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Deformation spaces of Kleinian surface groups
are not locally connected

AARON D MAGID

For any closed surface S of genus g � 2 , we show that the deformation space
AH.S � I/ of marked hyperbolic 3–manifolds homotopy equivalent to S is not
locally connected. This proves a conjecture of Bromberg who recently proved that
the space of Kleinian punctured torus groups is not locally connected. Playing an
essential role in our proof is a new version of the filling theorem that is based on
the theory of cone-manifold deformations developed by Hodgson, Kerckhoff and
Bromberg.

57M50; 30F40

1 Introduction

Given a compact, orientable 3–manifold N , let AH.N / denote the set of marked
hyperbolic 3–manifolds homotopy equivalent to N , equipped with the algebraic
topology. The interior of AH.N /, as a subset of the PSL.2;C/–character variety, is
well-understood; however, little is known about the topology of entire deformation
space and its dependence on the topology of N . We show that there are points where
AH.N / fails to be locally connected when N is homotopy equivalent to a closed
surface.

The work of Ahlfors [3], Bers [8], Kra [42], Marden [49], Maskit [54], Sullivan [69]
and Thurston [71] shows that the components of the interior of AH.N / are in one-to-
one correspondence with the marked homeomorphism types of compact 3–manifolds
homotopy equivalent to N . Using the theory of quasiconformal deformations and the
measurable Riemann mapping theorem, each of these components can be parameterized
by analytic information.

Unfortunately, our understanding of the interior of AH.N / does not extend to the
entire space. When the boundary of N is incompressible, Anderson, Canary and
McCullough [5] characterized when two components of the interior of AH.N / have
intersecting closures. They called this phenomenon bumping. For any genus g � 2

surface S , McMullen [59] showed that the interior of AH.S � I/ self-bumps. This
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means that there is a point � 2 AH.S �I/ such that whenever U is a sufficiently small
neighborhood of � , the intersection of U and the interior of AH.S�I/ is disconnected.
Bromberg and Holt [21] generalized this result by showing that whenever N contains
a primitive, essential annulus that is not homotopic into a torus boundary component
of N then the interior of AH.N / self-bumps.

Recent work by Agol [2], Calegari and Gabai [24], Brock, Canary and Minsky [14],
and many others has led to a classification of hyperbolic manifolds up to isometry.
The existence of bumping and self-bumping points shows that the invariants used in
this classification do not vary continuously at certain points on the boundary of the
deformation space (see also Brock [10]). Thus, further study of the local topology
of AH.N / near these points is necessary in order to fully understand these spaces of
hyperbolic manifolds.

Bromberg [20] recently showed that the space of Kleinian punctured torus groups is
not locally connected. The points where this deformation space fails to be locally
connected are self-bumping points, but he also showed that the space is locally connected
at other self-bumping points. This indicates that bumping may be considerably more
complicated than we previously thought. He also conjectured that AH.S � I/ would
fail to be locally connected for any surface S , although his arguments in the punctured
torus case made essential use of Minsky’s [61] classification of punctured torus groups.
The results in [61] that Bromberg uses do not generalize to higher genus surfaces.

The following theorem proves Bromberg’s conjecture.

Theorem 1.1 Let S be a closed surface of genus g � 2. Then AH.S � I/ is not
locally connected.

Using Bromberg’s description of the space of punctured torus groups, one can show
that many relative deformation spaces fail to be locally connected (see the author’s pa-
per [48]), although Theorem 1.1 provides the first examples of nonrelative deformation
spaces that fail to be locally connected. Nonrelative means that no parabolicity condition
is specified. See Section 2 for a discussion of pared manifolds and deformation spaces.

The failure of local connectivity of deformation spaces also provides an interesting
entry into the Sullivan dictionary [68]. In this analogy, a Kleinian group corresponds
to a rational map, limit sets correspond to Julia sets, and deformation spaces such as
AH.S � I/ correspond to connectedness loci in parameter spaces of rational maps. It
is a major open conjecture that the Mandelbrot set is locally connected and proving
this would have many implications for the classification of quadratic polynomials. For
example, local connectivity implies that a quadratic map admits no invariant line field
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on its Julia set and hyperbolic maps are dense among quadratic maps; see Douady and
Hubbard [30] and McMullen [57; 56]. The corresponding one (complex) dimensional
deformation spaces such as the Maskit slice or Bers’ slices in the deformation space
of punctured torus groups are locally connected [61]. In higher dimensions, the cubic
connectedness locus is not locally connected by Lavaurs [45] and Milnor [60], and
Theorem 1.1 builds on Bromberg [20, Theorem 4.15] to show that all deformation
spaces of Kleinian surface groups are not locally connected.

In our proof that AH.S�I/ fails to be locally connected for any higher-genus surface S

we frequently refer to many of the arguments in [20]. In particular, the results in
Section 5 rely on and/or generalize the results of [20, Section 3]. However, since
some of Minsky’s results in [61] do not extend to higher genus surfaces, we make a
significant departure from Bromberg’s methods in Section 6. In this section, we make
use of an improved version of the filling theorem, the key technical result of this paper.

Before stating our version of the filling theorem, we will set up some of the notation.
Given a geometrically finite hyperbolic manifold �M with a rank–2 cusp, the filling
theorem provides sufficient conditions for one to “Dehn-fill” the cusp. That is, if�M is homeomorphic to the interior of a compact manifold yN with a torus boundary
component corresponding to the cusp of �M , and N is a Dehn-filling of yN , then
the filling theorem provides conditions for one to construct a hyperbolic manifold M

homeomorphic to the interior of N with the same conformal boundary as �M . Assuming
the hypotheses of the theorem are satisfied, one obtains a relationship between the
metrics on �M and M .

Suppose T is a rank–2 cusp in �M and ˇ is the slope in T along which we are
filling. Let L be the normalized length of ˇ in T , and let A2 be the reciprocal
of the normalized twist of the cusp. Although we relegate the actual definitions of
the normalized length and the normalized twist to Section 4, we now describe these
quantities with respect to a particular normalization of the cusp (the normalization that
we will use throughout Section 5 and Section 6). Suppose the rank–2 cusp T of �M is
generated by parabolics �

1 2

0 1

�
and

�
1 w

0 1

�
;

and that ˇ corresponds to �
1 w

0 1

�
:

If Im.w/ > 0 and jwj2=2jRe.w/j> 2, then L2 and A2 are given by

L2
D
jwj2

2 Im.w/
and A2

D
jwj2

2 Re.w/
:
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For any curve 
 �M , let B 2PSL.2;C/ denote the corresponding isometry in �1.M /.
The complex length of 
 is the value of LD lC i� such that tr2.B/D 4 cosh2.L=2/,
l � 0 and � 2 .��; ��. For a geodesic 
 , the real part l gives the length of 
 in M

which is the distance that B translates along its axis. The imaginary part � is the
amount B rotates about its axis.

Let �3 denote the Margulis constant for H3 . If 
 is the core curve of the solid filling
torus in M . Then for any �3 � � > 0, let T�.T / (resp. T�.
 /) denote the �–Margulis
tube about T (resp. 
 ).

Theorem 1.2 Let J > 1 and �3 � � > 0. There is some K � 4�
p

2 such that the
following holds: suppose �M is a geometrically finite hyperbolic 3–manifold with no
rank–1 cusps, T is a rank–2 cusp in �M and ˇ is a slope on T such that the normalized
length of ˇ is at least K (ie, L2 �K2 ), then

(i) the ˇ–filling of �M , which we call M , exists;

(ii) the real part of the complex length LD l C i� of the core curve of the filling
torus 
 in M is approximately 2�=L2 with error bounded byˇ̌̌̌

l �
2�

L2

ˇ̌̌̌
�

8.2�/3

L4� 16.2�/4
I

(iii) in particular, the length of 
 is bounded above by

2�

L2� 4.2�/2
I

(iv) there exists a J –bilipschitz diffeomorphism

�W �M �T�.T /!M �T�.
 /I

(v) if, in addition to L2 � K2 , we have jA2j � 3, then the imaginary part of the
complex length LD lC i� of the core curve of the filling torus 
 in M (chosen
so � 2 .��; ��) is approximately 2�=A2 with error bounded byˇ̌̌̌

� �
2�

A2

ˇ̌̌̌
�

5.2�/3

.L2� 4.2�/2/2
:

The proof of Theorem 1.2 is contained in Section 4. Although our version may be stated
differently, parts (i)–(iii) can be found in the work of Hodgson and Kerckhoff [33;
34] on cone-manifold deformations which was generalized to geometrically finite
manifolds by Bromberg [18; 17]. Part (iv) follows from the drilling theorem of Brock
and Bromberg [11]. The most original part of this version of the filling theorem is the
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estimate in part (v), although its proof also relies on the Hodgson–Kerckhoff cone-
manifold technology. Some of the background cone-manifold deformation theory and
a summary of the work of Bromberg, Hodgson and Kerckhoff on cone-manifolds can
be found in Section 3.

We now outline the proof of Theorem 1.1. We begin by parameterizing a subset of
AH.S � I/. If P � S �f1g is a pants decomposition, then MP.S � I;P / denotes the
subset of the boundary of AH.S �I/ consisting of the marked hyperbolic 3–manifolds
that are homeomorphic to the interior of S � I , are geometrically finite, have a rank–1

cusp associated to each component of P and contain no other cusps (see Section 2 for
this notation).

We define a subset A�MP.S � I;P /� yC3g�3 and a map

ˆW A! AH.S � I/;

and we show there is some �02MP.S�I;P / and a neighborhood U of .�0;1; : : : ;1/

in A such that ˆ.�0;1; : : : ;1/D�0 and ˆjU W U!ˆ.U / is a homeomorphism. The
map ˆ can roughly be described as follows. Let dD3g�3. If .�;1; : : : ;1/2A then
we define ˆ.�;1; : : : ;1/D� . If .�; w1; : : : ; wd /2A for some .w1; : : : ; wd /2Cd ,
we use the w–coordinates to define a marked hyperbolic 3–manifold with d rank–2

cusps. To each rank–2 cusp, one can associate a conformal structure on a torus, and
wi acts as a Teichmüller parameter for the i –th cusp. We then use the filling theorem
(Theorem 1.2) to fill in these cusps and obtain a marked hyperbolic 3–manifold in
the interior of AH.S � I/. We define A to exclude points in MP.S � I;P /� yC3g�3

where some, but not all, of the w–coordinates are 1.

This parameterization of the subset ˆ.U /� AH.S � I/ is a straightforward general-
ization of the results of Bromberg [20, Section 3]. We set up the necessary background
in Section 2 and describe the parameterization in Section 5. This parameterization is an
application of parts (i)–(iv) of Theorem 1.2 and Corollary 4.13, which is a generalization
of the filling theorem for multiple cusps.

In Section 5.4, we use results of Bromberg [20, Section 4] to show that A is not
locally connected at .�0;1; : : : ;1/. Moreover, we find that in some neighborhood U

of .�0;1; : : : ;1/ in A, there exists c > 0 and subsets Cn � U accumulating at
.�0;1; : : : ;1/ such that for any .�; w1; : : : ; wd / 2 Cn and any .� 0; w0

1
; : : : ; w0

d
/ 2

U �Cn , we have jw1�w
0
1
j> c for all n (see Lemma 5.8). Heuristically, we think of

the sets Cn as being components of U that are bounded apart from the rest of U by a
lower bound that is independent of n. In actuality, these sets are likely collections of
components.
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Finally, in Section 6, we show that AH.S � I/ is not locally connected at �0 . By
Lemma 5.8, there is a lower bound on the distance between the first w–coordinate
(ie, the first coordinate of the yC3g�d factor of A) of a point in Cn and the first w–
coordinate of a point in U �Cn . We then use the filling theorem to estimate the complex
length of a curve in ˆ.�;w1; : : : ; wd / 2 AH.S � I/ based on .w1; w2; : : : ; wd /. The
control on the w1 –coordinate from Lemma 5.8 and the quality of the estimates in the
filling theorem show that for all but finitely many n, ˆ.Cn/ and ˆ.U �Cn/ must
be disjoint. Hence, ˆ.U / has infinitely many components that accumulate at �0 . It
follows from the Density Theorem (Theorem 2.2) that ˆ.U / contains a neighborhood
of �0 in AH.S � I/; hence, AH.S � I/ is not locally connected at �0 .

The approach in Section 6 is fundamentally different from Bromberg’s [20]. Bromberg
uses Minsky’s results [61] to extend ˆ continuously to the closure of A. Results of
Kerckhoff and Thurston [38] and Brock [10] on the end-invariants in Bers’ slices lead
us to believe that there is no way of continuously extending ˆ in general. Instead,
we use the filling theorem estimates to show that distinct components of ˆ.U / have
disjoint closures in ˆ.U /.
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comments.
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2 Background deformation space theory

In this section, we recall the definition of a pared 3–manifold .N;P / and define the
relative deformation space AH.N;P /. This is a space of hyperbolic 3–manifolds
homotopy equivalent to N with cusps associated to annuli and tori in P . We will
review the Ahlfors–Bers parameterization that describes the interior of AH.N;P / and
set up some of the notation that will be used later. For more information about pared
manifolds and deformation spaces, see Canary and McCullough [27, Chapters 5 and 7],
respectively. For a survey of the Density Theorem and bumponomics, see Canary [25].
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2.1 Kleinian groups and pared manifolds

Before turning to deformation spaces, we begin with a brief review of Kleinian group
theory in order to set up some notation. A Kleinian group is a discrete subgroup of
PSL.2;C/Š IsomC.H3/. We will assume that all of our Kleinian groups are finitely
generated, torsion-free, and not virtually abelian. The action of a Kleinian group �
on H3 extends to an action on @H3 Š yC by Möbius transformations. The domain of
discontinuity �.�/ is the largest open � –invariant subset of yC on which the action
of � is properly discontinuous. The quotient �.�/=� is called the conformal boundary
of M� D H3=� . The limit set, ƒ.�/, is the complement of �.�/ in yC , and the
convex core of M� is the quotient of the convex hull (in H3 ) of the limit set by the
group action.

Pared manifolds A pared 3–manifold is a pair .N;P / where N is a compact, ori-
ented, hyperbolizable 3–manifold that is not a 3–ball, and P � @N is a disjoint
collection of incompressible annuli and tori satisfying the following properties:

(1) P contains all of the tori in @N .

(2) Every �1 –injective map .S1 � I;S1 � @I/! .N;P / is homotopic, as a map
of pairs, into P .

To avoid some degenerate cases in the statements that follow, we will assume throughout
this paper that �1.N / is not virtually abelian. This will ensure that any Kleinian group
isomorphic to �1.N / is nonelementary.

Geometrically finite Kleinian groups A hyperbolic 3–manifold M� D H3=� is
geometrically finite if and only if the union of M� with its conformal boundary,
.H3 [�.�//=� , is homeomorphic to N � P for some pared 3–manifold .N;P /.
A Kleinian group � is geometrically finite if and only if the corresponding 3–mani-
fold M� is geometrically finite. There are many other equivalent notions of geometric
finiteness. See Bowditch [9] for a more complete discussion.

Thick-thin decomposition Let M be a hyperbolic manifold. For any � > 0, we
define the �–thin part of M to be the set of points x 2M where the injectivity radius
is at most � and denote this set by M�� . By the Margulis lemma, there is some
constant �3 (depending only on the dimension) such that for any �3� � > 0, the �–thin
part of M consists of a disjoint union of metric collar neighborhoods of short geodesics
and cusps. We use the notation T�.
 / to denote the component of M�� associated to
a geodesic 
 and T�.T / to denote the Margulis �–thin region associated to a rank–2

cusp T . We let T par
� denote the union of the Margulis �–thin regions associated to

parabolics (ie, the rank–1 and rank–2 cusps).
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Klein–Maskit combination Let H be a subgroup of � . A subset B� yC is precisely
invariant under H in � if

(1) for all h 2H , h.B/D B , and

(2) for all 
 2 � �H , 
 .B/\B D∅.

For example, if H is the infinite cyclic group generated by�
1 2

0 1

�
and � is a geometrically finite group containing H with a rank–1 cusp corresponding
to H (ie, the largest abelian subgroup of G containing H is H ), then there is some R

such that the two sets

BC
R
D fz 2C W Im.z/ >Rg and B�R D fz 2C W Im.z/ < �Rg

are precisely invariant under H in � (eg, see Marden [50, page 125]).

Precisely invariant sets are useful for constructing Kleinian groups via a process known
as Klein–Maskit combination. We will use statements similar to those in Abikoff and
Maskit [1], but one should also refer to Maskit [51; 52; 53].

Suppose G1;G2 are two geometrically finite Kleinian groups with G1 \G2 D H .
Here, H could be any subgroup, but we will only be interested in the case that H

is the infinite cyclic parabolic subgroup of the previous example. If there is a Jordan
curve c bounding two open discs B1;B2 in yC such that Bi is precisely invariant
under H in Gi , then the group G generated by G1 and G2 is geometrically finite and
isomorphic to the amalgamated free product G1 �H G2 . In this case, we say that the
group G is obtained from G1 and G2 by type I Klein–Maskit combination along the
subgroup H .

We now describe type II Klein–Maskit combination. Let G be a geometrically finite
Kleinian group containing H . Let f 2 PSL.2;C/ such that fHf �1 �G . Suppose
there is a Jordan curve c bounding a disc B � yC such that

(1) B is precisely invariant for H in G ,

(2) yC�f . xB/ is precisely invariant for fHf �1 �G , and

(3) gB \
�
yC�f . xB/

�
D∅ for all g 2G .

Then the group � generated by G and f is geometrically finite and isomorphic to the
HNN extension G�hf i .
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Again, while type II Klein–Maskit combination can be applied in a more general setting,
consider a geometrically finite group G containing H as above, and consider

f D

�
1 w

0 1

�
:

Note that fHf �1DH . There is some R such that B�
R

and BC
R

are precisely invariant
under H in G . Moreover, we can assume that for all g 2G , gB�

R
\BC

R
D∅. Then

if Im.w/� 2R, the group G�hf i is geometrically finite.

2.2 Deformation spaces

We define the relative representation variety

R.N;P /D HomP .�1.N /;PSL.2;C//

to be the set of representations �W �1.N /! PSL.2;C/ such that �.g/ is parabolic
or the identity whenever g 2 �1.P /. We then define the relative character variety
X.N;P / to be the Mumford quotient of the relative representation variety

X.N;P /DR.N;P / ==PSL.2;C/:

Although the Mumford quotient is defined algebraically, nonradical points in the
character variety can be identified with conjugacy classes of representations (ie, points
in the topological quotient HomP .�1.N /;PSL.2;C//=PSL.2;C/) (see Kapovich [36,
page 62]). Since we have assumed �1.N / is not virtually abelian, �.�1.N // is
nonelementary (and therefore nonradical) for any discrete, faithful representation � .
For these representations, we will make no distinction between conjugacy classes of
representations and points in X.N;P /. See also Culler and Shalen [29, Section 1].

Let AH.N;P / denote the subset of X.N;P / consisting of the conjugacy classes of
representations that are discrete and faithful. Thus AH.N;P / inherits a topology from
the character variety known as the algebraic topology. Results of Chuckrow [28] and
Jørgensen [35] show that AH.N;P / is a closed subset of X.N;P / with respect to
this topology. Since �1.N / is not virtually abelian, a neighborhood of AH.N;P / is a
smooth complex manifold, and the topology on AH.N;P / is the same as the topology
when considered as a subset of the topological quotient of HomP .�1.N /;PSL.2;C//
by PSL.2;C/ acting by conjugation [36, Chapter 4].

The space AH.N;P / is a deformation space of hyperbolic 3–manifolds in the following
sense. Given �2AH.N;P /, the image group �.�1.M // defines a hyperbolic manifold
M� DH3=�.�1.N //. Moreover (since N is aspherical) the representation determines
a homotopy equivalence f�W N!M� , defined up to homotopy. So points in AH.N;P /
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can be identified with equivalence classes of marked hyperbolic 3–manifolds .M; f /

where f W N ! M is a homotopy equivalence such that f .P / is homotopic into
the cusps of M . Two pairs .M1; f1/ and .M2; f2/ correspond to the same point
of AH.N;P / if there is an orientation preserving isometry g WM1!M2 such that
f2 ' g ıf1 .

We say that � 2 AH.N;P / is minimally parabolic if �.g/ is parabolic if and only if
g 2 �1.P /. A representation � 2 AH.N;P / is geometrically finite if �.�1.N // is a
geometrically finite subgroup of PSL.2;C/. Results of Marden [49] and Sullivan [69]
show that when @N � P ¤ ∅, the interior of AH.N;P / consists of precisely the
conjugacy classes of representations that are both geometrically finite and minimally
parabolic, and we denote this set by MP.N;P /. We now describe what is known as
the Ahlfors–Bers parameterization of each of the components of MP.N;P / in the case
that @N �P is incompressible. See [27, Chapter 7] for a more complete description of
this parameterization including when @.N;P / is compressible.

