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Blob homology

SCOTT MORRISON

KEVIN WALKER

Given an n–manifold M and an n–category C , we define a chain complex (the “blob
complex”) B�.M I C/ . The blob complex can be thought of as a derived category
analogue of the Hilbert space of a TQFT, and also as a generalization of Hochschild
homology to n–categories and n–manifolds. It enjoys a number of nice formal
properties, including a higher dimensional generalization of Deligne’s conjecture
about the action of the little disks operad on Hochschild cochains. Along the way, we
give a definition of a weak n–category with strong duality which is particularly well
suited for work with TQFTs. This is the published version of arXiv:1009.5025.
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1 Introduction

We construct a chain complex B�.M I C/ — the “blob complex” — associated to an
n–manifold M and a linear n–category C with strong duality. This blob complex
provides a simultaneous generalization of several well known constructions:

� The 0–th homology H0.B�.M I C// is isomorphic to the usual topological quan-
tum field theory invariant of M associated to C . (See Proposition 3.1.1 later in
the introduction and Section 2.4.)

� When n D 1 and C is just a 1–category (eg an associative algebra), the blob
complex B�.S1I C/ is quasi-isomorphic to the Hochschild complex Hoch�.C/.
(See Theorem 4.1.1 and Section 4.)

� When C is �1�n.T /, the A1 version of the fundamental n–groupoid of the space
T (Example 6.2.7), B�.M I C/ is homotopy equivalent to C�.Maps.M ! T //,
the singular chains on the space of maps from M to T . (See Theorem 7.3.1.)

The blob complex definition is motivated by the desire for a derived analogue of the
usual TQFT Hilbert space (replacing the quotient of fields by local relations with
some sort of resolution), and for a generalization of Hochschild homology to higher
n–categories. One can think of it as the pushout of these two familiar constructions.
More detailed motivations are described in Section 1.2.
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The blob complex has good formal properties, summarized in Section 1.3. These
include an action of C�.Homeo.M //, extending the usual Homeo.M / action on the
TQFT space H0 (Theorem 5.2.1) and a gluing formula allowing calculations by cutting
manifolds into smaller parts (Theorem 7.2.1).

We expect applications of the blob complex to contact topology and Khovanov homology
but do not address these in this paper.

Throughout, we have resisted the temptation to work in the greatest possible generality.
In most of the places where we say “set” or “vector space”, any symmetric monoidal
category with sufficient limits and colimits would do. Similarly, in many places chain
complexes could be replaced by more general objects, but we have not pursued this.

Note For simplicity, we will assume that all manifolds are unoriented and piecewise
linear, unless stated otherwise. In fact, all the results in this paper also hold for
smooth manifolds, as well as manifolds (PL or smooth) equipped with an orientation,
spin structure, or Pin˙ structure. We will use “homeomorphism” as a shorthand for
“piecewise linear homeomorphism”. The reader could also interpret “homeomorphism”
to mean an isomorphism in whatever category of manifolds we happen to be working in
(eg spin piecewise linear, oriented smooth, etc). In the smooth case there are additional
technical details concerning corners and gluing which we have omitted, since most of
the examples we are interested in require only a piecewise linear structure.

1.1 Structure of the paper

The subsections of the introduction explain our motivations in defining the blob complex
(see Section 1.2), summarize the formal properties of the blob complex (see Section 1.3),
describe known specializations (see Section 1.4), and outline the major results of the
paper (see Sections 1.5 and 1.6).

The first part of the paper (Sections 2–5) gives the definition of the blob complex
and establishes some of its properties. There are many alternative definitions of n–
categories, and part of the challenge of defining the blob complex is simply explaining
what we mean by an “n–category with strong duality” as one of the inputs. At first
we entirely avoid this problem by introducing the notion of a “system of fields” and
define the blob complex associated to an n–manifold and an n–dimensional system of
fields. We sketch the construction of a system of fields from a *–1–category and from
a pivotal 2–category.

Nevertheless, when we attempt to establish all of the observed properties of the blob
complex, we find this situation unsatisfactory. Thus, in the second part of the paper
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(Sections 6–7) we give yet another definition of an n–category, or rather a definition
of an n–category with strong duality. (Removing the duality conditions from our
definition would make it more complicated rather than less.) We call these “disk-like
n–categories”, to differentiate them from previous versions. Moreover, we find that we
need analogous A1 n–categories, and we define these as well following very similar
axioms. (See Section 1.7 below for a discussion of n–category terminology.)

The basic idea is that each potential definition of an n–category makes a choice about
the “shape” of morphisms. We try to be as lax as possible: a disk-like n–category
associates a vector space to every B homeomorphic to the n–ball. These vector spaces
glue together associatively, and we require that there is an action of the homeomorphism
groupoid. For an A1 n–category, we associate a chain complex instead of a vector
space to each such B and ask that the action of homeomorphisms extends to a suitably
defined action of the complex of singular chains of homeomorphisms. The axioms for
an A1 n–category are designed to capture two main examples: the blob complexes of
n–balls labelled by a disk-like n–category, and the complex C�.Maps.�! T // of
maps to a fixed target space T .

In Section 6.7 we explain how n–categories can be viewed as objects in an .nC1/–
category of sphere modules. When n D 1 this just the familiar 2–category of 1–
categories, bimodules and intertwiners.

In Section 6.3 we explain how to construct a system of fields from a disk-like n–
category (using a colimit along certain decompositions of a manifold into balls). With
this in hand, we write B�.M I C/ to indicate the blob complex of a manifold M with
the system of fields constructed from the n–category C . In Section 7 we give an
alternative definition of the blob complex for an A1 n–category on an n–manifold
(analogously, using a homotopy colimit). Using these definitions, we show how to use
the blob complex to “resolve” any ordinary n–category as an A1 n–category and
relate the first and second definitions of the blob complex. We use the blob complex
for A1 n–categories to establish important properties of the blob complex (in both
variants), in particular the “gluing formula” of Theorem 7.2.1 below.

The relationship between all these ideas is sketched in Figure 1.

Later sections address other topics. Section 8 gives a higher dimensional general-
ization of the Deligne conjecture (that the little discs operad acts on Hochschild
cochains) in terms of the blob complex. The appendices prove technical results about
C�.Homeo.M // and make connections between our definitions of n–categories and
familiar definitions for nD 1 and nD 2, as well as relating the nD 1 case of our A1
n–categories with usual A1 algebras.
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Figure 1: The main gadgets and constructions of the paper

1.2 Motivation

We will briefly sketch our original motivation for defining the blob complex.

As a starting point, consider TQFTs constructed via fields and local relations. (See
Section 2 or the second author’s TQFT notes [25].) This gives a satisfactory treatment
for semisimple TQFTs (ie TQFTs for which the cylinder 1–category associated to an
.n�1/–manifold Y is semisimple for all Y ).

For nonsemisimple TQFTs, this approach is less satisfactory. Our main motivating
example (though we will not develop it in this paper) is the .4C"/–dimensional TQFT
associated to Khovanov homology. It associates a bigraded vector space AKh.W

4;L/

to a 4–manifold W together with a link L� @W . The original Khovanov homology
of a link in S3 is recovered as AKh.B

4;L/.

How would we go about computing AKh.W
4;L/? For the Khovanov homology of a

link in S3 the main tool is the exact triangle (long exact sequence) relating resolutions
of a crossing. Unfortunately, the exactness breaks if we glue B4 to itself and attempt
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to compute AKh.S
1 �B3;L/. According to the gluing theorem for TQFTs, gluing

along B3 � @B4 corresponds to taking a coend (self tensor product) over the cylinder
category associated to B3 (with appropriate boundary conditions). The coend is not an
exact functor, so the exactness of the triangle breaks.

The obvious solution to this problem is to replace the coend with its derived counterpart,
Hochschild homology. This presumably works fine for S1 �B3 (the answer being
the Hochschild homology of an appropriate bimodule), but for more complicated 4–
manifolds this leaves much to be desired. If we build our manifold up via a handle
decomposition, the computation would be a sequence of derived coends. A different
handle decomposition of the same manifold would yield a different sequence of derived
coends. To show that our definition in terms of derived coends is well-defined, we
would need to show that the above two sequences of derived coends yield isomorphic
answers, and that the isomorphism does not depend on any choices we made along the
way. This is probably not easy to do.

