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One-ended subgroups
of graphs of free groups with cyclic edge groups

HENRY WILTON

Consider a one-ended word-hyperbolic group. If it is the fundamental group of a
graph of free groups with cyclic edge groups then either it is the fundamental group
of a surface or it contains a finitely generated one-ended subgroup of infinite index.
As a corollary, the same holds for limit groups. We also obtain a characterisation of
surfaces with boundary among free groups equipped with peripheral structures.

20F65, 20F67, 57M07

Free subgroups of hyperbolic groups are abundant, and many successful techniques have
been developed to find them. It is necessarily much harder to find one-ended subgroups:
any one-ended group has at most finitely many conjugacy classes of embeddings into a
fixed hyperbolic group; see Gromov [15, 5.3.C’]. One case of longstanding interest in
topology is the problem of finding a surface subgroup, by which we mean a subgroup
isomorphic to the fundamental group of a closed surface of nonpositive curvature.
The following famous question is often attributed to Gromov; see the problem lists of
Bestvina [4] and Bridson [7].

Question 1 Does every one-ended hyperbolic group have a surface subgroup?

The closest thing to this question that we were able to find in the literature is as follows
[15, page 144].

“[O]ne may suspect that there exist word hyperbolic groups � with arbi-
trarily large dim @� (here, large is � 1) where every proper subgroup is
free.”

Setting aside the question of whether every hyperbolic group has a proper subgroup of
finite index, which is a notoriously difficult question in its own right, this raises the
following natural counterpart to Question 1.

Question 2 Does every one-ended hyperbolic group that is not virtually a surface
group contain a finitely generated one-ended subgroup of infinite index?
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Although Question 2 seems substantially weaker than Question 1, in the motivating
case of the fundamental group of a closed hyperbolic 3–manifold (recently resolved in
the affirmative by Kahn and Markovic [20]), the two questions are equivalent. Indeed,
since 3–manifold groups are coherent by Scott [27], any finitely generated, infinite-
index subgroup H of a 3–manifold group is the fundamental group of a compact
3–manifold N with nonempty boundary. If N is aspherical then @N has nonpositive
Euler characteristic. If, in addition, H is one-ended then Dehn’s Lemma implies that
@N is incompressible, and so H , and hence �1N , has a surface subgroup.

Despite the recent result of Kahn and Markovic, little is known about certain seemingly
very simple classes of hyperbolic groups. For instance, let � be the fundamental group
of a graph of free groups with infinite cyclic edge groups. Calegari proved that � has
a surface subgroup if H2.�IQ/ is nontrivial [9]. Further sufficient conditions were
found by Gordon and the author [14] and Kim and the author [23]. Kim and Oum
answered Question 1 when � is the double of a rank-two free group [22].

By the Combination Theorem of Bestvina and Feighn [5], � is hyperbolic if and
only if it does not contain a Baumslag–Solitar subgroup, and the existence of such a
subgroup can be verified from a given graph-of-groups decomposition. One-endedness
can also be easily characterised in this case: � is one-ended if and only if every vertex
group of the graph of groups is freely indecomposable relative to its edge groups; see
Theorem 18 below for details.

The main theorem of this paper resolves Question 2 for such � .

Theorem 3 Let � be the fundamental group of a graph of free groups with cyclic edge
groups. If � is hyperbolic and one-ended then either � is the fundamental group of a
closed surface or � has a finitely generated subgroup of infinite index that is one-ended.

It is obvious that one can reduce to the case in which the given splitting of � has only
one edge—that is, to the case in which � is an amalgamated free product or HNN
extension of free groups. However, this observation does not seem to be particularly
useful. In fact, the proof uses a cyclic splitting of � that may be finer, namely the JSJ
decomposition.

Of course, graphs of free groups with cyclic edge groups are not representative of
hyperbolic groups in general, so Theorem 3 falls far short of resolving Question 2,
but it does place heavy restrictions on the nature of any negative example. If � is
any hyperbolic group that splits over a virtually cyclic subgroup then Question 2 is
trivial for � unless � is the fundamental group of a graph of virtually free groups
with virtually cyclic edge groups. Such groups are virtually torsion-free by Wise [33,
Theorem 4.19], and so the main theorem has the following corollary.
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Corollary 4 Suppose � is a one-ended hyperbolic group that splits nontrivially over
a virtually cyclic subgroup. Then either � has a finitely generated one-ended subgroup
of infinite index or � is virtually the fundamental group of a closed surface.

Limit groups, otherwise known as finitely generated fully residually free groups, play a
central role in the study of algebraic geometry and logic over free groups; see Sela [29]
and Kharlampovich and Myasnikov [21]. They are not necessarily hyperbolic, but every
limit group is a toral relatively hyperbolic group; see Alibegović [1] and Dahmani [12].

