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Knot commensurability and the Berge conjecture
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We investigate commensurability classes of hyperbolic knot complements in the
generic case of knots without hidden symmetries. We show that such knot com-
plements which are commensurable are cyclically commensurable, and that there
are at most 3 hyperbolic knot complements in a cyclic commensurability class.
Moreover if two hyperbolic knots have cyclically commensurable complements, then
they are fibred with the same genus and are chiral. A characterization of cyclic
commensurability classes of complements of periodic knots is also given. In the
nonperiodic case, we reduce the characterization of cyclic commensurability classes
to a generalization of the Berge conjecture.

57M10, 57M25

1 Introduction

We work in the oriented category throughout this paper. In particular we endow the
complement of any knot K � S3 with the orientation inherited from the standard
orientation on S3 . We consider two knots to be equivalent if there is an orientation-
preserving homeomorphism of S3 taking one to the other. Covering maps will be
assumed to preserve orientation unless stated otherwise.

Two oriented orbifolds are commensurable if they have homeomorphic finite sheeted
covers. We are interested in studying commensurability classes of knot complements
in S3 . By abuse of language we will say that two knots in the 3–sphere are commen-
surable if their complements are commensurable. Set

C.K/D fknots K0 � S3
WK0 is commensurable with Kg:

A difficult and widely open problem is to describe commensurability classes of knots.

One of our main concerns is to provide a priori bounds on the number of hyperbolic
knots in a given commensurability class. Unless otherwise stated, knots are considered
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to be in S3 . Hence in this paper K � S3 will be a hyperbolic knot. Its complement
S3 nK D H3=�K is a complete, oriented, hyperbolic 3–manifold of finite volume,
where �1.S

3 n K/ Š �K � PSL.2;C/ D IsomC.H3/ is a lattice. Any knot K0

commensurable with K is also hyperbolic and the commensurability condition is
equivalent to the fact that �K and some conjugate of �K 0 in IsomC.H3/ have a
common finite index subgroup.

Recall that the commensurator of a group � in PSL.2;C/ is

CC.�/D fg 2 PSL.2;C/ W Œ� W � \g�1�g� <1 and Œg�1�g W � \g�1�g� <1g:

Then K and K0 are commensurable if and only if CC.�K / and CC.�K 0/ are conjugate
in PSL.2;C/. An element g 2 CC.�K / induces an orientation-preserving isometry
between two finite sheeted coverings of S3 nK . It is called a hidden symmetry of K

if it is not the lift of an isometry of S3 nK .

The group of isotopy classes of orientation-preserving symmetries of .S3;K/ is iso-
morphic, in the obvious way, to IsomC.S3 nK/, the group of orientation-preserving
isometries of S3 nK . It is also isomorphic to the quotient group NC.K/=�K , where
NC.K/ is the normalizer of �K in PSL.2;C/. We will use either description as
convenient. Then K has hidden symmetries if and only if NC.K/ is strictly smaller
than CC.�K /. Hyperbolic knots with hidden symmetries appear to be rare, as Neumann
and Reid [29] showed that if K has hidden symmetries then the cusp shape of H3=�K

is contained in QŒi � or QŒ
p
�3�.

Currently, the only knots known to admit hidden symmetries are the figure–8 and the
two dodecahedral knots of Aitchison and Rubinstein described in [1] (cf Conjecture 1.3
below). These three knots have cusp field QŒ

p
�3�. There is one known example of

a knot with cusp field QŒi �, and it does not admit hidden symmetries. See Boyd’s
notes [7, page 17] and Goodman, Heard and Hodgson [17].

It is a fundamental result of Margulis that a finite covolume, discrete subgroup � of
PSL.2;C/ is nonarithmetic if and only if there is a unique minimal orbifold in the
commensurability class of H3=� , namely H3=CC.�/. Reid [39] has shown that the
figure–8 is the only arithmetic knot (ie knot with arithmetic complement) in S3 , hence
it is the unique knot in its commensurability class. So in what follows we only consider
nonarithmetic knots. In particular, CC.�K / is a lattice in PSL.2;C/ and the unique
minimal element in the commensurability class of S3 nK DH3=�K is the oriented
orbifold H3=CC.�K /, which we denote by Omin.K/.

When K has no hidden symmetries,

Omin.K/DH3=NC.K/D .S3
nK/= IsomC.S3

nK/:
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The positive solution of the Smith conjecture implies that IsomC.S3 nK/ is cyclic
or dihedral and the subgroup of IsomC.S3 nK/ which acts freely on K is cyclic of
index at most 2. We denote this subgroup by Z.K/. Clearly the oriented orbifold

ZK D .S
3
nK/=Z.K/

has a torus cusp and either coincides with the minimal element in the commensurability
class of S3 nK or is a 2–fold cover of it. Hence in this case the cusp of Omin.K/ is
flexible: its horospherical cross-section is either T 2 or S2.2; 2; 2; 2/. Neumann and
Reid [29] proved that a nonarithmetic knot K has no hidden symmetries if and only if
Omin.K/ has a flexible cusp and further, that this condition is equivalent to the fact that
S3 nK normally covers Omin.K/. If a commensurability class has a unique minimal
element with a single cusp and the cusp is flexible, we call the commensurability
class itself flexible. When K does admit hidden symmetries, the horospherical cross-
section of Omin.K/ is a Euclidean turnover, which is rigid. If a commensurability
class has a unique minimal element with a single cusp which is rigid, we say that the
commensurability class itself is rigid.

Reid and Walsh [40] proved that a hyperbolic 2–bridge knot is unique in its commen-
surability class and raised the following conjecture:

Conjecture 1.1 (Reid–Walsh [40]) For a hyperbolic knot K � S3 , jC.K/j � 3.

The commensurability class of the .�2; 3; 7/ pretzel knot is flexible (see Macasieb
and Mattman [26]) and contains exactly three knots. Hoffman [21] has constructed an
infinite family of hyperbolic knots with this property.

Our first result proves the conjecture in the generic case:

Theorem 1.2 A flexible commensurability class contains at most three hyperbolic
knot complements.

A precise formulation of the expected genericity of the flexible case is contained in the
following conjecture of Neumann and Reid:

Conjecture 1.3 (Neumann–Reid) The only rigid commensurability class containing
hyperbolic knot complements is the commensurability class of the dodecahedral knots,
and there are only two knot complements in this class.

See also Neumann [28, Theorem 2].

We say that two hyperbolic orbifolds are cyclically commensurable if they have a
common finite cyclic cover. We denote by CC.K/ the set of hyperbolic knots cyclically
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commensurable with K . A priori, cyclic commensurability is much more restrictive
than commensurability. However for hyperbolic knots without hidden symmetries, the
commensurability class and the cyclic commensurability class coincide. Theorem 1.2
follows immediately from the following results:

Theorem 1.4 (1) Knots without hidden symmetries which are commensurable are
cyclically commensurable.

(2) A cyclic commensurability class contains at most three hyperbolic knot comple-
ments.

In this article we analyze the case of hyperbolic knots which are commensurable
to other hyperbolic knots and which do not admit hidden symmetries. However,
many of our results hold for any hyperbolic knots with hidden symmetries which are
cyclically commensurable to other knots. This conjecturally does not happen (see
Conjecture 4.14).

Geometrization combines with the work of González-Acuña and Whitten [16] to
determine close connections between the family of knots which are cyclically commen-
surable to other knots and the family of knots which admit lens space surgeries: if the
complement of a knot K is covered by another knot complement, then the covering is
cyclic and this occurs if and only if K admits a nontrivial lens space surgery. In this
situation, a fundamental result of Ni [30] implies that K is fibred. Here we show that
distinct knots without hidden symmetries which are commensurable are obtained from
primitive knots in orbi-lens spaces (Section 3) which admit nontrivial orbi-lens space
surgeries. Further, we prove an analogue of Ni’s result in the orbifold setting:

Theorem 1.5 Let K be a knot in an orbi-lens space L which is primitive in L. If K

admits a nontrivial orbi-lens space surgery, then the exterior of K admits a fibring by
2–orbifolds with base the circle.

Our next result is an interesting by-product of the method of proof of Theorem 1.5. For
the definition of a 1–bridge braid in a solid torus, refer to Section 5.

Proposition 1.6 Let M be the exterior of a hyperbolic 1–bridge braid in a solid
torus V . Then each top-dimensional face of the Thurston norm ball in H2.M; @M IR/
is a fibred face.
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Theorem 1.7 Let K be a hyperbolic knot. If jCC.K/j � 2 then:

(1) K is a fibred knot.

(2) the genus of K is the same as that of any K0 2 CC.K/.
(3) the volume of K is different from that of any K0 2 CC.K/nK . In particular, the

only mutant of K contained in CC.K/ is K .

(4) K is chiral and not commensurable with its mirror image.

In particular this result holds for a hyperbolic knot K without hidden symmetries and
any K0 2 C.K/ nK .

We pause to note the marked difference between the case of flexible and rigid com-
mensurability classes containing knot complements. Recall that the commensurability
class of the two dodecahedral knots [1] is the only known rigid commensurability class
containing knot complements. These knots do not satisfy any of the conditions above:
one dodecahedral knot is fibred, the other isn’t; the knots have different genus; they
have the same volume; the knots are both amphichiral [2, 12.1]. In addition, they are
not cyclically commensurable, in contrast with Theorem 1.4.

A knot K is periodic if it admits a nonfree symmetry with an axis disjoint from K .
As a consequence of the works of Berge [4] and Gabai [13] we obtain the following
characterisation of cyclic commensurability classes of periodic knots. Refer to Section 5
for the definitions of Berge–Gabai knots and unwrapped Berge–Gabai knots.

Theorem 1.8 Let K be a periodic hyperbolic knot. If jCC.K/j � 2 then:

(1) K has a unique axis of symmetry disjoint from K .

(2) K is obtained by unwrapping a Berge–Gabai knot xK in an orbi-lens space. In
particular K is strongly invertible.

(3) each K0 2 CC.K/ is determined by unwrapping the Berge–Gabai knot repre-
sented by the core of the surgery solid torus in an orbi-lens space obtained by
Dehn surgery along xK .

In particular this result holds for a periodic hyperbolic knot K without hidden symme-
tries and any K0 2 C.K/.

The proof of Theorem 1.8 reduces the characterisation of hyperbolic knots K�S3 such
that jCC.K/j � 2 to the case where Z.K/ acts freely on S3 and to the construction
of all primitive knots in a lens space with a nontrivial lens space surgery. It is a result
of Bonahon and Otal [6] that for each g � 1, a lens space admits a unique genus g

Heegaard splitting, which is a stabilization of the genus 1 splitting.
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Problem 1.9 Characterize primitive knots xK in a lens space L which admit a non-
trivial lens space surgery. In particular, is every such knot a doubly primitive knot on
the genus 2 Heegaard surface of L?

Suppose xK is in S3 . Then this problem is the setting of the Berge conjecture, which
contends that a knot in S3 which admits a nontrivial lens space surgery is doubly
primitive. Doubly primitive knots are knots which lie on the genus 2 Heegaard surface
in such a way that the knot represents a generator of the fundamental group of each
handlebody.

A fundamental result of Schwartz [42] implies that the fundamental groups of two
hyperbolic knots K;K0 are quasi-isometric if and only if K0 is commensurable with K

or with its mirror image. Proposition 5.8 below shows that a knot without hidden
symmetries cannot be commensurable to its mirror image. Therefore, as a consequence
of Theorems 1.4, 1.7 and 1.8 we obtain the following results on quasi-isometry classes
of knot groups:

Corollary 1.10 Let K be a hyperbolic knot without hidden symmetries. Then there
are at most three knots K0 with group �1.S

3 nK0/ quasi-isometric to �1.S
3 nK/.

