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Lagrangian spheres, symplectic surfaces
and the symplectic mapping class group

TIAN-JUN LI

WEIWEI WU

Given a Lagrangian sphere in a symplectic 4–manifold .M; !/ with bC D 1 , we
find embedded symplectic surfaces intersecting it minimally. When the Kodaira
dimension � of .M; !/ is �1 , this minimal intersection property turns out to be
very powerful for both the uniqueness and existence problems of Lagrangian spheres.
On the uniqueness side, for a symplectic rational manifold and any class which is not
characteristic, we show that homologous Lagrangian spheres are smoothly isotopic,
and when the Euler number is less than 8, we generalize Hind and Evans’ Hamiltonian
uniqueness in the monotone case. On the existence side, when � D�1 , we give a
characterization of classes represented by Lagrangian spheres, which enables us to
describe the non-Torelli part of the symplectic mapping class group.

53D05, 53D12, 53D42

1 Introduction

For a symplectic 4–manifold .M; !/, symplectic surfaces and Lagrangian surfaces
are of complementary dimensions. Thus we can ask what can be said about their
intersection pattern. Welschinger investigated this problem for a Lagrangian torus L

in [54], where he proves that the class ŒL� pairs trivially with any effective class, and a
symplectic sphere with positive Chern number can be isotoped symplectically away
from L.

In the case when L is a Lagrangian sphere in S2�S2 with a product symplectic form,
Hind [22] constructed two transverse foliations of symplectic spheres where each sphere
intersects L in a single point. This is used to show that every such L is Hamiltonian
isotopic to the antidiagonal. For a Lagrangian sphere L in a symplectic Del Pezzo
surface with Euler number at most 7, Evans showed in [13] that it can be displaced
from certain symplectic spheres with positive Chern number up to Hamiltonian isotopy,
and applied this displacement result to prove the uniqueness of Hamiltonian isotopy
class of Lagrangian spheres.
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In Section 3, we generalize Evans’ displacement result in two ways, the first being:

Theorem 1.1 Let L be a Lagrangian sphere in a symplectic 4–manifold .M; !/,
and A 2 H2.M IZ/ with A2 � �1. Suppose A is represented by a symplectic
sphere C . Then C can be isotoped symplectically to another representative of A which
intersects L minimally.

In this paper all surfaces are smooth, embedded, connected and oriented. We say that
two closed surfaces intersect minimally if they intersect transversely at jkj points,
where k is the homological intersection number.

The second generalization is for symplectic surfaces of arbitrary genus in manifolds
with bC D 1. To state it let E! be the set of !–exceptional classes

E! D fE 2H2.M;Z/ WE is represented by an !–symplectic .�1/ sphereg:

Theorem 1.2 Suppose .M; !/ is a symplectic 4–manifold with bC D 1 and L is a
Lagrangian sphere. Assume A 2H2.M;Z/ satisfies !.A/ > 0;A2 > 0 and A �E � 0

for all E 2 E! . Then there exists a symplectic surface in the class nA intersecting L

minimally for large n 2N .

These theorems on minimal intersection are this paper’s main innovation. Theorem 1.2
is proved by combining the symplectic Seiberg–Witten theory with the symplectic
field theory. The symplectic Seiberg–Witten theory produces embedded, connected
pseudo-holomorphic submanifolds for a class of compatible almost complex structures
suitable for applying symplectic field theory. Via neck stretching, the symplectic field
theory then produces in the limit the desired symplectic surfaces which intersect L

minimally. When applying the symplectic field theory, one important step is to establish
Lemma 3.8, which also plays a crucial role in the proof of Theorem 1.1.

One consequence of Theorem 1.2 is that we are able to effectively perform the
Lagrangian-relative inflation procedure when bC D 1 (Section 5).

This turns out to be useful in dealing with a variety of questions, especially the existence
of Lagrangian spheres. To approach this question, it is convenient to introduce the
following definition.

Definition 1.3 A class � is called K! –null spherical if �2 D�2;K!.�/D 0 and it
is represented by a smooth sphere. Here K! is the symplectic canonical class.
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We classify K–null spherical classes in any .M; !/ with � D �1. Recall that
�.M; !/ is the Kodaira dimension of .M; !/ (see for example Li [33]). The Kodaira
dimension � takes values in the set f�1; 0; 1; 2g, and �.M; !/D�1 exactly when
.M; !/ is symplectic rational or ruled. The classification of K! –null spherical classes,
together with the Lagrangian-relative inflation, enables us to further show that the
obvious necessary condition for the existence of a Lagrangian sphere in .M; !/ is also
sufficient.

Theorem 1.4 Let .M; !/ be a symplectic 4–manifold with � D �1. The class
� 2 H2.M IZ/ is represented by a Lagrangian sphere if and only if � is K! –null
spherical and !.�/D 0.

On the other hand, as in [13], Theorem 1.1 is useful in establishing uniqueness results
for rational manifolds. A rational manifold is CP2 # kCP2 or S2 �S2 . When M

is a rational manifold, .M; !/ is called a symplectic rational manifold. A symplectic
rational manifold .M; !/ which is monotone, ie Œ!�DK! , is also called a symplectic
Del Pezzo surface.

Theorem 1.5 Let .M; !/ be a symplectic rational manifold with Euler number �� 7,
and � a K! –null spherical class with !.�/D 0. If � is not characteristic when �D 6,
then Lagrangian spheres in � are unique up to Hamiltonian isotopy.

Hind [22] proved this in the case of S2�S2 and Evans [13] for symplectic Del Pezzo
surfaces with Euler number up to 7. Notice that this is equivalent to the transitivity of
the Hamiltonian group action on the space of homologous Lagrangian spheres. The
proof of Theorem 1.5 will be presented in Section 6. Recall that a class � is called
characteristic if � � u D u � u modulo 2 for any u 2 H2.M;Z/. We believe that
uniqueness still holds when � D 6 and � is characteristic. However, the condition
� � 7 in Theorem 1.5 is necessary, as demonstrated by Seidel’s twisted Lagrangian
spheres in symplectic Del Pezzo surfaces with �� 8 [47].

Further, we prove:

Theorem 1.6 Let .M; !/ be a symplectic rational manifold and � a K! –null spheri-
cal class with !.�/D 0. If � is not characteristic when �D 6, then Lagrangian spheres
in � are unique up to smooth isotopy.

In the monotone case this was again due to Evans [14]. We expect the extra condition
of being noncharacteristic when �D 6 will eventually be removed. In fact, we are not
aware of examples of homologous but not smoothly isotopic Lagrangian spheres in any
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symplectic 4–manifolds. For Lagrangian tori, such examples in a primitive homology
class were first constructed by Vidussi in [53], and null-homologous ones were further
constructed by Fintushel and Stern in [16].

We also conjecture the following version of uniqueness.

Conjecture 1.7 For any two homologous Lagrangian spheres L1 and L2 in a symplec-
tic rational manifold .M; !/, there exists � 2 Symph.M; !/ such that �.L1/DL2 .

In other words, the Torelli part Symph.M; !/, which is the subgroup of Symp.M; !/

acting trivially on homology, should also act transitively on the space of Lagrangian
spheres in a fixed homology class. Evans [15] calculated explicitly the homotopy type
of Symph.M; !/ when .M; !/ is a symplectic Del Pezzo surface with � � 8 (also
known to Pinnsonault). In particular, when �� 7, it is connected thus agreeing with
Ham.M; !/. In our upcoming work [38] we will extend the connectedness to the
nonmonotone case.

It turns out that we are able to calculate the non-Torelli part of the symplectic mapping
class group from Theorem 1.4. Recall that each Lagrangian sphere L gives rise to a
symplectomorphism, well defined up to isotopy (see [47] and Section 2.1.1), which is
denoted by �L and called the Lagrangian Dehn twist along L.

Theorem 1.8 Let .M; !/ be a symplectic 4–manifold with � D �1. Then the
homological action of Symp.M; !/ is generated by Lagrangian Dehn twists. In other
words, for any f 2 Symp.M; !/, there are Lagrangian spheres Li such that f� D
.�L1

/� ı .�L2
/� ı � � � ı .�Lr

/� .

At the homological level, Theorem 1.8 could be viewed as a symplectic version of a
classical theorem of M Noether, which asserts that a birational automorphism of CP2

(also known as a plane Cremona map) can be decomposed into a series of ordinary
quadratic transformations (see Alberich-Carramiñana [2] for a complete account).

After the paper was completed, we received a manuscript by V V Shevchishin [49],
where he also proved Theorems 1.4 and 1.8 (see [49, Theorem 40 (ii)]) using a completely
different approach via genus 0 Lefschetz fibrations. Further, the Coxeter system for
the group �W .!

�/, which encodes the homological action of the symplectomorphism
group, is explicitly presented in Theorem 40 (ii).
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2 SFT of Lagrangian S 2

2.1 Geometry of T �S 2

We first recall some standard facts of T �S2 . Consider the embedding of the unit sphere
in R3 , which induces a symplectic embedding of T �S2 into T �R3 D R3 �R3 . In
terms of the coordinates .u; v/ 2R3 �R3 , T �S2 is thus given by equations [47; 13]

(2-1) f.u; v/ 2R3
�R3

W juj D 1;u � v D 0/g;

and the symplectic form is the restriction of !canD d�canD
P

dvj duj on R6 , where
the Liouville form �can D

P
vj duj is also well-defined. (2-1) provides a Lagrangian

splitting of the tangent bundle of T �S2 into the horizontal u–direction and the vertical
v–direction.

Here is another useful model. Consider the affine quadric QDfz2
1
C z2

2
C z2

3
D1g�C3 .

In terms of uDRe z2R3 and vD Im z2R3 , Q is described by juj2�jvj2D1;u�vD0.
Therefore .u; v/! .�u=juj; vjuj/ is a diffeomorphism from Q to T �S2 . Moreover,
if we restrict !can on R6 to Q, the diffeomorphism is in fact a symplectomorphism.

2.1.1 Symplectomorphisms of T �S2 The symplectomorphism group of T �S2

contains some compact subgroups. For each l > 0, denote by T �
l

S2 the open disk
bundle with jvj< l , and Hl the sphere bundle of length l . The isometry group SO.3/
of S2 acts on .T �S2; !can/ as symplectomorphisms preserving each Hl .

The Hamiltonian function Z.u; v/D 1
2
jvj2 generates a circle action on T �S2 , agreeing

with the cogeodesic flow. If we apply the symplectic cut operation in Lerman [30]
to T �

l
S2 along Hl , we obtain S2 � S2 with a monotone symplectic form (see for

example Audin [3]). In other words, T �
1

S2 embeds into a monotone S2 �S2 as the
complement of the diagonal �.

The mapping class group of the compactly supported symplectomorphism group of
.T �S2; !can/ is nontrivial. In fact, it is the infinite cyclic group generated by a model
Dehn twist of the zero section; see Seidel [46].

To define the model Dehn twist, consider the Hamiltonian function T .u; v/D jvj on
T �S2nfzero sectiong, whose Hamiltonian vector field is the unit field .v=jvj; 0/. The
induced circle action is

�t .u; v/D .cos.t/uC sin.t/.v=jvj/; cos.t/v� sin.t/jvju/:

Notice that �� is the antipodal map A.u; v/D .�u;�v/, which extends smoothly over
the zero section. Now choose a function �W R!R satisfying �.t/D 0 for t � 0 and
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�.�t/D �.t/� t . The Hamiltonian flow of �.T / is �t�0.jvj/.u; v/. Since �0.0/D 1=2,
the time 2� map extends smoothly over the zero section as the antipodal map. The
resulting compactly supported symplectomorphism �.u; v/ of T �S2 is called a model
Dehn twist.

There is a smooth isotopy with compact support from �2 to the identity, but no such
symplectic isotopies exist.

2.1.2 Contact geometry of sphere bundles The length l sphere bundle Hl D

fjvj D lg is a contact manifold with contact form �can . At the point .u; v/ the contact
plane distribution � D ker�can is spanned by .u� v; 0/ and .0;u� v/.

The Reeb vector field at .u; v/ is the vector field .v; 0/. Thus there are two dimensional
simple Reeb orbits, all with the same period, and they foliate Hl . This is a special
case of a Reeb flow of Morse–Bott type. In particular, the Reeb flow agrees with the
cogeodesic flow of S2 with round metric.

The vector fields .u � v; 0/ and .0;u � v/ provide a global trivialization ˆ of � .
With respect to ˆ, the action of the Reeb flow on � along any Reeb orbit in Hl is
considered as a path of matrices in sp.2;R/, whose Maslov index is defined to be the
Conley–Zehnder index of the orbit [12] (see also Salamon and Zehnder [45]). From the
calculation in [22] (see also [13]), simple Reeb orbits have Conley–Zehnder index 2.

The manifold Hl is in fact a contact-type hypersurface in T �
lC�

S2 , where the Liouville
vector field is .0; v/. In particular, T �

l
S2Dfjvj � lg is a Liouville domain with convex

boundary Hl .

2.1.3 Cylindrical coordinates To apply SFT, we need to change to cylindrical coor-
dinates. Consider a diffeomorphism ‰W T �S2! T �S2 , .u; v/! .u;  .jvj/v=jvj/,
where  W Œ0;1/! Œ0;1/ is a smooth increasing function such that  .s/ D s for
s small, and  .s/ D es for s > r . ‰ is the identity near the zero section, and
.T �S2; ‰�!can/ is a symplectic manifold with one positive cylindrical end. Let
! D‰�!can .

Then .T �
l

S2; !/ is still a Liouville domain, with the Liouville field given by the unit
field �D .0; v=jvj/ for jvj> r . Moreover, .T �S2; !/ is the (cylindrical) symplectic
completion of .T �

l
S2; !/.