Instead, we would prefer a definition for a derived version of AKh.W
4;L/ which

is manifestly invariant. In other words, we want a definition that does not involve
choosing a decomposition of W . After all, one of the virtues of our starting point —
TQFTs via field and local relations — is that it has just this sort of manifest invariance.

The solution is to replace AKh.W
4;L/, which is a quotient

linear combinations of fields=local relations;

with an appropriately free resolution (the blob complex)

� � � ! B2.W;L/! B1.W;L/! B0.W;L/:

Here B0 is linear combinations of fields on W , B1 is linear combinations of local
relations on W , B2 is linear combinations of relations amongst relations on W , and so
on. We now have a long exact sequence of chain complexes relating resolutions of the
link L (cf Lemma 4.1.5 which shows exactness with respect to boundary conditions in
the context of Hochschild homology).

1.3 Formal properties

The blob complex enjoys the following list of formal properties.

Property 1.3.1 (Functoriality) The blob complex is functorial with respect to home-
omorphisms. That is, for a fixed n–dimensional system of fields F , the association

X 7! B�.X IF/
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is a functor from n–manifolds and homeomorphisms between them to chain complexes
and isomorphisms between them.

As a consequence, there is an action of Homeo.X / on the chain complex B�.X IF/;
this action is extended to all of C�.Homeo.X // in Theorem 5.2.1 below.

The blob complex is also functorial with respect to F , although we will not address
this in detail here.

Property 1.3.2 (Disjoint union) The blob complex of a disjoint union is naturally
isomorphic to the tensor product of the blob complexes.

B�.X1 tX2/Š B�.X1/˝B�.X2/:

If an n–manifold X contains Y tY op as a codimension 0 submanifold of its boundary,
write Xgl DX

S
Y for the manifold obtained by gluing together Y and Y op . Note

that this includes the case of gluing two disjoint manifolds together.

Property 1.3.3 (Gluing map) Given a gluing X !Xgl , there is an injective natural
map

B�.X /! B�.Xgl/

(natural with respect to homeomorphisms, and also associative with respect to iterated
gluings).

Property 1.3.4 (Contractibility) With field coefficients, the blob complex on an n–
ball is contractible in the sense that it is homotopic to its 0–th homology. Moreover, the
0–th homology of balls can be canonically identified with the vector spaces associated
by the system of fields F to balls.

B�.BnIF/ Š
q.i.

// H0.B�.BnIF// Š
// AF .B

n/

Property 1.3.1 will be immediate from the definition given in Section 3.1, and we’ll
recall it at the appropriate point there. Properties 1.3.2, 1.3.3 and 1.3.4 are established
in Section 3.2.

1.4 Specializations

The blob complex is a simultaneous generalization of the TQFT skein module con-
struction and of Hochschild homology.
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Proposition 3.1.1 (Skein modules) The 0–th blob homology of X is the usual
(dual) TQFT Hilbert space (also known as skein module) associated to X by F (see
Section 2.3):

H0.B�.X IF//ŠAF .X /

Theorem 4.1.1 (Hochschild homology when X D S1 ) The blob complex for a
1–category C on the circle is quasi-isomorphic to the Hochschild complex:

B�.S1I C/ Š

q.i.
// Hoch�.C/:

Proposition 3.1.1 is immediate from the definition, and Theorem 4.1.1 is established in
Section 4.

1.5 Structure of the blob complex

In the following C�.Homeo.X // is the singular chain complex of the space of homeo-
morphisms of X , fixed on @X .

Theorem 5.2.1 (C�.Homeo.�// action) There is a chain map

eX W C�.Homeo.X //˝B�.X /! B�.X /
such that

(1) restricted to C0.Homeo.X // this is the action of homeomorphisms described in
Property 1.3.1;

(2) for any codimension 0–submanifold Y tY op� @X the following diagram (using
the gluing maps described in Property 1.3.3) commutes (up to homotopy):

C�.Homeo.X //˝B�.X / eX

//

glHomeo
Y

˝ glY
��

B�.X /
glY
��

C�.Homeo.X
S

Y //˝B�.X
S

Y /
e.X

S
Y /

// B�.X
S

Y /

Further:

Theorem 5.2.2 The chain map of Theorem 5.2.1 is associative, in the sense that the
following diagram commutes (up to homotopy):

C�.Homeo.X //˝C�.Homeo.X //˝B�.X /
1˝eX

//

ı˝1
��

C�.Homeo.X //˝B�.X /
eX

��

C�.Homeo.X //˝B�.X /
eX

// B�.X /
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Since the blob complex is functorial in the manifold X , this is equivalent to having
chain maps

evX!Y W C�.Homeo.X ! Y //˝B�.X /! B�.Y /
for any homeomorphic pair X and Y , satisfying corresponding conditions.

In Section 6 we introduce the notion of disk-like n–categories, from which we can
construct systems of fields. Traditional n–categories can be converted to disk-like
n–categories by taking string diagrams (see Section 2.2). Below, when we talk about
the blob complex for a disk-like n–category, we are implicitly passing first to this
associated system of fields. Further, in Section 6 we also have the notion of a disk-like
A1 n–category. In that section we describe how to use the blob complex to construct
disk-like A1 n–categories from ordinary disk-like n–categories:

Example 6.2.8 (Blob complexes of products with balls form a disk-like A1 n–cate-
gory) Let C be an ordinary disk-like n–category. Let Y be an .n�k/–manifold. There
is a disk-like A1 k –category B�.Y I C/, defined on each m–ball D for 0�m< k ,
to be the set

B�.Y I C/.D/D C.Y �D/

and on k –balls D to be the set

B�.Y I C/.D/D B�.Y �DI C/:
(When mDk the subsets with fixed boundary conditions form a chain complex.) These
sets have the structure of a disk-like A1 k –category, with compositions coming from
the gluing map in Property 1.3.3 and with the action of families of homeomorphisms
given in Theorem 5.2.1.

Remark Perhaps the most interesting case is when Y is just a point; then we have a
way of building a disk-like A1 n–category from an ordinary n–category. We think of
this disk-like A1 n–category as a free resolution of the ordinary n–category.

There is a version of the blob complex for C a disk-like A1 n–category instead
of an ordinary n–category; this is described in Section 7. The definition is in fact
simpler, almost tautological, and we use a different notation, C

�!
.M /. The next theorem

describes the blob complex for product manifolds in terms of the A1 blob complex of
the disk-like A1 n–categories constructed as in the previous example.

Theorem 7.1.1 (Product formula) Let W be a k –manifold and Y be an .n�k/–
manifold. Let C be an n–category. Let B�.Y I C/ be the disk-like A1 k –category
associated to Y via blob homology (see Example 6.2.8). Then

B�.Y �W I C/' B�.Y I C/
������!

.W /:
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The statement can be generalized to arbitrary fibre bundles, and indeed to arbitrary
maps (see Section 7.1).

Fix a disk-like n–category C , which we’ll omit from the notation. Recall that for any
.n�1/–manifold Y , the blob complex B�.Y / is naturally an A1 1–category. (See
Appendix C.3 for the translation between disk-like A1 1–categories and the usual
algebraic notion of an A1 category.)

Theorem 7.2.1 (Gluing formula)

� For any n–manifold X , with Y a codimension 0–submanifold of its boundary,
the blob complex of X is naturally an A1 module for B�.Y /.

� For any n–manifold Xgl D X
S

Y , the blob complex B�.Xgl/ is the A1
self-tensor product of B�.X / as an B�.Y /–bimodule:

B�.Xgl/' B�.X /
A1O

B�.Y /

Theorem 7.1.1 is proved in Section 7.1, and Theorem 7.2.1 in Section 7.2.

1.6 Applications

Finally, we give two applications of the above machinery.

Theorem 7.3.1 (Mapping spaces) Let �1�n.T / denote the disk-like A1 n–category
based on singular chains on maps Bn!T . (The case nD 1 is the usual A1–category
of paths in T .) Then

B�.X I�1�n.T //' C�.Maps.X ! T //;

where C� denotes singular chains.

This says that we can recover (up to homotopy) the space of maps to T via blob
homology from local data. Note that there is no restriction on the connectivity of T .
The proof appears in Section 7.3.

