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A cohomological characterisation of Yu’s property A for
metric spaces
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NICK WRIGHT

We develop a new framework for cohomology of discrete metric spaces and groups
which simultaneously generalises group cohomology, Roe’s coarse cohomology,
Gersten’s `1–cohomology and Johnson’s bounded cohomology. In this framework
we give an answer to Higson’s question concerning the existence of a cohomologi-
cal characterisation of Yu’s property A, analogous to Johnson’s characterisation of
amenability. In particular, we introduce an analogue of invariant mean for metric
spaces with property A. As an application we extend Guentner’s result that box spaces
of a finitely generated group have property A if and only if the group is amenable.
This provides an alternative proof of Nowak’s result that the infinite dimensional cube
does not have property A.

55N91; 20J06, 30L05

There have been a number of cohomology theories introduced to study large scale
geometry of groups and metric spaces, and important examples include: Gersten’s
`1–cohomology which characterises hyperbolicity for a finitely presented group [5];
Johnson’s bounded cohomology which characterises amenability for a locally compact
group [7]; Roe’s coarse cohomology introduced in [12] to define higher indices for
elliptic operators on open manifolds. In this paper we introduce a new framework
for cohomology of metric spaces and groups which generalises all of these examples
and in addition allows us to define a new cohomology which detects Yu’s property A,
thereby answering a question of Higson.

The key ingredient which allows us to generalise from group cohomology to a theory
for a metric space X is a controlled support condition. Our coefficients V will therefore
be modules equipped with a support function taking values in the power set of X .
Classical examples arise from function spaces on X equipped with the usual notion
of support. The cohomology theories then arise from the bicomplex Ep;q.X;V/ of
controlled support cochains:
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392 Jacek Brodzki, Graham A Niblo and Nick Wright

� Given a metric space X choose a base point x2X and let Rx be the vector space
Rıx spanned by the delta function ıx 2 `1.X /. The cohomology HE.X;Rx/

is Roe’s coarse cohomology of X with coefficients in R.

� If X is the underlying metric space of a discrete group G of type Fn , then the
cohomology HW .X;Re/ arising from a suitable completion of the bicomplex is
Gersten’s `1–cohomology of G with coefficients in R. Hence Gersten’s theory
can be regarded as a completion of Roe’s coarse cohomology and in this way
can be extended to the context of metric spaces.

� Alternatively Gersten’s cohomology is equivalent to the uncompleted cohomol-
ogy HE.X;R∅/ where every element of R is taken to have empty support.

� If G is a group and the coefficients V are equipped with a group action we may
also consider the subcomplex of G –equivariant cochains. Setting Vc to be the
compactly supported elements of V , HE.G;V/ is the group cohomology of G

with coefficients in Vc . Furthermore the cohomology of the completed bicomplex
agrees with the group cohomology of G after completing the coefficients Vc .

� Now let G be a group, V be a G–Banach space and equip V with the empty
support function. Since every element of V has compact supports the group coho-
mology H�.G;V / is equal to the equivariant bicomplex cohomology. Suitably
augmenting the bicomplex we obtain a new chain complex whose cohomology
agrees with Johnson’s bounded cohomology H�

b
.G;V /.

� In general if G is a group then the non-equivariant cohomology of the underlying
metric space can be identified with the equivariant cohomology of G by suitably
twisting the coefficients. Hence as above it may be identified with the classical
group cohomology.

� Now let X be a metric space. The cochain J .x0;x1/ D ıx1
� ıx0

defines a
class in the cohomology H 1

W
.X; `1

0
/ of the completed bicomplex which is trivial

if and only if the space X satisfies Yu’s property A. Moreover, augmenting the
bicomplex as before and completing we then obtain the complex of asymptot-
ically invariant cochains and property A is characterised by the vanishing of
asymptotically invariant cohomology.

We note in passing that combining the last two remarks one can characterise property A
for a group in terms of group cohomology. This is related to the results in the articles [1;
2] by the authors and Nowak, and the article [4] by Douglas and Nowak.

The main focus of this paper is a detailed study of the results summarised in the last
point of this list. We note that this is directly analogous to Johnson’s characterisation
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of amenability in terms of bounded cohomology and take a moment to review that
context.

A discrete group G is said to be amenable if it has an invariant mean (see von Neu-
mann [14]), that is, there exists an element � 2 .`1.G//� D .`1.G//�� such that
�.1/D 1 and g�D � for all g 2G . Johnson’s celebrated theorem [7] characterises
amenability of a group G in terms of vanishing of a particular cohomology class ŒJ �
in H 1

b
.G; .`1

0
.G//��/. As remarked in the our article [3], the function J gives rise

to a class in classical group cohomology H 1.G; .`1
0
.G//��/ and vanishing of this

class also characterises amenability of the group. Indeed, given a cochain � whose
coboundary is J , the difference ı�� is the required invariant mean, where ı denotes
the Dirac function.

In geometric group theory, amenability is more often exhibited by the existence of a
Følner or Reiter sequence (see Reiter [11]). The quotient completion VQ of a topological
vector space V , introduced in this paper, allows us to interpret the Reiter sequence
cohomologically. Specifically, the function J gives rise to a class in H 1.G; .`1

0
.G//Q/

and given a cochain � with coboundary J , the difference ı�� gives rise to a Reiter
sequence. Regarding .`1

0
.G//�� as the weak–� completion of `1

0
.G/ we see that both

the invariant mean and the Reiter sequence arise in cohomology via a completion
process.

In this paper, we exploit this idea to study property A which was introduced by Yu in
his work on the coarse Baum–Connes conjecture [15] as a generalisation of the Følner
condition for amenability to the context of a metric space. This property has become a
focus for study in the crossover between non-commutative geometry and geometric
group theory.

We will show that the following are equivalent:

� X has property A;

� X admits an asymptotically invariant mean (Theorem 7.3 part (5));

� The Johnson class of X is trivial in controlled cohomology (Theorem 7.3 parts
(2) and (3));

� The asymptotically invariant cohomology of X vanishes (Theorem 9.6).

The reader will no doubt recognise that these results are parallel to Johnson’s charac-
terisation of amenability for a locally compact group [7]. As an application we provide
a cohomological argument extending Guentner’s result that box spaces of a finitely
generated group have property A if and only if the group is amenable, (see Roe [13,
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Proposition 11.39]). This provides an alternative proof of Nowak’s result that the union
of finite cubes of all dimensions does not have property A.

The paper is organised as follows. In Section 1, by way of motivating what follows, we
recall the definition of classical group cohomology and bounded cohomology and derive
the forgetful map from bounded cohomology to classical cohomology via a bicomplex
encoding them both. The rows of this bicomplex are acyclic and the forgetful map
arises naturally from the collapse of the bicomplex onto the left hand column obtained
by taking the augmentations. This point of view is reflected in Section 2 where we
construct an algebraic bicomplex which will lead, via completion processes described
in Section 3, to the definition of our controlled cohomology theories in Section 4. In
Section 5 we pause to consider the case of the equivariant cohomology of a discrete
group and show that the completions in this case may be carried out at the level of the
coefficient module, making a link with group cohomology, and, via our results in [3],
with the theory of Johnson and Ringrose. In Section 6 we introduce the notion of an
asymptotically invariant mean. Asymptotic invariance is a cocycle condition, while we
formulate the normalisation condition in terms of a map on coefficients. This leads
naturally to consideration of the long exact sequence in cohomology arising from a
short exact sequence of coefficient modules. In Section 7 we recall the definition of
property A and give our first cohomological characterisation of property A in terms
of vanishing of the Johnson class in controlled cohomology. We also show that this
is equivalent to the existence of an asymptotically invariant mean on the space. In
Section 8 we introduce asymptotically invariant cohomology and in Section 9 we show
that vanishing of asymptotically invariant cohomology in dimensions greater than or
equal to 1 is equivalent to property A. In Section 10 we consider two of the three
known classes of spaces which do not have property A: box spaces of non-amenable
residually finite groups, and the union of finite cubes of all dimensions. We use our
cohomological approach to give a new unified proof that these classes do not satisfy
property A. The remaining known example of a non-A space, that of an expander
sequence, is considered from a cohomological point of view in a companion note (see
the article [8] by the third author and Khukro).

Several of the results in this paper were announced at the Ascona conference in June
2009, and the first and second authors would like to thank the organisers for their
hospitality. This work is related in spirit to the results appearing in [4], in which
Douglas and Nowak prove that exactness of a finitely generated group G (which by
work of Ozawa [10] is equivalent to property A) implies vanishing of the bounded
cohomology H

q

b
.G;V /, for so-called Hopf G –modules of continuous linear operators

with values in `1.G/. In [1; 2] the results of Douglas and Nowak [4] are generalised
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to give a characterisation of topological amenability for a group action in terms of
vanishing bounded cohomology.

This research was supported by EPSRC grant EP/F031947/1. We would like to thank
Nigel Higson for asking the original question motivating these results and for his
comments on an early draft of the paper. We would also like to thank Erik Guentner
and Piotr Nowak for many stimulating discussions.

1 Group cohomology

In this section we will motivate the definitions to follow by examining the familiar
objects of real valued group cohomology and bounded cohomology in a framework that
will generalise to our context. In this section the group G is taken to be a countable
discrete group equipped with a proper left-invariant metric.

Recall that for a group G the homogeneous bar resolution with real coefficients is
given by the cochain complex .C p.G;R/;D/ where C p.G;R/ is the vector space of
all G –invariant real valued functions on GpC1 , and D is induced by the differential
.g0; : : : ;gp/ 7!

Pp
iD0

.�1/p ygi (where ygi denotes .g0; : : : ;gp/ with the i th term
deleted). We regard R as a G–module with the trivial G–action, so that invariance
of a function � is equivalent to equivariance. The cohomology of this complex is the
classical group cohomology H p.G;R/.

On the other hand the bounded cohomology H
p

b
.G;R/ is computed using the sub-

complex of .C p.G;R/;D/ consisting of bounded functions. The forgetful map which
regards a bounded function as a function gives a map from H

p

b
.G;R/ to H p.G;R/.

We give an alternative description of this setup using the following bicomplex. Let
Ep;q.G;R/ consist of those real valued G–equivariant functions on GpC1�GqC1 ,
that are bounded over f..g0; : : : ;gp/; .h0; : : : ; hq// j d.gi ;gj / � R for all i; j g for
each R. There are natural anti-commuting differentials

DW Ep;q.G;R/! EpC1;q.G;R/; d W Ep;q.G;R/! Ep;qC1.G;R/

induced by the standard differential as above, so we may construct the totalised complex
and compute its cohomology.

It is easy to see that the rows of the bicomplex (which correspond to fixing p and
varying q ) are exact. A splitting is given by setting

s�..g0; : : : ;gp/; .h0; : : : ; hq//D �..g0; : : : ;gp/; .g0; h0; : : : ; hq//:

Standard arguments then show that the cohomology of the bicomplex collapses onto the
left hand column obtained by augmenting the rows. This means that taking Ep;�1.G;R/
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to be equal to the kernel of the differential d W Ep;0.G;R/! Ep;1.G;R/, we obtain a
cochain complex .Ep;�1.G;R/;D/ and that the cohomology of this complex coincides
with the cohomology of the totalised complex.

The cocycles in .Ep;�1.G;R/;D/ are equivariant functions �W GpC1 � G ! R
which are constant in the final variable. The constraint that these functions should
be bounded over the subset f..g0; : : : ;gp/; .h0// j d.gi ;gj /�R for all i; j g is then
trivially satisfied by equivariance, since properness of the metric ensures that there are
only finitely many orbits of points .g0; : : : ;gp/ for which d.gi ;gj /�R for all i; j .
Hence the cochain complex .Ep;�1.G;R/;D/ is isomorphic to the cochain complex
.C p.G;R/;D/ and its cohomology is standard group cohomology.