On Hl , the contact form is �l D . .l/= l/�, and the Reeb vector field at .u; v/ is
Rl D .l= .l/v; 0/.
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2.2 Lagrangian S 2 and good almost complex structures

Let L � .M; !/ be a Lagrangian two sphere. From the Weinstein neighborhood
theorem, the Lagrangian sphere L has a neighborhood U symplectomorphic to
.T �

2r
S2; !can/ for some small r > 0. Denote the symplectomorphism by „. Let

Ul D„
�1.T �

l
S2/ for l < 2r , and Wl DM nUl be the complement of Ul .

In particular, H D @Ul is a contact-type hypersurface with contact form �D„�1
� �l .

2.2.1 J 0
t on T �S2 Following [22], we make a specific choice of !–compatible

almost complex structure J 0 on T �S2 as follows: near the zero section, J 0.X; 0/D

.0;X /; and for jvj> r ,

J 0
j.u;v/.v; 0/D .0; . .l/= l/v/; J 0

j.u;v/.u� v; 0/D .0;u� v/:

The structure J 0 is SO.3/–invariant, and J 0 is adjusted in the sense that, for jvj> r ,
it is @

@s
–invariant, sending the Liouville field to the Reeb field.

Choose l 2 .r; 2r/. When restricted to the Liouville domain .T �
l

S2; !/, J 0jT �
l

S2

is adjusted in the collar neighborhood r < jvj � l , and its cylindrical completion is
canonically identified with .T �S2;J 0/.

We need to further consider a deformation J 0
t of J 0 . Let Vt D Œ�t � �; t C �� and

ˇt W Vt! Œ��; �� be a strictly increasing function with ˇt .s/D sCt on Œ�t��;�t��=2�

and ˇt .s/D s�t on ŒtC�=2; tC��. Define a smooth embedding ft W Vt�Hl!T �S2

by

ft .s;m/D .ˇt .s/C l;m/:

Let xJt be the @
@s

–invariant almost complex structure on Vt�Hl such that xJt .
@
@s
/DRl

and xJt j� D J 0j� . Glue the almost complex manifold .T �S2nft .Vt �Hl/;J
0/ to

.Vt �Hl ; xJt / via ft to obtain the family of almost complex structures J 0
t on T �S2 .

Notice that each J 0
t agrees with J 0 away from the collar l � � < jvj< l C � . And on

this collar, it agrees with J 0 on � , while

J 0
t j.u;v/.v; 0/D

�
0;

dˇ�1
t

ds
jsDjvj�l

 .l/

l
v

�
:

On the other hand, via ft , J 0
t restricted to T �

l
S2 is the same as J 0 on T �

lCt
S2 . In

particular, J 0
1 can be viewed an almost complex structure on T �S2 , which is in fact

equal to J 0 .
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2.2.2 Neck-stretching on M We say that an almost complex structure J on M is
adjusted to H D @Ul with respect to the Liouville vector field „�1

� .�/, if in a tubular
neighborhood of H , J is invariant under the flow „�1

� .�/, J.„�1
� .�// is the Reeb

vector field on H , and J preserves the contact plane field � defined by the contact
structure i�! .

Following [14] consider the following Fréchet manifold of adjusted almost complex
structures:

(2-2) xJ D fJ 2 J! W J D„�1
� J 0 on U g:

Given J 2 xJ , define

Jt D J on XnU; Jt D„
�1
� J 0

t on U:

Notice that Jt is in fact the neck-stretching of the adjusted J along @Ul with respect
to „�1

� .�/. Fix a sequence fti 2 R W ti ! C1g, we further define a sequence of
Fréchet manifolds of adjusted almost complex structures:

xJ .i/D fJ 2 J! W J D„�1
� J 0

ti
in U g:

From the explicit description of Jti
in 2.2.1, we can reverse the neck-stretching, thus

there is a diffeomorphism Pi W
xJ .i/! xJ .

When i !1 the neck-stretching process results in an almost complex structure J1
on the union of symplectic completions SW and xU of W and Ur . SW and xU are two
open symplectic manifolds with cylindrical ends, with . xU ;J1/ being .T �S2;J 0/.
The structure J1 on the cylindrical end of SW can be described explicitly: one simply
extends � in the obvious way, and endows an �–adjusted almost complex structure
which still restricts to J on � as above.

To describe the limits of pseudo-holomorphic curves under the deformation Jt , we
need another open symplectic manifold. Let SH be the symplectization of the contact
manifold H . We endow SH again the �–adjusted almost complex structure as on the
cylindrical ends of SW and xU , and also denote it by J1 .

2.3 Finite energy holomorphic curves

Suppose S is a closed Riemann surface and � � S an ordered finite set of punctures.

Let .Z; !/ be any of the three symplectic 4–manifolds SW , xU , or SH , each equipped
with the adjusted almost complex structure J1 . Denote EC (E� ) to be the positive
(negative) end, which is allowed to be empty.

Geometry & Topology, Volume 16 (2012)



Lagrangian spheres, symplectic surfaces and the symplectic mapping class group 1129

Notice that, since J 0
1.

@
@s
/ D Rl , and � is J 0

1–invariant, the real trivialization ˆ
of � on Hl canonically induces a complex trivialization of the complex rank 2 bundle
.T Z;J1/ along E˙ , which we still denote by ˆ.

Suppose uW Sn�!Z is a proper map. We call u simple if it does not factor through
a multiple cover.

Let u˙ be the restriction to u�1.E˙/. Then u˙ has the form .a˙; v˙/ in coordinates
R˙ �H . Consider the set C of functions �˙W R˙!R with integral 1.

The �–energy of a map uW Sn�!Z is defined by

E�.u/D sup
�˙2C

�Z
u�1.EC/

.�C ı aC/ daC ^ v
�
C�C

Z
u�1.E�/

.�� ı a�/ da� ^ v
�
��

�
:

The energy of u is then given by

E.u/D

Z
u�1.Zn.EC[E�//

u�!CE�.u/;

and u is called a finite energy map if E.u/ <1. Since we are in the Morse–Bott
situation, ie the Reeb flow on E˙ is Morse–Bott, finite energy J1–holomorphic
curves are asymptotic to periodic orbits in E˙ ; see Bourgeois [9].

Suppose S has genus g , and u has sC positive punctures converging to 
C
k
; 1�k�sC ,

s� negative punctures converging to 
�
k
; 1 � k � s� . Two such maps u and u0 are

called equivalent if there is a biholomorphism hW .S; �/! .S 0; � 0/ such that uDu0ıh.

Each u is associated with a CR operator, and u is called (SFT) regular if the operator
is surjective [13]. Denote the index of this operator by index.u/. To state the index
formula, suppose nCi D cov.
Ci / and n�j D cov.
�j /, where cov.
 / denotes the
multiplicity of 
 over a simple Reeb orbit. Since each Reeb orbit is in a 2 dimensional
manifold and has CZ index 2, following the computation on [22; 9], we have

(2-3) index.u/D�.2�2g/C2.sCCs�/C2cˆ1 .Œu�/C

sCX
kD1

2cov.
C
k
/�

s�X
kD1

2cov.
�k /:

Here cˆ
1
.T Z/ is the relative first Chern class of .T Z;J1/ relative to the trivializa-

tion ˆ along the ends, Œu� is the relative homology class of u [13].

The following is a very special case of a theorem due to Wendl, which states that for
certain u, the SFT regularity is automatic.
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Theorem 2.1 (Wendl [55]) Suppose .W;J / is a 4–dimensional almost complex
manifold with cylindrical end modelled on contact manifolds foliated by Morse–Bott
Reeb orbits, and uW .S; �/ ! W is a embedded pseudo-holomorphic curve with
punctures. If

(2-4) index.u/ > 2gC 2j�j � 2;

then u is regular.

2.3.1 Regular holomorphic curves in SW We discuss the SFT transversality in SW .

Remark 2.2 It is well-known, for example by [42, Remark 3.2.3] that, to achieve
transversality for the moduli space of pseudo-holomorphic curves, it suffices to consider
the space of !–compatible almost complex structure which is fixed on an open set,
provided that every pseudo-holomorphic curve representing the class passes through
its complement.

Recall that a Baire set is the countable intersection of open and dense sets. Since no
punctured pseudo-holomorphic curves can lie completely inside xU , the arguments to
prove [13, Theorem 5.22] also proves:

Proposition 2.3 Using notation in Section 2.2, there exists a Baire set in xJW �
xJ

such that for any J 2 xJW , J1 is SFT regular in the sense that every finite energy
simple J1–holomorphic curve u is regular.

We will need variations of other standard transversality results about pseudo-holo-
morphic curves, where the above observation will be crucial.

2.3.2 Genus 0 curves in SH with a single simple asymptote In SH we will
encounter curves as in the following lemma.

Lemma 2.4 Suppose uW C ! SH is a J1–holomorphic curve of genus 0 in SH

with one positive end asymptotic to a simple Reeb orbit. Then u is a trivial cylinder.

Proof The proof is contained in [13, Lemma 7.5] (see also [22; 10]). We briefly recall
the main points. Since each Reeb orbit is nontrivial in �1.H / and C has genus 0,
there has to be at least one negative puncture. On the other hand, since E�.u/� 0 and
all Reeb orbits have the same period, u has at most one negative puncture, which has
to be simple. Thus u is a trivial cylinder.
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2.3.3 J 0 –Holomorphic planes in T �S2 In T �S2 we need to consider embedded
holomorphic planes with one (positive) end asymptotic to a simple Reeb orbit.

As mentioned, on T �S2 , J1 is the same as J 0 . Notice that J 0 interchanges the
two summands of the Lagrangian splitting of the tangent bundle of T �S2 . Thus
det.T T �S2;J 0/ is canonically trivialized since the Lagrangian horizontal two plane
bundle is orientable. The expected dimension of the moduli space of embedded J 0 –
holomorphic plane u with one (positive) end asymptotic to a simple Reeb orbit is thus
given by

(2-5) index.u/D�2C 2C 2D 2:

This follows from the general index formula (2-3), and the vanishing of cˆ
1

for all
punctured curves in T �S2 .

It is proved in [22, Lemmas 8–9, Section 4] that if zJ 0 is close to J 0 and any
embedded zJ 0 –holomorphic planes with one simple puncture is regular, then zJ 0 enjoys
the following properties:

(1) There are two zJ 0 –foliations F˛ and Fˇ in T �S2 , such that there is a one-one
correspondence from simple Reeb orbits to planes in each foliation.

(2) Each element in F˛ (Fˇ , resp.) intersects the zero-section at a single point
positively (negatively, resp.).

We will call the planes in F˛ (Fˇ , resp.) ˛–planes (ˇ–planes, resp.).

One consequence of (2-5) is that we can appeal to Wendl’s Theorem 2.1 to conclude
that each embedded J 0 –holomorphic planes with one simple puncture is regular. In
particular, J 0 also satisfies the above properties. Furthermore, we have:

Lemma 2.5 A J 0 –holomorphic plane in T �S2 asymptotic to a simple Reeb orbit be-
longs to either F˛ or Fˇ . Moreover, an ˛–plane and a ˇ–plane intersect transversally
if they do not share the same asymptote.

Proof The proof is largely similar to [22, Lemma 8]. One could think of T �S2

topologically as a neighborhood of x�, the antidiagonal in S2�S2 . The complement is
then a disk bundle over � the diagonal, of which the boundary of disk fibers coincides
with the simple Reeb orbits in T �S2 . One can then glue these disks to elements in F˛
and Fˇ , resulting in two foliations in S2 �S2 , with classes ŒS2 � pt� and Œpt�S2�,
respectively. Suppose we have a J 0 –holomorphic plane P in U asymptotic to some
simple Reeb orbit 
 , which does not belong to either F˛ nor Fˇ , it must intersect
some P˛ 2 F˛ and Pˇ 2 Fˇ positively, where P˛ and Pˇ have asymptotes 
˛; 
ˇ
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which are different from 
 . Now P , P˛ and Pˇ can all be capped in S2 �S2 by the
above procedure, resulting in three spheres intersecting only in U . By construction,
the sphere formed by capping P has positively intersection with both ŒS2 � pt� and
Œpt�S2�, but intersects � at a single point, which leads to a contradiction.

The second assertion can be proved similarly, for if 
˛ ¤ 
ˇ , the capped sphere does
not have intersection in the complement of T �S2 , so they must intersect inside T �S2

for homological reason.

Remark 2.6 If we do not appeal to Wendl’s automatic transversality result, instead
of J 0 , we could simply use a fixed zJ 0 satisfying the properties above throughout the
paper.

2.3.4 SFT compactness Following [22] we briefly recall the relevant compactness
results in the symplectic field theory adapted to our case. For detailed expositions
on the subject, we refer the readers to Bourgeois, Eliashberg, Hofer, Wysocki and
Zehnder [10] and Bourgeois [9].

Let M1 D SW [ SH [ xU , and J1 be the almost complex structure defined as in
Section 2.2. Let † be a Riemann surface with nodes. A level–k holomorphic building
consists of the following data:

(i) (Level) A labelling of the components of †nfnodesg by integers f1; : : : ; kg
which are the levels. Two components sharing a node differ at most by 1 in
levels. Let †r be the union of the components of †nfnodesg with label r .

(ii) (Asymptotic matching) Finite energy holomorphic curves v1W †1! U and
vr W †r!SH , 2� r � k�1, vk W †k!W . Any node shared by †l and †lC1

for 1� l � k � 1 is a positive puncture for vl and a negative puncture for vlC1

asymptotic to the same Reeb orbit 
 . vl should also extend continuously across
each node within †l .

Now for a given stretching family fJti
g as previously described, as well as Jti

–curves
ui W S ! .M;Jti

/, we define the Gromov–Hofer convergence as follows:

A sequence of Jti
–curves ui W S ! .M;Jti

/ is said to be convergent to a level–k

holomorphic building v in Gromov and Hofer’s sense, using the above notation, if
there is a sequence of maps �i W S !†, and for each i , there is a sequence of k � 2

real numbers tr
i , r D 2; : : : ; k � 1, such that

(i) (Domain) �i are locally biholomorphic except that they may collapse circles
in S to nodes of †,

(ii) (Map) the sequences uiı�
�1
i W †1!U , uiı�

�1
i Ctr

i W †r!SH , 2� r �k�1,
and ui ı�

�1
i W †k !W converge in C1–topology to corresponding maps vr

on compact sets of †r .

