–Bott version of B (again, including
those without actual holomorphic components). The computation of Section 8.3
therefore implicitly contains part of the computation of the structure of B .

Let’s check that it gives strict unitality of ei ’s. The algebra LHA is dual to T .DCŒ1�/,
which involves the reduced version of D , and hence has no generators directly cor-
responding to the minima on Li . It has only the generators corresponding to the
t –multiples of them, qk

i� , k > 0. It is enough to check that those satisfy a suitable
t –linear version of unitality. Determining the value of �r .: : : ; tkei ; : : :/ is dual to
finding all q ’s with dq containing qk

i� . By Proposition 8.5 these and the corresponding
A1 equations are as follows. First there are

dMBqi� D qi�qi�;

dMBqiC D qi�qiCC .�1/n�1qiCqi�;

and correspondingly

�2.t
keLi

; t leLi
/D t lCkeLi

;(C-1)

�2.t
keLi

; t lmLi
/D tkClmLi

;(C-2)

�2.t
lmLi

; tkeLi
/D tkClmLi

;(C-3)

where mLi
2 Hom.Li ;Li/ is the top dimensional generator corresponding to the

maximum of a Morse function. There are also

dMB.T
!qa/D qj�

!qaC .�1/jqaj!qaqi�;

dMB.T
 qa/D qi�

 qaC .�1/jqaj qaqj�

corresponding to

�2.t
keLi

; t la/D t lCka;(C-4)

�2.t
la; tkeLj /D tkCla:(C-5)

Moreover, no differential has a degree three or greater term containing qi� , which is
dual to the fact that

(C-6) �k.: : : ; t lei ; : : :/D 0 for k � 3:
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From Section 8.3 we see that all parts of d except dconst q1
i� are T –linear, which

corresponds to t –linearity of �k ’s in C .

C.4 Contributions from the binding

The additional contribution from nbind has been calculated in Proposition 8.5 (dconst in
that notation) to be nbind

q
.1/

i�
I1
D 1 and nbind

cIc1;:::;cm
D 0 in all other cases. This means that

nbind
cI D nD.cI /

C.5 Total differential

We have
ncIc1;:::;cm

D nvcIc1;:::;cm
C nbind

cIc1;:::;cm
D nD.cI c1; : : : ; cm/:

On the other side, the A1 structure on DC viewed as a map �DW T .DCŒ1�/ !
DCŒ1� uniquely extends by the co-Leibniz rule to a coderivation y�D on T .DCŒ1�/,
or, equivalently, its dual extends to a derivation on T .DCŒ1�/� D LHA. This last is
given by

dD D .�/
�
D d0

DC d1
DC d2

DC � � � ;

where d l
DW DCŒ1�! T .DCŒ1�/˝l , dD is extended by the Leibniz rule, and

d0
D.c/D .�

0
D/
�.c/D

X
c

nD.cI /;

d1
D.c/D .�

1
D/
�.c/D

X
a1

nD.cI a1/ a1;

d2
D.c/D .�

2
D/
�.c/D

X
a1;a2

nD.cI a1; a2/ a1˝ a2:

The equalities in Sections C.3–C.5 mean that the differential on LHA which only
includes the contributions of nv s comes from the A1 structure of C , and that the full
differential is the one coming from the full curved A1 structure of D , namely dD .

Appendix D LH Ho.ƒ/

D.1 Generators

On the level of generators, LH Ho.ƒ/ consists of

LH Ho.ƒ/D C.ƒ/˚QLHO.ƒ/˚1LHO.ƒ/:
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Here, QLHO.ƒ/ and QLHO.ƒ/ are simply two copies of LHO , the subcomplex of
words that are cyclically composable divided by empty words. Under the identification
described previously, this is dual to T .DCŒ1�/diag

C . Words in QLHO.ƒ/ will be denoted
{c1 � � � ck and words in 1LHO.ƒ/ are denoted yc1 � � � ck . C.ƒ/ is the vector space
generated by elements �1; : : : ; �k , in one-to-one correspondence with ƒ1; : : : ; ƒk . To
identify this on the level of generators with C C.D/D .D˝T .DCŒ1�//diag , we note
that

.D˝T .DCŒ1�//diag
D ..R˚DC/˝T .DCŒ1�//diag(D-1)

D .T .DCŒ1�/diag
˚T .DCŒ1�/CŒ�1�/diag(D-2)

DR˚ .R˝T .DCŒ1�/C/diag
˚ .T .DCŒ1�/CŒ�1�/diag(D-3)

DR˚ .T .DCŒ1�/C/diag
˚ .T .DCŒ1�/CŒ�1�/diag:(D-4)

Here, recall that T V DK˚V ˚V ˝2˚� � � , and .T V /C refers to the nonzero length
part V ˚V ˝2˚ � � � . This last expression exactly gives us the correspondence to the
generators of LH Ho.ƒ/. We should remark however that to compute the Hochschild
differentials, one needs to remember (D-3).

C.ƒ/ QLHO.ƒ/ 1LHO.ƒ/

�i {c1 � � � ck yc1 � � � ck

l l l

ei ei � c1 � � � ck c1 � � � ck

R .R˝T .DCŒ1�/C/diag T .DCŒ1�/CŒ�1�diag

Table 5. A dictionary between the generators of LH Ho.ƒ/ and C C.D;D/

D.2 Hochschild differentials

The Hochschild differential on ı has three primary constituents. There is the (acyclic)
Hochschild differential (without any �0 ):

baW x1 � � �xk 7!