Theorem 8.0.2 (Higher dimensional Deligne conjecture) The singular chains of the
n–dimensional surgery cylinder operad act on blob cochains (up to coherent homotopy).
Since the little .nC1/–balls operad is a suboperad of the n–dimensional surgery
cylinder operad, this implies that the little .nC1/–balls operad acts on blob cochains of
the n–ball.

See Section 8 for a full explanation of the statement and the proof.
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1.7 n–category terminology

Section 6 adds to the zoo of n–category definitions, and the new creatures need names.
Unfortunately, we have found it difficult to come up with terminology which satisfies
all of the colleagues whom we have consulted, or even satisfies just ourselves.

One distinction we need to make is between n–categories which are associative in
dimension n and those that are associative only up to higher homotopies. The latter
are closely related to .1; n/–categories (ie 1–categories where all morphisms of
dimension greater than n are invertible), but we don’t want to use that name since
we think of the higher homotopies not as morphisms of the n–category but rather as
belonging to some auxiliary category (like chain complexes) that we are enriching in. We
have decided to call them “A1 n–categories”, since they are a natural generalization of
the familiar A1 1–categories. We also considered the names “homotopy n–categories”
and “infinity n–categories”. When we need to emphasize that we are talking about an
n–category which is not A1 in this sense we will say “ordinary n–category”.

Another distinction we need to make is between our style of definition of n–categories
and more traditional and combinatorial definitions. We will call instances of our
definition “disk-like n–categories”, since n–dimensional disks play a prominent role
in the definition. (In general we prefer “k –ball” to “k –disk”, but “ball-like” doesn’t
roll off the tongue as well as “disk-like”.)

Another thing we need a name for is the ability to rotate morphisms around in various
ways. For 2–categories, “strict pivotal” is a standard term for what we mean. (See
Barrett and Westbury [2] and Selinger [16], although note there the definition is only for
monoidal categories; one can think of a monoidal category as a 2–category with only
one 0–morphism, then relax this requirement, to obtain the sensible notion of pivotal
(or strict pivotal) for 2–categories. Compare also Gas, Ghosh and Gupta [6] which
addresses this issue explicitly.) A more general term is “duality”, but duality comes
in various flavors and degrees. We are mainly interested in a very strong version of
duality, where the available ways of rotating k –morphisms correspond to all the ways
of rotating k –balls. We sometimes refer to this as “strong duality”, and sometimes
we consider it to be implied by “disk-like”. (But beware: disks can come in various
flavors, and some of them, such as framed disks, don’t actually imply much duality.)
Another possibility considered here was “pivotal n–category”, but we prefer to preserve
pivotal for its usual sense. It will thus be a theorem that our disk-like 2–categories are
equivalent to pivotal 2–categories; cf Section C.2.

Finally, we need a general name for isomorphisms between balls, where the balls could
be piecewise linear or smooth or Spin or framed or etc, or some combination thereof.
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We have chosen to use “homeomorphism” for the appropriate sort of isomorphism, so
the reader should keep in mind that “homeomorphism” could mean PL homeomorphism
or diffeomorphism (and so on) depending on context.
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2 TQFTs via fields

In this section we review the construction of TQFTs from fields and local relations.
For more details see Walker’s TQFT notes [25]. For our purposes, a TQFT is defined
to be something which arises from this construction. This is an alternative to the more
common definition of a TQFT as a functor on cobordism categories satisfying various
conditions. A fully local (“down to points”) version of the cobordism-functor TQFT
definition should be equivalent to the fields-and-local-relations definition.

A system of fields is very closely related to an n–category. In one direction, Example
2.1.2 shows how to construct a system of fields from a (traditional) n–category. We do
this in detail for nD 1; 2 (Section 2.2) and more informally for general n. In the other
direction, our preferred definition of an n–category in Section 6 is essentially just a
system of fields restricted to balls of dimensions 0 through n; one could call this the
“local” part of a system of fields.

Since this section is intended primarily to motivate the blob complex construction of
Section 3.1, we suppress some technical details. In Section 6 the analogous details are
treated more carefully.

We only consider compact manifolds, so if Y �X is a closed codimension 0 submani-
fold of X , then X nY implicitly means the closure X nY .

Geometry & Topology, Volume 16 (2012)
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2.1 Systems of fields

Let Mk denote the category with objects unoriented PL manifolds of dimension k and
morphisms homeomorphisms. (We could equally well work with a different category
of manifolds — oriented, smooth, spin, etc — but for simplicity we will stick with
unoriented PL.)

Fix a symmetric monoidal category S . Fields on n–manifolds will be enriched over S .
Good examples to keep in mind are S D Set or S D Vect. The presentation here
requires that the objects of S have an underlying set, but this could probably be avoided
if desired.

An n–dimensional system of fields in S is a collection of functors Ck WMk ! Set for
0� k � n together with some additional data and satisfying some additional conditions,
all specified below.

Before finishing the definition of fields, we give two motivating examples of systems
of fields.

Example 2.1.1 Fix a target space T , and let C.X / be the set of continuous maps
from X to T .

Example 2.1.2 Fix an n–category C , and let C.X / be the set of embedded cell
complexes in X with codimension–j cells labeled by j –morphisms of C . One can
think of such embedded cell complexes as dual to pasting diagrams for C . This is
described in more detail in Section 2.2.

Now for the rest of the definition of system of fields. (Readers desiring a more precise
definition should refer to Section 6.1 and replace k –balls with k –manifolds.)

(1) There are boundary restriction maps Ck.X /! Ck�1.@X /, and these maps com-
prise a natural transformation between the functors Ck and Ck�1ı@. For c 2Ck�1.@X /,
we will denote by Ck.X I c/ the subset of C.X / which restricts to c . In this context,
we will call c a boundary condition.

(2) The subset Cn.X I c/ of top-dimensional fields with a given boundary condition is
an object in our symmetric monoidal category S . (This condition is of course trivial
when SD Set.) If the objects are sets with extra structure (eg SDVect or Kom (chain
complexes)), then this extra structure is considered part of the definition of Cn . Any
maps mentioned below between fields on n–manifolds must be morphisms in S .

(3) Ck is compatible with the symmetric monoidal structures on Mk , Set and S . For
k < n we have Ck.X tW /Š Ck.X /�Ck.W /, compatibly with homeomorphisms and
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restriction to boundary. For kDn we require Cn.XtW I ctd/ŠCk.X; c/˝Ck.W; d/.
We will call the projections Ck.X1 tX2/! Ck.Xi/ restriction maps.

(4) Gluing without corners: Let @X D Y t Y tW , where Y and W are closed
.k�1/–manifolds. Let Xgl denote X glued to itself along the two copies of Y . Using
the boundary restriction and disjoint union maps, we get two maps Ck.X /! C.Y /,
corresponding to the two copies of Y in @X . Let EqY .Ck.X // denote the equalizer
of these two maps. (When X is a disjoint union X1 tX2 the equalizer is the same
as the fibered product Ck.X1/�C.Y / Ck.X2/.) Then (here’s the axiom/definition part)
there is an injective “gluing” map

EqY .Ck.X // ,! Ck.Xgl/;

and this gluing map is compatible with all of the above structure (actions of homeomor-
phisms, boundary restrictions, disjoint union). Furthermore, up to homeomorphisms
of Xgl isotopic to the identity and collaring maps, the gluing map is surjective. We
say that fields on Xgl in the image of the gluing map are transverse to Y or splittable
along Y .

(5) Gluing with corners: Let @X D .Y t Y /[W , where the two copies of Y are
disjoint from each other and @.Y tY /D @W . Let Xgl denote X glued to itself along
the two copies of Y (Figure 2). Note that @Xgl DWgl , where Wgl denotes W glued

XW

Y Y

Xgl Wgl

glue

Figure 2: Gluing with corners

to itself (without corners) along two copies of @Y . Let cgl 2 Ck�1.Wgl/ be a be a
splittable field on Wgl and let c 2 Ck�1.W / be the cut open version of cgl . Let Cc

k
.X /

denote the subset of C.X / which restricts to c on W . (This restriction map uses the
gluing without corners map above.) Using the boundary restriction and gluing without

Geometry & Topology, Volume 16 (2012)



1494 Scott Morrison and Kevin Walker

corners maps, we get two maps Cc
k
.X /! C.Y /, corresponding to the two copies of Y

in @X . Let Eqc
Y .Ck.X // denote the equalizer of these two maps. Then (here’s the

axiom/definition part) there is an injective “gluing” map

Eqc
Y .Ck.X // ,! Ck.Xgl; cgl/;

and this gluing map is compatible with all of the above structure (actions of homeomor-
phisms, boundary restrictions, disjoint union). Furthermore, up to homeomorphisms of
Xgl isotopic to the identity and collaring maps, the gluing map is surjective. We say
that fields in the image of the gluing map are transverse to Y or splittable along Y .