Geometry & Topology, Volume 16 (2012)



Lagrangian spheres, symplectic surfaces and the symplectic mapping class group 1133

Now the celebrated compactness result in SFT reads:

Theorem 2.7 [10] If ui has a fixed homology class, there is a subsequence tim
of ti

such that utim
converges to a level–k holomorphic building in the Gromov and Hofer’s

sense.

3 Minimal intersection

In this section we prove Theorem 1.1 and Theorem 1.2. There are two main ingredients,
the symplectic Seiberg–Witten theory which produces embedded, connected pseudo-
holomorphic submanifolds for a class of compatible almost complex structures suitable
for applying symplectic field theory. Via neck stretching the symplectic field theory
then produces in the limit the desired symplectic surfaces which intersect L minimally.

3.1 Embedded and nodal pseudo-holomorphic submanifolds

We first introduce some notation. All surfaces in this section are closed. Given a class
e 2H2.M;Z/, let �!.e/ be the !–symplectic genus of e :

(3-1) �!.e/D
e � eCK!.e/C 2

2
:

This is exactly the genus of a connected embedded !–symplectic surface in class e (if
there is one) from the adjunction formula.

Also define the dimension of e as

(3-2) d.e/D
�K!.e/C e � e

2
:

The quantity d.e/ is the expected dimension of the moduli space of embedded pseudo-
holomorphic curve of genus �!.e/ in the class e . In terms of �!.e/, d.e/ can also be
expressed as

d.e/D�K!.e/C �!.e/� 1:

Suppose C is a compact, connected, pseudo-holomorphic submanifold of M . Then C

has the structure of a Riemann surface and it represents a nonzero class ŒC �. Moreover,
there is a canonically associated elliptic operator

(3-3) DC W �.N /! �.N ˝T 1;0C /;

where N is the normal bundle of C . This operator DC is called the normal operator
of C and the index of DC is exactly given by d.ŒC �/.
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Fix a set � of d.ŒC �/ distinct points. If �� C , then we can define the operator

DC ˚ ev�W �.N /! �.N ˝T 1;0C /˚ . p̊2�N jp/:

The index of DC ˚ ev� is 0. And the kernel of DC ˚ ev� should be thought of as
giving a sort of Zariski tangent space to the space of pseudo-holomorphic embeddings
of C in M containing the subset � (as a point in the space of smooth embeddings).
We call C .J; �/ nondegenerate if the operator DC ˚ ev� has trivial cokernel (and
also trivial kernel).

DC is a real CR operator on .C;N /. For such operators, there is the following
automatic transversality result.

Theorem 3.1 (Hofer–Lizan–Sikorav [25]; Ivashkovich–Shevchishin [26]) Let † be
a Riemann surface of genus g , and let L be a complex line bundle over †. Let D be a
real CR operator. Suppose c1.L/� 2g� 1, then coker D D 0.

We will show in the next two subsections that in two situations, given a class e ,
there is a Baire set of pairs .J; �/ for which there are connected J –holomorphic
submanifolds of genus �!.e/ through �. The Baire property is shown by first setting
up universal models of various type of pseudo-holomorphic curves, and then exploiting
the Fredholm properties of D in conjunction with the Sard–Smale theorem and the
Gromov compactness theorem to rule out unwanted behavior for generic pairs .J; �/.

We also need to generalize to the case of a nodal pseudo-holomorphic submanifold
in the sense of Sikorav [50]. Let † D [†i be a nodal Riemann surface, where †i

are the irreducible components. A J –holomorphic map f W †! .M;J / is said to be
nodal if f has distinct tangents along two branches at each node. For our purpose, we
call a nodal curve f a nodal submanifold if f is an embedding on each †i . Thus a
nodal submanifold is a union of embedded submanifolds intersecting transversally. Let
Ci D f .†i/.

For a nodal submanifold, the analogue of (3-3), DS
Ci

, is defined in [50, Section 4]
in terms of the normalization of †. DS

Ci
is elliptic and its index is simply given byP

i d.ŒCi �/.

In this case, for each i , fix a subset �i � Ci with d.ŒCi �/ distinct points and not
containing any of the nodes. Then the operator DS

Ci
˚ evS�i

is an elliptic operator
with index zero, and f is called nondegenerate if DS

Ci
˚ evS�i

has trivial cokernel.

The automatic transversality in this context, [50, Corollary 2] implies DS
Ci
˚ evS�i

is onto if

(3-4) �K!.ŒCi �/ > 0 for each i .
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3.1.1 Symplectic spheres Suppose C is an embedded symplectic sphere with self-
intersection at least �1. In this case

(3-5) d.ŒC �/D�K!.ŒC �/� 1; ŒC � � ŒC �D�K!.ŒC �/� 2:

The following should be well known. We present some details in view of the general-
ization to certain configurations, Proposition 3.4.

Proposition 3.2 Let .M; !/ be a symplectic 4–manifold and e 2 H2.M IZ/ with
e2 ��1 a class represented by an embedded symplectic sphere C . Then there is a path
connected Baire subset Te of J! �Md.e/ such that a pair .J; �/ lies in Te if and only
if there is a unique embedded J –holomorphic sphere in the class e containing �. Here
Md is the space of d –tuples of distinct (but unlabeled) points in M . Consequently,
any symplectic sphere in the class e is isotopic to C .

Proof Pick an almost complex structure J 2 J! such that C is J –holomorphic and
�� C .

Following [4, Lemma 4 and formula (15); 26], let P D�
P

zi2�
zi be the divisor of C

and zN DN ˝P . Then there exists a real CR operator on .C; zN /,

zDC W �. zN /! �. zN ˝T 1;0C /;

with the property that coker zDC Š coker.DC ˚ ev�/. Notice that, by (3-5),

c1. zN /D c1.N /� d.ŒC �/D e � e� d.e/D�1:

From Theorem 3.1, zD is surjective.

Notice that d.e/ � 0. Moreover, from the positivity of intersections and the fact
that e � e D d.e/� 1, C is the only connected J –sphere in e containing �. Since
zD is surjective, C is regular with respect to .J; �/. Thus we conclude that the

genus 0 Gromov–Witten invariant of e passing through d.e/ points is ˙1, in particular,
nonzero.

A marked P1 is a pair .P1; fzig/ where fzig is a set of unordered, distinct points.
Now introduce the universal genus zero moduli space P associated to e , which is
the space of J –holomorphic embedding uW .P1; fzig

d.e/
iD1

/ ! .M;J / with Œu� D e

for some J 2 J! , modulo the automorphism of P1 . P is a Frechet manifold [42].
Moreover, the natural map � to J! �Md.e/ , .u;J; fzig/! .J; fu.zi/g/ is Fredholm.
The argument above simply means that � is an isomorphism onto its image.

Similarly, for each possible singular type c , introduce the auxiliary universal moduli
space Pc . Each Pc is again a Frechet manifold and the projection �c W Pc!J!�Md.e/
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is Fredholm [42] with index at most �2. Notice that the image of � and the union
of the images of �c cover J! �Md.e/ by the nontriviality of the Gromov–Witten
invariant. Since each �c has negative index, the complement of the image of �c is
exactly the set of regular values of �c , hence is Baire. This implies the image of � is
Baire.

Now we show that the image of � is path connected. Let .J 0; �0/ be in the image of � .
The Sard–Smale theorem implies that along a generic path .Jt ; �t / connecting .J; �/
and .J 0; �0/, for each t , .Jt ; �t / is either a regular value of projections � and �c , or
it is a singular value for one of the projections but the cokernel has dimension 1. Since
each �c has index �2 and � has no singular values, each .Jt ; �t / lies in T .

Finally, notice that the path connected set T maps onto the space of symplectic spheres
in the class e .

For our application we need to take one step forward.

Definition 3.3 We call an ordered configuration of symplectic spheres [Ci a stable
spherical symplectic configuration if

(1) ŒCi � � ŒCi �� �1 for each i ,

(2) for any pair i; j with i ¤ j , ŒCi �¤ ŒCj �, and ŒCi � � ŒCj �D 0 or 1,

(3) they are simultaneously J –holomorphic for some J 2 J .

The homological type refers to the set of homology classes ŒCi �.

Notice that, by local positivity of intersection, 2 and 3 imply that Ci and Cj are either
disjoint or intersect transversally at one point. In particular, it is a J –nodal submanifold.
Further, since Ci �Ci � �1, the condition (3-4) is satisfied by (3-5).

If we follow the arguments above, replacing Theorem 3.1 by [50, Corollary 2], we
obtain:

Proposition 3.4 Suppose there is a stable spherical symplectic configuration [iCi

with type D . Then there is a path connected Baire subset TD of J! �
Q

i Md.ŒCi �/

such that a pair .J; �i/ lies in TD if and only if there is a unique embedded J –
holomorphic D–configuration with the i –th component containing �i . Consequently,
stable spherical symplectic configurations with the same homological type are isotopic.
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3.1.2 Gromov–Taubes invariants when bC D 1 Given a class e and a pair .J; �/
in J! �M d.e/ , introduce the set H�H.e;J; �/ whose elements are the unordered
sets of pairs f.Ck ;mk/g of disjoint, connected, J –holomorphic submanifold Ck �M

and positive integer mk , which are constrained as follows:

(1) If ek is the fundamental class of Ck then dk � d.ek/� 0.

(2) If dk > 0, then Ck contains a subset �k �� consisting of precisely dk points.

(3) The integer mk D 1 unless Ck is a torus with trivial normal bundle.

(4)
P

k mkek D e .

Notice that (3-2) and (3-1) imply that

� the only negative square components are spheres with square �1,

� a square 0 component is either a sphere or a torus.

To define the Gromov–Taubes invariant of a class e , Taubes [51] introduced a notion
of admissibility of pairs. The Gromov–Taubes invariant GT.e/ of e is then a suitably
weighted count of H.e;J; �/ for an admissible .J; �/, which is delicate at the presence
of a toroidal component with multiplicity higher than 1. When bC D 1, we will see
that there are simple homological conditions to avoid such components.

It is rather involved to fully describe the precise meaning of admissible pairs, especially
at the presence of a toroidal component with multiplicity higher than 1. In fact, in the
case d.e/D 0, � is the empty set, we are simply talking about the admissibility of J

alone. Furthermore, if there are no toroidal components, J is admissible if H.e;J / is
a finite set, and each submanifold in a member of H.e;J / is nondegenerate.

Taubes [51] also showed that the set of admissible pair is Baire. The argument is similar
to the one in Proposition 3.2. In fact, by Remark 2.2, the intersection with each xJ .i/
is still Baire in xJ .i/ since U contains no closed pseudo-holomorphic curve.

When C is a symplectic sphere with self-intersection at least �1, it is easy to show
that GT.ŒC �/D 1 using arguments in Proposition 3.2. In general, when bCD 1, due to
Taubes’ SW)GT [52] and the Seiberg–Witten wall crossing formula, there are plenty
of classes with nontrivial GT invariant, and most of them are represented by connected
embedded symplectic surfaces; see Li and Li [36] and also Biran [5], McDuff [40] and
Li [32]:

Proposition 3.5 Let .M; !/ be a symplectic 4–manifold with bC D 1 and canonical
class K! . Let A 2H2.M IZ/ be a class satisfying the following properties:
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� A2 > 0 and !.A/ > 0.

� A�PD.K!/ is !–positive and has nonnegative square.

� A �E � 0 for all E 2 E! .

Then A has nonvanishing GT invariant and A is represented by a connected embedded
symplectic surface.

Lemma 3.6 Let .M; !/ be a symplectic 4–manifold with bC D 1. Suppose e 2

H2.M IZ/ is a class with �!.e/ � 2, e � E � 0 for all E 2 E! , and GT.e/ ¤ 0.
Then for any admissible .J; �/, A has a connected J –holomorphic representative of
genus �!.e/.

Proof Suppose .J; �/ is admissible. Let C be a J –holomorphic submanifold con-
tributing to GT.e/. The condition that e �E � 0 for all E 2 E! ensures C has no
negative-square components. Since bC.M / D 1, if C is disconnected, then all the
components are homologous and have square 0. Thus C is either a union of spheres
with square 0, or a union of tori with square 0. However, this contradicts the assumption
that �!.e/� 2 from the adjunction formula. Therefore C is a connected genus �!.e/
surface as claimed.

Furthermore, assume that d.e/� 1. Let fUig
d.e/
iD1

be a sequence of pairwise disjoint
Darboux chart. We consider the class of almost complex structures FfUi g

� J!
which is fixed and integrable on Ui . By Remark 2.2, there is an admissible pair
. zJ ; z� D fxig/ with zJ 2 FfUi g

and xi 2 Ui . In particular, there is a connected
embedded zJ –holomorphic curve zC through fxig with Œ zC �D e .

For any such zJ 2 FfUi g
, let pW .M 0;Jfxi g

/! .M; zJ / be the complex blow-up of
.M; zJ / at xi . Denote each exceptional sphere by Cxi

and its neighborhood corre-
sponding to Ui by U 0i . One can then endow M 0 with a symplectic form !0 compatible
with Jfxi g

. (see [41, Lemma 7.15]). Denote also F 0fUi g
� J!0 to be the corresponding

set of almost complex structures.

Lemma 3.7 Given the same assumption in Lemma 3.6 and consider .M 0;Jfxi g
/

as above. Let Ei D ŒCxi
�, i D 1; : : : ; d.e/ and A0 D A �

P
1�i�d.e/Ei . Then

GT!0.A0/¤ 0, and for J in a Baire subset of FfUi g
, A0 is represented by a connected

Jfxi g
–holomorphic surface of genus �!.A/, intersecting each Cxi

transversally at one
point.
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Proof Now �K!0.A
0/D�K!.A/� d.e/ and �!0.A0/D �!.A/. Since d.A0/D 0,

from the blow-up formula [35, Corollary 4.4], A0 also has nontrivial GT invariant.