To enumerate the components of MP.N;P /, we first define A.N;P / to be the set of
marked pared homeomorphism types. More precisely, A.N;P / is the following set of
equivalence classes:

A.N;P /D
˚
Œ.N 0;P 0/; h� W .N 0;P 0/ is a compact, oriented, pared 3–manifold;

hW .N;P /! .N 0;P 0/ is a pared homotopy equivalence
	
=�;

where Œ.N1;P1/; h1� � Œ.N2;P2/; h2� if there exists an orientation preserving pared
homeomorphism j W .N1;P1/! .N2;P2/ such that j ı h1 is pared homotopic to h2 .

Recall that we can identify � 2 AH.N;P / with a marked hyperbolic 3–manifold
.M�; f�/. Any 3–manifold with finitely generated fundamental group admits a compact
core by Scott [67]. A relative compact core C of M� is a compact core for M��T par

�

such that @C meets every noncompact component of the boundary of M��T par
� in an

incompressible annulus and contains every toroidal boundary component of M��T par
� .

The existence of a such a core is given by Kulkarni and Shalen [44] and McCullough [55].
This definition naturally imparts a pared structure on any relative compact core whose
paring locus consists of the tori and annuli that intersect @T par

� . When � is geometrically
finite, we can construct a relative compact core C by intersecting the convex core
of M� with M� �T par

� . We will refer to this as the relative compact core of M� . If
�2MP.N;P / then the marking f� is homotopic to a pared homotopy equivalence from
.N;P / to the relative compact core of M� . So we can define a map F W MP.N;P /!
A.N;P / by sending .M�; f�/ to the relative compact core of M� (still marked by f� ).
The map F establishes a bijection between the components of MP.N;P / and the
elements of the set A.N;P /. That is, F.�1/D F.�2/ if and only if �1 and �2 are in
the same component of MP.N;P /.
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Let B be the component of MP.N;P / determined by F�1.Œ.N 0;P 0/; h�/. For � 2B ,
we have that M� is geometrically finite and minimally parabolic, and f� ı h�1 is
homotopic to a pared homeomorphism from .N 0;P 0/ to the relative compact core
of M� . Using f� ı h�1 , we can mark each component of the conformal boundary
of M� with a component of @N 0�P 0 . This gives us a map

ABW B! T .@N 0�P 0/;

where T .@N 0 � P 0/ denotes the Teichmüller space of @N 0 � P 0 . Recall that the
Teichmüller space of a disconnected surface is the product of the Teichmüller spaces
of its components.

Theorem 2.1 (Ahlfors [3], Bers [8], Kra [42], Marden [49], Maskit [54], Sullivan [69],
Thurston [71]) When @N �P is incompressible, the map AB is a homeomorphism
on each component of MP.N;P /.

Throughout the rest of this paper, we will be primarily concerned with the case N D

S � I where S is a closed surface of genus at least two. In this case, the previous
theorem is known as Bers’ simultaneous uniformization [7]. The interior of AH.N /

(in this case P D ∅) is MP.N / and is connected. The Ahlfors–Bers map defines a
homeomorphism

ABW MP.N /! T .S/� T .S/:
Although we will continue to use the term minimally parabolic when N D S � I ,
representations in MP.N / contain no parabolics.

Generally the Ahlfors–Bers parameterization does not extend over AH.N;P /; however,
the recent resolution the Bers–Sullivan–Thurston Density Conjecture guarantees that
every representation in AH.N;P / can be expressed as the algebraic limit of geometri-
cally finite and minimally parabolic representations. We refer to this as the Density
Theorem. In the case that .N;P /D .S � I;∅/, Brock, Canary, and Minsky obtained
this result as Corollary 10.1 of the Ending Lamination Theorem [15], using results of
Ohshika [64] and Thurston [72].

Theorem 2.2 (Brock–Canary–Minsky [15]) The closure of MP.S � I;∅/, as a
subset of the character variety X.N;P /, is AH.S � I;∅/.

The more general result that AH.N;P /DMP.N;P / for any pared manifold .N;P /
follows from work of Brock and Bromberg [11], Brock, Canary and Minsky [14],
Bromberg [19], Bromberg and Souto [22], Kim, Lecuire and Ohshika [39], Kleinedam
and Souto [40], Lecuire [46], Namazi and Souto [63], Ohshika [65] and Thurston [70].
See Canary [25] for a more complete discussion of the Density Theorem.
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In spite of Theorem 2.1’s description of the interior and the Density theorem, the
topology of AH.N;P / is more subtle. Anderson and Canary discovered examples
of manifolds N for which the components of MP.N / have intersecting closures
(often called “bumping”) [4]. Since the components of MP.N / are in one-to-one
correspondence with the elements of A.N / (ie, marked homeomorphism types) this
shows the homeomorphism type of M� varies discontinuously in AH.N /. Anderson,
Canary and McCullough characterized which components of MP.N / bump for any
manifold N with incompressible boundary [5].

For N D S �I , the interior MP.N / is connected; hence AH.N / is connected. In this
case, McMullen showed a local bumping result: there exists a representation � such that
whenever U is a sufficiently small neighborhood of � , U \MP.N / is disconnected by
McMullen [59]. Bromberg and Holt generalized this self-bumping result to manifolds
containing primitive, essential annuli which are not homotopic into a torus boundary
component. In these cases, it follows that AH.N / is not a manifold. The points at
which we show AH.S � I/ is not locally connected are self-bumping points; however,
in the explicit local parameterization of punctured torus groups given by Bromberg [20],
one can find self-bumping points at which the deformation space is locally connected.
So the failure of local connectivity also shows AH.S � I/ is not a manifold, but is a
finer description of how the end-invariants fail to vary continuously.

All of the known bumping, self-bumping, and local disconnectedness arise from similar
constructions involving generalizations of Thurston’s hyperbolic Dehn surgery theorem
to geometrically finite manifolds [70] (see also [25, Section 7]). One begins with a
representation � on the boundary with some accidental parabolic 
 and constructs
a new manifold yN by drilling out 
 . We can pick a hyperbolic structure �M on
the interior of yN covered by H3=�.�1.N //. Using the Dehn surgery theorem, we
construct a sequence of representations �n converging to � algebraically such that the
corresponding quotient manifolds MnDH3=�n.�1.N // converge to �M geometrically.
We construct �n as the map induced on �1.N / by the composition of immersing N

into �M followed by Dehn filling the cusp of �M where we drilled out 
 . Depending on
the topology of N , we can usually immerse N in �M in different ways by wrapping N

around 
 , and this leads to the construction of other sequences accumulating at � .
Various other arguments are then used to analyze how these sequences approach � and
the local topology of AH.N / near � .

We do not have a complete classification of the points at which the deformation space
bumps or fails to be locally connected. Recently, Brock, Bromberg, Canary and
Minsky show there can be no bumping at quasiconformally rigid points (ie, points
whose conformal boundary is empty or contains only thrice-punctured spheres). For
N DS�I , the deformation space cannot self-bump and therefore is locally connected at
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these points [12]. Evans and Holt are working to find other obstructions to self-bumping
based on the length of an accidental parabolic in a conformal boundary component [31].

3 Background cone-manifold deformation theory

Let N be a compact 3–manifold. A hyperbolic cone-metric on the interior of N with
singular locus consisting of a link † � int.N / is an incomplete hyperbolic metric
(constant sectional curvature equal to �1) on the interior of N �† whose metric
completion determines a singular metric on int.N / with singularities along †. The
link is totally geodesic, and in cylindrical coordinates around a component of †, the
metric has the form

dr2
C sinh2.r/ d�2

C cosh2.r/ dz2

where � is measured modulo ˛ > 0. We require ˛ to be constant on each connected
component of †, and we say ˛ is the cone angle about that component of the singular
locus. See Hodgson and Kerckhoff [33, Section 1] or Bromberg [18, Section 4] for more
details. When the cone angle on each component of † is ˛ D 2� , this is equivalent to
having a complete hyperbolic metric on the interior of N (ie, in the above definition,
we require the metric on int.N �†/ to be complete in every end of int.N �†/ not
associated to a component of †). From now on, we will only consider cone-manifolds
whose singular locus is connected.

Let M˛ be a hyperbolic cone-manifold homeomorphic to the interior of N with cone
angle ˛ about †. We now define what it means for M˛ to be a geometrically finite
hyperbolic cone-manifold (see also Section 3 of [18]). To do so, we first define a
geometrically finite end. Let S be a closed surface of genus at least two, and let
Y D S � Œ0;1/ be a hyperbolic manifold with boundary S � f0g. That is, there is a
smooth immersion DW zY !H3 and representation �W �1.S/! PSL.2;C/ such that
for all x 2 zY and 
 2 �1.S/, D.
x/D �.
 /D.x/. We say D is the developing map
for Y and � is the holonomy map. We say Y is a geometrically finite end if D can be
extended to a local homeomorphism zS� Œ0;1�!H3[ yC such that D. zS�f1g/� yC .
In this case, S � f1g inherits a conformal structure from the charts defined into yC .

Given a hyperbolic cone-manifold M˛ with cone singularity †, we note that M˛ �†

has a (possibly incomplete) hyperbolic metric with no cone singularities. Although one
could consider hyperbolic cone-manifolds in greater generality, we have defined our
cone-manifolds M˛ to be homeomorphic to the interior of N and hence topologically
tame. The ends of M˛ �† (ie, the complement of a compact core) are of three types
(see [18, page 160]). There will be one end homeomorphic to T 2 � Œ0;1/ associated
to †, some number of ends associated to the rank–2 cusps of M˛ , also homeomorphic
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to T 2 � Œ0;1/, and some number of ends homeomorphic to Si � Œ0;1/ associated
to the higher genus surfaces Si in the boundary of the compact core. We say M˛

is geometrically finite if each of the ends not associated to a rank–2 cusp or to †
is geometrically finite. We will not be considering hyperbolic cone-manifolds with
rank–1 cusps.

We want to provide a meaningful way of interpreting a hyperbolic manifold with a
rank–2 cusp as a hyperbolic cone-manifold with cone angle ˛ D 0 about the cone-
singularity. The convergence results below will allow us to do this more formally. See
also Hodgson and Kerckhoff [34, Section 3] and Bromberg [17, Section 6].

Definition 3.1 A sequence of metric spaces with basepoints f.Xi ;xi/g converges to
.X1;x1/ geometrically if, for each R > 0, K > 1, there exists an open neighbor-
hood U1 of the radius R neighborhood of x1 in X1 and some i0 such that for all
i > i0 , there is a map fi W .U1;x1/! .Xi ;xi/ that is a K–bilipschitz diffeomorphism
onto its image.

We say that a sequence Xi ! X1 geometrically if there exist basepoints such that
.Xi ;xi/! .X1;x1/ geometrically. For a more detailed discussion of geometric
convergence in Kleinian group theory, see Benedetti and Petronio [6, Chapter E],
Canary, Epstein and Green [26, Chapter I] or Kapovich [36, Chapter 8].

The following is [17, Theorem 6.11], although a finite volume analogue was proven in
[34, Section 3].

Theorem 3.2 (Bromberg [17]) Let fM˛g be a family of geometrically finite hyper-
bolic cone-manifold structures on the interior of N defined for ˛ 2 .0; ˛0/, with fixed
conformal boundary, ˛0 � 2� , and suppose there is an embedded tubular neighborhood
about the cone-singularity of radius � sinh�1.

p
2/ in M˛ for all ˛ 2 .0; ˛0/.

(1) As ˛! 0, the manifolds M˛ converge geometrically to a complete hyperbolic
manifold M0 homeomorphic to the interior of N �† with a rank–2 cusp in the
end associated to † and the same conformal boundary as M˛ .

(2) As ˛! ˛0 , the manifolds M˛ converge geometrically to a hyperbolic cone-
manifold M˛0

with cone angle ˛0 along † and the same conformal boundary
components as M˛ .

This theorem serves two purposes. First, we can interpret a manifold with a rank–2

cusp as a limit of a family of cone-manifolds. Second, a one-parameter family of
cone-manifolds M˛ with fixed conformal boundary, defined for some interval Œ0; ˛0/,
can be extended to a one-parameter family defined over Œ0; ˛0�.
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3.1 Infinitesimal deformations of cone-manifolds

Let X denote the interior of N �† and suppose Mt is a one-parameter family of
hyperbolic cone-manifolds homeomorphic to the interior of N with singular locus †.
By restricting the metric on Mt to X , we obtain a one-parameter family of hyperbolic
metrics on X . Up to precomposition by isotopies of X and postcomposition by
isometries of H3 this determines a one-parameter family of developing maps

Dt W
zX !H3:

We will assume Mt is smooth in the sense that Dt is a smooth one-parameter family
of diffeomorphisms.

At each fixed t , we obtain a vector field v on zX defined by setting v.x/ to be the
pullback (via Dt ) of the tangent vector to the path t 7!Dt .x/. Let zE D zX � sl2.C/
be the flat bundle of Killing fields on zX . In general, unless the deformation is trivial,
v will not be a Killing field on zX ; however, we can associate to v the Killing field,
or equivalently the section svW zX ! zE of the bundle zE , that best approximates v
at x . To define sv we first need to analyze the natural complex structure zE inherits
from sl2.C/.

At each point x 2 zX , the fiber of zE decomposes as a direct sum zP ˚ zK where zP
consists of the infinitesimal isometries which are pure translations and zK consists of
the infinitesimal isometries that are pure rotations at x . See [33, pages 13–19]. The
sub-bundle zP is naturally identified with T zX , and using the complex structure of zE
one sees that zKD i zP , so we can decompose zE Š T zX C iT zX . With this notation, we
can define the canonical lift of the vector field v to be the section svW zX ! zE given by

sv.x/D v.x/� i curl.v/.x/

Here we are using twice the usual curl, which is normally defined by curl.v/ D
1
2
.�ydyv/ where yd is exterior differentiation and yv is the 1–form dual to v . Under the

identification of Killing fields with sl2.C/, this curl operator on vector fields acts like
multiplication by i on sections of zE . Hence, sv is the section whose real part agrees
with v and such that the real part of curl.s/ agrees with curl.v/. See [33; 18] for more
details.

Recall, an zE–valued k –form (on zX ) is a section of the bundle
Vk

T zX �˝ zE! zX ,
and the exterior derivative d W

Vk
T zX �˝ zE!

VkC1
T zX �˝ zE is defined using the

flat connection on zE . Let E be the flat bundle obtained by taking the quotient of zE
by �1.X / where �1.X / acts on zX by covering transformations and on sl2.C/ by the
adjoint representation. We define E–valued k –forms similarly to zE–valued forms,
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and using the exterior derivative, we can define the cohomology groups H k.X IE/ to
be the set of closed forms, denoted �k.X IE/, modulo the exact forms.

If sv is the canonical lift of a vector field v as defined above, then dsv is an equivariant
closed 1–form and thus descends to an element ! 2�1.X IE/. Moreover, the coho-
mology class in H 1.X IE/ defined by ! is independent of the choice of developing
maps Dt . This is proven in [33, Section 2] (see also [18, Section 2]). As Hodgson and
Kerckhoff explain in [34, page 375], altering Dt by postcomposing by an isometry
of H3 has no effect on ! and precomposing by an isotopy of zX only affects ! by
an exact form. Thus the cohomology class determined by ! is well-defined by the
one-parameter family of metrics on X . Conversely, every cohomology class determines
an infinitesimal change in the metric on X [33, page 12-13].

3.2 Standard forms and Hodge forms

For each cohomology class, we now define two particular closed forms representing
this class: a standard form which will take a particular structure in the cusps of X and
a Hodge representative.

Hodgson and Kerckhoff calculated the effects of two particular E–valued 1–forms !m

and !l in a neighborhood of †. The former represents an infinitesimal deformation
which changes the cone angle about †, and the latter changes the length of the singular
locus. See [33, pages 12–13] for precise definitions of these forms.

Definition 3.3 A closed E–valued 1–form ! is in standard form if there is a neigh-
borhood U1 of the singular locus and neighborhoods U2; : : : ;Un of each rank–2 cusp
such that in Ui , ! equals a complex linear combination of !m and !l .

Note that the complex coefficients of !m and !l will generally be different for each Ui .
The following lemma [33, Lemma 3.3] shows that every closed form in �1.X IE/ can
be put into standard form.

Lemma 3.4 (Hodgson–Kerckhoff [33]) Given any closed E–valued 1–form � , there
is a cohomologous form !0 that is in standard form.

Note that standard forms are not unique since there are no restrictions outside the union
of the neighborhoods Ui . Next we find a Hodge representative in every cohomology
class and show its difference from a standard form is bounded.

There is a natural inner product on the fibers of E coming from the hyperbolic met-
ric on X (see [18, Section 2] for formulas). Using this inner product, we have an
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isomorphism ]W E!E� . We define an inner product on E–valued k –forms by

.!1; !2/D

Z
X

!1 ^ .]�!2/;

where � denotes the Hodge star operator. Let ı denote the adjoint of d with respect to
this inner product. We will use the conventional notation k!k2 D .!; !/ and say ! is
in L2 if k!k is finite. See [16, pages 13-14; 33, Section 1; 18; 17] for formulas for
d , ı and a broader development of this theory.

Definition 3.5 A 1–form ! 2�1.X IE/ is a Hodge form if ! is closed (ie, d!D 0),
co-closed (ie, ı! D 0), and locally ! can be expressed as ds where s is the canonical
lift of a divergence-free, harmonic vector field.

Before stating [18, Theorem 4.3] which generalizes [33, Theorem 2.7], we need to
define what it means for a 1–form to be conformal at infinity. By [18, Lemma 3.2], there
is an isomorphism …�W H

1.X IE/! H 1.@cX IE1/ where @cX is the conformal
boundary of X and E1 is the bundle of germs of projective vector fields on @cX . A
cohomology class !1 2H 1.@cX IE1/ is conformal if it can be expressed as ds1
where s1 is the canonical lift of an automorphic, conformal vector field on @cX . A
cohomology class ! 2H 1.X IE/ is conformal at infinity if …�.!/ is conformal.

We will only be concerned with 1–forms on X that arise from one-parameter deforma-
tions of hyperbolic cone manifolds Mt whose conformal boundary is fixed throughout
the deformation. These 1–forms will be conformal at infinity with respect to the
definition given above.

Theorem 3.6 (Bromberg [18], Hodgson–Kerckhoff [33]) Let M be a geometrically
finite hyperbolic cone-manifold, and let !0 be an E–valued 1–form on X DM �†

that is conformal at infinity and in standard form in a neighborhood U of †. Then
there exists a unique Hodge form ! such that the following holds:

(1) ! is cohomologous to !0 .

(2) There exists an L2 section s of E such that ds D !0�! .

(3) !0�! has finite L2 norm on the complement of U .

Using their analysis of Hodge forms and infinitesimal deformations, Bromberg general-
ized the local rigidity results of Hodgson and Kerckhoff [33] to show that the (possibly
incomplete) hyperbolic metric on the interior of a cone-manifold M˛ is completely
determined by the cone angle ˛ and the conformal boundary components associated to
each of the geometrically finite ends of M˛ . See [18, Theorem 5.8] which is restated
as [17, Theorem 1.1]. We will use the following consequence of Bromberg’s result.
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Theorem 3.7 (Bromberg [18]) Let M˛0
be a geometrically finite hyperbolic cone-

manifold with cone angle ˛0 2 Œ0; 2�� about the cone singularity †. Suppose there is
an embedded tubular neighborhood about † in M˛0

of radius � sinh�1.
p

2/. Then
there exists an open neighborhood W of ˛0 in Œ0; 2�� such that the one-parameter
family M˛ , defined by varying the cone angle and keeping the conformal boundary
of M˛0

fixed, is defined for all ˛ 2W .

3.3 Complex length

Let X be the interior of N �† and �W �1.X /! PSL.2;C/. If 
 2 �1.X /, then the
complex length of 
 , denoted LD l C i� or L.�.
 //, is defined by the formula

t r2.�.
 //D 4 cosh2

�
L
2

�
and the normalizations l � 0 and � 2 .��; ��. If �.
 / is a loxodromic element, then
l is the length of the geodesic representative of 
 in X (equivalently, the translation
length of �.
 / along its axis in H3 ), and � gives the amount �.
 / twists along its
axis. If �.
 / is parabolic, then the complex length is zero.

