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Counting essential surfaces
in a closed hyperbolic three-manifold

JEREMY KAHN

VLADIMIR MARKOVIĆ

Let M3 be a closed hyperbolic three-manifold. We show that the number of genus g

surface subgroups of �1.M3/ grows like g2g .

57M50, 20H10

1 Introduction

Let M3 be a closed hyperbolic 3–manifold and let Sg denote a closed surface of
genus g . Given a continuous mapping f W Sg!M3 we let f�W �1.Sg/! �1.M3/

denote the induced homomorphism.

Definition 1.1 We say that G <�1.M3/ is a surface subgroup of genus g � 2 if there
exists a continuous map f W Sg ! M3 such that the induced homomorphism f� is
injective and f�.�1.Sg//D G . Moreover, the subsurface f .Sg/ �M3 is said to be
an essential subsurface.

Recently, we showed [3] that every closed hyperbolic 3–manifold M3 contains an
essential subsurface and consequently �1.M3/ contains a surface subgroup. It is
therefore natural to consider the question: How many conjugacy classes of surface
subgroups of genus g there are in �1.M3/? This has already been considered by
Masters [5], and our approach to this question builds on our previous work and improves
on the work by Masters.

Let s2.M3;g/ denote the number of conjugacy classes of surface subgroups of genus
at most g . We say that two surface subgroups G1 and G2 of �1.M3/ are commen-
surable if G1 \G2 has a finite index in both G1 and G2 . Let s1.M3;g/ denote the
number surface subgroups of genus at most g , modulo the equivalence relation of
commensurability. Then clearly s1.M3;g/� s2.M3;g/. The main result of this paper
is the following theorem.
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Theorem 1.1 Let M3 be a closed hyperbolic 3–manifold. There exist two constants
c1; c2 > 0 such that

.c1g/2g
� s1.M3;g/� s2.M3;g/� .c2g/2g;

for g large enough. The constant c2 depends only on the injectivity radius of M3 .

In fact, Masters shows that
s2.g;M3/ < gc2g

for some c2 � c2.M3/, and likewise for some c1 � c1.M3/

gc1g < s1.g;M3/

when M3 has a self-transverse totally geodesic subsurface. We follow Masters’ ap-
proach to the upper bound, improving it from gc2g to .c2g/2g by more carefully
counting the number of suitable triangulations of a genus g surface. Using our previous
work [3] we replace Masters’ conditional lower bound with an unconditional one, and
we improve it from gcg to .c1g/2g with the work of Muller and Puchta [6] counting
number of maximal surface subgroups of a given surface group. We then make a new
subgroup from old in the spirit of Masters’ construction, but taking the nearly geodesic
subgroup from [3] as our starting point.

The above theorem enables us to determine the order of the number of surface subgroups
up to genus g . We have the following corollary.

Corollary 1.1 We have

lim
g!1

log s1.M3;g/

2g log g
D lim

g!1

log s2.M3;g/

2g log g
D 1:

We make the following conjecture.

Conjecture 1.1 For a given closed hyperbolic 3–manifold M3 , there exists a con-
stant c.M / > 0 such that

lim
g!1

1

g

2g
p

si.M3;g/D c.M /; i D 1; 2:
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2 The upper bound

Fix a closed hyperbolic 3–manifold M3 . In this section we prove the upper bound in
Theorem 1.1, that is we show

(1) s2.M3;g/� .c2g/2g

for some constant c2 > 0.

2.1 Genus g triangulations

We have the following definition.

Definition 2.1 Let Sg denote a closed surface of genus g . We say that a connected
graph � is a triangulation of genus g if it can be embedded into the surface Sg such
that every component of the set Sg n � is a triangle. The set of genus g triangulations
is denoted by T .g/. We say that � 2 T .k;g/� T .g/ if

� each vertex of � has the degree at most k ,
� the graph � has at most kg vertices and at most kg edges.

We observe that any given genus g triangulation � , can be in a unique way (up to a
homeomorphism of Sg ) be embedded in Sg .

We say that Riemann surface is s–thick is its injectivity radius is bounded below
by s > 0. Every thick Riemann surface has a good triangulation in the sense of the
following lemma.

Lemma 2.1 Let S be an s–thick Riemann surface of genus g � 2. Then there exists
k D k.s/ > 0 and a triangulation � 2 T .k;g/ that embeds in S , such that every edge
of � is a geodesic arc of length at most s .

Proof Choose a maximal collection of disjoint open balls in S of radius s=4. Let
V denote the set of centers of the balls from the collection. We may assume that no
four points from V lie on a round circle (we always reduce the radius of the balls by
a small amount and move them into a general position). We construct the Delaunay
triangulation associated to the set V as follows. We connect two points from V

with the shortest geodesic arc between them, providing they belong to the boundary
of a closed ball in S that does not contain any other point from V . This gives an
embedded graph � . Since no four points from V lie on the same circle the graph � is
a triangulation. It is elementary to check that � has the stated properties, and we leave
it to the reader.

Geometry & Topology, Volume 16 (2012)



604 Jeremy Kahn and Vladimir Marković

Given any �1 –injective immersion of gW Sg!M3 , we can find a genus g hyperbolic
surface S , and a map f W S!M3 homotopic to g , such that f .S/ is a pleated surface.
Then f does not increase the hyperbolic distance. Let s denote the injectivity radius
of M3 . It follows that the injectivity radius of S is bounded below by s . We choose a
triangulation �.S/ of S that satisfies the conditions in Lemma 2.1.

Let C D fC1; : : : ;Cmg be a finite collection of balls of radius s=4 that covers M3 . We
may assume that C is a minimal collection, that is, if we remove a ball from C , the new
collection of balls does not cover M3 . Let fi W Si!M3 , i D 1; 2, be two pleated maps,
and denote by �.S1/ and �.S2/ the corresponding triangulations from Lemma 2.1
of genus g surfaces S1 and S2 . If the genus g triangulations �.S1/ and �.S2/ are
identical, there exists a homeomorphism hW S1 ! S2 such that h.�.S1// D �.S2/.
Assume in addition that for every vertex v of �.S1/, the points f1.v/ and f2.h.v//

belong to the same ball Ci 2 C . Then by [5, Lemma 2.4], the maps f1 and f2 ı h are
homotopic.

Since the set C has m elements, there are at most m ways of mapping a given vertex
of � to the set C . Choose a vertex v1 of � and choose an image of v1 in C , say v1 is
mapped to C1 . Let v2 be a vertex of � , such that v2 and v1 are the endpoints of the
same edge.