There is a second augmentation that we may construct by taking the kernels E�1;q.G;R/
of the maps DW E0;q.G;R/ ! E1;q.G;R/. Since the columns are not acyclic the
corresponding cochain complex will not compute the cohomology of the bicomplex.
Instead we claim that it computes the bounded cohomology of the group. To see
this note that elements of the kernel are constant in the first variable, and that the
boundedness condition simplifies to the condition that the cocycles are bounded over all
choices of .h0; : : : ; hq/. Hence the kernels give rise to a cochain complex isomorphic
to the complex of bounded equivariant functions on the group, and the cohomology is
the bounded cohomology of G .

Finally we consider the map on cohomology induced by the inclusion of .E�1;q.G;R/;d/
into the bicomplex. It is routine to establish that this is the standard forgetful map from
bounded to ordinary cohomology.

It should be noted that this discussion applies more generally to group cohomology
with coefficients in any Banach G –module.

In what follows we will generalise this construction to give cohomology theories which
detect property A for a metric space. The principal ingredients are the definition of
a module over a space and the construction of a bicomplex in which the notion of
controlled support acts as a proxy for invariance under a group action. The cohomology
of the completed bicomplex (the controlled cohomology of X ) is analogous to group
cohomology, while an augmentation of the vertical differential will provide an analogue
of bounded cohomology, the asymptotically invariant cohomology of X . While the
controlled cohomology detects property A it does not necessarily vanish for a property
A space, any more than group cohomology necessarily vanishes for an amenable group.
On the other hand the asymptotically invariant cohomology vanishes for a property A
space, just as bounded cohomology vanishes for an amenable group.
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2 The algebraic bicomplex

In order to define a suitable cohomology theory we need first to define the notion of a
module over a metric space. The definition is motivated by considering the case of the
classical Banach G –module of bounded, equivariant, real valued functions on a group
G . Each element of the module is equipped with a support in the group, consisting of
those elements for which the function is non-zero. The equivariance condition controls
the variation of the support of a function. In the absence of a group action we want to
capture some notion of controlled supports, but we need to do so in a “coarse” manner:

Definition 2.1 Let X be a topological space. An X –module consists of a triple
V D .V; k�k;Supp/ where the pair .V; k � k/ is a Banach space, and Supp is a function
(the support function) from V to the set of closed subsets of X satisfying the following
axioms:

(1) Supp.v/D∅ if v D 0,

(2) Supp.vCw/� Supp.v/[Supp.w/ for every v;w 2 V ,

(3) Supp.�v/D Supp.v/ for every v 2 V and every � 6D 0.

(4) if vn is a sequence converging to v then Supp.v/�
S

n Supp.vn/.

Example 2.2 Let X be a topological space and let V D `1.X / be equipped with the
`1 –norm. The standard support structure for this module sets

Supp.f /D fx 2X j f .x/ 6D 0g

for each f 2 `1.X /.

Note that if .W; k � k/ is a closed subspace of .V; k � k/ then any support function
on X restricts to a support function Supp jW on W so that .W; k � k;Supp jW / is
also an X –module. We will later consider the special case of the subspace `1

0
.X /

of `1.X / consisting of functions f such that
P

x2X f .x/D 0, by analogy with the
Johnson–Ringrose characterisation of amenability.

If X is equipped with a G action for some group G , then we may also consider the
notion of a G –equivariant X module. This is an X –module .V; k � k;Supp/ equipped
with a linear isometric action of G such that g Supp.v/D Supp.gv/ for every g 2G

and every v 2 V .

Let X be a metric space, let G be a group acting by isometries on X and let
V D .V; k�kV ;Supp/ be a G–equivariant X module. Associated to this data we
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will construct an algebraic bicomplex Ep;q.X;V/. This bicomplex also depends on
the group G , however for concision we will generally omit G from our notation.

For x 2X pC1; y 2X qC1 , we adopt the standard convention that coordinates of x; y
are written x0; : : : ;xp and y0; : : : ;yq .

For a positive real number R let

�
pC1
R
WD fx 2X pC1

j d.xi ;xj /�R;8i; j g

�
pC1;qC1
R

WD
˚
.x; y/ 2X pC1

�X qC1
j d.u;v/�R;8u;v 2 fx0; : : :xp;y0; : : : ;yqg

	
:

Identifying X pC1 � X qC1 with X pCqC2 in the obvious way, �pC1;qC1
R

can be
identified with �pCqC2

R
. Given a function �W X pC1 �X qC1! V we set

k�kR D sup
x2�pC1

R
;y2X qC1

k�.x; y/kV :

Definition 2.3 (i) We say that a function � is of controlled supports if for ev-
ery R > 0 there exists S > 0 such that whenever .x; y/ 2 �pC1;qC1

R
then

Supp.�.x; y// is contained in BS .u/ for all u 2 fx0; : : :xp;y0; : : : ;yqg.
(ii) We denote by Ep;q.X;V/ the space of all G–equivariant maps �W X pC1 �

X qC1! V which are of controlled supports and such that k�kR <1 for all
R> 0. Where the context is clear we will abbreviate Ep;q.X;V/ to Ep;q .

We equip the space Ep;q.X;V/ with the topology arising from the semi-norms k � kR .
While it is natural to allow R to range over all positive values we note that the topology
this induces is the same as the topology arising from the countable family of seminorms
k � kR for R 2N .

The usual boundary map @W X mC1 7!X m induces a pair of anti-commuting coboundary
maps D; d which yield the bicomplex

D

x?? D

x?? D

x??
E2;0 d

����! E2;1 d
����! E2;2 d

����!

p

x?? D

x?? D

x?? D

x??
E1;0 d

����! E1;1 d
����! E1;2 d

����!

D

x?? D

x?? D

x??
E0;0 d

����! E0;1 d
����! E0;2 d

����!

����!
q
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Specifically, DW Ep;q! EpC1;q is given by

D�
�
.x0; : : : ;xpC1/; y

�
D

pC1X
iD0

.�1/i�..x0; : : : ; yxi ; : : : ;xpC1/; y/

while d W Ep;q! Ep;qC1 is

d�.x; .y0; : : : ;yqC1//D

qC1X
iD0

.�1/iCp�.x; .y0; : : : ; yyi ; : : : ;yqC1//:

We note that the definition of Ep;q and the maps DW Ep;q!EpC1;q; d W Ep;q!Ep;qC1

make sense not just for positive p; q but also when one of p or q is �1. Elements
of Ep;�1.X;V/ are maps �W X pC1 �X 0! V ; for convenience of notation, we will
suppress the X 0 factor, and write �.x/ for �.x; . //. We will identify Ep;�1.X;V/
as the augmentation of row p , noting that the augmentation map is the differential
d W Ep;�1! Ep;0 defined by d�.x; .y//D�.x; .yy//. Suppressing the empty vector we
see that d�.x; .y//D �.x/, that is, d is the inclusion of Ep;�1.X;V/ into Ep;0.X;V/
as functions which are constant in the y variable.

Lemma 2.4 The maps D and d are well-defined, continuous, anti-commuting differ-
entials.

Proof The fact that D and d are anti-commuting differentials on the larger space of
all equivariant functions from X pC1 �X qC1 to V is standard. We must show that
D; d preserve finiteness of the semi-norms, and controlled supports. We note that
kD�kR � .pC 2/k�kR by the triangle inequality, and a corresponding estimate holds
for kd�kR . Hence D; d are continuous, and the semi-norms are finite as required.

For � of controlled supports we now show that D� is of controlled supports. Given
R > 0, take .x; y/ 2 �pC2;qC1

R
. Since � is of controlled supports, there exists S

such that the support Supp.�..x0; : : : ; yxi ; : : : ;xpC1/; y// is contained in BS .xi0/ and
BS .yj / for all i 0 ¤ i , and for all j . Since for any i 0 ¤ i we have d.xi ;xi0/�R we
deduce that Supp.�.yxi ; y// lies in BSCR.xi0/ for all i 0 . By the axioms for Supp the
support of D� is contained in BSCR.xi0/ and BS .yj / for all i 0 and all j , since this
holds for the summands.

The argument for d� is identical, exchanging the roles of x; y.

We note in passing that continuity of the differentials will enable us to extend them to
differentials on completions of the algebraic bicomplex defined in Section 3.
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Definition 2.5 We denote by H�E .X;V/ the cohomology of the totalisation of the
bicomplex Ep;q;p; q � 0, with the differentials D; d .

Remark If X is equipped with two coarsely equivalent G–invariant metrics d; d 0

then for any module over X the controlled support conditions arising from these metrics
are the same. Moreover the family of semi-norms is equivalent in the sense that for
each R there is an S such that k � kR;d � k � kS;d 0 and for each R there is an S such
thatk � kR;d 0 � k � kS;d . Hence the bicomplexes and the cohomology we obtain from
each metric are identical. This applies in particular if X DG is a countable group and
the two metrics are both left-invariant proper metrics on G .

We will now demonstrate exactness of the rows in the augmented complex. This allows
the cohomology of the totalisation to be computed in terms of the left-hand column.

Proposition 2.6 For each p the augmented row .Ep;�.X;V/; d/, p � �1 is exact.

Specifically, for all p � 0 there is a continuous splitting sW Ep;q! Ep;q�1 given by

s�..x0; : : : ;xp/; .y0; : : : ;yq�1//D .�1/p�..x0; : : : ;xp/; .x0;y0; : : : ;yq�1//:

We have .dsC sd/� D � for � 2 Ep;q with p � 0, and sd� D � for � in Ep;�1 .

Proof The fact that s defines a splitting on the larger space of all equivariant functions
from X pC1�X qC1 to V is standard homological algebra. We must verify that if � is
of controlled supports then so is s� , and that if � has bounded R–norms then so does
s� . The latter will follow from continuity of s , which will also allow us to extend the
splitting to the completed complexes later on.

Continuity is straightforward. For each R � 0 we have ks�kR � k�kR ; this is
immediate from the observation that if .x0; : : : ;xp/ in �pC1

R
then

k�..x0; : : : ;xp/; .x0;y0; : : : ;yq�1//kV � k�kR:

It remains to verify that s� is of controlled supports. Given R > 0, since � is of
controlled supports we know there exists S such that if .x; y/ 2�pC1;qC1

R
then the

support Supp.�.x; y// is contained in BS .xi/ and BS .yj / for all i; j . If the element
..x0; : : : ;xp/; .y0; : : : ;yq�1// lies in �pC1;q

R
then

�
.x0; : : : ;xp/; .x0;y0; : : : ;yq�1/

�
lies in �pC1;qC1

R
, hence the support Supp.s�..x0; : : : ;xp/; .y0; : : : ;yq�1/// is also

contained in BS .xi/ and BS .yj / for all i; j .

This completes the proof.

Geometry & Topology, Volume 16 (2012)



A cohomological characterisation of Yu’s property A for metric spaces 401

We remark that the corresponding statement is false for the vertical differential D ,
since for � 2 Ep;q.X;V/, the function

..x0; : : : ;xp�1/; .y0; : : : ;yq// 7! �..y0;x0; : : : ;xp�1/; .y0; : : : ;yq/

is only guaranteed to be bounded on sets of the form˚
..x0; : : : ;xp�1/; .y0; : : : ;yq// j d.u; v/�R for all u; v 2 fx0; : : : ;xp�1;y0g

	
;

and not on �p
R
�X qC1 .

Corollary 2.7 The cohomology H�E .X;V/ is isomorphic to the cohomology of the
cochain complex

�
E�;�1.X;V/;D

�
.

