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Chow rings and decomposition theorems
for families of K3 surfaces and Calabi–Yau hypersurfaces

CLAIRE VOISIN

The decomposition theorem for smooth projective morphisms � W X ! B says
that R��Q decomposes as

L
Ri��QŒ�i � . We describe simple examples where

it is not possible to have such a decomposition compatible with cup product, even
after restriction to Zariski dense open sets of B . We prove however that this is
always possible for families of K3 surfaces (after shrinking the base), and show
how this result relates to a result by Beauville and the author [2] on the Chow
ring of a K3 surface S . We give two proofs of this result, the first one involving
K–autocorrespondences of K3 surfaces, seen as analogues of isogenies of abelian
varieties, the second one involving a certain decomposition of the small diagonal
in S3 obtained in [2]. We also prove an analogue of such a decomposition of the
small diagonal in X 3 for Calabi–Yau hypersurfaces X in P n , which in turn provides
strong restrictions on their Chow ring.

14C15, 14C30, 14D99

Let � W X !B be a smooth projective morphism. The decomposition theorem, proved
by Deligne [4] as a consequence of the hard Lefschetz theorem, is the following
statement:

Theorem 0.1 (Deligne 1968 [4]) In the derived category of sheaves of Q–vector
spaces on B , there is a decomposition

(0-1) R��QD
M

i

Ri��QŒ�i �:

This statement is equivalent, as explained by Deligne in loc. cit. to (a universal version of)
the degeneracy at E2 of the Leray spectral sequence of � . Deligne came back in [5]
to the problem of constructing a canonical such decomposition, given the topological
Chern class l of a relatively ample line bundle on X and imposing partial compatibilities
with the morphism of cup product with l .

Note that both sides of (0-1) carry a cup product. On the right, we put the direct sum of
the cup product maps �i;j W R

i��Q˝Rj��Q!RiCj��Q. On the left, one needs
to choose an explicit representation of R��Q by a complex C � , together with an
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434 Claire Voisin

explicit morphism of complexes �W C �˝C �! C � which induces the cup product
in cohomology. When passing to coefficients R or C , one can take C � D ��A�X ,
where A�X is the sheaf of C1 real or complex differential forms on X and for � the
wedge product of forms. For rational coefficients, the explicit construction of the cup
product at the level of complexes (for example Čech complexes) is more painful (see
Godement [8, 6.3]). The resulting cup product morphism � will be canonical only in
the derived category.

The question we study in this paper is the following:

Question 0.2 Given a family of smooth projective varieties � W X ! B , does there
exist a decomposition as above which is multiplicative, that is, compatible with the
morphism

�W R��Q˝R��Q!R��Q

given by cup product?

Let us give three examples: In the first one, which is the case of families of abelian
varieties, the answer to Question 0.2 is affirmative. This was proved by Deninger and
Murre in [6] as a consequence of a much more general “motivic” decomposition result.

Proposition 0.3 For any family � W A ! B of abelian varieties (or complex tori),
there is a multiplicative decomposition isomorphism R��QD

L
i Ri��QŒ�i �.

In the next two examples, the answer to Question 0.2 is negative. The simplest example
is that of projective bundles � W P .E/! B , where E is a locally free sheaf on B .

Proposition 0.4 Assume that ctop
1
.E/ D 0 in H 2.B;Q/. Then, if there exists a

multiplicative decomposition isomorphism for � W P .E/! B , one has ctop
i .E/D 0 in

H 2i.B;Q/ for all i > 0.

Proof Let hD ctop
1
.OP.E/.1// 2H 2.P .E/;Q/. It is standard that

H 2.P .E/;Q/D ��H 2.B;Q/˚Qh;

where ��H 2.B;Q/ identifies canonically with the deepest term H 2.B;R0��Q/ in
the Leray filtration. A multiplicative decomposition isomorphism as in (0-1) induces by
taking cohomology another decomposition of H 2.P .E/;Q/ as ��H 2.B;Q/˚Qh0 ,
where h0 D hC��˛ , for some ˛ 2H 2.B;Q/. In this multiplicative decomposition,
h0 will generate a summand isomorphic to H 0.B;R2��Q/. Let r D rank E . As
ctop

1
.E/D 0, one has ��hr D 0 in H 2.B;Q/. As .h0/r D 0 in H 0.B;R2r��Q/, and
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.h0/r belongs by multiplicativity to a direct summand naturally isomorphic (by restric-
tion to fibers) to H 0.B;R2r��Q/D0, one must also have .h0/r D0 in H 2r .P .E/;Q/.
On the other hand .h0/r D hr C rhr�1��˛C � � �C��˛r , and it follows that

��.h
0/r D 0D ��h

r
C r˛ in H 2.B;Q/:

Thus ˛ D 0, h0 D h, and hr D 0 in H 2r .P .E/;Q/. The definition of Chern classes
and the fact that hr D 0 show then that ctop

i .E/D 0 for all i > 0.

In this example, the obstructions to the existence of a multiplicative decomposition
isomorphism are given by cycle classes on B . These classes vanish locally on B for
the Zariski topology and this suggests studying the following variant of Question 0.2:

Question 0.5 Given a family of smooth projective varieties � W X ! B , does there
exist a Zariski dense open set B0 of B , and a multiplicative decomposition isomorphism
as in (0-1) for the restricted family X 0! B0 ?

Our last example is given by families of curves and shows that already in this case,
we can have a negative answer to this weakened question. We fix an abelian surface,
choose a Lefschetz pencil of curves Ct �A; t 2 P1 , and let B � P1 be the open set
parameterizing smooth fibers.

Proposition 0.6 The family � W C!B does not admit a multiplicative decomposition
isomorphism over any nonempty Zariski open set of B .

Proof Assume there is a multiplicative decomposition isomorphism for the restricted
family � W C0! B0 over some nonempty Zariski open set B0 of B . Then we get by
taking cohomology a decomposition

H 1.C0;Q/Š ��H 1.B0;Q/˚K;

where K ŠH 0.B0;R1��Q/ has the property that the cup product map

�W K˝K!H 2.C0;Q/

factors through the cup product map

�W H 0.B;R1��Q/˝H 0.B;R1��Q/!H 0.B;R2��Q/:

Now let ˛; ˇ 2H 1.A;C/ be the classes of two independent sections of �1
A

. Let us
denote by qW C!A the natural map. Then we can decompose

q�˛ D ˛K C�
�˛0; q�ˇ D ˇK C�

�ˇ0;
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with ˛K ; ˇK 2K and ˛0; ˇ0 2H 1.B0;C/. Taking their cup product, and using the
fact that the cup product is trivial on the summand ��H 1.B0;C/, we get the equality

q�.˛[ˇ/D ˛K [ˇK C˛K [�
�ˇ0C��˛0[ˇK ;

and the first term ˛K [ˇK vanishes because it vanishes in H 0.B0;R2��C/ (indeed,
the classes ˛; ˇ are of type .1; 0/ and so are their restrictions to the fibers Cb which
are 1–dimensional). The same arguments show that

q�.˛[ˇ/D q�˛[��ˇ0C��˛0[ q�ˇ in H 2.C0;C/:

The contradiction comes from the fact that q�.˛[ˇ/ does not vanish in H 2.C0;C/
(because this is the restriction of the class of a nonzero .2; 0/–form on a projective
completion of C0 , namely the blow-up of A at the base-points of the pencil) and
has trivial residues along all fibers Cb; b 2 P1 nB0 , while the independence of the
restrictions of the classes ˛; ˇ to the fibers Cb; b 2 P1 nB0 implies that the term on
the right can have trivial residues along all fibers if and only if ˇ0 and ˛0 have trivial
residues at all points b 2 P1 nB0 , which implies ˇ0 D 0; ˛0 D 0.

Our main result in this paper is:

Theorem 0.7 (i) For any smooth projective family � W X ! B of K3 surfaces,
there exist a decomposition isomorphism as in (0-1) and a nonempty Zariski
open subset B0 of B , such that this decomposition becomes multiplicative for
the restricted family � W X 0! B0 .

(ii) The class of the relative diagonal Œ�X0=B0 �2H 4.X 0�B0 X 0;Q/ belongs to the
direct summand H 0.B0;R4.�; �/�Q/ of H 4.X 0�B0 X 0;Q/, for the induced
decomposition of R.�; �/�Q.

(iii) For any algebraic line bundle L on X , there is a dense Zariski open set B0

of B such that the topological Chern class ctop
1
.L/ 2H 2.X ;Q/ restricted to X 0

belongs to the direct summand H 0.B0;R2��Q/ of H 2.X 0;Q/ induced by
this decomposition.

Statement (i) is definitely wrong if we do not restrict to a Zariski open set (see Section 1.2
for an example). Statement (iii) is in fact implied by (i), according to Lemma 1.4.

We note that statements (i) and (iii) together imply that the decomposition above coincide
locally over B in the Zariski topology with the first one defined by Deligne [5]. This
follows from the characterization of the latter given in [5, Proposition 2.7].

We will explain in Section 1 how Theorem 0.7 is related to the results of Beauville
and the author [2] and Beauville [1] (see also the author’s paper [14] for further
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developments) concerning the Chow ring of K3 surfaces. In fact the statement was
motivated by the following result, which is an easy consequence of the results of [2],
but can be seen as well as a consequence of Theorem 0.7 by Proposition 1.3.

Proposition 0.8 Let � W S ! B be a family of K3 surfaces, Li 2 PicS and nij be
integers. Assume that the degree 4 cohomology class c D

P
ij nij ctop

1
.Li/c

top
1
.Lj / 2

H 4.S;Q/ has trivial restriction on the fibers St ; t 2 B (or equivalently, has trivial
restriction on one fiber St , if B is connected). Then there exists a nonempty Zariski
open subset B0 of B such that c vanishes in H 4.S0;Q/, where S0 WD ��1.B0/.

In Section 1, we prove Proposition 1.3, which says in particular that Proposition 0.8 is
satisfied more generally by any family X ! B of varieties with trivial irregularity, ad-
mitting a multiplicative decomposition isomorphism, and for any fiberwise polynomial
cohomological relation between Chern classes of line bundles on X . This strongly
relates the present work to the paper [1].

We will also use this proposition in Section 1.1 to provide further examples of families
of surfaces for which there is no multiplicative decomposition isomorphism over any
dense Zariski open set of the base, although there is no variation of Hodge structures
in the fibers.

Let us mention one consequence of Theorem 0.7. Let � W X ! B be a projective
family of K3 surfaces, with B irreducible, and L 2 PicX . Consider the 0–cycle
oX WD .1= degXt

L2/L2 2 CH2.X /Q . By Theorems 1.1 and 1.2, this 0–cycle is
independent of L, at least after restriction to X 0 D ��1.B0/, for an adequate Zariski
dense open set B0 of B . We also have the relative diagonal �X=B 2 CH2.X �B X /.
Let Ls , s 2 I , be line bundles on X . Set Xm=B WDX �B : : :�B X , �mW Xm=B!B ,
the m–th fibered product of X over B .

Corollary 0.9 Consider a codimension 2r cycle Z with Q–coefficients in Xm=B

which is a polynomial in the cycles pr�i oX , pr�j Ls , pr�
kl
�X=B , where 1� i; j ; k; l�m.

Assume that the restriction of Z to one (equivalently, any) fiber Xm
t is cohomologous

to 0. Then there exists a dense Zariski open set B0 of B such that Z is cohomologous
to 0 in .X 0/m=B .