Corollary 5 If � is a one-ended limit group then either � has a finitely generated
one-ended subgroup of infinite index or � is the fundamental group of a closed surface.

Proof A limit group is hyperbolic if and only if it does not have a subgroup isomorphic
to Z2 [29, Corollary 4.4], and any virtually abelian limit group is abelian, so we may
reduce to the hyperbolic case. Every nonabelian limit group splits over a cyclic subgroup
[29, Theorem 3.9], so the result follows from Corollary 4.

Further motivation for Theorem 3 is provided by the class of special groups, introduced
by Haglund and Wise [17], of which graphs of free groups with cyclic edge groups are
examples by Hsu and Wise [19]. It should be possible to generalise Theorem 3 to the
class of special groups; the main technical obstruction is the absence of a suitable JSJ
decomposition.

The ingredients of the proof of Theorem 3 include Bowditch’s JSJ decomposition for
hyperbolic groups and a criterion for detecting free splittings of graphs of groups with
cyclic edge groups in terms of their vertex groups (Theorem 18). The heart of the proof
is a “Local Theorem” about the rigid vertices of the JSJ decomposition (Theorem 8
below). To state the Local Theorem, we need to introduce peripheral structures on free
groups.

A multiword in F is a subset w � F X 1. A set of pairwise nonconjugate maximal
cyclic subgroups of F is called a peripheral structure on F . Any multiword w defines
a peripheral structure Œw�. We will consider pairs .F; Œw�/, where F is a free group
and Œw� is a peripheral structure. Note that any vertex group of a graph of groups with
cyclic edge groups is naturally equipped with a peripheral structure induced by the
incident edges.

A peripheral structure Œw� on F induces a natural pullback peripheral structure Œyw� on
any subgroup yF � F . We give a topological definition.
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Definition 6 Realise F as the fundamental group of a handlebody X , and w as an
embedded 1–dimensional submanifold N � X . If yF � F is a subgroup, let yX be
a corresponding covering space of X and let yN be the preimage of N in yX . The
pullback of Œw� to yF , which we denote by Œyw�, is determined by those nontrivial
conjugacy classes of yF that are determined by components of yN .

Remark 7 If w is finite and yF is finitely generated then yw is finite .

A pair .F; Œw�/ is said to be freely indecomposable or one-ended if the elements of Œw�
are hyperbolic in every free splitting of F , and rigid if they are hyperbolic in every
cyclic splitting of F . A pair .F; Œw�/ is said to be a surface if there is an isomorphism
F Š �1† for † a compact surface that identifies Œw� with the conjugacy classes of
cyclic subgroups corresponding to @†. An important special case is when † is a
thrice-punctured sphere; this is the unique case in which .F; Œw�/ is both a surface and
rigid.

We can now state the Local Theorem.

Theorem 8 Suppose .F; Œw�/ is rigid and not a thrice-punctured sphere. For any
clean finite-index subgroup yF � F , for any ywi 2 yw , the pair . yF ; ŒywX f ywig�/ is freely
indecomposable.

See Definition 27 below for the definition of a clean subgroup. It follows from Marshall
Hall’s Theorem [18] that there are many clean subgroups of finite index.

Finally, let us consider the extent to which the results of this paper have a bearing on
Question 1. Our techniques provide a new characterisation of surfaces with boundary
.�1†; @†/ among all pairs .F; Œw�/. To express this characterisation, we introduce
the natural partial order on commensurability classes of subgroups of free groups
with peripheral structures. A peripheral structure Œu� on yF is compatible with Œw� if
Œu�� Œyw�. We define a preorder on subgroups of F equipped with compatible peripheral
structures as follows.

Definition 9 Given .F; Œw�/, let .H; Œu�/ and .K; Œv�/ be subgroups equipped with
peripheral structures compatible with Œw�. Let Œyu� be the peripheral structure on H \K

induced by Œu�. Write
.H; Œu�/� .K; Œv�/

if:

(1) jH WH \Kj<1; and furthermore,

(2) if jK WH \Kj<1 also then Œyu� is compatible with Œv�.
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This is a preorder on subgroups equipped with compatible peripheral structures; the
induced equivalence relation is called commensurability, and the preorder � descends
to a partial order on commensurability classes.

Definition 10 Let P.w/ be the poset of commensurability classes of pairs .H; Œu�/
such that:

(1) H is nonabelian and a finitely generated subgroup of F ;

(2) Œu� is compatible with Œw�;

(3) the pair .H; Œu�/ is freely indecomposable.