Moreover �1.S
3 n K/ is the unique knot group in its quasi-isometry class in the

following cases:

(i) K is not fibred.

(ii) K is amphichiral.

(iii) K is periodic and is not an unwrapped Berge–Gabai knot; for instance, K is
periodic but not strongly invertible.

(iv) K is periodic with two distinct axes of symmetry.

The paper is organized as follows. Theorem 1.4 is proved in Section 4. Theorem 1.8
and (3) of Theorem 1.7 are contained in Section 5. Theorem 1.5, parts (1) and (2) of
Theorem 1.7 and Proposition 1.6 are proven in Section 6. Part (4) of Theorem 1.7 is
proven in Section 7. Sections 2 and 3 are devoted to conventions and background on
certain spherical orbifolds.

Acknowledgements We thank Jake Rasmussen for explaining the proof that a knot
in a lens space which admits a nontrivial lens space surgery has fibred complement.
We also benefited from helpful conversations with Walter Neumann and Alan Reid.
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2 Slopes, Dehn filling and cusp types

A slope on a torus T is an isotopy class of essential simple closed curves. The
set of slopes on T corresponds bijectively, in the obvious way, with ˙–classes of
primitive elements of H1.T /. Thus to each slope r we associate the primitive classes
˙˛.r/ 2H1.T / represented by a simple closed curve in the class of r . The distance
between two slopes r; r 0 on T is given by �.r; r 0/D j˛.r/ �˛.r 0/j.

Given a slope r on a torus boundary component T of a 3–manifold M , the r –Dehn
filling of M with slope r is the 3–manifold M.T I r/ WD .S1 �D2/[f M where f
is any homeomorphism @.S1 �D2/! T such that f .f�g� @D2/ represents r . It is
well-known that M.T I r/ is independent of the choice of f . When there is no risk of
ambiguity, we shall usually denote M.T I r/ by M.r/.

Recall that topologically, a cusp of a complete, finite volume, orientable, hyperbolic
3–orbifold is of the form B�R where B is a closed, connected, orientable, Euclidean
2–orbifold. In this case, we say that the cusp is a B cusp.

A slope r in a torus cusp of a complete, noncompact, finite volume hyperbolic 3–
orbifold O is a cusp isotopy class of essential simple closed curves which lie on some
torus section of the cusp. Inclusion induces a bijection between the slopes on a torus
cross-section of the cusp with those in the cusp, and we identify these sets below.

When M is a compact 3–manifold with torus boundary, the kernel of i� WH1.@M /!

H1.M / has rank one [20, Lemma 3.5]. Thus there is a � 2H1.@M / such that ˙�
are the only primitive classes in H1.@M /Š �1.@M / which are trivial in H1.M IQ/.
We call the class � 2H1.@M / the rational longitude.

Lemma 2.1 Let O be a complete, finite volume, orientable, hyperbolic 3–orbifold
which has one end, a torus cusp, and let r be a slope in this cusp. Then for any
orientation-preserving homeomorphism f W O!O , the slope f .r/ equals r .

Proof Our assumptions imply that jOj is the interior of a compact, connected, ori-
entable 3–manifold M with torus boundary to which we can extend f . To prove the
lemma it suffices to show that f acts as multiplication by ˙1 on H1.@M /. First note
that f�.�M / D ��M where � 2 f˙1g and �M 2 H1.@M / is the rational longitude
of M .

Let �W �1.O/! PSL.2;C/ be a discrete faithful representation. By Mostow–Prasad
rigidity, there is an element A 2 PSL.2;C/ such that � ıf# DA�A�1 . In particular,

�.�M /� D �.f#.�M //DA�.�M /A�1:
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Without loss of generality we can assume that �.�M / is upper triangular and parabolic.
Then it is easy to verify that A is upper triangular and parabolic when � D 1 or upper
triangular with diagonal entries ˙i when � D�1. A simple calculation then shows
that when � D 1, �.f#. //D �. / for each  2 �1.@M /, which implies that f� is
the identity. Similarly when � D�1 it’s easy to see that f� D�I .

Given two slopes r; r 0 in the cusp, the reader will verify that the distance between two
of their representatives contained in some torus cross-section of the cusp is independent
of the cross-section, and we define the distance between r and r 0 , denoted �.r; r 0/, to
be this number.

Let r be a slope in a torus cusp of O and yO an orbifold obtained by truncating O
along the cusp. The Dehn filling of O of slope r , denoted O.r/, is the r –Dehn filling
of yO .

3 Orbi-lens spaces

We denote the singular set of an orbifold O by †.O/ throughout the paper.

An orbi-lens space is the quotient orbifold of S3 by a finite cyclic subgroup of SO.4/,
the group of orientation preserving isometries of S3 . We begin by examining their
structure.

The first homology group of an orbifold is the abelianisation of its fundamental group.

A knot in an orbi-lens space L is primitive if it carries a generator of H1.L/.

Lemma 3.1 Let Z be a finite cyclic subgroup of SO.4/ of order n and fix a genera-
tor  of Z . There are a genus one Heegaard splitting S3 D V1[V2 , cores C1;C2 of
V1;V2 , and integers a1; a2 � 1 such that

(1) both V1 and V2 are Z–invariant.
(2)  acts by rotation of order a1 on C1 and order a2 on C2 . Moreover, the

Z–isotropy subgroup of a point in
� S3 n .C1[C2/ is trivial.
� C1 is generated by  a1 and has order xa2 D n=a1 ,
� C2 is generated by  a2 and has order xa1 D n=a2 .

Therefore n D lcm.a1; a2/; xa1 D a1=gcd.a1; a2/; xa2 D a2=gcd.a1; a2/, so
gcd.xa1; xa2/D 1.

(3) jS3=Zj is the lens space with fundamental group Z= gcd.a1; a2/ and genus
one Heegaard splitting .V1=Z/[ .V2=Z/. The ramification index of a point
y 2 jS3=Zj is xa2 if y 2 C1=Z , xa1 if y 2 C2=Z , and 1 otherwise. Hence
†.S3=Z/� .C1=Z/[ .C2=Z/.
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Proof We can find two mutually orthogonal 2–dimensional subspaces of R4 on
which  acts by rotation. Thus if we think of these subspaces as the two coordinate
planes of C2 ,  has the form

 .z; w/D .e2�i˛1=a1z; e2�i˛2=a2w/;

where gcd.˛1; a1/D gcd.˛2; a2/D 1 and nD lcm.a1; a2/. The subgroup of Z which

� fixes .z; w/ with zw ¤ 0 is the trivial subgroup.

� fixes the z–plane is generated by  a1 and has order xa2Dn=a1Da2=gcd.a1; a2/.

� fixes the w–plane is generated by  a2 and has order xa1Dn=a2Da1=gcd.a1; a2/.

The genus one Heegaard splitting of S3 given by the two solid tori V1 D f.z; w/ W

jzj2 C jwj2 D 1; jwj � 1=
p

2g and V2 D f.z; w/ W jzj
2 C jwj2 D 1; jzj � 1=

p
2g is

invariant under Z and determines a genus one Heegaard splitting of jS3=Z.K/j.
Further, the isotropy subgroup of a point .z; w/ 2 S3 is trivial if jzwj ¤ 0, Z=xa2

if w D 0, and Z=xa1 if z D 0. The conclusions of the lemma follow from these
observations.

Corollary 3.2 A 3–orbifold L is an orbi-lens space if and only if jLj is a lens space
which admits a genus one Heegaard splitting jLj D V1[V2 such that †.L/ is a closed
submanifold of the union of the cores C1;C2 of V1;V2 , and there are coprime positive
integers b1; b2 � 1 such that a point of Cj has isotropy group Z=bj . In the latter case,
�1.L/Š Z=.b1b2j�1.jLj/j/.

Proof Lemma 3.1 shows that an orbi-lens space has the form claimed in the corollary.
Conversely, suppose that L is a 3–orbifold for which jLj ŠL.p; q/ admits a genus
one Heegaard splitting jLj D V1[V2 such that †.L/ is a closed submanifold of the
union of the cores C1;C2 of V1;V2 , and there are coprime positive integers b1; b2 � 1

such that a point of Cj has isotropy group Z=bj . It is straightforward to verify that
there is a b1b2p–fold cyclic cover S3! L whose deck transformations lie in SO.4/.
Thus L is an orbi-lens space.

We will use L.p; qI b1; b2/ to denote the orbifold described in the corollary. As we
are mainly concerned with the case b1 D 1 and b2 D a, we use L.p; qI a/ to denote
L.p; qI 1; a/. When aD 1, L.p; qI a/ is just L.p; q/.
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4 Proof of Theorem 1.4

Proposition 4.1 Two hyperbolic knot complements have a common finite-index cyclic
cover if and only if they have a common finite-index cyclic quotient. Moreover, two
cyclically commensurable hyperbolic knot complements have the same normalizers
in PSL.2;C/.

Proof The fact that a common finite-index cyclic quotient implies a common finite-
index cyclic cover is immediate from the isomorphism theorems. Consider the converse
then.

Suppose that S3 nK1 ŠH3=�1 and S3 nK2 ŠH3=�2 have a common finite-index
cyclic cover M ŠH3=�M . We may assume, after conjugating, that �M � �1\�2 .
Since knot complements have unique cyclic covers of a given order, each isometry of
S3 nKj is covered by an isometry of M for j D 1; 2. Recall that the cyclic subgroup
Z.K/� IsomC.S3nK/ acts freely on K and that the orbifold ZK D .S

3nK/=Z.K/

has a torus cusp. Let BZ.K1/ be the subgroup of IsomC.M / covering Z.K1/ and
define BZ.K2/ similarly. By construction, BZ.K1/ and BZ.K2/ act freely in the cusp
of M and since this cusp is unique, the lift of each element of the subgroup BZ.Kj /

to H3 is parabolic (j D 1; 2). Thus BZ.K1/ and BZ.K2/ act by Euclidean translations
in each horotorus of the cusp of M . It follows that BZ.K1/ and BZ.K2/ generate an
abelian subgroup A of IsomC.M / which acts by Euclidean translations in the horotori.
The covering group of M ! S3 nKi descends to Z.Kj / since the two groups of
covering transformations commute. Thus there are regular covers S3nKj!ODM=A

for j D 1; 2 where O has a torus cusp. These covers are cyclic by [16; 39, Lemma 4]
and so S3nK1 and S3nK2 have a common cyclic quotient, M=ADZK1

DZK2
. Note,

moreover, that there is a cover S3nK1! .S3nK2/= IsomC.S3nK2/DH3=NC.�2/

which is regular by [16; 39, Lemma 4]. Thus NC.�2/ � NC.�1/. Similarly
NC.�1/�NC.�2/, so these normalizers are equal. This completes the proof.

An immediate corollary is a strengthened version of [9, Theorem 2.2] for hyperbolic
knots in S3 .

Corollary 4.2 Two hyperbolic knot complements are cyclically commensurable if and
only if they have a common regular finite cover with a single cusp.

Proof The forward implication is obvious, as a finite cyclic cover of a knot complement
has one cusp. Let K1 and K2 be two hyperbolic knots in S3 . Let N be the common
covering of their complements, with a single cusp C . Let G1 and G2 be the two
associated covering groups. Then the subgroup G � IsomC.N / generated by G1
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and G2 is finite and acts identically on H1.C;Z/, since G1 and G2 do. So the
quotient orbifold O D N=G has a single torus cusp. By [16; 39, Lemma 4] the
coverings S3 nK1!O and S3 nK2!O are cyclic. Hence Proposition 4.1 shows
that S3 nK1 and S3 nK2 are cyclically commensurable.