Proof Indeed, it follows from Theorem 0.7(iii) that over a dense Zariski open set B0 ,
the classes ctop

1
.Ls/ 2H 2.X 0;Q/ belong to the direct summand H 0.B0;R2��Q/ of

H 2.X 0;Q/ induced by the multiplicative decomposition isomorphism of Theorem 0.7.
By multiplicativity, the class ŒoX � belongs to the direct summand H 0.B0;R4��Q/ of
H 4.X 0;Q/. By Theorem 0.7(ii), over a Zariski open set B0 of B , the class Œ�X=B �
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of the relative diagonal belongs to the direct summand H 0.B0;R4.�; �/�Q/ of
H 4.X 0 �B0 X 0;Q/. We thus conclude by multiplicativity that the class ŒZ� be-
longs to the direct summand H 0.B0;R2r .�m/�Q/ of H 2r .X 0/m=B;Q/. But by
assumption, the class ŒZ� projects to 0 in H 0.B0;R2r .�m/�Q/. We thus deduce that
it is identically 0.

This corollary provides an evidence (of a rather speculative nature, in the same spirit
as Huybrechts [9]) for the conjecture made in [14, Conjecture 1.3] concerning the
Chow ring of hyper-Kähler manifolds, at least for those of type S Œn� , where S is a K3

surface. Indeed, this conjecture states the following:

Conjecture 0.10 Let Y be an algebraic hyper-Kähler variety. Then any polynomial
cohomological relation P .Œc1.Lj /�; Œci.TY /�/D 0 in H 2k.Y;Q/, Lj 2 Pic Y , already
holds at the level of Chow groups: P .c1.Lj /; ci.TY //D 0 in CHk.Y /Q .

Indeed, we proved in [14, Proposition 2.5] that for Y D S Œn� , this conjecture is implied
by the following conjecture:

Conjecture 0.11 Let S be an algebraic K3 surface. For any integer m, let P 2

CHp.Sm/Q be a weighted degree k polynomial expression in pr�i c1.Ls/, Ls 2 Pic S ,
pr�

jl
�S : Then if ŒP �D 0 in H 2k.Sm;Q/, we have P D 0 in CHk.Sm/Q .

By the general principle Theorem 1.2, Conjecture 0.11 implies Corollary 0.9. In the
other direction, we can say the following (which is rather speculative): In the situation
of Conjecture 0.11, we can find a family X ! B of smooth projective K3 surfaces,
endowed with line bundles Ls 2 PicX , where everything is defined over Q, such that
S and the Ls ’s are the fiber over some t 2B of X and the Lj ’s. Then we can construct
using the same polynomial expression the cycle P 2 CHk.Xm=B/Q and Corollary 0.9
tells that the class of this cycle vanishes in H 2k..X 0/m=B;Q/. As .X 0/m=B and P
are defined over Q, the Beilinson conjecture predicts that it is trivial if furthermore
its Abel–Jacobi invariant vanishes, which is presumably provable by the same method
used to get the vanishing of the cycle class.

Theorem 0.7 will be proved in Section 2. In fact, we will give two proofs of it. In the
first one, we use the existence of nontrivial self K–correspondences (see [13]), whose
action on cohomology allows to split the cohomology in different pieces, in a way
which is compatible with the cup product. This is very similar to the proof given in
the abelian case (Proposition 0.3), for which one uses homotheties. The second proof
is formal, and uses a curious decomposition of the small diagonal � � S3 of a K3

surface S , obtained in [2, Proposition 3.2] (see Theorem 2.17).
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In Section 3, we will investigate the case of Calabi–Yau hypersurfaces X in projective
space Pn and establish for them the following analogue of this decomposition of the
small diagonal. We denote by � Š X � X 3 the small diagonal of X and �ij Š

X �X � X 3 the inverse image in X 3 of the diagonal of X �X by the projection
onto the product of the i –th and j –th factors. There is a natural 0–cycle o WD

c1.OX .1//
n�1=.nC 1/ 2 CH0.X /.

Theorem 0.12 (cf Theorem 3.1) The following relation holds in CH2n�2.X�X�X/Q
(in the following equation, “C.perm:/” means that we symmetrize in the indices the
considered expression):

(0-2) �D�12 � o3C .perm:/CZC� 0 in CH2n�2.X �X �X /Q;

where Z is the restriction to X �X �X of a cycle of Pn � Pn � Pn , and � 0 is a
multiple of the following effective cycle of dimension n� 1:

� WD
[

t2F.X /

P1
t �P1

t �P1
t ;

where F.X / is the variety of lines contained in X .

As a consequence, we get the following result concerning the Chow ring of a Calabi–Yau
hypersurface X in Pn , which generalizes [2, Theorem 1] (see Theorem 1.1):

Theorem 0.13 Let X be as above and let Zi ; Z0i be cycles of codimension > 0 on X

such that codim Zi C codim Z0i D n� 1. Then if we have a cohomological relationX
i

ni deg.Zi �Z
0
i/D 0;

this relation already holds at the level of Chow groups:X
i

niZi �Z
0
i D 0 in CH0.X /Q:

We conjecture that the cycle � also comes from a cycle on Pn�Pn�Pn . This would
imply the analogue of Theorem 0.7 for families of Calabi–Yau hypersurfaces.

Acknowledgements I thank Bernhard Keller for his help in the proof of Lemma 2.1,
Christoph Sorger and Bruno Kahn for useful discussions, and the referee on a primitive
version of this paper for useful comments.
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1 Link with the results of Beauville [1] and Beauville and
Voisin [2]

In this section, we first show how to deduce Proposition 0.8 from the following Theorem
proved in [2]:

Theorem 1.1 (Beauville–Voisin [2]) Let S be a K3 surface, Di 2 CH1.S/ be
divisors on S and nij be integers. Then if the 0–cycle

P
i;j nij DiDj 2 CH0.S/ is

cohomologous to 0 on S , it is equal to 0 in CH0.S/.

We will use here and many times later on in the paper the following “general principle”
(cf Bloch and Srinivas [3] and Voisin [12, Theorem 10.19; 15, Corollary 3.1.6]:

Theorem 1.2 Let � W X ! B be a morphism with X; B smooth, and Z 2 CHk.X /

such that ZjXt
D 0 in CHk.Xt / for any t 2 B . Then there exists a dense Zariski open

set B0 � B such that

(1-1) ŒZ�D 0 in H 2k.X 0;Q/;

where X 0 WD ��1.B0/.

Proof of Proposition 0.8 Indeed, under the assumption that the intersection num-
ber

P
i;j nij ctop

1
.Li;b/c

top
1
.Lj ;b/ D 0 vanishes in H 4.Sb;Q/ D Q for all b 2 B ,

Theorem 1.1 says that the codimension 2 cycle
P

i;j nij c1.Li/c1.Lj / 2 CH2.S/ has
trivial restriction on each fiber Sb . The general principle Theorem 1.2 then implies that
there is a Zariski dense open set B0 of B such that the class

P
i;j nij ctop

1
.Li/c

top
1
.Lj /

vanishes in H 4.S0;Q/.

We next prove the following Proposition 1.3, which provides a conclusion similar
as above, under the assumption that the family has a multiplicative decomposition
isomorphism over a Zariski open set.

Let � W X !B be a projective family of smooth complex varieties with H 1.Xb;OXb
/

equal to 0 for any b 2 B , parameterized by a connected complex quasiprojective
variety B . Let Li ; i D 1; : : : ;m be line bundles on X and li WD ctop

1
.Li/2H 2.X ;Q/.

We will say that a cohomology class ˇ 2H�.X ;Q/ is Zariski locally trivial over B if
B is covered by Zariski open sets B0 �B , such that ˇjX0 D 0 in H�.X 0;Q/, where
X 0 D ��1.B0/.
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Proposition 1.3 Assume that there is a multiplicative decomposition isomorphism

(1-2) R��QD
M

i

Ri��QŒ�i �:

Let P be a homogeneous polynomial of degree r in m variables with rational coeffi-
cients and let ˛ WD P .li/ 2H 2r .X ;Q/. Then, if ˛jXb

D 0 in H 2r .Xb;Q/ for some
b 2 B , the class ˛ is Zariski locally trivial over B .

Proof We will assume for simplicity that B is smooth although a closer look at the
proof shows that this assumption is not necessary. The multiplicative decomposition
isomorphism induces, by taking cohomology and using the fact that the fibers have no
degree 1 rational cohomology, a decomposition

(1-3) H 2.X ;Q/DH 0.B;R2��Q/˚�
�H 2.B;Q/;

which is compatible with cup product, so that the cup product map on the first term
factors through the map induced by cup product:

�r W H
0.B;R2��Q/

˝r
!H 0.B;R2r��Q/:

We write in this decomposition li D l 0i C�
�ki , where

ki 2H 2.B;R0��Q/DH 2.B;Q/
��

Š ��H 2.B;Q/:

We now have:

Lemma 1.4 The assumptions being as in Proposition 1.3, the classes ki are divisor
classes on B . Thus B is covered by Zariski open sets B0 such that the divisor classes li
restricted to X 0 belong to the direct summand H 0.B0;R2��Q/.

Proof Indeed, take any line bundle L on X . Let l D ctop
1
.L/ 2 H 2.X ;Q/ and

decompose as above lD l 0C��k , where l 0 has the same image as l in H 0.B;R2��Q/
and k belongs to H 2.B;Q/. Denoting by n the dimension of the fibers, we get

(1-4) lnli D

�X
p

� n

p

�
l 0

p
��kn�p

�
.l 0i C�

�ki/

D

X
p

� n

p

�
l 0

p
l 0i�
�kn�p

C

X
p

� n

p

�
l 0

p
��.kn�pki/:

Recall now that the decomposition is multiplicative. The class l 0
n
l 0i thus belongs to the

direct summand of H 2nC2.X ;Q/ isomorphic to H 0.B;R2nC2��Q/ deduced from
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the decomposition (1-2). As R2nC2��QD 0, we conclude that l 0
n
l 0i D 0. Applying

��W H
2nC2.X ;Q/!H 2.B;Q/ to (1-4), we then get

(1-5)
��.l

nli/D n degXb
.l 0

n�1
l 0i/kC degXb

.l 0
n
/ki

D n degXb
.ln�1li/kC degXb

.ln/ki :

Observe that the term on the left is a divisor class on B . If the fiberwise self-intersection
degXb

.li
n/ is nonzero, we can take LD Li and (1-5) gives

��.l
nC1
i /D .nC 1/ degXb

.li
n/ki :

This shows that ki is a divisor class on B and proves the lemma in this case. If
degXb

.li
n/ is equal to 0, choose a line bundle L on X such that both intersection

numbers degXb
.ln�1li/ and degXb

.ln/ are nonzero (such an L exists unless li;b D 0;
but then some power of Li is the pullback of a divisor on B and there is nothing to
prove). Then, in the formula

��.l
nli/D n degXb

.ln�1li/kC degXb
.ln/ki ;

the left hand side is a divisor class on B and, as we just proved, the first term in the
right hand side is also a divisor class on B . It thus follows that degXb

.ln/ki is a divisor
class on B . The lemma is thus proved.

Coming back to the proof of Proposition 1.3, Lemma 1.4 tells us that B is covered
by Zariski open sets B0 on which li belongs to the first summand H 0.B0;R2��Q/
in (1-3). It then follows by multiplicativity that any polynomial expression P .li/jX0

belongs to a direct summand of H 2r .X 0;Q/ isomorphic by the natural projection to
H 0.B0;R2r��Q/. Consider now our fiberwise cohomological polynomial relation
˛jXb

D 0 in H 2r .Xb;Q/, for some b 2B . Since B is connected, it says equivalently
that ˛ vanishes in H 0.B0;R2r��Q/. It follows then from the previous statement that
it vanishes in H 2r .X 0;Q/.

1.1 Application

We can use Proposition 1.3 to exhibit very simple families of smooth projective sur-
faces, with no variation of Hodge structure, but for which there is no multiplicative
decomposition isomorphism on any nonempty Zariski open set of the base.