Corollary 11 Suppose that .F; Œw�/ is freely indecomposable. Let .H; Œu�/ be a
pair that represents a commensurability class in P.w/. The commensurability class
represented by .H; Œu�/ is minimal in P.w/ if and only if

.H; Œu�/Š .�1†; @†/

for some compact surface with boundary †.

This raises the hope of applying Zorn’s Lemma to find surface subgroups.

Question 12 Does every chain in P.w/ have a lower bound?

An affirmative answer to Question 12 would come very close to resolving Question 1 in
the case of graphs of free groups. (There are also some mild compatibility conditions
needed on the surfaces constructed.) This would indicate that surfaces with boundary
in Œw� are fairly abundant in F . A negative answer would indicate that such surfaces
are very special indeed.

Acknowledgements Thanks to Sang-hyun Kim for pointing me towards Question 2.
Thanks to Cameron Gordon for teaching me everything I know about handlebodies and
Whitehead’s algorithm, and also for a useful conversation about Lemma 22. Thanks to
Chris Cashen and Larsen Louder for some instructive examples and to the referee for
catching some errors in an earlier draft.

1 Covering theory of graphs of spaces

In the proof of Theorem 3, we will need to use the covering theory of graphs of groups.
Such a theory was developed from an algebraic point of view by Bass [2], but instead
we will use the point of view of graphs of spaces, following Scott and Wall [28].
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The data for a graph of spaces X are as follows. We are given a graph „, for each
vertex v of „ a connected CW–complex Xv , and for each edge e of „ a connected CW–
complex Xe . If an edge e adjoins vertices v˙ , we are given corresponding attaching
maps @˙e W Xe!Xv˙ . These attaching maps @˙e are required to be �1 –injections.

The geometric realisation of X is the space� a
v2V .„/

Xv t

a
e2E.„/

.Xe � Œ�1;C1�/

�.
�

where the relation � identifies .x;˙1/ 2Xe � Œ�1;C1� with @˙e .x/ 2Xv˙ , for each
edge e 2 E.„/ and each x 2 Xe . We will usually abuse notation and denote the
geometric realisation of X by X .

From this topological point of view, a graph of groups with fundamental group � is
simply an Eilenberg–Mac Lane space X for � with the structure of a graph of spaces.

The key component of the covering theory for graphs of spaces is the definition of an
elevation, which was first introduced by Wise (see, for instance, [33]). The covering
theory of graphs of spaces was further developed by the author in [31; 32], to which
the reader is referred for proofs of some of the statements below.

Let X be a graph of spaces, with underlying graph „, vertex spaces Xv , edge
spaces Xe , and attaching maps @˙e W Xe!Xv . A covering space yX of X is naturally
endowed with the structure of a graph of spaces. The connected components of the
preimages of the vertex spaces of X form the vertex spaces of yX , and likewise the
connected components of the preimages of the edge cylinders of X form the edge
cylinders of yX . The underlying graph of yX , denoted by �„, can be recovered by
collapsing the vertex spaces of yX to points and the edge spaces of yX to arcs. The
covering map yX ! X induces a combinatorial map of underlying graphs �„! „,
which sends vertices to vertices and edges to edges.

It remains to describe the attaching maps of the covering space yX . Given an attaching
map @˙e W Xe!Xv of X and a vertex space yXyv of yX , the disjoint union of the edge
spaces f yXyeg of yX that lie above Xe , together with the coproduct of their attaching
maps, fits into a commutative diagram as follows.

`
ye
yXye

`
ye @˙
ye //

��

yXyv

��
Xe

@˙e // Xv
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Here, ye ranges over all the edges of �„ in the preimage of e that are incident with yv .
The key observation is that this diagram is a pullback. The restriction of the pullback of
a continuous map and a covering map to a connected component is called an elevation.
See [31; 32; 33] for further characterisations of elevations. Therefore, the attaching
maps of yX are precisely the elevations of the attaching maps of X to the vertex
spaces of yX . In particular, the covering space yX and covering map yX ! X are
determined by the restriction of the covering map to the vertex spaces and by the map
of graphs �„!„.

There is a condition on a set of covering maps of the vertex spaces that determines
whether or not they can be extended to a covering of X . The degree of an elevation is
the conjugacy class of �1. yXye/ as a subgroup of �1.Xe/.

Proposition 13 Let f yXyv!Xvg be a set of covering maps of the vertex spaces fXvg of
a graph of spaces X . These covering maps can be extended to a covering map yX !X ,
where the f yXyvg are the vertex spaces of yX in the induced graph-of-spaces decom-
position, if and only if the following condition holds. For each edge e of „ with
attaching maps @˙e W Xe!Xv˙ , there is a degree-preserving bijection between the set
of elevations of @Ce to

`
yv
yXyv and the set of elevations of @�e to

`
yv
yXyv .