The following result is a consequence of the fact that a knot complement has a unique
2–fold covering.

Lemma 4.3 Let K be a hyperbolic knot. If K is strongly invertible, ZK is the
unique 2–fold covering of O.K/DH3=NC.K/ with a torus cusp, up to an orientation-
preserving homeomorphism.

Proof Set n D jZ.K/j and let Dn denote the dihedral group of order 2n. By
hypothesis, IsomC.S3 nK/ŠDn . We have the exact sequence

1! �1.S
3
nK/! �1.O.K//

'
!Dn! 1:

Let O0 be a two-fold cover of O.K/ with a torus cusp. Then �1.O0/ is an index 2
subgroup of �1.O.K// whose image by ' is a subgroup G of Dn of index 1

or 2. It is evident that ker.'j�1.O0// D �1.S
3 nK/ \ �1.O0/ and Œ�1.S

3 nK/ W

ker.'j�1.O0//�ŒDn WG�D 2.

If GDDn , then Œ�1.S
3nK/ W ker.'j�1.O0//�D 2, so ker.'j�1.O0//D�1.M / where

M is the unique 2–fold cyclic cover of S3 nK . There is a regular cover M !O0 of
group G DDn . Thus a strong inversion � 2 IsomC.S3 nK/ lifts to an involution z�
of M . Since M has one end, which is a torus cusp, it is easy to see that z� acts on
its first homology by multiplication by �1. But then O0 has an S2.2; 2; 2; 2/ cusp,
contrary to our hypotheses.

Thus ŒDn W G� D 2, so jGj D jZ.K/j and ker.'j�1.O0// D �1.S
3 nK/. Therefore

S3 nK covers O0 regularly with group G � Dn D IsomC.S3 nK/. Since O0 has
a torus cusp, G acts freely on K , and so as jGj D jZ.K/j, G D Z.K/. Thus
O0 D .S3 nK/=Z.K/D ZK , which is what we needed to prove.

Remark 4.4 The method of proof of the previous lemma yields the following stronger
result: Let K be a hyperbolic knot and S3 nK!O a cover where O is an orientable
3–orbifold with an S2.2; 2; 2; 2/ cusp. Then there is a unique 2–fold cover O0!O
such that O0 has a torus cusp.

The following proposition and Proposition 4.1 immediately imply assertion (1) of
Theorem 1.4.
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Proposition 4.5 Two hyperbolic knots K and K0 without hidden symmetries are
commensurable if and only if there is an orientation-preserving homeomorphism
between ZK and ZK 0 . In particular K and K0 are commensurable if and only if
they are cyclically commensurable.

Proof If there is an orientation-preserving homeomorphism between ZK and ZK 0

then clearly K and K0 are commensurable, and in fact cyclically commensurable by
Proposition 4.1. We prove the converse by distinguishing two cases:

(a) K is not strongly invertible. Then IsomC.S3 nK/DZ.K/ and since K has no
hidden symmetries, Omin.K/D .S

3 nK/=Z.K/D ZK . In particular Omin.K/ has a
torus cusp. Hence if K0 is commensurable with K , K0 is not strongly invertible. It
follows that ZK 0 is orientation-preserving homeomorphic to Omin.K/D ZK .

(b) K is strongly invertible. In this case Omin.K/ D .S3 nK/= IsomC.S3 nK/

has a flexible cusp with horospherical section S2.2; 2; 2; 2/. Hence any knot K0

commensurable with K is strongly invertible. The result follows from Lemma 4.3 as
ZK and ZK 0 are 2–fold coverings of Omin.K/ with torus cusps.

Now suppose that K and K0 are commensurable knots without hidden symmetries.
The proof shows that S3 nK and S3 nK0 each cyclically cover ZK . Thus K and K0

are cyclically commensurable by Proposition 4.1.

The following theorem is a main step in our study. It immediately implies Theorem 1.4.
Recall that the meridional slope of S3 nK projects to a slope r.K/ in the torus cusp
of ZK D .S

3 nK/=Z.K/.

Theorem 4.6 Suppose that K is a hyperbolic knot and let K0 be a knot cyclically
commensurable with K .

(1) There is an orientation-preserving homeomorphism between ZK and ZK 0 .

(2) If r.K/ and r.K0/ coincide under some orientation-preserving homeomorphism
between ZK and ZK 0 , then K and K0 are equivalent knots.

(3) If fK 0 W ZK 0!ZK is a homeomorphism and rK 0 is the slope in the cusp of ZK

determined by fK 0.r.K
0//, then �.r.K/; rK 0/� 1.

Proof of Theorem 1.4 By Assertion (1) of Theorem 4.6 we can fix an orientation-
preserving homeomorphism fK 0 W ZK 0 ! ZK for each K0 2 CC.K/. Let rK 0 be the
slope in the cusp of ZK determined by fK 0.r.K

0//. Assertion (3) implies that there
are at most three slopes in the set frK 0 W K

0 2 CC.K/g, while assertion (2) implies
that the function which associates the slope rK 0 to K0 2 C.K/ is injective. Thus
Theorem 1.4 holds.
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Assertion (1) of Theorem 4.6 is the content of the following proposition:

Proposition 4.7 Two hyperbolic knots K and K0 are cyclically commensurable if
and only if there is an orientation-preserving homeomorphism between ZK and ZK 0 .

Proof By Proposition 4.1 if the hyperbolic knots K and K0 are cyclically commen-
surable then there is an orientation-preserving homeomorphism between the orbifolds
O.K/DH3=NC.K/ and O.K0/DH3=NC.K0/. Then the proof is the same as the
proof of Proposition 4.5 by considering O.K/ instead of Omin.K/.

Assertion (2) of Theorem 4.6 is given by the following lemma:

Lemma 4.8 Let K and K0 be two hyperbolic cyclically commensurable knots. If
r.K/ and r.K0/ coincide under some orientation-preserving homeomorphism between
ZK and ZK 0 , then K and K0 are equivalent knots.

Proof Suppose r.K/ and r.K0/ coincide under some homeomorphism ZK ! ZK 0 .
Then we have an induced homeomorphism f W .ZK .r.K//;ZK /!.ZK 0.r.K

0//;ZK 0/.
By construction, ZK .r.K//Š S3=Z.K/ so

� W S3
! S3=Z.K/D ZK .r.K//

is a universal cover. In the same way

� 0W S3
! S3=Z.K0/D ZK 0.r.K

0//

is a universal cover. Since universal covers are unique up to covering equivalence, there
is a homeomorphism (preserving orientation) zf W S3! S3 such that � 0 ı zf D f ı� .
In particular,

zf .S3
nK/D zf .��1.ZK //D �

0�1.f .ZK ///D �
0�1.ZK 0/D S3

nK0:

Thus the complement of K is orientation-preserving homeomorphic to the complement
of K0 , so K is equivalent to K0 [19].

With the notation of Lemma 4.8, Assertion (3) of Theorem 4.6 is the content of the
following lemma:

Lemma 4.9 Let K and K0 be two cyclically commensurable knots and f W ZK 0!ZK

a homeomorphism1. Then �.r.K/; rK 0/� 1 where rK 0 is the slope in the cusp of ZK

corresponding to f .r.K0//.

1We do not assume that f preserves orientation.
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Proof Set
Z0

K D ZK nN.†.ZK //

where N.†.ZK // denotes a small, open tubular neighborhood of †.ZK /. Then Z0
K

has no singularities. Since †.ZK / is a geodesic link in the hyperbolic orbifold ZK ,
Z0

K
admits a complete, finite volume, hyperbolic structure [41; 24].

By the geometrization of finite group actions [5; 27], we can suppose that Z.K/

and Z.K0/ act orthogonally on S3 . It follows that both Dehn fillings of the torus
cusp of ZK along the slopes r.K/ and rK 0 give orbi-lens spaces LK DZK .r.K//D

S3=Z.K/ and L0 D ZK .rK 0/Š ZK 0.r.K
0//D S3=Z.K0/. By Corollary 3.2, jLK j

and jL0j are lens spaces, possibly S3 . Moreover the singular set †.LK /, resp. †.L0/,
is either empty or a sublink of the union of the cores of the two solid tori in a genus 1
Heegaard splitting of jLK j, resp. jL0j. Since Z0

K
.r.K// D LK n N.†.ZK // D

LK nN.†.LK //, we have

Z0
K .r.K//Š

8<:
jLK j if j†.ZK /j D 0;

S1 �D2 if j†.ZK /j D 1;

S1 �S1 � Œ0; 1� if j†.ZK /j D 2:

In the same way,

Z0
K .rK 0/Š

8<:
jL0j if j†.ZK /j D 0;

S1 �D2 if j†.ZK /j D 1;

S1 �S1 � Œ0; 1� if j†.ZK /j D 2:

One can choose slopes on the components @N.†.Z// � @Z0
K

such that M , the
manifold obtained by Dehn filling Z0

K
along these slopes, is hyperbolic. It follows

from above that M.r.K// and M.r 0/ have cyclic fundamental groups, so the cyclic
surgery theorem [10] implies that �.r.K/; rK 0/� 1.

This completes the proof of Theorem 4.6, and therefore of Theorem 1.4.

We have the following consequence of the proof. A good orbifold is an orbifold which
is covered by a manifold.

Scholium 4.10 Let M be a hyperbolic orbifold with a single torus cusp. If M.r1/ and
M.r2/ yield good orbifolds with cyclic orbifold fundamental group, then �.r1; r2/� 1.
In particular, there are at most 3 such slopes.

Proof Suppose that the group �orb
1
.M.r1// is finite cyclic. Then the universal cover

is S3 and M is the complement of a knot in an orbi-lens space, and the result follows
from the proof of Lemma 4.9.
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Suppose �orb
1
.M.r1// is infinite cyclic. Since its universal cover is a manifold and its

fundamental group has no torsion, M.r1/ is a manifold and hence M is a hyperbolic
manifold. The result follows from the Cyclic Surgery Theorem [10].

The analysis of the action on the knot complement by a cyclic group of symmetries
as in Lemma 4.9 above along with an observation of M Kapovich yield the follow-
ing characterisation of the minimal element in the commensurability class of a knot
complement.

Corollary 4.11 If Omin.K/ is the minimal element of a nonarithmetic commensu-
rability class which contains a knot complement S3 nK then the underlying space
of Omin.K/ is either an open ball or the complement of a knot in a lens space.

Proof Let Omin.K/ be the minimal element of the commensurability class and
yOmin.K/ the associated orbifold with boundary obtained by truncating along the

cusp. Since the boundary of S3 nN.K/ is a torus, @ yOmin.K/ is a closed orientable
Euclidean 2–orbifold, which implies that it either a torus or has underlying space S2 .
When @ yOmin.K/ is a torus, the covering is a regular cyclic covering by [16; 39,
Lemma 4]. Therefore, our analysis in Lemma 4.9 implies that the underlying space
of yOmin.K/ is a lens space with a regular neighborhood of a knot removed, and that
jOmin.K/j is the complement of a knot in a lens space. The case when j@ yOmin.K/j

is S2 is an observation of M Kapovich. There is a map which is the composition
S3nN.K/! yOmin.K/!j yOmin.K/j. The image of �1.S

3nN.K// under the induced
homomorphism is trivial, as �1.S

3 nN.K// is normally generated by a meridian.
Therefore if j yOmin.K/j has any nontrivial cover (such as the universal cover) the above
map S3 n N.K/ ! j yOmin.K/j lifts to this cover, which is a contradiction as any
nontrivial cover of a manifold with boundary S2 has multiple boundary components.
Therefore j yOmin.K/j has trivial fundamental group and by work of Perelman (see
Morgan and Tian [27]) it is a ball. So Omin.K/ has underlying space an open ball.