If M˛ is a cone-manifold homeomorphic to the interior of N with cone singularity †,
and U is a tubular neighborhood of the cone-singularity, then @U has a well-defined
meridian ˇ . This is the homotopy class of a curve on @U that bounds a disk (with a
cone-point) in M˛ . When the cone angle is ˛ 2 .0; 2�/, then the meridian will be sent
to an elliptic element that rotates by ˛ about its axis. In this case, we say the meridian
has (purely imaginary) complex length i˛ . In our situation, when ˛ D 0 we will have
�.ˇ/ be parabolic, but when ˛ D 2� , �.ˇ/ will be the identity.

If ˛ 2 .0; 2�� and U is a metric collar neighborhood, then the torus @U inherits a
Euclidean metric as a subset of M˛ , so we can pick the shortest longitude � on @U (by
a longitude, we mean any curve that intersects the meridian once) and normalize the
complex length of � to be lC i� for some � 2 .�˛=2; ˛=2�. Then any other longitude
will have complex length l C i� C im˛ for some m 2 Z. The only time the choice
of � is not well-defined is when there are two shortest longitudes on @U in which case
we pick one and assign it the complex length l C i.˛=2/ by convention. We say that
the complex length of the cone axis † is the complex length of any longitude since
these are all homotopic to †. Since the complex length of † is only well-defined up
to the addition of multiples of i˛ , we work with the complex length of a particular
longitude instead.
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4 The drilling and filling theorems

4.1 Drilling

If M is a geometrically finite hyperbolic manifold and 
 is a disjoint collection of
simple closed geodesics in M , then Kojima showed, using an argument he attributes
to Kerckhoff, that M � 
 admits a unique complete hyperbolic metric such that the
natural inclusion of .M �
 /�M extends to a conformal map between the conformal
boundaries of M � 
 and M (see Kojima [41, Theorem 1.2.1]). We call this process
drilling (ie, finding a new metric on M �
 ). If the curves in 
 are sufficiently short, the
Brock–Bromberg drilling theorem bounds the difference between the original metric on
the complement of 
 in M and the new complete metric on M �
 [11]. That is, they
show the metrics are close (in a bilipschitz sense) on the complement of a neighborhood
of the drilled curves. Their work makes use of the cone-manifold machinery developed
by Hodgson and Kerckhoff [33; 34] and Bromberg [18; 17] that we outlined in the
previous section.

More precisely, if M is a geometrically finite hyperbolic manifold without rank–1

cusps, and 
1; : : : ; 
n is a disjoint collection of simple closed curves in M , let �M
denote the geometrically finite hyperbolic manifold homeomorphic that is homeomor-
phic M �

S

i and has the same conformal boundary components. We say �M is theS


i –drilling of M . The following is [11, Theorem 6.2].

Theorem 4.1 (Brock–Bromberg [11]) Given any J > 1, �3 � � > 0, there exists
some l0 > 0 such that the following holds: if M is a geometrically finite manifold with
no rank–1 cusps, and 
1; : : : ; 
n is a collection of geodesics in M with

nX
iD1

l.
i/ < l0;

then there exists a J –bilipschitz diffeomorphism

�W �M �Sn
iD1 T�.Ti/!M �

Sn
iD1 T�.
i/;

where �M is the
S

i –drilling of M , and Ti is the cusp corresponding to the drilling

of 
i .

Remark In the drilling theorem, Brock and Bromberg also conclude that the map �
in the drilling theorem is level-preserving on cusps in the following sense. Suppose
T �M is a rank–2 cusp in �M �Sn

iD1 T�.Ti/. Then the drilling map � sends T �M to
a cusp TM in M in such a way that for any 0< �0 � � , �.@T�0.T �M //D @T�0.TM /.
See [11, Theorem 6.12] (in particular, see [11, Lemma 6.17] which was used to prove
Theorem 6.12).
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4.2 Filling

The filling theorem provides an inverse construction. A geometrically finite hyperbolic
manifold with a rank–2 cusp is homeomorphic to the interior of a compact manifold
with a torus boundary component. One can Dehn-fill this compactification along any
boundary slope and attempt to hyperbolize the interior of the filled manifold. Under
certain conditions on the boundary slope, the filling theorem provides a way of doing
this hyperbolic Dehn-filling while preserving the conformal boundary components.
Moreover, we obtain estimates on the complex length of the core curve of the filling
torus in the new metric.

Now let �M be a geometrically finite hyperbolic manifold with n rank–2 cusps. We
want to describe a way of filling in these cusps to obtain a hyperbolic manifold M with
the same conformal boundary but no rank–2 cusps. Although methods developed by
Hodgson, Kerckhoff and Purcell [66] can be used to fill multiple cusps simultaneously,
this introduces some unnecessary complications. We will proceed by describing the
filling theorem for one cusp, which up to renumbering we can assume is the first cusp.
Then we derive the multiple cusp case by filling one cusp at a time (see Corollary 4.13).

Let yN be a compact 3–manifold with interior homeomorphic to �M . On the first
torus boundary component of yN fix a slope ˇ . Let N be the manifold obtained by
Dehn-filling yN along ˇ . If possible, we hyperbolize the interior of N to obtain a
hyperbolic manifold M with the same conformal boundary as �M and one fewer cusp.
If it exists, we call M the ˇ–filling of �M . Let 
 be the geodesic representative in M

of the core curve of the solid torus used to Dehn-fill yN .

The following theorem gives sufficient conditions for the ˇ–filling of �M to exist, and
when these conditions are satisfied, gives information about the complex length of the
geodesic 
 in M . Before stating the theorem, we define the normalized length and
normalized twist of the slope ˇ used in the filling; henceforth called the meridian.

The boundary of the cusp T we are filling, @T�3
.T /, inherits a Euclidean metric. Let

� be a geodesic in the homotopy class of ˇ on this flat torus. Let m denote the length
of �. Fix a point x 2 �, and let � be a geodesic ray perpendicular to � at x . Let y

denote the next point on � where � meets � (after x ). Orient � so that if E� and E�
denote the tangent vectors to � and � at x then E��E� points into the cusp T . Define b

to be the value in .�m=2;m=2� such that jbj is the distance between x and y , and
after orienting � as described, the sign of b gives the orientation of the shortest path
beginning at x and ending at y realizing this distance. See Figure 1. When y is exactly
half-way around � from x then there are two shortest paths. In this case, we choose
the positively oriented one so b Dm=2. The value b is the twist associated to the flat
structure on @T�3

.T / with meridian ˇ .
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Figure 1: A flat torus obtained by identifying the boundary circles of a
cylinder with a twist of b . In this picture, b is positive.

Definition 4.2 The normalized length L of ˇ is the length of � divided by the square
root of the area of @T�3

.T /:

LD
mp

Area.@T�3
.T //

:

Definition 4.3 The normalized twist of the flat metric on @T�3
.T / with meridian ˇ

is the ratio b=m. We let A2 Dm=b denote the reciprocal of the normalized twist.

Remark The normalized length and normalized twist are well-defined invariants of
the cusp T with meridian ˇ . That is, they depend only on the point in T .T 2/=Z
determined by the flat metric on @T�3

.T /. Here we consider the quotient of the
Teichmüller space of the torus by the subgroup generated by Dehn twists about ˇ . In
particular, we could define the normalized length or twist using any cross section of
the cusp @T�.T /, where �3 � � > 0.

Also note that in spite of the “square” notation, the quantity A2 2 .�2; 2� could be
negative, and we make no use of any quantity A in this paper. We use this notation to
emphasize that A2 is a counterpart to L2 in the following sense.

Assume A2¤ 2 so there is a unique shortest longitude � on T 2�f0g. If we conjugate
�1. �M / in PSL.2;C/ so that the isometry corresponding to � is�

1 2

0 1

�
;

and the isometry corresponding to the meridian ˇ is�
1 w

0 1

�
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for some w 2C with Im.w/ > 0, then

L2
D
jwj2

2 Im.w/
and A2

D
jwj2

2 Re.w/
:

Now that we have defined the quantities L2 and A2 , we are ready to state the filling
theorem.

Theorem 1.2 Let J > 1 and �3 � � > 0. There is some K � 4�
p

2 such that the
following holds: suppose �M is a geometrically finite hyperbolic 3–manifold with
no rank–1 cusps, T is a rank–2 cusp in �M , and ˇ is a slope on T such that the
normalized length of ˇ is at least K (ie, L2 �K2 ), then

(i) the ˇ–filling of �M , which we call M , exists,

(ii) the real part of the complex length LD l C i� of the core curve of the filling
torus 
 in M is approximately 2�=L2 with error bounded byˇ̌̌̌

l �
2�

L2

ˇ̌̌̌
�

8.2�/3

L4� 16.2�/4
;

(iii) in particular, the length of 
 is bounded above by

2�

L2� 4.2�/2
;

(iv) there exists a J –bilipschitz diffeomorphism

�W �M �T�.T /!M �T�.
 /;

(v) if, in addition to L2 � K2 , we have jA2j � 3, then the imaginary part of the
complex length LD lC i� of the core curve of the filling torus 
 in M (chosen
so � 2 .��; ��) is approximately 2�=A2 with error bounded byˇ̌̌̌

� �
2�

A2

ˇ̌̌̌
�

5.2�/3

.L2� 4.2�/2/2
:

Outline of the proof and prior results As the proof is rather technical and spans
multiple subsections, we begin with an outline. Many of the results of the filling
theorem follow directly from results of Brock, Bromberg, Hodgson, and Kerckhoff, so
first we delineate these contributions. Part (i) was shown by Bromberg in [17]. This
was a generalization of the work of Hodgson and Kerckhoff in [34] to geometrically
finite manifolds. We intend to revisit these arguments in order to reprove (i) and draw
the conclusions stated in (ii) and (v). Part (iii) follows from (ii), although both are
proven in Lemma 4.7. Part (iv) follows from parts (i), (iii) and the drilling theorem.
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That is, once we show that the filling exists and 
 is sufficiently short in M , we can
then apply the drilling theorem to M to recover �M and get the J –bilipschitz map
from the drilling theorem.

We view the geometrically finite manifold �M with n cusps as a geometrically finite
hyperbolic cone-manifold with n� 1 rank–2 cusps and cone singularity †D 
 with
cone angle ˛ D 0 about †. Part (i) amounts to showing that we can increase the cone
angle from 0 to 2� . We will use the parameterization t D ˛2 . By Theorem 3.7 the one-
parameter family is defined in some interval Œ0; t 0/. At any t 2 Œ0; t 0/, Proposition 4.4
provides estimates on the derivative of the complex length of any peripheral curve.
The bounds here depend on the radius of an embedded tube about the cone-singularity.
Provided L2 is sufficiently large, Lemma 4.5 shows that for all t 2 Œ0; t 0/, the radius
remains bounded below; therefore, we can extend the one-parameter family to Mt 0

using Theorem 3.2, and in Lemma 4.6 we show that if L2 � 8.2�/2 then we can
continue the deformation to t D .2�/2 . Having defined the one-parameter family Mt

for all t 2 Œ0; .2�/2�, we can integrate the estimates from Proposition 4.4 to prove
Lemma 4.7. This gives us the estimate on the real part of the length of 
 we claimed
in part (ii).

To get the estimate on the imaginary part of the complex length of 
 in M that we
claimed in part (v), we consider a longitude on @U1 homotopic to 
 . Actually, it
is more convenient to work with a metric collar neighborhood Vt of 
 in Mt . The
torus @Vt inherits a flat metric and we can define the twist b.t/ and the normalized twist
b.t/=m.t/ associated to @Vt in the same way that we defined the twist b and normalized
twist b=m for @V0 (the boundary of the cusp we are filling in �M ). Since jA2j>2, there
is a unique shortest longitude � on @V0 . For any t when � is shortest, the imaginary
part of the complex length which we denote by �.�; t/ is well-defined as a real number
(see Section 3.3). In Lemma 4.8, we define the quantity v.�0; t/ D �.�0; t/=˛ for
any longitude �0 and bound dv=d˛ at any fixed time t . In Lemma 4.10, we show
limt!0 v.�; t/D 1=A2 . In Lemma 4.11 and Lemma 4.12 we use this limiting value
of v.�; t/, the bound on the derivative of v found in Lemma 4.8, and the hypothesis
jA2j � 3 to show that � remains the shortest longitude on @Vt for all t 2 Œ0; .2�/2�

and obtain the estimate on � D �.�; 2�/ in part (v) of Theorem 1.2.

4.3 Existence of the deformation and derivative estimates

We now begin the proof of Theorem 1.2. In this section, our goal is to show that the
one-parameter family Mt , defined by setting M0 D

�M and increasing the cone angle
about 
 with the parameterization t D ˛2 (while keeping the conformal boundary
fixed), can be defined for all t 2 Œ0; .2�/2�. The deformation is well defined for some
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interval Œ0; t 0/ by the local rigidity results of Bromberg (see [18, Theorem 5.8], restated
as Theorem 3.7 in the previous section). At any t 2 Œ0; t 0/ we can estimate the derivative
of the complex length of any curve on the boundary of a neighborhood of the cone
singularity.

Proposition 4.4 Suppose the one-parameter family of cone manifolds Mt has been
defined for t 2 Œ0; t 0/, and suppose there is an embedded tube U1 of radius R about 

in Mt . If L D l C i� denotes the complex length of any curve on @U1 , then the
derivative of L is given by

(1)
dL
dt
D
�1

4˛2
.�2L/C .xC iy/.2l/

and therefore

(2)
dl

d˛
D

l

˛
.1C 4˛2x/ and

d�

d˛
D
�

˛
C 4˛yl;

where x and y satisfy

�1

sinh2.R/

�
2 sinh2.R/C 1

2 sinh2.R/C 3

�
� 4˛2x �

1

sinh2.R/
;(3)

j4˛2yj �
2

sinh2.R/

cosh2.R/

.2 cosh2.R/C 1/
:(4)

Proof Let X DMt �†. To each time t for which the one-parameter deformation
has been defined we can associate a class in H 1.X IE/ that is conformal at infinity.
We can represent this cohomology class in two ways. First, by Lemma 3.4, we can
choose !0 to be in standard form in a neighborhood U1 of the singular locus and in
each of the rank–2 cusps Ui .i D 2; : : : ; n/ of X . By our choice of parameterization
t D ˛2 , in a neighborhood U1 we must have

(5) !0 D
�1

4˛2
!mC .xC iy/!l

for some constants x and y since the derivative of the complex length of the meridian
is determined by the coefficient of !m and the complex length of the meridian is i

p
t at

any time t (see [34, Equation (4)]). By integrating !m and !l , Hodgson and Kerckhoff
compute the effect of !m and !l on the infinitesimal change in the holonomy of any
path on @U1 in [33, pages 32–33] (see also [34, Lemma 2.1]). Thus (1) follows from (5)
by their work.

From (1), the real part gives us dl=dt and the imaginary part gives us d�=dt . Given
the parameterization t D ˛2 , the formulas for dl=d˛ and d�=d˛ given in (2) follow.
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Now we want to derive the bounds on x and y . By Theorem 3.6, we can find a
Hodge form ! in the same cohomology class as !0 such that !c WD ! �!0 has finite
L2 –norm outside U1 . Lemma 3.4 of [33] shows that !c does not effect the holonomy
of any of the peripheral elements. By Proposition 2.6 of [33], we can write ! as

! D �C i �D�

such that D��DD �D�C �D 0, and both � and D� are symmetric and traceless
TX –valued forms. Here, D is the real part of d , and D� is the adjoint of D ; see [33;
18] for formulas.

Since ! D !0C!c , we can decompose the real part of ! as �D �0C �c where �c

does not effect the holonomy of the peripheral elements.

We can find a smoothly embedded convex surface S cutting off the geometrically finite
ends of X such that (after possibly shrinking the Ui neighborhoods of the cusps) Ui

and S are all pairwise disjoint. Note that such a surface exists by [18, Theorem 4.3]
and may have multiple components (one for each end).

By [34, Lemma 2.3], we have that for any compact submanifold N � X with @N
oriented with an inward pointing normalZ

N

k!k2 D

Z
@N

�D�^ �:

Letting N be the complement of the union
Sn

iD1 Ui and the ends cut off by S , we
can decompose the boundary integral:Z

N

k!k2�

Z
S

�D�^ �D

nX
iD1

Z
@Ui

�D�^ �

Let bi.˛; ˇ/D
R
@Ui
�D˛^ˇ .

Lemma 2.5 of [34] says that bi.�; �/D bi.�0; �0/Cbi.�c ; �c/ and Lemma 2.6 of [34]
says that bi.�c ; �c/ is nonpositive. So we haveZ

N

k!k2�

Z
S

�D�^ ��

nX
iD1

bi.�0; �0/:

Since this holds for any compact submanifold N , we can apply this to a family of
compact submanifolds obtained by shrinking the neighborhood of the geometrically
finite ends (but keeping the torus boundary components of N the same as before). Let
ST be the surface obtained by taking a parallel copy of S a distance T further out the
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ends, and NT the submanifold containing N whose boundary is ST . Then for all T ,Z
NT

k!k2�

Z
ST

�D�^ ��

nX
iD1

bi.�0; �0/:

The calculations in the proof of [18, Theorem 4.6] show that
R

ST
�D�^ �! 0 as

T ! 1. Since NT contains the original manifold N D N0 , for all T we haveR
NT
k!k2 �

R
N k!k

2 � 0.

As Purcell calculates in [66, Equation (16)], this shows

nX
iD1

bi.�0; �0/� 0

with equality if and only if the deformation is trivial.

We also note that Lemmas 3.1 and 3.2 in [66] imply that for i � 2,

�bi.�0; �0/D 2j�0i.t/j
2 Area.@Ui/;

where �i.t/ is the path in the Teichmüller space (using the Teichmüller metric) of @Ui

throughout the deformation. In particular bi.�0; �0/� 0 for all i � 2. It follows that
b1.�0; �0/� 0. We now are in a position to follow the calculations in [34, pages 382–
384] identically (for more steps in the calculations see [34; 47, Chapter 4]).

In order to bound x and y , we begin by computing b1.�0; �0/ in terms of x and y

and some constants that only depend on R and ˛ (within this proposition, R and ˛
are fixed so we refer to aR; bR; cR as constants). This is done in [34, 382–383].

b1.�0; �0/

Area.@V /
D aR.x

2
Cy2/C bRxC cR;

aR D� tanh.R/
2 cosh2.R/C 1

cosh2.R/
;where

bR D
tanh.R/

2˛2 cosh2.R/ sinh2.R/
;

cR D
tanh.R/C tanh3.R/

16˛4 sinh4.R/
:

Using the fact that b1.�0; �0/� 0, we get�
xC

bR

2aR

�2

Cy2
�

b2
R
� 4aRcR

4a2
R

:
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Since both of the terms .xC bR=.2aR//
2 and y2 are positive, we get the inequalities�

x�
1

.4˛2 sinh2.R//.2 cosh2.R/C 1/

�2

�

�
cosh2.R/

.2˛2 sinh2.R//.2 cosh2.R/C 1/

�2

;

y2
�

�
cosh2.R/

.2˛2 sinh2.R//.2 cosh2.R/C 1/

�2

:

The inequalities (3) and (4) follow immediately. This completes the proof which gives
us a generalized version of [34, Theorem 2.7] for geometrically finite manifolds with
rank–2 cusps. Moreover, we obtain an additional bound on y which will be useful
later.

Because the hypotheses in Proposition 4.4 require the existence of an embedded tube U1

of radius R about 
 , we now show there is some interval on which there is a lower
bound to the size of such a tube. From now on we will use Rt to denote the maximum
radius of an embedded tubular neighborhood about 
 in Mt , and let Vt denote this
Rt –neighborhood of 
 . Note that this replaces the neighborhood U1 we were using
earlier because we are now interested in the parameter t and no longer care about the
other neighborhoods Ui , i � 2. Although not necessarily the optimal lower bound,
it will be convenient to show Rt � sinh�1.

p
2/. In particular, this will allow us to

invoke [17, Theorem 1.2] in the proof of Lemma 4.6. (See the comments preceding
[17, Theorem 3.5, page 796].)

Lemma 4.5 Suppose Mt is defined for some interval Œ0; t 0/� Œ0; .2�/2�, and let Rt

denote the maximal radius such that if Vt is an Rt –neighborhood of † in Mt then Vt

is embedded. Suppose L2 � 8.2�/2 where L is the normalized length of the meridian
of @V0 . Then Rt > sinh�1.

p
2/ for all t 2 Œ0; t 0/.

Proof When t D 0, M0 has a rank–2 cusp. We can interpret V0 as this rank–2 cusp
and R0D1 . As we vary the metric, Rt varies continuously. Suppose there was some
first time t 00 < t 0 such that Rt 00 D sinh�1.

p
2/. Let l.t/ denote the length of 
 in Mt .

This is the same as the length of any curve on @Vt homotopic to 
 so we can apply
the bounds on dl=dt in Proposition 4.4. We will find a contradiction by showing that
Rt 00 is bounded below by a function of l.t 00/ and estimate l.t 00/ using L2 .