More generally, any degree-preserving bijection between subsets of the sets of elevations
of the edge maps of X to

`
v0 X

0
v0 can be used to build a graph of spaces X 0 with

vertex spaces fX 0v0g and a map X 0!X . The resulting space X 0 is called a precover
of X . The elevations to X 0 of attaching maps of X that are not attaching maps of X 0

are called hanging elevations. The previous proposition can be generalised as follows.

Proposition 14 A precover X 0 of a graph of spaces X can be extended to a covering
map yX !X , where every vertex space of yX is a vertex space of X 0 , if and only if the
following condition holds. For each edge e of „ with attaching maps @˙e W Xe!Xv˙ ,
there is a degree-preserving bijection between the set of hanging elevations of @Ce to X 0

and the set of hanging elevations of @�e to X 0 .

It follows that precovers can always be extended to covers.

Lemma 15 If X 0 is a precover of X then the map X 0 ! X can be extended to a
covering map yX ! X , where X 0 is a subgraph of spaces of yX and the inclusion
X 0 ,! yX induces an isomorphism on fundamental groups.

Proof Let @˙
ye
W yXye!X 0 be a hanging elevation to X 0 of an attaching map @˙e WXe!Xv .

For each such elevation @˙
ye

, let Yye be the covering space of X with fundamental
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group �1. yXye/. There is an edge space of Yye with fundamental group �1. yXye/. Delete
this edge space from Yye , and let Zye be a component of the result. Then Zye is a
precover of X with a unique hanging elevation, which we denote by @�

ye
W yXye!Zye .

The precover of X that consists of the disjoint union of X 0 and all the Zye , where
ye ranges over all the hanging elevations to X 0 of attaching maps of X , satisfies the
hypotheses of the previous proposition. The resulting covering space yX has the required
properties by construction.

As an immediate result, precovers define subgroups.

Lemma 16 If X 0 is a connected precover of a graph of spaces X then the map
X 0!X induces a monomorphism at the level of fundamental groups.

A graph of spaces X is called reduced if no attaching map is a �1 –surjection.

Lemma 17 Suppose X is a reduced graph of spaces. If X 0 is a precover but not a
cover of X then �1.X

0/ has infinite index in �1.X /.

Proof Consider the space Yye constructed in the proof of Lemma 15, and let ‡ be
its underlying graph. Because �1.Yye/ is equal to the fundamental group of one of its
edge spaces, ‡ is a tree. Because X is reduced, every vertex of ‡ has valence greater
than one. Therefore, ‡ is infinite. It follows that there are points of X with infinitely
many preimages in Zye , and hence yX !X has infinite degree.

2 A variant of a theorem of Shenitzer

In this section, we prove a theorem that describes when the fundamental group of a
graph of groups with cyclic edge groups splits freely.

Theorem 18 Let � be finitely generated, and the fundamental group of a graph of
groups with infinite cyclic edge groups. Then � is one-ended if and only if every vertex
group is freely indecomposable relative to the incident edge groups.

This statement is similar to a theorem of Shenitzer [30], which says that an amalgam of
two free groups along a cyclic group is free if and only if the amalgamating cyclic group
is a free factor in one of the free groups—see Louder [24] for a modern treatment and
a generalisation. See also Diao and Feighn [13]. In the case of doubles, Theorem 18
was stated without proof in Gordon and Wilton [14]. It is undoubtedly well known to
experts, but we were unable to find a proof in the literature, so we give one here.
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Remark 19 The hypothesis that the edge groups are cyclic cannot be removed. Indeed,
the free group of rank two can be written as an HNN extension of F3 Š ha; b; ci that
conjugates ha; bi to hb; ci, but F3 does not split freely relative to ha; bi and hb; ci.

One direction of the theorem is obvious: if some vertex group splits freely relative to
the incident edge groups then � also splits freely.

To prove the other direction, we will realise � as the fundamental group of a certain
complex of groups; see Bridson and Haefliger [8] for a detailed discussion of Haefliger’s
theory of complexes of groups. By hypothesis, we are given a splitting of � with
finitely generated vertex groups �v and infinite cyclic edge groups �e ; let „ be the
underlying graph of this splitting. Now let T be the Bass–Serre tree of a nontrivial
free splitting of � . Because the edge stabilisers of T are trivial, any finitely generated
nontrivial subgroup H of � has a unique minimal invariant subtree of T , on which H

acts cocompactly. Let Tv be the minimal invariant subtree of the vertex group �v , and
write Xv for the quotient graph of groups Tv=�v . Likewise, let Te be the minimal
invariant subtree of the edge group �e , which is either a point or a line; again, write Xe

for the quotient graph of groups Te=�e , which is either topologically a circle or a
point labelled by �e . The graphs of groups Xv and Xe are finite. If e is incident at v
then there is a natural inclusion Te! Tv which descends to a morphism of graphs of
groups Xe!Xv .