Each edge of � has the length at most s , and the balls from C have the radius s=4.
Since f does not increase the distance, and C is a minimal cover of M3 , it follows that
v2 can be mapped to at most K elements of C , where K is a constant that depends
only on s . Repeating this analysis to the remaining vertices of � yields the estimate

(2) zs2.M3;g/�mKkg�1
jT .k;g/j;

where zs2.M3;g/ denotes the number of conjugacy classes of surface subgroups of
genus equal to g .

Let �.k; n/ denote the set of all graphs on n vertices so that each vertex has the degree
at most k . Then jT .k;g/j � j�.k; kg/j.

Remark Observing the estimate

j�.k; n/j � nkn;

Masters showed
zs2.M3;g/� gDg;

for some constant D > 0. However, the set �.k; kg/ has many more elements than
the set T .k;g/.
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The following lemma will be proved in the next subsection.

Lemma 2.2 There exists a constant C > 0 that depends only on k , such that for g

large we have
jT .k;g/j � .Cg/2g:

Given this lemma we now prove estimate (1). It follows from the Lemma 2.2 that for
every g large we have

jT .k;g/j � .Cg/2g:

Combining this with (2) we get that

zs2.M3;g/�mKkg�1.Cg/2g
� .C1g/2g

holds for every g � 2 for some constant C1 . Then

s2.M3;g/D

gX
rD2

zs2.M3; r/

D

gX
rD2

.C1r/2r

� .c2g/2g

for some constant c2 . This proves the estimate (1).

2.2 The proof of Lemma 2.2

Fix a triangulation � 2 T .k;g/ and denote the set of oriented edges by E.�/. Let
QE.�/ denote the vector space of all formal sums (with rational coefficients) of edges
from E.�/.

Choose a spanning tree T (a spanning tree of a connected graph is a connected tree that
contains all of its vertices) for � . Let H1.Sg/ denote the first homology with rational
coefficients of the surface Sg . We define the linear map �W QE.�/! H1.Sg/ as
follows. Let e 2 .E.�/ nT /. Then the union e[T is homotopic (on Sg ) to a unique
(up to homotopy) simple closed curve 
e � Sg . We let �.e/ denote the homology
class of the curve 
e in H1.Sg/. We extend the map � to QE.�/ by linearity.

Denote the kernel of � by K.�/ and set

H1.�;T /D
QE.�/

K.�/
:
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Then the quotient map (also denoted by) �W H1.�;T /! H1.Sg/ is injective, and
in fact is an isomorphism. Since � is a genus g triangulation, the embedding of the
triangulation � to Sg induces the surjective map of the fundamental group of � to
the fundamental group of Sg . Then the induced map � between the corresponding
homology groups is injective.

Let e1; : : : ; e2g 2E.�/ denote a set of 2g edges whose equivalence classes generate
H1.�;T /.

Lemma 2.3 Let X D T [fe1; : : : ; e2gg. Then every component of the set Sg nX is
simply connected.

Proof The set X is connected (since it contains the spanning tree T , and the tree T

contains all the vertices). Suppose that there exists a component of the set Sg nX that
is not simply connected. Then there exists a simple closed curve 
 � Sg that is not
homotopic to a point, and such that


 \X D∅:

If 
 is a nonseparating curve then the homology class of 
 is nontrivial in H1.Sg/.
Therefore, there exists a nonseparating simple closed ˛�Sg that intersects the curve 

exactly once. Let q1; : : : ; q2g 2Q be such that

�.q1e1C � � �C q2ge2g/D Œ˛�;

where Œ˛� 2H1.Sg/ denotes the homology class of ˛ . Since the intersection pairing
between Œ˛� and Œ
 � is nonzero, and �.e1/; : : : ; �.e2g/ is a basis for H1.Sg/, we
conclude that for some i 2 f1; : : : ; 2gg, the curve 
 intersects ei [ T , which is a
contradiction.

Suppose that 
 is a separating curve and denote by A1 and A2 the two components of
the set Sg n 
 . The set X is connected, and by the assumption it does not intersect 
 .
This implies that X is contained in one of the two subsurfaces Ai , say X �A1 . Then
X \A2 D∅.

Since 
 is not homotopic to a point, each Ai is a nonplanar surface with one boundary
component. Therefore, the subsurface A2 contains a nonseparating simple closed
curve 
2 . Then 
2 is a nonseparating simple closed curve in Sg by the above argument
we have that 
2 intersects the set X . This is a contradiction since X \A2 D∅.

Let P1; : : : ;Pl denote the components of the set Sg nX . Each Pi is a polygon and
we let mi denote the number of sides of the polygon Pi . Since each edge in X can
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appear as a side in at most two such polygons, we have the inequality

(3)
lX

iD1

mi � 2kg;

since by definition the triangulation � has at most kg edges.

We proceed to prove Lemma 2.2. We can obtain every triangulation � 2 T .k;g/ as
follows. We first choose a spanning tree T , which is a tree that has at most kg vertices.
Then to the tree T we add 2g edges e1; : : : ; e2g in an arbitrary way. After adding
the edges, at each vertex of the graph T [fe1; : : : ; e2gg we choose a cyclic ordering.
We thicken the edges of the graph T [ fe1; : : : ; e2gg to obtain the ribbon graph and
the corresponding surface R with boundary (if this surface does not have genus g

we discard this graph). The boundary components of the surface R are polygonal
curves Pi , i D 1; ::; l , made out of the edges from T [fe1; : : : ; e2gg. We then choose
a triangulation of each polygon Pi .

It follows from this description that we can bound the number of triangulations from
T .k;g/ by jT .k;g/j � abcd , where

aD fnumber of unlabeled trees T with n� kg verticesg;

b D fnumber of ways of adding 2g unlabeled edges e1; : : : ; e2g to T g;

c D fnumber of cyclic orderings of edges of T [fe1; : : : ; e2ggg;

d D fnumber of triangulations of the polygons Pig:

Let t.n/ denote the number of different unlabeled trees on n vertices. By [1] we have
t.n/ � C 12n , for some universal constant C > 0. It follows that a � 2C 12kg . The
tree T has at most kg edges, so there are at most .kg/2 ways of adding a labeled
edge to T . All together there are at most .kg/4g ways of adding a labeled collection
of 2g edges to T . To obtain the number of ways of adding unlabeled collection of 2g

edges we need to divide this number by .2g/!. This yields the estimate

b �
.kg/4g

.2g/!
< .k2g/2g

for g large.