Proof This follows from the exactness of the augmented rows of the bicomplex - the
cocycle � 2 Ep;q.X;V/ is cohomologous to the cocycle .�Ds/q.�/EpCq;0.X;V/,
whence H�E .X;V/ is isomorphic to the cohomology of the complex ker.d W Ep;0!

Ep;1/ with the differential D . The augmentation map d W Ep;�1 ! Ep;0 yields an
isomorphism from .Ep;�1;D/ to the kernel ker.d W Ep;0! Ep;1/, and as D; d anti-
commute, the differential D on the kernels is identified with the differential �D on
Ep;�1 . We note however that the change of sign does not affect the cohomology, so
H�E .X;V/ is isomorphic to the cohomology of

�
E�;�1.X;V/;D

�
as claimed.

To capture the large scale geometry of a space X we need to complete the Ep;q.X;V/
bicomplex. Generalised Reiter sequences and asymptotically invariant means will
appear in suitable completions which will be introduced in the following section.

3 Generalised completions

Let E be a vector space equipped with a countable family of seminorms k�ki separating
the points of E . We will call such a space a pre-Fréchet space. We have in mind that
E D Ep;q.X;V/, for some p; q;X;G and V , equipped with the R–norms as R ranges
over the natural numbers.

If E is not complete then one constructs the classical completion SE of E as follows. Let
Ecs denote the space of Cauchy sequences in E (that is, sequences which are Cauchy
with respect to each semi-norm), and let E0 denote the space of sequences in E which
converge to 0. Then the completion of E is precisely the quotient space Ecs=E0 . As
the topology of E is given by a countable family of seminorms, this completion is a
Fréchet space.

In this section we will define and study two generalised completions which are somewhat
larger than the classical one.
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Definition 3.1 The quotient completion of E , denoted EQ is the quotient space E=E0

where E denotes the space of bounded sequences in E and E0 denotes the space of
sequences in E which converge to 0. The family of seminorms on E yields a family
of seminorms on E and hence on the quotient EQ . The weak–� completion of E ,
denoted EW is the double dual of E . The family of seminorms on E gives rise to a
family of seminorms on EW .

We will adopt the convention that a class  in the quotient completion EQ may be
represented by a sequence of functions  n , where each  n 2 E .

Let IQ denote the inclusion of E in EQ as the space of constant sequences and let IW

be the natural inclusion of E in its double dual EW . The space E is not assumed to be
complete, but the maps IQ; IW extend to an embedding of the classical completion SE
in EQ; EW respectively, and indeed EQ; EW are isomorphic to the quotient and weak–�
completions of SE .

Since the space E need not be a normed space, we recall some basic theory of duals of
Fréchet spaces. For simplicity we assume that the seminorms on E are monotonic, that
is, k � ki � k � kj for i < j , this being easy to arrange.

For ˛ 2 E� , we can define k˛ki D supfjh˛; �ij j k�ki � 1g. We note that k˛ki takes
values in Œ0;1�, and k � ki � k � kj for i < j . The condition that ˛ is continuous
is the condition that k˛ki is finite for some i . For any sequence r1; r2; : : : the set
f˛ 2 E� j k˛ki < ri for some ig is a neighbourhood of 0, and every neighbourhood of
0 contains such a set. Hence these sets determine the topology on E� .

Having equipped E� with this topology, we can then form the space E�� of continuous
linear functionals on E� . A linear functional � on E� is continuous if for all i , setting
k�ki D supfjh�; ˛ij j k˛ki � 1g we have k�ki <1.

The space EW D E�� will be equipped with the weak–� topology. It follows by the
Banach–Alaoglu theorem that all bounded subsets of EW are relatively compact. In the
language of Bourbaki, if A� EW is bounded, that is, there exists a sequence ri such
that k�ki � ri for all i , then A is contained in the polar of f˛ 2 E� j 9i; k˛ki � 1=rig,
which is compact.

Remark From an abstract perspective, the weak–� completion EW is a natural way
to enlarge E . On the other hand, from the point of view of explicitly constructing
elements, the quotient completion EQ is more tractable.

Definition 3.2 We say that a short exact sequence 0! E �
�! E 0 ��! E 00! 0 of locally

convex topological vector spaces is topologically exact if the map � is topologically
injective and � is an open map.
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Note that if the spaces are complete then the requirements that � is topologically
injective and � is open are automatic by the open mapping theorem.

Proposition 3.3 Let E ; E 0 be pre-Fréchet spaces. Then a continuous map T W E! E 0
induces maps T QW EQ! E 0

Q
and T W W EW ! E 0

W
. Moreover this process is functorial

and exact, that is, it takes short topologically exact sequences to short exact sequences.

Proof For the quotient completion, continuity of the map T W E ! E 0 guarantees
that applying T to each term of a bounded sequence �n in E we obtain a bounded
sequence T�n in E 0 . If �n! 0 then T�n! 0 by continuity, hence we obtain a map
T QW EQ! E 0

Q
. It is clear that this respects compositions.

Now suppose 0! E �
�! E 0 ��! E 00! 0 is a short topologically exact sequence. If �Q

vanishes on a class � 2 EQ then evaluating � on a sequence �n representing � we see
that ��n! 0. Since � is topologically injective, �n! 0. Hence � D 0 and we have
shown that �Q is injective.

Similarly if �0 2 E 0
Q

with �Q�0 D 0 then ��0n ! 0. The map � induces a map
E 0=�E! E 00 which is an isomorphism of pre-Fréchet spaces, hence the image of �0n in
the quotient E 0=�E tends to 0. That is, there exists a bounded sequence  0n in �E such
that �0n� 

0
n! 0. We have  0n D � n for some  n 2 E , and since  n is a bounded

sequence by topological injectivity of �, it represents a class  in EQ . Then �0 D �Q 
in E 0

Q
, hence we deduce that �0 is in the image of �Q .

Finally, for surjectivity of �Q we note that if �00 2 E 00
Q

then there exists a sequence �0n
such that �00n D ��

0
n . By openness of � , the sequence �0n can be chosen to be bounded

as required.

In the case of the weak–� completion, the maps T W , �W and �W are simply the
double duals of T , � and � . Passing to double duals respects composition, and the
hypotheses that � is topologically injective and � is open ensures that the corresponding
sequence of classical completions is exact, whence exactness of the double duals is
standard.

We now give a connection between the two completions.

Proposition 3.4 Let ! be a non-principal ultrafilter on N . Then for any pre-Fréchet
space E there is a linear map e! W EQ!EW satisfying he!.�/; ˛iD lim!h˛; �ni for all
˛ . Moreover IW D e! ıIQ for all ! and for T W E! E 0 we have e! ıT QD T W ıe! .
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Proof Let � denote an element of EQ represented by a bounded sequence �n of
elements of E . We regard this sequence as a bounded map ˆW N! E . Regarding E as
a subspace of its double dual EW , the closure of the range of this map is compact in the
weak–� topology on EW by the Banach–Alaoglu theorem. By the universal property
of the Stone–Čech compactification it follows that ˆ extends to a map x̂ W ˇN! EW

which is continuous with respect to the weak–� topology on EW . Note that if �n! 0

then Ŝ is identically 0 on @ˇN , in particular it vanishes at ! . We therefore define
e!.�/D x̂ .!/ to obtain a well defined map e! W EQ! EW .

By continuity of Ŝ , for each ˛ 2 E� , we obtain a continuous function on ˇN defined
as hŜ.�/; ˛i. This is the extension to ˇN of the bounded function n 7! h˛; �ni, hence
evaluating at ! we have

he!.�/; ˛i D hŜ.!/; ˛i D lim!h˛; �ni:

The fact that e! ıT Q D T W ı e! is now easily verified as

he!.T
Q�/; ˛i D lim!h˛;T�ni D lim!hT �˛; �ni D he!.�/;T

�˛i D hT W e!.�/; ˛i

for all ˛ 2 E� . The compatibility of e! with the inclusion maps IQ; IW is simply the
observation that the extension to ˇN of a constant sequence is again constant.

We are now in a position to define our controlled cohomology theories.

4 Controlled cohomology

For p � 0; q � �1, let Ep;q
Q .X;V/ denote the quotient completion of Ep;q.X;V/,

and let Ep;q
W .X;V/ denote the weak–� completion of Ep;q.X;V/. As .D; d/ are

continuous anti-commuting differentials, the extensions of these to the completions
(which we will also denote by D; d ) are again anti-commuting differentials, hence
taking p; q � 0 we have bicomplexes

�
Ep;q

Q .X;V/; .D; d/
�

and
�
Ep;q

W .X;V/; .D; d/
�
.

Definition 4.1 For �DQ or W , the �–controlled cohomology of X with coefficients
in V , denoted H�� .X;V/ is the cohomology of the totalisation of the bicomplex
Ep;q
� .X;V/;p; q � 0.

Since the splitting s is continuous it extends to the completions and we deduce that
the augmented rows of the completed bicomplexes are exact. This gives rise to the
following.
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Corollary 4.2 The cohomologies H�
Q
.X;V/ and H�

W
.X;V/ are isomorphic, re-

spectively, to the cohomologies of the cochain complexes
�
E�;�1

Q .X;V/;D
�

and�
E�;�1

W .X;V/;D
�
.

The argument is identical to Corollary 2.7.

We note that the extension of s to the completions ensures that taking the kernel of
d W Ep;0! Ep;1 and then completing (in either way), yields the same result as first
completing and then taking the kernel; one obtains the completion of Ep;�1 . The
corresponding statement for D would be false. The kernel of DW E0;q

Q ! E1;q
Q will

typically be much larger than the completion of the kernel of DW E0;q ! E1;q , and
similarly for EW . We will study these kernels in Section 8, where we will use them to
define the asymptotically invariant cohomology theories.

We now make a connection between the three cohomology theories HE ;HQ;HW .

Theorem 4.3 For each non-principal ultrafilter ! on N the inclusions

IQW Ep;q.X;V/ ,! Ep;q
Q .X;V/ and IW W Ep;q.X;V/ ,! Ep;q

W .X;V/

together with the map e! W Ep;q
Q .X;V/! Ep;q

W .X;V/ defined in Proposition 3.4 induce
a commutative diagram at the level of cohomology:

H�E .X;V/ H�
Q
.X;V/

IQ //H�E .X;V/

H�
W
.X;V/

IW
%%

H�
Q
.X;V/

H�
W
.X;V/

e!

��

Moreover the kernels ker IQ and ker IW are equal, that is, a cocycle in Ep;q.X;V/ is a
coboundary in Ep;q

Q .X;V/ if and only if it is a coboundary in Ep;q
W .X;V/.

Proof The existence of the maps at the level of cohomology follows from the fact
that D; d commute with the inclusion maps and with each of the maps e! . The
diagram commutes at the level of cochains by Proposition 3.4. It is then immediate that
ker IQ � ker IW . It remains to prove that if � is a cocycle in Ep;q.X;V/ with IW � a
coboundary, then IQ� is also a coboundary.

By exactness of the rows, every cocycle in Ep;q.X;V/ is cohomologous to an element of
EpCq;0.X;V/, hence without loss of generality we may assume that q D 0. Moreover
any cocycle in Ep;0.X;V/ is d� for some � in Ep;�1.X;V/, and the images of d�
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under IQ; IW will be coboundaries if and only if IQ�; IW � are coboundaries in the
completions of the complex .Ep;�1.X;V/;D/.