The area At of @Vt satisfies

At � 1:69785
sinh2.Rt /

cosh.2Rt /
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by [34, Theorem 4.4] (see also [17, Proposition 3.4] in the geometrically finite setting).
The value 1:69785 is an approximation of 2

p
6 sinh�1.1=.2

p
2// but we won’t need

this precision. Define

h.r/D 1:69785
tanh.r/

cosh.2r/
:

Remark Hodgson and Kerckhoff define h.r/ D 3:3957.tanh.r/= cosh.2r// in [34,
Section 5]. Our definition differs by a factor of 2 since we are allowing our manifold
to have multiple cusps and geometrically finite ends (see [34, Theorem 4.4]). This also
allows us to directly apply [17, Propositions 3.2 and 3.4].

Since At D ˛l.t/ sinh.Rt / cosh.Rt / [34, page 403], the maximal radius Rt satisfies

˛l.t/� h.Rt /:

In [34, Lemma 5.2], Hodgson and Kerckhoff show that h has a unique maximum,
hmax � 0:5098, when r � 0:531 and is decreasing for all r � 0:531. For any
0 � a � hmax we can define an inverse function h�1.a/ to be the value of r such
that r � 0:531 and h.r/ D a. One can easily see from the definition of h.r/ that
limr!1 h.r/D 0, so we interpret h�1.0/D1.

Then we have
Rt � h�1.˛l.t//

whenever ˛l.t/� hmax and Rt � 0:531. We are assuming Rt � sinh�1.
p

2/� 1:4622

for all 0� t � t 00 so the condition that Rt � 0:531 is immediately satisfied for all t in
this interval.

If ˛l.t/� hmax , set �.t/D h�1.˛l.t// which is clearly bounded above by Rt . Note
that ˛ and l.t/ both start at zero when t D 0 so the condition that ˛l.t/� hmax holds
in some interval around t D 0.

Substituting � for Rt in the inequality (3) gives us

�1

sinh2.�/

�
2 sinh2.�/C 1

2 sinh2.�/C 3

�
� 4˛2x �

1

sinh2.�/
:

Proposition 5.5 of [34] shows the lower bound is an increasing function of � and the
upper bound is a decreasing function. Now set

u.t/D
˛

l.t/
:

Differentiating with respect to t , we find that

du

dt
D
�1

2˛l
.4˛2x/:
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and after the substitution z D tanh.�/,

(6) �
1C z2

3:3956.z3/
�

du

dt
�

.1C z2/2

3:3956.z3/.3� z2/
:

As long as ˛l � hmax we have 0:531� �D h�1.˛l/ and therefore 0:48� z � 1. Since

1C z2

3:3957.z3/
and

.1C z2/2

3:3957.z3/.3� z2/

are both decreasing functions of z over this interval, we can replace z with 0:48 to
obtain the somewhat liberal bound

(7)
ˇ̌̌̌
du

dt

ˇ̌̌̌
� 4:

Equation (37) of [34] shows that lim˛!0 u D L2 which implies that as long as
˛l.t/� hmax and 0� t � t 00 we haveˇ̌̌̌

˛

l.t/
�L2

ˇ̌̌̌
� 4t:

Since L2 � 8.2�/2 , we have that L2˙ 4t is positive for any t � .2�/2 , so

(8)
˛

L2C 4t
� l.t/�

˛

L2� 4t
:

Multiplying by ˛ and substituting t D ˛2 we get

(9) ˛l.t/�
t

L2� 4t
:

Since L2 � 8.2�/2 we have L2� 4.2�/2 � 4.2�/2 . Thus

.2�/2

L2� 4.2�/2
�

1

4
< hmax:

This implies that for any 0� t � .2�/2 ,

t

L2� 4t
�

.2�/2

L2� 4.2�/2
< hmax

which in particular implies that ˛l.t/ < hmax for all t 2 Œ0; t 00�. It also follows that

Rt 00 � h�1.˛l.t 00//� h�1

�
t 00

L2� 4t 00

�
� h�1

�
.2�/2

L2� 4.2�/2

�
� h�1

�
1

4

�
:
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Since 1
4
< h.sinh�1.

p
2// � 0:27725, Rt 00 > sinh�1.

p
2/. This contradicts that

Rt 00 D sinh�1.
p

2/ for any time t 00 < t 0 , and so we have Rt > sinh�1.
p

2/ for all
0� t < t 0 .

Remark Although many of these estimates appear in [34; 17], we will be using
them to produce estimates in following subsection which do not appear in the existing
literature.

Using Theorem 3.2 and Theorem 3.7, we can extend the one-parameter family Mt

to be defined for all t 2 Œ0; .2�/2�. The following lemma proves part (i) of the filling
theorem. See [17, Theorem 1.2] for the proof.

Lemma 4.6 If L2 � 8.2�/2 , then the one-parameter family is defined for all t 2

Œ0; .2�/2�.

4.4 Complex length estimates

Now that we have defined the one-parameter family for all t 2 Œ0; .2�/2�, we can
integrate the estimates we found for dl=d˛ and d�=d˛ in Proposition 4.4. This will
allow us to estimate the complex length of any longitude on @Vt at any t . When
t D .2�/2 , this produces estimates on the complex length of 
 in M .

First we consider the real part of the complex length of 
 . As in the proof of Lemma 4.5,
we consider u.t/D˛=l.t/, which approaches L2 as t!0. We can integrate the bounds
on du=dt in (7) to estimate the length of 
 in M . In other words, the inequalities
in (8) hold for all t 2 Œ0; .2�/2�. Thus we have shown:

Lemma 4.7 If L2 � 8.2�/2 , the length of 
 in M is given by l..2�/2/ which
satisfies

2�

L2C 4.2�/2
� l..2�/2/�

2�

L2� 4.2�/2
:

This immediately implies parts (ii) and (iii) of the filling theorem.

Next we consider the imaginary part of the complex length of 
 . Again we consider
any longitude on @Vt . Recall from Section 3.3 that for a fixed t we can choose a
shortest longitude on @Vt and thus identify the imaginary part of the complex length
of any longitude on @Vt with a real number as opposed to modulo ˛ . We begin by
using the bounds from Proposition 4.4 to bound the change in �.t/=˛ for any longitude
on @Vt .
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Lemma 4.8 Suppose L2 � 8.2�/2 . For any fixed t such that 0< t � .2�/2 and any
longitude on @Vt , let LD l C i� denote the complex length of that longitude. Define

v D
�

˛
:ˇ̌̌̌

dv

d˛

ˇ̌̌̌
�

5.2�/

.L2� 4.2�/2/2
:Then

Remark Because we are considering the derivative at a fixed time t , we use l D l.t/

to denote the length at time t and � D �.t/. Also note that the role of v is similar to
that of the reciprocal of u, rather than u itself.

Proof Because L2 � 8.2�/2 , the one-parameter family Mt can be defined for all
t 2 Œ0; .2�/2� by Lemma 4.6. Lemma 4.5 implies that Rt � sinh�1.

p
2/ for all t , and

so we can apply the results of Proposition 4.4 with a lower bound on R.

Recall from (2) in the statement of Proposition 4.4 that d�=d˛ D �=˛ C 4˛yl , so
differentiating v with respect to ˛ gives us

dv

d˛
D
.d�=d˛/

˛
�
�

˛2
D 4yl:

In order to obtain a bound on this quantity, we rewrite 4yl in the following way since
we can bound j4˛2yj using (4).

(10)
ˇ̌̌̌
dv

d˛

ˇ̌̌̌
D j4yl j D

ˇ̌̌̌
l2

˛2l
4˛2y

ˇ̌̌̌
D .l/

�
1

u

��
1

˛l

�
j4˛2yj:

We will bound each of these four quantities separately. First, an upper bound for l at
any time t is given in (8). For any t � .2�/2 this upper bound satisfies the uniform
bound

(11) l �
˛

L2� 4t
�

2�

L2� 4.2�/2
:

Recall that uD ˛= l and so the quantity 1=uD l=˛ can bounded using (7). Since u

approaches L2 as ˛! 0 and jdu=dt j � 4, we have that ju�L2j � 4˛2 . Therefore
at any t � .2�/2 , a lower bound for u is given by u�L2� 4.2�/2 which implies

(12)
1

u
�

1

L2� 4.2�/2
:

Geometry & Topology, Volume 16 (2012)



1278 Aaron D Magid

Making the same changes of variables �D h�1.˛l/ and z D tanh.�/ that we made in
the proof of the inequality (6) in Proposition 4.4, we see that (as in [34, Equation (38)])

(13)
1

˛l
D

1C z2

1:69785.z/.1� z2/
:

Finally we must bound 4˛2y in terms of z . As in the proof of Proposition 4.4, we can
replace R by � in the inequality (4) to get

j4˛2yj �
2

sinh2.�/

cosh2.�/

.2 cosh2.�/C 1/
:

Using sinh2.�/D z2=.1� z2/ and cosh2.�/D 1=.1� z2/ gives us

(14) j4˛2yj �
2.1� z2/

3z2� z4
:

Now we combine the bounds on l , 1=u, 1=.˛l/ and j4˛2yj in (11), (12), (13) and (14)
to get an estimate replacing (10):ˇ̌̌̌

dv

d˛

ˇ̌̌̌
�

�
2�

L2� 4.2�/2

��
1

L2� 4.2�/2

��
1C z2

1:69785.z/.1� z2/

��
2.1� z2/

3z2� z4

�
:

Since L2 � 8.2�/2 we know (as in the proof of Lemma 4.5) that ˛l remains bounded
above by hmax for all t and therefore � � 0:531. This implies 1 � z � 0:4862

throughout the deformation so we can bound the following function of z by its value
when z D 0:48 since it is decreasing on Œ0:48; 1�.

2.1C z2/.1� z2/

1:69785.z/.1� z2/.3z2� z4/
�

2.1C .0:48/2/.1� .0:48/2/

1:69785.0:48/.1� .0:48/2/.3.0:48/2� .0:48/4/
:

This upper bound is approximately 4:73191, so for any z 2 Œ0:48; 1�,

Thus

2.1C z2/.1� z2/

1:69785.z/.1� z2/.3z2� z4/
� 5:ˇ̌̌̌

dv

d˛

ˇ̌̌̌
�

5.2�/

.L2� 4.2�/2/2
:

The quantity v D v.�0; t/ depends on both a longitude �0 and the parameter t . The
previous Lemma shows that if L2 is sufficiently large, then v remains roughly constant.
Thus for any longitude �0 , v.�0; .2�/2/ can be approximated by limt!0 v.�

0; t/. We
claim that since jA2j> 2, there is a longitude � such that this limit exists and is equal
to 1=A2 , the normalized twist of the cusp we are filling �M .
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Let b.t/ and m.t/ be the twist and length of the meridian on the flat torus Vt , as
in Definition 4.3. Since Mt !M0 geometrically, the flat tori @Vt converge to @V0 .
Hence b.t/=m.t/ converges to b.0/=m.0/D 1=A2 unless b=mD 1

2
(in which case

lim.b.t/=m.t// could be 1
2

, �1
2

, or not exist).

Lemma 4.9 Suppose that jA2j> 2. Then

lim
t!0

b.t/

m.t/
D

1

A2
:

When b.t/=m.t/¤ 1
2

, then there is a unique shortest longitude � on @Vt . In particular,
if jA2j> 2, there is a unique shortest longitude � on @V0 .

Lemma 4.10 If jA2j> 2, then there is some ı > 0 such that the imaginary part of the
complex length of the shortest longitude � lies in the interval �.�; t/ 2 .�˛=2; ˛=2/
for all 0< t < ı . Moreover,

lim
t!0

v.�; t/D lim
t!0

�.�; t/

˛
D

1

A2
:

Proof Since
ˇ̌
1=A2

ˇ̌
< 1

2
, there is some ı>0 such that for all t 2 Œ0; ı/, b.t/=m.t/¤ 1

2

by the previous lemma. Hence, the longitude � that is shortest on @V0 is the unique
shortest longitude on @Vt for all t 2 Œ0; ı/. Thus, the imaginary part of the complex
length satisfies �.�; t/ 2 .�˛=2; ˛=2/ for all t 2 .0; ı/.

For any t 2 .0; ı/, we have ˛ > 0, so the ratio �.�; t/=˛ is the amount the shortest
longitude � twists around the meridian, measured in the interval .�1

2
; 1

2
�. Given the

definitions of b.t/ and m.t/, this ratio is identical to b.t/=m.t/. Hence,

Thus

�.�; t/

˛
D

b.t/

m.t/
:

lim
t!0

v.�; t/D lim
t!0

�.�; t/

˛
D lim

t!0

b.t/

m.t/
D

1

A2
:

We now use the bounds on dv=d˛ and the fact that limt!0 v.�; t/D 1=A2 to estimate
v.�; .2�/2/.

Lemma 4.11 Suppose that jA2j > 2 and L2 � 8.2�/2 . Then the complex length
l.�; .2�/2/C i�.�; .2�/2/ of the longitude � on @V.2�/2 satisfies

(15)
ˇ̌̌̌
�.�; .2�/2/�

2�

A2

ˇ̌̌̌
�

5.2�/3

.L2� 4.2�/2/2
:
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Proof Recall that for any longitude, we obtained the boundˇ̌̌̌
dv

d˛

ˇ̌̌̌
�

5.2�/

.L2� 4.2�/2/2

in Lemma 4.8. For the longitude �, we have limt!0 v.�; t/ D 1=A2 , so we can
integrate to find that, for any t � .2�/2 , we have

(16)
ˇ̌̌̌
�.�; t/

˛
�

1

A2

ˇ̌̌̌
�

5.2�/.t/

.L2� 4.2�/2/2
:

Since L2 � 8.2�/2 we can define the deformation for all t 2 Œ0; .2�/2�, and therefore
setting t D .2�/2 gives us inequality (15).

We can now prove part (v) of Theorem 1.2.

Lemma 4.12 Let 
 be the core curve of the filling torus in M D M.2�/2 . If
L2 � 8.2�/2 and jA2j � 3, then the imaginary part of the complex length L.
 / D
l.
 /C i�.
 /, normalized so that �.
 / 2 .��; ��, satisfies

(17)
ˇ̌̌̌
�.
 /�

2�

A2

ˇ̌̌̌
�

5.2�/3

.L2� 4.2�/2/2
:

Proof Since any longitude on @V.2�/2 is homotopic to 
 , the complex length
l.
 /Ci�.
 / of 
 in M.2�/2 is given by the complex length of the shortest longitude �
on @V.2�/2 . Since jA2j�3, there is a unique shortest longitude at tD0. The conditions
jA2j � 3, L2 � 8.2�/2 , together with inequality (16) show that �.�; t/=˛ remains in
the open interval .�1

2
; 1

2
/ for all t � .2�/2 (ie, at no time does �.�; t/=˛ equal ˙1

2

and � ceases to be the unique shortest longitude). Thus, � remains the shortest
longitude throughout the deformation and �.�; .2�/2/ lies in the interval .��; �/. So
the normalized �.
 / is �.�; .2�/2/ and inequality (17) follows directly from (15).

We now complete the proof of the filling theorem by summarizing what we have done
to prove parts (i), (ii), (iii), and deriving part (iv). Part (i) was proven in Lemma 4.6
when we showed that one can increase the cone angle from 0 to 2� . Parts (ii) and (iii)
were completed in Lemma 4.7. Part (iv) follows from parts (i), (iii), and the drilling
theorem (Theorem 4.1) in the following way. Part (i) provides the existence of M

(ie, the ˇ–filling of �M ), and by the drilling theorem, there exists some l0 such that if
l.
 / < l0 then there is a J –bilipschitz diffeomorphism

�W �M �T�.T /!M �T�.
 /:

Geometry & Topology, Volume 16 (2012)



Deformation spaces of Kleinian surface groups are not locally connected 1281

By part (iii) of the filling theorem, there exists some K such that if the normalized
length, L, of ˇ is at least K then l.
 /� 2�=.L2� 4.2�/2/ < l0 . Thus we can apply
the drilling theorem to reverse the filling and obtain the desired bilipschitz map.

Remark Note that in parts (i), (ii), (iii), (v) of the filling theorem, we only used
the uniform bounds L2 � 8.2�/2 and jA2j � 3. These four parts do not depend on
the condition that L � K . The constant K depends on J and � and is therefore
only necessary to conclude that if L�K , then the map � is J –bilipschitz outside a
Margulis �–thin region about the cusp T . We also remark that since the filling map �
is obtained by applying the drilling theorem, we can assume that � is level-preserving
on cusps (see the remark following Theorem 4.1).

Before moving on to the next section, we remark that one could eliminate the hypothesis
that jA2j � 3 by not requiring the normalization �.
 / 2 .��; ��. For instance, if we
only assume jA2j > 2, then (15) still holds. If A2 D 2, then Lemma 4.8 could still
be used to estimate the imaginary part of the complex length of 
 using an altered
definition of the normalized twist (see the remarks in [47, Section 4.3]).

4.5 Consequences and generalizations

In this section, we explain some of the consequences of the drilling and filling theorems.
First, we draw the following corollary of Theorem 4.1 and Theorem 1.2 that will allow
us to fill a manifold with multiple cusps. If �M has multiple cusps, we can fill them
one at a time, using the filling theorem each time to obtain bounds on the lengths of
the core curves of the filling tori. In the statement of the following corollary, we will
suppose our manifold has d cusps of which n� d are being filled. We will assume
they have been ordered so that the first n are filled. We label the cusps in �M by Ti

and we label the core curves of the solid tori by 
i .

Corollary 4.13 Let J > 1, l0 > 0, �3 � � > 0, and n be given. There exists some K

such that the following holds: suppose �M is a geometrically finite manifold with d � n

cusps. Suppose ˇi is a slope on the i –th cusp of �M , 1� i � n� d . If the normalized
length of ˇi is at least K for each i , then

(i) we can fill in the n cusps with labeled meridians, obtaining a manifold M such
that each ˇi bounds a disk in M (in other words, the

S
ˇi –filling of �M exists),

(ii) if 
i is the core curve of the torus used to fill the i –th cusp, then
Pn

iD1 l.
i/< l0 ,

(iii) there exists a J –bilipschitz diffeomorphism

�W �M �Sn
iD1 T�.Ti/!M �

Sn
iD1 T�.
i/:
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Proof If the filled manifold M exists, the drilling theorem says that there exists
some l 0

0
, depending only on J and � , such that if

Pn
iD1 l.
i/ < l 0

0
, then there is a

J –bilipschitz diffeomorphism

�W �M �Sn
iD1 T�.Ti/!M �

Sn
iD1 T�.
i/:

Let `D minfl0; l 00g where l0 is the constant given in the statement of the Corollary.
We will show there exists a K such that if the normalized length of ˇi is at least K

for 1 � i � n, then the filled manifold M exists, and the length of 
i in M is less
than `=n.

We want to fill the cusps one at a time. Let M 0 D �M , and if it exists let M i be the
ˇi filling of M i�1 . We will use the notation lM i .
j / to denote the length of 
j in
M i . In this notation, we want to show that M n DM exists and that lM n.
i/ < `=n

for all 1� i � n.

By the filling theorem, there exists some K0 (independent of i ) such that if the
normalized length of ˇi in M i�1 is at least K0 then we have the following:

� The ˇi –filling of M i�1 , which we will call M i , exists.

� The length of 
i in M i satisfies lM i .
i/ < `=.n2n/.

� There is a 2–bilipschitz map �i W M
i�1 �T�0.Ti/!M i �T�0.
i/ for some

�3 � �
0 > 0.

Now let K > 4nK0 . If the normalized length of ˇ1 is at least K , we can do the first
filling to obtain M 1 . We now apply the filling theorem inductively. In the i –th filling,
the length of 
j (for any 1� j < i ) does not increase by more than factor of 2 since
�i is 2–bilipschitz. We next claim that the normalized length of ǰ (for any i < j � n)
does not decrease by more than factor of 4.

Fix a torus cross-section T D T 2 � f1g of the cusp Tj Š T 2 � Œ0;1/ contained in
M i�1�T�.Ti/. Let � be a curve on T homotopic to the meridian ǰ . The normalized
length of ǰ in M i�1 is l.�/=

p
Area.T /, where l.�/ is the length of a geodesic

representative of � on T with respect to the induced Euclidean metric on T . Since �i

is 2–bilipschitz, the length of a geodesic representative of �i.�/ on �i.T / is bounded
by l.�i.�// > l.�/=2, and also Area.�i.T // < 4.Area.T //. Thus

l.�i.�//p
Area.�i.T //

>
l.�/=2p

4.Area.T //
:

By [11, Theorem 6.12] (see the remark following Theorem 4.1), we can assume �i.T /

is a flat cross-section of the j –th cusp in M i . Thus the ratio l.�i.�//=
p

Area.�i.T //

in the left-hand side of the inequality above is the normalized length of ǰ in M i .
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This completes the proof that the normalized length of ǰ does not shrink by more
than a factor of 4 during the i –th filling.