We consider a smooth projective surface S , and set

X D B.S �S/�; B D S; � D pr2 ı�;

where � W B.S �S/�! S �S is the blow-up of the diagonal.
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Proposition 1.5 Assume that h1;0.S/D 0; h2;0.S/ 6D 0. Then there is no multiplica-
tive decomposition isomorphism for � W X ! B over any Zariski dense open set of
B D S .

Proof Let H be an ample line bundle on S , and d WD deg c1.H /2 . On X , we have
then two line bundles, namely L WD ��.pr�

1
H / and L0 D OX .E/ where E is the

exceptional divisor of � . On the fibers of � , we have the relation

deg c1.L/
2
D�d deg c1.L

0/2:

If there existed a multiplicative decomposition isomorphism over a Zariski dense open
set of B D S , we would have by Proposition 1.3, using the fact that the fibers of �
are regular, a Zariski dense open set U � S such that the relation

(1-6) ctop
1 .L/2 D�d ctop

1 .L0/2

holds in H 4.XU ;Q/. If we apply ��W H 4.XU ;Q/!H 4.S �U;Q/ to this relation,
we now get

(1-7) pr�1 ctop
1 .H /2 D d Œ��

in H 4.S �U;Q/.

This relation implies that the class pr�
1

ctop
1
.H /2� d Œ�� 2H 4.S �S;Q/ comes from

a class  2 H 2.S � zD;Q/, where D WD S nU and zD is a desingularization of D .
Denoting by z| W zD ! S the natural map, we then conclude that for any class ˛ 2
H 2.S;Q/,

d˛ D�z|�.�˛/ in H 2.S;Q/

is supported on D . This contradicts the assumption h2;0.S/ 6D 0.

1.2 Example where Theorem 0.7(i) is not satisfied globally on B

Let us apply the same arguments as in the proof of Proposition 1.3 to exhibit simple
families of smooth projective K3 surfaces for which a multiplicative decomposition
isomorphism does not exist on the whole base.

We take B D P1 and S � P1 � P1 � P2 a generic hypersurface of multidegree
.d; 2; 3/. We put � WD pr1 . This is not a smooth family of K3 surfaces because of
the nodal fibers, but we can take a finite cover of P1 and introduce a simultaneous
resolution of the pulled-back family to get a family of smooth K3 surfaces parame-
terized by a complete curve. (Note that the simultaneous resolution does not hold in
the projective category, so the morphism � 0W S 0! B0 obtained this way is usually not
projective; this is a minor point.) By the Grothendieck–Lefschetz theorem, one has
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NS.S/D Z3 D NS .P1 �P1 �P2/, and the same is true for S 0 if one assumes that
the general fiber of S over B has PicSb D Pic.P1 �P2/D Z2 .

We prove now:

Lemma 1.6 The family � 0W S 0! B0 does not admit a multiplicative decomposition
isomorphism over B0 .

Proof As the hypersurface S is generic, the family S! P1 is not locally isotrivial.
It follows that H 2.S 0;OS0/D 0, and thus

H 2.S 0;Q/D NS.S 0/˝Q:

As already mentioned, the right hand side is isomorphic to Q3 , generated by the
pullback to S 0 of the natural classes h1; h2; h3 on Pic.P1 � P1 � P2/. The first
class h1 belongs to the natural summand � 0�H 2.B;Q/ D H 2.B;R0� 0�Q/ and, as
explained above, the existence of a multiplicative decomposition isomorphism would
imply the existence of a decomposition

NS .S 0/˝QDH 2.S 0;Q/D � 0�H 2.B0;Q/˚H; H ŠH 0.B;R2� 0�Q/

such that the cup product map on H factors through the map given by cup product

�W H 0.B0;R2� 0�Q/˝H 0.B0;R2� 0�Q/!H 0.B0;R4� 0�Q/DQ:

Let us show that such a decomposition does not exist. As all classes are obtained
by pullback from S and the pullback map preserves the cup product, we can make
the computation on S . Let h0

2
D h2 � ˛h1; h0

3
D h3 � ˇh1 be generators for H .

The class h0
2

has self-intersection 0 on the fibers Sb , and it follows that we must
have h0

2
2 D 0 in H 4.S;Q/. As h2

2
D 0 and h0

2
2 D h2

2
� 2˛h1h2 , with h1h2 6D 0 in

H 4.S;Q/, we conclude that ˛ D 0 and h2 D h0
2

. Next, the class h2
3

(hence also the
class h0

2
3 ) has degree 2 on the fibers Sb ; furthermore the intersection number h2h3

of the classes h2 and h3 on the fibers Sb is equal to 3 (thus we get as well that the
intersection number h2h0

3
D h0

2
h0

3
on the fibers Sb is equal to 3).

If our multiplicative decomposition exists, we conclude that we must have the following
relation in H 4.S;Q/:

(1-8) 3h0
2
3� 2h2h03 D 0:

Equivalently, as the class of S in P1�P1�P2 is an ample class equal to dh1C2h2C3h3 ,
we should have

(1-9) .dh1C 2h2C 3h3/.3.h
2
3� 2ˇh3h1/� 2h2.h3�ˇh1//D 0

in H 6.P1
�P1

�P2;Q/:
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However this class is equal to .3d � 18ˇ/h1h2
3
C .�2d � 6ˇ/h1h2h3 , where the two

classes h1h2
3
; h1h2h3 are independent in H 6.P1 �P1 �P2;Q/. We conclude that

for Equation (1-9) to hold, one needs

3d � 18ˇ D 0; �2d � 6ˇ D 0;

which has no solution for d 6D 0. Hence the relation (1-8) is not satisfied for any choice
of h0

3
.

2 Proof of Theorem 0.7

2.1 A criterion for the existence of a decomposition

Our proofs will be based on the following easy and presumably standard lemma, applied
to the category of sheaves of Q–vector spaces on B .

Let A be a Q–linear abelian category, and let D.A/ be the corresponding derived
category of left bounded complexes. Let M 2 D.A/ be an object with bounded
cohomology such that End M is finite dimensional. Assume M admits a morphism
�W M !M such that

H i.�/W H i.M /!H i.M /

is equal to �i IdH i .M / , where all the �i 2Q are distinct.

Lemma 2.1 The morphism � induces a canonical decomposition

(2-1) M Š
M

i

H i.M /Œ�i �;

characterized by the properties:

(1) The induced map on cohomology is the identity map.

(2) One has

(2-2) � ı�i D �i�i W M !M;

where �i corresponds via the isomorphism (2-1) to the i –th projector pri .

Proof We first prove using the arguments of [4] that M is decomposed, namely there
is an isomorphism

f W M Š
M

i

H i.M /Œ�i �:

For this, given an object K 2Ob A, we consider the left exact functor T from A to the
category of Q–vector spaces defined by T .N /DHomA.K;N /, and for any integer i
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the induced functor, denoted by Ti , N 7! HomD.A/.KŒ�i �;N / on D.A/. For any
N 2D.A/, there is the hypercohomology spectral sequence with E2 –term

E
p;q
2
DRpTi.H

q.N //D ExtpCi
A

.K;H q.N //)RpCqTi.N /:

Under our assumptions, this spectral sequence for N DM degenerates at E2 . Indeed,
the morphism � acts then on the above spectral sequence starting from E2 . The
differential d2W E

p;q
2
!E

pC2;q�1
2

(2-3) ExtpCi
A

.K;H q.M //) ExtpC2Ci
A

.K;H q�1.M //

commutes with the action of � . On the other hand, � acts as �q Id on the left hand
side and as �q�1 Id on the right hand side of (2-3). Thus we conclude that d2 D 0 and
similarly that all dr ; r � 2 are 0.

We take now K D H i.M /. We conclude from the degeneracy at E2 of the above
spectral sequence that the map

HomD.A/.H
i.M /Œ�i �;M /! HomA.H

i.M /;H i.M //DE
�i;i
2

is surjective, so that there is a morphism

fi W H
i.M /Œ�i �!M

inducing the identity on degree i cohomology. The direct sum f D
P
fi is a quasi-

isomorphism which gives the desired splitting.

The morphism � can thus be seen as a morphism of the split object
L

i H i.M /Œ�i �.
Such a morphism is given by a block-uppertriangular matrix

�j ;i 2 Exti�j
A

.H i.M /;H j .M //; i � j ;

with �i Id on the i –th diagonal block. Let  be the endomorphism of End M given
by left multiplication by � . We have by the above description of � that

(2-4)
Y

i;H i .M / 6D0

. ��i IdEnd M /D 0;

which shows that the endomorphism  is diagonalizable. More precisely, as  is
block-uppertriangular in an adequately ordered decomposition

End M D
M
i�j

Exti�j
A

.H i.M /;H j .M //;

with term �j Id on the block diagonals Exti�j
A

.H i.M /;H j .M //, hence in particular
on EndA H j .M /, we conclude that there exists � 0i 2 End M such that � 0i acts as the
identity on H i.M /, and � ı� 0i D �i�

0
i .
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Let �i WD �
0
i ıfi W H

i.M /Œ�i �!M . Then � WD
P
�i gives another decompositionL

i H i.M /Œ�i �ŠM and we have � ı �i D �i�i , which gives � ı�i D �i�i , where
�i D � ı pri ı�

�1 .

The uniqueness of the �i ’s satisfying properties (1) and (2) is obvious, since these
properties force the equality �i D

Q
j 6Di.� ��j IdM /=

Q
j 6Di �i ��j :

The following result is proved by Deninger and Murre [6], by similar but somehow
more complicated arguments (indeed they use Fourier–Mukai transforms, which exist
only in the projective case):

Corollary 2.2 (Deninger–Murre 1991 [6]) For any family � W A! B of abelian
varieties or complex tori, there is a multiplicative decomposition isomorphism R��QDL

i Ri��QŒ�i �.

Proof Choose an integer n 6D ˙1 and consider the multiplication map

�nW A!A; a 7! na:

We then get morphisms ��nW R��Q ! R��Q with the property that the induced
morphisms on each Ri��Q D H i.R��Q/ is multiplication by ni . We use now
Lemma 2.1 to deduce from such a morphism a canonical splitting

(2-5) R��QŠ
M

i

Ri��QŒ�i �;

characterized by the properties that the induced map on cohomology is the identity
map, and

(2-6) ��n ı�i D ni�i W R��Q!R��Q:

where �i is the endomorphism of R��Q which identifies to the i –th projector via the
isomorphism (2-5). On the other hand, the morphism �W R��Q˝R��Q!R��Q
given by cup product is compatible with ��n , in the sense that

� ı .��n˝�
�
n/D �

�
n ı�W R��Q˝R��Q!R��Q:

Combining this last equation with (2-6), we find that

� ı .��n˝�
�
n/ ı .�i ˝�j /D niCj� ı .�i ˝�j /

D ��n ı� ı .�i ˝�j /W R��Q˝R��Q!R��Q:

Again by (2-6), this implies �ı�i˝�j factors through RiCj��Œ�i�j �. Equivalently,
in the splitting (2-5), the cup product morphism � maps Ri��QŒ�i �˝Rj��QŒ�j �/

to the summand RiCj��Œ�i � j �.
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2.2 K –Autocorrespondences

K–Correspondences were introduced in [13] in order to study intrinsic volume forms
on complex manifolds.

Definition 2.3 (Voisin 2004 [13]) A K–isocorrespondence between two projective
complex manifolds X and Y of dimension n is a n–dimensional closed algebraic
subvariety †�X �Y , such that each irreducible component of † dominates X and Y

by the natural projections, and satisfying the following condition: Let � W z†!† be a
desingularization, and let f WD pr1 ı� W

z†!X; g WD pr2 ı� W
z†! Y . Then we have

the equality

(2-7) Rf DRg

of the ramification divisors of f and g on z†.

A K–autocorrespondence of X is a K–isocorrespondence between X and itself.