Since each vertex of � has the degree at most k , and � has at most kg edges, we
obtain the estimate

c � .k!/kg:

Let p.m/ denote the number of triangulations of a polygon with m sides. Then p.m/

is the .m�2/–th Catalan number and we have p.m/ < 22m . As above, let P1; : : : ;Pl
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denote the polygons that we need to triangulate and let mi denote the number of sides
of the polygon Pi . Then

d �max
lY

iD1

p.mi/� 4m1C���Cml ;

where the maximum is taken over all possible vectors .m1; : : : ;ml/, 1� l � 2kg , such
that m1C � � �Cml � 2kg (see estimate (3) above). But since m1C � � �Cml � 2kg

we have d � 42kg .

Putting the estimates for a; b; c; d together we prove the lemma.

Remark If we are given a tree on a surface S , along with 2g edges connecting the
vertices of the tree (and satisfying the hypothesis of Lemma 2.3) and a map of the
resulting graph into M3 , the we can determine the map of S into M3 , up to homotopy.
Thus we need only bound jT 0.k;g/j, where T 0.k;g/ is the set of trees of size at
most kg , with 2g more edges added; we observe that jT 0.k;g/j< ab .

3 Quasifuchsian representations of surface groups

3.1 Generalized pants decomposition and the complex Fenchel–Nielsen
coordinates

For background on complex Fenchel–Nielsen coordinates, see Series [7], Kourounio-
tis [4], Tan [8] and our previous work [3]. The exposition and notation we use here is
in line with [3, Section 2].

Let X be a compact topological surface (possibly with boundary) and let �W �1.X /!

PSL.2;C/ be a representation (a homomorphism). We say that � is a K–quasifuchsian
representation if the group �.�1.X // is K–quasifuchsian, in which case we can
equip X with a complex structure X D H2=F , for some Fuchsian group F , such
that f� D � ı �. Here �W F ! �1.X / is an isomorphism, and f�W F ! fFf �1 is
the conjugation homomorphism, induced by an equivariant K–quasiconformal map
f W @H3! @H3 .

We will also say that a quasisymmetric map f W @H2! @H3 is K–quasiconformal if
it has a K–quasiconformal extension to @H3 .

By … we denote a topological pair of pants with cuffs Ci , i D 1; 2; 3. Recall that
to every representation �W �1.…/! PSL.2;C/, we associate the three half-lengths
hl.Ci/ 2 CC=2i�Z, where CC D fz 2 C W Re.z/ > 0g. If � is quasifuchsian then it
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is uniquely determined by the half-lengths. The conjugacy class Œ�� of a quasifuchsian
representation � is called a skew pair of pants.

We let … and …0 denote two pairs of pants and let �W �1.…/ ! PSL.2;C/ and
�0W �1.…

0/! PSL.2;C/ denote two representations. Suppose that for some c1 2

�1.…/ and c0
1
2�1.…

0/, that belong to the conjugacy classes of C1 and C 0
1

respectively,
we have �.c1/D �

0.c0
1
/, and hl.C1/D hl.C 0

1
/. By s.C / 2C=.hl.C /ZC 2� iZ/ we

denote the reduced twist-bend parameter, which measures how the two skew pairs
of pants Œ�� and Œ�0� align together along the axis of the loxodromic transformation
�.c1/D �

0.c0
1
/.

A pair . z…;�/ is a generalized pair of pants if z… is a compact surface with boundary
and � is a finite degree covering map �W z…!…, where … is a pair of pants. (We will
also call z… a generalized pair of pants if � is understood.) By ��W �1. z…/! �1.…/

we denote an induced homomorphism.

Definition 3.1 Let . z…;�/ be a generalized pair of pants and

z�W �1. z…/! PSL.2;C/

be a representation. We say that z� is admissible with respect to � if it factors through �� ,
that is, there exists �W �1.…/! PSL.2;C/ such that z�D � ı�� .

Let zCj , j D 1; : : : ; k , denote the cuffs (the boundary curves) of the surface z…, and let
C1;C2;C3 continue to denote the cuffs of …. Then � maps each zCj onto some Ci

with some degree mj 2N . We say that such a curve zCj is a degree mj curve. For every
admissible z� we define the half-length hl. zCj / as hl. zCj /D hl.Ci/. Let ecj 2 �1. z…

0/

be in the conjugacy class that corresponds to the cuff zCj . Then

l.z�.ci//D 2mj hl.Ci/ .mod.2� iZ//:

Let S be an oriented closed topological surface with a generalized pants decomposition.
By this we mean that we are given a collection C of disjoint simple closed curves
on S , such that for every component z… of S n C there is an associated finite cover
�W z…!…. Let

z�W �1.S/! PSL.2;C/

be a representation. We make the following assumptions on � :

(1) Given a curve C 2 C there exists two (not necessarily different) generalized pairs
of pants z…1 and z…2 that both contain C as a cuff, and that lie on different sides
of C . Let �1W

z…1!…1 and �2W
z…2!…2 be the corresponding finite covers,

where …1 and …2 are two pairs of pants. We assume that the restrictions of �1

and �2 on the curve C are of the same degree.
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(2) For every generalized pair of pants z… from the above decomposition of S , the
restriction �W �1. z…/! PSL.2;C/ is admissible with respect to the covering
map �W z…!… (in the sense of Definition 3.1).

(3) For every C 2 C , the half-lengths of C coming from the representations
�W �1. z…1/! PSL.2;C/ and �W �1. z…2/! PSL.2;C/ are one and the same.

Continuing with the above notation, let Ci �…i denote the cuff such that �i.C /DCi .
Let �i W �1.…i/! PSL.2;C/, i D 1; 2, be the representations such that the restriction
of � to �1. z…i/ is equal to �i ı.�i/� . We define the reduced twist bend parameter s.C /

associated to � to be equal to the reduced twist-bend parameter for the representations
�1 and �2 .

So given a closed surface S with a generalized pants decomposition C , and a represen-
tation �W �1.S/! PSL.2;C/, we have defined the parameters hl.C / 2 CC=2k�Z
and s.C / 2 C=.hl.C /ZC 2� iZ/. The collection of pairs .hl.C /; s.C //, C 2 C , is
called the reduced Fenchel–Nielsen coordinates. We observe that a representation
�W �1.S/! PSL.2;C/ is Fuchsian if and only if all the coordinates .hl.C /; s.C // are
real. This is well known (see [3]) when C is a pants decomposition. The same is true
when C is a generalized pants decomposition. This follows directly from Definition 3.1
and the above three conditions we impose on � .

The following elementary proposition (see [3]) states that although a representation
�W �1.S/! PSL.2;C/ is not uniquely determined by its reduced Fenchel–Nielsen
coordinates, it can be in a unique way embedded in a holomorphic family of represen-
tations (uniquely means that there is a unique holomorphic family of representations
such that � can embedded in this family as described in the following lemma).