Suppose that IW � is a coboundary, that is viewing � as an element of the double
dual Ep;�1

W , there exists  in Ep�1;�1
W such that D D � . We appeal to density of

Ep�1;�1 in Ep�1;�1
W to deduce that there is a bounded net �� in Ep�1;�1 converging

to  in the weak–� topology. By continuity of D we have that D��!D D � . As
D�� and � lie in Ep;�1 , this converges in the weak topology on Ep;�1 . In any locally
convex topological vector space, a convex set is closed in the locally convex topology
if and only if it is closed in the associated weak topology. Hence (as the locally convex
topology of Ep;�1 is metrizable) there is a sequence �n of convex combinations of
elements of the net �� such that D�n converges to � in the R–semi-norm topology
on Ep;�1 . Thus, letting � denote the element of EQ represented by the sequence �n ,
we have D� D IQ� in Ep;�1

Q , so IQ� is a coboundary, as required.

5 Group cohomology revisited

In this section we consider the case where our space is a discrete group acting on itself
by left multiplication and equipped with a proper left invariant metric. We show that in
this case the controlled cohomology of G can be identified with the standard group
cohomology for suitably completed coefficients.

We say that an X –module V D .V; k�k;Supp/ is non-degenerate if the subspace
Vc of compactly supported elements of V is dense in V . We remark that for every
X –module V the module Vc D .SVc ; k�k;Supp/ is a non-degenerate submodule, and
moreover H p

� .X;Vc/DH p
� .X;V/ for �D E ;Q;W .

Since V is an X –module V is a Banach space and so too are its completions VQ and
VW . Furthermore a linear isometric action of G on V extends to a linear isometric
action on each of these. We adopt our usual convention that V� denotes either of these
completions. Let

�
C p.G;V� /;D

�
, denote the homogeneous bar resolution computing

the classical group cohomology with coefficients in V� .

Theorem 5.1 Let G be a group acting on itself by left translation, and equipped
with a proper left-invariant metric. Let V D .V; k � k;Supp/ be a non-degenerate G–
module. Then there is an isomorphism of the cochain complexes

�
C p.G;V� /;D

�
and�

Ep;�1
� .G;V/;D

�
inducing an isomorphism H p.G;V� /ŠH p

� .G;V/, for �DQ or
W .

Proof For � denoting Q or W , set V∅
� D .V� ; k�k;Supp∅/, where Supp∅ is the

support function that assigns the empty set to every element of V� .
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We will show that C p.G;V� /D Ep;�1.G;V∅
� /Š Ep;�1

� .G;V/.

It is immediate that Ep;�1.G;V∅
� / � C p.G;V� /. Conversely, for every cochain

� 2 C p.G;V� /, k�kR is finite for every R, since the R–neighbourhood of the
diagonal contains only finitely many G–orbits, by properness of the metric. The
condition of controlled supports is vacuous for V∅

� and this gives the reverse inclusion.

By definition, Ep;�1.G;V∅
� /Š lim

 �R
`1
�
�

p
R
;V�

�
G . Since G has only finitely many

orbits in �p
R

, we have that

lim
 �R

`1
�
�

p
R
;V�

�
G
Š lim
 �R

M
Gn�

p

R

V� Š lim
 �R

M
Gn�

p

R

.Vc/� Š lim
 �R

 M
Gn�

p

R

Vc

!
�

where we use that Vc is dense in V , and that completions commute with direct sums.
We now use the fact that the structure maps in the inverse system are surjective to
conclude that

lim
 �R

 M
Gn�

p

R

Vc

!
�

Š

 
lim
 �R

M
Gn�

p

R

Vc

!
�

Š

�
lim
 �R

`1
�
�

p
R
;Vc

�
G
�
�
:

Since G has only finitely many orbits on �
p
R

the controlled support condition in
Ep;�1.G;V/ is precisely that cochains take values in Vc , hence�

lim
 �R

`1
�
�

p
R
;Vc

�
G
�
�
Š Ep;�1
� .G;V/;

as required.

In the case of a group equipped with a proper metric the theorem tells us that the com-
pletion of the cochain complex can be obtained simply by completing the coefficients.
This will not be true when the metric is not proper, nor will it hold in the general case
of a metric space unless the associated group action is cocompact.

Now let G be a countable discrete group equipped with a proper left invariant metric
and let J be defined by J .g0;g1/D ıg1

� ıg0
. In [3] we noted that amenability is

characterised in classical (as opposed to bounded) cohomology by the vanishing of
ŒJ � as an element of H 1.G; .`1

0
.G//��/, where `1

0
.G/ denotes the subspace of `1.G/

consisting of functions which sum to 0. Applying the above theorem we conclude that
amenability is also characterised in terms of HW .

Corollary 5.2 Let G be a countable discrete group equipped with a proper left invari-
ant metric and let J 2 E1;�1.G; `1

0
.G// be defined by J .g0;g1/D ıg1

� ıg0
. Then

G is amenable if and only if ŒIW J �D 0 in H 1
W
.G; `1

0
.G//.
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The analogue of this result in the context for the quotient completion is a special case
of Theorem 7.3.

6 Asymptotically invariant means

An invariant mean on a group G is a functional � on `1.G/ with total mass 1 which
is invariant under the group action. Regarding � as a 0–cochain for the inhomogeneous
bar resolution of G over .`1.G//� , the invariance condition is the assertion that � is
in fact a cocycle. Switching to the homogeneous picture and applying Theorem 5.1
we see that the invariance condition is equivalent to regarding � as a cocycle in
E0;�1

W .G; `1.G//. For our purposes it is then convenient to express the normalisation
condition using a map on coefficients, in the spirit of the results in [3]. To this end we
will consider the short exact sequence of coefficients:

0! `1
0.X /

�
�! `1.X /

�
�!C! 0:

The first question we need to address is what it means for this to be a short exact
sequence of X –modules. We begin with the concept of a morphism of coefficient
modules. Let X be a metric space, G be a group acting by isometries on X and let
U D .U; j � jU ;SuppU / and V D .V; j � jV ;SuppV / be G –equivariant X –modules.

Definition 6.1 A G –equivariant X –morphism from U to V is an equivariant bounded
linear map ‰W U ! V for which there exists S � 0 such that for all u 2 U ,
SuppV .‰.u//� BS .SuppU .u//. When the group action is clear from the context, in
particular when G is trivial, we will simply refer to this as an X –morphism.

An X –morphism ‰ is said to be a monomorphism if it is injective and if there exists
T � 0 such that for all u 2 U , SuppU .u/� BT .SuppV .‰.u///.

An X –morphism ‰ is said to be an epimorphism if it is surjective and there exists M �

0 such that for all R�0 there exists S �0 such that for all v2V if SuppV .v/�BR.x/

then there exists u 2‰�1.v/ such that kukU �M kvkV and SuppU .u/� BS .x/.

An X –morphism ‰ is said to be an isomorphism if it is both an epimorphism and a
monomorphism.

We adopt the convention that the term morphism refers to an X –morphism when both
the space X and the group G are clear from the context.

It is straightforward to show that an X –morphism ‰W U ! V induces a continuous
linear map ‰�W Ep;q.X;U/! Ep;q.X;V/ commuting with both differentials. This
extends to give maps on both completed bicomplexes, Ep;q

� .X;U/! Ep;q
� .X;V/.
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Given a space X , and a group G acting by isometries on X , a short exact sequence of
X –modules is a short exact sequence of Banach spaces

0! U
�
�! V

�
�!W ! 0

each with the structure of a G –equivariant X –module, and where � is a monomorphism
of X –modules and � is an epimorphism.

Example 6.2 Consider the following short exact sequence.

0! `1
0.X /

�
�! `1.X /

�
�!C! 0

For a G–space X we regard these Banach spaces as G–modules in the natural way,
where G is regarded as acting trivially on C . The function spaces are equipped with
their usual support functions Supp.f /D fx 2X j f .x/ 6D 0g and C is equipped with
the trivial support function Supp.�/ D ∅ for all � 2 C . We will show that this is a
short exact sequence of X –modules.

The map � is the standard “forgetful” inclusion of `1
0
.X / into `1.X / and is easily seen

to be a monomorphism. The map � is the summation map and this is an epimorphism.
To see this we argue as follows: since the support of any � 2C is empty it lies within
R of any point x 2X . We choose the scaled Dirac delta function �ıx 2 `1.X / which
clearly maps to �, has norm j�j and Supp.�ıx/D fxg, so putting M D 1 and S D 0

satisfies the conditions.

Note that the constant function 12 E0;�1.X;C/ taking the value 1 is a cocycle. Hence
(applying IQ , IW respectively) it represents a class Œ1Q� 2 H 0

Q
.X;C/, and another

class Œ1W � 2H 0
Q
.X;C/.

As in the previous section, consider the case of a group G equipped with a proper
left invariant metric. The map � W `1.G/!C induces a map ��W E0;�1

W .G; `1.G//!

E0;�1
W .G;C/ and, as discussed above, an invariant mean on the group is an element �

in E0;�1
W .G; `1.G// such that D�D 0 and ��.�/D 1W .

This motivates the following definition.

Definition 6.3 Let X be a metric space equipped with an isometric action of a
group G . An equivariant asymptotically invariant mean for X is an element � in
E0;�1

W .X; `1.X // such that D�D 0 and ��.�/D 1W . In the special case when G is
the trivial group we simply call this an asymptotically invariant mean.

For a group G equipped with a proper left invariant metric an equivariant asymptotically
invariant mean is just an invariant mean, however this does not hold in general and we
make the following definition.
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Definition 6.4 Let G be a group equipped with a left invariant metric d (which we
do not assume to be proper). We say that the pair .G; d/ is metrically amenable if it
admits an equivariant asymptotically invariant mean.

We will consider this further in Section 10 in our discussion of Guentner’s theorem
concerning box spaces (see Roe [13]).

We conclude this section by establishing the existence of the long exact sequence in
cohomology.

Proposition 6.5 A short exact sequence of X –modules induces a short exact sequence
of bicomplexes for E ; EQ and EW . Hence, by the snake lemma, we obtain long exact
sequences in cohomology for H�� .X;�/, for each decoration �D E ;Q or W .

Proof Suppose we are given a short exact sequence of X –modules

0! U �
�! V �

�!W! 0:

We will show that the sequence

0! Ep;q.X;U/
��
�! Ep;q.X;V/

��
��! Ep;q.X;W/! 0

is topologically exact.

The map � has closed range by exactness, so it is topologically injective by the open
mapping theorem. Topological injectivity of �� then follows directly.

Exactness at the middle term follows from the observation that if ��.�/ D 0 then
� D � ı�0 for some function �0W X pC1 �X qC1! U , where �0 is uniquely defined
by injectivity of �. We need to verify that �0 is an element of Ep;q.X;U/. Topological
injectivity of � and boundedness of � yields the required norm estimates, whereas
the support condition is satisfied because � is a monomorphism, hence SuppU .�

0/�

BT .SuppV .� ı�
0//D BT .SuppV .�// for some T � 0.

Surjectivity of �� follows from the definition of an epimorphism: Given �2Ep;q.X;W/,
for each R > 0 there exists S > 0 such that .x; y/ 2 �R � R implies that the
support Supp

W
.�.x; y//� BS .xi/;BS .yj / for all i; j . Since � is an epimorphism,

there exists M;T > 0 such that for each .x; y/ there exists an element of V , which
we denote �0.x; y/ such that k�0.x; y/kV � M k�.x; y/kW and SuppV .�

0.x; y// �
BT .xi/;BT .yj / for each i; j , so �0 is of controlled supports and has finite R–norms
as required. These estimates for the R–norms also ensure that �� is open.

Proposition 3.3 allows us to extend these maps to the completions EQ and EW to obtain
short exact sequences for both the EQ and EW bicomplexes. It is now immediate
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from the snake lemma that for each decoration �D E ;Q;W there is a connecting
homomorphism D inducing a long exact sequence in cohomology:

0 �!H 0
�.X;U/ �!H 0

�.X;V/ �!H 0
�.X;W/

D
�!H 1

�.X;U/ �!H 1
�.X;V/ �!H 1

�.X;W/ �! � � �

This completes the proof.