Since the only J 0–holomorphic curves contained in [U 0i are Cxi
, by Remark 2.2, the

intersection of admissible almost complex structures on .M 0; !0/ with F 0fUi g
is a Baire

set in F 0fUi g
.

To check the generic connectedness, by Lemma 3.6 we only need to verify the homolog-
ical condition A0 �E � 0 for any E 2 E!0 . But as is shown above, there is a connected
embedded zJ –holomorphic zC �M , thus its proper transformation zC 0 �M 0 is Jfxi g

–
holomorphic with Œ zC 0� D A0 . Notice also that every E has a Jfxi g

–holomorphic
representative since exceptional classes always have nontrivial GW invariant. Since
the genus of zC 0 is positive, it is different from any component of E . By positivity of
intersections, we have Œ zC 0� �E � 0.

Finally, since F 0fUi g
and FfUi g

are canonically identified via complex blowing up the xi

and complex blowing down the Cxi
, we obtain the required Baire subset of FfUi g

.

3.2 Proof of Theorems 1.1 and 1.2

We are ready to prove Theorems 1.1 and 1.2. For the convenience of exposition, we
first investigate the behavior of generic J –holomorphic representatives in class A in
neck-stretching, when the class A satisfies

(3-6) �K!.A/D 1� �!.A/:

Firstly, regarding the fixed class A, we claim that there is a Baire set Jreg.A/� xJ such
that for each J 2Jreg , Jti

is GT admissible for each i , and J1 is regular in the sense of
SFT for SW . By Proposition 2.3 there is a Baire subset J 0reg�

xJ , such that for J 2J 0reg ,
J1 is SFT regular. Recall from Section 2.2.2, xJ .i/D fJ j J D J 0

ti
in U g and Pi is

the identification of xJ .i/ with xJ . We have mentioned that, as all closed pseudo-
holomorphic curves have to pass through M nU , there is a Baire subset xJ .i/0 � xJ .i/
such that each member is GT admissible. One then takes Jreg.A/D

T
n Pn. xJ 0n/\J 0reg .

Fix J 2 Jreg.A/. By Lemma 3.6 there is a sequence of connected embedded Jti
–

holomorphic submanifolds Cti
. If Cti

does not intersect L for some i < 1, the
theorem follows. Now we assume that each Cti

intersects L. This assumption will
eventually lead to a contradiction when ŒL� � ŒC �D 0 and is automatically satisfied if
ŒL� � ŒC �¤ 0.

By Theorem 2.7, there is a k –leveled curve C1 as a Gromov–Hofer limit of fCti
g1
iD0

:
the piece in M nUl , which we call CW or the W –part; the piece in the symplectization
of @Ul D RP3 consisting of k � 2 levels, which we call CSH or the SH –part; the
piece in Ul , which we call CU or the U –part. Let us first examine the W –part.
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Lemma 3.8 Suppose (3-6) is satisfied. Then CW is a, possibly unbranched covering,
irreducible genus–�!.A/ curve, and all asymptotic Reeb orbits are simple. Moreover,
let xCW be the underlying simple curve, then the limits of punctures of xCW are pairwise
distinct.

Proof By the maximum principle, CW is nonempty. Let ui W Bi!W; 1� i � q , be
the irreducible components of CW and gi the genus of Bi . Suppose ui is a degree mi

multiple cover of xui W
xBi!W .

Notice that
cˆ1 D 0 in U and S

implies that

(3-7)
X

1�j�q

cˆ1 .T W /.Œuj �/D�K!.A/:

From the description of Gromov–Hofer convergence in Section 2.3.4, we clearly haveP
1�j�q gj � �!.A/. (3-6) then implies thatX

1�j�q

cˆ1 .T W /.Œuj �/� 1�
X

1�j�q

gj :

If q > 1, there must be some component, say B1 , with

(3-8) cˆ1 .T W /.Œu1�/� �g1:

By (2-3), we have

(3-9) index.xu1/D�.2� 2g. xB1//C 2xs�1 C 2cˆ1 .T W /.Œxu1�/�

xs�
1X

kD1

2cov.x
k/:

Here xs�
1

is the total number of punctures of xu1 and the x
k are the asymptotic Reeb
orbits. By our choice of J , index.xu1/� 0, thus we must have

(3-10) cˆ1 .T W /.Œxu1�/� 1�g. xB1/:

Notice that cˆ
1
.T W /.Œu1�/Dm1cˆ

1
.T W /.Œxu1�/. Since 2xs�

1
�
Pxs�

1

kD1
2cov.x
k/ � 0,

by (3-8) we have
g1 �m1.g. xB1/� 1/:

But this is impossible by the Riemann–Hurwitz formula

(3-11) .g1� 1/�m1.g. xB1/� 1/:
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This contradiction shows that CW is irreducible, namely, given solely by u1 , when
J 2 Jreg . By (3-10) and (3-7), we have

1� �!.A/Dm1cˆ1 .T W /.Œxu1�/�m1.1�g. xB1//:

Since g1 � �!.A/, we have by (3-11), that

�!.A/D g1:

Notice that this also means u1 is an unbranched covering. Now return to (3-10), we
find that

(3-12) index.xu1/D 2xs�1 �

xs�
1X

kD1

2cov.x
k/� 0:

Hence we conclude that each x
k is a simple Reeb orbit. Since u1 is an unbranched
covering, each of its puncture also converges to one of the simple Reeb orbits, x
k .

One also sees from (3-9) and (3-12) that CW must have genus g and all asymptotes
are simple.

Since the Reeb orbits form a two dimensional Morse–Bott family, the last statement
follows from the transversality of puncture evaluation of xCW [13, Theorem 5.24].

Now we look at the S –part CSH .

Lemma 3.9 Each component of CSH is a trivial cylinder asymptotic to a simple Reeb
orbit.

Proof CSH has k � 2 levels. Let �i W Di! SH be an irreducible component of first
level of CSH . Since CW is connected and already has genus �!.A/, Di is of genus 0

and has a unique positive puncture since the domain of C1 is obtained by collapsing a
genus g surface. Moreover, due to the asymptotic matching condition between two
levels, this unique positive puncture of �i is asymptotic to a simple Reeb orbit since all
the asymptotes of xCW are simple. Thus �i must be a trivial cylinder by Lemma 2.4.
Similarly each component in higher level of CSH must be a cylinder as well (In fact,
there can only be one level of trivial cylinders in CSH by the finite automorphism
requirement of C1 , but we do not need this more precise description).

For the U –part CU , in turn, Lemma 3.9 implies that all the positive punctures of CU

are simple due to the asymptotic matching condition between two levels. Moreover,
each component Fi is of genus 0 and has only one positive puncture, again due to the
constraint g.C1/ D g . Thus each Fi is a plane with one simple positive puncture.
From Lemma 2.5 and Lemma 3.8, the U –part is a union of some ˛– and ˇ–planes.
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Lemma 3.10 If CW is not a multiple cover, the U –part consists of either all ˛–planes
or all ˇ–planes.

Proof The proof is similar to [13, Lemma 7.8]. As is explained in Lemma 2.5, an
˛–plane and a ˇ–plane do not intersect only if they have the same asymptotic Reeb
orbit. This must be the case to avoid self-intersection of the holomorphic building C1
which contradicts the embeddedness for Cti

at some i <1.

Therefore, if the U –part has at least one ˛–plane and one ˇ–plane, all planes must
asymptote to the same Reeb orbit. If CW is not a multiple cover, since the CSH part
consists of trivial cylinders, this is impossible by the last statement of Lemma 3.8.

Proof of Theorem 1.2 It is straightforward that when n2N is large, under the assump-
tion of Theorem 1.2 the multiple class nA has the following properties: d.nA/ > 0,
GT.nA/¤ 0, and it is represented by a connected symplectic surface with genus at
least 2.

We adapt Welschinger’s idea in [54] and adopt the notation in Section 3.1.2 here.
Choose Darboux charts Ui � W , i D 1; : : : ; d.nA/, and consider FfUi g

as in the
paragraphs preceding Lemma 3.7. Now choose xi 2 Ui and an arbitrary J 2 FfUi g

,
A0 D nA�

P
1�i�d.e/Ei as in Lemma 3.7. By Lemma 3.7 and the arguments in the

paragraph following (3-6), there is a Baire set Jreg.nA/ � xJ \FfUi g
such that for

each J 2 Jreg.nA/, .Jfxi g
/tj is GT admissible for each j and there is a connected

embedded .Jfxi g
/tj –holomorphic curve C 0j in the class A0 . Moreover, .Jfxi g

/1 is
regular in the sense of SFT for the symplectic completion of p�1.W /.

Now let us analyze the limit building C 01 .

Notice that �K!.A
0/D 1� �!.A

0/, so Lemma 3.8 could be applied. Also, from the
fact that Cxi

\U D∅ and A0 �Ei D 1, we have Cxi
\C 0

W
D 1. Therefore the W –part

of C 01 cannot be a multiple cover. Therefore, by Lemma 3.10, C 01 intersects L

transversally at finitely many points, where either all the local intersections are positive
or all of them are negative. This implies that for some j <1, there is an embedded
.Jfxi g

/tj –holomorphic curve C 0tj in the class A0 with the same intersection property.
Notice that C 0tj intersects transversally with each Cxi

at one point. One then obtain
the desired curve C in the class A by complex blowing down the (disjoint) exceptional
curves Cxi

.

Remark 3.11 When � D �1, given A in Theorem 1.2, we can actually find a
symplectic surface intersecting L minimally in the class A, rather than nA for large n,
if we further assume that �.A/� 2 and A2 � �.A/� 1. Here �.A/ is the symplectic
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genus (see Section 4). This is because, by [31] one could achieve the nontriviality of
GT invariants as long as A2 � �.A/� 1. And if the class A is reduced (see Section 4
for the rational case and [31] for the general case), one only needs easily verified
conditions �!.A/� 2 and A2 � �!.A/� 1 since �!.A/D �.A/.

Proof of Theorem 1.1 We first deal with the case of �1 sphere C . By Proposition 3.2,
there is a Baire set Jreg.ŒC �/� xJ such that for each J 2 Jreg.ŒC �/, there is a unique
embedded Jti

–holomorphic sphere in the class ŒC � for each i , and J1 is regular in
the sense of SFT for SW . Notice that d.ŒC �/D 0, and since C has genus 0, its W –part
under neck-stretching does not admit a nontrivial unbranched cover. Therefore we
can apply Lemma 3.10 as in the proof of Theorem 1.2 to produce a Jti

–holomorphic
sphere Cti

intersecting L minimally. Cti
is symplectic isotopic to C by the last

statement of Proposition 3.2.

For a symplectic sphere C with nonnegative square, we follow the strategy above by first
introducing Ui and FUi

. By applying Remark 2.2 and Proposition 3.2 to M and ŒC �,
there is a pair . zJ ; z�Dfxig/ with zJ 2FfUi g

, xi 2Ui , and an embedded zJ –holomorphic
sphere zC through fxig with Œ zC � D ŒC �. Let .M 0;Jfxi g

; !0/, Cxi
, Ei D ŒCxi

�, U 0i ,
F 0

Ui
, i D 1; : : : ; d.e/ be as in Lemma 3.7. The class A0 D ŒC ��

P
1�i�d.e/Ei is

represented by an !0–symplectic �1 sphere, for instance, the proper transform of zC ,
thus Proposition 3.2 still holds for A0 .

Now apply Remark 2.2 to M 0 and A0 , then Proposition 3.2 and the arguments in the first
paragraph of the present subsection imply that, there is a Baire set Jreg.ŒC �/� xJ\FfUi g

with the following property: for each J 2 Jreg.ŒC �/, there is a unique embedded
.Jfxi g

/tj –holomorphic sphere C 0tj in the class A0 for each j , and .Jfxi g
/1 is regular

in the sense of SFT for the symplectic completion of p�1.W /. Moreover, C 0tj intersects
transversally with each Cxi

at one point.

Now, just as in the end of the proof of Theorem 1.2, for some j , p.C 0tj / is the
desired symplectic sphere in the class A, where pW M 0!M is the complex blowing
down map. Moreover, p.C 0tj / is symplectic isotopic to C by the last statement of
Proposition 3.2.

Remark 3.12 One easily sees that the above proof works for finitely many Lagrangian
spheres that are pairwise disjoint. It is not clear to the authors whether the theorem
holds when they do intersect.

On the other hand, by choosing subsequences successively, one may push off certain
symplectic configurations. In particular, the following will be used in the proof of
Theorem 1.5.
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Corollary 3.13 Let L be a Lagrangian sphere in a symplectic 4–manifold .M; !/,
and D D fA1; : : : ;Ang a homology type of a stable spherical symplectic configuration.
If each Ai pairs trivially with ŒL�. Then there is a symplectic D–configuration disjoint
from L.

Remark 3.14 Further, we expect to be able to deform a contractible family of sym-
plectic spheres to be disjoint from a given Lagrangian sphere. Such a result would
be useful in proving Conjecture 1.7 on the uniqueness up to symplectomorphism (see
Remark 5.2 and Section 6.4.2). The family being contractible is necessary: as pointed
out to us by R. Hind, if one takes a representative of the generator of �1.Symp.S2; �//,
the graph of this generator as a circle family of symplectic spheres in a monotone
S2 �S2 cannot be isotoped away from the antidiagonal.

4 K –Null spherical classes when �D�1

It is in general difficult to determine whether a spherical class has a Lagrangian spherical
representative. We are able to completely solve this problem for rational and ruled
manifolds in Section 5.2. In this section we first derive some preliminary results.