(6) Splittings: Let c 2 Ck.X / and let Y �X be a codimension 1 properly embedded
submanifold of X . Then for most small perturbations of Y (eg for an open dense
subset of such perturbations, or for all perturbations satisfying a transversality condition;
cf Axiom 6.1.11 much later) c splits along Y . (In Example 2.1.1, c splits along all
such Y . In Example 2.1.2, c splits along Y so long as Y is in general position with
respect to the cell decomposition associated to c .)

(7) Product fields: There are maps Ck�1.Y /! Ck.Y �I/, denoted c 7! c�I . These
maps comprise a natural transformation of functors, and commute appropriately with
all the structure maps above (disjoint union, boundary restriction, etc). Furthermore, if
f W Y � I ! Y � I is a fiber-preserving homeomorphism covering xf W Y ! Y , then
f .c � I/D xf .c/� I .

There are two notation we commonly use for gluing. One is

xgl
..D gl.x/ 2 C.Xgl/;

for x 2 C.X /. The other is

x1 �x2
..D gl.x1˝x2/ 2 C.Xgl/;

in the case that X DX1 tX2 , with xi 2 C.Xi/.

Let M be an n–manifold and Y � @M be a codimension zero submanifold of @M .
Let M [ .Y � I/ denote M glued to Y � I along Y . Extend the product structure on
Y �I to a bicollar neighborhood of Y inside M [.Y �I/. We call a homeomorphism

f W M [ .Y � I/!M

a collaring homeomorphism if f is the identity outside of the bicollar and f preserves
the fibers of the bicollar.

Using the functoriality and product field properties above, together with collaring
homeomorphisms, we can define collar maps C.M /! C.M /. Let M and Y � @M
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be as above. Let x 2 C.M / be a field on M and such that @x is splittable along @Y .
Let c be x restricted to Y . Then we have the glued field x � .c � I/ on M [ .Y � I/.
Let f W M [ .Y � I/!M be a collaring homeomorphism. Then we call the map
x 7! f .x � .c � I// a collar map.

We call the equivalence relation generated by collar maps and homeomorphisms isotopic
to the identity extended isotopy, since the collar maps can be thought of (informally) as
the limit of homeomorphisms which expand an infinitesimally thin collar neighborhood
of Y to a thicker collar neighborhood.

2.2 Systems of fields from n–categories

We now describe in more detail Example 2.1.2, systems of fields coming from embedded
cell complexes labeled by n–category morphisms.

Given an n–category C with the right sort of duality, eg, a *–1–category (that is,
a 1–category with an involution of the morphisms reversing source and target) or a
pivotal 2–category, [2; 16; 6], we can construct a system of fields as follows. Roughly
speaking, C.X / will the set of all embedded cell complexes in X with codimension i

cells labeled by i –morphisms of C . We’ll spell this out for nD 1; 2 and then describe
the general case.

This way of decorating an n–manifold with an n–category is sometimes referred to as
a “string diagram”. It can be thought of as (geometrically) dual to a pasting diagram.
One of the advantages of string diagrams over pasting diagrams is that one has more
flexibility in slicing them up in various ways. In addition, string diagrams are traditional
in quantum topology. The diagrams predate by many years the terms “string diagram”
and “quantum topology”; see eg Penrose [14] and Penrose and Rindler [15].

If X has boundary, we require that the cell decompositions are in general position
with respect to the boundary — the boundary intersects each cell transversely, so cells
meeting the boundary are mere half-cells. Put another way, the cell decompositions we
consider are dual to standard cell decompositions of X .

We will always assume that our n–categories have linear n–morphisms.

For nD 1, a field on a 0–manifold P is a labeling of each point of P with an object
(0–morphism) of the 1–category C . A field on a 1–manifold S consists of

� a cell decomposition of S (equivalently, a finite collection of points in the interior
of S );

� a labeling of each 1–cell (and each half 1–cell adjacent to @S ) by an object
(0–morphism) of C ;
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� a transverse orientation of each 0–cell, thought of as a choice of “domain” and
“range” for the two adjacent 1–cells;

� a labeling of each 0–cell by a 1–morphism of C , with domain and range
determined by the transverse orientation and the labelings of the 1–cells.

We want fields on 1–manifolds to be enriched over Vect, so we also allow formal
linear combinations of the above fields on a 1–manifold X so long as these fields
restrict to the same field on @X .

In addition, we mod out by the relation which replaces a 1–morphism label a of a
0–cell p with a� and reverse the transverse orientation of p .

If C is a *-algebra (ie if C has only one 0–morphism) we can ignore the labels of
1–cells, so a field on a 1–manifold S is a finite collection of points in the interior
of S , each transversely oriented and each labeled by an element (1–morphism) of the
algebra.

For nD2, fields are just the sort of pictures based on 2–categories (eg tensor categories)
that are common in the literature. We describe these carefully here.

A field on a 0–manifold P is a labeling of each point of P with an object of the
2–category C . A field of a 1–manifold is defined as in the nD 1 case, using the 0–
and 1–morphisms of C . A field on a 2–manifold Y consists of

� a cell decomposition of Y (equivalently, a graph embedded in Y such that each
component of the complement is homeomorphic to a disk);

� a labeling of each 2–cell (and each partial 2–cell adjacent to @Y ) by a 0–
morphism of C ;

� a transverse orientation of each 1–cell, thought of as a choice of “domain” and
“range” for the two adjacent 2–cells;

� a labeling of each 1–cell by a 1–morphism of C , with domain and range
determined by the transverse orientation of the 1–cell and the labelings of the
2–cells;

� for each 0–cell, a homeomorphism of the boundary R of a small neighborhood
of the 0–cell to S1 such that the intersections of the 1–cells with R are not
mapped to ˙1 2 S1 (this amounts to splitting of the link of the 0–cell into
domain and range);

� a labeling of each 0–cell by a 2–morphism of C , with domain and range
determined by the labelings of the 1–cells and the parameterizations of the
previous bullet.
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As in the nD 1 case, we allow formal linear combinations of fields on 2–manifolds,
so long as their restrictions to the boundary coincide.

In addition, we regard the labelings as being equivariant with respect to the � structure
on 1–morphisms and pivotal structure on 2–morphisms. That is, we mod out by the
relation which flips the transverse orientation of a 1–cell and replaces its label a by a� ,
as well as the relation which changes the parameterization of the link of a 0–cell and
replaces its label by the appropriate pivotal conjugate.

For general n, a field on a k –manifold X k consists of

� a cell decomposition of X ;
� an explicit general position homeomorphism from the link of each j –cell to the

boundary of the standard .k�j /–dimensional bihedron;
� a labeling of each j –cell by a .k�j /–dimensional morphism of C , with domain

and range determined by the labelings of the link of j –cell.

It is customary when drawing string diagrams to omit identity morphisms. In the above
context, this corresponds to erasing cells which are labeled by identity morphisms. The
resulting structure might not, strictly speaking, be a cell complex. So when we write
“cell complex” above we really mean a stratification which can be refined to a genuine
cell complex.

2.3 Local relations

For convenience we assume that fields are enriched over Vect.

Local relations are subspaces U.BI c/� C.BI c/ of the fields on balls which form an
ideal under gluing. Again, we give the examples first.

Example 2.1.1 (contd.) For maps into spaces, U.BI c/ is generated by fields of
the form a� b 2 C.BI c/, where a and b are maps (fields) which are homotopic rel
boundary.

Example 2.1.2 (contd.) For n–category pictures, U.BI c/ is equal to the kernel of
the evaluation map C.BI c/!mor.c0; c00/, where .c0; c00/ is some (any) division of c

into domain and range.

These motivate the following definition.

Definition 2.3.1 A local relation is a collection of subspaces U.BI c/� C.BI c/, for
all n–manifolds B which are homeomorphic to the standard n–ball and all c 2 C.@B/,
satisfying the following properties.
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(1) Functoriality: f .U.BI c//DU.B0; f .c// for all homeomorphisms f W B!B0 .