Using these morphisms Xe!Xv as attaching maps, we can build a complex of groups,
indeed a graph of graphs of groups, X , with fundamental group � , just as we built a
graph of spaces at the beginning of Section 1. That is, the vertex “spaces” of X are the
graphs of groups Xv , the edge “spaces” are the cylinders Xe � Œ�1; 1�, the attaching
maps are given by the morphisms Xe ! Xv , and the underlying graph is „. The
universal cover of X , which we denote by zX , is a tree of copies of trees Tv , glued
along strips or arcs of the form Te � Œ�1; 1�. The underlying tree of zX , which is the
Bass–Serre tree of the given cyclic splitting of � , we denote by T .

There is a natural � –equivariant map f W zX ! T defined as follows: the restriction
of f to Tv is the inclusion Tv ,! T ; on Te � Œ�1;C1�, f is the composition of the
projection to Te with the inclusion Te ,! T . Let t be the midpoint of an edge in T ,
let zYt D f

�1.t/, and let Yt be the image of zYt in X . By construction, for any v
the intersection of Yt with Xv is a finite union of points, and the intersection of Yt

with Xe � Œ�1;C1� is a finite union of arcs of the form �� Œ�1;C1�. Therefore Yt

is topologically a finite graph, with vertices in the vertex graphs of groups of X and
edges in the edge cylinders of X .

Lemma 20 The inclusion Yt ,! X , when restricted to a component, induces an
injection on fundamental groups.
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Proof Let Z be a component of Yt and let zZ be a component of the preimage of Z

in zX . The lemma follows from the fact that the composition zZ ,! zX ! T is injective.
Suppose not. Then, because T is a tree, some pair of adjacent edges in zZ map to the
same edge in T . This implies that this pair of edges of zZ is contained in a single edge
strip Te � Œ�1;C1� of zX . But the gluing maps map Te! Tv are injective, so no two
edges of zZ contained in Te � Œ�1;C1� are adjacent.

Proof of Theorem 18 The free splitting of � represented by T is assumed to be
nontrivial, so there is an edge of T in the image of zX ; let t be the midpoint of this
edge. Because the map zYt ! T is �–equivariant and its image is a point, any loop
in Yt stabilises an edge in T . But the splitting corresponding to T has trivial edge
groups, so Yt is a finite forest. Therefore, there is a vertex graph of groups Xv with
an edge � whose midpoint is either an isolated vertex or a leaf in Yt . In the former
case, deleting the midpoint of � splits �v freely, relative to its incident edge groups. In
the latter case, there is a unique edge e incident at v with � in the image of Xe , and
only one edge of Xe maps to � . It follows that � is nonseparating in Xv —if it were
separating, then every loop in Xv would cross it an even number of times. Therefore,
� corresponds to a basis element of �v ; because � is crossed once by Xe and is not
crossed by the other incident edge spaces, there is a splitting of �v relative to the
incident edge groups.

3 Whitehead graphs

The aim of this section is to prove Theorem 8. To do this, we first need to recall
something about Whitehead’s algorithm. We will adopt the discs-in-handlebodies point
of view—see Berge [3] and Manning [26] for clear accounts. For the combinatorial
perspective on Whitehead’s algorithm, see for instance Lyndon and Schupp [25].

Let U be a handlebody of appropriate genus, and fix an identification F Š �1.U /.
The conjugacy classes of the elements of a multiword w naturally correspond to
a 1–dimensional submanifold N � U , determined up to homotopy, in which each
component is essential. Any choice of basis B for F naturally corresponds to a
maximal family of separating discs D � U ; when U is cut along D , the result is a
3–ball; the preimage of each disc is a pair of discs on the boundary of the ball, and the
preimage of N is a union of arcs in the ball, with their endpoints in the discs. Crushing
the discs to points, the resulting 1–complex embedded in the ball is the Whitehead
graph of w , with respect to B . It is convenient to remember the pairing on the vertices.
We will denote the Whitehead graph of a multiword w with respect to B by WB.w/.
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aC

a�

bC

b�

Figure 1. The word ba�1b�1a2 realised as a submanifold of a handlebody,
which is cut along the discs that represent the standard generating set

We will often suppress all mention of B when it causes no confusion. We will call a
multiword w minimal if the basis B is chosen to minimise its length.