We will be interested in K–autocorrespondences †�X �X , where X is a smooth
complex projective variety with trivial canonical bundle. In fact, we are not interested
in this paper in the equality (2-7) of ramification divisors, but in the proportionality of
pulled-back top holomorphic forms, which is an equivalent property by the following
lemma:

Lemma 2.4 Let X be a smooth complex compact manifold with trivial canonical
bundle, and let †�X�X be an irreducible self-correspondence, with desingularization
� W z†! †. Then † is a K–autocorrespondence if and only if for some coefficient
� 2C� , one has

(2-8) 0 6D f ��D �g�� in H 0.z†;Kz†/

for any nonzero holomorphic section � of KX , where as before f Dpr1 ı�; gDpr2 ı� .

Proof Indeed, as f �� and g�� are not identically 0, the maps f and g are dominating
and thus generically finite. As KX is trivial, Rf and Rg are respectively the divisors
of the pulled-back forms f ��; g�� 2 H 0.z†;Kz†/. As z† is irreducible, these two
forms are thus proportional if and only if Rf DRg .

The simplest way to construct such a K–autocorrespondence is by studying rational
equivalence of points on X : We recall for the convenience of the reader the proof of
the following statement, which can be found in [13, Section 2]: Let X be a complex
projective n–fold with trivial canonical bundle, and z0 2 CH0.X / be a fixed 0–cycle.
Let m1; m2 be nonzero integers.
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Proposition 2.5 Let †�X �X be a n–dimensional subvariety which dominates X

by both projections, and such that, for any .x;y/ 2†, m1xCm2y D z0 in CH0.X /.
Then † is a K–autocorrespondence of X . More precisely, we have the equality
m1f

��D�m2g�� in H 0.z†;Kz†/ for any holomorphic n–form � on X .

Proof Let � W z† ! † be a desingularization of † and let as above f WD pr1 ı� ,
g D pr2 ı� . We apply Mumford’s theorem [10] or its generalization [12, Proposition
10.24] to the cycle

� Dm1Graph.f /Cm2Graph.g/ 2 CHn.z†�X /

which has the property that Im.��W CH0.z†/hom!CH0.X // is supported on Supp z0 .
It follows that for any holomorphic form � of degree > 0 on X , ���D 0 on z†. But
we have

���Dm1f
��Cm2g�� in H 0.z†;�l

z†
/:

For l D n, we get the desired equality m1f
��D�m2g�� in H 0.z†;Kz†/.

Let S be an algebraic K3 surface, and L an ample line bundle on S of self-intersection
c1.L/

2D 2d . We assume that Pic S has rank 1, generated by a class proportional to L.
There is a 1–dimensional family of singular elliptic curves in jLj which sweepout S .
They may be not irreducible, and have in particular fixed rational components, but
as .Pic S/ ˝ Q is generated by L, the classes of all irreducible components are
proportional to c1.L/. Changing L if necessary, we may then assume the general
fibers of this 1–dimensional family of elliptic curves are irreducible. Starting from
this one dimensional family of irreducible elliptic curves †1 WD

S
b2�1

†0
b

, we get by
desingularizing †1 and �1 the following data: A smooth projective surface †, and
two morphisms

�W †! S; pW †! �;

where p is surjective with elliptic fibers †b such that ��.†b/ 2 jLj, � is a smooth
curve, and � is generically finite.

Choose an integer m� 1 mod 2d , and write mD 2kdC1. For a general point x 2†,
the fiber †x WD p�1.p.x// is a smooth elliptic curve, and there is an unique y 2†x

such that
mx D yC kLj†x

in Pic†x :

This determines a rational map  W † Ü †; x 7! y which is of degree m2 . Let
� W z†!† be a birational morphism such that  ı � is a morphism, and let

f WD � ı � W z†! S; g WD � ı ı � W z†! S:

Remark 2.6 The degree of f is equal to the degree of � , hence independent of m.
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Lemma 2.7 The image †m WD .f;g/.z†/ is a K–autocorrespondence of S , which
satisfies the following numerical properties:

(1) For any � 2H 2;0.S/, g��Dmf ��.

(2) f�g
�LD �mL in Pic S , where

m�m 62 f0; m2 degf; m degf; degf g

for m large enough.

Proof By construction, we have for � 2†

(2-9) g.�/Dmf .�/� kL2 in CH0.S/:

Thus †m is a K–correspondence and (1) is satisfied by Proposition 2.5.

As .Pic S/˝QDQL, we certainly have a formula f�g�LD �mL in Pic S and it
only remains to show that m�m 62 f0; degf; m degf ; m2 degf g for m large. This
is however obvious, as the degree of f is independent of m according to Remark 2.6,
while the intersection number g�L �†b is equal to 2m2d , which implies that the
intersection number f�†b �f�g

�LDL �f�g
�L is � 2m2d , so that �m �m2 .

Corollary 2.8 For a very general pair .S;L/ as above, we have

mf � D g�W H 2.S;Q/?c1.L/!H 2.z†;Q/:

Proof Indeed the morphism of Hodge structures mf � � g�W H 2.S;Q/?c1.L/ !

H 2.z†;Q/ vanishes on H 2;0.S/ by Lemma 2.7. Its kernel K is thus a Hodge sub-
structure of H 2.S;Q/?c1.L/ which contains both H 2;0.S/ and its complex conjugate
H 0;2.S/. The orthogonal complement of K in H 2.S;Q/?c1.L/ is thus contained
in NS .S/˝Q and orthogonal to c1.L/, hence is 0 because for a very general pair
.S;L/, we have NS .S/˝QDQc1.L/.

Corollary 2.9 The eigenvalues of f�g� acting on H�.S;Q/ are

degf; m degf; �m; m2 degf:

Proof Indeed, f�g� acts as .degf / Id on H 0.S;Q/. Corollary 2.8 and Lemma 2.7(2)
show that the eigenvalues of f�g� on H 2.S;Q/ are m degf and �m , and finally
f�g
� acts as deg g Id on H 4.S;Q/. But deg g Dm2degf because for any nonzero

holomorphic 2–form � on S , we have g��Dmf �� and thusZ
z†

g��^g�x�D deg g

Z
S

�^ x�Dm2

Z
z†

f ��^f �x�Dm2 degf
Z

S

�^ x�;

where the integral
R

S �^ x� is nonzero.
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We are going to use now the above constructions to prove Theorem 0.7(i) for families
of K3 surfaces with generic Picard number 1.

Proof of Theorem 0.7(i) We start with our family � W S!B of K3 surfaces, which
has the property that the very general fibers Sb have Picard number 1. Let L be a
relatively ample line bundle on S of self-intersection 2d . The construction mentioned
previously of a 1–dimensional family of irreducible elliptic curves with smooth total
space works in family, at least over a Zariski open set of B . Hence, replacing B by a
Zariski open set, S by its inverse image under � , and L by a rational multiple of L if
necessary, we can assume that there are a family of smooth surfaces pW T ! B and
two morphisms

(2-10) f; gW T ! S

whose fibers over b 2 B satisfy the conclusions of Lemma 2.7 and Corollary 2.8.

The relative cycle

(2-11) � WD .f;g/�.T /C
�

m degf ��m

2d

�
pr�1 c1.L/ �pr�2 c1.L/ 2 CH2.S �B S/Q

induces a morphism
��W R��Q!R��Q;

which acts by Corollary 2.9 with respective eigenvalues

�0 D degf; �2 Dm degf; �4 Dm2 degf

on R0��Q; R2��Q; R4��Q.

These three eigenvalues being distinct, we can apply Lemma 2.1 to the morphism ��

acting on the object R��Q of the bounded derived category of sheaves of Q–vector
spaces on B . We thus get a decomposition

(2-12) R��QDR0��Q˚R2��QŒ�2�˚R4��QŒ�4�;

which is preserved by �� . Note furthermore that R2��QŒ�2� is canonically the direct
sum QLŒ�2�˚R2��Q?LŒ�2�, which provides us with the two direct summands

(2-13) QLŒ�2�; R2��Q
?LŒ�2�

of R��Q.

The proof of Theorem 0.7 then concludes with the following:

Proposition 2.10 The decomposition (2-12) is multiplicative on a nonempty Zariski
open set of B .
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It remains to prove Proposition 2.10. The proof will use the following lemma: Let
f; gW †!S be two morphisms from a smooth surface † to a K3 surface S equipped
with a line bundle L with nonzero self-intersection.

Lemma 2.11 Assume that for some integers m1; m2 , and for some fixed 0–cycle z0

of S , the relation

(2-14) m1f .�/Cm2g.�/D z0

holds in CH0.S/ for every � 2†. Then we have

(2-15) f�g
�.c1.L/

2/D deg gc1.L/
2

in CH0.S/.

Proof We just have to show that f�g�.c1.L/
2/ is proportional to c1.L/

2 in CH0.S/,
since CH0.S/ has no torsion and the degrees of both sides in (2-15) are equal. There
are various criteria for a point x of S to be proportional to c1.L/

2 in CH0.S/. The
one used in [2] is that it is enough that x belongs to some (singular) rational curve
in S . The following criterion is a weaker characterization:

Sublemma 2.12 Let S be a K3 surface and L be a line bundle on S such that
deg c1.L/

2 6D 0. Let j W C ! S be a nonconstant morphism from an irreducible
curve C to S , such that j�W CH0.C /! CH0.S/ has for image Z (that is all points
j .c/; c 2 C , are rationally equivalent in S ). Then for any c 2 C , j .c/ is proportional
to c1.L/

2 in CH0.S/.

Proof Let H be an ample line bundle on S . As all points j .c/; c 2 C are rationally
equivalent in S , they are proportional in CH0.S/ to the cycle j�j

�H D j�C �H ,
because the latter has a nonzero degree. But it follows from Theorem 1.1 that j�C �H

and c1.L/
2 are proportional in CH0.S/.

Coming back to our situation, we start from a singular rational curve D � S in
some ample linear system jH j. Then we know by [2, Theorem 1] that any point x

of D is proportional to c1.L/
2 in CH0.S/. On the other hand, the curve g�1.D/ is

connected and f .g�1.D// is not reduced to a point, because f�g�H 6D 0 in NS.S/.
Let C be a component of g�1.D/ which is not contracted to a point by f . We
now apply Sublemma 2.12 to the morphism f restricted to C . Indeed, as g�.c/

is constant in CH0.S/ because g.C / is rational, it follows from (2-14) that f�.c/
is also constant in CH0.S/. Hence f�.c/ is proportional to c1.L/

2 in CH0.S/ by
Sublemma 2.12. As g�1.D/ is connected, the same conclusion also holds for the
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components C of g�1.D/ which are contracted by f . As this is true for any c 2 C ,
we get a fortiori that denoting by gC the restriction of g to C , f�g�C x is proportional
to c1.L/

2 in CH0.S/. Summing over all components C of g�1.D/, and recalling
that x is proportional to c1.L/

2 in CH0.S/ concludes the proof of Lemma 2.11.

Corollary 2.13 Over a nonempty Zariski open set of B , we have

(2-16) ��.ctop
1 .L/2/Dm2 degfctop

1 .L/2;

where � is as in (2-11).

The morphism ctop
1
.L/2 [ W QŒ�4� ! R��Q factors through the direct summand

R4��QŒ�4�.

Proof The second statement is an immediate consequence of the first by definition of
the decomposition.

Next, for any point b 2B , ��
b

acts as f�g� on CH0.Sb/. Furthermore, the pair .f;g/
satisfies the condition that

mf .�/D g.�/C kc1.L/
2 in CH0.Sb/

for any � 2 Tb . As deg g Dm2 degf , Lemma 2.11 tells us that

��b .c1.Lb/
2/D f�g

�.c1.Lb/
2/Dm2 degfc1.Lb/

2

in CH0.Sb/.