4.1 Rational manifolds

We fix some notation: in this section M is CP2 # nCP2 with n� 1. Let E and L be
the sets of integral homology classes represented by smoothly embedded spheres of
square �1 and �2 respectively.

An orthogonal basis fH;E1; : : : ;Eng of H2.M IZ/ is called standard if H 2 D 1 and
Ei 2 E . We fix a standard basis in this section.

Let K be the set of symplectic canonical classes of M . For any sequence fıig,
i D 0; : : : ; n with ıi D 0 or 1, let Kfıi g

be the Poincáre dual of

�3H C .�1/ı1E1C .�1/ı2E2� � � �C .�1/ınEn:

Then Kfıi g
2K . When ıi D 0 for all i , we simply denote it by K0 , ie

K0 D PD.�3H CE1C � � �CEn/:

4.1.1 E ;L, symplectic genus and D.M / We review some facts about E ;L, D.M /

and the notion of symplectic genus.

Let D.M / be the geometric automorphism group of M , ie the image of the diffeo-
morphism group of M in Aut.H2.M IZ//. We say two classes in H2.M IZ/ are
equivalent if they are related by D.M /.
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Li and Li [31] showed that D.M / is generated by a set of spherical reflections. For

 2 H2.M IZ/ with 
 2 D 
 � 
 D ˙1 or ˙2, there is an automorphism R.
 / 2

Aut.H2.M IZ// called the reflection along 
 ,

R.
 /.ˇ/D ˇ�
2.
 �ˇ/


 � 


:

If 
 2 E or L by [17, Proposition 2.4, Chapter III], R.
 / 2D.M /, and we call it a
spherical reflection.

Another fact is that D.M / acts transitively on K [36].

To define the symplectic genus of e 2H2.M IZ/ first introduce the subset Ke of K :

Ke D fK 2K j there is a class � 2 CK such that � � e > 0g:

Here CK D fŒ!� j ! is a symplectic form, K! DKg is the K–symplectic cone. It is
shown in [36] that CK is completely determined by the set of K–exceptional spherical
classes

EK D fE 2 E jK.E/D�1g:

More precisely,

CK D f� 2H 2.M IR/ j �2 > 0; �.E/ > 0 for any E 2 EK g:

The following is a useful observation.

Lemma 4.1 If � D aH �
P

biEi 2H2.M IZ/ with a> 0 then Kfıi g
2K� .

Proof Notice that for any Kfıi g
, one could easily find � 2 CKfıi g

by requiring
�.H /� 0, but keeping the corresponding signs of Ei in � opposite to that of Kfıi g

.
Such a construction follows from the easy observation that classes in EKfıi g

are obtained
by changing the corresponding signs of those in EK and [36, Theorem 4].

By possibly even enlarging �.H / further, since a > 0, one could also assure that
�.�/ > 0. Therefore, Kfıi g

2K� .

For K 2Ke define the K–symplectic genus �K .e/ to be 1
2
.K.e/C e2/C 1. Finally,

the symplectic genus of class e is defined as

�.e/D max
K2Ke

�K .e/:

By [31, Lemma 3.2], �.e/ has the following basic properties:
(1) �.e/ is no bigger than the minimal genus of e , and they are both equal to �!.e/

in (3-1) if e is represented by an !–symplectic surface for some symplectic
form ! .

(2) Equivalent classes have the same �.
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Note that in [31] these properties are stated for classes with positive square, but the
proof actually covered all cases.

We have the following assertions characterizing E and L in terms of the symplectic
genus, as well as the action of D.M / on E and L.

Proposition 4.2 [31, Lemma 3.4, Lemma 3.6(2)] For e with e � e D �1 or �2,
�.e/D 0 if and only if e is not equivalent to a reduced class.

Moreover, for e with e � e D �1, �.e/ D 0 if and only if e 2 E , Any class in E is
equivalent to either Ei or H �Ei�Ej for some 1� i; j � n. If n¤ 2, it is equivalent
to Ei .

Similarly, for e with e � e D �2, �.e/ D 0 if and only if e 2 L. Any class in L is
equivalent to either Ei �Ej or H �Ei �Ej �Ek for some 1� i; j ; k � n. If n¤ 3,
it is equivalent to Ei �Ej .

Here a class � D aH �
Pn

iD1 biEi with a � 0 and b1 � b2 � � � � � bn � 0 is called
reduced [18; 27] if

a� b1C b2C b3:

4.1.2 K–Null spherical classes and DK .M / For K 2 K let DK .M / be the
isotropy subgroup of K of the transitive action of D.M / on K . We say two classes
are K–equivalent if they are related by DK .M /.

By Definition 1.3, � 2H2.M IZ/ is a K–null spherical class if � 2 L and K.�/D 0.
Hence the set of K–null spherical classes is denoted by LK .

We now study the interactions of LK and DK .M /. Due to the transitivity of the action
of D.M / on K [36], we will restrict to the case K DK0 without loss of generality.

First of all, if 
 2 LK0
, then R.
 / 2DK0

.M /, and we call it a K0 –twist.

Secondly, notice that DK0
acts on EK0

and LK0
.

To go further, we need to understand EK0
. It is clear that Ei 2 EK0

. Moreover, for
any symplectic form ! with K! D K0 , the GT invariant of H or any E 2 EK0

is
nontrivial. By the positivity of intersection, we have:

Lemma 4.3 Suppose � D aH �
P

biEi is in EK0
, then a� 0 and bi � 0. If aD 0,

then � DEi for some i .

It is clear that reflections R.Ei�Ej / and R.H �Ei�Ej �Ek/ are K0 –twists. With
this understood, we see that [43, Proposition 1.2.12] can be stated as follows:
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Proposition 4.4 Any class in EK0
can be transformed to either Ei or H�Ei�Ej for

some 1� i; j � n via K0 –twists. If n¤ 2, it is K0 –equivalent to Ei via K0 –twists.

As a consequence, we have:

Corollary 4.5 Suppose b�.M / D n � 2. If fE0ig
k
iD1

, k � n� 2, is an orthogonal
subset of EK0

, then there exists � 2 DK0
.M /, generated by K0 –twists, such that

�.E0i/DEi , 1� i � k .

Proof The statement is vacuous if n � 2 and easily verified for n D 3. We apply
induction on n. From Proposition 4.4, there exists z� 2DK0

.M / such that z�.E0
1
/DEi .

One then further compose the K0 –twist f D R.Ei �E1/ so that E0
1

is eventually
sent to E1 . Noting that

f .z�.E0i// �E1 D f .z�.E
0
i// �f .

z�.E01//DE0i �E
0
1 D�ı1i ;

we are reduced to the case n�1 by restricting our attention to the last .n�1/ exceptional
classes (and k is reduced by 1 as well).

Remark 4.6 Note that this is not true when kDn�1. Take nD2. Then H�E1�E2

is not equivalent to E1 or E2 since it is characteristic but Ei is not.

Proposition 4.7 DK0
.M / is generated by K0 –twists.

Proof For � 2 DK0
.M /, apply Corollary 4.5 to �.Ei/; 1 � i � n � 2, there is a

K0 –twist f such that f .�.Ei//DEi .

Consider Fn�1 D f .�.En�1// and Fn D f .�.En//. Fn�1 and Fn are orthogonal
to Ei , 1� i � n�2, since f .�.Ej // �Ei DEj �Ei D 0 for i � n�2 and j > n�2. It
is easy to see that the only such classes in EK0

are H �En�1�En;En�1;En . Since
Fn�1 �Fn D 0, it has to be that fFn�1;Fng D fEn�1;Eng. By composing f with the
K0 –twist R.En�En�1/ if necessary, one obtains the desired inverse of � generated
by K0 –twists, which means � is also generated by K0 –twists.

We now prove an analogue of Proposition 4.4 for LK0
. We start with:

Lemma 4.8 Suppose � D aH �
P

biEi 2 H2.M IZ/ is in LK0
, If a > 0 then

�.�/D �K0
.�/ and bi � 0.
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Proof For any � 2 LK0
, �K0

.�/ D 0 and the minimal genus is 0 as well. By
Lemma 4.1, if � D aH �

P
biEi 2H2.M IZ/ with a> 0, then �Kfıi g

.�/ is defined.
Recall from the minimal genus assumption and the fact that the symplectic genus is no
bigger than the minimal genus, 0D �K0

.�/ � �Kfıi g
.�/ for any choice of fıig. But

this holds only if bi � 0 for all i , hence the conclusion follows.

Following Evans [13], we make the following definition.

Definition 4.9 A class is called binary if it is of the form Ei �Ej , and ternary if it is
of the form H �Ei �Ej �Ek , 1� i; j ; k � n.

Clearly, binary and ternary classes are in LK0
. In the rest of our paper, we denote

R.H �Ei �Ej �Ek/ by �ijk for short.

Proposition 4.10 For � 2 LK0
, either � is K0 –equivalent to a binary or ternary class.

Further, if either n¤ 3, or nD 3 but ˙�¤H�E1�E2�E3 , then � is K0 –equivalent
to the binary class E1�E2 .

Proof Let � D aH �
P

biEi . When aD 0 it is easy to conclude that � is binary. Let
r be the number of nonzero bi . An easy calculation verifies the case when r � 3. Thus
we assume r > 3 with a> 0 by possibly reversing the signs of � (simply do a reflection
with respect to � ). By Lemma 4.8, we may assume that b1 � b2 � � � � � bn � 0.

Now we write down the reflection �123 explicitly:

�123.�/D .2a� b1� b2� b3/H �
X

ciEi ;

where ci D bi for i > 3.

If 2a� b1� b2� b3 < 0, consider the class ��123.�/ 2 LK0
. In this case, the leading

coefficient of ��123.�/ is bigger than 0. However, since r > 3, one must have
�cr D�br < 0, a contradiction to Lemma 4.8. Thus, 2a� b1� b2� b3 � 0

Moreover, from Proposition 4.2, � is not reduced hence one must have b1Cb2Cb3>a.
Combining these facts, we have

0� 2a� b1� b2� b3 < a:

Also notice that �123.�/ verifies all conditions of Lemma 4.8, thus ci > 0 still holds.
One could then repeat the above process and use induction on the coefficient H � �

until r � 3 or aD 0.

Remark 4.11 The algorithm reducing a K–null spherical classes is also valid for
exceptional classes. In this case, one gets an explicit K0 –equivalence from an excep-
tional class to Ei when n � 3 or possibly H �E1 �E2 when n D 2. This is also
used in [43].
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4.1.3 .K; ˛/–Null spherical classes and DK ;˛.M / In this section we fix a class ˛
in the K–symplectic cone CK .

Definition 4.12 A .K; ˛/–null spherical class is a K–null spherical class which pairs
trivially with ˛ .

Reflections R.�/, for � a .K; ˛/–null spherical class, are called .K; ˛/–twists. We
also define DK ;˛.M / to be the subgroup of DK .M / preserving ˛ . One has the
following easy observation:

Lemma 4.13 If � 2DK then

� � induces a bijection from LK ;˛ to LK ;��1.˛/ ,

� f !��1ıf ı� defines an isomorphism from DK ;˛ to DK ;��1.˛/ taking R.�/

to R.�.�//,

� ˛ has a positive lower bound on EK which is attained by some K–exceptional
class.

The third assertion is a consequence of Gromov compactness and the well-known fact
that, for any E2EK , GT.E/¤0 with respect to any symplectic form ! representing ˛ .
We are now ready to prove the following:

Proposition 4.14 D.K0;˛/ is generated by .K0; ˛/–twists.

Proof We will use induction on n and a trick due to Pinsonnault [44]. For n� 3 this
is easy to verify directly by listing all exceptional classes.

If n� 3 choose fE0ig
n�2
iD1
�EK0

such that E0
1

has minimal ˛–area, and E0i has minimal
˛–area among exceptional classes orthogonal to Ej for all j < i . By Corollary 4.5,
there is  2DK0

.M / such that  .E0i/D Ei . By Lemma 4.13 we can assume that
E0i DEi , so that among the basis elements fH;E1; : : : ;Eng, E1; : : : ;En�2 enjoys
the above minimality property.

Let f 2D.K0;˛/ . If one could find a series of .K0; ˛/–twists such that their composi-
tion � satisfies � ı f .E1/DE1 , one can then include ��1 into our decomposition
of f . Since E1 is orthogonal to � ıf .Ei/ for i ¤ 1, one can then use induction on
these classes. Therefore it suffices to look for such a � in the rest of the proof.

Notice first that

(4-1) ˛.H �Ei �Ej �Ek/� 0; i > j > k:
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This is clear from the construction: since the K0 –exceptional class .H�Ei�Ej /�ElD

0, for all l < k and k � n� 2, we have ˛.H �Ei �Ej /� ˛.Ek/

Assume f .E1/D aH �
P

bri
Eri

. Notice f .E1/ 2 EK0
and ˛.f .E1//D ˛.E1/. If

aD0 then f .E1/DEk for some k and E1�Ek 2LK0;˛ . In particular, R.E1�Ek/2

DK0;˛ and we can choose � DR.E1�Ek/.

If a¤ 0, by Lemma 4.3, a> 0 and bi � 0. Suppose br1
� br2

� � � � � brn
� 0. Now

apply �r1r2r3
,

�r1r2r3
.f .E1//D f .E1/C .a� br1

� br2
� br3

/.H �Er1
�Er2

�Er3
/:

From Proposition 4.2, a�br1
�br2

�br3
< 0. By (4-1), ˛.H �Er1

�Er2
�Er3

/� 0,
thus

˛.E1/D ˛.f .E1//� ˛.�r1r2r3
.f .E1///:

By the choice of E1 , we must have ˛.H �Er1
�Er2

�Er3
/D 0. This means that

H �Er1
�Er2

�Er3
2 LK0;˛ and �r1r2r3

2DK0;˛.M /.

Now from Remark 4.11, by repeating the above operations we eventually have an
equivalence between E1 and Ek for some k . Denote their composition by z� .