(2) Local relations imply extended isotopy invariance: if x;y 2 C.BI c/ and x is
extended isotopic to y , then x�y 2 U.BI c/.

(3) Ideal with respect to gluing: if B D B0[B00 , x 2 U.B0/, and r 2 C.B00/, then
x � r 2 U.B/.

See [25] for further details.

2.4 Constructing a TQFT

In this subsection we briefly review the construction of a TQFT from a system of fields
and local relations. As usual, see [25] for more details.

We can think of a path integral Z.W / of an .nC1/–manifold (which we’re not defin-
ing in this context; this is just motivation) as assigning to each boundary condition
x 2 C.@W / a complex number Z.W /.x/. In other words, Z.W / lies in CC.@W / , the
vector space of linear maps C.@W /!C .

The locality of the TQFT implies that Z.W / in fact lies in a subspace Z.@W / �

CC.@W / defined by local projections. The linear dual to this subspace, A.@W / D

Z.@W /� , can be thought of as finite linear combinations of fields modulo local relations.
(In other words, A.@W / is a sort of generalized skein module.) This is the motivation
behind the definition of fields and local relations above.

In more detail, let X be an n–manifold.

Definition 2.4.1 The TQFT invariant of X associated to a system of fields C and
local relations U is

A.X / ..D C.X /=U.X /;

where U.X /� C.X / is the space of local relations in C.X /: U.X / is generated by
fields of the form u � r , where u 2 U.B/ for some embedded n–ball B � X and
r 2 C.X nB/.

The blob complex, defined in the next section, is in some sense the derived version
of A.X /. If X has boundary we can similarly define A.X I c/ for each boundary
condition c 2 C.@X /.
The above construction can be extended to higher codimensions, assigning a k –
category A.Y / to an .n�k/–manifold Y , for 0� k � n. These invariants fit together
via actions and gluing formulas. We describe only the case k D 1 below. We describe

Geometry & Topology, Volume 16 (2012)



Blob homology 1499

these extensions in the more general setting of the blob complex later, in particular in
Example 6.2.4 and Example 6.2.8 and in Section 6.4.

The construction of the .nC1/–dimensional part of the theory (the path integral)
requires that the starting data (fields and local relations) satisfy additional conditions.
(Specifically, A.X I c/ is finite dimensional for all n–manifolds X and the inner
products on A.BnI c/ induced by the path integral of BnC1 are positive definite for
all c .) We do not assume these conditions here, so when we say “TQFT” we mean a
“decapitated” TQFT that lacks its .nC1/–dimensional part. Such a decapitated TQFT
is sometimes also called an nC� or nC1

2
dimensional TQFT, referring to the fact that

it assigns linear maps to .nC1/–dimensional mapping cylinders between n–manifolds,
but nothing to general .nC1/–manifolds.

Let Y be an .n�1/–manifold. Define a linear 1–category A.Y / as follows. The set
of objects of A.Y / is C.Y /. The morphisms from a to b are A.Y � I I a; b/, where
a and b label the two boundary components of the cylinder Y � I . Composition is
given by gluing of cylinders.

Let X be an n–manifold with boundary and consider the collection of vector spaces
A.X I �/ ..DfA.X I c/g where c ranges through C.@X /. This collection of vector spaces
affords a representation of the category A.@X /, where the action is given by gluing a
collar @X � I to X .

Given a splitting X DX1[Y X2 of a closed n–manifold X along an .n�1/–manifold Y ,
we have left and right actions of A.Y / on A.X1I �/ and A.X2I �/. The gluing theorem
for n–manifolds states that there is a natural isomorphism

A.X /ŠA.X1I �/˝A.Y /A.X2I �/:

A proof of this gluing formula appears in [25], but it also becomes a special case of
Theorem 7.2.1 by taking 0–th homology.

3 The blob complex

3.1 Definitions

Let X be an n–manifold. Let .F ;U / be a fixed system of fields and local relations.
We’ll assume it is enriched over Vect; if it is not we can make it so by allowing finite
linear combinations of elements of F.X I c/, for fixed c 2 F.@X /.
We want to replace the quotient

A.X / ..D F.X /=U.X /
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of Definition 2.4.1 with a resolution

� � � ! B2.X /! B1.X /! B0.X /:

We will define B0.X /, B1.X / and B2.X /, then give the general case Bk.X /. In fact,
on the first pass we will intentionally describe the definition in a misleadingly simple
way, then explain the technical difficulties, and finally give a cumbersome but complete
definition in Definition 3.1.6. If (we don’t recommend it) you want to keep track of the
ways in which this initial description is misleading, or you’re reading through a second
time to understand the technical difficulties, keep note that later we will give precise
meanings to “a ball in X ”, “nested” and “disjoint”, that are not quite the intuitive ones.
Moreover some of the pieces into which we cut manifolds below are not themselves
manifolds, and it requires special attention to define fields on these pieces.

We of course define B0.X /D F.X /. In other words, B0.X / is just the vector space
of all fields on X .

(If X has nonempty boundary, instead define B0.X I c/ D F.X I c/ for c 2 F.@X /.
The blob complex B�.X I c/ will depend on a fixed boundary condition c 2 F.@X /.
We’ll omit such boundary conditions from the notation in the rest of this section.)

We want the vector space B1.X / to capture “the space of all local relations that can be
imposed on B0.X /”. Thus we say a 1–blob diagram consists of

� a closed ball in X (“blob”) B �X ;

� a boundary condition c 2 F.@B/D F.@.X nB//;

� a field r 2 F.X nBI c/;

� a local relation field u 2 U.BI c/.

(See Figure 3.) Since c is implicitly determined by u or r , we usually omit it from the

Figure 3: A 1–blob diagram

notation. In order to get the linear structure correct, we define

B1.X /
..D
M

B

M
c

U.BI c/˝F.X nBI c/:
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The first direct sum is indexed by all blobs B � X , and the second by all boundary
conditions c 2 F.@B/. Note that B1.X / is spanned by 1–blob diagrams .B;u; r/.

Define the boundary map @W B1.X /! B0.X / by

.B;u; r/ 7! u � r;

where u � r denotes the field on X obtained by gluing u to r . In other words
@W B1.X /! B0.X / is given by just erasing the blob from the picture (but keeping the
blob label u).

Note that directly from the definition we have:

Proposition 3.1.1 The skein module A.X / is naturally isomorphic to

B0.X /=@.B1.X ///DH0.B�.X //:

This also establishes the second half of Property 1.3.4.

Next, we want the vector space B2.X / to capture “the space of all relations (redun-
dancies, syzygies) among the local relations encoded in B1.X /”. A 2–blob diagram
comes in one of two types, disjoint and nested. A disjoint 2–blob diagram consists of

� a pair of closed balls (blobs) B1;B2 �X with disjoint interiors;

� a field r 2 F.X n .B1[B2/I c1; c2/ (where ci 2 F.@Bi/);

� local relation fields ui 2 U.Bi I ci/, i D 1; 2.

(See Figure 4.) We also identify .B1;B2;u1;u2; r/ with �.B2;B1;u2;u1; r/; revers-

Figure 4: A disjoint 2–blob diagram

ing the order of the blobs changes the sign. Define

@.B1;B2;u1;u2; r/D .B2;u2;u1 � r/� .B1;u1;u2 � r/ 2 B1.X /:

In other words, the boundary of a disjoint 2–blob diagram is the sum (with alternating
signs) of the two ways of erasing one of the blobs. It’s easy to check that @2 D 0.

Geometry & Topology, Volume 16 (2012)



1502 Scott Morrison and Kevin Walker

A nested 2–blob diagram consists of
� a pair of nested balls (blobs) B1 � B2 �X ;
� a field r 0 2 F.B2 nB1I c1; c2/ (for some c1 2 F.@B1/ and c2 2 F.@B2/);
� a field r 2 F.X nB2I c2/;
� a local relation field u 2 U.B1I c1/.