By [3, Main Theorem] (see also [28]), � 2 IsomC.H3/ is generated by rotations
exactly when the underlying space of H3=� is simply connected. Therefore we have
the following corollary of Corollary 4.11.

Corollary 4.12 A noninvertible hyperbolic knot K has a hidden symmetry if and
only if its group �1.S

3 nK/ is commensurable with a Kleinian group generated by
rotations.

The following proposition is a consequence of the proof of Theorem 4.6. It states that
a hyperbolic knot K is not unique in its cyclic commensurability class if and only if
xK � LK admits a nontrivial orbi-lens space surgery. More precisely:
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Proposition 4.13 A commensurability class contains cyclically commensurable knot
complements S3 n K and S3 n K0 where K0 ¤ K if and only if it contains the
complement of a knot xK in an orbi-lens space L such that xK is primitive in L and L
admits a nontrivial orbi-lens space surgery L0 along xK . We may take L n xK to be Zk ,
with slopes r.K/ and r 0 yielding the lens spaces L and L0 respectively. If � 0W S3!L0
is the universal covering and xK0 � L0 is the core of the r 0–Dehn filling of ZK , then
K0 D ��1. xK0/:

This result gives a way of constructing every knot cyclically commensurable with K .
Since the only nonarithmetic knots known to admit hidden symmetries are the two
commensurable dodecahedral knots of Aitchison and Rubinstein [1], all the other
pairs of commensurable hyperbolic knots constructed so far can be obtained from the
construction given in Proposition 4.13.

Proof of Proposition 4.13 We continue to use the notation developed in the proof of
Theorem 4.6. Suppose a commensurability class C contains cyclically commensurable
knot complements S3nK and S3nK0 . By the proof of Proposition 4.1 the quotients Zk

and ZK 0 are homeomorphic. By the proof of Theorem 4.6, there are distinct slopes
r.K/ and rK 0 , of Zk such that filling along these slopes produces lens spaces LK

and LK 0 respectively. Also, the preimages of the surgery core xK in the universal
covers of LK and LK 0 are the knots K � S3 and K0 � S3 . Since K is a knot, xK is
primitive in LK . Thus ZK satisfies the conclusions of the theorem.

Suppose that a commensurability class C contains the complement of a knot in an orbi-
lens space Ln xK where xK is primitive in L and xK admits a nontrivial orbi-lens space
surgery. Then by primitivity, the preimage of xK in the universal cover S3 of L is a
knot K . Since the covering group S3!L is cyclic, S3nK cyclically covers Ln xKŠO .
Let rK be the projection of the meridional slope of S3 nK . Denote the nontrivial orbi-
lens space filling of Ln xK by L0 and the filling slope by rK 0 . By the proof of Lemma 4.9,
�.rK ; rK 0/� 1. Thus a representative curve for rK 0 is isotopic to xK in L. It follows
that representative curves for rK and rK 0 carry the first homology of L n xK . Thus the
core xK0 of the rK 0 –Dehn filling solid torus in L0 carries a generator of H1.L0/ and
therefore the preimage of xK0 in the universal cover of L0 is a knot in S3 . Furthermore,
S3 nK0 cyclically covers OŠ L0 n xK0 Š L n xK . Therefore, C contains the cyclically
commensurable knots S3 nK and S3 nK0 . Suppose that K is equivalent to K0 . An
orientation-preserving homeomorphism S3 nK ! S3 nK0 induces an orientation-
preserving homeomorphism f W L n xK! L0 n xK0 . It is evident that f .r.K//D r.K0/.
By construction we have an orientation-preserving homeomorphism gW Ln xK!L0n xK0
such that g.r 0/D r.K0/. Thus hDg�1ıf W Ln xK!Ln xK is an orientation-preserving

Geometry & Topology, Volume 16 (2012)



Knot commensurability and the Berge conjecture 641

homeomorphism such that h.r.K//D r 0 . But this is impossible as Lemma 2.1 would
then imply that r 0 D r.K/. Thus K and K0 are distinct knots by Theorem 4.6.

This suggests the following conjecture:

Conjecture 4.14 A rigid commensurability class does not contain cyclically commen-
surable hyperbolic knot complements.

Theorem 1.8 and Proposition 4.13 reduce the characterisation of hyperbolic knots
K � S3 such that jCC.K/j � 2 to the case where Z.K/ acts freely on S3 and to the
construction of all primitive knots in a lens space with a nontrivial lens space surgery.
We remark that the situation is completely understood for the case of orbi-lens spaces:

Proposition 4.15 Let xK be a primitive hyperbolic knot in an orbi-lens space L with
nontrivial ramification locus †.L/. If a nontrivial Dehn surgery along xK produces an
orbi-lens space, then K is a Berge–Gabai knot in L nN.†.L//.

Proof The fact that the singular locus must have one component is proven below in
Proposition 5.1. Let V1 [ V2 be the Heegaard splitting of L where V1 is a regular
neighborhood of †.L/ and xK � V2 . Assume nontrivial surgery along xK in L yields
an orbi-lens space L0 . By removing neighborhoods of the ramification loci in L

and L0 , we see that nontrivial surgery along xK in V2 yields a solid torus. Then by
Definition 5.4 xK is a Berge–Gabai knot in V2 DL nN.†.L//.

5 Unwrapped 1–bridge braids

In this section we prove Theorem 1.8 which characterizes all periodic hyperbolic knots
such that jCC.K/j � 2.

Recall that a 1–bridge braid in a solid torus V is a braid in V which is 1–bridge with
respect to some boundary-parallel torus in int.V /. Connected 1–bridge braids were
classified by Gabai [14].

A cosmetic surgery slope of a knot in a 3–manifold W is a slope on the boundary of
the exterior of the knot whose associated surgery yields a manifold homeomorphic to
W . We say that K has a nontrivial cosmetic surgery if it has such a slope which is
distinct from the knot’s meridian. The following proposition is a consequence of work
of Gabai and Gordon–Luecke.

Proposition 5.1 If a hyperbolic knot K in V Š S1�D2 or V Š S1�S1�I admits
a nontrivial cosmetic surgery, then V Š S1 �D2 and K is a 1–bridge braid.
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Proof First assume that K is a hyperbolic knot in V Š S1 �D2 . Gabai [13] has
shown that any knot in a solid torus which admits a nontrivial cosmetic surgery is
either contained in a 3–ball or is a 0–bridge braid or is a 1–bridge braid. In our case,
hyperbolicity rules out the first two cases. Thus K is a 1–bridge braid.

The case where K is a hyperbolic knot in V ŠS1�S1�I is ruled out by the following
lemma:

Lemma 5.2 A hyperbolic knot K in V Š S1�S1� I admits no nontrivial cosmetic
surgery.

Proof Assume that there is a nontrivial cosmetic surgery r for K . Then r is a
nontrivial cosmetic surgery slope when K is considered as a knot in any Dehn filling
of V along T 2�0. Choose such a filling in which K remains hyperbolic. The previous
argument then implies that K is not homologically trivial in the Dehn filling of V , and
therefore not in V as well. Then there is an essential simple closed curve C � T 2 � 0

such that the class in H1.V / carried by K is an integral multiple of that carried by C .
Since the algebraic intersection of K with the properly embedded, essential annulus
A D C � I � V is null, A defines a homology class ŒA� 2 H2.V nK; @V / Š Z.
Let .F; @F /� .V nK; @V / be a norm minimizing surface representing the homology
class ŒA�. By a result of Gabai [12, Corollary], F remains norm minimizing in all
manifolds obtained by Dehn surgeries along K except at most one. Since two such
surgeries yield manifolds homeomorphic to S1 � S1 � I , F must be an essential
annulus, contrary to the hypothesis that K is hyperbolic in V . Thus the lemma holds.

This completes the proof of Proposition 5.1.

Recall the hyperbolic manifold

Z0
K D ZK nN.†.ZK //

defined in the proof of Lemma 4.9. It follows from this proof that if jCC.K/j > 1

and j†.ZK /j � 1, then the core xK of the Dehn filling Z0
K
.r.K// Š S1 �D2 or

S1 �S1 � I admits a nontrivial cosmetic surgery. Hence Proposition 5.1 immediately
implies the following corollary:

Corollary 5.3 If K is a periodic hyperbolic knot and j†.ZK /jD2, then jCC.K/jD1.
In particular, if K has no hidden symmetry jC.K/j D 1.

This result implies assertion (1) of Theorem 1.8. Next we examine the case j†.ZK /jD1.
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Definition 5.4 A Berge–Gabai knot in a solid torus is a 1–bridge braid in a solid torus
which admits a nontrivial cosmetic surgery slope.

The winding number of a Berge–Gabai knot in a solid torus is the braid index of its
associated 1–bridge braid.

Berge–Gabai knots and their cosmetic surgery slopes have been classified. See [4;
14]. Moreover, it follows from the description given in [14] that these knots can be
embedded in S3 as homogeneous braids and hence as fibred knots by Stallings [43].

Definition 5.5 (1) Let w;p; q; a be integers with w; a;p � 1 and gcd.p; q/ D
gcd.w; ap/D 1. A Berge–Gabai knot xK of winding number w in L.p; qI a/ consists
of a knot xK � L.p; qI a/ and a genus one Heegaard splitting V1[V2 of jL.p; qI a/j
such that xK is a Berge–Gabai knot of winding number w in V1 and †.L.p; qI a// is
a closed submanifold of the core of V2 .

(2) A .p; qI a/–unwrapped Berge–Gabai knot in S3 is a knot in S3 which is
the inverse image of a Berge–Gabai knot in L.p; qI a/ under the universal cover
S3! L.p; qI a/.

Note that the inverse image in S3 of a Berge–Gabai knot in L.p; qI a/ is a knot (ie
connected) as its winding number w is coprime to ap .

Lemma 5.6 Suppose that xK is a Berge–Gabai knot of winding number w in L.p; qI a/
where p � 1 is coprime with w . Let V1 [ V2 be a Heegaard splitting of L.p; q/

where xK � int.V1/ and †.L.p; qI a// is a closed submanifold of the core of V2 .
If r is a nontrivial cosmetic surgery slope of xK considered as a knot in V1 , then
xK.r/Š L.p0; q0I a/ where gcd.p;p0/D 1.

Proof It is clear that j xK.r/j has Heegaard genus one, so is L.p0; q0/ for some p0 � 0.
(We take the convention that L.0; q0/Š S1 �S2 .) We must show p0 is nonzero and
relatively prime to p .

Let W be the exterior of xK in V1 and write @W D T0[T1 where T1 D @V1 and T0

is the boundary of a tubular neighborhood of xK . There are bases �0; �0 of H1.T0/

and �1; �1 of H1.T1/ such that �0 is a meridian of xK , �1 is a meridian of V1 , and
�1 D w�0; �0 D w�1 in H1.W /.

It is shown in [14, Lemma 3.2] that r D ˙.m�0 C �0/ where gcd.m; w/ D 1. A
homological calculation (see [18, Lemma 3.3]) shows that �1.r/, the meridian slope
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of the solid torus .V1; xK/.r/, is given by �1.r/ D m�1 C w
2�1 . By hypothesis,

q�1Cp�1 is the meridian of V2 and therefore

p0 D�.�1.r/; q�1Cp�1/D�.m�1Cw
2�1; q�1Cp�1/D jmp� qw2

j:

Since p is coprime to q and w2 , it is coprime to jmp� qw2j, and since p � 1 and
gcd.m; w/D 1, jmp� qw2j ¤ 0. Thus the lemma holds.