If k D 1 let � D z� . If k ¤ 1, then ˛.Ek/D ˛.E1/ and let � DR.E1�Ek/ ı z� .

4.2 Irrational ruled manifolds

It is clear that a minimal symplectic irrational ruled manifold does not admit any
Lagrangian spheres. Thus, in this subsection, M D .†h�S2/#nCP2 . Any nonminimal
genus h ruled manifold is of this form. Define E ;L;K;D.M / as above. For K 2K
also define DK .M /; EK ;LK and K–null spherical class as above.

A standard homology basis consists of fT;F;E1; : : : ;Eng, with the following algebraic
properties:

(4-2) T �F D 1; T 2
D F2

D T �Ei D F �Ei D 0; E2
i D�1; 1� i � n:

Geometrically, T is represented by a surface with genus h, F the class of a fiber,
and fEig a maximal collection of orthogonal exceptional classes in E . The standard
canonical class is then K0 D PD.�2T C .2h� 2/F C

P
Ei/.

The group D.M / is characterized as the subgroup of Aut.H2.M IZ// preserving F

up to sign [17]. Due to the transitive action of D.M / on K shown in [36], we may
again restrict to the case K! DK0 .
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Lemma 4.15 We have

EK0
D fEi ;F �Ei ; i D 1; : : : ; ng;

LK0
D f˙.F �Ei �Ej /;˙.Ei �Ej /; 1� i < j � ng:

Proof First of all, if � D aT C bF C
P

ciEi is represented by a sphere, then aD 0.
This follows from the fact that a sphere does not have a nonzero degree map to a
positive genus curve.

With this understood, it is easy to determine EK0
and LK0

using (4-2).

For ˛ 2 CK0
we define DK0;˛ , .K0; ˛/–twist as before.

Lemma 4.16 DK0;˛ is generated by .K0; ˛/ twists.

Proof As in the rational manifold case, we do induction on nD b�.M /C 1.

When n D 1, since �.F / D ˙F , it is easier to see that DK0
, and hence DK0;˛ , is

trivial.

In general when n � 2, for � 2DK0;˛ we consider its action on EK0
. Let E be the

exceptional class with minimal ˛ area, the induction is immediate if �.E/ �E D 0, in
which case we simply compose � with the .K0; ˛/� twist R.E��.E// to reduce to
a lower n case.

Otherwise, �.E/D F �E by Lemma 4.15. In this case 2˛.E/D !.F /. Since two
classes A and F �A are either both in EK0

or neither, the minimality of ˛.E/ forces
all other exceptional spheres to have the same area as E . Since n� 2, it is clear that
one could send F �E back to E via a composition of .K0; ˛/–twists, for example,
the .K0; ˛/� twist R.E0 �E/ followed by R.F �E0 �E/, where E0 is another
exceptional standard basis element orthogonal to E . Again we are able to reduce to a
lower n case.

5 Lagrangian spherical classes when bC D 1

Theorem 1.2 allows us to effectively apply a Lagrangian-relative version of inflation
procedure in this section. Together with Proposition 4.10, this enables us to classify
Lagrangian spherical classes in symplectic 4–manifolds with � D�1. We also give
the proof of Theorem 1.8 in Section 5.3.
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5.1 Lagrangian relative inflation

The inflation procedure was first introduced by Lalonde [28] and proved useful in
many fundamental problems in symplectic geometry (see Lalonde and McDuff [29]
for example).

The inflation construction in [28], together with Theorem 1.2, gives:

Lemma 5.1 (Inflation lemma) Let L be a Lagrangian sphere in a symplectic 4–
manifold with bC D 1. Let A be a class in H2.M IZ/ satisfying the condition in
Theorem 1.2. Assume also that A � ŒL�D 0. Then there is a closed form � on M in
class PD.A/ supported away from L so that

ˇt D !C t�; t � 0;

is symplectic. In particular, L remains Lagrangian for any ˇt .

The proof is straightforward: note in [28], � is supported near a symplectic surface in
class A. Therefore, if such a symplectic surface is disjoint from the given Lagrangian
sphere L, L remains Lagrangian in the course of the inflation procedure. Now
Theorem 1.2 provides the desired symplectic surface.

We first apply Lemma 5.1 to study symplectic ball embeddings in the complement of a
Lagrangian sphere. Biran and Cornea studied Lagrangian relative embeddings in [8]
(called mixed packing there), where the size of maximal ball embeddings is found in
some cases.

In our case of a Lagrangian sphere L in a symplectic 4–manifold with bC D 1,
Lemma 5.1 enables us to show that packing problems in the complement of L can
often be answered in the same way as for the ordinary packing problems. Here is one
example. Biran showed in [6] that in any closed symplectic 4–manifold with an integral
symplectic form, the symplectic packing problem is stable via inflation on a Donaldson
hypersurface. For a symplectic 4–manifold .M; !/ with bC D 1 and ! integral, the
class nŒ!� for n large satisfies the conditions in Theorem 1.2 for an arbitrary given
Lagrangian sphere. Thus Lemma 5.1 can be applied to such a class and it follows from
the arguments in [6] that the symplectic packing problem is also stable in .M; !/nL

for M a closed symplectic 4–manifold with bC D 1, ! an integral symplectic form
on M and L a Lagrangian sphere in M .

Remark 5.2 It would be useful to prove the following parameterized version of
Lemma 5.1, which would be the analogue of [40, Lemma 1.1]: Given a path !t ,
0 � t � 1, of symplectic forms on M with bC D 1 and a sphere L Lagrangian for
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each !t . Let A be a class in H2.M IZ/ satisfying the conditions in Theorem 1.2.
Assume also that A � ŒL�D 0. Then there is a path �t of closed forms on M in class
PD.A/ supported away from L so that

ˇt D !t C �.t/�t ; 0� t � 1;

is symplectic whenever �.t/� 0. In particular, L remains Lagrangian for any ˇt .

Lemma 1.1 in [40] is actually stated for manifolds which are not of SW simple type.
And it is used there to show that for this class of manifolds, the ball embedding space

Ex�;k.M; !/D

�
 

ˇ̌̌̌
 W

ka
iD1

.B4.�i/; !std/ ,! .M; !/

�
with x�D .�1; : : : ; �k/, is connected. With observations made in [36], it is straightfor-
ward to see that Lemma 1.1 in [40] is actually valid for any manifold with bC D 1.
Thus, the connectedness of Ex�;k.M; !/ holds for any .M; !/ with bC D 1. Further,
substituting it by its L relative version as above in appropriate places, we would be
able to obtain the connectedness of the relative ball embedding space.

5.2 Existence of Lagrangian spheres

In this subsection we present the proof of Theorem 1.4. We begin with some general
discussions of Lagrangian spheres in a nonminimal symplectic 4–manifold with bCD1.

5.2.1 Nonminimal 4–manifolds with bCD 1 and � � 0 We begin with the follow-
ing two persistence results.

Lemma 5.3 Let .M; !/ be a symplectic 4–manifold with bC.M / D 1 and Œ!� 2
H 2.M IQ/. Let . SM ; x!/ be the one point blow up of .M; !/ with size a, and
�W H2.M IZ/! H2. SM ;Z/ the canonical injection. If L � .M; !/ is a Lagrangian
sphere, then there is a Lagrangian sphere in . SM ; x!/ in the class �.ŒL�/.

Proof By the uniqueness of blow ups [40, Corollary 1.3], we can place the ball of
size a anywhere in .M; !/. If the ball is disjoint from L, we are done. Otherwise,
first choose a ball of size a0 < a and disjoint from L, we obtain a blow up . SM ; x!0/

with a Lagrangian xL from L. Let pW SM !M be a topological blow down map which
contracts the exceptional sphere. Consider the class ˇl;ı D l.Œp�!�� .aC ı/PD.E//
for ı > 0. Clearly, ˇl;ı.ŒxL�/D 0. Since the Kx! –symplectic cone CKx! (which is the
same as CKx!0

) is open, we can assume that PD.ˇl;ı/ is in CKx! by choosing ı small.
If aC ı is further assumed to be a rational number, then there exists l 2 ZC such
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that PD.ˇl;ı/ satisfies the conditions in Lemma 5.1. Applying Lemma 5.1 to such
a PD.ˇl;ı/ and xL, we find that xL remains Lagrangian in . SM ; x!00/, where x!00 is a
symplectic form in the class Œp�!��a PD.E/ up to a rescale. The proof is finished by
again invoking the uniqueness of cohomologous symplectic forms on any manifold
with bC D 1 [40, Theorem 1.2; 36, Proposition 4.11].

If E is the class of the exceptional sphere, this lemma can be viewed as the persistence
of Lagrangian spheres under a symplectic deformation on SM in the E direction,
which can also be proved via the inflation construction along a symplectic surface with
negative self intersection as in [37].

Lemma 5.4 Let . SM ; x!/ be a symplectic 4–manifold with bC. SM / D 1, Œx!� 2
H 2. SM IQ/. If there are two orthogonal exceptional classes E1 , E2 2 E! with equal
symplectic area a, then there is a Lagrangian sphere in the binary class E1�E2 .

Proof Let us first consider a local model: the two point blow up of a standard ball with
equal size t > 0. This can be identified with the complement of a line in CP2 # 2CP2

with a symplectic form � with Œ� �D PD.H � tE1� tE2/. Notice that .CP2 #2CP2; �/

is symplectomorphic to a one point blow up of a monotone S2 �S2 with size 1� 2t .
If we apply Lemma 5.3 to the antidiagonal La in this monotone S2 �S2 , we find a
Lagrangian sphere in .CP2 # 2CP2; �/ in the class E1 �E2 D �.ŒLa�/. In addition,
such a Lagrangian sphere can be made disjoint from an embedded H –class sphere in
CP2 # 2CP2 by Theorem 1.1. We therefore obtain a Lagrangian sphere in our local
model.

In general, let .M; !/ be obtained by symplectically blowing down two disjoint spheres
in E1 and E2 in . SM ; x!/ and adopt notation in Lemma 5.3. We shrink both balls
corresponding to E1 and E2 to size �� 1. By the uniqueness of ball-embeddings (in
case of absence of a Lagrangian sphere; see Remark 5.2), we may place the two tiny
balls V1 and V2 in a Darboux chart. Our local model analysis above ensures that there
is a Lagrangian sphere L in the blow-up of the chart around V1 and V2 . Consider the
class BbDPD.p�!/�bE1�bE2 where b is a positive rational number slightly larger
than aD x!.Ei/, i D 1; 2. Since the Kx! –symplectic cone CKx! is open, we can further
assume that PD.Bb/ is in CKx! . Clearly, Bb � .E1 �E2/ D 0. Thus for some large
integer lb , lbBb satisfies the conditions in Lemma 5.1. Now the conclusion follows
from inflating along a symplectic surface in class Bb as in the proof of Lemma 5.3.

Corollary 5.5 Suppose .M; !/ is a minimal symplectic manifold with bC D 1,
Œ!�2H 2.M;Q/. Suppose . SM ; x!/ is a k point symplectic blow-up of .M; !/ with Ei ,
i D 1; : : : ; k , the corresponding exceptional class, and the canonical injective map is
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denoted as �W H2.M IZ/!H2. SM IZ/. Then � 2H2. SM IZ/ is a Lagrangian spherical
class if

(1) either � 2 Im.�/ and ��1.�/ is Lagrangian spherical,

(2) or � DEi �Ej for some i; j , ie � is binary, and !.�/D 0.

If �.M /� 0, these are the only Lagrangian spherical classes of . SM ; x!/.

Proof (1) and (2) follow directly from Lemmas 5.3 and 5.4 respectively.

To show these are the only Lagrangian spherical classes when �.M / � 0, suppose
� D � 0�

Pk
iD1 aiEi is represented by a Lagrangian sphere xL, where � 0 2 Im.�/.

If ai D 0 for all i , then apply Theorem 1.1 to find disjoint exceptional spheres in
the classes Ei , which are also disjoint from xL. This shows that � 0 is a Lagrangian
spherical class of .M; !/.

Now assume some ai ¤ 0. Without loss of generality, let i D 1. The reflection R.�/

thus sends E1 to a� 0�
P

i>1 aiEi�.a
2
1
�1/E1 . Such a class is an exceptional class of

. SM ; x!/. However, from the uniqueness of the minimal model for symplectic manifolds
with � � 0 [39], a� 0�

P
i>1 aiEi � .a

2
1
�1/E1DEj for some j . This shows � 0D 0

and � is indeed binary.

5.2.2 Rational manifolds

Proof of Theorem 1.4, rational manifold case The case of S2 �S2 is well-known
and so we focus on blow-ups of CP2 below.

Due to the transitive action of D.M / on K mentioned in Section 4, and using
Definition 4.12, we are reduced to prove the following Proposition.

Proposition 5.6 Suppose M DCP2 # nCP2 with fH;E1; : : : ;Eng a standard basis,
and ! is a symplectic form with K! D K0 D PD.�3H CE1 C � � � CEn/. Then
� 2H2.M IZ/ is represented by a Lagrangian sphere if and only if � is .K0; Œ!�/–null
spherical.

Proof The conditions are clearly necessary. In the case nD 2, up to sign, the only
K0 –null spherical class is the binary class � DE1�E2 . And if � is .K0; Œ!�/–null
spherical, then E1 and E2 must have equal symplectic area. Thus the existence of a
Lagrangian sphere has been argued in the first paragraph of Lemma 5.4.

Let us then suppose that n > 3. One notices that in this case � can also be assumed
to be binary. This is because, from Proposition 4.7, there is a self-diffeomorphism �
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of M , which induces a K0 –twist on homology and sends � to a binary class, and
we could just consider ��.�/ in .M; .��1/�!/. Without loss of generality we could
further assume �DE1�E2 . If !.�/D 0, then, up to scaling, PD.Œ!�/D 3H�

P
biEi

with b1 D b2 D b > 0.