The general principle Theorem 1.2 then tells us that, for a nonempty Zariski open
set B0 of B ,

��.ctop
1 .L/2/Dm2 degfctop

1 .L/2 in H 4.S0;Q/:

Corollary 2.14 The two morphisms �� and f�g� agree, over a nonempty Zariski
open set of B , on the direct summand R4��QŒ�4� of the decomposition (2-12). More
precisely, they both act by multiplication by m2 degf on this direct summand.

Proof Indeed, this direct summand is equal by Corollary 2.13 to the image of the
morphism

(2-17) QŒ�4�!R��Q

given by the class c1.L/2 . The difference f�g� ��� is the morphism given by the
class

m degf ��m

2d
pr�1 ctop

1 .L/ � pr�2 ctop
1 .L/ 2H 4.S �B S;Q/;
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hence is given up to a coefficient by the formula

(2-18) pr1� ı.pr�1 ctop
1 .L/[ pr�2 ctop

1 .L/[/ ı pr�2W R��Q!R��Q:

But the composition of the morphism (2-17) with the morphism (2-18) obviously
vanishes over a Zariski open set of B because the class ctop

1
.L/3 2H 6.S;Q/ is the

class of an algebraic cycle of codimension 3.

We will also need the following easy lemma:

Lemma 2.15 (1) The morphisms �� and f�g� , restricted to the direct summand
R2��Q?LŒ�2� (see (2-13)), are equal.

(2) The summand QLŒ�2� of R2��QŒ�2��R��Q introduced in (2-13) is locally
over B in the Zariski topology generated by the class ctop

1
.L/, that is, is the

image of the morphism

(2-19) c1.L/[W QŒ�2�!R��Q:

Proof (1) Indeed their difference is up to a coefficient the morphism given by formula
(2-18). But this morphism obviously vanishes on R2��Q?LŒ�2�, by the projection
formula and because for degree reasons it factors through the morphism of local systems

R2��Q
[ctop

1
.L/

�����!R4��Q
��
!Q

which by definition vanishes on R2��Q?L .

(2) Indeed, we have locally over B in the Zariski topology

��ctop
1 .L/Dm degfctop

1 .L/:

By definition of the decomposition, this implies that locally over B , the morphism (2-19)
takes value in the direct summand R2��QŒ�2� of the decomposition. It then follows
obviously that it locally belongs in fact to the direct summand QLŒ�2�.

Proof of Proposition 2.10 We have the data of the family of smooth surfaces pW T!B

and of the morphisms f; gW T ! S as in (2-10). The induced morphisms

f �W R��Q!Rp�Q; g�W R��Q!Rp�Q;

are multiplicative, ie compatible with cup products on both sides.

Consider now our decomposition

(2-20) R��QŠ
M

i

Ri��QŒ�i �;
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together with the orthogonal decomposition of the local system R2��Q

R2��QDR2��Q
?L
˚QL:

The decomposition (2-20) is by definition preserved by �� and �� acts with eigenvalues

degf; m degf; m2 degf

on the respective summands.

Lemma 2.16 (1) Over a nonempty Zariski open set of B , we have the equality

(2-21) g� Dmf �W R2��Q
?LŒ�2�!Rp�Q:

(2) The morphism f�g
�W R��Q!R��Q preserves the direct summand R2��Q?L

and acts by multiplication by m degf on it.

Proof (2) follows from (1) by applying f� to both sides of (2-21).

To prove (1), note that the morphisms f �; g� are induced by the classes of the
codimension 2 cycles �f WD Graphf; �g WD Graph g in T �B S . For any b 2 B ,
consider the cycle

�b WDm�f;b ��g;b � k pr�2 c1.Lb/
2
2 CH2.Tb �Sb/:

By construction, the induced map �b�W CH0.Tb/! CH0.Sb/ is equal to 0. It follows
by applying the general principle Theorem 1.2 that, after passing to rational coeffi-
cients and modulo rational equivalence, �b is supported on Db �Sb for some curve
Db � Tb . However, as Pic0.Sb/D 0, denoting zDb the desingularization of Db , we
have Pic. zDb �Sb/D Pic zDb˚PicSb . We thus conclude that

(2-22) m�f;b��g;b�k pr�2 c1.Lb/
2
Dpr�1 ZbCpr�1 Z0b �pr�2 Z00b in CH2.Tb�Sb/Q;

for some zero cycle Zb 2CH2.Tb/ and 1–cycles Z0
b

on Tb , Z00
b

on Sb . Note that the
cycle Z00

b
has to be proportional to c1.Lb/, since the point b is general in B .

Applying again the general principle Theorem 1.2, the pointwise equality (2-22) in the
Chow groups of the fibers produces the following equality of cohomology classes over
a Zariski open subset B0 :

(2-23) mŒ�f �� Œ�g�� k pr�2 ctop
1 .L/2

D pr�1 ŒZ �C pr�1 ŒZ
0�[ pr�2 ŒZ

00� in H 4.T 0
�B0 S0;Q/

for some codimension 2 cycles Z 2 CH2.T 0/Q , and codimension 1 cycles Z 0 2
CH1.T 0/Q; Z 00 2 CH1.S0/Q , where we may assume furthermore ŒZ 00�D ctop

1
.L/ by
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shrinking B0 if necessary. We thus get over B0 the following equality of associated
morphisms:

(2-24) mf � D g�C k.pr�2 ctop
1 .L/2/�C .pr�1 ŒZ �

�
C pr�1 ŒZ

0�[ pr�2 ctop
1 .L//�W

R��Q!Rp�Q:

The morphism

.pr�1 ŒZ �/
�
D pr1� ı.pr�1 ŒZ �[/ ı pr�2 WR��Q!Rp�Q

induced by the cycle class pr�
1
ŒZ � vanishes on R0��Q˚R2��QŒ�2�, by the projection

formula and because for degree reasons pr1� ı pr�
2
D 0,

R0��Q˚R2��QŒ�2�!Rp�QŒ�4�

vanishes.

Similarly, the morphism

pr1� ı.pr�1 ŒZ
0�[ pr�2 ctop

1 .L/[/ ı pr�2W R��Q!Rp�Q

vanishes on R0��Q˚R2��Q?LŒ�2�, by the projection formula and because for
degree reasons it factors through the composite morphism

R2��Q
[ctop

1
.L/

�����!R4��Q
��
!Q;

which by definition vanishes on R2��Q?L .

Using (2-24), it only remains to prove that the restriction to R2��Q?LŒ�2� of the
morphism induced by the class pr�

2
ctop

1
.L/2

pr1� ı.pr�2 ctop
1 .L/2[/ ı pr�2W R��Q!Rp�Q

vanishes over a Zariski open set of B . Using (2-24) and the above arguments, we
conclude that on the direct summand R2��Q?LŒ�2� and over a nonempty Zariski
open set of B we have

(2-25) mf � D g�C k.pr�2 ctop
1 .L/2/�W R2��Q

?LŒ�2�!Rp�Q:

Applying f� to both sides, we conclude that

(2-26) m.degf / IdD f�g�C kf�.pr�2 ctop
1 .L/2/�W R2��Q

?LŒ�2�!R��Q:

But f�g� acts as �� on the direct summand R2��Q?LŒ�2� by Lemma 2.15, and by
definition of the direct summand R2��QŒ�2�, �� acts as m.degf / Id on it. Hence
we have

f�g
�
Dm.degf / IdW R2��Q

?LŒ�2�!R��Q;
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and comparing with (2-26), we get that

(2-27) f� ı pr�2 ctop
1 .L/2/� D 0W R2��Q

?LŒ�2�!R��Q:

It is now easy to see that the last equation implies

.pr�2 ctop
1 .L/2/� D 0W R2��Q

?LŒ�2�!Rp�Q:

Indeed, the morphism .pr�
2

ctop
1
.L/2/�W R��Q ! Rp�Q factors as p� ı  W Q !

Rp�Q, where  W R��Q!Q is the composite morphism

R��Q
ctop

1
.L/2[

������!R��QŒ4�
��
!Q;

and we have f� ıp� D degf ı��W Q!R��Q.

We now conclude the proof of Proposition 2.10. Using Lemma 2.16, we deduce now
that, in the decomposition (2-20), the cup product map

�W R2��Q
?LŒ�2�˝R2��Q

?LŒ�2�!R��Q

takes value in the direct summand R4��QŒ�4�. Indeed, we have g� D mf � on
R2��Q?LŒ�2� and thus

g� ı�Dm2f � ı�W R2��Q
?LŒ�2�˝R2��Q

?LŒ�2�!Rp�Q:

Applying f� on one hand, and taking the cup product with g�ctop
1
.L/ on the other

hand, we conclude that, on R2��Q?LŒ�2�˝R2��Q?LŒ�2� we have

f�g
�
ı�D degfm2�W R2��Q

?LŒ�2�˝R2��Q
?LŒ�2�!R��Q;(2-28)

g� ı� ı .ctop
1 .L/[ /Dm2.g�ctop

1 .L/[ / ıf � ı�W(2-29)

R2��Q
?LŒ�2�˝R2��Q

?LŒ�2�!Rp�QŒ2�;

Hence, by applying f� to the second equation (2-29), we get

(2-30) f�g
�
ı� ı .ctop

1 .L/[/

Dm2�m� ı .c
top
1 .L/[/W R2��Q

?LŒ�2�˝R2��Q
?LŒ�2�!R��QŒ2�:

Using Corollary 2.14, and Lemma 2.16(2), we get that f�g� preserves the decompo-
sition (2-20), acting with eigenvalues degf on the first summand, m degf and �m

on the summand R2��Œ�2�, and m2 degf on the summand R4��Œ�4�. As m2�m 62

fdegf; m degf; �m; m2 degf g by Lemma 2.7(2), we first conclude from (2-30) that

� ı .ctop
1 .L/[/D ctop

1 .L/[ı�

vanishes on R2��Q?LŒ�2�˝R2��Q?LŒ�2�.
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Next, we conclude from (2-28) that �W R2��Q?LŒ�2�˝R2��Q?LŒ�2�! R��Q
takes value in the direct summand with is the sum QLŒ�2�˚R4��QŒ�4� (the second
summand being possible if �mDm2 degf ). However, as its composition with the cup
product map ctop

1
.L/[ vanishes, we easily conclude that it actually takes value in the

summand R4��QŒ�4�, because the cup product map ctop
1
.L/[ induces an isomorphism

QLŒ�2�ŠR4��QŒ�2�, as follows from Lemma 2.15(2) and Corollary 2.13.

It remains to see what happens on the other summands: First of all, Lemma 2.15(2)
says that the summand QLŒ�2� of R2��QŒ�2� is, over a nonempty Zariski open
subset B , the image of the morphism ctop

1
.L/[W QŒ�2�!R��Q. On the other hand,

Corollary 2.13 says that the direct summand R4��QŒ�4� is over a nonempty Zariski
open set B0 of B the image of the morphism

ctop
1 .L/2W QŒ�4�!R��Q:

It follows immediately that for the summand QLŒ�2�D Im ctop
1
.L/[

�W QLŒ�2�˝QLŒ�2�!R��Q

takes value on B0 in the direct summand R4��QŒ�4�.

Consider now the cup product

R2��Q
?L
˝QLŒ�2�!R��Q:

We claim that it vanishes over a nonempty Zariski open set of B .