Next we characterize periodic hyperbolic knots K such that j†.ZK /j D 1 and
jCC.K/j � 2. This will finish the proof of Theorem 1.8.

Proposition 5.7 Let K be a hyperbolic knot in S3 .

(1) If K is periodic such that j†.ZK /j D 1 and jCC.K/j � 2 then:
(a) S3=Z.K/ D L.p; qI a/, where ap D jZ.K/j and the image xK of K in

L.p; qI a/ is a Berge–Gabai knot of winding number prime to jZ.K/j. Thus
K is the .p; qI a/–unwrapped Berge–Gabai knot associated to the core of
the surgery torus in Z0

K
.r.K//Š S1 �D2 .

(b) K is strongly invertible.
(c) each K0 2 CC.K/ nK is a .p0; q0I a/–unwrapped Berge–Gabai knot associ-

ated to the core of the surgery solid torus in Z0
K
.r 0/, where jZ.K0/j D ap0 ,

gcd.p;p0/D 1, and r 0 D f .r.K0// where f W ZK 0!ZK is an orientation-
preserving homeomorphism.

(2) If K is a .p; qI a/–unwrapped Berge–Gabai knot, then jCC.K/j � 2.

This result holds for a periodic hyperbolic knot K without hidden symmetries and any
K0 2 C.K/ nK .

Proof First suppose that K is a knot without hidden symmetries such that j†.ZK /jD1

and jCC.K/j> 1. Corollary 3.2 shows that S3=Z.K/ is an orbi-lens space L.p; qI a/
where ap D jZ.K/j. Let xK be the image of K in L.p; qI a/. There is a genus one
Heegaard splitting V1[V2 of L.p; q/ such that V1 D Z0

K
.r.K// and V2 is a regular

neighborhood of †.L.p; qI a//D†.ZK /. It follows from Theorem 4.6 and the proof
of Lemma 4.9 that for K¤K0 2 C.K/, the image of r.K0/ in the cusp of ZK under a
homeomorphism ZK 0!ZK is a nontrivial cosmetic surgery slope of xK in V1 . Hence,
xK is a Gabai-Berge knot in V1 , and as its inverse image in S3 is K , it has winding

number coprime to ap D jZ.K/j. Thus K is a .p; qI a/–unwrapped Berge–Gabai
knot.

As xK is 1–bridge braid in V1 , it lies on a genus 2 Heegaard surface of L.p; q/ (cf the
proof of Theorem 6.1). Thus L.p; qI a/ admits an orientation-preserving involution
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which reverses the orientation of xK . Hence ZK D .S
3 nK/=Z.K/ is not minimal in

its commensurability class. So IsomC.S3 nK/¤Z.K/, so K is strongly invertible.

Consider K0 2 C.K/ nK . Since the hypotheses hold for K0 in place of K , we see
that K0 is the .p0; q0I a/–unwrapped Berge–Gabai knot associated to the core xK0 of
the surgery solid torus in Z0

K
.r 0/ where jZ.K0/j D ap0 and r 0 is the image in the

cusp of ZK of r.K0/ under an orientation-preserving homeomorphism f W ZK 0!ZK

(cf Proposition 4.5). Lemma 5.6 implies that gcd.p;p0/D 1. This completes the proof
of assertion (1).

Next we prove assertion (2). Suppose that K is a .p; qI a/–unwrapped Berge–Gabai
knot. If apD 1, then L.p; qI a/DS3 . Lemma 5.6 and [25] show that K has a slope r

such that K.r/ is a lens space whose fundamental group is nontrivial. This case of
assertion (2) then follows from Proposition 4.13.

If ap > 1, there is a Berge–Gabai knot xK in L.p; qI a/ whose inverse image under the
universal cover S3! L.p; qI a/ is K . Since Berge–Gabai knots in solid tori admit
nontrivial cosmetic surgeries, Lemma 5.6 implies that there is a nontrivial slope r of xK
such that xK.r/Š L.p0; q0I a/ where gcd.p;p0/D 1. This final case of assertion (2)
now follows from Proposition 4.13.

We conclude this section with the observation that the characterisation in Proposition 5.7
allows us to show that hyperbolic knot complements with the same volume are not
cyclically commensurable.

Proposition 5.8 Let K be a hyperbolic knot with jCC.K/j � 2. Then:

(1) the volume of K is different from that of any K0 2 CC.K/ nK .

(2) the only mutant of K contained in CC.K/ is K .

(3) if K is commensurable with its mirror image, it is amphichiral.

This result holds for a hyperbolic knot K without hidden symmetries and any K0 2

C.K/ nK .

Proof First we prove that if K0 2 CC.K/ is distinct from K , then the cyclic groups
Z.K/ and Z.K0/ have distinct orders. This will imply that K and K0 have distinct
volumes since vol.S3 nK/D jZ.K/jvol.ZK /¤ jZ.K

0/jvol.ZK /D vol.S3 nK0/.

Suppose that Z.K/ acts freely on S3 . Then LK is a lens space of the form L.c; d/

where c D jZ.K/j. Let M denote the exterior of xK in L.c; d/ and note that as xK is
primitive, H1.M /Š Z. Hence there is a basis x�; x� of H1.@M / such that the image
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of x� in H1.M / generates while the image of x� is trivial. Clearly, the meridional slope
of xK represents cx�Cex� in H1.@M / for some integer e . Similarly LK 0 is a lens space
L.c0; d 0/ where c0 D jZ.K0/j, so the meridional slope of xK0 represents c0x�C e0x�.
The cyclic surgery theorem [10] implies that ˙1D ce0� ec0 , so gcd.c; c0/D 1. Note
that we cannot have c D c0 D 1 as otherwise some nontrivial surgery on a hyperbolic
knot in S3 would yield S3 , contrary to [19]. Thus c ¤ c0 , so the proposition holds
when Z.K/ acts freely on S3 .

Suppose next that Z.K/ does not act freely on S3 . By Proposition 5.7, K is a
.p; qI a/–unwrapped Berge–Gabai knot and K0 is a .p0; q0I a/–unwrapped Berge–
Gabai knot where p and p0 are coprime by Lemma 5.6 and a> 1. Since jZ.K/j D ap

and jZ.K0/j D ap0 , it follows that jZ.K/j ¤ jZ.K0/j unless p D p0 D 1. As-
sume p D p0 D 1. There is a Heegaard splitting jL.1; qI a/j D V1 [ V2 where the
singular set of L.1; qI a/ is the core C2 of V2 and a hyperbolic Berge–Gabai knot
xK � V1 � L.1; qI a/ such that K is the inverse image of xK in S3 . Since C2 is

unknotted in jL.1; qI a/j Š S3 , Corollary 3.5 of [14] implies that its image is knotted
in jL.1; qI a/jŠS3 . But this contradicts the fact that the image of C2 in jL.1; q0I a/j is
the core of a Heegaard solid torus. Hence we cannot have pD p0 D 1. This completes
the proof that Z.K/ and Z.K0/ have distinct orders and therefore that K and K0

have distinct volumes.

Since mutant hyperbolic knots have the same volume, K and K0 cannot be mutant.
Similarly hyperbolic knots which are mirror images of each other have the same volume
so as K0 ¤K , K0 cannot be the mirror image of K .

6 Fibred knots

In this section we prove that any hyperbolic knot without hidden symmetries and with
jCC.K/j � 2 is fibred (Theorem 1.7(1)).

We divide the proof of Theorem 1.7(1) into two cases according to whether K is
periodic or not.

6.1 K is periodic

Here we prove a fibring theorem for 1–bridge braid exteriors and apply it to deduce
the periodic case of Theorem 1.7(1).

Theorem 6.1 Let K be a 1–bridge braid on n strands in a solid torus V . For any
essential simple closed curve C on @V whose algebraic winding number in V is
coprime to n there is a locally trivial fibring of the exterior of K in V by surfaces
whose intersection with @V has n components, each a curve parallel to C .
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Corollary 6.2 An unwrapped Berge–Gabai knot is a fibred knot.

Proof of Corollary 6.2 Let K be an unwrapped Berge–Gabai knot in S3 . Then
K is the inverse image in S3 of a Berge–Gabai knot xK � L.p; qI a/ of winding
number n, say, under the universal cover S3 ! L.p; qI a/. Thus there is a genus
one Heegaard splitting V1[V2 of jL.p; qI a/j such that xK is a Berge–Gabai knot of
winding number n in V1 and †.L.p; qI a// is a closed submanifold of the core C2

of V2 . As jL.p; qI a/j D L.p; q/, the algebraic intersection number of a meridian
curve of V1 with one of V2 is ˙p . By definition, gcd.p; n/ D 1, so Theorem 6.1
implies that there is a locally trivial fibring of the exterior of xK by surfaces which
intersect @V1 in curves parallel to the meridian of V2 . Therefore we can extend the
fibration over the exterior of K in L.p; q/ D jL.p; qI a/j in such a way that it is
everywhere transverse to †.L.p; qI a//. Hence the fibration lifts to a fibring of the
exterior of K .

Proof of Theorem 6.1 Let K be the closed 1-bridge braid contained in the interior
of a solid torus V determined by the three parameters:

� n, the braid index of K .

� b , the bridge index of K .

� t , the twisting number of K .

See Gabai [14] for an explanation of these parameters and Figure 1 for an example.
(Our conventions differ from those of [14] by mirroring and changing orientation. This
modification is convenient for presenting the knot’s fundamental group.)

For a2Z, let xa denote the (mod n) equivalence class of a. Number the braid’s strands
successively x0 to n� 1 and let �i denote the i –th elementary braid in which the i –th
strand passes over the .iC1/–st. The braid associated to K has the following form:
ˇ.K/D �b�1 � � � �0ı

t where ı D �n�2 � � � �0 is the positive 2�=n twist. Denote by �
the permutation of Z=n determined by ˇ.K/. It has the following simple form:

(1) �.xa/D

8̂<̂
:

aC t C 1 if 0� a< b;

xt if aD b;

aC t if b < a< n;

for some a 2 xa. As K is a knot, � is an n–cycle.

Let T1D @V and T2D @N.K/ the boundary of a closed tubular neighborhood of K in
int.V /. There is a meridian class �1 2H1.T1/ well-defined up to ˙1 and represented
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Figure 1. The Fintushel–Stern knot (n D 7 , b D 2 , t D 4). The curve x0

is obtained from the arc labeled x0 by closing it in the boundary of the
tunnel with an arc parallel to the bridge and y0 is obtained similarly by
closing the arc y0 in the boundary of the tunnel. Here R is the word
y x y x x y x x y�1x�1y�1x�1x�1y�1x�1x�1 .

by the boundary of a meridian disk of V1 . Let �1 2H1.T1/ be any class which forms
a basis of H1.T1/ with �1 . Then �1 generates H1.V /.