Thus, for any 1� i �n, the normalized length of ˇi in M i�1 is at least 4n�iK0 . So we
can apply the filling theorem n times to get M , the

S
ˇi –filling of �M . This completes

part (i). Since the length of 
i in M i is less than `=.n2n/, the length of 
i in M is
less than .`=n/.2n�i=2n/ � `=n. Hence

Pn
iD1 l.
i/ < `. Since `Dminfl0; l 00g this

completes parts (ii) and (iii).

Now suppose that �M is the 
 –drilling of M , and let T denote the new cusp of �M .
Recall that if 
 is sufficiently short, the drilling theorem provides a bilipschitz diffeo-
morphism �W �M �T�3

.T /!M �T�3
.
 /. There is a unique slope ˇ on @T�3

.T /

such that �.ˇ/ bounds a disk in T�3
.
 / �M , but ˇ does not bound a disk in �M .

Equivalently, the ˇ–filling of �M (if it exists) is M . We say that ˇ is the meridian
of �M . If 
 is sufficiently short, then one can bound the normalized length of ˇ in �M
from below. This is stated without proof of [20, Theorem 2.4(2)].

Proposition 4.14 Let K > 0. There exists l0 > 0 such that the following holds. Let
M be a geometrically finite manifold containing a geodesic 
 of length less than l0 . If�M is the 
 –drilling of M and ˇ is the meridian in �M that bounds a disk in M , then
the normalized length L of the meridian ˇ in �M is at least K .

Proof By the drilling theorem, there exists l1 such that if l.
 / < l1 then there exists
a 2–bilipschitz map

�W �M �T�3
.T /!M �T�3

.
 /:

Suppose that R is the distance between 
 and @T�3
.
 /. The area of the boundary of

this Margulis tube in M is equal to

A.@T�3
.
 //DAD 2�l.
 / sinh.R/ cosh.R/:

(For example, see [34, page 403].) Here 2� sinh.R/ gives the length of the meridian
on @T�3

.
 / in M . Define the normalized length of ˇ in M to be LM .ˇ/ D

2� sinh.R/=
p

A. This is the length of (a geodesic representative of) �.ˇ/ on @T�3
.
 /

divided by the square root of the area of @T�3
.
 /. Unlike the normalized length of ˇ

in �M , which is the length of ˇ on @T�3
.T / divided by the square root of the area

of @T�3
.T /, the normalized length of ˇ in M depends on the size of the Margulis
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tube (in this case �3 ).

LM .ˇ/D
2� sinh.R/
p

A
D

p
A

l.
 / cosh.R/
:Now

LM .ˇ/D

s
2� tanh.R/

l.
 /
:Thus

The estimates in Brooks and Matelski [23] imply that given any R0 , there is some l 0
2

such that if l.
 / < l 0
2

then R > R0 . Hence, there is some l2 such that if l.
 / < l2 ,
then LM .ˇ/ > 4K .

Now let l0 D minfl1; l2g. This implies the filling map restricts to a 2–bilipschitz
diffeomorphism on the boundary tori: ��1W @T�3

.
 /! @T�3
.T /. Hence, as we saw

in the proof of the previous corollary, the normalized length of ˇ in �M is no less
than 1

4
times the normalized length of ˇ on @T�3

.
 /. Thus, the normalized length of
the meridian in �M (which we are simply denoting by L) is at least

L�
1

4
LM .ˇ/ >K:

Remark One can also prove Proposition 4.14 using the tools developed in the proofs
of Proposition 4.4, Lemma 4.5. One defines a one-parameter family of cone-manifolds
by decreasing the cone-angle about 
 from 2� to 0, showing that the maximal radius
of a neighborhood of 
 does not become too small. There is some l1 such that if the
length of 
 is less than l1 then the one-parameter family of cone-manifolds can be
defined for all t 2 Œ0; .2�/2�, and the estimateˇ̌̌̌

du

dt

ˇ̌̌̌
� 4

can be applied for all t . Recall that u.t/! L2 as t ! 0 where L2 is the square of
the normalized length of ˇ in �M , and u..2�/2/D 2�=l.
 / when t D .2�/2 . From
this, one can see that given any K , there exists some l0 such that if l.
 / < l0 then
L2 >K2 .

5 Constructing a local model of the deformation space

Let S be a closed surface of genus at least two, set N D S � I , and define the paring
locus P �@N to be a collection of annuli forming a pants decomposition of S�f1g. We
will define a space A and show that A locally models a dense subset of the deformation
space AH.N /. We do this by constructing a map ˆW A ! MP.N / [MP.N;P /,
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and showing that there is some open set U � A, a point � in MP.N;P /, and a
neighborhood V of � in MP.N /[MP.N;P / such that ˆjU W U ! V is a homeo-
morphism. The definition of ˆ and the proof that it is continuous is in Section 5.5.
Then, in Section 5.6 and Section 5.7, we show that ˆ is a local homeomorphism to
MP.N /[MP.N;P /� AH.N /. In order to find a point where MP.N /[MP.N;P /
is not locally connected, we must first show there exists such a point in A.

We begin by studying lower dimensional analogues to A. Let S1;1 and S0;4 denote
the punctured torus and four-punctured sphere respectively. In Section 5.1, we define
spaces A1;1 and A0;4 which, by Bromberg’s results [20], locally model the deformation
spaces AH.S1;1�I; @S1;1�I/ and AH.S0;4�I; @S0;4�I/ respectively. We define A
in Section 5.2 similarly, and relate A to the lower dimensional versions by showing
there exists a continuous surjection …W A ! A1;1 in Section 5.3. We use this in
Section 5.4, along with the fact that A1;1 is not locally connected [20], to show that
A is not locally connected. In fact, in Section 5.4, we find a point of A with the
property that any sufficiently small neighborhood of this point contains infinitely many
components that are bounded apart from each other. In Section 6, we will use this
description of the components of a neighborhood U �A and the filling theorem, which
is used in the definition of ˆ, to show that there is a point �0 2MP.N;P / such that
for any sufficiently small neighborhood �0 2 V �MP.N /[MP.N;P /, the closure
of V has infinitely many components. Along with the Density Theorem, this will be
used to show that AH.N / is not locally connected.

5.1 The punctured torus and four-punctured sphere

Define N1;1 D S1;1 � I and P1;1 D @S1;1 � I . Let P 0
1;1

be the union of P1;1 with a
nonperipheral annulus in S1;1�f1g about a curve b�f1g (see Figure 2). Let yN1;1 be
the manifold obtained by removing an open tubular neighborhood of b�f1

2
g from N1;1 ,

and let yP1;1 be the union of P1;1 with the toroidal boundary component of yN1;1 .

S1;1 S0;4

b

a

b

a

c

Figure 2: Orient the curves a; b on S1;1 and identify a presentation
�1.S1;1/Dha; bi . Similarly, orient a; b; c on S0;4 and identify a presentation
�1.S0;4/D ha; b; ci .

Recall from Section 2 that the components of MP.N1;1;P
0
1;1
/ are in one-to-one

correspondence with the marked pared homeomorphism types of manifolds pared
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homotopy equivalent to .N1;1;P
0
1;1
/. Fix an orientation on N1;1 and let xN1;1 denote

N1;1 with the opposite orientation. Then there are two components of MP.N1;1;P
0
1;1
/

corresponding to F�1.Œ.N1;1;P
0
1;1
/; id�/ and F�1.Œ. xN1;1;P

0
1;1
/; id�/. We denote the

former by MP0.N1;1;P
0
1;1
/.

Given any z 2C , one can define a representation �z W �1.N1;1/! PSL.2;C/ by

�z.a/D

�
iz i

i 0

�
; �z.b/D

�
1 2

0 1

�
:

For any � 2MP.N1;1;P
0
1;1
/ there is a unique z such that �z is in the conjugacy class

of � (see [43, Section 6.3] and [37]). This defines an embedding of MP.N1;1;P
0
1;1
/

into C . Let M denote the image of this embedding. That is,

MD fz 2C W �z 2MP.N1;1;P
0
1;1/g:

One component of this is called the Maskit slice, MC , and denotes the set of all z 2C
such that �z 2MP0.N1;1;P

0
1;1
/. The following lemma, due to Keen and Series [37]

and Wright [74], summarizes the basic properties of the Maskit slice we will need (see
also [20, Proposition 4.4]).

Lemma 5.1 The set M has two components: one component, MC , is contained in
the upper half plane. Its boundary lies in the horizontal strip fz j 1 � Im.z/ � 2g but
is not a horizontal line. The other component, M� , is the mirror image in the sense
that z 2M˙ if and only if �z 2M� . Also, the Maskit slice is invariant under the
horizontal translation z 7! zC 2.

Remark We are following the Keen–Series convention by defining MC and M� to
be open sets, whereas Bromberg uses M˙ to denote the closures of these sets in [20,
Section 4]. The set MC is also known as the Maskit embedding of the Teichmüller
space of punctured tori.

Given w 2C and a conjugacy class of representations � 2MP0.N1;1;P
0
1;1
/, one can

define a representation �z;w of �1. yN1;1/D ha; b; c j Œb; c�D 1i in the following way.
There is a unique z 2MC such that the representation �z represents the conjugacy
class � . Define

�z;w.a/D �z.a/; �z;w.b/D �z.b/; �z;w.c/D

�
1 w

0 1

�
:

Note that �z;w is an actual representation of �1. yN1;1/, but we will also use �z;w to
refer to the conjugacy class.
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Define A1;1 to be

A1;1 D
˚
.�; w/ 2MP0.N1;1;P

0
1;1/�

yC W w D1; or

�z;w 2MP. yN1;1; yP1;1/ and Im.w/ > 0
	
:

Note that this is what Bromberg calls VA in [20].

One defines A0;4 similarly. Let N0;4DS0;4�I , let P0;4D @S0;4�I , and define P 0
0;4

to be the union of P0;4 with a nonperipheral annulus in S0;4 � f1g whose core curve
is ab � f1g (see Figure 2). Let yN0;4 be the manifold obtained by removing an open
tubular neighborhood of ab�f1

2
g from N0;4 , and define yP0;4 to be the union of P0;4

with the toroidal boundary component of yN0;4 .

Given any � 2MP.N0;4;P
0
0;4
/, there is a unique z 2C such that the representation

�z W �1.N0;4/! PSL.2;C/ defined by

�z.a/D

�
�3 2

�2 1

�
; �z.b/D

�
1 0

2 1

�
; �z.c/D

�
�1C 2z �2z2

2 �1� 2z

�
represents the conjugacy class of � [43, Section 6.1]. Note that for any z , one can
check that

�z.ab/D

�
1 2

0 1

�
:

The Maskit slice for S0;4 , denoted MC

0;4
, is the set of all z 2 C such that �z 2

MP0.N0;4;P
0
0;4
/, and its mirror image in the lower half plane will be denoted by

M�
0;4

. Again, we let M0;4 DMC

0;4
[M�

0;4
. Kra shows that z 2M0;4 if and only if

2z 2MC [43, page 558].

Given w 2C and a conjugacy class of representations � 2MP0.N0;4;P
0
0;4
/, one can

define a representation �z;w of �1. yN0;4/D ha; b; c; d j Œab; d �D 1i in the following
way. There is a unique z 2MC

0;4
such that the representation �z represents the

conjugacy class � . Define

�z;w.a/D �z.a/; �z;w.b/D �z.b/; �z;w.c/D �z.c/; �z;w.d/D

�
1 w

0 1

�
:

Define A0;4 to be

A0;4 D
˚
.�; w/ 2MP0.N0;4;P

0
0;4/�

yC W w D1; or
�z;w 2MP. yN0;4; yP0;4/ and Im.w/ > 0

	
:

Given � 2MP0.N1;1;P
0
1;1
/ and w 2C , Bromberg characterizes when .�; w/ 2A1;1 .
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Lemma 5.2 (i) (Bromberg [20]) Let �z 2 MP0.N1;1;P
0
1;1
/ and w 2 C with

Im.w/ > 0. Then �z;w 2MP. yN1;1; yP1;1/ if and only if there exists an integer n

such that z� nw 2MC and z� .nC 1/w 2M� .

(ii) Let �z2MP0.N0;4;P
0
0;4
/and w2C with Im.w/>0. Then �z;w2MP. yN0;4; yP0;4/

if and only if there exists an integer n such that z � nw 2 MC

0;4
and

z� .nC 1/w 2M�
0;4

.

Remark Part (i) is [20, Proposition 4.7]. The proof of (ii) is nearly identical to that
of (i), and we refer the reader to [47, Lemma 5.1] for the necessary adaptations.

Although in the definitions of A1;1 and A0;4 we only require Im.w/> 0, the following
lemma allows us to give a positive lower bound. This will be used to obtain Corollary 5.6
which is used in the proof of Lemma 5.13.

Lemma 5.3 If .�; w/ 2 A1;1 , then w D 1 or Im.w/ > 2. If .�; w/ 2 A0;4 then
w D1 or Im.w/ > 1.

Proof If .�; w/ 2A1;1 , then there is some z such that the conjugacy class of �z is � .
If w ¤1, then by Lemma 5.2(i) there is some integer n such that z�nw 2MC and
z� .nC 1/w 2M� . Thus Im.w/ is at least as large as the vertical distance between
the components of M. Wright shows that if Im.z/� 1 then z …MC [74] (see also
[43, page 534, 558] and the comments after [37, Proposition 2.6]). Since � 2M� if
and only if �� 2MC , the distance between these two components of the Maskit slice
is at least 2. It follows that if .�; w/ 2A1;1 and w ¤1 then Im.w/ > 2.

The four-punctured sphere case is similar. Suppose .�; w/ 2A0;4 and w ¤1. Let z

be such that the conjugacy class of �z is � . By Lemma 5.2(ii), Im.w/ is at least the
vertical distance between the two components of M0;4 . Since � 2M0;4 if and only if
2� 2M [43, page 558], we must have Im.w/ > 1.

5.2 The model space A

For surfaces with higher dimensional Teichmüller spaces, the construction of A takes
more bookkeeping but is otherwise similar to A1;1 and A0;4 .

Recall N D S � I . Let f
ig
d
iD1

be a pants decomposition of S (recall from Section 1
that we will abbreviate d D 3g� 3). Although fixing any pants decomposition would
be acceptable, we will make some choices that make it more convenient to apply results
of [20]. We will choose 
2 to be a curve that separates S into a punctured torus
and a punctured genus g � 1 surface, and let 
1 be a curve in the punctured torus
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1

2

S

Figure 3: Part of the pants decomposition that we will fix throughout the rest
of the argument

component of S � 
2 . Also, fix an orientation on each 
i to distinguish 
i from its
inverse in �1.S/.

For each i , define a homeomorphism Gi from either S1;1 or S0;4 to the component of
.S �

S
j¤i 
j / containing 
i . Moreover, using the markings of S1;1 and S0;4 from

Figure 2, define Gi on S1;1 so that .Gi/�.b/ D 
i and define Gi on S0;4 so that
.Gi/�.ab/D 
i .

Let P be a collection of d disjoint annuli in S � f1g such that 
i � f1g is core
curve of the i –th annulus of P (see Figure 3). Then MP.N;P / has 2d components
corresponding to whether 
i is parabolic to one side or the other. For two of these
components, all of the parabolics will be on the same side of N . In other words, for
any � in one of these components, M� will have exactly one closed component of its
conformal boundary homeomorphic to S . Using the notation from Section 2, these
two components can be identified with F�1Œ.N;P /; id� and F�1Œ. xN ;P /; id� where xN
denotes N with the opposite orientation. Label the former component by MP0.N;P /.
These will be the marked hyperbolic manifolds with a rank–1 cusp associated to each 
i

such that the cusps all occur to the “top” of the manifold.

We now elaborate on what we mean by the “top” of a hyperbolic manifold. This
discussion will be useful in distinguishing whether or not a point � 2 MP.N;P /
lies in MP0.N;P /. Given � 2MP.N;P /, there exists an embedding f W S !M� D

H3=�.�1.N // such that f�D� . The orientation on S induces an orientation on f .S/.
This orientation, together with a normal direction to f .S/, defines an orientation on M� ,
and for only one of the two normal directions will this orientation be compatible with the
orientation induced on M� as a quotient of H3 . This distinguishes a top side of f .S/,
and we say the top of the manifold M� with respect to f .S/ is the component of
M��f .S/ that lies to the top side of f .S/. If �2MP.N;P /, then there are d rank–1

cusps associated to each of the components of P . If each of these cusps lies in the top
of M��f .S/, then we say � 2MP0.N;P /. Since any two embeddings f W S!M�

such that f� D � are isotopic [73], this notion is independent of the map f . Likewise,
if � 2 MP.N;P / and X is a conformal boundary component of M� , then we can
distinguish whether X lies on the top or bottom side of M� .
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Let yN be obtained by drilling a set of d curves out of N . Specifically, let 
i � f1=2g

be a collection of d curves in S � f1=2g. Let Ui be an open collar neighborhood of

i � f1=2g such that the elements of the collection

S
Ui are pairwise disjoint. Let

yN DN �

d[
iD1

Ui :

Define yP D
S
@Ui . Note that �1. yN / is generated by �1.N / and d new elements ˇi

corresponding to meridians of @Ui . Since the meridian of @Ui commutes with any
longitude of @Ui , there are new relations. We will use 
i to denote both a curve and
the element of �1.N / corresponding to that curve. Then Œˇi ; 
i �D 1. We write

�1. yN /D h�1.N /; ˇ1; : : : ; ˇd j Œˇi ; 
i �D 1i

with the understanding that �1.N / has generators besides 
i and some of its own
relations.

Given � 2 MP0.N;P / and w D .w1; : : : ; wd / 2 Cd , we describe a process for
constructing a representation �wW �1. yN /! PSL.2;C/. We can find a representative
in the conjugacy class determined by � (which by an abuse of notation, we still refer
to as � ) such that

�.
1/D

�
1 2

0 1

�
;

�.
2/D

�
�3 �2

2 1

�
:

We choose these matrices to parallel the construction of A1;1 in the previous section.
Recall that we fixed some homeomorphism G1 from S1;1 to the subsurface of S

bounded by 
2 that contains 
1 . There is a unique z 2MC such that � ı .G1/� is
conjugate to �z . Note that for any z ,

�z.b/D

�
1 2

0 1

�
D�ı.G1/�.b/; �z.b

�1a�1ba/D

�
�3 �2

2 1

�
D�ı.G1/�.b

�1a�1ba/:

Thus, specifying � on 
1 and 
2 determines a well-defined representation in the
conjugacy class of � that restricts to �z for some z on G1.S1;1/.

We define �w1
W �1.N �U1/! PSL.2;C/ by �w1

.˛/D �.˛/ for all ˛ 2 �1.N / and

�w1
.ˇ1/D

�
1 w1

0 1

�
:
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We then inductively define �w1;:::;wi
W �1.N �

Si
jD1 Uj /! PSL.2;C/ by conjugating

�w1;:::;wi�1
so that

�w1;:::;wi�1
.
i/D

�
1 2

0 1

�
(there is some ambiguity here that will be clarified below). Then define �w1;:::;wi

by
�w1;:::;wi

.˛/D �w1;:::;wi�1
.˛/ for all ˛ 2 �1.N �

Si�1
jD1 Uj /, and

�w1;:::;wi
.ˇi/D

�
1 wi

0 1

�
:

As we indicated above, specifying that we should conjugate �w1;:::;wi�1
so that 
i is

sent to �
1 2

0 1

�
does not determine a unique representation, but we now show how a unique representa-
tion can be specified. Each curve 
i lies in either a four-punctured sphere or punctured
torus component of

S �
[
j¤i


j

that we have marked by a homeomorphism Gi from S1;1 or S0;4 . If 
i lies in a
punctured-torus component bounded by some curve 
j then we conjugate �w1;:::;wi�1

such that

�w1;:::;wi�1
ı.Gi/�.b/D

�
1 2

0 1

�
and �w1;:::;wi�1

ı.Gi/�.b
�1a�1ba/D

�
�3 �2

2 1

�
:

Since Gi was chosen so that .Gi/�.b/D 
i , this ensures

�w1;:::;wi�1
.
i/D

�
1 2

0 1

�
;

and the condition that

�w1;:::;wi�1
.
j /D

�
�3 �2

2 1

�
specifies �w1;:::;wi�1

uniquely.