X
i�1;s�1

x1 � � ��.xi ; : : : ;xiCs�1/ �xiCs � � �xk :

The differential also includes cyclic terms

bc W x1 � � �xk 7!

X
i�1;j�1

�.xk�j ; : : : ;xk ;x1; : : : ;xi/ �xiC1 � � �xk�j�1
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and terms obtained by inserting �0 everywhere except for the beginning

b0W x1 � � �xk 7!

X
i�1

x1 � � �xi ��0 �xiC1 � � �xk :

Note that baCb0 viewed as a map on T .DCŒ1�/ is not quite the differential y� induced
by extending the A1 maps �W T .DCŒ1�/!D to all of T .DCŒ1�/ via the co-Leibniz
rule. One needs to add a final contribution b0

0
, where

b0
0 W x1 � � �xk 7! �0

�x1 � � �xk :

Now, look at the differential on various components of LH Ho.ƒ/ and dualize. The
map ydLHO W

1LHO.ƒ/!1LHO.ƒ/ is defined as

ydLHO.yc1 � � � cn/D S.d.yc1// � c2 � � � cnCyc1dLHA.c2 � � � cn/;

where S.w1 � � �wk/ D
P

i.�1/�
Q
w1 � � � ywi � � �wk and S.1/ D 0. Write ydLHO D

S1ııLHAC
zd , where dLHA is simply the differential on LHA.ƒ/, and S1.c1 � � � ck/D

yc1 � � � ck . Then, if dLHAc1 does not contain 1 as a contribution (ie c1 ¤ q
.1/
i� ),

zd.c1 � � � ck/D .S.dc1/�S1.dc1//c2 � � � ck :

If c1 D q
.1/
i� ,

zd.c1 � � � ck/D�yc2 � � � ck C .S.dc1� 1/�S1.dc1� 1//c2 � � � ck

or S.dc1� 1/�S1.dc1� 1/ if k D 1. In the previous section, we argued that

d�LHA D y�D baC b0C b0
0 ;

so it remains to see that the dual of the map zd is bc � b0
0

. But zd.q.1/i� � c2 � � � cn/

containing a term equal to �yc2 � � � cn is exactly dual to �b0
0

so it remains to analyze
the dual of terms in zd.c1 � � � ck/ not containing �yc2 � � � ck . For dc1 containing termsP

n.c1Iy1; : : : ;yl/y1 � � �yl ,

zd.c1 � � � ck/D
X

n.c1Iy1; : : : ;yl/

�X
j�2

y1 � � � yyj � � �yl

�
c2 � � � cn:

Dually the contribution of bc.yyj � � �ylc2 � � � cny1 � � �yj�1/ coming from �.y1; : : : ;yl/�

c2 � � � cn is equal to nF .c1Iy1; : : : ;yl/c1 � � � cn . All of these together give us exactly
the desired duality. On the level of generators, .QLHO.ƒ//� is identified with .R˝
T .DCŒ1�//diag , meaning the subspace of the chain complex generated by words that
start with ei . Let’s explicitly analyze the Hochschild differential ı on such words.
There are contributions where � does not take the first element ei as an input:

ei � c1 � � � ck ! ei � .baC b0C b0
0/.c1 � � � ck/
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which is exactly {dLHO under the identification .R˝ T .DCŒ1�//diag ' .QLHO.ƒ//�

which sends ei � c1 � � � ck to {c1 � � � ck . The other contributions are the ones where �r

has ei as an input, which is 0 unless r D 2. Explicitly, those are

(D-5) ei � c1 � � � ck 7! �2.ck ; ei/ � c1 � � � ck�1C�
2.ei ; c1/ � c2 � � � ck

D�c1 � � � ck ˙ ck � c1 � � � ck�1:

Under the identifications

.R˝T .DCŒ1�//diag
$ .QLHO.ƒ//�;

.T .DCŒ1�/C/diag
$ .1LHO.ƒ//�;

this is precisely ˛� . In LH Ho.ƒ/, the differential going from C.ƒ/ was 0, which
dually corresponds to the fact that �.x1 � � �xs/ is never ei . The final term in the
differential is the map T , which takes the single chord ci going from ƒi to ƒi to
nci
�i , where nci

D 1 for ci D q
.1/
i� and 0 otherwise. This dualizes to T �.ei/D yq

.1/
i� .

Under the identification, this is ei ˝ tei , which is exactly ı.ei/. We conclude that
..LH Ho.ƒ//�; d�Ho/D ...D˝T .DCŒ1�//diag/; ı/ as chain complexes.

References
[1] A Abbondandolo, M Schwarz, On the Floer homology of cotangent bundles, Comm.

Pure Appl. Math. 59 (2006) 254–316 MR2190223

[2] M Abouzaid, P Seidel, Altering symplectic manifolds by homologous recombination
arXiv:1007.3281

[3] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol.
14 (2010) 627–718 MR2602848

[4] V I Arnol’d, Some remarks on symplectic monodromy of Milnor fibrations, from: “The
Floer memorial volume”, (H Hofer, C H Taubes, A Weinstein, E Zehnder, editors),
Progr. Math. 133, Birkhäuser, Basel (1995) 99–103 MR1362824
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