Let M denote the exterior of K in V and fix an essential simple closed curve C

on @V . We are clearly done if C is a meridian curve of V , so assume that this is not
the case. Then we can orient C and find coprime integers p � 1; q so that

ŒC �D q�1Cp�1 2H1.T1/:

Note that p is the algebraic winding number of C in V . Assuming that gcd.p; n/D 1

we must show that there is a locally trivial fibring of M by surfaces which intersect
@V in curves parallel to C . The tools we use to prove this are Brown’s theorem [8]
and Stallings’ fibration criterion [44]. See also Ozsváth and Szabó [36] where a similar
argument is invoked; our proof is only slightly more involved. Brown’s theorem gives
necessary and sufficient conditions under which a homomorphism from a two-generator
one-relator group to Z has finitely generated kernel and Stallings’ theorem produces a
fibration of a 3–manifold given such a homomorphism of its fundamental group. More
precisely:
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Theorem 6.3 [8, Theorem 4.3 and Proposition 3.1] Let G D hx;y W Ri be a two-
generator one-relator group with RDR1R2 � � �Rm , Ri 2 fx;x

�1;y;y�1g, a cycli-
cally reduced and nontrivial relator. Let S1; : : : ;Sm be the proper initial segments of
the relator R, ie SiDR1 � � �Ri�1 . Finally let 'W G!R be a nonzero homomorphism.
If '.x/¤ 0 and '.y/¤ 0, then ker.'/ is finitely generated if and only if the sequence
f'.Si/g

m
iD1

assumes its maximum and minimum values exactly once.

It is easy to see that the exterior M of K is homeomorphic to a genus 2 handlebody with
a 2–handle attached to it. Start with a solid torus U 0 � int.V / obtained by removing
a small open collar of T1 in V . Denote @U 0 by T3 . As K is 1–bridge, it can be
isotoped into U 0 so that the bridge is a properly embedded arc and its complement,
 say, is contained in T3 . Fix a disk neighborhood D � T3 of  and let ˛ D @D .
Let U be the exterior of the bridge in U 0 , a genus two handlebody. We can assume
that T3 n @U � int.D/ and therefore ˛ � @U . By construction, ˛ bounds a 2–disk
properly embedded in V nU (ie a copy of D isotoped rel @D into V nU ). It is easy
to see that M is a regular neighborhood of the union of U and this disk.

The fundamental group of U is free on two generators x;y represented by two curves
in T3 representing �1 . (See Figure 1.) There are a pair of dual curves x0;y0 � @U to
these generators. This means that

� x0 and y0 bound disks in U .

� x intersects x0 transversely in one point and is disjoint from y0 .

� y intersects y0 transversely in one point and is disjoint from x0 .

See Figure 1. The word R 2 �1.U / in x;y represented by the curve ˛ can be read
off in the usual way: each signed intersection of ˛ with x0 , resp. y0 , contributes x˙1 ,
resp. y˙1 , while traveling around ˛ .

We introduce the auxiliary function f W Z=n n fxbg ! fx;yg given by

(2) f .xa/D

�
y if 0� a< b;

x if b < a< n;

for some a2 xa. Let wj D f .�
j .xb// and consider the word wDw1w2 � � �wn�1 . Then

RD ywxy�1w�1x�1 . To see this, start with y from the base point ! (cf Figure 1);
then follow the knot until the b strand, which contributes w ; then turn at the lower
foot of the handle, which contributes xy�1 ; then walk along the knot in the opposite
direction until the strand b is reached, which contributes w�1 ; then close by passing x0 ,
which contributes to the final x�1 . Notice that R is cyclically reduced. It follows that

�1.M /D hx;y W ywxy�1w�1x�1
i:
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Let �2 2H1.T2/ be a meridional class of K . The reader will verify that we can choose
the longitudinal class �1 for V , a longitudinal class �2 2H1.T2/ for K , and possibly
replace �1 by ��1 so that in H1.M /,

� n�1 D �2 .

� �1 D n�2 .

� Œyx�1�D �2 (ie Œyx�1� is represented by a meridian of K at the bridge).

� �1C t�2 D Œx� (ie �1 and Œx� cobound an annulus in V which K punctures
t times).

Consider the homomorphism �1.U /! Z which sends x to pt � nq ¤ 0 and y to
pt � nqCp ¤ 0. Since the exponent sum of both x and y in R is zero, it induces
a homomorphism 'W �1.M /! Z. Since gcd.p; nq/D 1, ' is surjective. From the
above, it can then be verified that '.�1/D�nq and '.�1/Dnp . Hence '.�q

1
�

p
1
/D 0.

Lemma 6.4 Let S1;S2; : : : ;S2nC2 be the proper initial segments of the relator
R D ywxy�1w�1x�1 D R1R2 � � �R2nC2 where Ri 2 fx;x

�1;y;y�1g. Then the
sequence f'.Si/g

2nC2
iD1

achieves its maximum and minimum values exactly once.

Proof By construction, '.x/¤ 0, '.y/¤ 0, and '.y/ > '.x/. The conclusion of
the lemma is easily seen to hold when '.x/ and '.y/ have the same sign, so assume
that '.x/ < 0< '.y/.

Set S Dmaxf'.Si/ W 1� i � 2nC 2g and s Dminf'.Si/ W 1� i � 2nC 2g.

Since '.x/ < 0< '.y/ we have8<:
s � '.SnC2/ < '.SnC1/ < '.Sn/� S;

s � '.SnCi/D '.Sn�iC2/C'.x/�'.y/ < '.Sn�iC2/� S for 3� i � nC 1;

s � '.S2nC1/D '.S2nC2/C'.x/ < '.S2nC2/D 0< '.y/D '.S1/� S:

Thus the maxima of f'.Si/g
2nC2
iD1

can only occur in the sequence '.S1/; '.S2/; : : : ;

'.Sn/ and the minima in '.SnC2/; '.SnC3/; : : : ; '.S2nC1/.

We look at the maxima of f'.Si/g
2nC2
iD1

first. Suppose that 1� l < r �n. We claim that
'.RlC1/C � � � C '.Rr / 6� 0 (mod n). If so, '.Sl/¤ '.Sr / and therefore S occurs
precisely once amongst the values f'.Si/g

n
iD1

.

Let x' be the reduction of ' modulo n. Since gcd.p; n/D 1, we can define

y' D xp�1
x'W �1.M /! Z=n:
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Then y'.x/Dxt and y'.y/D t C 1 and therefore

y'.f .xa//D �.xa/�xa

for all a 2 Z=n n fxbg. Hence y'.RlC1/C � � � C y'.Rr / D y'.wl/C � � � C y'.wr�1/ D

y'.f .� l.xb///C� � �C y'.f .�r�1.xb///D .� lC1.xb/�� l.xb//C� � �C.�r .xb/��r�1.xb//D

�r .xb/�� l.xb/. Since � is an n–cycle and 1� l < r � n we see that �r .xb/ 6D � l.xb/.
It follows that '.RlC1/C � � �C'.Rr / 6� 0 (mod n).

The uniqueness of the minimum follows along the same lines. We saw above that
the minima of f'.Si/g

2nC2
iD1

only occur in '.SnC2/; '.SnC3/; : : : ; '.S2nC1/. As
before, '.RlC1/C � � � C '.Rr / 6� 0 (mod n) for all nC 2 � l < r � 2nC 1 and
therefore '.SnC2/; '.SnC3/; : : : ; '.S2nC1/ are pairwise distinct. This implies the
desired conclusion.

We can now complete the proof of Theorem 6.1. The previous lemma couples with
Theorem 6.3 to show that the kernel of ' is finitely generated. Stallings’ fibration
criterion [44] implies that M admits a locally trivial surface fibration with fibre F such
that �1.F /D ker.'/. Since '.�1/D np ¤ 0 while '.�q

1
�

p
1
/D 0, ker.'j�1.T1// is

the infinite cyclic subgroup of �1.T1/ generated by ŒC �. Hence the fibration meets T1

in curves parallel to C . To complete the proof, we must show that the intersection of a
fibre F with T1 has n components.

To that end, note that as ' is surjective we can orient F so that for each � 2H1.M /

we have '.�/D � � ŒF �. Let �1 2H1.M / be the class represented by the cycle F \T1

with the induced orientation. Clearly, �1 D˙jF \T1jŒC �. Since '.�1/D�nq and
'.�1/ D np , '.�1.T1// D nZ. Thus if � 2 H1.M / is represented by a dual cycle
to ŒC � on T1 , then

nD '.�/D � � ŒF �D j� ��1j D jjF \T1j� � ŒC �j D jF \T1j:

This completes the proof.

Proof of Proposition 1.6 Let K be a hyperbolic 1–bridge braid on n strands in a
solid torus V . We use the notation developed in the proof of Theorem 6.1. In particular,
M is the exterior of K in V and H1.M /ŠZ˚Z with basis �1; �2 . By construction
there are classes �1; �2 2 H2.M; @M / such that if @W H2.M; @M / ! H1.@M / is
the connecting homomorphism, then @�1 D �1 � n�2 and @�2 D n�1 � �2 . Since
j�1��j jDı1j and j�2��j jDı2j , f�1; �2g is a basis for H2.M; @M /ŠH 1.M /ŠZ˚Z.

Consider the homomorphism  given by the composition H2.M; @M /
@
�!H1.@M /D

H1.T1/˚H1.T2/!H1.T1/. Then  .a�1C b�2/D a�1C nb�1 , and therefore  
is injective.
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Let p; q be coprime integers such that gcd.n;p/D 1. According to Theorem 6.1, there
is a fibre F in M which can be oriented so that  .ŒF �/D ŒF \T1�D nq�1Cnp�1D

 .nq�1 C p�2/. Hence ŒF � D nq�1 C p�2 so that nq�1 C p�2 is a fibre class in
H2.M; @M /.

Fix coprime integers a; b and consider the class � D a�1 C b�2 . The proposition
will follow if we can show that the projective class of � can be arbitrarily closely
approximated by fibre classes [45, Theorem 2]. By the previous paragraph � is a
fibre class when a D 0, so suppose this is not the case. It suffices to show that
b=aD limm.bm=am/ where am�1C bm�2 are fibre classes. This is easy to verify: for
each integer m > 0 set pm D nmbaC 1 and qm D mb2 . Then gcd.pm; nqm/ D 1

and from the previous paragraph we see that nqm�1Cpm�2 is a fibre class. Finally,
limm.nqm=pm/D b=a, which completes the proof.

6.2 K is not periodic

In this case, Z.K/ is generated by a free symmetry of the pair .S3;K/. Then ZK is
a complete hyperbolic 3–manifold with a torus cusp and ZK .r.K//D LK is a lens
space L.p; q/. The image xK of K in ZK .r.K// is primitive, since its preimage in the
universal cover S3 has one component. Since jCC.K/j> 1, Proposition 4.13 shows
that there is another slope r 0 in the torus cusp of ZK such that ZK .r

0/ is a lens space
L.p0; q0/. The following key result has been explained to us by Jake Rasmussen.

Theorem 6.5 Let K be a primitive knot in Y D L.p; q/ which admits a nontrivial
lens space surgery. Then K is fibred.

This theorem shows that ZK is a surface bundle over the circle, and since there is an
unbranched cover S3 nK ! ZK , K is a fibred knot. Many, though not all, of the
elements of the proof of Theorem 6.5 are contained in Rasmussen [38]. Owing to its
importance to this paper, we include a proof here.

Proof of Theorem 6.5 The analogous result is known to be true for knots in the
3–sphere [30]: If a knot K � S3 has a lens space surgery, then K is fibred. The proof
of Ni’s result uses the Heegaard Floer homology package developed by Ozsváth and
Szabó in [35; 33] and extended to sutured manifolds by Ni and Juhasz [30; 22]. The
essential property of lens spaces which is invoked is that they are L-spaces, which
are rational homology spheres with Heegaard Floer homology as simple as possible
(cf [36]). Our situation is similar in that both the initial and the surgered manifold are
L-spaces, and our proof follows that of the S3 case.
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We first note that if L.p; q/ n K is Seifert-fibred and K is primitive, then N Š

L.p; q/nN.K/ is cyclically covered by a knot complement M in S3 which must also
be Seifert-fibred. Then M must be a torus knot complement, which fibres over S1 .
Since H2.M; @M /ŠH2.N; @N /ŠZ, the preimage of a minimal genus representative
of the generator of H2.N; @N / is a union of surface fibres of M , and the covering
action permutes these fibres. The region between a fibre and its image under a generator
for the covering group is a fundamental domain of this action, so N is fibred.