(See Figure 5.) Define @.B1;B2;u; r
0; r/D .B2;u � r 0; r/� .B1;u; r

0 � r/. As in the

Figure 5: A nested 2–blob diagram

disjoint 2–blob case, the boundary of a nested 2–blob is the alternating sum of the two
ways of erasing one of the blobs. When we erase the inner blob, the outer blob inherits
the label u � r 0 . It is again easy to check that @2 D 0. Note that the requirement that
local relations are an ideal with respect to gluing guarantees that u � r 0 2 U.B2/.

As with the 1–blob diagrams, in order to get the linear structure correct the actual
definition is

B2.X /
..D

� M
B1;B2 disjoint

M
c1;c2

U.B1I c1/˝U.B2I c2/˝F.X n .B1[B2/I c1; c2/

�

˚

� M
B1�B2

M
c1;c2

U.B1I c1/˝F.B2 nB1I c1; c2/˝F.X nB2I c2/

�
:

Roughly, Bk.X / is generated by configurations of k blobs, pairwise disjoint or nested,
along with fields on all the components that the blobs divide X into. Blobs which
have no other blobs inside are called “twig blobs”, and the fields on the twig blobs
must be local relations. The boundary is the alternating sum of erasing one of the
blobs. In order to describe this general case in full detail, we must give a more precise
description of which configurations of balls inside X we permit. These configurations
are generated by two operations:
� For any (possibly empty) configuration of blobs on an n–ball D , we can add D

itself as an outermost blob. (This is used in the proof of Proposition 3.2.1.)
� If Xgl is obtained from X by gluing, then any permissible configuration of blobs

on X gives rise to a permissible configuration on Xgl . (This is necessary for
Proposition 3.2.3.)
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Combining these two operations can give rise to configurations of blobs whose com-
plement in X is not a manifold. Thus we will need to be more careful when speaking
of a field r on the complement of the blobs.

Example 3.1.2 Consider the four subsets of R3 ,

AD Œ0; 1�� Œ0; 1�� Œ0; 1�;

B D Œ0; 1�� Œ�1; 0�� Œ0; 1�;

C D Œ�1; 0��
˚
.y; z/

ˇ̌
e�1=z2

sin.1=z/� y � 1; z 2 Œ0; 1�
	
;

D D Œ�1; 0��
˚
.y; z/

ˇ̌
�1� y � e�1=z2

sin.1=z/; z 2 Œ0; 1�
	
:

Here A[B D Œ0; 1�� Œ�1; 1�� Œ0; 1� and C [D D Œ�1; 0�� Œ�1; 1�� Œ0; 1�. Now, fAg
is a valid configuration of blobs in A[B , and fDg is a valid configuration of blobs in
C [D , so we must allow fA;Dg as a configuration of blobs in Œ�1; 1�2 � Œ0; 1�. Note
however that the complement is not a manifold. See Figure 6.

Figure 6: The subsets A , B , C and D from Example 3.1.2. The pair fA;Dg
is a valid configuration of blobs, even though the complement is not a mani-
fold.

Definition 3.1.3 A gluing decomposition of an n–manifold X is a sequence of mani-
folds M0!M1! � � � !Mm D X such that each Mk is obtained from Mk�1 by
gluing together some disjoint pair of homeomorphic .n�1/–manifolds in the boundary
of Mk�1 . If, in addition, M0 is a disjoint union of balls, we call it a ball decomposition.

Let M0!M1!� � �!MmDX be a gluing decomposition of X , and let M 0
0
; : : : ;M k

0

be the connected components of M0 . We say that a field a2F.X / is splittable along the
decomposition if a is the image under gluing and disjoint union of fields ai 2 F.M i

0
/,

0� i � k . Note that if a is splittable in this sense then it makes sense to talk about the
restriction of a to any component M 0

j of any Mj of the decomposition.
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In the example above, note that

AtB tC tD! .A[B/t .C [D/!A[B [C [D

is a ball decomposition, but other sequences of gluings starting from AtB tC tD

have intermediate steps which are not manifolds.

We’ll now slightly restrict the possible configurations of blobs.

Definition 3.1.4 A configuration of k blobs in X is an ordered collection of k subsets
fB1; : : : ;Bkg of X such that there exists a gluing decomposition M0!� � �!MmDX

of X with the property that for each subset Bi there is some 0 � l � m and some
connected component M 0

l
of Ml which is a ball, such that Bi is the image of M 0

l

in X . We say that such a gluing decomposition is compatible with the configuration.
A blob Bi is a twig blob if no other blob Bj is a strict subset of it.

In particular, this implies what we said about blobs above: that for any two blobs
in a configuration of blobs in X , they either have disjoint interiors, or one blob is
contained in the other. We describe these as disjoint blobs and nested blobs. Note that
nested blobs may have boundaries that overlap, or indeed coincide. Blobs may meet
the boundary of X . Further, note that blobs need not actually be embedded balls in X ,
since parts of the boundary of the ball M 0

l
may have been glued together.

Note that often the gluing decomposition for a configuration of blobs may just be the
trivial one: if the boundaries of all the blobs cut X into pieces which are all manifolds,
we can just take M0 to be these pieces, and M1 DX .

In the initial informal definition of a k –blob diagram above, we allowed any collection
of k balls which were pairwise disjoint or nested. We now further require that the balls
are a configuration in the sense of Definition 3.1.4. We also specified a local relation on
each twig blob, and a field on the complement of the twig blobs; this is unsatisfactory
because that complement need not be a manifold. Thus, the official definitions are

Definition 3.1.5 A k –blob diagram on X consists of

� a configuration fB1; : : : ;Bkg of k blobs in X ;

� a field r 2F.X / which is splittable along some gluing decomposition compatible
with that configuration,

such that the restriction ui of r to each twig blob Bi lies in the subspace U.Bi/ �

F.Bi/. (See Figure 7.) More precisely, each twig blob Bi is the image of some ball M 0
l

as above, and it is really the restriction to M 0
l

that must lie in the subspace U.M 0
l
/.
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Figure 7: A k –blob diagram

Definition 3.1.6 The k –th vector space Bk.X / of the blob complex of X is the direct
sum over all configurations of k blobs in X of the vector space of k –blob diagrams
with that configuration, modulo identifying the vector spaces for configurations that
only differ by a permutation of the blobs by the sign of that permutation. The differential
Bk.X /! Bk�1.X / is, as above, the signed sum of ways of forgetting one blob from
the configuration, preserving the field r :

@.fB1; : : :Bkg; r/D

kX
iD1

.�1/iC1.fB1; : : : ;cBi ; : : : ;Bkg; r/

We readily see that if a gluing decomposition is compatible with some configuration
of blobs, then it is also compatible with any configuration obtained by forgetting
some blobs, ensuring that the differential in fact lands in the space of .k�1/–blob
diagrams. A slight compensation to the complication of the official definition arising
from attention to splitting is that the differential now just preserves the entire field r

without having to say anything about gluing together fields on smaller components.

Note that Property 1.3.1, that the blob complex is functorial with respect to homeo-
morphisms, is immediately obvious from the definition. A homeomorphism acts in an
obvious way on blobs and on fields.

Remark 3.1.7 We note that blob diagrams in X have a structure similar to that of a
simplicial set, but with simplices replaced by a more general class of combinatorial
shapes. Let P be the minimal set of (isomorphisms classes of) polyhedra which is
closed under products and cones, and which contains the point. We can associate an
element p.b/ of P to each blob diagram b (equivalently, to each rooted tree) according
to the following rules:

� p.∅/D pt, where ∅ denotes a 0–blob diagram or empty tree;

� p.atb/Dp.a/�p.b/, where atb denotes the distant (nonoverlapping) union
of two blob diagrams (equivalently, join two trees at the roots);
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� p.xb/D cone.p.b//, where xb is obtained from b by adding an outer blob which
encloses all the others (equivalently, add a new edge to the root, with the new
vertex becoming the root of the new tree).

For example, a diagram of k strictly nested blobs corresponds to a k –simplex, while
a diagram of k disjoint blobs corresponds to a k –cube. (When the fields come from
an n–category, this correspondence works best if we think of each twig label ui as
having the form x � s.e.x//, where x is an arbitrary field on Bi , eW F.Bi/! C is
the evaluation map, and sW C ! F.Bi/ is some fixed section of e .)

For lack of a better name, we’ll call elements of P cone-product polyhedra, and say
that blob diagrams have the structure of a cone-product set (analogous to simplicial set).