Blowing down a collection of disjoint exceptional spheres in the classes Ei with
i � 3, we obtain M 0 D CP2 # 2CP2 with a symplectic form !0 in the class Œ!� D
PD.3H � bE1� bE2/. As just shown, there is a Lagrangian sphere L� .M 0; !0/ in
the class E1 �E2 . Now apply Lemma 5.3 to obtain the desired Lagrangian sphere
back in .M; !/ by performing n� 2 blow-ups.

Finally let us suppose that nD 3. A K0 –null spherical class is either binary or the
ternary class � DH �E1�E2�E3 . The binary case can be treated in the same way
as in the case n> 3. So let us assume that � DH �E1�E2�E3 . Let . SM ; x!/ be a
one point blow up of .M; !/, E4 the new exceptional class, and � the canonical map.
Notice that b�. SM /D 4 and �.�/ is .K0; Œx!�/–null spherical, thus there is a Lagrangian
xL� . SM ; x!/ in the class �.�/. By applying Theorem 1.2 to xL and E4 , we conclude
the proof by blowing down an exceptional sphere in class E4 disjoint from xL.

Now the proof of Theorem 1.4 in the rational manifold case is complete.

5.2.3 Irrational ruled manifolds

Proof of Theorem 1.4, irrational ruled manifold case Similar to the rational case,
it reduces to the following statement.

Proposition 5.7 Suppose M D .†h�S2/#nCP2 with fT;F;E1; : : : ;Eng a standard
basis, and ! is a symplectic form with K!DK0DPD.�2T .2h�2/FCE1C� � �CEn/.
Then � 2H2.M IZ/ is represented by a Lagrangian sphere if and only if � is .K0; Œ!�/–
null spherical.

Proof We use the cut and paste procedure in [39] to reduce it to the rational manifold
case.

We can view .M; !/ as a symplectic genus 0 Lefschetz fibration over †h with n

reducible fibers, each consisting of a pair of exceptional spheres in the classes Ei and
F �Ei . Denote the projection by � and the image of the reducible fibers by B . View
†h as assembled from a 4h–sided polygon with the vertices going to x0 2 †h , the
edges going to a 2h–wedge of loops ƒh . Since B is a finite set, we can assume that
B \ƒh D∅.
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We cut M along ��1.ƒh/ to obtain a genus 0 Lefschetz fibration V over a two-disk D

with n reducible fibers. Recall from [39, Lemmas 4.13–4.14] that with a symplectic
deformation supported near an arbitrarily small neighborhood of x0 , .M; !/ can be
assumed to be a symplectic product in a neighborhood of ��1.ƒh/. Therefore we can
compactify .V; !/ into a genus 0 Lefschetz fibration . xV ; x!/ over S2 with n reducible
fibers by adding a fiber F0 .

Notice that V is diffeomorphic to .S2 �D2/ # nCP2 , and xV is diffeomorphic to
.S2�S2/#nCP2 =.CP2#CP2/#nCP2 . Moreover, in the standard basis representation,
F corresponds to H �E1 , and Ei corresponds to Ei . In particular, a .K0; Œ!�/–null
spherical class corresponds to either H �E1�Ei �Ej or Ei �Ej , 2� i < j � n.

We have shown there are Lagrangian spheres in . xV ; x!/ in these classes. What remains
to prove is that there are Lagrangian spheres disjoint from the symplectic sphere F0 .
This is true due to Theorem 1.1, since ŒF0�DH �E1 is a square 0 class, orthogonal
to H �E1�Ei �Ej and Ei �Ej for any 2� i < j � n.

5.3 Homological action

We are now ready to prove Theorem 1.8.

Proof Let .M; !/ be a symplectic 4–manifold with � D�1. Further assume that
a standard basis is chosen. As mentioned in the proof of Theorem 1.4, fixing the
canonical class causes no loss of generality. Thus we assume that K! DK0 .

On the one hand, if f 2 Symp.M; !/, then f� 2 DK0;Œ!�.M /. On the other hand,
Theorem 1.4 implies any .K0; Œ!�/–twist is realized by a Lagrangian Dehn twist. With
this understood, Theorem 1.8 is simply a consequence of Proposition 4.14, Lemma 4.16,
and Theorem 1.4.

Corollary 5.8 If .M; !/ is monotone, the representation of the symplectic mapping
class group on H2.M IZ/, namely, the Torelli part, is DK! .M /.

Remark 5.9 Corollary 5.5 also has its counterpart asserting when bC.M /D 1 and
�.M /� 0, the homological action of Symp. SM ; x!/ is generated by the homological
action of Symp.M; !/ and binary Lagrangian reflections.

It would be interesting to know whether for any minimal .M; !/ with bC D 1 and
�.M /� 0, the homological action of Symp.M; !/ is generated by Lagrangian Dehn
twists.

Geometry & Topology, Volume 16 (2012)



1158 Tian-Jun Li and Weiwei Wu

6 Uniqueness of Lagrangian spheres in rational manifolds

The present section is devoted to the proof of Theorem 1.5. We begin by reviewing
two basic uniqueness results of Hind for S2 �S2 and T �S2 .

6.1 Review of Hind’s results

6.1.1 S2 �S2 via symplectic cut For S2 �S2 we have uniqueness up to isotopy:

Theorem 6.1 (Hind [22]) Lagrangian spheres in a monotone S2 �S2 are unique up
to Hamiltonian isotopy.

From the connectedness of Symp.S2 �S2; � ˚ �/ by Gromov [20], Theorem 6.1 is
equivalent to:

Proposition 6.2 Lagrangian spheres in a monotone S2 �S2 are unique up to sym-
plectomorphisms.

We here offer an argument for this weaker version of uniqueness using an idea from
Hind [21] turning the Lagrangian uniqueness problem into a symplectic uniqueness
problem via symplectic cut. Such an argument is useful for the uniqueness of La-
grangian RP2 in rational manifolds (see Section 6.4.1). Some preparations are needed.

Let A, B 2H2.S
2�S2IZ/ be the classes of two product factors on S2�S2 . Let ��

be the product symplectic form ��
1
� C .1C�/��

2
� with � > 0. Let J� be the space

of ��–tamed almost complex structures. The following is due to Abreu and McDuff:

Theorem 6.3 [1, Proposition 2.1, Corollary 2.8] Suppose l �1< �� l , l an integer.
Then J� admits a stratification fUkg0�k�l with the following properties:

(1) The class A� kB is represented by a unique embedded J –holomorphic sphere
if and only if J 2 Uk .

(2) Each Uk is connected.

As a consequence, we have the following claim:

Proposition 6.4 The space of symplectic spheres with self-intersection �2k in
.S2 �S2; !�/ is nonempty and connected if � > k � 1.
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Proof A symplectic sphere with self-intersection �2k is in the class A� kB , and it
exists if and only if � > k � 1. For two such symplectic spheres Ci ; i D 0; 1, there are
almost complex structures Ji 2 Uk such that Ci is Ji –holomorphic for i D 0; 1. By
Theorem 6.3(2), there is a path Jt in Uk connecting J0 and J1 . By Theorem 6.3(1),
there is a unique sphere Ct with self-intersection �2k for each Jt . This path of
symplectic spheres is continuous due to Gromov’s compactness.

Proof of Proposition 6.2 Given two Lagrangian spheres L1;L2 in S2 �S2 with a
monotone symplectic form ! . By Weinstein’s neighborhood theorem one can fix two
symplectic embeddings �1 , �2 : T �r S2! S2 �S2 for some small r > 0. For each i ,
consider the geodesic flow on S2 with the standard round metric. By performing
symplectic cut on .S2 �S2; !/ along the boundary of the image of �i , we obtain a
pair of S2 �S2 for each i : one comes from �i.T

�
r S2/, equipped with the standard

monotone symplectic form of size r ; and the other one comes from the complement
of �i.T

�
r S2/, equipped with symplectic form !i and a symplectic .�2/–sphere †i .

Clearly, for the S2 �S2 coming from the complement of �i.T
�
r S2/, one may find a

diffeomorphism z� between them, so that Œz��!2�D Œ!1�.

It follows from the uniqueness of cohomologous symplectic structures in [29] and
Proposition 6.4, we can upgrade z� to the following symplectomorphism of pairs, by
composing an appropriate diffeomorphism

�W ..S2
�S2; !1/; †1/! ..S2

�S2; !2/; †2/;

where � sends a neighborhood of †1 symplectomorphically to one of †2 . Notice
the following useful fact: the symplectic sum [19] is the exact inverse of symplectic
cut. Here we make this precise by providing a general description of symplectic sum
pointed out to us by Gompf.

Let .M; †/ and .N; †0/ be two symplectic pairs, where † and †0 are symplectomor-
phic, whose normal bundles have opposite Euler classes. Let P be the (real) projec-
tivization of one of the normal bundles, then for some interval .�a; a/, P � .�a; a/

has a canonical symplectic form with Hamiltonian S1 –action rotating each fiber. The
symplectic cut on P � .�a; a/ at 0 gives two disc bundles on † and †0 with opposite
Euler classes as they are embedded in M and N , respectively. Therefore, the com-
plement of P �f0g can be locally identified with the two normal bundles of † and †0

removing the zero section. Such a gluing completes the symplectic sum operation.

With this understood, we can glue � with the identity symplectomorphism on the
monotone S2 � S2 with size r , up to an appropriate adjustment on �. Explicitly,
when performing the pair of symplectic cuts, there is associated a natural identification
between some neighborhoods Ui of †i for i D 1; 2, as described above. The map �
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cannot be glued directly to the identity map on the other piece, precisely because it is
not the identity map when represented under such an identification between the Ui ’s.

Therefore, our question is local, and in below, by shrinking U1 if necessary, we re-
gard U1 a subset of U2 using the natural identification. We further assume �.U1/�U2 .

Notice that †1 and †2 are naturally parameterized by S2 via �1 and �2 . With respect
to these parameterizations, � restricted to †1 may not be the identity map. However, it
is clear that there is a self-symplectomorphism zf of S2�S2 with respect to !2 so that
zf ı � is the identity on the zero section by a standard application of Moser’s argument.

Therefore, without loss of generality, we simply assume �j†1
is just the identity.

Now it suffices for us to show that, by composing a certain self-symplectomorphism f

of S2�S2 with respect to !2 , which is the identity on †2 and supported in U1\�.U1/,
so that f ı � is the identity near †1 under the above identification. Furthermore, this
is equivalent to finding an f so that f ı � is the identity on the normal bundle of †1

(see [11; 24], etc.). In the rest of the proof we pursue such an f .

To achieve this we embed U2 symplectically into O.�2/. Here O.n/ denotes the
complex line bundle over S2 with c1 D n, whose total space is equipped with a
standard Kähler form, agreeing with !2 on †2 when restricted to the zero section.

Denote d � as the induced tangent map on T .S2 �S2/j†1
, our assertion is equivalent

to finding a symplectomorphism f of O.�2/ so that df D .d �/�1 and supp.f / �
U1 \ �.U1/. Now the assertion follows from [24, Lemma 2.4]. To recall the lemma,
let Gs be the symplectic gauge transformations of the normal bundle � of †2 , that is,
sections of Sp.�/n†2 , where Sp.�/ are the fiberwise symplectic linear maps. Notice
that Gs D Map.†2ISL.2IR// ' S1 . Let Sc.O.n//0 be the compactly supported
symplectomorphism fixing the zero section.

Lemma 6.5 [24, Lemma 2.4] The homomorphism Sc.O.n//! Gs given by taking
derivatives along † is surjective.

Notice that [24] assumes n�0 throughout, but the proof of Lemma 6.5 indeed works for
arbitrary n 2Z. Given .d �/�1 2 Gs , from the homotopy type of Gs , we can connect to
it by a path 
 .t/, t 2 Œ0; 1� starting from id. Take a lift z
 of 
 by Lemma 6.5 starting
from id 2 Sc.O.�2//0 . Since O.�2/ is simply connected, z
 .t/ are Hamiltonian
isotopies, hence their supports can be cut-off to fit inside U1\ �.U1/ without affecting
the action restricting to T .O.�2//j†2

. In particular, since the support of z
 .1/ is
contained in U1\ �.U1/, it can be viewed as a self-symplectomorphism of S2 �S2

with respect to !2 . Thus z
 .1/ is the symplectomorphism so that f D z
 .1/ ı zf has
the desired property. This in turn concludes our proof of Proposition 6.2.

Geometry & Topology, Volume 16 (2012)



Lagrangian spheres, symplectic surfaces and the symplectic mapping class group 1161

6.1.2 T �S2 and the symplectic mapping class group Further exploring the sym-
plectic cut approach in Section 6.1.1, we obtain an alternative proof of Hind’s La-
grangian sphere uniqueness in T �S2 below via Seidel’s description of the compactly
supported symplectomorphism group of T �S2 .

Theorem 6.6 (Hind [21]) Lagrangian spheres in .T �S2; !std/ are unique up to
Hamiltonian isotopy.

Proof Via the negative Liouville flow and scaling we can isotope any Lagrangian in
.T �S2; !std/ into one in .T �

1
S2; !std/. Further, via the identification .T �

1
S2; !std/D

.S2�S2; !0/n�, where !0 is a monotone form and � is the diagonal of S2�S2 , it
suffices to show the uniqueness of Lagrangian spheres in .S2 �S2; !0/n�.

Given two Lagrangian spheres L1 , L2 2 .S
2�S2; !0/n�, we first claim that there is

� 2 Sympc.T
�
1

S2; !std/ such that �.L1/DL2 , where Sympc denotes the compactly
supported symplectomorphism group.