Proposition 3.1 Fix a closed topological surface S with a generalized pants decom-
position C . Let z 2CC

C and w 2CC denote complex parameters. Then there exists a
holomorphic (in .z; w/) family of representations

�z;wW �1.S/! PSL.2;C/;

such that hl.C / D z.C / .mod 2� iZ/ and s.C / D w.C / .mod hl.C /Z C 2� iZ/.
Moreover, for any .z0; w0/ 2CC

C �CC , the family of representations �z;w is uniquely
determined by the representation �z0;w0

.

The representation �z;w is Fuchsian if and only if both z and w are real, that is z 2RC
C

and w 2 RC . In this case the group �z;w.�1.S// is of course discrete. Moreover,
in [4] it has been proved that all quasifuchsian representations (up to conjugation in
PSL.2;C/) of �1.S/ correspond to some neighborhood of the set RC

C and RC . But in
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general, little is known for which choice of parameters z; w the group �z;w.�1.S// will
be discrete. In the next subsection we prove the following result in this direction. Start
with a nearly Fuchsian group G < PSL.2;C/. We obtain a new group G1< PSL.2;C/
from G by bending (by some definite angles) along some sparse equivariant collection
of geodesics whose endpoints are in the limit set of G . Then the new group G1 is also
quasifuchsian (although it is not nearly Fuchsian anymore).

3.2 Small deformations of a sparsely bent pleated surface

We let S continue to denote a closed surface with a generalized pants decomposition C ,
and we fix a holomorphic family of representations �z;w as in Proposition 3.1. We set
G.z; w/D �z;w.�1.S//.

Let C0 � C denote a subcollection of curves. For z 2 RC
C and w 2 RC , we let Sz;w

denote the Riemann surface isomorphic to H2=G.z; w/, and on Sz;w we identify
the curves from C with the corresponding geodesics representatives. By K.Sz;w/

we denote the largest number so that the collection of collars (of width K.Sz;w/)
around the curves from C0 is disjoint on Sz;w . For each C 2 C0 , we choose a number
�.3=4/� < �C < .3=4/� (for each curve C 2 .C n C0/ we set �C D 0).

The purpose of this subsection is to prove the following theorem.

Theorem 3.1 There exist constants K > 1 and D > 0 such that the following
holds. Let z0 2 RC

C and w0 2 RC , and z1 2 CC
C and w1 2 CC be such that the

representation � D �z1;w1
ı ��1

z0;w0
W G.z0; w0/ ! G.z1; w1/, is K–quasifuchsian.

Set z2 D z1 and w2 D w1 C i�C . If K.Sz0;w0
/ � D , then the representation

�z2;w2
W �1.S/ ! PSL.2;C/ is K1 –quasifuchsian, where K1 depends only on K

and D .

The following lemma is elementary.

Lemma 3.1 Let 0 � �0 < � and B0 � 1. There exist constants L.�0;B0/ > 0 and
D.�0;B0/>0 such that the following holds. Let I �R be an interval that is partitioned
into intervals Ij , j D 1; : : : ; k . Let  W I ! H3 be a continuous map, such that  
maps each Ij onto a geodesic segment and the restriction of  on Ij is B0 –bilipschitz.
Assume in addition that the bending angle between two consecutive geodesic intervals
 .Ij / and  .IjC1/ is at most �0 . If the length of every Ij is at least D.�0;B0/ then
 is L.�0;B0/–bilipschitz.

Let  W I ! H3 be a C 1 map, where I � R is a closed interval. For x 2 I let
v.x/ 2 T 1I denote the unit vector that points toward C1. Let ı > 0. We say that the
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map  is ı–nearly geodesic if for every x;y 2 I such that x < y � xC 1, we have
that the angle between the vector  �.v.x// and the oriented geodesic segment from
 .x/ to  .y/ is at most ı .

Clearly, every 0–nearly geodesic map is an isometry, and a sequence of normalized
ın –nearly geodesic maps converges (uniformly on compact sets) in the C 1 sense to an
isometry, when ın! 0. The following lemma is a generalization of the previous one.

Lemma 3.2 There exist universal constants L;D; ı > 0, such that the following holds.
Suppose that I is partitioned into intervals Ij , j D 1; : : : ; k , and let  W I !H3 be a
continuous map, whose restriction on every closed subinterval Ij is C 1 and ı–nearly
geodesic. Assume that the bending angle between two consecutive curves  .Ij / and
 .IjC1/ is at most 3�=4 (by the bending angle between two C 1 curves we mean the
appropriate angle determined by the two tangent vectors at the point where the two
curves meet). If the length of every Ij is at least D then  is L–bilipschitz.

Proof Choose any two numbers 3�=4 < �0 < � and B0 > 1. Assuming that D >

D.�0;B0/ we can partition each Ij into subintervals of length between D.�0;B0/

and 2D.�0;B0/. Replacing each Ij with these new intervals we obtain the new
partition of I into intervals Ji , where each Ji has the length between D.�0;B0/

and 2D.�0;B0/. Let �W I ! H3 be the continuous map that agrees with  at the
endpoints of all intervals Ji , and such that the restriction of � to each Ji maps Ji

onto a geodesic segment in H3 , and is affine (the map � either stretches or contracts
distances by a constant factor on a given Ji ).

Next, since we have the upper bound 2D.�0;B0/ on the length of each interval Ji , we
can choose ı > 0 small enough such that the bending angle between two consecutive
geodesic segments �.Ji/ and �.JiC1/ is at most �0 . Also, by choosing ı small we can
arrange that the map � ı �1 is 2–bilipschitz (the same statement holds if we replace 2

by any other number greater than 1). By the previous lemma the map � is L.�0;B0/–
bilipschitz. Then the map  is 2L.�0;B0/–bilipschitz. We take LD 2L.�0;B0/, and
D D 2D.�0;B0/, and the lemma is proved.

We are now ready to prove Theorem 3.1.

Proof Recall that f W @H2 ! @H3 is a K–quasiconformal map that conjugates
G.z0; w0/ to G.z1; w1/. Let zf W H2!H3 denote the Douady–Earle extension of f .

Remark Usually the Douady–Earle extension refers to the barycentric extensions of
a homeomorphism f W @S1! @S1 (see [2]). In the same paper (see [2, Section 11])
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Douady and Earle have shown that in a similar vein one defines the barycentric extension
of any homeomorphism f W @Sk ! @Sk , for any k > 0. Similarly one can define
the barycentric extension zf W Hm!Hn of any continuous map f W @Sm�1! @Sn�1 .
Alternatively, given a K-quasiconformal map f W @H2! @H3 we first extend f to an
equivariant K–quasiconformal map xf W @H3! @H3 and then take the corresponding
Douady–Earle extension of zf W H3!H3 of xf (as defined by Douady and Earle [2]).
The restriction of zf to H2 is also called zf .