If 
i lies in a four-punctured sphere component, then we conjugate �w1;:::;wi�1
so that

�w1;:::;wi�1
ı .Gi/�.a/D

�
�3 2

�2 1

�
and �w1;:::;wi�1

ı .Gi/�.b/D

�
1 0

2 1

�
:

It follows that

�w1;:::;wi�1
ı .Gi/�.ab/D

�
1 2

0 1

�
:
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After d steps, we get a well-defined representation �w1;:::;wd
which we also denote by

�wW �1. yN /! PSL.2;C/. By construction, for each i there exists some representation
in the conjugacy class of �w such that the generators 
i ; ˇi of �1.@Ui/ are sent,
respectively, to �

1 2

0 1

�
and

�
1 wi

0 1

�
:

Given � 2 MP0.N;P /, not every choice of w D .w1; : : : ; wd / 2 Cd will result in
�w 2MP. yN ; yP /. Thus we are led to the following definition:

AD
˚
.�; w/ 2MP0.N;P /� yC

d
W w D .1; : : : ;1/; or

Im.wi/ > 0 and �w 2MP. yN ; yP /
	
:

5.3 Projections of A to A1;1 and A0;4

Now that we have defined the model space A, we want to use the fact that A1;1 is
not locally connected [20] to show that A is not locally connected. In this section, we
show there is a continuous surjection …W A!A1;1 , and in the sequel we explain how
this can be used to relate the local connectivity of A and A1;1 .

By our choice of pants decomposition (see Figure 3), the annulus 
2 � Œ0; 1� cuts N

into two pieces, one of which is homeomorphic to N1;1 (and so we will refer to
this component as N1;1 ). Given � W �1.N /! PSL.2;C/, the restriction of � to this
punctured torus defines a representation � j�1.N1;1/W �1.N1;1/! PSL.2;C/.

Lemma 5.4 If � 2MP0.N;P /, then � j�1.N1;1/ 2MP0.N1;1;P
0
1;1
/.

Proof Thurston showed that finitely generated subgroups of geometrically finite
Kleinian groups with nonempty domain of discontinuity are geometrically finite [62,
Proposition 7.1]. Since P 0

1;1
D P \N1;1 , if � is minimally parabolic with respect

to P , then � j�1.N1;1/ is minimally parabolic with respect to P 0
1;1

. Thus, � j�1.N1;1/ 2

MP.N1;1;P
0
1;1
/.

Let f W S ! H3=�.�1.N // be any embedding that satisfies f� D � . Since � 2
MP0.N;P /, all of the cusps lie to the top of the image of this embedding. The
manifold H3=� j�1.N1;1/.�1.N1;1// covers H3=�.�1.N //, and the restriction of f
to the punctured torus S1;1 containing 
1 lifts to an embedding f jS1;1

W S1;1 !

H3=� j�1.N1;1/.�1.N1;1// such that f� D � j�1.N1;1/ . The cusp corresponding to 
1

must lie above this embedding; hence, � j�1.N1;1/ 2MP0.N1;1;P
0
1;1
/.

Lemma 5.4 allows us to define the projection map in the following lemma.
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Lemma 5.5 The map …W A!MP0.N1;1;P
0
1;1
/� yC defined by

….�;w1; : : : ; wd /D .� j�1.N1;1/; w1/

is a continuous map such that ….A/DA1;1 .

Proof We first claim ….A/ � A1;1 . Recall the definitions of A and A1;1 . If a
point .�; w1; : : : ; wd / 2A satisfies .w1; : : : ; wd /¤ .1; : : : ;1/ then the extension
�w1;:::;wd

2 MP. yN ; yP /. There is a �1 –injective pared embedding � W yN1;1 !
yN ,

such that the representation �w1;:::;wd
ı ��W �1. yN1;1/! PSL.2;C/ is conjugate to the

extension of � j�1.N1;1/ by w1 . So this extended representation is discrete, faithful,
geometrically finite, and minimally parabolic with respect to yP1;1 . Note that we are
again using that finitely generated subgroups of geometrically finite groups are geomet-
rically finite, provided the domain of discontinuity is nonempty. Thus the extension of
� j�1.N1;1/ by w1 lies in MP. yN1;1; yP1;1/, and so by the definition of A1;1 , we have
….�;w1; : : : ; wd /D .� j�1.N1;1/; w1/ 2A1;1 . If .w1; : : : ; wd /D .1; : : : ;1/ then it
follows immediately from Lemma 5.4 and the definition of … that ….�;1; : : : ;1/D
.� j�1.N1;1/;1/ 2A1;1 .

We now use Klein–Maskit combination to show that A1;1 � ….A/. We begin by
defining some new pared manifolds that arise as pieces of N and yN (see Figure 4).
The annulus 
2 � Œ0; 1� divides N into two pieces. Let N1;1 denote the closure
of the piece containing 
1 and let N3 denote the closure of the remaining piece
containing 
3; : : : ; 
d . Let yN1;1 D N1;1 � U1 and yN3 D N3 �

Sd
iD3 Ui . Define

yP1;1 D @U1[ .
2 � Œ0; 1�/ and yP3 D .
Sd

iD3 @Ui/[ .
2 � Œ0; 1�/.

Next define N2DN �
S

i¤2 Ui and set P2 to be the union of the d�1 tori
S

i¤2 @Ui

with the annulus in P � S �f1g whose core curve is homotopic to 
2 . We then obtain
. yN ; yP / from .N2;P2/ by drilling out 
2 . Again, refer to Figure 4.

For any .�; w/ 2 A1;1 , w ¤ 1, we have �w 2 MP. yN1;1; yP1;1/. We can choose a
representation y�1W �1. yN1;1/! PSL.2;C/ in the conjugacy class �w such that

y�1.
2/D

�
1 2

0 1

�
:

Since �w is an extension of � , some representation �1W �1.N1;1/! y�1.�1. yN1;1//

represents the conjugacy class � 2MP0.N1;1;P
0
1;1
/. Note that the top and bottom of

H3=�1.�1.N1;1// are well-defined: the conformal boundary component on the top of
H3=�1.�1.N1;1// is a thrice-punctured sphere, and the bottom is a punctured torus.
For any y�1 chosen as above, there is some C1 such that BC D fz 2C W Im.z/ > C1g

and B� D fz 2 C W Im.z/ < �C1g are precisely invariant for the subgroup hy�1.
2/i
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. yN1;1; yP1;1/

. yN3; yP3/ .N2;P2/

.N1;1;P
0
1;1/

.N;P /

. yN ; yP /

.N1;1;P1;1/

Figure 4: Some of the pared manifolds we are using (illustrated in genus 3).
The shaded regions indicate the paring locus.

in y�1.�1. yN1;1//. Without loss of generality, we can assume that y�1 has been chosen
such that BC ��.y�1/��.�1/ projects to the top surface of �.�1/=�1.�1. yN1;1//.

Next, let �M3 be a geometrically finite hyperbolic 3–manifold homeomorphic to the
interior of yN3 whose only cusps are those associated to yP3 . Let h3 be an orienta-
tion preserving pared homeomorphism from . yN3; yP3/ to the relative compact core
of �M3 . The boundary @ yN3 �

yP3 has a top and bottom component, both of which
are homeomorphic to a punctured genus g � 1 surface Sg�1;1 . We will call these
Sg�1;1;top and Sg�1;1;bot . The homeomorphism h3 distinguishes a top and bottom
component of the relative compact core of �M3 and thus distinguishes a top and bottom
of the conformal boundary of �M3 . Define a representation y�3W �1. yN3/! PSL.2;C/
conjugate to .h3/� such that

(a) y�3.
2/D

�
1 2

0 1

�
,

(b) B3 D fz 2 C W Im.z/ > �C1 � 1g is a precisely invariant set for the subgroup
hy�3.
2/i in y�3.�1. yN3//,

(c) the component of �.y�3/ containing B3 projects to the bottom conformal bound-
ary component of �M3 .

Geometry & Topology, Volume 16 (2012)



Deformation spaces of Kleinian surface groups are not locally connected 1295

Let �3D y�3j�1.Sg�1;1;bot/ . That is, �3 is the restriction of y�3 to the natural inclusion of
the fundamental group of the bottom surface into �1. yN3/. Thus, H3=�3.�1.Sg�1;1//

has a rank–1 cusp associated to each of the curves 
2; : : : ; 
d . The cusp corresponding
to 
2 corresponds to the boundary of Sg�1;1 , and the cusps corresponding to 
3; : : : ; 
d

are on the top since the representation �3 was constructed from the inclusion of the
bottom surface into �M3 . Hence, �3 2MP0.Sg�1;1 � I; .Sg�1;1 � f1g/\P /.

Now we can apply type I Klein–Maskit combination along the subgroup hy�3.
2/i D

hy�1.
2/i. See Section 2.1 for references and notation. Observe that �1.N2/ Š

�1. yN1;1/�h
2i
�1. yN3/. Define a representation �2W �1.N2/ ! PSL.2;C/ by set-

ting �2.x/ D y�3.x/ for all x 2 �1. yN3/ and �2.x/ D y�1.x/ for all x 2 �1. yN1;1/.
By construction, the representation �2 is discrete, faithful, geometrically finite, and
minimally parabolic with respect to the paring locus P2 .

We can also apply Klein–Maskit combination to the subgroups �1.�1.S1;1// and
�3.�1.Sg�1;1//. Since �1.S/ Š �1.S1;1/ �h
2i

�1.Sg�1;1/, we can define a rep-
resentation � W �1.S/ ! PSL.2;C/ by �.x/ D �1.x/ for all x 2 �1.S1;1/ and
�.x/ D �3.x/ for x 2 �1.Sg�1;1/. This defines a discrete, faithful, geometrically
finite representation whose parabolics consist precisely of the curves 
i in S . Since
�1 2MP0.N1;1;P

0
1;1
/ and �3 2MP0.Sg�1;1 � I; .Sg�1;1 � f1g/\P /, the cusps cor-

responding to 
1; 
3; : : : ; 
d are in the top of H3=�.�1.S//. Moreover, since B�

and B3 cover the bottoms of their respective manifolds, the cusp associated to 
2 is
also in the top. It follows that � 2MP0.N;P /.

To summarize, we now have a representation � 2MP0.N;P / such that � j�1.N1;1/D�1

is conjugate to � . The next step is to find w1; : : : ; wd with ….�;w1; : : : ; wd /D .�; w/.

Since �1. yN / is generated by �1.N2/ and the meridian of the second torus boundary
component @U2 , we can extend the representation �2 to a representation y�W �1. yN /!

PSL.2;C/ by defining y� to equal �2 on �1.N2/ and sending the additional generator to�
1 w2

0 1

�
for w2 2 C . There is some constant C2 such that if Im.w2/ > C2 , then we can
apply type II Klein–Maskit combination (see Section 2.1). In this case, y� defines a
geometrically finite representation of �1. yN / which is minimally parabolic with respect
to . yN ; yP /.

On each torus boundary component of yN there is a well-defined meridian. Up to
conjugation (that depends on i ), we can assume y� sends 
i to�

1 2

0 1

�
:
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In this case, there will be some wi such that the meridian of @Ui is sent to�
1 wi

0 1

�
:

With this definition of wi we now have a point .�; w1; : : : ; wd / 2A.

Next, we check that w1 D w and therefore ….�;w1; : : : ; wd /D .�; w/. This follows
by construction. The extension of � by .w1; : : : ; wd / is conjugate to y� . The restriction
of y� to �1. yN1;1/ is conjugate to �w (which is conjugate to y�1 ). Thus w1 D w .

Finally, if .�;1/ 2 A1;1 , then we can pick any w0 ¤ 1 such that .�; w0/ 2 A1;1 .
Following the same construction, we can find a point .�; w0; w2; : : : ; wd / 2 A such
that � j�1.N1;1/ is conjugate to � . Then the point .�;1; : : : ;1/ is also in A and
satisfies ….�;1; : : : ;1/D .�;1/.

Recall that each 
i was contained in a four-punctured sphere or punctured torus
component of S �

S
j¤i 
j . Given � 2MP0.N;P /, one can define …i similarly to

…D…1 . The first coordinate is obtained by restricting � to the i –th such subsurface
and the second coordinate is defined by projecting .w1; : : : ; wd / 7! wi . Lemma 5.5
generalizes to show that …i.A/DA1;1 if 
i lives in a punctured torus or …i.A/D
A0;4 if 
i lives in a four-punctured sphere. In fact, for i > 1, we will only need
the first paragraph of the proof of this Lemma which shows that …i.A/ � A1;1 or
…i.A/�A0;4 .

We now get the following corollary to Lemma 5.3 and Lemma 5.5.

Corollary 5.6 For all .�; w1; : : : ; wd / 2 A with .w1; : : : ; wd / ¤ .1; : : : ;1/, the
imaginary part of wi is bounded below by

Im.wi/ > 1

for all i .

5.4 A is not locally connected

In [20, Lemma 4.14], Bromberg shows that there exists a point .�z;1/2A1;1 at which
A1;1 fails to be locally connected. We will use Lemma 5.5 to extend this failure of
local connectivity to A. Although our statement of Lemma 5.7 differs from Bromberg’s
statement in [20], his proof implies this result (see also [47, Lemma 5.6] for a detailed
proof).
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Lemma 5.7 (Bromberg [20]) There exists a point z0 2MC , a closed rectangle R,
and constants ı; c > 0 such that if z lies in the ı–neighborhood, O , of z0 in C then
z 2MC and the set

Az D fw 2 yC W .�z; w/ 2A1;1g

satisfies

(i) Az \ int.R/¤∅,

(ii) The distance between Az and @R is at least c .

Moreover, we can choose R such that its sides are parallel to the axes and its width
is < 2.

Let W be an open neighborhood of �z0
in MP0.N1;1;P

0
1;1
/ such that for all �z 2

SW ,
z 2O . In other words, if � WMC!MP0.N1;1;P

0
1;1
/ is the homeomorphism z 7! �z ,

then W is a neighborhood of �z0
such that ��1. SW /�O .

By Lemma 5.7, Az0
\ int.R/ ¤ ∅, so let u1 2 int.R/ such that .�z0

;u1/ 2 A1;1 .
Lemma 5.5 shows that …W A!A1;1 is a surjection, so there is some .�0;u1; : : : ;ud /2

…�1.�z0
;u1/. Note that since .�0;u1; : : : ;ud /2A, we have �0 2MP0.N;P /. Thus,

by the definition of A, we also have .�0;1; : : : ;1/ 2A.

We now claim that .�0;u1 C 2n; : : : ;ud C 2n/ 2 A for all n. The definition of
.�0;u1; : : : ;ud / belonging to the set A is that the extension of �0 by .u1; : : : ;ud / to a
representation of yN lies in MP. yN ; yP /. The extension of �0 by .u1C2n; : : : ;udC2n/

(as in Section 5.2) has the same image in PSL.2;C/ as the extension of �0 by
.u1; : : : ;ud / since the two representations differ by precomposition by an automor-
phism of �1. yN /. The automorphism is the one induced by Dehn twists in the collection
of annuli f.
i � Œ

1
2
; 1�/\ yN g in yN whose core curves are homotopic to the collection

of 
i curves, and run from the torus boundary components to one of nontorus boundary
components. Hence, .�0;u1C 2n; : : : ;ud C 2n/ 2A for all n.

Let U be a neighborhood of .�0;1; : : : ;1/ in A such that for all .�; w1; : : : ; wd /

in U , the first coordinate of ….�;w1; : : : ; wd / lies in W . In other words, for all
.�; w1; : : : ; wd / 2 U , � j�1.N1;1/ 2W .

For each n, let Cn be the collection of components of U defined by

Cn D U \…�1.W � .RC 2n///:

Equivalently,
Cn D f.�; w1; : : : ; wd / 2 U W w1 2 .RC 2n/g:

Here, RC 2n denotes the box R translated by 2n.
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We have already produced a sequence of points

.�0;u1C 2n; : : : ;ud C 2n/ 2…�1.W � .RC 2n//

converging to .�0;1; : : : ;1/; hence, Cn is nonempty for all but finitely many n.
Now we claim that Cn and U �Cn are uniformly bounded apart from each other.

Lemma 5.8 There exists some c > 0 such that for all n, if .�; w1; : : : ; wd / 2 Cn and
.� 0; w0

1
; : : : ; w0

d
/ 2 U �Cn then

jw1�w
0
1j> c:

Proof For any .�; w1; : : : ; wd / 2 xU , we have � j�1.N1;1/ 2
SW . Since ��1. SW /�O ,

if we let z D �.� j�1.N1;1//, then Lemma 5.7 implies that Az and @R are at least
a distance c apart. It is a direct consequence of the symmetry in the Maskit slice
(Lemma 5.1) and Lemma 5.2 that the set Az is invariant under the translation w 7!wC2.
Thus, points in Az \ .RC2n/ are bounded away from points in Az \ .C� .RC2n//

by a distance of at least 2c > c .

Since Cn is nonempty for all but finitely many n and the sets Cn accumulate to
.�0;1; : : : ;1/, Lemma 5.8 implies that any neighborhood U 0 � U containing
.�0;1; : : : ;1/, U 0 has infinitely many components. Thus we have shown:

Proposition 5.9 There is a point �02MP0.N;P / such that A is not locally connected
at .�0;1; : : : ;1/.

Remark We do not need the closures of Cn and its complement to be disjoint to
conclude that A is not locally connected, but we will need the full strength of Lemma 5.8
in the following section.

5.5 Definition of ˆ

Now that we have defined A and shown that it fails to be locally connected at some point
.�0;1; : : : ;1/, we want to construct a map ˆ from a subset of A containing this
point into AH.S � I/. In this section, we show that ˆ is well-defined on some subset
of A and in the subsequent sections, we will show that ˆ is a local homeomorphism
from A to MP.N /[MP0.N;P /� AH.N / at the point .�0;1; : : : ;1/.

As in [20, Section 3], we construct the map ˆ in two steps. Heuristically, the
points in A satisfying .w1; : : : ; wd /D .1; : : : ;1/ parameterize MP0.N;P /, while
the points .�; w1; : : : ; wd / 2 A parameterize a subset of MP. yN ; yP /. For points
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.�;1; : : : ;1/ 2A, the representation � 2MP0.N;P /� AH.N /, so we will define
ˆ.�;1; : : : ;1/ D � . For all other points .�; w1; : : : ; wd / 2 A, the representation
�.w1;:::;wd / 2MP. yN ; yP / and so H3=�.w1;:::;wd /.�1. yN // is a marked hyperbolic man-
ifold with d rank–2 cusps. For these points, we will define ˆ.�;w1; : : : ; wd / to be
the marked hyperbolic manifold in MP.N / obtained by filling in these cusps. We use
the filling theorem to show that ˆ is well-defined on some subset of A and that ˆ is
continuous.

Let .�; w/ 2 A such that w ¤ .1; : : : ;1/. By the definition of A we have that
�w 2MP. yN ; yP /. Let �M�;w DH3=�w.�1. yN // be the corresponding geometrically
finite manifold with d cusps.

Recall that �3 denotes the Margulis constant in dimension 3. By Corollary 4.13, there
is a constant K such that if

jwi jp
2 Im.wi/

>K

for all i , then we can ˇi –fill the i –th cusp (i D 1; : : : ; d ) to get a hyperbolic mani-
fold M�;w with the same conformal boundary as �M�;w , and there exists a bilipschitz
diffeomorphism

��;wW �M�;w �T�3
.T /!M�;w �T�3

.
 /:

Here T denotes the union of the cusps Ti and 
 denotes the union of the curves 
i .

Define

AK D

�
.�; w/ 2A W w D .1; : : : ;1/ or

jwi jp
2 Im.wi/

>K for all i

�
:

Recall that � 2 MP0.N;P / can be identified with a marked hyperbolic manifold
.M� ; f� /. Without loss of generality, we can assume that f� is a smooth immersion
and that f� .N / does not intersect the �3 –parabolic thin part of M� since f� is
only defined up to homotopy. As �.�1.N // is a subgroup of �w.�1. yN // we have a
covering map

��;wW M� !
�M�;w:

Now define
f�;w D ��;w ı��;w ıf� :

Since we have assumed f� .N / avoids the �3 –parabolic thin part of M� , ��;wıf� .N /

is contained in �M�;w�T�3
.T /. Thus, postcomposition by the filling map ��;w makes

sense here.

We next claim (as in [20, Lemma 3.6]) that .f�;w/� is an isomorphism from �1.N / to
�1.M�;w/ and therefore .M�;w; f�;w/ 2 AH.N /. First observe that f� is a homotopy
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equivalence so we only need to show that

.��;w/� ı .��;w/�W �1.M� /! �1.M�;w/

is an isomorphism. Recall �1. yN / D h�1.N /; ˇ1; : : : ; ˇd j Œˇi ; 
i �D 1i. By the
definition of the covering map ��;w and the definition of the representation �w ,

�1. �M�;w/D
˝
.��;w/�.�1.M� //; �w.ˇ1/; : : : ; �w.ˇd / j Œ�w.ˇi/; �w.
i/�D 1

˛
:

Now the filling map .��;w/� kills the meridians in �M�;w which were precisely the
group elements �w.ˇi/. Thus

.��;w/�.�1.M� //\Ker..��;w/�/D f1g

and therefore .��;w/�ı.��;w/� is an isomorphism from �1.M� / onto its image, which
is �1.M�;w/.