For the remainder of the proof we assume that L.p; q/ nK is not Seifert-fibred.

Let �K denote the meridional slope of K and � ¤ �K a slope whose associated
surgery yields a lens space. By the cyclic surgery theorem [10], �.�;�K /D 1, so any
representative curve for � runs parallel to K .

We find it convenient to use the notation from [32] even though it is somewhat different
from that used elsewhere in the paper. We review this notation here.

We use xK to denote the knot K with a choice of orientation. Dehn surgery on K with
slope � will be written Y�.K/. In [32], Ozsváth and Szabó compute the Heegaard Floer
homology of manifolds obtained by surgery on knots in rational homology spheres
in terms of the knot filtration on the chain complex whose homology is the Heegaard
Floer homology of the ambient manifold. Based on this, Rasmussen computes the knot
Floer homology of knots in lens spaces which admit longitudinal surgeries that produce
integral L-spaces [38, Lemma 4.7]. The strategy here is to do the same calculation for
knots admitting longitudinal surgeries which produce rational L-spaces and then to
pass to the Floer homology of a certain sutured manifold.

There is a doubly pointed Heegaard diagram .†; ˛; ˇ ; w; z/ which determines .Y; xK/,
from which Ozsváth and Szabó construct a chain complex
CFK1.†; ˛; ˇ ; w; z/ as follows. The generating set is fŒx; i; j � Wx2T˛\Tˇ; i; j 2Zg
where T˛ and Tˇ are two totally real tori in the symmetric product Symg.†/ which is
endowed with an almost complex structure. The differential counts certain pseudoholo-
morphic disks connecting the generators with the boundary mapping to T˛ [Tˇ . The
two basepoints w and z give rise to codimension 2 submanifolds fwg �Symg�1.†/,
resp. fzg � Symg�1.†/. The indices i; j are employed in order to keep track of the
intersection of the holomorphic disks with the two submanifolds above. More precisely,

@1Œx; i; j �D
X

y2T˛\Tˇ

X
�2�2.x;y/;�.�/D1

#
�

M.�/
R

�
� Œy; i � nw.�/; j � nz.�/�;

where �2.x; y/ denotes the homotopy class of disks connecting x and y, �.�/ is the
Maslov index of � , #.M.�/=R/ is the count of holomorphic representatives of � ,
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nw.�/ D #� \ .fwg � Symg�1.†//, and similarly for nz.�/. Note that nw.�/ � 0,
nz.�/ � 0 since the submanifolds involved are almost complex. Therefore the i; j

indices define a Z˚Z filtration on CFK1.Y; xK/.

The nontriviality of � 2 �2.x; y/ is homologically obstructed and as consequence
the complex CFK1.Y; xK/ splits into summands which are in bijection with Spinc

structures on Y . Following Turaev [46] Spinc structures can be seen as homology
classes of nonvanishing vector fields and they form an affine space over H 2.Y /. From
the combinatorics of the Heegaard diagram one can construct a function swW T˛\Tˇ!
Spinc.Y / which sends an intersection point x to the homology class of a vector field.
There is also a relative version, Spinc.Y;K/, which consists of homology classes of
vector fields on Y nN.K/ which point outwards at the boundary; one has an analogous
map sw;z W T˛ \Tˇ! Spinc.Y;K/ [32, Section 2.4]. Spinc.Y;K/ is an affine space
over H 2.Y;K/.

One can extend a vector field on Y n N.K/ to a vector field on Y such that the
(oriented) knot is a closed trajectory. This gives rise to a map GY;K W Spinc.Y;K/!

Spinc.Y / which is equivariant with respect to the action of H 2.Y;K/: GY;K .�Ck/D

GY; xK .�/ C �
�.k/. where ��W H 2.Y;K/ ! H 2.Y / is the natural map induced by

inclusion. Moreover, given �; � 2 Spinc.Y;K/, GY;K .�/ D GY; xK .�/ if and only if
� D �Cn �PDŒ�� for some n 2Z where � is a meridian of K . There is an analogous
map GY�.K /;K

W Spinc.Y;K/ ! Spinc.Y�.K// which extends the vector fields on
Y nN.K/ to Y�.K/ such that the induced knot K0 in the surgered manifold becomes
a trajectory with the orientation inherited from K . See [32, Section 6].

For x; y 2 T˛ \Tˇ such that there exists � 2 �2.x; y/, we have: sw;z.x/� sw;z.y/D
.nz.�/ � nw.�// � PDŒ�� [32, Lemma 2.1]. This splits CFK1.Y; xK/ into various
summands: Fix � 2 Spinc.Y;K/. The subgroup

C� WD fŒx; i; j � 2 CFK1.Y;K/ W sw;z.x/C .i � j / �PDŒ��D �g

becomes a subcomplex of CFK1.Y; xK/.

Ozsváth and Szabó consider the induced complexes A�.Y; xK/ and B�.Y; xK/ as ingre-
dients in the Morse surgery formula: The complex A�.Y; xK/ WD C�fmax.i; j /D 0g

with the induced differential from the complex CFK1.Y; xK/ computes the Heegaard
Floer homology of large enough integral surgeries on K in a particular Spinc structure
[32, Theorem 4.1]. Since �.cHF.M; s//D 1 for all s 2 Spinc.M / where M is any
rational homology sphere [34, Theorem 5.1] and framed surgeries on K are rational
homology spheres, we have that rank.H�.A�.Y; xK///� 1.

By definition, B�.Y; xK/ WD C� fi D 0g computes cHF.Y;GY; xK .�//. In addition,
C�fj D 0g is identified with B�CPDŒK�� , where K� is the knot K pushed off inside
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Y nN.K/ along the framing �. See [32, Proposition 3.2] for an explanation of the
grading shift.

Consider also the maps v� , resp. h� , the natural projections C�fmax.i; j / D 0g !

C�fi D 0g, resp. C�fmax.i; j /D 0g ! C�fj D 0g.

By [32, Theorem 4.1] they are identified with the induced maps in cHF by the natu-
ral cobordism W 0m.K/ between Y�.K/ and Y equipped with corresponding Spinc

structures.

We can now state the surgery formula for the “hat” version of Heegaard Floer homology.
This corresponds to taking ı D 0 in [32, Theorem 6.4]. See [32, Section 2.8] for an
explanation. We therefore drop the ı index in what follows:

Theorem 6.6 [32, Theorem 6.4] Fix a Spinc structure s 2 Spinc.Y�.K//. Then

(3) cHF.Y�.K/; s/ŠH�.Cone.DsW As.Y;K/! Bs.Y;K///

where

As.Y;K/D
M

f�2Spinc.Y�.K /;K / jGY�.K/;
xK .�/Dsg

A�.Y; xK/;

Bs.Y;K/D
M

f�2Spinc.Y�.K /;K / jGY�.K/;
xK .�/Dsg

B�.Y; xK/:

The map Ds is defined as

Ds.fa�g�2G�1

Y�.K/;K
.s//D fb�g�2G�1

Y�.K/;
xK
.s/

with b� D h��PDŒK��.a��PDŒK��/� v�.a�/.

In our case, both Y and Y�.K/ are lens spaces, hence L-spaces [36]. Therefore
H�.B�.Y; xK// Š Z for any � 2 Spinc.Y;K/ and H�.Cone.Ds// Š Z for any s 2

Spinc.Y�.K// by Theorem 6.6. In fact for any field F , H�.B�.Y; xK/IF/ Š F and
H�.Cone.Ds/IF/Š F .

Lemma 6.7 After a possible change of orientation of the ambient manifold Y , we
have H�.A�.Y; xK//Š Z for any � 2 Spinc.Y;K/.

Proof This lemma is a slight generalisation of [38, Lemma 4.6]. It is only applied
to a summand corresponding to the particular Spinc structure s. Write the rational
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longitude of K as a ��Cp �� for some a 2Zn f0g. (Note that Y�.K/ is a lens space,
so � cannot be the rational longitude.) By changing the orientation of Y if necessary
one can assume a< 0.

The proof of Proposition 4.13 shows that K0 � Y�.K/ is primitive in Y�.K/. The
map GY�.K /; xK

is affinely modeled on the canonical projection: � W Z! Z=m where
m is the order of H 2.Y�.K// and � is the map i�W H 2.Y�.K/;K

0/!H 2.Y�.K//

induced in cohomology; see [32, Section 2.2]. Therefore the groups

.A�/�2G�1

Y�.K/;
xK
.s/

form an affine copy of m �Z in ZŠ Spinc.Y;K/ and adding PDŒK�� corresponds to a
translation by m. By [32, Lemma 6.5] and the assumption a< 0, for sufficiently large
n> nC the map v�Cn�PDŒK�� WA�Cn�PDŒK��.Y;

xK/! B�Cn�PDŒK��.Y;
xK/ is an isomor-

phism and further, the map h�Cn�PDŒK��W A�Cn�PDŒK��.Y;
xK/!B�C.nC1/�PDŒK��.Y;

xK/

is trivial. If n is sufficiently small, n< n� , v�Cn�PDŒK�� is trivial and h�Cn�PDŒK�� is
an isomorphism.

In general, the homology of the mapping cone of Ds is an extension of Ker..Ds/�/ by
Coker..Ds/�/ [47, Chapter 1]. Using homology with field (F/ coefficients, this exten-
sion splits: h�.Cone.Ds//Š Ker..Ds/�/˚Coker..Ds/�/. Another way to say this is
H�.Cone.Ds//ŠH�.X/, where X is the short chain complex (see [38, Theorem 4.1])

0 � H�.As.Y; xK/IF/
.Ds/�
� H�.Bs.Y; xK/IF/ � 0:

Owing to the behavior of DsjA�Cn�PDŒK��.Y;
xK/ for large, resp. small, n, the chain

complex X splits into an infinite sum of acyclic subcomplexes

0 � H�.A�Cn�PDŒK��.Y;
xK/IF/

.h�Cn�PDŒK��/�

Š
� H�.B�Cn�PDŒK��.Y;

xK/IF/ � 0

for n> nC ,

0 �H�.A�Cn�PDŒK��.Y;
xK/IF/

.v�Cn�PDŒK��/�

Š
�H�.B�C.nC1/�PDŒK��.Y;

xK/IF/ � 0

for n< n� , and the nontrivial subcomplex between the groups A�Cn��PDŒK��.Y;
xK/

and A�CnC�PDŒK��.Y;K/:

A�Cn��K�
A�C.n�C1/�K�

� � � A� A�CK�
� � � A�CnC�K�

B�C.n�C1/�K�

v

g

h
�
C

n
�
�K
� �

� � �

h
�
.n
�
C

1
/�K
� �

B�

v�

g�

B�CK�

v

g

h
�

�

� � �

h
�
C
�K
�

�

B�CnC�K�

v�CnC�K�

g�
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Since H�.XIF/ŠH�.B�Cn�PDŒK��.Y;
xK/IF/Š F ,

rank.H�.A�Cn�PDŒK��.Y;
xK/IF//� 1

and the number of A groups is one greater than that of B groups, we have

H�.A�Cn�PDŒK��.Y;
xK/IF/Š F :

Since F was arbitrary, the universal coefficient theorem implies H�.A�.Y; xK//ŠZ.