7 A cohomological characterisation of property A

We will use the following definition of property A, which is equivalent to Yu’s original
definition for spaces of bounded geometry (see Higson and Roe [6]).

Definition 7.1 A metric space X is said to have property A if for each x 2 X and
each n 2N there is an element fn.x/ 2 Prob.X / with

(1) a sequence Sn such that Supp.fn.x//� BSn
.x/ and

(2) for any R � 0, kfn.x1/ � fn.x0/k`1!0 as n!1; uniformly on the set
f.x0;x1/ j d.x0;x1/�Rg.

We refer to the sequence fn as a generalised Reiter sequence for X . When X is a
countable discrete group equipped with a proper left invariant metric, and each fn is
equivariant, then this gives us a classical Reiter sequence [11]. By equivariance, the
first condition in the definition then reduces to the usual finite support condition and is
thus independent of the metric. Similarly, the second condition reduces to pointwise
convergence.

As an application of the long exact sequence we give our first cohomological char-
acterisation of Yu’s property A in terms of the vanishing of the Johnson class in the
controlled cohomology H 1

� .X; `
1
0
.X //.

Let X be a metric space (as usual we have in the background a group acting by
isometries on X , but our applications in this section will assume that the action is
trivial). Recall the short exact sequence of X –modules introduced in Example 6.2

0! `1
0.X /

�
�! `1.X /

�
�!C! 0:

As usual let 1 2 E0;�1.X;C/ denote the constant function 1 on X .

Lemma 7.2 Suppose the action of G on X is trivial. Then X has property A if and
only if E0;�1

Q .X; `1.X // contains an element � such that D� D 0 and ��� D 1Q .
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Proof Any generalised Reiter sequence fn for X provides (as in Definition 7.1) an
element of EQ with the required properties: the fact that fn.x/ is a probability measure
ensures that �fn.x/ D 1 for all x; n, that is ��f D IQ1. The other hypotheses of
Definition 7.1 are precisely the assertions that f is of controlled supports and that
Df D 0 in E1;�1

Q .X; `1.X //.

Conversely, given an element � 2 E�1
Q
.X; `1.X // such that D� D 0 and ��� D IQ1,

represented by a sequence �n , we set

fn.x/.z/D
j�n.x/.z/j

k�n.x/k`1

:

Since ��n.x/D 1 for all x; n we have

1

k�n.x/k`1

� 1:

As an element of `1.X /, fn.x/ has the same supports as �n.x/, in particular fn is
of controlled supports for all n. The verification that kfn.x1/�fn.x0/k`1 tends to 0
uniformly on f.x0;x1/ j d.x0;x1/ �Rg follows from the fact that D� D 0 and the
estimate 1

k�n.x/k`1
� 1.

Now recall the long exact sequences for H� , where �DQ or W :

0 �!H 0
�.X; `

1
0.X //

��
�!H 0

�.X; `
1.X //

��
�!H 0

�.X;C/

D
�!H 1

�.X; `
1
0.X //

��
�!H 1

�.X; `
1.X //

��
�!

The connecting map D yields a class DŒ1Q� in H 1
Q
.X; `1

0
.X //, and a class DŒ1W � in

H 1
W
.X; `1

0
.X //.

The classical Johnson class on a group G is defined by the 1–cocycle J .g0;g1/D

ıg1
� ıg0

, where ıg denotes the Dirac delta function which takes the value 1 at
g and 0 elsewhere. By analogy we define the element J 1;0 2 E1;0.X; `1

0
.X // by

J 1;0
�
.x0;x1/;y

�
D ıx1

� ıx0
. This element is a cocycle so by applying IQ; IW we

obtain elements
�
J 1;0

Q

�
2H 1

Q

�
X; `1

0
.X /

�
and

�
J 1;0

W

�
2H 1

W

�
X; `1

0
.X /

�
which we refer

to as the Johnson classes for X . We note that the class of J 1;0 in HE

�
X; `1

0
.X /

�
is the

image of Œ1� under the connecting homomorphism, since we may pull back the function
1 to the Dirac element x 7! ıx and applying the coboundary map to this we obtain
J 1;0 . By applying IQ and IW we observe that

�
J 1;0

Q

�
DDŒ1Q� and

�
J 1;0

W

�
DDŒ1W �.

We are now ready to give a cohomological characterisation of the existence of an
equivariant asymptotically invariant mean. In the case where the group action is trivial,

Geometry & Topology, Volume 16 (2012)



A cohomological characterisation of Yu’s property A for metric spaces 413

we characterise property A both in terms of the existence of an asymptotically invariant
mean and in cohomological terms.

Theorem 7.3 Let X be a discrete metric space equipped with an isometric action of a
group G . Then the following are equivalent:

(1) Œ1Q� 2 Im�� in H 0
Q
.X;C/.

(2) ŒJ 1;0
Q �DDŒ1Q�D 0 in H 1

Q
.X; `1

0
.X //.

(3) ŒJ 1;0
W �DDŒ1W �D 0 in H 1

W
.X; `1

0
.X //.

(4) Œ1W � 2 Im�� in H 0
W
.X;C/.

(5) X admits an equivariant asymptotically invariant mean.

If the group G acts trivially on X then these conditions are all equivalent to property A
for the metric space X .

Proof Conditions (1) and (2) are equivalent by exactness of the long exact sequence
in cohomology, while (2) is equivalent to (3) by Theorem 4.3. Conditions (3) and (4)
are equivalent by a further application of the long exact sequence (this time for the
weak–� completion). The equivalence of (4) and (5) is immediate from the definition
of asymptotically invariant mean. To prove the final statement we note that (1) is
equivalent to property A by Lemma 7.2.

8 Asymptotically invariant cohomology

We pause for a moment to recall the classical definition of bounded cohomology for
a group. One first takes the homogeneous bar resolution wherein the k –dimensional
cochains consist of all bounded functions from GkC1 to C . This cochain complex is
exact so has trivial cohomology. This is exhibited by taking a basepoint splitting which
is induced by the map Gk !GkC1 given by inserting the basepoint as an additional
(first) co-ordinate. Now one takes the G–invariant part of this complex, where G

acts diagonally and C is equipped with the trivial action of G . Since the splitting is
not equivariant the corresponding cochain complex is not necessarily exact. When
the group G is amenable one can average the splitting over orbits using the invariant
mean, and this produces an equivariant splitting which therefore kills the cohomology
in dimensions greater than or equal to 1.

As discussed in Section 1 the bounded cochain complex may be regarded as the bottom
row of an augmented complex obtained by taking the kernels of the vertical differentials
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in degree 0. In this section and the following we will carry out an analogous process for
property A. In this section we will construct the asymptotically invariant cohomology
of a space as the analogue of bounded cohomology. Replacing the classical (split)
cochain complex by the first row of the E� bicomplex, .E0;q

� ; d/, (which is acyclic
since .E0;q; d/ is acyclic by Proposition 2.6) we take the kernels under the vertical
differential D to produce a new cochain complex, which is the analogue of taking the
G –invariant parts in group cohomology.

The splitting s of the horizontal differential d does not restrict to this cochain complex
leaving room for interesting cohomology. In the following section we will show that if
the space X has property A one can asymptotically average the splitting s to obtain a
splitting of the asymptotically invariant complex. Hence we will deduce that if X has
property A then the asymptotically invariant cohomology vanishes in all dimensions
greater than or equal to 1.

Definition 8.1 We say that an element � of E0;q
Q (respectively E0;q

W ) is asymptotically
invariant if D� D 0 in E1;q

Q (respectively E1;q
W ). Let Eq

QA and Eq
W A , denote the spaces

of asymptotically invariant elements in E0;q
Q and E0;q

W respectively. We note as usual
that this is defined for q � �1.

For notational convenience when considering elements of E0;q we will suppress the
parentheses around the single x variable, writing �.x; .y0; : : : ;yq//.

The term asymptotically invariant is motivated by the case of E0;q
Q . An element of

E0;q
Q is asymptotically invariant if it is represented by a sequence �nW X �X qC1! V

which is asymptotically invariant in the x variable the following sense: for all R> 0

the difference �n.x1; y/��n.x0; y/ tends to zero uniformly on �2
R
�X qC1 .

We remark that it is essential that we first complete the complex E and then take the
kernels of D , not the other way around. If we were to take the kernel of DW E0;q!E1;q

we would get functions �.x; .y0; : : : ;yq// which are constant in the x variable, that is,
we would have invariant rather than asymptotically invariant elements. The kernel of
DW E0;q

� ! E1;q
� will typically be much larger than the completion of these x–invariant

functions.

We now make the following elementary observation.

Proposition 8.2 The differential d maps Eq
QA.X;V/ to EqC1

QA .X;V/, and Eq
W A.X;V/

to EqC1
W A .X;V/. Hence

�
Eq

QA.X;V/; d
�

and
�
Eq

W A.X;V/; d
�

are complexes.

Proof This is immediate from anti-commutativity of the differentials D; d .
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Recall that there is a splitting sW E0;q! E0;q�1 extending to both generalised comple-
tions. To see that s does not necessarily map the asymptotically invariant subcomplex
into itself consider the following example.

Example 8.3 For a metric space X we define a Johnson element J 0;12E0;1
�
X;`1.X /

�
by J 0;1

�
x; .y0;y1/

�
D ıy1

� ıy0
. Since J 0;1 is independent of x , DJ 0;1 D 0, so

J 0;1
Q D IQJ 0;1 lies in E1

QA
, and J 0;1

W D IW J 0;1 lies in E1
W A

. However

DsJ 0;1..x0;x1/; .y0//D sJ 0;1.x1; .y0//� sJ 0;1.x0; .y0//

D .ıy0
� ıx1

/� .ıy0
� ıx0

/

D ıx0
� ıx1

which has `1 –norm equal to 2 for all x0 ¤ x1 . Hence DsJ 0;1
Q D IQDsJ 0;1 ¤ 0 and

DsJ 0;1
W D IW DsJ 0;1 ¤ 0, so neither sJ 0;1

Q nor sJ 0;1
W is asymptotically invariant.

We can now define the asymptotically invariant cohomology.

Definition 8.4 For � equal to either of the decorations Q or W , the �–asymptotically
invariant cohomology of X with coefficients in the module V is the cohomology of
the complex

�
E�
�A
.X;V/; d

�
. It is denoted H�

�A
.X;V/. Where the completion used

is clear from the context we will refer to this as simply the asymptotically invariant
cohomology of X .

Lemma 8.5 The augmentation maps

Eq
QA.X;V/ ,! E0;q

Q .X;V/ and Eq
W A.X;V/ ,! E0;q

W .X;V/

induce maps on cohomology

H
q
QA.X;V/!H

q
Q.X;V/ and H

q
W A.X;V/!H

q
W .X;V/;

which are isomorphisms for q D 0, and are injective for q D 1.

Proof Since D vanishes on Eq
QA.X;V/, the differential on the asymptotically invariant

complex is the restriction of the differential DCd on the totalisation of the bicomplex,
so the augmentation map induces a map H

q
QA.X;V/!H

q
Q.X;V/. In degree 0 every

cocycle is non-trivial, and if � 2 E0;0
Q is a cocycle then D� D 0 so � is asymptotically

invariant whence the map is an isomorphism. In degree 1, if � 2 E0;1
Q .X;V/ is a

coboundary in the totalisation of the bicomplex then there is an element  of E0;0
Q .X;V/

such that .DCd/ is .0˚�/ in E1;0
Q .X;V/˚E0;1

Q .X;V/. That is D D 0, so  is
an element of E0

QA
.X;V/, and d D � . Hence � is also a coboundary in E1

QA
.X;V/.