Moreover, as the filling preserves the conformal boundary components of �M�;w and
the filled manifold M�;w has no cusps, .f�;w/� is a minimally parabolic, geometrically
finite representation in AH.N /.

So we define

ˆ.�;w/D

�
.f�;w/� if w ¤ .1; : : : ;1/;
� if w D .1; : : : ;1/:

Therefore we have defined ˆ on some subset AK � A that satisfies ˆ.AK / �

MP.N /[MP0.N;P /.

Lemma 5.10 The map ˆ is continuous on AK .

Proof Let .�0; w0/ be a point in AK with w0 ¤ .1; : : : ;1/. Let B be the com-
ponent of .AK �f.�; w/ W w D .1; : : : ;1/g/ containing .�0; w0/. Clearly the corre-
spondence .�; w/ 7!�w is a continuous map from .AK �f.�; w/ W w D .1; : : : ;1/g/

to MP. yN ; yP /, so takes the component B into one of the components C of MP. yN ; yP /.
Recall from Section 2 that C D F�1.Œ. yNC ; yPC /; hC �/ for some Œ. yNC ; yPC /; hC � 2

A. yN ; yP /. For any point . �My�; fy�/ 2 C , the map fy� ı h�1
C

is homotopic to a pared
homeomorphism from . yNC ; yPC / to the relative compact core of �My� , and thus we
can use fy� ı h�1

C
to define a marking from @ yNC �

yPC to the conformal boundary
of �My� . The Ahlfors–Bers parameterization bABC W C ! T .@ yNC �

yPC / is defined by
sending . �My�; fy�/ to the conformal boundary of �My� marked by fy� ı h�1

C
. Similarly,

let ABW MP.N /! T .@N / be the Ahlfors–Bers parameterization of MP.N /.

For any .�; w/ 2B , we showed in the definition of ˆ that .f�;w/� is an isomorphism.
Thus the

S
hC .ˇi/–Dehn filling of . yNC ; yPC / has fundamental group isomorphic
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to �1.N /, a surface group, and therefore is homeomorphic to N [32]. Here, theS
hC .ˇi/–Dehn filling refers to the collection of filling slopes corresponding to

ˇ1; : : : ; ˇd under the homotopy equivalence hC W . yN ; yP / ! . yNC ; yPC /. This fill-
ing gives us an inclusion iC W . yNC ; yPC / ! N which defines a homeomorphism
iC W .@ yNC �

yPC /! @N . Using this homeomorphism, we can identify T .@ yNC �
yPC /

with T .@N /Š T .S/� T .S/.

With this identification of the Teichmüller spaces of .@ yNC �
yPC / and @N , it follows

that ˆ.�;w/ D AB�1
ıbABC .�w/ for any .�; w/ 2 B since the filling map ��;w

extends to a conformal map from the conformal boundary of �M�;w to the conformal
boundary of M�;w . Since the Ahlfors–Bers maps are homeomorphisms, this shows
that ˆ is continuous on the component B of .AK �f.�; w/ W w D .1; : : : ;1/g/

containing .�0; w0/. Since .�0; w0/ was arbitrary, we have that ˆ is continuous on
all of .AK �f.�; w/ W w D .1; : : : ;1/g/.

Next, we show ˆ is continuous at points where w D .1; : : : ;1/. Suppose

.�i ; w1;i ; : : : ; wd;i/! .�;1; : : : ;1/:

We claim that ˆ.�i ; w1;i ; : : : ; wd;i/! ˆ.�;1; : : : ;1/ D � . If .w1;i ; : : : ; wd;i/ D

.1; : : : ;1/ for all i , then clearly ˆ.�i ; w1;i ; : : : ; wd;i/D �i! � .

Now suppose that .w1;i ; : : : ; wd;i/ ¤ .1; : : : ;1/ for all i . Let .M� ; f� / be the
marked hyperbolic 3–manifold corresponding to � . Again, assume that f� is smooth.
Since �i ! � , there is a sequence Li ! 1 and smooth homotopy equivalences
gi W M� !M�i

such that .gi ıf� /�D �i and gi is an Li –bilipschitz local diffeomor-
phism on a compact core of M� (ie, the maps gi converge to a local isometry). If we
let f�i

D gi ı f� , then the pullback metrics on N via f�i
converge to the pullback

metrics on N via f� . See [13, page 154] for this geometric definition of algebraic
convergence (see also McMullen [58, page 43]).

Recall, by definition, ˆ.�i ; wi/D .M�;wi
; f�i ;wi

/, where f�i ;wi
D��i ;wi

ı��i ;wi
ıf�i

.
(Notation: we abbreviate the d –tuple .w1;i ; : : : ; wd;i/ by wi and use a double subscript
to refer to the j –th entry, wj ;i , of wi .)

Since for each j , wj ;i !1 as i !1, we can find a sequence Ji ! 1 such that
��i ;wi

is Ji –bilipschitz away from the �3 –neighborhood of the cusps of �M�i ;wi
. In

particular, ��i ;wi
is Ji –bilipschitz on ��i ;wi

.f�i
.N //.

It follows that the limit of the pullback metrics on N via the maps f�i ;wi
W N !M�i ;wi

is the same as the limit of the pullback metrics on N via ��i ;wi
ıf�i

since f�i ;wi
D

��i ;wi
ı��i ;wi

ıf�i
. The covering map is a local isometry so this limit is the limit of

the pullback metrics on N under f�i
. Since �i! � , the limit of the pullback metrics
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on N via f�i
is the pullback metric on N via f� . To summarize, the limit of the

pullback metrics on N via the maps f�i ;wi
W N !M�i ;wi

is the pullback metric on N

via f� W N !M� . This convergence of metrics implies that .f�i ;wi
/� converges to �

in AH.N / [13].

Remark Lemma 5.10 is essentially the same as [20, Proposition 3.7], but when there
are multiple cusps we need to use the multiple cusp version of the filling theorem
(Corollary 4.13) which requires all of the w–coordinates to go to infinity. This is the
why we have defined A to exclude points .�; w1; : : : ; wd / where some but not all of
the w–coordinates are 1.

5.6 An inverse to ˆ

We now construct a map ‰ from a subset of MP.N /[MP0.N;P / to A. For any
� 2MP0.N;P / and any sufficiently small neighborhood of � in MP.N /[MP0.N;P /,
‰ will be an inverse to ˆ.

Fix a representation �02MP0.N;P /. For � in some neighborhood of �0 , the definition
of ‰ will have two coordinates ‰.�/ D .�.�/; q.�// 2 MP0.N;P /� yC

d . We will
actually begin by defining a neighborhood V 0 of �0 such that for � 2 V 0 , �.�/ 2
AH.N;P /. We will then restrict to a smaller neighborhood V such that �.V / �
MP0.N;P / and .�.�/; q.�// 2A. Before defining this neighborhood of �0 on which
‰ is defined, we set up some notation and background.

Let H.N / denote the space of smooth, hyperbolic metrics on N with the C1–topology
(see [26, I.1.1] for the definition of a .PSL.2;C/;H3/–structure on a manifold with
boundary, and I.1.5 for a description of the space H.N / which is denoted �.N /

in [26]). If we let D.N / be the space of smooth developing maps zN !H3 with the
compact–C1 topology, then H.N / is the quotient of D.N / by PSL.2;C/ acting
by postcomposition. Note that H.N / is still infinite dimensional since we are not
identifying developing maps that differ by the lift of an isotopy. Let H W H.N /!X.N /

be the holonomy map. Theorem I.1.7.1 of [26] locally describes H.N /. See [26,
Chapter I] for more details.

Theorem 5.11 (Canary–Epstein–Green [26]) Let Nth be a thickening of N (ie, the
union of N with a collar @N � I ). Let D0W

zNth ! H3 be a fixed developing map.
A small neighborhood of D0j zN

in D.N / is homeomorphic to X � Y where X is a
small neighborhood of the obvious inclusion N �Nth in the space of locally flat em-
beddings, and Y is a neighborhood of the holonomy map H.D0/ in the representation
variety R.N /. A small neighborhood of D0 in H.N / is homeomorphic to X �Z

where Z is a small neighborhood of the conjugacy class of H.D0/ in the character
variety X.N /.
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We now let V 0 be a neighborhood of �0 2V 0�MP.N /[MP0.N;P / that satisfies the
properties (1)–(4) given below. Roughly, V 0 is a neighborhood on which we can define
a section & W V 0 � AH.N /!H.N / and such that if � 2 V 0 then the length of �.
i/ is
short in M� . The existence of such a neighborhood follows from the arguments given
in [20, Section 3.1] and Theorem 5.11, although we include justification for why we
can define V 0 with these properties after the statement of each property.

Fix a smooth embedding s�0
W N ! M�0

such that .s�0
/� D �0 . Let g�0

be the
pullback of the hyperbolic metric on N . We can choose s�0

so that the core curves of
the annuli in P (ie, the curves 
i � f1g) have length less than �3=4 in the g�0

metric.

(1) There exists a continuous section & W V 0!H.N / to the holonomy map such that
&.�0/D g�0

.

The existence is given by Theorem 5.11. For any � 2 V 0 , define g� D &.�/. We
emphasize that, by the definition of a section, H.g�/D � .

(2) For any �1; �2 2 V 0 , the identity map

.N;g�1
/

id
�! .N;g�2

/

is 2–bilipschitz.

This follows from the continuity of & and the topology on H.N /.

(3) For any � 2 V 0 , there is a locally isometric immersion s�W .N;g�/!M� where
M� D H3=�.�1.N // is equipped with the hyperbolic metric, such that .s�/� D � .
Moreover, there is some �3 > �0 > 0 such that s�.N / is contained in the �0 –thick part
of M� .

The existence of s�W N !M� with .s�/� D � is given by Theorem 5.11. We now
find �0 . There is some K such that for any point x 2 .N;g�0

/, there are loops ˛; ˇ
based at x of length less than K such that the group generated by ˛ and ˇ is not
virtually abelian. For example, one can find a point x0 and loops ˛0 and ˇ0 based at
x0 that generate a free group, and then let K be larger than the sum of the diameter of
.N;g�0

/ and the lengths of ˛0 and ˇ0 . Since for any � 2 V 0 , idW .N;g�0
/�! .N;g�/

is 2–bilipschitz by (2), at any point x 2 .N;g�/ there are loops based at x of length
less than 2K generating a free group. There exists some �3 > �0 > 0 such that for
any component T�0

of the �0 –thin part of any hyperbolic manifold M , the distance
between @T�0

and @T�3
is at least K .

Suppose s�.x/2 s�.N /\M
��0
� for some x . Then since s� is a homotopy equivalence,

there are loops based at s�.x/ that generate a free group and therefore must leave
the �3 –thin part of M� ; however, to do so they must have length greater than 2K
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contradicting that s� is a locally isometric immersion. Thus there exists some �0 such
that s�.N / is contained in �0 –thick part of M� for all � 2 V 0 .

(4) Let �0 be the constant in property (3). Let l0 be the constant from the drilling
theorem such that the drilling map is a bilipschitz diffeomorphism outside an �0 –
Margulis tube about the drilling. Let l1 D minf�0=8; l0g. Then for any � 2 V 0 we
have the length of 
i in M� is less than l1 , for each i D 1; : : : ; d . We can assume V 0

has this property since the length of any fixed curve 
i is a continuous function on the
character variety.

Notation Here, the length of 
i in M� is really the length of the unique geodesic
representative of s�.
i/ in M� . For the remainder of this section, we distinguish
this geodesic representative by s�.
i/

� . This curve is homotopic to s�.
i � ftg/ for
any t , but its length is less than or equal to the length of s�.
i � ftg/. We make this
distinction since we will also be using the length of s�.
i � ftg/, which is the length
of 
i � ftg � .N;g�/.

Now we construct the map � which will be the first coordinate of ‰ . When � 2
V 0 \MP0.N;P /, set �.�/D � . Otherwise � 2 V 0 \MP.N / so let .M�; s�/ be the
associated marked hyperbolic 3–manifold. Note that by properties (1) and (3) of the
neighborhood V 0 we can use s�W N !M� to mark M� .

By property (4), the length of each s�.
i/
� will be short in M� so we can drill out

s�.
 /
� D s�.
1/

�[ � � � [ s�.
d /
� and get a hyperbolic manifold �M� . Let

 �W M� �T�0
.s�.
 /

�/! �M� �T�0
.T /

be the inverse of the map � from the drilling theorem (Theorem 4.1). Let SM� be
the cover of �M� associated to . � ı s�/�.�1.N //. Let xf�W N ! SM� be the lift of
 � ı s�W N ! �M� . Note that s�.N / will be contained in M� �T�0

.s�.
 /
�/ by (3),

so it makes sense to compose with  � . In [20, Lemma 3.3], Bromberg shows that the
representation . xf�/�W �1.N /! �1. SM�/� PSL.2;C/ is in AH.N;P /.

Thus we can define � by

�.�/D

�
. xf�/� if � 2MP.N /;

� if � 2MP0.N;P /:

The following Lemma is a restatement of [20, Lemma 3.4].

Lemma 5.12 The map � is continuous at all points in V 0\MP0.N;P /.
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Since �W V 0!AH.N;P / is continuous at points in V 0\MP0.N;P /, and MP0.N;P /

is an open subset of AH.N;P /, we can restrict � to a smaller neighborhood �0 2

V � V 0 � MP.N /[MP0.N;P / so that its image is contained in MP0.N;P / [20,
Corollary 3.5]. This allows us to use �.�/ as the first coordinate of ‰.�/ in the
definition of ‰ . We now consider the second coordinate q.�/.

If � 2 V \MP0.N;P /, then we set q.�/D .1; : : : ;1/. Otherwise, we consider the
covering ��W SM�!

�M� induced by the image of the injection . � ı s�/�W �1.N /!

�1. �M�/. The group �1. �M�/ is obtained from �1. SM�/ by the same construction
described in Section 5.2. That is, �.�/ D . SM�; xf�/ corresponds to some represen-
tation � 2 MP0.N;P / and there is a unique .w1; : : : ; wd / such that the extension
�w1;:::;wd

.�1. yN //D �1. �M�/. We define this to be q.�/D .w1; : : : ; wd /.

Equivalently, wi is defined so that if we conjugate . � ı s�/� so that 
i is mapped to�
1 2

0 1

�
;

then the unique nontrivial element ˇi 2 �1.@Ui/� �1. �M�/ that bounds a disk in M�

will be �
1 wi

0 1

�
:

Now that we have defined q.�/, we can define ‰W V !MP0.N;P /� yC
d by

‰.�/D .�.�/; q.�//

for any � 2 V . Note that we have defined q.�/ so that ‰.�/ 2 A for all � 2 V .
Unlike ˆ, we only show ‰ is continuous for points on the boundary of MP.N /.
Although Lemma 5.13 is nearly identical to of [20, Proposition 3.8], we include a proof
since this is one of instances where we must keep track of multiple cusps and therefore
our setup differs from Bromberg’s.

Lemma 5.13 The map ‰ is continuous on V \MP0.N;P /.

Proof Lemma 5.12 shows that � is continuous on V \MP0.N;P /. Now consider
a sequence �i ! � where � 2 MP0.N;P /. Since ‰.�/ D .�;1; : : : ;1/ and we
know �.�i/! � , it suffices to show that q.�i/! .1; : : : ;1/. If �i 2MP0.N;P /

then q.�i/D .1; : : : ;1/ so assume that �i 2 V \MP.N /. We will use the notation
q.�i/D .w1;i ; : : : ; wd;i/ and show wj ;i!1 as i !1 for j D 1; : : : ; d .

Now for each j D 1; : : : ; d , the length of �i.
j /! 0 as i !1 because �i.
j / is
converging to a parabolic and length is a continuous function with respect to the alge-
braic topology on the deformation space. Proposition 4.14 shows that the normalized
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length of the j –th meridian, ǰ , goes to infinity as i goes to infinity. The normalized
length is given by

jwj ;i jp
2 Im.wj ;i/

If wj ;i does not go to 1, then we must have Im.wj ;i/! 0 as i !1. This cannot
happen by Corollary 5.6.

It follows that q.�i/! .1; : : : ;1/ D q.�/ proving q is continuous at any point
� 2 V \MP0.N;P /. Thus, ‰ is continuous on V \MP0.N;P /.

5.7 Local homeomorphism

Recall, in Section 5.5 we defined ˆ on a subset AK �A and showed ˆ is continuous.
We now claim that there is some subset of AK on which ˆ is continuous and injective.
See [20, Proposition 3.9].

Lemma 5.14 Let �02MP0.N;P /. There is some neighborhood U of .�0;1; : : : ;1/

in A such that ‰ ıˆjU D id. In particular, ˆ is injective on U .

Proof Let V be the neighborhood of �0 on which ‰ was defined. By the continuity
of ˆ, we can find a neighborhood U 0 so that ˆ.U 0/ is contained in V , and for any
.�; w1; : : : ; wd / 2 U 0 , � 2 V . We now consider ‰ ıˆjU 0 .

Let .�; w1; : : : ; wd / 2 U 0 . If .w1; : : : ; wd /D .1; : : : ;1/ then ˆ.�;1; : : : ;1/D
� and ‰.�/ D .�;1; : : : ;1/. If .w1; : : : ; wd / ¤ .1; : : : ;1/ then �w1;:::;wd

2

MP. yN ; yP /. Recall that the definition of ˆ in this case was

ˆ.�;w1; : : : ; wd /D .M�;w; f�;w/;

where M�;w was the filling of �M�;w DH3=�w1;:::;wd
.�1. yN // and f�;w is the com-

position ��;w ı ��;w ı f� . Since � 2 V , the marking f� is homotopic to a local
isometry s� W .N;g� /! M� such that s� .N / � M

��0
� (see the four properties of

the neighborhood V 0 defined in Section 5.6). Thus we can redefine the marking
f�;w D ��;w ı��;w ı s� without changing the definition of ˆ.�;w/. Also recall that
��;w is a covering map and therefore a local isometry, and

��;wW �M�;w �T�0
.T /!M�;w �T�0

.
 /

is a bilipschitz diffeomorphism. (Recall that ˆ was originally defined on AK so that for
any .�; w/2AK , ��;w is a bilipschitz diffeomorphism on �M�;w�T�3

.T /. By possibly
making U 0 smaller, we can assume that ��;w is bilipschitz on the �M�;w �T�0

.T /.)
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Deformation spaces of Kleinian surface groups are not locally connected 1307

Thus f�;w D ��;w ı��;w ı s� is smooth, and we let g0�;w be the pullback metric on N

via f�;wW N !M�;w .

By the assumption that ˆ.U 0/ � V , we can find a homotopic marking s�;w '

f�;wW N !M�;w satisfying the properties (1)–(4) listed prior to the definition of ‰ .
However, we need that f�;w is homotopic to s�;w in M�;w � 
 in order to have the
drilling construction in ‰ be the inverse to the filling construction in ˆ.

Let W be a neighborhood of g�0
(the pullback metric via s�0

) in H�1.V /�H.N /

such that Theorem 5.11 applies. We first claim there is some U � U 0 �A such that
if .�; w/ 2 U , then g0�;w 2W . There is some J such that if ��;w is a J –bilipschitz
diffeomorphism and � is sufficiently close to �0 , then g0�;w 2W . So, let U � U 0 be
a neighborhood of .�0;1; : : : ;1/ in A such that for all .�; w1; : : : ; wd / 2 U , � is
sufficiently close to �0 , and for all i , jwi j is large enough so that the filling map ��;w
is a J –bilipschitz diffeomorphism.

Next we claim that there is a metric g�;w 2 &.V / � W and a locally isometry
s�;wW .N;g�;w/!M�;w such that f�;w is homotopic to s�;w as a map into M�;w�
 .
This claim follows from product structure of W described in Theorem 5.11. More
precisely, let Nth be a thickening of N . Then we can extend the local isometry
f�;wW .N;g

0
�;w/!M�;w to a local isometry f�;w;thW .Nth;g

0
�;w;th/!M�;w , where

g0�;w;th is a hyperbolic metric on Nth that restricts to g0�;w on N � Nth . Then
there exists a locally flat embedding i W N ! Nth isotopic to the identity such that
s�;wDf�;w;thıi . Thus s�;w and f�;w are homotopic as maps inside f�;w;th.Nth/�M� .
Since f�;w.N /�M�;w�T�0

.
 /, we can assume that the neighborhood W in H.N /

is small enough so that f�;w;th.Nth/�M�;w �
 . Thus, f�;w and s�;w are homotopic
in M�;w � 
 .