Then zf is ı–nearly geodesic (this means that the restriction of zf to every geodesic
segment is ı–nearly geodesic in the sense of the above definition) for some ı D ı.K/,
and ı.K/! 0, when K! 1.

If we assume that K.Sz0;w0
/ is large enough, by adjusting zf , we can arrange that zf is

then C1 mapping that maps the geodesics in H2 that are lifts of the geodesics from C0

onto the corresponding geodesics in H3 , and ensure that zf is 2ı–nearly geodesic.
Moreover, we can arrange that zf is conformal at every point of every geodesic 
 that
is a lift of a curve from C0 .

We construct the map zgW H2!H3 that conjugates G.z0; w0/ to G.z2; w2/ as follows.
Let M be a component of the set Sz0;w0

n C0 , and let �M �H2 denote its universal
cover, that is, �M is an ideal polygon with infinitely many sides in H2 , whose sides
are lifts of the geodesics from C0 that bound M . We set zg D zf on �M .

Let �M1�H2 be the universal cover of some other component M1 of the set Sz0;w0
nC0 .

Let 
 denote a lift of a geodesic C 2 C0 , and assume that the polygons �M and �M1

are glued to each other along 
 (that is, C is in the boundary of both M and M1 ). Let
R.�C / 2 PSL.2;C/, denote the rotation about zg.
 / for the angle �C . We define zg
on �M1 by letting zg DR.�C / ı zf . We then define zg inductively on the rest of H2 .

Clearly zg conjugates G.z0; w0/ to G.z2; w2/. Let x 2 
 , and v.x/ a nonzero vector
that is orthogonal to 
 . Since j�C j � .3=4/� , and since zf is differentiable at x , it
follows that the bending angle between the vectors zg�.v.x// and zg�.�v.x// is at
most .3=4/� . If u.x/ is any other vector at x , since zf is conformal at x , it follows
that the bending angle between the vectors zg�.u.x// and zg�.�u.x// is at most as
big as the bending angle between the vectors zg�.v.x// and zg�.�v.x//. Therefore,
the restriction of the map zg on every geodesic segment satisfies the assumptions of
Lemma 3.2. It follows that yg is L–bilipschitz, where L depends only on K and D .
Therefore the representation �z2;w2

W �1.S/! PSL.2;C/ is K1 –quasifuchsian, where
K1 depends only on K and D .
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3.3 Convex hulls and pleated surfaces

In this subsection we digress from the notions of generalized pants decompositions and
Fenchel–Nielsen coordinates, to prove a preliminary lemma about hyperbolic convex
hulls of quasicircles.

Let � be a discrete geodesic lamination in H2 , and let K.�/ denote the largest number
such that for every small � > 0, the collection of collars (crescent in H2 ) of width
K.�/� � around the leafs of � is disjoint in H2 . Let � denote a real valued measure
on �. By ��;� D �W H2!H3 , we denote the corresponding pleating map. As usual,
by �.�/ we denote the collection of geodesics in H3 that are images of geodesics
from � under �. If the map � is L–bilipschitz then � extends continuously to a K–
quasiconformal map f W @H2! @H3 , for some K DK.L/. In this case, let W �H3

denote the convex hull of the quasicircle �.@H2/. The convex hull W has two boundary
components which we denote by @1W and @2W . We prove the following lemma.

Lemma 3.3 There exist universal constants C1; ı1 > 0, with the following properties.
Assume that K.�/ > C1 , and that �=4 � j�.l/j � 3�=4, for every l 2 �. Then for
every geodesic 
 �W the following holds:

(1) If 
 2 �.�/, then for every point p 2 
 , the inequality

max
iD1;2

d.p; @iW / > ı1

holds.

(2) If 
 does not belong to �.�/, then for some point p 2 
 , the inequality
maxiD1;2 d.p; @iW / < ı1=3 holds.

Compare this lemma with [5, Lemma 4.2].

Proof It follows from Lemma 3.1 that for C1 large enough, the pleating map � is
L–bilipschitz for some universal constant L> 1. Observe that �.H2/�W . Moreover,
there is a constant M0 > 0, that depends only on L, such that for every p 2W we
have d.p; �.H2// <M0

We choose ı1 > 0 as follows. Let P0 be the pleated surface in H3 that has a single
bending line 
0 , and with the bending angle equal to �=4. Then P0 is bounded by a
quasicircle at @H3 . Denote by W0 the convex hull of this quasicircle and let @i.W0/,
i D 1; 2, denote the two boundary components of W0 . Then there exists ı1 > 0 such
that for every point p 2 
0 , we have maxiD1;2 d.p; @iW0/ > 2ı1 . Observe that 
0

belongs to exactly one of the convex hull boundaries @1W0 and @2W0 , so one of the
numbers d.p; @1W0/ and d.p; @2W0/ is zero and the other one is larger than 2ı1 .
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Assume that the first statement of the lemma is false. Then there exists a sequence of
measured laminations .�n; �n/ with the property K.�n/!1, and there are geodesics
ln 2 �n , and points pn 2 
n D �n.ln/, such that the inequality

(4) max
iD1;2

d.pn; @iWn/� ı1;

holds. We may assume that pnDp , and 
nD 
 , for every n, where p and 
 are fixed.
Since �n is L–bilipschitz, after passing to a subsequence if necessary, the sequence �n
converges (uniformly on compact sets) to a pleating map �1 . The pleating map �1
corresponds to the pleating surface P1 , that has a single bending line 
1 , with the
bending angle at least �=4. Then Wn converges to W1 uniformly on compact sets
in H3 , where W1 is the convex hull of the quasicircle that bounds P1 . It follows that
d.pn; @iWn/! d.p; @iW1/. We may assume that 
1D 
0 , where 
0 is the bending
line of the pleated surface P0 defined above. Then we have maxiD1;2 d.p; @iW1/�

maxiD1;2 d.p; @iW0/ > 2ı1 . But this contradicts (4).

We now prove the second statement of the lemma. Let 
 be a geodesic in W that is
not in �.�/. Then we can find a point p 2 
 , such that d.p; �.�// >K.�/. Assuming
that the second statement is false, we again produce a sequence �n with K.�n/!1,
and such that for some sequence of geodesics 
n �Wn , that do not belong to �.�n/,
and all the points p 2 
n , the inequality

(5) max
iD1;2

d.p; @iWn/� ı1=3;

holds for n large enough. By the previous discussion, there exists a sequence of points
pn 2 
n , such that d.pn; �n.�n// >K.�n/.