3.2 Basic properties

In this section we complete the proofs of Properties 1.3.2–1.3.4. Throughout the paper,
where possible, we prove results using Properties 1.3.1–1.3.4, rather than the actual
definition of the blob complex. This allows the possibility of future improvements on
or alternatives to our definition. In fact, we hope that there may be a characterization
of the blob complex in terms of Properties 1.3.1–1.3.4, but at this point we are unaware
of one.

Recall Property 1.3.2, that there is a natural isomorphism B�.XtY /ŠB�.X /˝B�.Y /.

Proof of Property 1.3.2 Given blob diagrams b1 on X and b2 on Y , we can combine
them (putting the b1 blobs before the b2 blobs in the ordering) to get a blob diagram
.b1; b2/ on X t Y . Because of the blob reordering relations, all blob diagrams on
X tY arise this way. In the other direction, any blob diagram on X tY is equal (up
to sign) to one that puts X blobs before Y blobs in the ordering, and so determines
a pair of blob diagrams on X and Y . These two maps are compatible with our sign
conventions. (We follow the usual convention for tensors products of complexes, as in
eg Gelfand and Manin [8]: d.a˝ b/D da˝ bC .�1/deg.a/a˝ db .) The two maps
are inverses of each other.

For the next proposition we will temporarily restore n–manifold boundary conditions
to the notation.

Suppose that for all c 2 C.@Bn/ we have a splitting sW H0.B�.BnI c//! B0.B
nI c/

of the quotient map pW B0.B
nI c/!H0.B�.BnI c//. For example, this is always the

case if the coefficient ring is a field.
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Proposition 3.2.1 For all c2C.@Bn/ the natural map pW B�.BnI c/!H0.B�.BnI c//

is a chain homotopy equivalence with inverse sW H0.B�.BnI c//! B�.BnI c/. Here
we think of H0.B�.BnI c// as a 1–step complex concentrated in degree 0.

Proof By assumption p ı s D 1, so all that remains is to find a degree 1 map
hW B�.BnI c/ ! B�.BnI c/ such that @h C h@ D 1 � s ı p . For i � 1, define
hi W Bi.B

nI c/ ! BiC1.B
nI c/ by adding an .iC1/–st blob equal to all of Bn . In

other words, add a new outermost blob which encloses all of the others. Define
h0W B0.B

nI c/! B1.B
nI c/ by setting h0.x/ equal to the 1–blob with blob Bn and

label x� s.p.x// 2 U.BnI c/.

This proves Property 1.3.4 (the second half of the statement of this Property was
immediate from the definitions). Note that even when there is no splitting s , we can let
h0 D 0 and get a homotopy equivalence to the 2–step complex U.BnI c/! C.BnI c/.

For fields based on n–categories, H0.B�.BnI c//Šmor.c0; c00/, where .c0; c00/ is some
(any) splitting of c into domain and range.

Corollary 3.2.2 If X is a disjoint union of n–balls, then B�.X I c/ is contractible.

Proof This follows from Properties 1.3.2 and 1.3.4.

We define the support of a blob diagram b , supp.b/�X , to be the union of the blobs
of b . For y 2 B�.X / with y D

P
cibi (ci a nonzero number, bi a blob diagram), we

define supp.y/ ..D
S

i supp.bi/.

For the next proposition we will temporarily restore n–manifold boundary conditions
to the notation. Let X be an n–manifold, with @X D Y [ Y [Z . Gluing the two
copies of Y together yields an n–manifold Xgl with boundary Zgl . Given compatible
fields (boundary conditions) a, b and c on Y , Y and Z , we have the blob complex
B�.X I a; b; c/. If bD a, then we can glue up blob diagrams on X to get blob diagrams
on Xgl . This proves Property 1.3.3, which we restate here in more detail.

Proposition 3.2.3 There is a natural chain map

glW
M

a

B�.X I a; a; c/! B�.XglI cgl/:

The sum is over all fields a on Y compatible at their (.n�2/–dimensional) boundaries
with c . “Natural” means natural with respect to the actions of homeomorphisms. In
degree zero the map agrees with the gluing map coming from the underlying system of
fields.

This map is very far from being an isomorphism, even on homology. We eliminate this
deficit in Section 7.2 below.
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4 Hochschild homology when nD 1

4.1 Outline

So far we have provided no evidence that blob homology is interesting in degrees
greater than zero. In this section we analyze the blob complex in dimension nD 1.

Recall (Section 2.2) that from a *–1–category C we can construct a system of fields‘C .
In this section we prove that B�.S1; C/ is homotopy equivalent to the Hochschild
complex of C . Thus the blob complex is a natural generalization of something already
known to be interesting in higher homological degrees.

It is also worth noting that the original idea for the blob complex came from trying to
find a more “local” description of the Hochschild complex.

Let C be a *–1–category. Then specializing the definition of the associated system of
fields from Section 2.2 above to the case nD 1 we have;

� C.pt/D ob.C /.

� Let R be a 1–manifold and c 2 C.@R/. Then an element of C.RI c/ is a
collection of (transversely oriented) points in the interior of R, each labeled
by a morphism of C . The intervals between the points are labeled by objects
of C , consistent with the boundary condition c and the domains and ranges of
the point labels.

� There is an evaluation map eW C.I I a; b/!mor.a; b/ given by composing the
morphism labels of the points. Note that we also need the * of *–1–category
here in order to make all the morphisms point the same way.

� For x 2 mor.a; b/ let �.x/ 2 C.I I a; b/ be the field with a single point (at
some standard location) labeled by x . Then the kernel of the evaluation map
U.I I a; b/ is generated by things of the form y ��.e.y//. Thus we can, if we
choose, restrict the blob twig labels to things of this form.

We want to show that B�.S1/ is homotopy equivalent to the Hochschild complex of C .
In order to prove this we will need to extend the definition of the blob complex to
allow points to also be labeled by elements of C –C –bimodules. (See Section 6.5
and Section 6.7 for a more general version of this construction that applies in all
dimensions.)

Fix points p1; : : : ;pk 2 S1 and C –C –bimodules M1; : : :Mk . We define a blob-
like complex K�.S

1; .pi/; .Mi//. The fields have elements of Mi labeling the fixed
points pi and elements of C labeling other (variable) points. As before, the regions
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between the marked points are labeled by objects of C . The blob twig labels lie in
kernels of evaluation maps. (The range of these evaluation maps is a tensor product
(over C ) of Mi ’s, corresponding to the pi ’s that lie within the twig blob.) Let
K�.M / D K�.S

1; .�/; .M //, where � 2 S1 is some standard base point. In other
words, fields for K�.M / have an element of M at the fixed point � and elements
of C at variable other points.

In the theorems, propositions and lemmas below we make various claims about com-
plexes being homotopy equivalent. In all cases the complexes in question are free (and
hence projective), so it suffices to show that they are quasi-isomorphic.

We claim that:

Theorem 4.1.1 The blob complex B�.S1IC / on the circle is homotopy equivalent to
the usual Hochschild complex for C .

This follows from two results. First, we see that:

Lemma 4.1.2 The complex K�.C / (here C is being thought of as a C –C –bimodule,
not a category) is homotopy equivalent to the blob complex B�.S1IC /.

The proof appears below.

Next, we show that for any C –C –bimodule M :

Proposition 4.1.3 The complex K�.M / is homotopy equivalent to Hoch�.M /, the
usual Hochschild complex of M .

Proof Recall that the usual Hochschild complex of M is uniquely determined, up to
quasi-isomorphism, by the following properties:

(1) Hoch�.M1˚M2/Š Hoch�.M1/˚Hoch�.M2/.

(2) An exact sequence 0!M1 ,!M2 � M3! 0 gives rise to an exact sequence
0! Hoch�.M1/ ,! Hoch�.M2/� Hoch�.M3/! 0.

(3) HH0.M / is isomorphic to the coinvariants of M , coinv.M /DM=hcm�mci.

(4) Hoch�.C ˝C / is contractible. (Here C ˝C denotes the free C –C –bimodule
with one generator.) That is, Hoch�.C ˝ C / is quasi-isomorphic to its 0–
th homology (which in turn, by (3) above, is just C ) via the quotient map
Hoch0 � HH0 .
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(Together, these just say that Hochschild homology is “the derived functor of coinvari-
ants”.) We’ll first recall why these properties are characteristic.