This phenomenon was studied by Ozsváth and Szabó [36] for knots in S3 . The result
is purely algebraic, so it extends to our situation. As in the previous lemma, the proof
is the same. The only change is that it is applied to a summand in the knot filtration
corresponding to a fixed Spinc structure on Y .

Lemma 6.8 [36, Lemmas 3.1 and 3.2] Under the conditions above, bHFK .Y;K; �/
is either Z or 0 for any � 2 Spinc.Y;K/.

Proof Fix � 2 Spinc.Y;K/. Lemmas 3.1 and 3.2 in [36] apply to a general Z˚Z
filtered chain complex C . We take C to be C� , notice that C fmax.i; j /D 0g cor-
responds to A�.Y; xK/ and C fmax.i; j �m/D 0g corresponds to A�Cm�PDŒ��.Y; xK/;
in particular the hypotheses of the two lemmas are satisfied. One can therefore apply
the argument in the proof of [36, Theorem 1.2] and the conclusion follows.

Juhasz [22] defined an Ozsváth–Szabó-type invariant called sutured Floer homology
SFH for (balanced) sutured manifolds .M;  /. (See also Ni [30].) One can construct
a balanced sutured manifold Y .K/ starting from a knot K by removing N.K/ and
considering as sutures two copies of the meridian with opposite orientations. It is
easy to see that SFH.Y .K// Š bHFK .Y;K/ by a natural identification between the
corresponding chain complexes [22, Proposition 9.2].

The invariant SFH also decomposes into different summands corresponding to Spinc

structures on Y .K/ which are in affine bijection with H 2.Y .K/; @Y .K//, hence in
bijection with Spinc.Y;K/. The isomorphism above preserves the splitting along
relative Spinc structures. The invariant SFH proves to be very strong in detecting
tautness and products:

Theorem 6.9 [23] Let .M;  / be an irreducible, balanced sutured manifold. Then
.M;  / is taut if and only if SFH.M;  /¤ 0 and it is a product sutured manifold if and
only if SFH.M;  /Š Z.
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The knot K is rationally null-homologous and primitive in Y . Hence there is a
surface F properly embedded in M D Y nN.K/, the exterior of K , whose boundary
is the rational longitude of K . Without loss of generality we assume F has minimal
genus, g say, among all such surfaces. One can cut open M along F and construct
a sutured manifold Y .F / whose suture is a parallel copy of @F . (See Gabai [11] for
the original definitions of sutured manifolds and sutured manifold decompositions.)
Our knot K will be fibred if and only if Y .F / is a product sutured manifold. One
can compute SFH.Y .F // in terms of the knot Floer homology of K via the surface
decomposition theorem of Juhasz:

Theorem 6.10 [23, Theorem 1.3] Let .M;  / be a strongly balanced sutured mani-
fold and F a decomposing surface, and denote the manifold resulting from the decom-
position by .M.F /;  .F //. Then

SFH.M.F /;  .F //Š
M

s2Out.F /

SFH.M; s/;

where Out.F / are the outer Spinc structures on .M;  / with respect to F , ie the
homology classes of vector fields in which one can find a representative which is never
a negative multiple of the normal to F with respect to some Riemannian metric on M

[23, Definition 1.1].

The strongly balanced hypothesis is a technical condition trivially satisfied in our case.
The condition s 2 Out.F / can be rephrased in terms of the Chern class of s evaluated
on F : s 2 Out.F /() hc1.s; t0/; ŒF �i D c.F; t0/, where c.F; t0/ is a combinatorial
quantity which in our case turns out to be c.F; t0/D 1� 2g�p [23, Section 3]. See
below for an explication of the terms in this formula.

The Chern class of a relative Spinc structure s is defined in the following way. Take a
representative v of s (ie a nowhere vanishing vector field on M with predetermined
behaviour on @M with respect to the sutures [23, Section 3]). Put a Riemannian metric
on M and consider the orientable 2–plane field v? . Consider a trivialisation of v?

@M

which exists because of the strongly balanced hypothesis. Then the Chern class of s
relative to this trivialisation is the obstruction to extending the trivialisation to all of M .
(See [23] for details in the sutured case and [37] for the knot complement case.) There
is a natural trivialisation t0 on @M to consider, namely the section consisting of vectors
parallel to the meridian of K .

Since H1.M / contains no 2–torsion in our situation, the relative Spinc structures
on M are identified by their Chern class (see [15] for the closed case; the relative
case can be deduced by filling and applying the closed case result), which in turn
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are identified by the evaluation on the homology class ŒF �. Hence Out.F / consists
precisely of one Spinc structure �0 2 Spinc.Y;K/ (see the next paragraph for the exact
identification of �0 ). Therefore, by Theorem 6.10, SFH.Y .F // Š bHFK .Y;K; �0/
which is 0 or Z by Lemma 6.8. As K is primitive and Y prime, M is irreducible,
and as F is genus minimising, Y .F / is taut. Thus SFH.Y .F // 6Š 0 by Theorem 6.9
and so must be isomorphic to Z. Hence K is fibred.

In fact, as for knots in S3 , one can identify SFH.Y .F // with the top summand with
respect to the Alexander grading bHFK .Y;K;gC .p�1/=2/ [38, Section 3.7]: In [38]
the Alexander grading A on relative Spinc structures is defined such that the Euler
characteristic of the Floer homology is symmetric with respect to the origin. The
same grading (after the identification H 2.Y;K/Š Z given by declaring ŒF � to be the
positive generator) is defined in [31, Section 4.4] in terms of the Chern class of the Spinc

structures. By Juhasz’s decomposition formula [23, Lemma 3.10 and Theorem 1.3], we
get hc1.�0; t0/; ŒF �i D 1� 2g�p , hence A.�0/D .1� 2g�p/=2 and by conjugation
invariance [31, Section 4.4 Equation 2], SFH.Y .F //Š bHFK .Y;K;gC.p�1/=2/.

6.3 Proof of Theorem 1.5

We prove Theorem 1.5 here; it is an analogue of Ni’s fibring theorem [30] in an orbifold
setting. Recall that we have assumed that K is a knot in an orbi-lens-space L which is
primitive in L and which admits a nontrivial orbi-lens space surgery.

Proof of Theorem 1.5 When L is a manifold, this is just Theorem 6.5. Suppose then
that L has a nonempty singular set, say LD L.p; qI a; b/. Set L0 D L.p; qI a; b/ n
N.†.L.p; qI a; b/// and note that as in the proof of Lemma 4.9,

L0 Š

�
S1 �D2 if j†.L.p; qI a; b//j D 1;

S1 �S1 � Œ0; 1� if j†.L.p; qI a; b//j D 2:

Since K admits a nontrivial orbi-lens space surgery in L, L0 admits a nontrivial
cosmetic surgery (cf the proof of Lemma 4.9). Proposition 5.1 then shows that L0 Š

S1 � D2 (so we can suppose that b D 1) and K is a Berge–Gabai knot in L0

(Definition 5.4). Let n be the winding number of K in L0 . Our hypotheses imply that
gcd.p; n/D 1. Thus Theorem 6.1 implies that there is a locally trivial fibring of the
exterior of K in L0 by surfaces which intersect @L0 in curves parallel to the meridian
slope of the solid torus N.†.L.p; qI a///. Therefore we can extend the fibration
over the exterior of K in L.p; qI a/ in such a way that it is everywhere transverse to
†.L.p; qI a//. We endow each fibre F of this surface fibration with the structure of a
2–orbifold by declaring each point of F \†.L.p; qI a// to be a cone point of order a.
In this way the exterior of K in L.p; qI a/ admits an orbifold fibring with base the
circle.
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6.4 Proof of Theorem 1.7(1) and (2)

Let K be a hyperbolic knot without hidden symmetries such that jCC.K/j > 1.
If K is periodic, it is an unwrapped Berge–Gabai knot (Proposition 5.7) and so
Corollary 6.2 implies that it is fibred. If K is not periodic, then Z.K/ acts freely
on S3 . Proposition 4.13 shows that the image xK of K in the lens space LK admits a
nontrivial lens space surgery. Since xK is primitive in LK , Theorem 6.5 shows that
xK , and therefore K , is fibred. Thus Theorem 1.7(1) holds. Part (2) of that theorem

is an immediate consequence of the fibration result (1) and the fact that the knots are
cyclically commensurable.

7 Orientation reversing symmetries

In this section we prove assertion .4/ of Theorem 1.7.

Proposition 7.1 Let K be an amphichiral hyperbolic knot. Then jCC.K/j D 1. More-
over, if K has no hidden symmetry, then jC.K/j D 1.

Proof Let K be an amphichiral knot with S3 nK Š H3=�K . Fix an orientation-
reversing isometry � W S3 nK! S3 nK and lift it to z� 2 Isom.H3/. Let N.�K / be
the normalizer of �K in Isom.H3/.

Then z� 2 N.�K / and normalizes NC.�K /. The action of z� permutes the index 2

subgroups of NC.�K / and so it leaves invariant the unique such subgroup with
a torus cusp (cf Lemma 4.3). Call this subgroup �Z and recall that H3=�Z Š

.S3nK/=Z.K/ŠZK . Thus z� induces an orientation-reversing isometry x� WZK!ZK

which lifts to � .

Let �K ; �K be a meridian, longitude basis of the first homology of the cusp of S3 nK .
It is clear that ��.�K /D˙�K while ��.�K /D˙�K by [19]. Projecting to ZK , we
see that �K 7! x� and �K 7! jZ.K/jx� where x�; x� is a basis of the first homology of
the cusp of ZK . Since x� is orientation-reversing and lifts to � , there is an � 2 f˙1g

such that
x��.x�/D �x� and x��.x�/D��x�:

It follows that, given any slope ˛ D px�C qx� in the cusp of ZK ,

�.˛; x��.˛//D 2jpqj � 0 (mod 2):

Since the set of slopes in the cusp of ZK whose associated fillings yield orbi-lens
spaces is invariant under x� and the distance between any two such slopes is at most 1
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(cf the proof of Lemma 4.9), each such slope must be invariant under x� . But from the
distance calculation immediately above, the only slopes invariant under x� are those
associated to x� and x�. The latter is the rational longitude of jZK j and so its associated
filling cannot be an orbi-lens space. Thus the only slope which can yield an orbi-lens
space is rK , the slope associated to x�. Lemma 4.8 then shows that there is exactly
one knot complement in the cyclic commensurability class of S3 nK .

Proposition 7.1 together with Proposition 5.8 directly implies part .4/ of Theorem 1.7.

Theorem 7.2 Let S3 nK be a chiral knot complement without hidden symmetries.
Then S3 nK is not commensurable with an orbifold which admits an orientation-
reserving involution. That is, a knot complement without hidden symmetries in its
orientable commensurator does not have hidden symmetries in its full commensurator.

Proof Suppose that S3 nK is commensurable with an orbifold O which admits an
orientation-reversing involution. Let �K and �O be discrete subgroups of PSL.2;C/
such that H3=�K Š S3 nK and H3=�O Š O . We furthermore suppose that �O
and �K intersect in a finite-index subgroup, by conjugating if necessary. By Mostow–
Prasad rigidity, the involution of O corresponds to an element g 2 Isom.H3/ which
conjugates the fundamental group of O in PSL.2;C/ to itself. That is g�Og�1D �O .
Thus g is contained in the full commensurator of �O , which is the same as the full
commensurator of �K . This implies that �K is commensurable with g�kg�1 , or that
S3 nK is commensurable with its image under an orientation-reversing involution.
But this knot complement has the same volume, which contradicts Proposition 5.8.
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