If there is a pair of vertices fvC; v�g of WB.w/ separated by a set E of edges of WB.w/,
and the cardinality of E is strictly less than the valence of vC (which equals the valence
of v� ) then a Whitehead move can be applied, which yields a new basis B0 such that
WB0.w/ has fewer edges than WB.w/.

For our purposes, Whitehead graphs will be useful for recognising free and cyclic
splittings of .F; Œw�/. The following lemma is standard—see, for instance, Cashen [11,
Theorem 4.1].

Lemma 21 If W .w/ is disconnected then .F; w/ is freely decomposable. Conversely,
if .F; w/ is freely decomposable then W .w/ is either disconnected or contains a
separating vertex.

Note that if W .w/ contains a separating vertex then w is not minimal. Next, we
need a condition to recognise rigid pairs. The following result follows from work of
Cashen [10], but we shall give a more direct proof here.

Lemma 22 If W .w/ contains a separating pair of edges then .F; Œw�/ is either a
thrice-punctured sphere or is not rigid.

Proof As above, we realise w by an embedded 1–dimensional submanifold in a
handlebody U . We will abuse notation and denote by wi the component of the sub-
manifold corresponding to the element wi 2w . Let wi ; wj 2w be the (not necessarily
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distinct) components of w that contain the separating pair of edges. By hypothesis,
there exists a disc D properly embedded in U such that wi [ wj intersects D in
exactly two points and every other wk is disjoint from D . Let V be a small closed
neighbourhood of D[wi [wj , let † be the boundary of V in U and let V 0 be the
complement of the interior of V .

Fix a basepoint in †. There are various cases to consider, according to whether or not
wi and wj are distinct and whether or not † is connected. We will assume that they
are distinct and that † is connected, and leave the remaining cases to the reader.

By construction, �1.V /Š hwii � hwj i (choosing representatives of conjugacy classes
appropriately). The surface † is homeomorphic to a twice-punctured torus, and its
fundamental group can be presented as

�1.†/Š ha; b; d1; d2 j Œa; b�d1d2i

where a D wiwj , b is a meridian about wi , and d1 and d2 are freely homotopic
to the boundary components of †. The Seifert–van Kampen Theorem implies that
F Š �1.U / is a pushout.

�1.†/ //

��

�1.V /

��
�1.V

0/ // �1.U /

Factoring out the kernels of the maps to �1.U /, we obtain a decomposition of �1.U /

as an amalgamated free product. Because b , d1 and d2 are all null-homotopic in U ,
whereas a survives, the edge group is cyclic.

If this cyclic splitting is trivial then necessarily wi and wj generate F , and then either
.F; Œw�/ is freely decomposable or

Œw�D Œfwi ; wj ; wiwj g�;

in which case .F; Œw�/ is a thrice-punctured sphere.

Lemma 23 If .F; Œw�/ is rigid and W .w/ contains a vertex v and an edge e such that
W .w/Xfv; eg is disconnected then either .F; Œw�/ is a thrice-punctured sphere or w is
not minimal.

Proof Let A;B be the components of W .w/ X fv; eg. Without loss of generality,
assume that u, the pair of v , is contained in A. Let EA and EB be the sets of edges
that joins v to A and B respectively. Then EA[feg is a set of edges that separates v
from u, so one can perform a Whitehead move, and hence w is not minimal, unless
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the valence of v is equal to the cardinality of EA[feg. But this is true if and only if
EB is a single edge f , in which case fe; f g is a separating pair of edges.

These conditions are certainly not exhaustive. There are cyclically decomposable pairs
for which the minimal Whitehead graph does not contain a cut pair of edges.

Next, we need to understand the Whitehead graphs of pullbacks. The key operation is
splicing, which was introduced by Manning [26].

Definition 24 Let A;B be finite graphs. Let u be a vertex of A and v a vertex of B ,
and assume that the valences of u and v are equal. Fix a bijection f between the
edges of A incident at u and the edges of B incident at v . Construct a new graph C

as follows: delete the vertices u and v from A and B , leaving the incident edges
“hanging”; then glue the resulting hanging edges of A and B together according to the
bijection f . The graph C is said to be obtained from A and B by splicing.

The construction of the Whitehead graph of a pullback can be summarised in the
following lemma. An example is illustrated in Figure 2.

Lemma 25 (Manning [26]) If yF � F is a subgroup of finite index and yw is the
pullback of w to yF then W .yw/ is obtained by splicing jF W yF j copies of W .w/. (The
choices made when splicing correspond exactly to the choice of basis for yF .)