Hence the inclusion of E1
QA
.X;V/ into E0;1

Q .X;V/ gives an injection of cohomology.

The proof for EW is identical.
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Now we restrict to the case where G is trivial, and V is `1
0
.X /. The Johnson ele-

ment J 0;1.x; .y0;y1//D ıy1
� ıy0

in E0;1.X;V/ gives classes
�
J 0;1

Q

�
2H 1

QA
.X;V/

and
�
J 0;1

W

�
2 H 1

QA
.X;V/. Applying the augmentation map we obtain elements of

H 1
Q
.X;V/ and H 1

W
.X;V/. As noted above

Ds.J 0;1/
�
.x0;x1/;y

�
D ıx0

� ıx1
D�J 1;0

�
.x0;x1/;y

�
;

so J 1;0 is cohomologous to J 0;1 in the totalisation of E�;�
�
X; `1

0
.X /

�
. From this it

is immediate that we have
�
J 0;1

Q

�
D
�
J 1;0

Q

�
DDŒ1Q� in H 1

Q

�
X; `1

0
.X /

�
and

�
J 0;1

W

�
D�

J 1;0
W

�
DDŒ1W � in H 1

W

�
X; `1

0
.X /

�
.

We thus obtain the following theorem.

Theorem 8.6 Let X be a metric space with trivial G action. Then the following are
equivalent:

(1) X has property A.

(2)
�
J 0;1

Q

�
D 0 in H 1

QA
.X; `1

0
.X //.

(3)
�
J 0;1

W

�
D 0 in H 1

W A
.X; `1

0
.X //.

Proof By Lemma 8.5, for � denoting Q or W ,
�
J 0;1
�

�
is zero in H 1

�A

�
X; `1

0
.X /

�
if and only if it is zero in H 1

�

�
X; `1

0
.X /

�
, and we have seen that its image is equal to�

J 1;0
�

�
. By Theorem 7.3, this vanishes if and only if X has property A.

9 Vanishing theorems

Throughout this section we will consider a metric space X with trivial group action.

We have seen that the map s does not in general split the coboundary map d in the
complexes E�

QA
and E�

W A
, however if X has property A then we can use the generalised

Reiter sequence in the case of the quotient completion, and the asymptotically invariant
mean in the case of the weak–� completion, to asymptotically average s� . Having done
so we will obtain a splitting for the asymptotically invariant complexes, demonstrating
the vanishing of the cohomology.

We will make use of the following convolution operator.

Definition 9.1 For f 2 Ep;�1.X; `1.X // and � 2 E0;q.X;V /, define f � � by

.f � �/.x; y/D
X

z

f .x/.z/�.z; y/:
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We remark that as � lies in the bottom row of the bicomplex, k�kR is constant in R,
so we suppress the R in the notation for brevity.

We make the following estimate:

kf � �kR � supx2�pC1

R
;y2X qC1

P
z2X jf .x/.z/jk�.z; y/kV

� supx2�pC1

R

X
z

jf .x; .z//jk�k

D kf kRk�k:

This estimate shows that for each f the map � 7! f � � is continuous, and for each �
the map f 7! f � � is continuous.

We note that D.f ��/.x; y/D
P

z

P
i.�1/if .yxi/.z/�.z; y/D

�
.Df /��

�
.x; y/, by

exchanging the order of summation.

Similarly d.f ��/.x; y/D .f � d�/.x; y/.

The convolution extends in an obvious way to the quotient completion. For f 2
Eq;�1

Q .X; `1.X //, � 2E0;q
Q .X;V / we define f �� 2Ep;q

Q .X;V / by .f ��/nDfn��n .
We note that if either of the sequences fn; �n tends to 0 as n!1, then .f � �/n
tends to 0 by the above norm estimate. Hence the convolution is a well defined map

Ep;�1
Q .X; `1.X //� E0;q

Q .X;V /! Ep;q
Q .X;V /;

that is, as an element of Ep;q
Q .X;V /, the convolution f �� does not depend on the

choice of sequences representing f; � .

Since the convolution is defined term-by-term in n, the identities D.f ��/D .Df /��

and d.f ��/D f � d� carry over to the quotient completion.

We recall that by Lemma 7.2 property A is equivalent to the existence of an element
f of E0;�1

Q .X; `1.X // with Df D 0 and ��.f /D 1Q . Convolving with such an f
allows us to average the splitting s� to get an asymptotically invariant element. We
use this idea to prove the following theorem.

Theorem 9.2 If X is a metric space satisfying Yu’s property A, then the asymptotically
invariant cohomology H

q
QA.X;V/ is zero for every q � 1 and every X –module V .

Proof Let � 2 Eq
QA.X;V/ with q � 1. The element � is represented by a sequence

�n in Eq.X;V/ and s� is represented by the sequence

s�n.x; .y0; : : : ;yq�1//D �n.x; .x;y0; : : : ;yq�1//:
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Since D� D 0, the sequence D�n tends to zero, that is for all R> 0, kD�nkR! 0

as n!1. By a diagonal argument, if Sn is a sequence tending to infinity sufficiently
slowly, then kD�nkSn

! 0 as n!1. We choose a sequence Sn with this property.

Take a generalised Reiter sequence f in E0;�1
Q .X; `1.X // so that Df D0 and ��.f /D

1Q , and let fn be a sequence representing f . If fn is a sequence representing f ,
then fn.x/C .1��.fn.x///ıx also represents f and has sum 1, so without loss of
generality we may assume that �.fn.x//D 1 for all x; n.

By repeating the terms of the sequence fn we can arrange that Supp.fn.x//�BSn
.x/

for all x; n. Note that our choice of f therefore depends on Sn and hence on � .

As a remark in passing, we note that taking such a ‘supersequence’ of fn corresponds
in some sense to taking a subsequence of �n . If we were working in the classical com-
pletion Ecs=E0 , then the subsequence would represent the same element of Ecs=E0 ,
however for EQ this need not be true.

For each q0 we now define sf W E
0;q0

Q .X;V /! E0;q0�1
Q .X;V / by sf D f � s . We

first note that for any  the element sf is asymptotically invariant. This follows from
asymptotic invariance of f , since Dsf �DD.f �s�/D .Df /�s�D 0. Hence in fact
we have a map sf W E

0;q0

Q .X;V /! Eq0�1
QA .X;V / which restricts to the asymptotically

invariant complex.

We claim that for our given � we have .dsfCsf d/�D� . We have dsf �Dd.f �s�/D

f �ds� , while sf d�Df �sd� by definition. Hence .dsfCsf d/�Df �.dsCsd/�D

f �� since dsC sd D 1. It thus remains to show that f �� D � . Notice that sinceP
z2X fn.x/.z/D 1 we have �n.x; y/D

P
z2X fn.x/.z/�n.x; y/, so we have

.fn ��n��n/.x; y/D
X
z2X

fn.x/.z/.�n.z; y/��n.x; y//

D

X
z2X

fn.x/.z/D�n..x; z/; y/:

Taking norms we have kfn ��n��nk � kfnkkD�nkSn
, since if d.x; z/ > Sn then

fn.x/.z/ vanishes. We know that kD�nkSn
! 0 as n!1, hence we conclude that

f �� �� D 0 in Eq
QA.X;V/.

We have shown that for every element � 2 Eq
QA.X;V/ with q � 1, we can construct

maps sf W E
q0

QA.X;V/! Eq0�1
QA .X;V/ such that .dsf C sf d/� D � . (As noted above,

f , and hence sf , depend on the element � .) It follows that if � is a cocycle then
� D .dsf C sf d/� D dsf � , so every cocycle is a coboundary. Thus we deduce that
H

q
QA.X;V/D 0 for q � 1.
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We will now prove a corresponding result for the weak–� completion. The role of
the generalised Reiter sequence fn in the previous argument will be replaced by an
asymptotically invariant mean � in E0;�1

W .X; `1.X //.

We begin by extending the convolutions to the weak–� completions. First we define
f �� for f 2 Ep;�1.X; `1.X // and � 2 E0;q

W .X;V /. This is defined via its pairing
with an element ˛ of Ep;q.X;V /� :

hf ��; ˛i D h�; f̨ i; where h f̨ ; �i D h˛; f � �i; for all � 2 E0;q.X;V /:

In other words the operator � 7!f �� on E0;q
W .X;V / is the double dual of the operator

� 7! f � � on E0;q.X;V /.

We have jh f̨ ; �ij � k˛kRkf � �kR � k˛kRkf kRk�k for some R (depending on ˛ ).
Hence for each ˛ there exists R such that

jhf ��; ˛ij � k�kk˛kRkf kR

so f �� is a continuous linear functional.

We now want to further extend the convolution to define ��� in Ep;q
W .X;V /, for � 2

Ep;�1
W .X; `1.X // and � 2 E0;q

W .X;V /. The definition is motivated by the requirement
that .IW f /�� D f �� . Hence for ˛ in Ep;q.X;V /� we will require

h.IW f /��; ˛i D hf ��; ˛i:

For � 2 E0;q
W .X;V /, ˛ 2 Ep;q.X;V /� , define ��;˛ 2 Ep;�1.X; `1.X //� by

h��;˛; f i D hf ��; ˛i D h�; f̨ i:

The above inequalities ensure that ��;˛ is a continuous linear functional.

We observe that f � � is determined by the property that hf � �; ˛i D h��;˛; f i D
hIW f; ��;˛i. We use this to give the general definition: For � 2 Ep;�1

W .X; `1.X // and
� 2 E0;q

W .X;V /, we define ��� in Ep;q
W .X;V / by

h���; ˛i D h�; ��;˛i

for all ˛ in Ep;q.X;V /� .

Lemma 9.3 For � 2 Ep;�1
W .X; `1.X // and � 2 E0;q

W .X;V/ we have D.� � �/ D

.D�/�� and d.���/D �� d� .

Proof The elements D.���/; d.���/ are defined by their pairings with respectively
˛ in EpC1;q.X;V/� and ˇ in Ep;qC1.X;V/� . These are given by pairing � with
respectively ��;D�˛ and ��;d�ˇ .
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Since for f 2 Ep;�1.X; `1.X // we have

h��;D�˛; f i D h�; .D
�˛/f i

and h��;d�ˇ; f i D h�; .d
�ˇ/f i;

we must determine .D�˛/f and .d�ˇ/f . Pairing these with an element � in E0;q.X;V/
we have

h.D�˛/f ; �i D h˛;D.f � �/i D h˛; .Df /� �i;

and h.d�ˇ/f ; �i D hˇ; d.f � �/i D hˇ; f � d�i:

Hence .D�˛/f D ˛Df and .d�ˇ/f D d�. f̌ /, so we have ��;D�˛ D D���;˛ and
��;d�ˇ D �d�;ˇ . It follows that D.� � �/ D .D�/ � � and d.� � �/ D � � d� as
required.

Before proceeding with the proof of the vanishing theorem we first establish the
following result.

Lemma 9.4 If � 2 E0;�1
W .X; `1.X // is in the image of E0;�1

W .X; `1
0
.X //, and � 2

E0;q
W .X;V / with D� D 0 then ��� D 0.

Proof The statement that ���D 0, amounts to the assertion that h�; ��;˛iD 0 for all
˛ in E0;q.X;V /� . Since the image of IW is dense in E0;�1

W .X; `1
0
.X // in the weak–�

topology, it suffices to show that h��;˛; f i D 0 for all f 2 E0;�1.X; `1
0
.X //. We note

that
h��;˛; f i D hf ��; ˛i D h�; f̨ i:

We will show that f̨ is a ‘boundary,’ that is f̨ is in the range of the map D� . As
D� D 0 it will follow that the pairing is trivial.