It now follows from the definitions that

‰.ˆ.�;w1; : : : ; wd //D‰.M�;w; f�;w/D‰.M�;w; s�;w/D .�; w1; : : : ; wd /:

Lemma 5.15 Let �2MP.N /[MP0.N;P /. If ˆı‰ is defined at � then ˆı‰.�/D� .

Proof If � 2V \MP0.N;P / then clearly ‰.�/D .�;1; : : : ;1/ and ˆ.‰.�//D � .
If �2V \MP.N /, then recall that we can choose the marking s�W N !M� and define�M� to be the 
 –drilling of M� . Then we let SM� be the cover of �M� associated to
. �ıs�/�.�1.N //. If ‰.�/D .�; w1; : : : ; wd / then SM�DM� , xf�'f� , �M�D

�M�;w ,
and M� DM�;w . (To see why �M� D

�M�;w see [20, Proposition 3.10 and Section 6].
It only follows from the definitions that �M�;w covers �M� ; however, Bromberg proves
this cover is trivial.) Thus

��;w ıf� ' �� ı xf� D  � ı s�
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since xf� was the lift of  � ı s� . But then

f�;w D ��;w ı��;w ıf� ' ��;w ı � ı s� D  
�1
� ı � ı s� D s�:

So when we apply ˆ to .�; w1; : : : ; wd /, we get .M�;w; f�;w/D .M�; s�/D � .

Theorem 5.16 Let �0 2 MP0.N;P /. The map ˆ is a local homeomorphism from
AK to MP.N /[MP0.N;P / at .�0;1; : : : ;1/.

Proof It follows from Lemma 5.10 that ˆ is continuous and from Lemma 5.14 that
ˆ is injective on some neighborhood U of .�0;1; : : : ;1/.

Certainly ˆ.U / contains �0 . We claim that ˆ.U / contains some neighborhood V

of �0 in MP.N /[MP0.N;P /. Suppose no such neighborhood exists. Then we can
find a nested sequence of neighborhoods Vi whose intersection is �0 and a sequence
�i 2 Vi such that �i … ˆ.U /. Since �i ! �0 , and Lemma 5.13 says that ‰ is
continuous at �0 we have ‰.�i/!‰.�0/D .�0;1; : : : ;1/. It follows that ‰.�i/2U

for all sufficiently large i ; however, this contradicts Lemma 5.15 which says that
ˆ.‰.�i//D �i …ˆ.U / for sufficiently large i .

Hence, there is some neighborhood V of �0 contained in ˆ.U /. Since ˆ is continuous,
ˆ�1.V / is a neighborhood of .�0;1; : : : ;1/ in A such that ˆjˆ�1.V /W ˆ

�1.V /!V

is a continuous bijection. The inverse map is given by ‰ , which is continuous on
V \MP0.N;P / by Lemma 5.13 and on V \MP.N / by invariance of domain. Hence
ˆ is a local homeomorphism at �0 .

Remark Since the point �02MP0.N;P / that we fixed in the beginning of Section 5.6
and used throughout Section 5.6 and Section 5.7 was arbitrary, we have actually shown
that ˆ is a local homeomorphism at any � 2MP0.N;P /.

5.8 MP.N /[MP0.N; P / is not locally connected

In Proposition 5.9, we saw that there was a point �0 2MP0.N;P / such that A is not
locally connected at .�0;1; : : : ;1/. By Theorem 5.16, ˆ is a local homeomorphism
from A to MP.N /[MP0.N;P / at .�0;1; : : : ;1/. Hence, MP.N /[MP0.N;P / is
not locally connected at ˆ.�0;1; : : : ;1/D �0 2MP0.N;P /. Thus we have shown:

Theorem 5.17 There exists �0 2MP0.N;P / such that MP.N /[MP0.N;P / is not
locally connected at �0 .
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By the Density Theorem (Theorem 2.2), AH.N / is the closure of MP.N /[MP0.N;P /.
Of course, it does not follow directly from this that AH.N / is not locally connected
at �0 . In order to conclude anything about the closure, we need more quantitative
control over the components of a neighborhood U of .�0;1; : : : ;1/ in A, and what
happens to these components under the map ˆ. By Lemma 5.8, there is lower bound
to the distance between some of the components of U . In the next Section, we will use
the filling theorem to show that this implies ˆ.U / has infinitely many components.

6 AH.S � I/ is not locally connected

In this section, we prove Theorem 1.1 by contradiction. If one assumes AH.S � I/ is
locally connected, then one may use the filling theorem (Theorem 1.2) and Lemma 5.8
to derive a contradiction. Recall that for a point .�; w1; : : : ; wd / 2A at which ˆ is
defined, one obtains a hyperbolic manifold M�;w by filling the d cusps of �M�;w D

H3=�w.�1. yN //. The manifold M�;w does not depend on the order in which the cusps
are filled so we can fill the first cusp last. Let M 0

�;w denote the manifold with a single
rank–2 cusp obtained by filling all but the first cusp of �M�;w . Equivalently, M 0

�;w is the

1 –drilling of ˆ.�;w1; : : : ; wd / 2MP.N /. Eventually we will use the w1 coordinate
to estimate the complex length of 
1 in ˆ.�;w1; : : : ; wd /. As an intermediate step,
Lemma 6.1 bounds the change in the geometry of the first cusp while we perform the
other d � 1 fillings.

Let q1 be the first coordinate of the map q in the definition of ‰ . That is,

q1W V \MP.N /! T .T 2/

is defined so that if ‰.�/D .�; w1; : : : ; wd /, then q1.�/D w1 . This is a Teichmüller
parameter for the first cusp in �M�;w in the sense that �w is conjugate to a representation
that sends


1 to
�

1 2

0 1

�
and the meridian

ˇ1 of @U1 to
�

1 q1.�/

0 1

�
:

Now define r1W V \MP.N /! T .T 2/ so that r1.�/ is the Teichmüller parameter
of the cusp of M 0

�;w . That is, after d � 1 cusps have been filled, we can conjugate
�1.M

0
�;w/ so that the remaining cusp is marked by


1 7!

�
1 2

0 1

�
and ˇ1 7!

�
1 r1.�/

0 1

�
:
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The drilling theorem can be used to show that q1 and r1 are close in the following
sense.

Lemma 6.1 Let c > 0, � > 0. There is some l0 > 0 such that for any � 2 MP.N /

with minfIm.q1.�//; Im.r1.�//g< � and

dX
iD1

l.�.
i// < l0;

jq1.�/� r1.�/j<
c

4
:then

Proof For any �2MP.N /, let M�DH3=�.�1.N //, let M 0
�;w denote the 
1 –drilling

of M� , and let �M�;w denote the
Sd

iD2 
i –drilling of M 0
�;w .

The drilling theorem says that there exists l1 such that if the length of l.�.
1// < l1
then there is a 2–bilipschitz map

M� �T�3
.
1/!M 0

�;w �T�3
.T1/:

This implies the lengths of 
2; : : : ; 
d do not double when we drill 
1 .

Choose some " > 0 such that "e" < c=.4�/. There exists some J > 1 such that if
X1;X2 are two points in T .T 2/ and �W X1!X2 is a J –bilipschitz diffeomorphism,
then dT .T 2/.X1;X2/ < ".

By the drilling theorem, there is some l2 such that if
Pd

iD2 lM 0�;w .
i/ < l2 then there
exists a J –bilipschitz diffeomorphism

�W M 0
�;w �

Sd
iD2 T�3

.
i/! �M�;w �
Sd

iD2 T�3
.Ti/:

Now choose any 0< l0<minfl1; l2=2g. If
Pd

iD1 l.�.
i//< l0 then l.�.
1//< l0< l1 .
This implies the lengths of 
2; : : : ; 
d do not double as we do the first drilling. Thus,

dX
iD2

lM 0�;w .
i/ <

dX
iD2

2l.�.
i// < 2l0 < l2:

Now since
Pd

iD2 lM 0�;w .
i/ < l2 , there exists a J –bilipschitz diffeomorphism

�W M 0
�;w �

Sd
iD2 T�3

.
i/! �M�;w �
Sd

iD2 T�3
.Ti/

when we drill 
2; : : : ; 
d . As in the proof of Corollary 4.13 (see also the remarks fol-
lowing Theorem 4.1), we can assume that � restricts to a J –bilipschitz diffeomorphism
on T1 that takes torus cross-sections of the first cusp in M 0

�;w to torus cross-sections
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of the first cusp in �M�;w [11, Theorem 6.12]. Since the Teichmüller metric for T .T 2/

agrees with the hyperbolic metric for the upper-half plane model of H2 , this implies

dT .T 2/.q1.�/; r1.�//D dH2.q1.�/; r1.�// < ":

See also [17, Theorem 7.2].

Since either Im.q1.�// < � or Im.r1.�// < � ,

jq1.�/� r1.�/j< �e"
�
dH2.q1.�/; r1.�//

�
< �"e" <

c

4
:

With Lemma 6.1 providing some control on r1 based on q1 , we are now ready to prove
Theorem 1.1, which we restate here for convenience.

Theorem 1.1 Let S be a closed surface of genus g � 2. Then AH.S � I/ is not
locally connected.

Proof Let .�0;1; : : : ;1/2A be the point that we described in Section 5.4 where we
found A is not locally connected. Recall this was a point such that �0j�1.N1;1/ D �z0

where z0 was the point described in Lemma 5.7. We will show AH.S�I/ is not locally
connected at �0 . First we claim there exists a neighborhood U of .�0;1; : : : ;1/

with the following properties:

(1) There is a neighborhood V of �0 in MP.N /[MP0.N;P / such that ˆjU W U!V

is a homeomorphism. Such a neighborhood exists by Theorem 5.16.

(2) For any .�; w1; : : : ; wd /2U , � j�1.N1;1/ lies in the neighborhood W of �0j�1.N1;1/

that we defined in Section 5.4. Recall W is a neighborhood of �z0
in MP0.N1;1;P

0
1;1
/

such that for all �z 2
SW , the coordinate z lies in the ı–neighborhood O of z0 . By

Lemma 5.7, this means Az \ int.R/¤∅ and there is a constant c > 0 such that the
distance between Az and @R is at least c .

(3) Recall from Section 5.4 that CnDf.�; w1; : : : ; wd /2U Ww12RC2ng. Then there
exists 0< c < 1 such that for any .�; w1; : : : ; wd / 2 Cn and any .� 0; w0

1
; : : : ; w0

d
/ 2

U �Cn , we have jw1�w
0
1
j > c for any n. This follows from property (2) and

Lemma 5.8.

(4) Let c> 0 be the constant from (3). Let � > 80.2�/2 be some constant such that for
any .�; w1; : : : ; wd /2Cn , we have Im.w1/<��1. Then for any �2ˆ.U /\MP.N /D

V \MP.N /, we have jr1.�/� q1.�/j< c=4 or minfIm.r1.�//; Im.q1.�//g � � .

We can assume U satisfies property (4) for the following reason. First, the upper bound
� on Im.w1/ exists because w1 lies in the compact rectangle RC 2n. This was the
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definition of a point .�; w1; : : : ; wd / in Cn . By Lemma 6.1, given any c; � > 0 there
exists some l0 such that if

Pd
iD1 l.�.
i// < l0 then either jr1.�/� q1.�/j < c=4 or

minfIm.r1.�//; Im.q1.�//g � � . Since ˆjU W U ! V is a homeomorphism, and V is
a neighborhood of �0 where �0.
1/; : : : ; �0.
d / are parabolic, we can make U small
enough so that

Pd
iD1 l.�.
i// < l0 for any � 2ˆ.U /\MP.N /. One can check that

shrinking U does not change properties (1), (2) and (3).

Again, since making U smaller does not affect the above properties, we can assume
for all .�; w1; : : : ; wd / 2 U , jw1j > 81.2�/2 . Since w1 D q1.ˆ.�;w1; : : : ; wd //, it
follows from (3) and (4) that U satisfies:

(5) For any .�; w1; : : : ; wd / 2 U , jr1.ˆ.�;w1; : : : ; wd //j> 80.2�/2 .

Now that we have set up a neighborhood U of .�0;1; : : : ;1/ in A, suppose AH.N /

was locally connected at ˆ.�0;1; : : : ;1/ D �0 . Then we claim that, for all but
finitely many n,

ˆ.Cn/\ˆ.U �Cn/¤∅:

To prove the claim, let VAH be a neighborhood (in AH.N /) of �0 contained in-
side ˆ.U /. Note that the closure of ˆ.U / contains such a neighborhood of �0 in
AH.N / by the Density Theorem (Theorem 2.2). If AH.N / is locally connected, then
there exists a connected neighborhood �0 2 Vconn � VAH . Recall in Section 5.4 we
found a sequence .�0;u1 C 2n; : : : ;ud C 2n/ 2 Cn converging to .�0;1; : : : ;1/.
Thus Vconn\ˆ.Cn/ and Vconn\ˆ.U �Cn/ are nonempty for all sufficiently large n.

If the closures of ˆ.Cn/ and ˆ.U �Cn/ were disjoint then we could form a separation
of Vconn . Thus we must have

ˆ.Cn/\ˆ.U �Cn/¤∅

for all but finitely many n.

Now let
� 2ˆ.Cn/\ˆ.U �Cn/:

for some sufficiently large n. We will determine n later, but for now assume that there
are only finitely many n for which this intersection is empty.

Although � is not in the image of ˆ, we can find sequences

�D lim
m!1

�m D lim
m!1

�0m;

where �m 2ˆ.Cn/ and �0m 2ˆ.U �Cn/ are representations in MP.N /.
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Up to subsequence, we can assume that q1.�m/ and q1.�
0
m/ converge in yC , so we

define w1 and w0
1

by

w1 D lim
m!1

q1.�m/;

w01 D lim
m!1

q1.�
0
m/:

Equivalently, w1 and w0
1

are the second coordinates of limm!1‰.�m/ 2 Cn and
limm!1‰.�

0
m/2U �Cn . Note that w1 2RC2n since �m 2ˆ.Cn/ for all m. Thus

w1 ¤ 1. Assume w0
1
¤ 1 as well. We will discuss the possibility that w0

1
D 1

below as a limiting case. Also, by passing to further subsequences if necessary, we
define �1 and �0

1
by

�1 D lim
m!1

r1.�m/;

�01 D lim
m!1

r1.�
0
m/:

Again, assume for now that �1; �01 ¤1, and we will discuss the possibility that one or
both of these sequences goes to infinity below.

By property (3) of U , there is some 0< c < 1 such that

jw1�w
0
1j> c:

Note that � was chosen so that Im.w1/<��1 since w1D lim q1.�m/ and �m2ˆ.Cn/.
Thus by property (4) of the neighborhood U , we have

j�1�w1j �
c

4
:

If we also have minfIm.w0
1
/; Im.�0

1
/g< � , then j�0

1
�w0

1
j � c=4 and thus

(18)
ˇ̌
�1� �

0
1

ˇ̌
� c �

c

4
�

c

4
D

c

2
:

Otherwise, we have minfIm.w0
1
/; Im.�0

1
/g � � . But since Im.w1/ < � � 1 and

jw1� �1j � c=4, we must have Im.�1/ < � � 1C c=4. Thus

j�1� �
0
1j � j Im.�1/� Im.�01/j> � �

�
� � 1C

c

4

�
D 1�

c

4
>

c

2

so inequality (18) still holds.

Next we will use the complex length estimates in the filling theorem to produce a
contradiction to (18). Consider the complex length, L.�.
1//. We can estimate the
complex length of �.
1/ in two ways, corresponding to each of the two sequences �m

and �0m .
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For any � 2 V , parts (ii) and (v) of the filling theorem (Theorem 1.2) can be used to
estimate L.�.
1//. If we let

L2
� D

jr1.�/j
2

2 Im.r1.�//
and A2

� D
jr1.�/j

2

2 Re.r1.�//
;

the filling theorem gives us the following estimates on L.�.
1//D l.�.
1//Ci�.�.
1//:ˇ̌̌̌
l.�.
1//�

2�

L2
�

ˇ̌̌̌
�

8.2�/3

L4
� � .16/.2�/4

and
ˇ̌̌̌
�.�.
1//�

2�

A2
�

ˇ̌̌̌
�

5.2�/3

.L2
� � 4.2�/2/2

:

If � D limm!1 �m D limm!1 �
0
m , then we get the following two sets of estimates

on L.�.
1//D l.�.
1//C i�.�.
1//. Let

L2
D lim

m!1
L2
�m
; A2

D lim
m!1

A2
�m
; .L0/2 D lim

m!1
L2
�0m
; .A0/2 D lim

m!1
A2
�0m
:

Thenˇ̌̌̌
l.�.
1//�

2�

L2

ˇ̌̌̌
�

8.2�/3

L4� .16/.2�/4
;

ˇ̌̌̌
�.�.
1//�

2�

A2

ˇ̌̌̌
�

5.2�/3

.L2� 4.2�/2/2
;ˇ̌̌̌

l.�.
1//�
2�

.L0/2

ˇ̌̌̌
�

8.2�/3

.L0/4� .16/.2�/4
;

ˇ̌̌̌
�.�.
1//�

2�

.A0/2

ˇ̌̌̌
�

5.2�/3

..L0/2� 4.2�/2/2
:

Recall that by property (5) of the neighborhood U , we have jr1.�m/j; jr1.�
0
m/j >

80.2�/2 for all m. So after passing to the limit, j�1j; j�01j � 80.2�/2 and L2; .L0/2 �

40.2�/2 . In particular, L2; .L0/2> 8.2�/2 , which together with the triangle inequality
implies ˇ̌̌̌

2�

L2
�

2�

.L0/2

ˇ̌̌̌
� 16.2�/3

�
1

L4
C

1

.L0/4

�
;(19) ˇ̌̌̌

2�

A2
�

2�

.A0/2

ˇ̌̌̌
� 20.2�/3

�
1

L4
C

1

.L0/4

�
:(20)

Next, we combine the inequalities (19) and (20) to show that �1 and �0
1

are close. The
following lemma provides a way of doing this. We refer the reader to [47, Lemma 6.2]
for a detailed proof of this estimate, which is an intricate, but not deep, calculation.

Lemma 6.2 Let z1; z2 2C , jzi j � .80/.2�/2 , and set

L2
i D

jzi j
2

2 Im.zi/
and A2

i D
jzi j

2

2 Re.zi/
:
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Suppose ˇ̌̌̌
2�

L2
1

�
2�

L2
2

ˇ̌̌̌
� 16.2�/3

�
1

L4
1

C
1

L4
2

�
;ˇ̌̌̌

2�

A2
1

�
2�

A2
2

ˇ̌̌̌
� 20.2�/3

�
1

L4
1

C
1

L4
2

�
:

Then

jz1� z2j< 560.2�/2
Im.z1/

jz1j
:

Setting z1 D �1 and z2 D �
0
1

, the inequalities (19) and (20), together with Lemma 6.2,
imply

(21) j�1� �
0
1j< 560.2�/2

Im.�1/
j�1j

:

At this point we address the possibility that �0
1
D1. Notice that since w1 ¤1, the

inequality jw1� �1j � c=4 implies �1 ¤1. If �0
1
D1 then inequality (21) is absurd

since the right hand side is finite. Even though Lemma 6.2 only applies to points in C ,
we can apply it to z1 D �1 and a sequence of points z2 approaching 1 to produce
this contradiction. Hence �0

1
must be finite.

By combining the lower bound from (18) and the upper bound from (21), we find that

c

2
< 560.2�/2

Im.�1/
j�1j

:

Recall that the constant � was chosen in property (4) of U so that Im.q1.�m// < ��1

for any �m 2ˆ.Cn/. Thus jr1.�m/� q1.�m/j< c=4 for all m. It follows that Im.�1/
is bounded above by a quantity that is independent of n:

Im.�1/� .� � 1/C
c

4
< �:

Since the Maskit slice MC is invariant under horizontal translations by 2, we can
assume for any point w 2R, Re.w/ > �2 (see Lemma 5.7). Since �1 lies in a closed
.c=4/–neighborhood of RC2n, we have j�1j � 2n�2�c=4> 2n�3. It follows that

(22)
c

2
< 560.2�/2

Im.�1/
j�1j

<
560.2�/2�

2n� 3
:

Since � is a constant independent of n, there are only finitely many n that satisfy (22).
Hence, for any � 2ˆ.Cn/\ˆ.U �Cn/ with n> 560.2�/2�=cC3=2, inequality (22)
produces a contradiction. However, our assumption that AH.N / was locally connected
implied that ˆ.Cn/\ˆ.U �Cn/ is nonempty for all but finitely many n.

It follows that AH.N / is not locally connected at the point �0 2MP0.N;P /.
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