Figure 2. The lift of ba�1b�1a2 to a cover of degree two. Deleting the grey
disc corresponds to splicing.

Remark 26 The result of splicing two connected graphs without cut vertices is another
connected graph without cut vertices. The proof of this is left as an exercise to the
reader.
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The final piece of the argument is the notion of a clean cover (or, equivalently, a clean
subgroup), used extensively by Wise.

Definition 27 Fix a basis B for F and consider a pair .F; Œw�/. Let X be the rose
graph, oriented and labelled, with the identification F Š �1.X / determined by the
choice of basis B . Consider a subgroup yF of finite index in F , and the corresponding
covering map yX !X . The subgroup yF is called clean if the pullback map

ywW
a

i

S1
! yX

is injective on each connected component.

In the handlebody picture, the subgroup yF is clean if and only if every component of
the preimage of w intersects each ball in at most one arc. See Figure 3.

Figure 3. One component of the pullback of a word to a clean cover

A standard application of Marshall Hall’s Theorem shows that clean subgroups are
plentiful.

Lemma 28 If xF is any subgroup of finite index in F then there is a clean subgroup
yF � xF .

Proof For each element wi of w , Marshall Hall’s Theorem provides a finite-index
subgroup Fi � F such that, if Xi !X is the corresponding finite-sheeted cover, the
map wi W S

1!X lifts to an embedding S1 ,!Xi . The normal core of the subgroup

xF \
\

i

Fi

is the required clean subgroup of F .
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Proof of Theorem 8 Choose a basis B for F so that w is minimal. By Lemma 23
and the hypothesis that .F; w/ is rigid and not a thrice-punctured sphere, the Whitehead
graph W .w/ does not contain a separating vertex-edge pair. As described above, the
Whitehead graph W .yw/ is obtained by splicing together various copies Wj of W .w/.
Because yF is clean, ywi intersects each Wj in at most one edge. For each j , let
W 0j DWj X ywi ; note that each W 0j is connected and does not have a cut vertex. The
Whitehead graph W .ywX f ywig/ is obtained by splicing together the W 0j , and therefore
is also connected with no cut vertices. In particular, . yF ; Œw X f ywig�/ is one-ended
by Lemma 21.

4 The JSJ decomposition

To prove the main theorem, we will use the (cyclic) JSJ decomposition of � . JSJ
decompositions of groups come in many different versions; Guirardel and Levitt [16]
contains a useful summary and a unifying perspective. To be specific, we will use
Bowditch’s JSJ decomposition [6], which is only defined for hyperbolic groups but has
the advantage of being canonical. We summarise its properties in the case of interest to
us in the following result.

Theorem 29 (Bowditch [6]) Let G be any one-ended, torsion-free, hyperbolic group.
There is a reduced graph of groups, with fundamental group G , with the following
properties.

(1) Each edge group is cyclic.

(2) Each vertex group is of one of three sorts.
(a) Cyclic vertex groups are cyclic.
(b) Surface vertex groups are isomorphic to the fundamental groups of compact

surfaces. The incident edge groups are identified with (powers of) boundary
components.

(c) Rigid vertex groups do not split over any cyclic subgroup relative to the
incident edge groups.

Furthermore, one end of every edge adjoins a cyclic vertex.

This graph of groups is called the JSJ decomposition of G .

Of course, in the above definition there is some ambiguity, as any vertex corresponding
to a thrice-punctured sphere can be thought of as either of surface or rigid type. We
shall always think of them as being of surface type.
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Remark 30 If � is the fundamental group of a graph of free groups with cyclic edge
groups then the JSJ decomposition of � is trivial if and only if � is the fundamental
group of a surface.

First, we shall deal with the case in which there are no rigid vertices. The proof of the
following lemma is similar to the proof of [14, Lemma 22].

Lemma 31 Suppose the JSJ decomposition of � has no rigid vertices. Then � has a
surface subgroup. In particular, � either has a one-ended subgroup of infinite index or
� is a surface group.

Proof By [33, Theorem 4.18], we can pass to a finite-index subgroup �0 of � and
assume that every attaching map identifies a cyclic vertex group with a boundary
component of a surface component. It is easy to thicken this picture to see that �0 is
the fundamental group of a 3–manifold with boundary, M . Standard gluing arguments
show that M is aspherical, and it follows that �.@M / � 0. By Stallings’s Ends
Theorem, �0 is one-ended, and so @M is incompressible in M by the Loop Theorem
and Dehn’s Lemma. Therefore �1.@M / is a surface subgroup of � .