Without loss of generality we assume L2 D
x�, which is the antidiagonal, corre-

sponding in turn to the zero section of T �S2 . By Proposition 6.2, there is ‰ 2
Symp.S2 � S2; !0/, such that ‰.L1/ D L2 . ‰ may not fix �, but notice that
‰.�/\ x�.D L2/ D ∅. Since the complement of x� is canonically identified with
a symplectic disk bundle over the diagonal, by [23] there is a symplectic isotopy
ẑ

t W S
2! .S2 �S2; !0/ fixing x� and connecting the two symplectic spheres ‰.�/

and �. In particular, ẑ t ı‰.�/ is disjoint from x� for each t .

Now we extend ẑ t to a symplectic isotopy of a neighborhood U of ‰.�/ which
we still denote as ẑ t [41, Example 3.40], and require that ẑ t .U / be still disjoint
from x� for all t . We then trivially extend z‰t to z� t , a symplectic isotopy on a
neighborhood U 0 of ‰.�/[ x�, which restricts to ẑ t on U and to the identity near x�.
Since H 1.U 0IR/ D 0, H 2.S2 � S2;U 0IR/ injects into H 2.S2 � S2IR/. By the
argument proving Banyaga’s isotopy extension theorem (see for example [41, Theorem
3.19]), z�t extends to a global symplectic isotopy �t of .S2�S2; !0/, where �0D id,
�1.L1/DL2 , and �1j� D id.

Consider �0 D �1 ı ‰ 2 Symp.S2 � S2; !0/. Since �0 is the identity on �, it
induces a compactly supported symplectomorphism � of .T �

1
S2; !std/ up to isotopy,

mapping L1 to the zero section L2 .

From Seidel’s description of Sympc.T
�
1

S2; !std/ in [46], � D �n ı �1 , where � is
the Lagrangian Dehn twist along the zero section L2 , and �t , t 2 Œ0; 1� with �0 D id
is a compactly supported symplectic isotopy. Now it is clear that �t .L1/ is a path
connecting L1 to the zero section since � fixes the zero section.

Geometry & Topology, Volume 16 (2012)



1162 Tian-Jun Li and Weiwei Wu

6.2 Proof of Theorem 1.5

For k � 0 we will denote by Vk the manifold .S2 � S2/ # kCP2 . When k � 1,
Vk D CP2 # .k C 1/CP2 . Due to Theorem 6.1 and the fact that CP2 # CP2 has no
spheres with self-intersection �2, we only need to prove Theorem 1.5 for Vk with
k D 1; 3, and k D 2 but ŒL� not characteristic. By Proposition 4.10, we may further
assume that ŒL� is the binary class E1�E2 .

Throughout this subsection, J0 denotes the complex structure obtained from a generic
k –point complex blow-up of CP1 �CP1 . Without loss of generality, we may assume
! is a Kähler form compatible with J0 . This follows from [34, Proposition 4.8] that
the symplectic cone is the same as the J0 –compatible cone in H 2.Vk ;R/ when k � 8,
as well as the uniqueness of homologous symplectic forms in [40].

To prove Theorem 1.5, we apply Theorem 1.1 and follow the approach of Evans [13]
where the monotone case is settled. For some of the details one is referred to of
Evans [13, Section 9; 14, 4.2].

For the binary class E1 �E2 , the following stable symplectic sphere configuration
type (Definition 3.3) DE1�E2

is introduced in [13]:

� fH �E1�E2;H g when k D 1,

� fH �E1�E2;H �E3;E3g when k D 2,

� fH �E1�E2;H �E3�E4;E3;E4g when k D 3.

Since .Vk ;J0/ is a generic blow up, it is clear that there is a J0 –holomorphic DE1�E2

configuration C0 .

Lemma 6.7 Suppose L is a Lagrangian sphere in .Vk ; !/ with k � 3 and ŒL� D
E1�E2 . Then L can be Hamiltonian isotoped off C0 .

Proof From Corollary 3.13, in the complement of the given Lagrangian sphere L,
we can find a DE1�E2

–configuration C .

By Proposition 3.4, C0 and C are symplectically isotopic. Following the proof of [14,
Theorem 9], with a small perturbation along the isotopy, we may assume the symplectic
spheres in the configuration intersect !–orthogonally during the isotopy. Thus, by
the symplectic neighborhood theorem, we can extend this isotopy to a neighborhood
of the configuration. From the fact that C and C0 have trivial H 1 , as in the proof
of Theorem 6.6, we obtain an ambient Hamiltonian isotopy ‰t taking C to C0 . In
particular, L is Hamiltonian isotopic to ‰1.L/ which is disjoint from C0 .
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Proposition 6.8 Suppose there is a Lagrangian sphere L in .Vk ; !/ with k � 3 and
ŒL� D E1 �E2 . When Œ!� is a rational, the complement of C0 contains a unique
Lagrangian sphere up to Lagrangian isotopy.

Proof By Lemma 6.7 we can assume that the Lagrangian sphere L is in the comple-
ment of C0 , so the complement of C0 contains at least one Lagrangian sphere.

We will discuss the case k D 3. The cases k D 1; 2 are similar. Up to scaling, we can
write PD.Œ!�/D aH �E1�E2�b3E3�b4E4 since !.ŒL�/D 0. Further, a> 1Cbi

since !.H �E1�Ei/ > 0 for i D 3; 4. Rewrite

PD.Œ!�/D .H �E1�E2/C.a�1/.H �E3�E4/C.a�1�b3/E3C.a�1�b4/E4:

Notice that a; bi 2 QC since Œ!� is assumed to rational. Since all coefficients are
rational and positive, there is a large integer l , such that PD.Œl!�/ is represented as
an positive integral combination of fH �E1�E2;H �E3�E4;E3;E4g, say, with
coefficients u; v; w; z 2 ZC .

If C0 D CH�E1�E2
[CH�E3�E4

[CE3
[CE4

, consider the divisor

F D uCH�E1�E2
C vCH�E3�E4

CwCE3
C zCE4

:

There is a holomorphic line bundle L with a holomorphic section s whose zero divisor
is exactly F . Take an hermitian metric and a compatible connection on L such that
the curvature form is just l! . � D� log jsj2 defines a plurisubharmonic function with
�d.d� ıJ0/D l! on the complement U0 of the C0 .

Notice that U0 is the same as the complement U in [14, Proposition 4.2.1], which
is shown to be biholomorphic to the affine quadric there. The rest of the argument
is exactly as in the proof of [14, Proposition 4.2.1], reducing to Theorem 6.6, the
uniqueness in .T �S2; !std/.

Consider the finite type Stein structure .J0; �= l/ on U0 . Define hW R!R to be the
function h.x/Dex�1 and �hDhı� . By [7, Lemma 3.1; [48, Lemma 6]], .U0;J0; �h/

is a complete Stein manifold of finite type with Kähler form !h D �d.d�h ı J0/.
Suppose a sublevel set Y D ��1Œ0; k� contains all the critical points of � . View .Y; !/

as a Liouville domain, and let . yY ; y!/ be its symplectic completion. By [14, Lemma
2.1.5], .U0; !h/ is symplectomorphic to . yY ; y!/.

Since the affine quadric Q has a complete finite type Stein structure inherited from C3 ,
it follows from [14, Lemma 2.1.6] that .U0; !h/ is symplectomorphic to .Q; !can/.
Combining all the symplectomorphisms, we find that the Liouville manifold . yY ; y!/ is
symplectomorphic to .T �S2; !std/.
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Given any two Lagrangian spheres L0 , L1 in the complement of C0 , they lie in a
sublevel set Y of � containing all the critical points. We obtain an isotopy Lt in
. yY ; y!/ by Hind’s Theorem 6.6. Contract the isotopy Lt into the sublevel set Y using
the negative Liouville flow on . yY ; y!/. The endpoints of the contracted isotopy are also
connected in Y to L0 and L1 respectively by the positive Liouville flow. Therefore,
one gets the desired Hamiltonian isotopy between L0 and L1 in Y � U0 .

Proof of Theorem 1.5 As mentioned in the beginning of this subsection, we could
assume that M D Vk with k D 1; 2; 3, ! is a Kähler form compatible with J0 , and
� DE1�E2 .

Suppose L0 and L1 are two Lagrangian spheres in the class � . By Lemma 6.7 they
are Hamiltonian isotopic respectively to two Lagrangian spheres, still denoted by L0

and L1 , in the complement U0 of C0 . We will show that L0 and L1 are Lagrangian
isotopic in U0 , and hence in .Vk ; !/. As argued in Theorem 6.6, this implies that L0

and L1 are Hamiltonian isotopic.

Again we will discuss the case k D 3. Notice that the !–area of E1 and that of E2

are the same; by rescaling the symplectic form, we could assume the !–area of Ei ,
i D 1; 2 is rational. View .V3; !/ as a three point blow-up of a monotone .S2�S2; �/,
then as the three disjoint components of C0 , CH�E1�E2

;CE3
;CE4

are all exceptional,
corresponding to three ball embeddings h12; e3; e4 in .S2 �S2; �/. Let zL0 and zL1

be the corresponding Lagrangians in .S2 �S2; �/.

Via the correspondence of ball-embeddings and symplectic forms in the blown-up man-
ifolds, one may deform ! to !0 near CH�E1�E2

;CE3
;CE4

such that their !0–areas
become rational. In fact, from the continuity of ball embeddings, such a deformation
can be chosen to correspond to a slightly larger ball-embeddings h0

12
, e0

3
and e0

4
in

.S2 �S2; �/. Further, we may assume that the larger embedded balls are still disjoint
from zL0 and zL1 . And when such a perturbation is chosen small enough, J0 is still
tamed by !0 so that the configuration C0 is still symplectic with respect to !0 .

Notice that L0 and L1 remain Lagrangian in .Vk ; !
0/. Notice also that Œ!0� is rational,

so we have a Lagrangian isotopy between L0 and L1 in .V3; !
0/ by Proposition 6.8. It

is important to observe that such an isotopy can be chosen to lie inside the complement
of the !0–symplectic configuration C0 .

In particular, the isotopy does not intersect the spheres CH�E1�E2
;CE3

;CE4
. In turn

it gives rise to an isotopy between zL0 and zL1 in the complement of the images of
h0

12
, e0

3
and e0

4
. Since h0

12
, e0

3
and e0

4
are extensions of h12 , e3 and e4 , the isotopy

between zL0 and zL1 lie in the complement of the images of h12 , e3 and e4 . Therefore
it gives rise to an isotopy between L0 and L1 in the complement of the spheres
CH�E1�E2

;CE3
;CE4

in .Vk ; !/.
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6.3 Smooth isotopy

Proof of Theorem 1.6 By Proposition 4.10, we again assume that we are in the
binary case E1 �E2 . Given two Lagrangian spheres Li , following [14], consider
the classes Ej , j � 3. From Theorem 1.1, for each i , we can find a set of disjoint
symplectic spheres in Ej , which are also disjoint from Li . Applying Proposition 3.4
to these two stable spherical symplectic configurations as above, we can assume that
Li are both disjoint from a set of disjoint symplectic spheres Si in Ej ; j � 3.

Blow down Si we obtain .CP2 # 2CP2; !0/ with balls Bj disjoint from Li . Let Lt

be a Lagrangian isotopy between Li in .CP2 # 2CP2; !/ from Theorem 1.5. Viewed
as a smooth isotopy, we can assume that Lt is transversal to the centers xj of Bj ,
thus avoiding xj . Let B0j � Bj be a smaller ball not intersecting Lt . Let � be a
diffeomorphism from U 0 , the complement of

S
B0j to U , the complement of

S
Bj ,

which is identity near Li . Then �.Lt / is a smooth isotopy between Li in U . Blowing
up at xj by cutting Bj , we get back to .M; !/ and a smooth isotopy between Li

therein.

6.4 Some remarks on uniqueness

We end the paper with some discussions about uniqueness.

6.4.1 Lagrangian RP2 The argument in Section 6.1.1, with .�2/–spheres replaced
by .�4/–spheres, can be used to prove that any two Lagrangian RP2 in .CP2; !std/

are symplectomorphic. From Gromov’s connectedness of Symp.CP2; !std/ in [20],
we then obtain a new proof of the following result of Hind [21].

Theorem 6.9 (Hind) Any two Lagrangian RP2 in CP2 are Hamiltonian isotopic to
each other.

6.4.2 Uniqueness up to symplectomorphisms Conjecture 1.7 states that, for any
two homologous Lagrangian spheres L1 and L2 in a symplectic rational manifold
.M; !/, there exists � 2 Symph.M; !/ such that �.L1/DL2 . It implies the discon-
nectedness of homologically trivial symplectomorphism groups in the cases when there
are nonisotopic Lagrangian spheres.

We outline a possible approach to Conjecture 1.7. One easily reduces the problem
to the binary case as in the proof of Theorem 1.4. Without loss of generality, let
ŒLi �DE1�E2 .

For each pair .M;Li/, by Theorem 1.1, away from Li , there is a set of disjoint
.�1/ symplectic spheres C l

i ; l D 3; : : : ; k C 1, with ŒC l
i � D El for l D 3; : : : ; k ,
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and ŒC kC1
i � D H �E1 �E2 . Blowing down the Cl yields two .kC1/–tuples of

. �Mi ; zLi ;B
l
i /, i D 1; 2, 3 � l � k C 1. Here �Mi is a symplectic S2 � S2 , zLi a

Lagrangian sphere, and Bl
i a symplectic ball corresponding to C l

i .

By [29] there is a symplectomorphism ‰W �M1!
�M2 . From Proposition 6.2, there is

a symplectomorphism sending ‰. zL1/ to zL2 . Composing these two symplectomor-
phisms one obtains a symplectomorphism between the pairs . �Mi ; zLi/, which we still
denote as ‰ . The conjectured connectedness of relative symplectic ball embedding
in Remark 5.2 implies that the k � 2 balls ‰.Bl

1
/ can be further displaced by an

zL2 –preserving Hamiltonian isotopy to the balls Bl
2

. This gives a symplectomorphism
between the .kC1/–tuples . �Mi ; zLi ;B

l
i /, which in turn descends to a symplectomor-

phism between the pairs .M;Li/.
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