Let qn 2 �n.H2/ be points such that d.pn; qn/<M0 , where M0 is the constant defined
at the beginning of the proof. Let zn 2 H2 , such that qn D �.zn/. We may assume
that zn D i 2 H2 and qn D q , for some point q that we fix. Then pn! p , where
d.p; q/ �M0 . Moreover, since K.�n/!1, the pleating maps �.�n/ converge to
an isometry uniformly on compact sets in H2 . In particular, the sequence of convex
hulls Wn converges to a geodesic plane uniformly on compact sets, and therefore
d.pn; @iWn/! 0. But this contradicts (5), and thus we have completed the proof of
the lemma.

3.4 .�;R/ Skew pants

We let S continue to denote a closed surface with a generalized pants decomposition C ,
and we fix a holomorphic representations �z;w as in Proposition 3.1.
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Let C0 � C denote a subcollection of curves, and for each C 2 C0 we choose a number
�.3=4/� < �C < .3=4/� (for each curve C 2 .C n C0/ we set �C D 0).

For C 2 C , let �C ; �C 2D , where D denotes the unit disc in the complex plane. Let
� 2D denote a complex parameter and let t 2 f0; 1g. Fix R> 1, and let zW D!CC

C

and wW D!CC be the mappings given by

z.C /.�/D
R

2
C
��C

2
;

w.C /.�; t/D 1C i t�C C
��C

R
:

The maps z.�/ and w.�; t/ are complex linear, and therefore holomorphic in � and t .
Therefore the induced family of representations ��;t D �z.�/;w.�;t/ is holomorphic in
� and t . Note that ��;t depends on R, �C , �C and �C , but we suppress this.

The representation �0;0 is Fuchsian. Let S0 denote the Riemann surface isomorphic
to the quotient H2=�0;0.�1.S// (we also equip S0 with the corresponding hyperbolic
metric). Let K.�0;0/ denote the largest number so that the collection of collars (of
width K.�0;0/) around the curves from C0 is disjoint on S0 .

The representation �0;1 is not Fuchsian (unless �.C0/D 0), and the following theorem
gives a sufficient condition for it to be quasifuchsian.

We adopt the following notation. Let G.�; t/D ��;t .�1.S//. If G.�; t/ is a quasifuch-
sian group we let f�;t W @H2! @H3 , denote the quasiconformal map that conjugates
G.0; 0/ to G.�; t/. The following theorem is a generalization of [3, Theorem 2.2] (see
Theorem 3.4 below). Assuming the above notation, we have:

Theorem 3.2 There exist universal constants yR; y�;M > 0, such that the following
holds. If K.�0;0/ > M , then for every R � yR and j� j < y� , and any choice of
constants �C ; �C 2 D , and �.3=4/� < �C < .3=4/� , for C 2 C0 , the group G.�; 1/

is quasifuchsian and the induced quasiconformal map f�;1 ı .f0;1/
�1 (that conjugates

G.0; 1/ to G.�; 1/), is K.�/–quasiconformal, where

K.�/D
y�Cj� j

y�� j� j
:

Let C0.�; t/ denote the collection of axes of elements of the form ��;t .c/, where
c 2 �1.S/ and c belongs to the conjugacy class of some curve C 2 C0 . Then by
definition, the set C0.�; t/ is invariant under the group G.�; 1/. Next, we prove that
C0.�; 1/ is invariant under any Möbius transformation from PSL.2;C/ that preserves
the limit set of G.�; 1/. The following theorem is the main result of this section.
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Theorem 3.3 There exist constants y�1;M1>0, with the following properties. Assume
that K.�0;0/ > M1 and let j� j < y�1 . If T 2 PSL.2;C/, is a Möbius transformation
that preserves the limit set of G.�; 1/, then the set of geodesics C0.�; 1/ is invariant
under T .

Compare this theorem with [5, Lemma 4.2].

Proof Let W .�; t/ denote the convex hull of the limit set of G.�; t/. It follows from
Lemma 3.3 that for K.�0;0/ large enough, the following holds:

(1) For every 
 2 C0.0; 1/ and p 2 
 , the inequality

max
iD1;2

d.p; @iW .0; t// > ı1

holds.

(2) For every 
 �W .0; 1/, there exists p 2 
 such that

max
iD1;2

d.p; @iW .0; 1// <
ı1

2
:

Then by Theorem 3.2 we can choose y�1 small enough so that for j� j < y�1 , the
constant K.�/ (from Theorem 3.2) is close enough to 1, so that the following holds:

(1) For every 
 2 C0.�; 1/ and p 2 
 , the inequality

max
iD1;2

d.p; @iW .0; t// >
4ı1

5

holds,

(2) For every 
 �W .0; 1/, there exists p 2 
 such that

max
iD1;2

d.p; @iW .0; 1// <
2ı1

3
:

Then any Möbius transformation A 2 PSL.2;C/ that preserves W .�; 1/ will also
preserve the set C.�; 1/. This proves the theorem.

3.5 A proof of Theorem 3.2

We need to prove that G.�; 1/ is a quasifuchsian group. The last estimate in Theorem 3.2
then follows from the fact that a holomorphic map from the unit disc into the Teichmüller
space of a Riemann surface is a contraction with respect to the hyperbolic metric on
the unit disc and the Teichmüller metric.
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Theorem 3.4 [3, Theorem 2.2] There exist universal constants yR; y� , such that the
following holds. For every R� yR and j� j< y� , and any choice of constants �C ; �C 2D ,
the group G.�; 0/ is quasifuchsian, and the induced quasiconformal map f�;0 that
conjugates G.0; 0/ to G.�; 0/, is K.�/–quasiconformal, where

K.�/D
y�Cj� j

y�� j� j
:

The group G.�; 1/ is obtained from the group G.�; 0/, by bending along the lifts of
curves C 2 C0 , for the angle �C . It follows from Theorem 3.1 that the group G.�; 1/

is quasifuchsian if K.�0;0/ > C , and if the map f�;0 is K–quasiconformal, where K

is close enough to 1. But it follows from Theorem 3.4 that for j� j small enough this
will be the case. This proves Theorem 3.2.

4 The lower bound

4.1 Amalgamating two representations

Let S denote a closed surfaces with generalized pants decompositions C , and let
�W �1.S/!PSL.2;C/ denote an admissible (in sense of Definition 3.1) representation
with the reduced Fenchel–Nielsen coordinates satisfying the inequalities

jhl.C /�
R

2
j � �;

js.C /� 1j �
�

R
;

for some �;R> 0, and C 2 C . We say that such a representation is .�;R/–good.