Indeed, Lemma 2.16 tells that over a nonempty Zariski open set of B ,

g� Dmf �W R2��Q
?LŒ�2�!Rp�Q:

It follows that

g� ı�D � ı .g�˝g�/D � ı .mf �˝g�/W R2��Q
?LŒ�2�˝QLŒ�2�!Rp�Q:

Applying the projection formula, we get that

f�g
�
ı�D � ı .m Id˝f�g�/W R2��Q

?LŒ�2�˝QLŒ�2�!R��Q:

On the other hand, we know by Lemma 2.15(2) that f�g� sends, locally over B , the
summand QLŒ�2� to itself, acting on it by multiplication by �m . It follows that

f�g
�
ı�Dm�m�W R

2��Q
?LŒ�2�˝QLŒ�2�!R��Q;

and finally we conclude that f�g�ı�D 0 on R2��Q?LŒ�2�˝QLŒ�2� because m�m

is not an eigenvalue of f�g� acting on the cohomology of R��Q by Corollary 2.9
and Lemma 2.7(2).
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To conclude the proof of the multiplicativity, we just have to check that the cup
product map vanishes over a nonempty Zariski open subset of B on the summands
R2��QŒ�2�˝R4��QŒ�4� and R4��QŒ�4�˝R4��QŒ�4�. The proof works exactly
as before, by an eigenvalue computation for the summand R2��Q?LŒ�2�˝R4��Œ�4�.
For the other terms, this is clear because we have seen that over an adequate Zariski open
subset of B , the factors are generated by classes ctop

1
.L/, ctop

1
.L/2 , whose products

are classes of algebraic cycles on S of codimension at least 3, hence vanishing over a
nonempty Zariski open subset of B .

2.3 Alternative proof

In this section we give a different proof of Theorem 0.7, which also provides a proof
of the second statement (ii). It heavily uses the following result proved in [2, Proposi-
tion 3.2], whose proof is rather intricate.

Theorem 2.17 (Beauville–Voisin 2004 [2]) Let S be a smooth projective K3 surface,
L an ample line bundle on S and o WD .1= degS c1.L/

2/L2 2 CH2.S/Q . We have

(2-31) �D�12 � o3C .perm:/� .o1 � o2 �S C .perm:// in CH4.S �S �S/Q:

(We recall that “C.perm:/” means that we symmetrize the considered expression in
the indices. The lower index i means “pullback of the considered cycle under the i –th
projection S3! S ”, and the lower index ij means “pullback of the considered cycle
under the projection S3! S2 onto the product of the i –th and j –th factor”.

Second proof of Theorem 0.7 Let us choose a relatively ample line bundle L on X ,
and let

oX WD
1

degXt
c1.L/2

L2
2 CH2.X /Q:

By Theorem 1.1 and the general principle Theorem 1.2, this cycle, which is of relative
degree 1, does not depend on the choice of L up to shrinking the base B . The
cohomology classes

pr�1 ŒoX �D ŒZ0�; pr�2 ŒoX �D ŒZ4� 2H 4.X �B X ;Q/

of the codimension 2 cycles Z0 WD pr�
1

oX and Z4 WD pr�
2

oX , where pri W X�BX!B

are the two projections, provide morphisms in the derived category:

(2-32)
P0W R��Q!R��Q; P4W R��Q!R��Q;

P0 WD pr2� ı.ŒZ0�[/ ı pr�1; P4 WD pr2� ı.pr�2 ŒZ4�[/ ı pr�1 :
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Lemma 2.18 (i) The morphisms P0 , P4 are projectors of R��Q.

(ii) P0 ıP4 D P4 ıP0 D 0 over a Zariski dense open set of B .

Proof (i) We compute P0 ıP0 . From (2-32) and the projection formula [7, Proposi-
tion 8.3], we get that P0 ıP0 is the morphism R��!R�� induced by the following
cycle class

(2-33) p13�.p
�
12ŒZ0�[p�23ŒZ0�/ 2H 4.X �B X ;Q/;

where the pij are the various projections from X �B X �B X to X �B X . We use now
the fact that p�

12
ŒZ0� D p�

1
ŒoX �; p�

23
ŒZ0� D p�

2
ŒoX �, where the pi ’s are the various

projections from X �B X �B X to X , so that (2-33) is equal to

(2-34) p13�.p
�
1 ŒoX �[p�2 ŒoX �/:

Using the projection formula, this class is equal to

pr�1 ŒoX �[ pr�2.��ŒoX �/D pr�1 ŒoX �[ pr�2.1B/D pr�1 ŒoX �D ŒZ1�:

This completes the proof for P0 and exactly the same proof works for P4 .

(ii) We compute P0 ıP4 : From (2-32) and the projection formula [7, Proposition 8.3],
we get that P0 ıP4 is the morphism R�� ! R�� induced by the following cycle
class

(2-35) p13�.p
�
12ŒZ4�[p�23ŒZ0�/ 2H 4.X �B X ;Q/;

where the pij are the various projections from X �B X �B X to X �B X . We use now
the fact that p�

12
ŒZ4� D p�

2
ŒoX �; p�

23
ŒZ0� D p�

2
ŒoX �, where the pi ’s are the various

projections from X �B X �B X to X , so that (2-35) is equal to

(2-36) p13�.p
�
2 ŒoX �[p�2 ŒoX �/:

But the class p�
2
ŒoX �[p�

2
ŒoX �D p�

2
.ŒoX � oX �/ vanishes over a Zariski dense open set

of B since the cycle oX � oX has codimension 4 in X . This shows that P0 ıP4 D 0

over a Zariski dense open set of B and the proof for P4ıP0 works in the same way.

Using Lemma 2.18, we get (up to passing to a Zariski dense open set of B ) a third
projector

P2 WD Id�P0�P4

acting on R��Q and commuting with the two other ones.
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It is well-known (cf [11]) that the action of these projectors on cohomology are given by

P0 D 0 on R2��Q; R4��Q; P0� D Id on R0��Q;

P4 D 0 on R2��Q; R0��Q; P4� D Id on R4��Q;

P2 D 0 on R0��Q; R4��Q; P2 D Id on R2��Q:

As a consequence, we get (for example using Lemma 2.1) a decomposition

(2-37) R��QŠ˚Ri��QŒ�i �;

where the corresponding projectors of R��Q identify respectively to P0; P2; P4 .

Proposition 2.19 Assume the cohomology class of the relative small diagonal ��
X �B X �B X satisfies the equality

(2-38) Œ��D p�1 ŒoX �[p�23Œ�X �C .perm:/� .p�1 ŒoX �[p�2 ŒoX �C .perm://;

where the pij ; pi ’s are as above and �X is the relative diagonal X � X �B X . Then,
over some Zariski dense open set B0 � B , we have:

(i) The decomposition (2-37) is multiplicative.
(ii) The class of the diagonal Œ�X �2H 4.X �BX ;Q/ belongs to the direct summand

H 0.B;R4.�; �/�Q/�H 4.X �B X ;Q/

induced by the decomposition (2-37).

Admitting Proposition 2.19, the end of the proof of Theorem 0.7 is as follows: By
Theorem 2.17, we know that the relation

�t D p�1oXt
�p�23�Xt

C .perm:/� .p�1oXt
�p�2oXt

C .perm://

holds in CH2.Xt �Xt �Xt ;Q/ for any t 2 B . By the general principle Theorem 1.2,
there is a Zariski dense open set B0 of B such that (2-38) holds in H 8.X�BX�BX ;Q/.
Parts (i) and (ii) of Theorem 0.7 thus follow respectively from parts (i) and (ii) of
Proposition 2.19. As proved in Lemma 1.4, part (iii) of Theorem 0.7 is implied by (i).

Proof of Proposition 2.19 (i) We want to show that

Pk ı[ı .Pi ˝Pj /W R��Q˝R��Q!R��Q

vanishes for k 6D i C j .

We note that [W R��Q˝R��Q!R��Q

is induced via the relative Künneth decomposition

R��Q˝R��QŠR.�; �/�Q
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by the class Œ�� of the small relative diagonal in X �B X �B X , seen as a relative
correspondence between X �B X and X , while P0; P4; P2 are induced by the cycle
classes ŒZ0�; ŒZ4�; ŒZ2� 2H 4.X �B X ;Q/, where Z2 WD�X �Z0�Z4 �X �B X .
It thus suffices to show that the cycle classes

ŒZ4 ı� ı .Z0 �B Z0/�; ŒZ2 ı� ı .Z0 �B Z0/�;

ŒZ0 ı� ı .Z2 �B Z2/�; ŒZ2 ı� ı .Z2 �B Z2/�;

ŒZ0 ı� ı .Z4 �B Z4/�; ŒZ2 ı� ı .Z4 �B Z4/�; ŒZ4 ı� ı .Z4 �B Z4/�;

ŒZ0 ı� ı .Z0 �B Z4/�; ŒZ2 ı� ı .Z0 �B Z4/�;

ŒZ0 ı� ı .Z2 �B Z4/�; ŒZ2 ı� ı .Z2 �B Z4/�; ŒZ4 ı� ı .Z2 �B Z4/�;

ŒZ0 ı� ı .Z0 �B Z2/�; ŒZ4 ı� ı .Z0 �B Z2/�;

vanish in H 8.X �B X �B X ;Q/ over a dense Zariski open set of B . Here, all the
compositions of correspondences are over B . Equivalently, it suffices to prove the
following equality of cycle classes in H 8.X 0�B X 0�B X 0;Q/, X 0D ��1.B0/, for
a Zariski dense open set of B0 of B :

(2-39) Œ��D ŒZ0 ı� ı .Z0 �B Z0/�C ŒZ4 ı� ı .Z2 �B Z2/�

C ŒZ2 ı� ı .Z0 �B Z2/�C ŒZ2 ı� ı .Z2 �B Z0/�

C ŒZ4 ı� ı .Z0 �B Z4/�C ŒZ4 ı� ı .Z4 �B Z0/�:

Replacing Z2 by �X �Z0�Z4 , we get

Z2 �B Z2 D�X �B �X ��X �B Z0��X �B Z4�Z0 �B �X

�Z4 �B �X CZ0 �B Z0CZ4 �B Z4CZ0 �B Z4CZ4 �B Z0;

and thus (2-39) becomes

(2-40) Œ��D ŒZ0 ı� ı .Z0 �B Z0/�C ŒZ4 ı� ı .�X �B �X /�

� ŒZ4 ı� ı .�X �B Z0/�� ŒZ4 ı� ı .�X �B Z4/�

� ŒZ4 ı� ı .Z0 �B �X /�� ŒZ4 ı� ı .Z4 �B �X /�

C ŒZ4 ı� ı .Z0 �B Z0/�C ŒZ4 ı� ı .Z4 �B Z4/�

C ŒZ4 ı� ı .Z0 �B Z4/�C ŒZ4 ı� ı .Z4 �B Z0/�

C ŒZ2 ı� ı .Z0 �B �X /�� ŒZ2 ı� ı .Z0 �B Z0/�

� ŒZ2 ı� ı .Z0 �B Z4/�C ŒZ2 ı� ı .�X �B Z0/�

� ŒZ2 ı� ı .Z0 �B Z0/�� ŒZ2 ı� ı .Z4 �B Z0/�

C ŒZ4 ı� ı .Z0 �B Z4/�C ŒZ4 ı� ı .Z4 �B Z0/�:
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We now have the following lemma:

Lemma 2.20 We have the following equalities of cycles in CH4.X �B X �B X /Q (or
relative correspondences between X �B X and X ):

� ı .Z0 �B Z0/D p�1oX �p
�
2oX ;(2-41)

� ı .�X �B �X /D�;(2-42)

� ı .�X �B Z0/D p�13�X �p
�
2oX ;(2-43)

� ı .�X �B Z4/D p�1oX �p
�
3oX ;(2-44)

� ı .Z0 �B �X /D p�1oX �p
�
23�X ;(2-45)

� ı .Z4 �B �X /D p�2oX �p
�
3oX ;(2-46)

� ı .Z4 �B Z4/D p�3 .oX � oX /;(2-47)

� ı .Z0 �B Z4/D p�1oX �p
�
3oX ;(2-48)

� ı .Z4 �B Z0/D p�2oX �p
�
3oX ;(2-49)

where the pi ’s, for i D 1; 2; 3 are the projections from X �BX �BX to X and the pij

are the projections from X �B X �B X to X �B X .