We define a boundary map @W `1.X �X /! `1
0
.X / by

.@H /.z0/D
X

z12X

H.z; z0/�H.z0; z/:

Equivalently, we can write

@H D
X

z0;z12X

H.z0; z1/.ız1
� ız0

/:

We note that @ is surjective: For h 2 `1
0
.X / and x in X , let H.z0; z1/ D h.z1/

if z0 D x; z1 ¤ x and let H.z0; z1/ D 0 otherwise. Then @H D h. We note that
kHk`1 � khk`1 , and Supp.H /� fxg � Supp.h/. For each x , let F.x/ be the lift of
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f .x/ constructed in this way, so that kF.x/k`1 � kf .x/k`1 for all x , and as f is of
controlled supports there exists R such that if F.x/.z0; z1/¤ 0 then z0; z1 2 BR.x/.

Writing .@F /.x/D @.F.x//, for � 2 E0;q.X;V /, we have

h f̨ ; �i D h˛; f � �i D h˛; .@F /� �i:

Now compute .@F /� � . We have

..@F /� �/.x; y/D
X

z

@F.x/.z/�.z; y/

D

X
z;z0;z1

F.x/.z0; z1/.ız1
.z/� ız0

.z//�.z; y/

D

X
z0;z1

F.x/.z0; z1/D�..z0; z1/; y/

We define TF W E1;q.X;V /! E0;q.X;V / by

.TF �/.x; y/D
X
z0;z1

F.x/.z0; z1/�..z0; z1/; y/:

As F.x/.z0; z1/¤ 0 implies z0; z1 lie in the ball BR.x/, we have the estimate

kTF �k � sup
x2X ;y2X qC1

X
z0;z12X

jF.x/.z0; z1/jk�..z0; z1/; y/kV

� sup
x2X

kF.x/k`1k�kR

� kf kk�kR:

hence TF is continuous.

We conclude that

h f̨ ; �i D h˛; .@F /� �i D h˛;TF D�i D hD�T �F˛; �i

for all � , hence f̨ DD�T �
F
˛ , so that

h�; f̨ i D h�;D
�T �F˛i D hD�;T

�
F˛i D 0:

This completes the proof.

We now prove the vanishing theorem.

Theorem 9.5 If X is a metric space satisfying Yu’s property A, then the asymptotically
invariant cohomology H

q
W A.X;V/ is zero for every q � 1 and every X –module V .

Specifically, if � is an asymptotically invariant mean then s�� D � � s� defines a
splitting of the asymptotically invariant complex.
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Proof By Theorem 7.3, property A guarantees the existence of an asymptotically
invariant mean �, that is an element � in E0;�1

W A such that ��.�/D 0.

We define s�W E0;q
W .X;V/! E0;q�1

W .X;V/ by s�� D�� s� . By Lemma 9.3 we have
Ds�� DD.� � s�/D .D�/ � s� . Since � is asymptotically invariant D�D 0, so
s�� is also asymptotically invariant. Hence s� restricts to a map s�W EW A

0;q.X;V/!
EW A

0;q�1.X;V/. We must now verify that s� is a splitting. By Lemma 9.3, and using
the fact that dsC sd D 1 we have

.ds�C s�d/� D d.�� s�/C�� sd� D �� ds�C�� sd� D ���:

It thus remains to show that ��� D � .

Let ı denote the map X ! `1.X /;x 7! ıx . We have ��.IW ı/D 1D ��.�/, so for
� D ı � � we have ��.�/ D 0. Hence � is in the image of E0;�1

W .X; `1
0
.X //. As

D� D 0, it follows from Lemma 9.4 that ��� D 0. Thus ��� D .IW ı/�� D ı �� .
It is easy to see that convolution with ı yields the identity map on E0;q.X;V/, hence
its double dual is again the identity map. Thus ��� D ı �� D � as required.

This completes the proof.

Combining Theorems 8.6, 9.2 and 9.5 we obtain the following.

Theorem 9.6 Let X be a discrete metric space with trivial group action. Then the
following are equivalent:

(1) X has property A.

(2) H
q
QA.X;V/D 0 for all q � 1 and all X –modules V .

(3) ŒJ 0;1
Q �D 0 in H 1

QA
.X; `1

0
.X //.

(4) H
q
W A.X;V/D 0 for all q � 1 and all X –modules V .

(5) ŒJ 0;1
W �D 0 in H 1

W A
.X; `1

0
.X //.

10 Non-property A spaces

There are essentially three examples of spaces known not to have property A: expander
sequences, box spaces of non-amenable groups and the union of finite cubes of all
dimensions. The existing proofs are distinct in character; in this section we unify the
latter two examples, while in a companion note [8], Ana Khukhro and the third author
apply cohomological methods in the case of expanders. We first consider box spaces
of non-amenable groups. This example, which is due to Guentner, was explored by
Roe in [13].
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Definition 10.1 Let G be a countable residually finite group equipped with a proper
left invariant metric d valued in Z. Let X� D G=N�; � 2 ƒ be a family of finite
quotients of G , such that for any �;�2ƒ, there exists � 2ƒ such that N� �N�\N� .
We regard ƒ as a directed system by defining �<� when N��N� . We equip each of
the quotients X� with the quotient metric d� and extend this to a metric on

`
�2ƒX�

in the usual way, requiring that for each positive integer K , the set of all pairs .�; �0/
for which � 6D �0 and the distance from X� to X�0 is less than K , is finite. The disjoint
union X D

`
�2ƒX� is said to be a box space for G if the intersection of the kernels

N� is trivial.

For any X� in the system we denote the natural map G!X� by q� and the image of
an element g under q� by g� . Similarly if �<� there is a natural map q��W X�!X�
and for any x 2X� we denote q��.x/D x� . Note that if � < �< � and x 2X� then
.x�/� D x� , and similarly, for g 2G , .g�/� D g� .

Theorem 10.2 (Guentner and Roe [13, Proposition 11.39]) Let G be a residually
finite, finitely generated group and let X be a box space for G . Then G is amenable if
and only if X has property A.

Here we give a cohomological proof of this result which applies more generally to the
situation where G is a countable discrete group equipped with a proper left invariant
metric. In Theorem 10.4 we will generalise this to the case of an arbitrary left invariant
discrete metric by replacing the classical notion of amenability with the notion of metric
amenability introduced in Definition 6.4 above.

Proof If G is amenable then there exists � D .�n/ 2 E0;�1
Q .G; `1.G//, with D� D 0

and ��.�/D 1Q . We define a push forward map

q�W E0;�1.G; `1.G//! E0;�1.X; `1.X //

by
q� .x/D x.q�/� .e/

where x 2X� and .q�/� is the push-forward map from `1.G/ to `1.X�/. Since q�
is bounded we can extend it to the quotient completion. As � is the map induced by
the quotient to a point, ��.q�.�//D 1Q by functoriality of the push forward.

For x0;x1 2 X� , let g0;g1 2 G be pre-images with d.g0;g1/ D d.x0;x1/. Then
Dq��n.x0;x1/D .q�/�D�.g0;g1/, so if d.x0;x1/�R then kDq��n.x0;x1/k`1 �

kD�nkR .
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Enumerate the indexing set ƒ as �1; �2; : : : and let Fn D
S

i�n X�i
. Now define

�n 2 E0;�1.X; `1.X // by averaging q�� over Fn , that is,

�n.x/D
1

jFnj

X
x02Fn

q��n.x
0/

if x 2 Fn and �n.x/D q��n.x/ otherwise.

The distance between components X�n
tends to infinity with n, hence for each R and a

sufficiently large n, if d.x0;x1/�R, then x0;x1 both lie in a common component or
both lie in Fn . Hence kD�nkR �kD�nkR , so �n defines a cocycle � 2 EQ.X; `

1.X //.
The averaging process does not affect �� so ��.�/D 1Q . We conclude that X has
property A.

For the reverse implication assume that X has property A, so by Theorem 7.3 it admits
an asymptotically invariant mean.

We will define a “pullback” map Ep;�1.X; `1.X //! Ep;�1.G; `1.G// by regarding
 2 Ep;�1.X; `1.X // as a bounded function of pC2 variables (the additional variable
is the module variable) and using an ultrafilter to extract a pointwise limit. First we set

��.g/.h/D
1

jX�j

X
x2X�

 .xg�/.xh�/;

where for gD .g0; : : : ;gp/, xg� denotes .xq�.g0/; : : : ;xq�.gp//.

For each g; h we note that ��.g/.h/ is bounded in � and so we can define �.g/.h/ to
be the ultrafilter limit. Moreover, k�kR � k kR for all R since for g 2 �pC1

R
.G/,

g� 2�
pC1
R

.X�/, and for any finite subset F �G , if � is sufficiently large then q� is
injective on F by residual finiteness, soX

h2F

j��.g/.h/j �
X

z2X�

1

jX�j

X
x2X�

j .xg�/.z/j �
1

jX�j

X
x2X�

k kR D k kR:

Since  is of controlled supports for any R > 0 there exists S > 0 such that if
x2�pC1

R
.X / then for each i , Supp. .x//�BS .xi/. Let g2�pC1

R
.G/ and suppose

that h 62 BS .gi/ for some i . For sufficiently large � the distance d.h�; .gi/�/ D

d.h;gi/ > S , and so d.xh�;x.gi/�/ > S for all x . Hence ��.g; h/D 0. It follows
that the support of �.g/�BS .gi/ for each i , so � is of controlled supports. It is easy
to see that � is equivariant.

Note that norm estimate above allows us to extend the pullback to the completed
complexes and it is clear that the pullback commutes with the differential D before,
and hence after, completion. It follows that if  is an asymptotically invariant mean for
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X then its pullback � is invariant. We now compute ��.�/. By the controlled support
condition for S sufficiently large Supp.�.g//�BS .g/ and Supp. .g�//�BS .g�/.
If � is sufficiently large then BS .g/ is isometric to BS .g�/ so we obtain

X
h2BS .g/

��.g/.h/D
1

jX�j

X
x2X�

X
z2BS .g�/

 .xg�/.xz/D
1

jX�j

X
x2X�

�. .xg�//D 1:

Taking the limit over � we see that �.�.g//D 1 so the pullback of an asymptotically
invariant mean on X is an invariant mean on G .

We note that in the above proof, the key point at which properness of the metric
was invoked was when we established that the pullback is compatible with � . We
also use it implicitly when we assert that for all g;g0 2 G there exists a � such that
d.g;g0/D d.g�;g

0
�
/.

Many examples of box spaces fail to embed uniformly in Hilbert space. In [9] Nowak
gave an example of a space which does admit a uniform embedding in Hilbert space,
but does not possess property A: let X denote the disjoint union of the finite cubes
Xn D f0; 1g

n each equipped with the `1 metric, and extend this to a proper metric on
X insisting that the distance from Xn to its complement tends to 1 with n. Then X

does not have property A.

In Theorem 10.4 we will give a generalisation of Guentner’s theorem and we will show
that Nowak’s example arises as an application of this result. To do so we identify the
finite cubes as quotients of the group G D

L
i2N Z2 , equipped with the word metric

on the natural generators. We note that G is amenable since it is an ascending union
of finite groups, so we might expect the box space to have property A. As we will see
the fact that it does not have property A follows from the observation that G is not
metrically amenable, as stated in Definition 6.4.

Lemma 10.3 Let G be the group
L

i2N Z2 equipped with the word metric induced
by its natural generating set. Then G is not metrically amenable.