Let M3 denote a closed hyperbolic manifold such that M3DH3=� for some Kleinian
group � . In [3] we proved that one can find many .�;R/–good representations
�W �1.S/! � , for a given � > 0 and R large enough. Moreover, if A 2 � has the
translation length l.A/ satisfying the inequality jl.A/�Rj � �=2, then we can find
such � so that A is in the image of � . From now on we assume that such A 2 � is
primitive, that is A is not equal to an integer power of another element of � .

In particular, it follows from [3, Section 4] (the statements about the equidistribution of
.�;R/–good pairs of skew pants around a given closed curve in M3 whose length is
� close to R) that we can find two .�;R/–good representations �.i/W �1.S.i//! � ,
i D 1; 2, where S.1/ and S.2/ are two closed surfaces with pants decompositions
C.i/, and two pairs of pants …Ci and …�i with the following properties:
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� There are two oriented, degree one curves C.i/ 2 C.i/, and c.i/ 2 �1.S.i// in
the conjugacy classes of C.1/ and C.2/ respectively, such that �.1/.C.1//D
�.2/.C.2//D ŒA�, where ŒA� is the conjugacy class of a given primitive element
A 2 � , whose translation length l.A/ satisfies the inequality jl.A/�Rj � �=2.

� Let 
 denote the closed geodesic corresponding to A. There exist two pars of
skew pants …Ci and …�i in �.i/.�1.S.i/// such that 
 is positively oriented
boundary component of …Ci and negatively oriented for …�i , and recalling the
notation from [3] we have the inequality

(6)
ˇ̌̌̌
foot
 .…C2 /� foot
 .…�1 /�

�

2

ˇ̌̌̌
�
�

R
:

After replacing S.1/ and S.2/ with appropriate finite degree covers if necessary, we
may assume in addition to the above two conditions the following also hold:

� The curves C.1/ and C.2/ are nonseparating simple closed curves in S.1/ and
S.2/ respectively.

� The surfaces S.1/ and S.2/ have the same genus.

� By Proposition 3.1 the representation �.i/ can be embedded in the holomorphic
family of representations ��;t .i/. We may assume that K.�0;0.S.i/// > C1 ,
i D 1; 2, where C1 is the constant from Theorem 3.3.

We now fix such two representations �.1/ and �.2/, surfaces S.1/ and S.2/, and the
two oriented curves C.1/ and C.2/ (we also fix the corresponding primitive element
A 2 � ).

Let i 2 f1; 2g. For n> 1, let Sn.1/ and Sn.2/ denote two primitive degree n covers
of S.1/ and S.2/ respectively (a finite cover of a surface is primitive if it does not
factor through an intermediate cover), such that for some 1� k � .n� 1/, the curves
C.1/ and C.2/ have two degree k lifts Cn.1/ and Cn.2/. Then Cn.1/ and Cn.2/ are
two oriented, nonseparating simple closed curves in Sn.1/ and Sn.2/ respectively. We
then have the two induced representations �n.i/W �1.Sn.i//! � , that also satisfy the
above five conditions, except that

�n.1/.�1.Sn.1///\ �n.2/.�1.Sn.2///D fA
k
g:

We amalgamate them as follows. Cut the surface Sn.i/ along Cn.i/, to get two
topological surfaces xSn.i/, i D 1; 2, each having two boundary components C 1

n .i/

and C 2
n .i/. We glue together the surfaces xSn.1/ and xSn.2/ by gluing C

j
n .1/ to C

j
n .2/,

j D 1; 2, and obtain a closed topological surface Sn (this is well defined up to a twist
by <.l.A// which has a period k ). The surface Sn has the induced generalized pants
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decomposition Cn . The pair of curves C 1
n .1/ and C 1

n .2/ that were glued together
produce a closed curve C 1

n in Sn . Similarly, the pair of curves C 2
n .1/ and C 2

n .2/ that
were glued together produce a closed curve C 2

n in Sn . We set C0;n D fC
1
n ;C

2
n g.

Then there is the induced representation �nW �1.Sn/! � . We orient the curves C 1
n

and C 2
n such that for any choice of ci 2 �1.Sn/, where ci is in the conjugacy class

of C i
n , we have that both �n.c1/ and �n.c2/ are in the conjugacy class of Ak in � .

The representation �n has the reduced Fenchel–Nielsen coordinates satisfying the
relations ˇ̌̌̌

hl.C /�
R

2

ˇ̌̌̌
� �;

js.C /� 1j �
�

R
;

if C does not belong to C0;n , andˇ̌̌̌
s.C /� .1C i

�

2
/

ˇ̌̌̌
�
�

R
;

if C 2 C0;n .

It follows from Theorem 3.2 that for � small enough and R large enough, the group
�n.�1.Sn// is quasifuchsian. In the remainder of this subsection we prove that the
group �n.�1.Sn// is a maximal subgroup of � .

First we prove a preliminary lemma. Let xS be a surface with boundary components CC
and C� , oriented so that xS is on the left of CC and on the right of C� . We say that
f W xS ! M3 is rejoinable if the restrictions of f to CC and C� respectively are
freely homotopic in M3 . We say .f; xS/ is geodesically rejoinable if f jCC and f jC�
map to the same closed geodesic in M3 . In this case we say a rejoining of .f; xS/
is a homeomorphism hW CC! C� such that f ı hD f , and we say .f; xS=h/ is xS
rejoined by h.

Lemma 4.1 If .f; xS/, and .g; xT / are (geodesically) rejoinable surfaces, and � W xS! xT
is a finite cover such that gı� is homotopic to f , then for any rejoining h of .f; xS/ we
can find a rejoining k of .g; xT / such that .f; xS/ rejoined by h covers .g; xT / rejoined
by k .

Proof Left to the reader.

The following theorem is a corollary of Theorem 3.3. We adopt the following definition.
Let f W S ! M3 be a map such that f .S/ is a quasifuchsian surface in M3 , and
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let C0 denote a collection of disjoint simple closed curves on S . We say that f is
bent along each curve of C0 and nearly locally isometric on S n C0 if the induced map
f�W �1.S/! � is of the form ��;1 for some j� j � y� .

Theorem 4.1 Let S be a closed surface. Suppose that f W S !M3 is a �1 –injective
and quasifuchsian, and C0 is a collection of disjoint simple closed curves on S , such
that f is bent along each curve of C0 and nearly locally isometric on S n C0 . Suppose
that f D g ı� , where � W S !Q is a covering, and gW Q!M3 is �1 –injective and
quasifuchsian. Then we can find a collection of simple closed curves yC0 on Q such
that C0 D �

�1. yC0/.

Proof We get a discrete lamination zC0 on H2 , which we push forward by zf D zg to H3 .
We find a homomorphism � W Deck.H2=Q/! � such that zf .
 .x//D �.
 /. zf .x//
for every x 2H2 and 
 2 Deck.H2=Q/.