Proof Equation (2-42) is obvious. Equations (2-41), (2-47), (2-48), (2-49) are all
similar. Let us just prove (2-48). The cycle Z4 is X �B oX � X �B X , and similarly
Z0 D oX �B X � X �B X , hence Z0 �B Z4 is the cycle

(2-50) f.oXb
;x;y; oXb

/; x 2 Xb; y 2 Xb; b 2 Bg � X �B X �B X �B X :

(It turns out that in this case, we do not have to take care about the ordering we take
for the last inclusion.) Composing over B with �� X �B X �B X is done by taking
the pullback of (2-50) under p1234W X 5=B! X 4=B , intersecting with p�

345
�, and

projecting the resulting cycle to X 3=B via p125 . The resulting cycle is obviously

f.oXb
;x; oXb

/; x 2 Xb; b 2 Bg � X �B X �B X ;

which proves (2-48).

For the last formulas which are all of the same kind, let us just prove (2-43). Recall
that Z0 D oX �B X � X �B X . Thus �X �B Z0 is the cycle

f.x;x; oXb
;y/; x 2 Xb; y 2 Xb; b 2 Bg � X �B X �B X �B X :

But we have to see this cycle as a relative self-correspondence of X �B X , for which
the right ordering is

(2-51) f.x; oXb
;x;y/; x 2 Xb; y 2 Xb; b 2 Bg � X �B X �B X �B X :
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Composing over B with � � X �B X �B X is done again by taking the pullback
of (2-51) by p1234W X 5=B ! X 4=B , intersecting with p�

345
�, and projecting the

resulting cycle to X 3=B via p125 . Since � D f.z; z; z/; z 2 X , the considered
intersection is f.x; oXb

;x;x;x/; x 2 Xb; b 2Bg, and thus the projection via p125 is
f.x; oXb

;x/; x 2 Xb; b 2 Bg, thus proving (2-43).

Using Lemma 2.20 and the fact that the cycle p�
3
.oX � oX / vanishes by dimension

reasons over a dense Zariski open set of B , (2-40) becomes, after passing to a Zariski
open set of B if necessary:

Œ��D ŒZ0 ı .p
�
1oX �p

�
2oX /�C ŒZ4 ı��

� ŒZ4 ı .p
�
13�X �p

�
2oX /�� ŒZ4 ı .p

�
1oX �p

�
3oX /�� ŒZ4 ı .p

�
1oX �p

�
23�X /�

� ŒZ4 ı .p
�
2oX �p

�
3oX /�C ŒZ4 ı .p

�
1oX �p

�
2oX /�C ŒZ4 ı .p

�
1oX �p

�
3oX /�

C ŒZ4 ı .p
�
2oX �p

�
3oX /�C ŒZ2 ı .p

�
1oX �p

�
23�X /�� ŒZ2 ı .p

�
1oX �p

�
2oX /�

� ŒZ2 ı .p
�
1oX �p

�
3oX /�C ŒZ2 ı .p

�
13�X �p

�
2oX /�� ŒZ2 ı .p

�
1oX �p

�
2oX /�

� ŒZ2 ı .p
�
2oX �p

�
3oX /�C ŒZ4 ı .p

�
1oX �p

�
3oX /�C ŒZ4 ı .p

�
2oX �p

�
3oX /�;

which rewrites as

(2-52) Œ��D ŒZ0 ı .p
�
1oX �p

�
2oX /�C ŒZ4 ı��

� ŒZ4 ı .p
�
13�X �p

�
2oX /�� ŒZ4 ı .p

�
1oX �p

�
23�X /�

C ŒZ4 ı .p
�
1oX �p

�
3oX /�C ŒZ4 ı .p

�
2oX �p

�
3oX /�

C ŒZ4 ı .p
�
1oX �p

�
2oX /�C ŒZ2 ı .p

�
1oX �p

�
23�X /�

� ŒZ2 ı .p
�
1oX �p

�
3oX /�C ŒZ2 ı .p

�
13�X �p

�
2oX /�

� 2ŒZ2 ı .p
�
1oX �p

�
2oX /�:

To conclude, we use the following lemma:

Lemma 2.21 Up to passing to a dense Zariski open set of B , we have the following
equalities in CH4.X �B X �B X /Q :

Z0 ı .p
�
1oX �p

�
2oX /D p�1oX �p

�
2oX ;(2-53)

Z4 ı�D p�12�X �p
�
3oX ;(2-54)

Z4 ı .p
�
13�X �p

�
2oX /D p�2oX �p

�
3oX ;(2-55)

Z4 ı .p
�
2oX �p

�
3oX /D p�2oX �p

�
3oX ;(2-56)

Z4 ı .p
�
1oX �p

�
23�X /D p�1oX �p

�
3oX ;(2-57)

Z4 ı .p
�
1oX �p

�
2oX /D 0;(2-58)
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Z4 ı .p
�
1oX �p

�
3oX /D p�1oX �p

�
3oX ;(2-59)

Z2 ı .p
�
1oX �p

�
3oX /D 0;(2-60)

Z2 ı .p
�
1oX �p

�
23�X /D p�1oX �p

�
23�X �p�1oX �p

�
2oX �p�1oX �p

�
3oX ;(2-61)

Z2 ı .p
�
13�X �p

�
2oX /D p�13�X �p

�
2oX �p�1oX �p

�
2oX �p�2oX �p

�
3oX ;(2-62)

Z2 ı .p
�
1oX �p

�
2oX /D 0:(2-63)

Proof The proof of (2-55) is explicit, recalling that Z4D f.x; oXb
/; x 2Xb; b 2Bg,

and that p�
13
�X �p

�
2
oX D f.y; oXb

;y/; y 2Xb; b 2Bg. Then Z4 ı .p
�
13
�X �p

�
2
oX /

is the cycle

p124.p
�
13�X �p

�
2oX �p

�
34.Z4//D p124.f.y; oXb

;y; oXb
/; y 2 Xb; b 2 Bg/

D f.y; oXb
; oXb

/; y 2 Xb; b 2 Bg;

which proves (2-55). (2-56) is the same formula as (2-53) with the indices 1 and 3

exchanged. The proofs of (2-53) to (2-59) work similarly.

For the other proofs, we recall that

Z2 D�X �Z0�Z4 � X �B X :

Thus we get, as �X acts as the identity,

Z2ı.p
�
1oX �p

�
23�X /Dp�1oX �p

�
23�X �Z0ı.p

�
1oX �p

�
23�X /�Z4ı.p

�
1oX �p

�
23�X /:

We then compute the terms Z0 ı .p
�
1
oX �p

�
23
�X /; Z4 ı .p

�
1
oX �p

�
23
�X / explicitly as

before, which gives (2-61).

The other proofs are similar.

Using the cohomological version of Lemma 2.21, (2-52) becomes

(2-64) Œ��D Œp�1oX �p
�
2oX �C Œp

�
12�X �p

�
3oX �

� Œp�2oX �p
�
3oX /�� Œp

�
1oX �p

�
3oX /�C Œp

�
1oX �p

�
3oX �

C Œp�2oX �p
�
3oX �C Œp

�
1oX �p

�
23�X �p�1oX �p

�
2oX �p�1oX �p

�
3oX �

C Œp�13�X �p
�
2oX �p�1oX �p

�
2oX �p�2oX �p

�
3oX �:

This last equality is now satisfied by assumption (compare with (2-38)) and this
concludes the proof of formula (2-39). Thus (i) is proved.

(ii) We just have to prove that

(2-65) P0˝P0.Œ�X �/D P4˝P4.Œ�X �/D 0;

P0˝P2.Œ�X �/D P4˝P2.Œ�X �/D 0 in H 4.X �B X ;Q/:
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Indeed, the relative Künneth decomposition gives

R.�; �/�QDR��Q˝R��Q

and the decomposition (2-37) induces a decomposition of the above tensor product on
the right:

(2-66) R��Q˝R��QD
M
k;l

Rk��Q˝Rl��QŒ�k � l �;

where the decomposition is induced by the various tensor products of P0;P2;P4 .
Taking cohomology in (2-66) gives

H 4.X �B X ;Q/D
M

sCkClD4

H s.B;Rk��Q˝Rl��Q/:

The term H 0.R4.�; �/�Q/ is then exactly the term in the above decomposition of
H 4.X �B X ;Q/ which is annihilated by the four projectors P0 ˝ P0 , P0 ˝ P2 ,
P4˝P2 , P4˝P4 and those obtained by changing the order of factors.

The proof of (2-65) is elementary. Indeed, consider for example the term P0˝P0 ,
which is given by the cohomology class of the cycle

Z WD pr�1 oX � pr�2 oX � X �B X �B X �B X ;

which we see as a relative self-correspondence of X �B X We have

Z�.�X /D p34�.p
�
12�X �Z/:

But the cycle on the right is trivially rationally equivalent to 0 on fibers Xt �Xt . It
thus follows from the general principle Theorem 1.2 that for some dense Zariski open
set B0 of B ,

ŒZ��.Œ�X �/D 0 in H 4.X 0
�B0 X 0;Q/:

The other vanishing statements are proved similarly.

3 Calabi–Yau hypersurfaces

In the case of smooth Calabi–Yau hypersurfaces X in projective space Pn , that is
hypersurfaces of degree nC1 in Pn , we have the following result which partially gener-
alizes Theorem 2.17 and provides some information on the Chow ring of X . Denote by
o2CH0.X /Q the class of the 0–cycle hn�1=.nC1/, where h WDc1.OX .1//2CH1.X /.
We denote again by � the small diagonal of X in X 3 .
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Theorem 3.1 The following relation holds in CH2n�2.X �X �X /Q :

(3-1) �D�12 � o3C .perm:/CZC� 0;

where Z is the restriction to X �X �X of a cycle on Pn � Pn � Pn , and � 0 is a
multiple of the following effective cycle of dimension n� 1:

(3-2) � WD
[

t2F.X /

P1
t �P1

t �P1
t :

Here F.X / is the variety of lines contained in X . It is of dimension n�4 for general X .
For t 2 F.X / we denote P1

t �X � Pn the corresponding line.

Proof of Theorem 3.1 Observe first of all that it suffices to prove the following
equality of .n�1/–cycles on X 3

0
WDX 3 n�:

(3-3) �jX 3
0
D 2.nC 1/.�12jX 3

0
� o3C .perm://CZ in CH2n�2.X 3

0 /Q;

where Z is the restriction to X 3
0

of a cycle on .Pn/3 . Indeed, by the localization exact
sequence (cf [12, Lemma 9.12]), (3-3) implies an equality, for an adequate multiple � 0

of � :

(3-4) N�D�12 � o3C .perm:/CZC� 0 in CH2n�2.X �X �X /Q;

for some rational number N . Projecting to X 2 and taking cohomology classes, we
easily conclude then that N D 1. (We use here the fact that X has some transcendental
cohomology, so that the cohomology class of the diagonal of X does not vanish on
products U �U , where U �X is Zariski open.)

In order to prove (3-3), we do the following: First of all we compute the class in
CHn�1.X 3

0
/ of the .2n�2/–dimensional subvariety

X 3
0;col;sch �X 3

0

parameterizing 3–tuples of collinear points satisfying the following property:

Let P1
x1x2x3

D hx1;x2;x3i be the line generated by the xi ’s. Then the subscheme
x1Cx2Cx3 of P1

x1x2x3
� Pn is contained in X .

We will denote X 3
0;col � X 3

0
the .2n�2/–dimensional subvariety parameterizing 3–

tuples of collinear points. Obviously X 3
0;col;sch �X 3

0;col . We will see that the first one
is in fact an irreducible component of the second one.