Proof Suppose that � 2 E0;�1
Q .G; `1.G// such that ��.�/ D 1Q . We will show

that D� 6D 0. For each n and for each � > 0 there is a finite subset F such that
k�n.e/jF ck< � so that k�n.e/jFk � 1� � . Since F is finite, we may now choose a
generator s of G such that sF \F D ∅. Then by equivariance �n.s/ D s�n.e/ so
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k�n.s/jsF ck< � and k�n.s/jsFk � 1� � . It follows that

k�n.s/��n.e/k D
X
g2G

j�n.s/.g/��n.e/.g/j

D

X
g2F

j�n.e/.g/��n.s/.g/jC
X

g2sF

j�n.e/.g/��n.s/.g/j

C

X
g 62F[sF

j�n.e/.g/��n.s/.g/j

� 1� 2�C 1� 2�C 0

D 2� 4�:

Hence kD�nkRD1�2 for all n, and D� 6D0. It follows that Œ1Q� 62 Im�� in H 0
Q
.G;C/

so by Theorem 7.3, G does not admit an equivariant asymptotically invariant mean.

Theorem 10.4 Let G be a countable residually finite group equipped with a left
invariant metric d , and let X D

`
�2ƒX� be a countable box space for .G; d/ with

the following properties:

(1) For every g in G there exists � 2ƒ such that d.e;g/D d.e�;g�/.

(2) For each � 2 ƒ and for each x 2 X� there are finitely many elements g 2 G

such that d.e�;x/D d.e;g/ and g� D x .

Then G is metrically amenable if and only if X has property A.

If G is a finitely generated residually finite group, it admits a proper left invariant metric
and any box space of G will then satisfy conditions (1) and (2) above. Hence we recover
Guentner’s theorem. The disjoint union of the finite quotients X D

`
n

Ln
iD1 Z2 is

a box space of the group G D
L

i2N Z2 which also satisfies conditions (1) and (2).
(The second condition follows from the fact that while the metric is not proper, given
any element g 2G there are only finitely many geodesics in G from e to g .) Since
X is a union of finite cubes of all dimensions we recover Nowak’s theorem since we
have noted that G is not metrically amenable.

Proof of Theorem 10.4 The proof that if G is metrically amenable then X has
property A is identical to that given in our proof of Theorem 10.2, since that part of
the proof did not invoke properness of the metric.

For the converse, we identify E0;�1.G; `1.G// with a subspace F of E0;�1.X; `1.X //,
and show that E0;�1.X; `1.X // retracts onto F . We deduce that H 0

W
.G; `1.G// injects

into H 0
W
.X; `1.X //. This injection is consistent with the isomorphism H 0

W
.G;C/Š
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H 0
W
.X;C/, and we conclude that there is an equivariant asymptotically invariant

mean in H 0
W
.G; `1.G// if and only if there is an asymptotically invariant mean in

H 0
W
.X; `1.X //.

Now suppose that X has property A. As in the proof of Theorem 10.2 we will pull
back the asymptotically invariant mean on X to an equivariant asymptotically invariant
mean on G , taking care to ensure that the pullback is compatible with the summation
map � . We will use the weak–� completion.

As above let q� denote the pushforward from E0;�1.G; `1.G// to E0;�1.X; `1.X //.
We note that if  2 E0;�1.X; `1.X // is in the image of q� then:

(i)  is equivariant,

(ii) for x 2X� ,  .x/ is supported in X� ,

(iii) For � < � we have  .e�/D .q��/� .e�/.

Let F denote the subspace of E0;�1.X; `1.X // of cochains with these properties.

We will first prove that the image of q� is F . Let R be a nonnegative integer and
suppose that  2 F and for each x 2 X ,  .x/ is supported in the ball of radius R

about x . For g 2G let

�R.e/.g/D

(
lim�  .e�/.g�/; d.e;g/DR

0; otherwise:

We extend equivariantly. We will show that the limit exists, that �R 2 E0;�1.G; `1.G//,
and .q��R/.e�/.y/D  .e�/.y/ for y 2X� with d.e�;y/DR.

To show that the limit exists, choose � such that d.e�;g�/ D R, which is possible
by hypothesis (1) of the Theorem. By hypothesis (2) the set S of k 2 G such that
d.e; k/DR and k� D g� is finite. If � is sufficiently large, by residual finiteness of
G , q� is injective on S . Now for any � > � we have  .e�/D .q��/�. .e�// so

 .e�/.g�/D
X

y2X�
y�Dg�

 .e�/.y/:

As y� D g� , d.e� ;y/� d.e�;g�/� d.e�;g�/DR, hence the only non-zero terms
are for d.e� ;y/ D R. We have y D k� for some k 2 G with d.e; k/ D R. Then
k�D y�D g� so k 2 S and k�D y�D g� , so k D g as q� is injective on S . Hence
there is only one term in the sum and we have  .e�/.g�/D  .e�/.g�/. The net is
therefore ultimately constant, so it converges.
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We now show that �R.e/ is in `1.G/. Let F be a finite subset of G . ThenX
g2F

j�R.e/.g/j D lim
�

X
g2F

j .e�/.g�/j:

Choosing � sufficiently large so that q� is injective on F we see thatX
g2F

j�R.e/.g/j � k .e�/k`1 � k k:

As this holds for all finite F we deduce that �R.e/ is in `1.G/, and k�R.e/k`1 �k k.
So �R 2 E0;�1.G; `1.G// as required.

For y 2X� with d.e�;y/DR we have

.q��R/.e�/.y/D
X

g2G;g�Dy

�R.e/.g/D
X
g2T

�R.e/.g/

where T is the set of all g 2G such that d.e;g/DR and g� D y . As T is finite by
hypothesis (2), we can choose � sufficiently large that �R.e/.g/D  .e�/.g�/ for all
g 2 T and so that q� is injective on T .

We note that q�.T / is the set of z 2 X� such that d.e�; z/DR and z� D y . Since
 .e�/.z/ vanishes if d.e�; z/ >R we have

.q��R/.e�/.y/D
X
g2T

 .e�/.g�/D
X

z2X�
z�Dy

 .e�/.z/D  .e�/.y/

as required.

It now follows that if R is a positive integer, then  � q��R is supported on the ball
of radius R� 1, while if R D 0 then  D q��R . Hence, by induction on R every
 2 F is in the image of q� .

For a � 2 E1;�1.X; `1.X // define

k�kloc
R D sup k�.x0;x1/k

where the supremum is taken over all .x0;x1/ 2
`
�X 2

�
such that d.x0;x1/�R. We

now establish the following claim:

Claim There exists a retraction r from E0;�1.X; `1.X // onto F , such that for � 2
E0;�1.X; `1.X //, if ��.�/D 1 then ��.r�/D 1, and kDr�kloc

R � kD�kR .
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To prove this we will need to extract limits from bounded nets indexed by ƒ; to do so
we choose an ultrafilter ! extending the natural filter on the directed system ƒ.

Given � 2E0;�1.X; `1.X // we set x�.e�/.y/D 1
jX�j

P
z2X�

�.z/.zy/, for each y 2X� .

We now set

 .e�/.y/D lim
�2!

X
z2X�
z�Dy

x�.e�/.z/;

for each y 2 X� and set it to 0 for all other y 2 X . We extend this equivariantly to
a map from X to `1.X /. By definition this satisfies conditions (i) and (ii). It also
satisfies condition (iii) asX

z2X�
z�Dy

 .e�/.z/D
X

z2X�
z�Dy

lim
�2!

X
w2X�
w�Dz

x�.e�/.w/

D lim
�2!

X
z2X�
z�Dy

X
w2X�
w�Dz

x�.e�/.w/

D lim
�2!

X
w2X�
w�Dy

x�.e�/.w/D  .e�/.y/:

It is straightforward to verify that  is bounded and of controlled supports, so we obtain
a map r W E0;�1.X; `1.X //! F as required. If � 2 F then x� D � by equivariance
and  D x� by condition (iii) so the map r is a retraction onto F .

We now compute ��. /.

��. /.e�/D
X

y2X�

lim
�2!

X
z2X�
z�Dy

x�.e�/.z/D lim
�2!

X
y2X�

X
z2X�
z�Dy

x�.e�/.z/

D lim
�2!

X
z2X�

x�.e�/.z/D lim
�2!

X
z2X�

1

jX�j

X
w2X�

�.w/.wz/

D lim
�2!

1

jX�j

X
w2X�

X
z2X�

�.w/.wz/D lim
�2!

1

jX�j

X
w2X�

��.�/.w/:

In particular ��. / is constant, and if ��.�/ is the constant function 1 then ��. /D 1
as well.

We now consider the norm kD kloc
R

.

Geometry & Topology, Volume 16 (2012)



430 Jacek Brodzki, Graham A Niblo and Nick Wright

By equivariance it suffices to consider k .x/� .e�/k`1 where x 2X� and d.e�;x/�

R. Pick g 2G such that d.e;g/D d.e�;x/ and g� D x .

k .x/� .e�/k`1 D

X
y2X�

j .x/.y/� .e�/.y/j

D lim
�

X
y2X�

ˇ̌̌ X
z2X�
z�Dy

x�.g�/.y/� x�.e�/.z/
ˇ̌̌

� lim
�

X
y2X�

X
z2X�
z�Dy

ˇ̌̌
x�.g�/.y/� x�.e�/.z/

ˇ̌̌

D lim
�

X
z2X�

ˇ̌̌
x�.g�/.y/� x�.e�/.z/

ˇ̌̌
� kDx�k

loc
R :

It is easy to see that kDx�k
loc
R � kD�kR since taking the average is a norm-decreasing

operation. Hence kD kloc
R � kD�kR as required.

We complete the proof of Theorem 10.4 as follows.

Note that for any � 2 E0;�1.G; `1.G// and for any pre-images g0;g1 2G of x0;x1 2

X� ,

Dq��.x0;x1/D x1.q�/��.e/�x0.q�/��.e/

D .q�/��.g1/� .q�/��.g0/

D .q�/�D�.g0;g1/:

Since there exist pre-images with d.g0;g1/D d.x0;x1/ we deduce that kDq��k
loc
R
�

kD�kR . In fact we have equality: for each g0;g1 in G , the norm k.q�/�D�.g0;g1/k

converges to kD�.g0;g1/k (by residual finiteness). By the same argument kq��k D
k�k for all � , hence q� is injective.

Having noted that q� is an isometric bijection E0;�1.G; `1.G// ! F we obtain
a bounded map q�1

� r W E0;�1.X; `1.X //! E0;�1.G; `1.G//. This extends to a map
E0;�1

W .X; `1.X //!E0;�1
W .G; `1.G// and for any invariant mean �2E0;�1

W .X; `1.X //

we obtain an element �0 2 E0;�1
W .G; `1.G//. We will show that �0 is an equivariant,

asymptotically invariant mean for G , which will establish that G is metrically amenable.
Since ��.�/D 1W , ��.�0/D 1W , it only remains to show that D�0 D 0.

To do this we use q�1
� r to induce a map from DE0;�1.X ;`1.X // to DE0;�1.G;`1.G//,

which, abusing notation, we will also denote by q�1
� r . Define q�1

� r.D�/DD.q�1
� r.�//;
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this is well defined as D is injective on E0;�1.X; `1.X //. The map q�1
� r is continuous

since for � 2 E0;�1.X; `1.X // and � D q�1
� r.�/ we have

kq�1
� r.D�/kR D kD�kR D kDq��k

loc
R D kDr�kloc

R � kD�kR:

Now the weak–� completion of DE0;�1.X; `1.X // injects into the weak–� com-
pletion of E1;�1.X; `1.X // so by continuity q�1

� r extends and in particular D�0 D

q�1
� rD�D 0. Hence an asymptotically invariant mean for X maps to an equivariant

asymptotically invariant mean for G .
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