Proof of Theorem 3 Realise the JSJ decomposition of � by a graph of spaces X . By
Lemma 31, we may assume that some vertex v of X is rigid, and not a thrice-punctured
sphere. That is, if F D �1.Xv/ and Œw� is the peripheral structure induced by the
incident edge groups, then .F; Œw�/ is rigid. Let yF be a clean subgroup of finite index
in F , equipped with the pullback peripheral structure Œyw�. Because � is subgroup
separable [33], there is a finite-sheeted covering space yX of X , with a vertex space yxyv
covering Xv , such that �1. yXyv/ D yF . Let y� D �1. yX / and let �„ be the underlying
graph of yX . Let X 0 be the precover of X that consists of the union of every vertex
space of yX apart from yXyv , and every edge cylinder of yX that does not adjoin yXyv .
Let e1; : : : ; em be the edges of �„ with one end adjoining yv , and let f1; : : : ; fn be the
edges of �„ with both ends adjoining yv . We denote by @Cei

the attaching map of ei

that maps to Xyv and by @�ei
the attaching map that maps to X 0 . Both @C

fj
and @�

fj
map

to Xyv .

We will now define a new precover W of yX as follows. Take m copies of yXyv , denoted
by Yi , and take 2n further copies of yXyv , denoted by Y ˙j . Consider the following sub-
set E of the set of all elevations of edge maps of X to Y D

`
i Yi t j̀ Y Cj t j̀ Y �j :

E consists of all such elevations, except for the copy of @Cei
that maps to Yi , the copy

of @C
fj

that maps to Y Cj and the copy of @�
fj

that maps to Y �j . Each attaching map
incident at yv has exactly mC 2n� 1 elevations in E , and each of these elevations is a
lift (meaning that it is of maximal possible degree).
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Now take mC2n�1 copies of X 0 , denoted denote by Zk , and let Z D
`

k Zk . The
complete set of elevations of edge maps of yX to Z , which we denote by F , consists
of exactly mC 2n� 1 elevations of each @�ei

, and again each of these elevations is a
lift. Therefore, Y tZ , together with the elevations E [F , satisfies the hypotheses of
Proposition 14, and can be completed to a precover W of yX . If W is disconnected,
replace it with one of its connected components. Each vertex group of W is freely
indecomposable relative to its incident edge groups, so �1.W / is one-ended. The Yi

have hanging elevations of edge groups of yX , so W is not a cover of yX . Therefore
�1.W / is a subgroup of infinite index in y� , and hence in � as required.

Finally, we prove Corollary 11. One possible proof is identical to the proof of Theorem 3,
but uses a relative version of the JSJ decomposition, such as that provided by [10].
The proof given here deduces Corollary 11 directly from Theorem 3 by considering
doubles.

Given a pair .F; Œw�/, the corresponding double D.F; Œw�/ is the fundamental group of
a graph of groups with two vertices and #Œw� edges; each vertex is labelled by a copy
of F , each edge group is an element of Œw�, and the attaching maps are the natural
inclusions. Theorem 18 implies that the pair .F; Œw�/ is one-ended if and only if the
double D.F; Œw�/ is one-ended. Clearly, D.F; Œw�/ is a surface group if and only the
pair .F; Œw�/ can be realised as .�1†; @†/ for some compact surface †.

Proof of Corollary 11 It is clear that a pair of the form .�1†; @†/ is minimal.
Conversely, suppose that .F; Œw�/ cannot be realised by a surface. Then D.F; Œw�/

is not a surface group and so, by Theorem 3, has a finitely generated, one-ended
subgroup H of infinite index. Let X be a graph of spaces that realises the given
decomposition of D.F; Œw�/, and let X H be the covering space corresponding to H .
Because H is finitely generated, there is a finite subgraph of spaces X 0 �X H with
fundamental group H ; X 0 is naturally a precover of X . By Theorem 18, each vertex
group of X 0 , equipped with the induced peripheral structure, is one-ended. If every
vertex space X 0v0 of X 0 finitely covered the corresponding vertex space Xv of X ,
and if the induced peripheral structure on �1X 0v0 were always the full pullback of the
peripheral structure on �1Xv , then it would follow from the covering theory of graphs
of spaces that X 0!X was a finite-sheeted covering map, which would contradict the
fact that H is of infinite index in D.F; Œw�/. Therefore, there is a vertex space �1X 0v0
that is either of infinite index in F or such that the peripheral structure Œu� on �1X 0v0
induced by X 0 is strictly contained in the pullback peripheral structure Œyw�. Therefore,
.�1X 0v0 ; Œu�/ < .F; Œw�/ and so .F; Œw�/ is not minimal.
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