Next we observe that there is a natural morphism �W X 3
0;col ! G.2; nC 1/ to the

Grassmannian of lines in Pn , which to .x1;x2;x3/ associates the line P1
x1x2x3

. This
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morphism is well-defined on X 3
0;col because at least two of the points xi are distinct, so

that this line is well-determined. The morphism � corresponds to a tautological rank 2

vector bundle E on X 3
0;col , with fiber H 0.OP1

x1x2x3
.1// over the point .x1;x2;x3/.

We then observe that � �X 3
0;col;sch is defined by the condition that the line P1

x1x2x3

be contained in X . In other words, the equation f defining X has to vanish on this
line. This condition can be seen globally as the vanishing of the section � of the vector
bundle SnC1E defined by

�..x1;x2;x3//D f jP1
x1x2x3

;

This section � is not transverse, (in fact the rank of SnC1E is n C 2, while the
codimension of � is n� 1), but the reason for this is very simple: indeed, at a point
.x1;x2;x3/ of X 3

0;col;sch , the equation f vanishes by definition on the degree 3 cycle
x1C x2C x3 of P1

x1x2x3
. Another way to express this is to say that � is in fact a

section of the rank n� 1 bundle

(3-5) F � SnC1E ;

where F.x1;x2;x3/ consists of degree nC 1 polynomials vanishing on the subscheme
x1Cx2Cx3 of P1

x1x2x3
.

The section � of F is transverse and thus we conclude that we have the following
equality

(3-6) �jX 3
0
D j�.cn�1.F// in CH2n�2.X 3

0 /Q;

where j is the inclusion of X 3
0;col;sch in X 3

0
.

We now observe that the vector bundles E and F come from vector bundles on the
variety .Pn/30;col parameterizing 3–tuples of collinear points in Pn , at least two of
them being distinct.

The variety .Pn/30;col is smooth irreducible of dimension 2n C 1 (hence of codi-
mension n � 1 in .Pn/3 ), being Zariski open in a P1 � P1 � P1 –bundle over the
Grassmannian G.2; nC 1/. We have now the following:

Lemma 3.2 The intersection .Pn/30;col\X 3
0

is reduced, of pure dimension 2n� 2. It
decomposes as

(3-7) .Pn/30;col\X 3
0 DX 3

0;col;sch[�0;12[�0;13[�0;23;

where �0;ij �X 3
0

is defined as �ij \X 3
0

with �ij the big diagonal fxi D xj g.
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Proof The set theoretic equality in (3-7) is obvious. The fact that each component
on the right has dimension 2n� 2 and thus is a component of the right dimension of
this intersection is also obvious. The only point to check is thus the fact that these
intersections are transverse at the generic point of each component in the right hand
side. The generic point of the irreducible variety X 3

0;col;sch parameterizes a triple of
distinct collinear points which are on a line D not tangent to X . At such a triple,
the intersection .Pn/30;col \X 3

0
is smooth of dimension 2n� 2 because .Pn/30;col is

Zariski open in the triple self-product P �G.2;nC1/ P �G.2;nC1/ P of the tautological
P1 –bundle P over the Grassmannian G.2; nC 1/, and the intersection with X 3

0
is

defined by the three equations

p ı pr�1 f; p ı pr�2 f; p ı pr�3 f;

where the pri ’s are the projections P3=G.2;nC1/! P and pW P ! Pn is the natural
map. These three equations are independent since they are independent after restriction
to D �D �D � P �G.2;nC1/ P �G.2;nC1/ P at the point .x1;x2;x3/ because D is
not tangent to X .

Similarly, the generic point of the irreducible variety �0;1;2;j �X 3
0;col parameterizes a

triple .x;x;y/ with the property that x 6D y and the line P1
xy WD hx;yi is not tangent

to X . Again, the intersection .Pn/30;col \X 3
0

is smooth of dimension 2n� 2 near
.x;x;y/ because the restrictions to P1

xy �P1
xy �P1

xy � P �G.2;nC1/ P �G.2;nC1/ P

of the equations
p ı pr�1 f; p ı pr�2 f; p ı pr�3 f;

defining X 3 are independent.

Combining (3-7), (3-6) and the fact that the vector bundle F already exists on .Pn/30;col ,
we find that

�jX 3
0
D J�.cn�1.F j.Pn/3

0;col\X 3
0
//�

X
i 6Dj

J0;ij�cn�1.F j�0;ij
/ in CH2n�2.X 3

0 /Q;

where J W .Pn/30;col\X 3
0
,!X 3

0
is the inclusion and similarly for J0;ij W �0;ij ,!X 3

0
.

This provides us with the formula

(3-8) �jX 3
0
D .K�cn�1.F//jX 3

0
�

X
i 6Dj

J0;ij�cn�1.F j�0;ij
/ in CH2n�2.X 3

0 /Q;

where KW .Pn/30;col ,! .Pn/3
0

is the inclusion map.

The first term comes from CH..Pn/3
0
/, so to conclude we only have to compute the

terms J0;ij�cn�1.F j�0;ij
/. This is however very easy, because the vector bundles E

and F are very simple on �0;ij : Assume for simplicity i D 1; j D 2. Points of �0;12

Geometry & Topology, Volume 16 (2012)



470 Claire Voisin

are points .x;x;y/; x 6D y 2X . The line �..x;x;y// is the line hx;yi; x 6D y , and
it follows that

(3-9) E j�0;12
D pr�2 OX .1/˚ pr�3 OX .1/:

The projective bundle P .E j�0;12
/ has two sections on �0;12 which give two divisors

D2 2 jOP.E/.1/˝ pr�3 OX .�1/j; D3 2 jOP.E/.1/˝ pr�2 OX .�1/j:

The length 3 subscheme 2D2CD3 � P .E j�0;1;2
/ with fiber 2xC y over the point

.x;x;y/ is the zero set of a section ˛ of the line bundle

OP.E/.3/˝ pr�3 OX .�2/˝ pr�2 OX .�1/:

We thus conclude that the vector bundle F j�0;12
is isomorphic to

pr�3 OX .2/˝ pr�2 OX .1/˝Sn�2E j�0;12
:

Combining with (3-9), we conclude that cn�1.F j�0;12
/ can be expressed as a polyno-

mial of degree n� 1 in h2 D c1.pr�
2
OX .1// and h3 D c1.pr�

3
OX .1/// on �0;12 . The

proof of (3-3) is completed by the following lemma:

Lemma 3.3 Let �X �X �X be the diagonal. Then the codimension n cycles

pr�1 c1.OX .1// ��X ; pr�2 c1.OX .1// ��X

of X �X are restrictions to X �X of cycles Z 2 CHn.Pn �Pn/Q .

Proof Indeed, let jX W X ,! Pn be the inclusion of X in Pn , and jX ;1; jX ;2 the
corresponding inclusions of X �X in Pn �X , resp. X �Pn . Then as X is a degree
nC 1 hypersurface, the composition j �

X ;1
ı jX ;1�W CH�.X �X /! CH�C1.X �X /

is equal to the morphism given by intersection with the class .nC 1/ pr�
1

c1.OX .1//,
and similarly for the second inclusion. On the other hand, jX ;1�.�X / � Pn �X is
obviously the (transpose of the) graph of the inclusion of X in Pn , hence its class is
the restriction to Pn �X of the diagonal of Pn �Pn . This implies that

.nC 1/ pr�1 c1.OX .1// ��X D j �X ;1..�Pn�Pn/jPn�X /;

which proves the result for pr�
1

c1.OX .1// ��X . We argue similarly for the second
cycle.

It follows from this lemma that a monomial of degree n�1 in h2D c1.pr�
2
OX .1// and

h3 D c1.pr�
3
OX .1/// on �0;12 , seen as a cycle in X 3

0
, will be the restriction to X 3

0

of a cycle with Q–coefficients on .Pn/3 , unless it is proportional to hn�1
3

. Recalling
that c1.OX .1//

n�1 D .nC 1/o 2 CH0.X /, we finally proved that modulo restrictions
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of cycles on .Pn/3 , the term J0;12�cn�1.F j�0;12
/ is a multiple of .�12 � o3/jX 3

0
in

CH2n�2.X 3
0
/Q/. The precise coefficient is in fact given by the argument above. Indeed,

we just saw that modulo restrictions of cycles coming from Pn �Pn �Pn , the term
J0;12�cn�1.F j�0;12

/ is equal to

(3-10) ��12 � pr�3.c1.OX .1//
n�1/D �.nC 1/.�12 � o3/jX 3

0
;

with c1.OX .1//
n�1 D .nC 1/o in CH0.X /, and where the coefficient � is the coeffi-

cient of hn�1
3

in the polynomial in h2; h3 computing cn�1.F j�0;12
/.

We use now the isomorphism

F j�0;12
Š pr�3 OX .2/˝ pr�2 OX .1/˝Sn�2E j�0;12

;

where E j�0;12
Š pr�

2
OX .1/˚ pr�

3
OX .1/ according to (3-9). Hence we conclude that

the coefficient � is equal to 2, and this concludes the proof of (3-3), using (3-10)
and (3-8).

We have the following consequence of Theorem 3.1, which is a generalization of
Theorem 1.1 to Calabi–Yau hypersurfaces.

Theorem 3.4 Let Zi ; Z0i be cycles of codimension > 0 on X such that codim Zi C

codim Z0i D n� 1. Then if we have a cohomological relationX
i

ni ŒZi �[ ŒZ
0
i �D 0 in H 2n�2.X;Q/

this relation already holds at the level of Chow groups:X
i

niZi �Z
0
i D 0 in CH0.X /Q:

Proof Indeed, let us view formula (3-1) as an equality of correspondences between
X � X and X . The left hand side applied to

P
i niZi �Z0i is the desired cycle:

��.
P

i niZi �Z0i/ D
P

i niZi �Z
0
i in CH0.X /Q . The right hand side is a sum of

three terms

(3-11) .�12 � o3C .perm://�

�X
i

niZi �Z0i

�
CZ�

�X
i

niZi �Z0i

�
C� 0�

�X
i

niZi �Z0i

�
:

For the first term, we observe that .�12 �o3/�.
P

i niZi �Z0i/D .deg
P

i niZi �Z
0
i/ o3

vanishes in CH0.X /Q , and that the two other terms .�13 � o2/�.
P

i niZi �Z0i/ and
.�23 � o1/�.

P
i niZi �Z0i/ vanish by the assumption that codim Zi > 0 for all i .
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For the second term, as Z is the restriction of a cycle Z0 2 CH2n�2.Pn�Pn�Pn/Q ,
Z�.

P
i niZi �Z0i/ is equal to

j �
�

Z0
�

�
.j ; j /�

�X
i

niZi �Z0i

���
2 CHn�1.X /Q:

Hence it belongs to Im j � , and is proportional to o.

Consider finally the term � 0�.
P

i niZi�Z0i/, which is a multiple of ��.
P

i niZi�Z0i/:
Let �0�X be the locus swept-out by lines. We observe that for any line DŠP1�X ,
any point on D is rationally equivalent to the zero cycle h � D which is in fact
proportional to o, since

.nC 1/h �D D j � ı j�.D/ in CH0.X /

and j�.D/ D c1.OPn.1//n�1 in CHn�1.Pn/. Hence all points of �0 are rationally
equivalent to o in X , and thus ��.

P
i niZi �Z0i/ is also proportional to o.

It follows from the above analysis that the 0–cycle (3-11) is a multiple of o in
CH0.X /Q . As it is of degree 0, it is in fact rationally equivalent to 0.

We leave as a conjecture the following:

Conjecture 3.5 For any smooth .n�1/–dimensional Calabi–Yau hypersurface X

for which the variety of lines F.X / has dimension n � 4, the .n�1/–cycle � 2
CHn�1.X �X �X /Q of (3-2) is the restriction to X �X �X of an .nC2/–cycle on
Pn �Pn �Pn .
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