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Noncollapsing in mean-convex mean curvature flow

BEN ANDREWS

We provide a direct proof of a noncollapsing estimate for compact hypersurfaces
with positive mean curvature moving under the mean curvature flow: Precisely, if
every point on the initial hypersurface admits an interior sphere with radius inversely
proportional to the mean curvature at that point, then this remains true for all positive
times in the interval of existence.

53C44; 58J35, 35K93

We follow Sheng and Wang [4] in defining a notion of “noncollapsing” for embedded
hypersurfaces as follows: Recall that a hypersurface M is called mean-convex if the
mean curvature H of M is positive everywhere.

Definition 1 A mean convex hypersurface M bounding an open region � in RnC1

is ı–noncollapsed (on the scale of the mean curvature) if for every x 2M there is an
open ball B of radius ı=H.x/ contained in � with x 2 @B .

It was proved in [4] that any compact mean-convex solution of the mean curvature flow
is ı–noncollapsed for some ı > 0. Closely related statements are deduced by Brian
White in [6]. In both of these works the result is derived only after a lengthy analysis
of the properties of solutions of mean curvature flow. The purpose of this paper is to
provide a self-contained proof of such a noncollapsing result using only the maximum
principle.

It is first necessary to reformulate the noncollapsing condition to allow the application
of the maximum principle. Given a hypersurface M DX. SM /, define a function Z on
SM � SM by

Z.x;y/D
H.x/

2
kX.y/�X.x/k2C ı hX.y/�X.x/; �.x/i :

Then we have the following characterization:

Proposition 2 M is ı–noncollapsed if and only if Z.x;y/� 0 for all x and y in SM .
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Proof By convention we choose the unit normal � to be outward-pointing, so that a
ball in � of radius ı=H.x/ with X.x/ as a boundary point must have centre at the
point p.x/D X.x/� .ı=H.x//�.x/. The statement that this ball is contained in �
is equivalent to the statement that no points of M are of distance less than ı=H.x/
from p :

0� kX.y/�p.x/k2�

�
ı

H.x/

�2

D
2Z.x;y/

H.x/

for all x and y in SM . Since H > 0 this is equivalent to the statement that Z is
nonnegative everywhere. The converse is clear.

The main result of this paper is the following:

Theorem 3 Let SM n be a compact manifold, and X W SM n � Œ0;T /!RnC1 a family
of smooth embeddings evolving by mean curvature flow, with positive mean curvature.
If M0 D X. SM ; 0/ is ı–noncollapsed for some ı > 0, then Mt D X. SM ; t/ is ı–
noncollapsed for every t 2 Œ0;T /.

Proof By the Proposition, the Theorem is equivalent to the statement that the function
ZW SM � SM � Œ0;T /!R defined by

Z.x;y; t/D
H.x; t/

2
kX.y; t/�X.x; t/k2C ı hX.y; t/�X.x; t/; �.x; t/i

is nonnegative everywhere provided that it is nonnegative on SM � SM � f0g. We
prove this using the maximum principle. For convenience we denote by Hx the mean
curvature and �x the outward unit normal at .x; t/, and we write

d D jX.y; t/�X.x; t/j; w D
X.y; t/�X.x; t/

d
and @x

i D
@X

@xi
:

We compute the first and second derivatives of Z , with respect to some choices of
local normal coordinates fxig near x and fyig near y .

(1)
@Z

@yi
D dHxhw; @

y
i iC ıh@

y
i ; �xi:

From this we have the following:

Lemma 4

�xC
dHx

ı
w�

1

ı

@Z

@yq
gqp

y @y
p D �y

r
1C

2Hx

ı2
Z �

1

ı2
jryZj2
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Proof Equation (1) gives for each i

0D

�
@

y
i ; �xC

dHx

ı
w

�
�

1

ı

@Z

@yi
D

�
@

y
i ; �xC

dHx

ı
w�

1

ı
ryZ

�
;

ryZ D
@Z

@yk
gkl

y @
y

l
:where

Thus the vector �xC .dHx=ı/w� .1=ı/ryZ is normal to the hypersurface at y , and
is a multiple of �y . To complete the Lemma we compute the length of this vector:



�xC

dHx

ı
w�

1

ı
ryZ





2

D 1C

�
dHx

ı

�2

C 2
dHx

ı
h�x; wiC

1

ı2
jryZj2�

2

ı

�
ryZ; �xC

dHx

ı
w

�
D 1C

�
dHx

ı

�2

C 2
Hx

ı2

�
Z �

d2Hx

2

�
C

1

ı2
jryZj2

�
2

ı

�
ryZ; �xC

dHx

ı
w�

1

ı
ryZ

�
�

2

ı2
jryZj2

D 1C
2Hx

ı2
Z �

1

ı2
jryZj2;

where we used the fact that ryZ is in the tangent space at y , hence orthogonal to

�xC
dHx

ı
w�

1

ı
ryZ:

Similarly we have (writing hx for the second fundamental form at .x; t/)

(2)
@Z

@xi
D�dHxhw; @

x
i iC

d2

2
riHxC ıdhx

iqgqp
x hw; @

x
p i:

Now the second derivatives:

@2Z

@yi@yj
DHxh@

y
i ; @

y
j i � dHxh

y
ij hw; �yi � ıh

y
ij h�y ; �xi;(3)

@2Z

@yi@xj
D�Hxh@

x
j ; @

y
i iC dhw; @

y
i irj HxC ıh

x
jqgqp

x h@
y
i ; @

x
p i;(4)

@2Z

@xi@xj
DHxh@

x
j ; @

x
i i � dhw; @x

i irj HxC dHxhx
ij hw; �xi � dhw; @x

j iriHx(5)

C
d2

2
rjriHxC ıdrj hx

iqgqp
x hw; @

x
p i � ıh

x
ij � ıdhx

iqgqp
x hx

pj hw; �xi:
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Finally we compute the time derivative:

(6)
@Z

@t
D dHxhw;�Hy�y CHx�xiC

d2

2
.�HxCHxjh

x
j
2/

C ıh�Hy�y CHx�x; �xiC ıdhw;rHxi:

We compute at a point .x;y/ with y ¤ x . Choose local coordinates so that f@x
i g are

orthonormal, f@y
i g are orthonormal, and @x

i D @
y
i for i D 1; : : : ; n�1. Thus @x

n and @y
n

are coplanar with �x and �y .

Now compute

@Z

@t
�

nX
i;jD1

�
gij

x

@2Z

@xi@xj
Cgij

y

@2Z

@yi@yj
C 2gik

x gjl
y h@

x
k ; @

y

l
i
@2Z

@xi@yj

�
D dHxhw;�Hy�y CHx�xiC

d2

2
.�HxCHxjh

x
j
2/C ıh�Hy�y CHx�x; �xi

C ıdhw;rHxi � nHxC dHxHyhw; �yiC ıHyh�y ; �xi � nHx � dH 2
x hw; �xi

C 2dhw;rHxi �
d2

2
�Hx � ıdhw;rHxiC ıHxC ıdhw; �xijh

x
j
2

C 2.n� 1/HxC 2h@x
n ; @

y
ni

2Hx � 2dgik
x gjl

y h@
x
k ; @

y

l
ihw; @

y
j iriHx

� 2ı.Hx � hx
nnCh@

x
n ; @

y
ni

2hx
nn/

DZjhx
j
2
C 2dhw; @x

k �h@
x
k ; @

y

l
iglj

y @
y
j ig

ki
x riHx � 2.Hx � ıh

x
nn/.1�h@

x
n ; @

y
ni

2/:

The second term on the last line can be rewritten in terms of the first derivatives of Z

using Equation (2): This gives

rj Hx D
2

d2

@Z

@xj
C

2

d
hw;Hx@

x
j � ıh

x
jpgpq

x @x
q i:

Also we observe that @x
n � h@

x
n ; @

y
ni@

y
n D h@

x
n ; �yi�y . Therefore at any critical point

of Z we have

(7)
@Z

@t
D

nX
i;jD1

�
gij

x

@2Z

@xi@xj
Cgij

y

@2Z

@yi@yj
C 2gik

x gjl
y h@

x
k ; @

y

l
i
@2Z

@xi@yj

�
Cjhx

j
2ZC 2.Hx � ıh

x
nn/Q;

where QD 2hw; �yi
2
h@x

n ; �yi
2
�

2ı

dHx
hw; �yih@

x
n ; �yih@

x
n ; @

y
nih@

y
n ; �xi � h@

x
n ; �yi

2:

To simplify this we use Equation (1) to write h@y
n ; �xi D �.dHx=ı/hw; @

y
ni. The first

two terms in Q then become

2hw; �yih@
x
n ; �yi

�
hw; �yih@

x
n ; �yiC h@

x
n ; @

y
nihw; @

y
ni
�
D 2hw; �yih@

x
n ; �yihw; @

x
n i;
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so we have

QD h@x
n ; �yi

�
2hw; �yihw; @

x
n i � h@

x
n ; �yi

�
D h@x

n ; �yih�y ; 2h@
x
n ; wiw� @

x
n i:

For convenience we write �D
p

1C .2Hx=ı2/Z . Substituting for �y in the second
factor using Lemma 4 we find

QD h@x
n ; �yih�y ; 2h@

x
n ; wiw� @

x
n i

D
h@x

n ; �yi

�

�
�xC

dHx

ı
w; 2h@x

n ; wiw� @
x
n

�
D

2h@x
n ; �yih@

x
n ; wi

�dı

�
ıdhw; �xiC

d2Hx

2

�
D

2h@x
n ; �yih@

x
n ; wi

�dı
Z

D
2Hxh@

x
n ; wi

2

�2ı2
Z:

Thus Equation (7) becomes

@Z

@t
D

nX
i;jD1

�
gij

x

@2Z

@xi@xj
Cgij

y

@2Z

@yi@yj
C 2gik

x gjl
y h@

x
k ; @

y

l
i
@2Z

@xi@yj

�

C

�
jhx
j
2
C

4Hx.Hx � ıh
x
nn/

ı2C 2HxZ
h@x

n ; wi
2

�
Z:

Since the coefficient of Z is a smooth function which is bounded on .M�M /nfxDyg,
the maximum principle implies that Z remains nonnegative if initially nonnegative
(Z is zero on the diagonal fy D xg).

Remarks (1) The computation is valid for curve-shortening flow of a convex curve.

(2) The estimate implies curvature pinching, ie Hxg� ıhx � 0.

(3) We made no use of the sign assumption on ı , so the result also holds for negative ı .
This proves “exterior noncollapsing”, ie the hypersurface remains outside the ball of
radius jıj=Hx which touches the tangent plane at x on the exterior.

(4) The latter implies lower curvature pinching, ie HxgCjıjhx � 0.

(5) The same computation shows that Z remains nonpositive if initially nonpositive.
This applies in the case where M is convex, and proves that if M is contained in the
ball of radius ı=Hx which touches the tangent plane at x for every x at the initial
time, then this remains true for positive times. In this situation this implies curvature
pinching, ie Hxg� ıhx � 0.
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(6) In the latter case the conclusion is much stronger than pointwise curvature pinching:
It shows that the inradius and circumradius are both comparable to the reciprocal of the
mean curvature at every point, and consequently that the mean curvatures at different
points are comparable. The curvature pinching then implies that principal curvatures at
different points are also comparable. This allows a very simple proof of convergence of
convex hypersurfaces to spheres under mean curvature flow, recovering both Huisken’s
theorem [3] for n� 2 and Gage and Hamilton’s theorem [1; 2] for nD 1.

(7) If the assumption of positive mean curvature is dropped, the conclusion still
holds if we replace the mean curvature H by any positive solution f of the equation
@f=@t D �f CkAk2f . In particular, this applies to prove a noncollapsing result if
the initial hypersurface is star-shaped (see [5]).
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