We let GD�.Deck.H2=Q//, and H D�.Deck.H2=S//<G . Then ŒG WH �<1, and
G and H are quasifuchsian groups, and they have the same limit set, so by Theorem 3.3
every element of G maps zg. zC0/ to itself. Hence Deck.H2=Q/ maps zC0 to itself, so
zC0 is a lift of yC0 on Q, and hence C0 is.

Theorem 4.2 The quasifuchsian group �n.�1.Sn// < � is a maximal surface sub-
group of � , that is, if �n.�1.Sn// < G for a surface subgroup G < � , then G D

�n.�1.Sn//.

Proof For simplicity let Gn D �n.�1.Sn// and G.1/ D �.1/.�1.S.1///. Also set
Gn.1/D �n.�1. xSn.1///, where we consider �1. xSn.1// as a subgroup of �1.Sn/.

Let fnW Sn!M3 denote the continuous map that corresponds to the representation �n .
We claim that fnW Sn!M3 is primitive. If not, we can find a Riemann surface Q and
� W Sn!Q and gW Q!M3 such that g ı� D fn and d > 1 where d is the degree
of the cover � . We recall that fn is bent along C 1

n and C 2
n , and nearly isometric on

the complement. So by Theorem 4.1, fC 1
n ;C

2
n g are the lifts by � of some set CQ of

simple closed curves on Q. So jCQj D 1 or jCQj D 2.

If jCQj D 2, then each component of Sn n
S

C i
n maps by degree d to a component of

Q n CQ . We can then write Q n CQ D
xQ.1/[ xQ.2/ such that � W xSn.i/! xQ.i/ is a

degree d cover, and then by Lemma 4.1 we can rejoin the boundary curves of xQ.1/ to
form Q0.1/ such that Sn.1/ is a cover of Q0.1/. But then we get a subgroup GQ0 of
Gn.1/ ( GQ0 D �1.Q

0.1//), and Gn.1/ <GQ0 \G.1/ <G.1/, where both inclusions
are proper. The first inclusion is proper because Ak=d 2GQ0 \G.1/ nGn.1/, and the
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second is proper because k < n. This contradicts the assumption on the maximality
of Gn.1/.

If jCQj D 1, we let CQD fCQg. First suppose that CQ is nonseparating. Then writing
QnCQD

xQ we find that xSn.1/ and xSn.2/ are both degree d=2 covers of xQ. But then
we can reassemble xQ to make Q0 (by Lemma 4.1) such that Sn.1/ is a degree d=2

cover of Q0 , when d=2� k . Then we arrive at a contradiction by the same reasoning
as before.

Finally, suppose that CQ is separating. Then we can write Q nCQ D
xQ.1/[ xQ.2/

so that the restriction of � to xSn.i/ is a cover of xQ.i/. Then the conjugacy classes
for C 1

n and C 2
n , oriented as curves covered by the axis of A, are both in ŒAk �, but C 1

n

and C 2
n both cover CQ with opposite orientations, so the conjugacy class for CQ must

be both ŒAl � and ŒA�l �, where l D 2k=d . But then B�1AlB DA�l for some B 2 � ,
which means that B preserves the axis of A and reverses its orientation; such B would
have a fixed point in H3 , which is a contradiction.

4.2 The lower bound

We now proceed to prove the lower bound

(7) .c1g/2g
� s1.M3;g/;

for g large enough, from Theorem 1.1.

By the above theorem the representation �nW �1.Sn/! � , is maximal. It remains to
count the number of such representations. Let gn denote the genus of the surface Sn .
If g0 denotes the genus of the surfaces S.1/ and S.2/, we have

gn D n.2g0� 1/:

Given a closed surface S0 , Let mn.S0/ denote the number of maximal degree n covers
of S0 . Let C0 denote a simple closed and nonseparating curve in S0 . For 1� k � n,
by mn.S0;C0; k/ we denote the number of maximal n degree covers of S0 such that
the curve C0 has at least one lift of degree k . Clearly the number mn.S0;C0; k/ does
not depend on the choice of the simple closed and nonseparating curve C0 , so we
sometimes write mn.S0; k/Dmn.S0;C0; k/.

Theorem 4.3 Let g0 denote the genus of S0 . Then for n large we have

mn.S0/D .n!/g0�2.1C o.1//;

where o.1/! 0 when n!1. Moreover, for some 1 � k � .n� 1/, k D k.n;g0/,
we have

mn.S0; k/ > ..n� 1/!/g0�2.1C o.1//:
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Proof The first equality directly follows from Corollary 3 and the formula in Sec-
tion 4.4 in [6], which shows that a random finite cover of a closed surface is maximal.
It remains to prove the second inequality.

Since
nX

kD1

mn.S0; k/�mn.S0/;

it follows that for some 1� k � n, the second inequality in the statement of the theorem
holds. The following lemma implies that this inequality holds for some 1� k � .n�1/.

Lemma 4.2 The inequality mn.S0; 1/�mn.S0; n/, holds for every n.

Proof Let C0 and D0 be two simple closed and nonseparating curves on S0 , that
intersect exactly once. Let Sn be a degree n cover of S0 , such that the curve C0 has
a degree n lift which we denote by Cn . Then Cn is the only lift of C0 . We show
that in this case, every lift of the curve D0 is a degree one lift. Let zS0 D S0 nC0 and
zSn D Sn nCn , denote the two surfaces each having exactly two boundary components.
Then zSn covers zS0 , because Cn is the only lift of C0 to Sn . After removing the
curve C0 from S0 , the closed curve D0 becomes an interval I0�

zS0 , whose endpoints
lie on different boundary components of zS0 . Therefore, every lift of I0 to zSn is a
degree one lift. This proves the statement.

Restricting to when Sn is a maximal cover yields the inequality mn.S0;C0; n/ �

mn.S0;D0; 1/. Since mn.S0;C0; k/ D mn.S0;D0; k/ D mn.S0; k/, it follows that
mn.S0; 1/�mn.S0; n/, and we have proved the lemma.

This proves the theorem.

Now fix a large n and choose 1�k� .n�1/ so that the second inequality in Theorem 4.3
holds. We then amalgamate any two maximal covers Sn.1/ and Sn.2/ along the
curves Cn.1/ and Cn.2/ that are both k degree lifts of the curves C.1/ and C.2/

respectively (there may be more than one such k degree lift, but we choose arbitrarily).
Then the corresponding group �n.�1.Sn// < � is maximal surface subgroup of � .
Combining the above formula for gn with the Theorem 4.3, we derive the estimate (7)
for some c1 > 0.
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