Take some C –C –bimodule M , and choose a free resolution

� � � ! F2

f2
�! F1

f1
�! F0:

We will show that for any functor P satisfying properties (1), (2), (3) and (4), there is
a quasi-isomorphism

P�.M /Š coinv.F�/:

Observe that there’s a quotient map � W F0 � M , and by construction the cone of
the chain map � W F�!M is acyclic. Now construct the total complex Pi.Fj /, with
i; j � 0, graded by i C j . We have two chain maps

Pi.F�/
Pi .�/
����! Pi.M /;

P�.Fj /
P0.Fj /�H0.P�.Fj //
���������������! coinv.Fj /:

The cone of each chain map is acyclic. In the first case, this is because the “rows”
indexed by i are acyclic since Pi is exact. In the second case, this is because the
“columns” indexed by j are acyclic, since Fj is free. Because the cones are acyclic,
the chain maps are quasi-isomorphisms. Composing one with the inverse of the other,
we obtain the desired quasi-isomorphism

P�.M /
Š
��!
q:i:

coinv.F�/:

Proposition 4.1.3 then follows from the following lemmas, establishing that K� has
precisely these required properties.

Lemma 4.1.4 Directly from the definition, K�.M1˚M2/ŠK�.M1/˚K�.M2/.

Lemma 4.1.5 An exact sequence 0!M1 ,!M2 � M3! 0 gives rise to an exact
sequence 0!K�.M1/ ,!K�.M2/� K�.M3/! 0.

Lemma 4.1.6 H0.K�.M // is isomorphic to the coinvariants of M .

Lemma 4.1.7 K�.C ˝C / is quasi-isomorphic to H0.K�.C ˝C //Š C .

The rest of this section is devoted to proving Lemmas 4.1.2, 4.1.5, 4.1.6 and 4.1.7.

Geometry & Topology, Volume 16 (2012)



Blob homology 1511

4.2 Technical details

Proof of Lemma 4.1.2 We show that K�.C / is quasi-isomorphic to B�.S1/. K�.C /

differs from B�.S1/ only in that the base point � is always a labeled point in K�.C /,
while in B�.S1/ it may or may not be. In particular, there is an inclusion map
i W K�.C /! B�.S1/.

We want to define a homotopy inverse to the above inclusion, but before doing so we
must replace B�.S1/ with a homotopy equivalent subcomplex. Let J� � B�.S1/ be
the subcomplex where � does not lie on the boundary of any blob. Note that the image
of i is contained in J� . Note also that in B�.S1/ (away from J� ) a blob diagram
could have multiple (nested) blobs whose boundaries contain �, on both the right and
left of �.

We claim that J� is homotopy equivalent to B�.S1/. Let F �� � B�.S1/ be the
subcomplex where either (a) the point � is not on the boundary of any blob or (b)
there are no labeled points or blob boundaries within distance � of �, other than blob
boundaries at � itself. Note that all blob diagrams are in some F �� for � sufficiently
small. Let b be a blob diagram in F �� . Define f .b/ to be the result of moving any
blob boundary points which lie on � to distance � from �. (Move right or left so as to
shrink the blob.) Extend to get a chain map f W F ��! F �� . By Corollary 3.2.2, f is
homotopic to the identity. (Use the facts that f factors though a map from a disjoint
union of balls into S1 , and that f is the identity in degree 0.) Since the image of f is
in J� , and since any blob chain is in F �� for � sufficiently small, we have that J� is
homotopic to all of B�.S1/.

We now define a homotopy inverse sW J� ! K�.C / to the inclusion i . If y is a
field defined on a neighborhood of �, define s.y/ D y if � is a labeled point in y .
Otherwise, define s.y/ to be the result of adding a label 1 (identity morphism) at �.
Extending linearly, we get the desired map sW J�!K�.C /. It is easy to check that s

is a chain map and s ı i D 1. What remains is to show that i ı s is homotopic to the
identity.

Let N� denote the ball of radius � around �. Let L�� � J� be the subcomplex spanned
by blob diagrams where there are no labeled points in N� , except perhaps �, and N�
is either disjoint from or contained in every blob in the diagram. Note that for any
chain x 2 J� , x 2L�� for sufficiently small � .

We define a degree 1 map j�W L
�
�! L�� as follows. Let x 2 L�� be a blob diagram.

If � is not contained in any twig blob, we define j�.x/ by adding N� as a new twig
blob, with label y � s.y/ where y is the restriction of x to N� . If � is contained in a
twig blob B with label uD

P
zi , write yi for the restriction of zi to N� , and let xi
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be equal to x on S1 nB , equal to zi on B nN� , and have an additional blob N� with
label yi � s.yi/. Define j�.x/D

P
xi .

It is not hard to show that on L��

@j�C j�@D 1� i ı s:

(To get the signs correct here, we add N� as the first blob.) Since for � small enough
L�� captures all of the homology of J� , it follows that the mapping cone of i ı s is
acyclic and therefore (using the fact that these complexes are free) i ı s is homotopic
to the identity.

Proof of Lemma 4.1.5 We now prove that K� is an exact functor.

As a warm-up, we prove that the functor on C –C –bimodules

M 7! ker.C ˝M ˝C
c1˝m˝c2 7!c1mc2
�������������!M /

is exact. Suppose we have a short exact sequence of C –C –bimodules

0 // K
� � f // E

g
// // Q // 0 :

We’ll write yf and yg for the image of f and g under the functor, so

yf

�X
i

ai ˝ ki ˝ bi

�
D

X
i

ai ˝f .ki/˝ bi ;

and similarly for yg . Most of what we need to check is easy. Suppose we haveP
i.ai ˝ ki ˝ bi/ 2 ker.C ˝K˝C !K/, assuming without loss of generality that

fai˝bigi is linearly independent in C˝C , and yf .a˝k˝b/D02ker.C˝E˝C!E/.
We must then have f .ki/ D 0 2 E for each i , which implies ki D 0 itself. IfP

i.ai ˝ ei ˝ bi/ 2 ker.C ˝E˝C !E/ is in the image of ker.C ˝K˝C !K/

under yf , again by assuming the set fai ˝ bigi is linearly independent we can deduce
that each ei is in the image of the original f , and so is in the kernel of the original g ,
and so yg.

P
i ai ˝ ei ˝ bi/D 0. If yg.

P
i ai ˝ ei ˝ bi/D 0, then each g.ei/D 0, so

ei D f .eei/ for some eei 2K , and
P

i ai ˝ ei ˝ bi D
yf .
P

i ai ˝eei ˝ bi/. Finally, the
interesting step is in checking that any q D

P
i ai ˝ qi ˝ bi such that

P
iaiqibi D 0

is in the image of ker.C ˝E ˝ C ! C / under yg . For each i , we can find eqi so
g.eqi/D qi . However

P
i aieqibi need not be zero. Consider then

zq D
X

i

.ai ˝ eqi ˝ bi/� 1˝

�X
i

aieqi bi

�
˝ 1:
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Certainly zq 2 ker.C ˝E˝C !E/. Further,

yg.zq/D
X

i

.ai ˝g.eqi/˝ bi/� 1˝

�X
i

aig.eqi/bi

�
˝ 1

D q� 0

(here we used that g is a map of C –C –bimodules, and that
P

i aiqibi D 0).

Similar arguments show that all the functors

(4-1) M 7! ker.C˝k
˝M ˝C˝l

!M /

are exact too. Moreover, tensor products of such functors with each other and with C or
ker.C˝k!C / (producing the functor M 7!ker.M˝C!M /˝C˝ker.C˝C!M /,
for example) are all still exact.

Finally, then we see that the functor K� is simply an (infinite) direct sum of copies
of this sort of functor. The direct sum is indexed by configurations of nested blobs
and of labels; for each such configuration, we have one of the above tensor product
functors, with the labels of twig blobs corresponding to tensor factors as in (4-1) or
ker.C˝k ! C / (depending on whether they contain a marked point pi ), and all other
labelled points corresponding to tensor factors of C and M .

Proof of Lemma 4.1.6 We show that H0.K�.M // is isomorphic to the coinvariants
of M .

We define a map evW K0.M /!M . If x 2K0.M / has the label m 2M at �, and
labels ci 2 C at the other labeled points of S1 , reading clockwise from �, we set
ev.x/ D mc1 � � � ck . We can think of this as evW M ˝ C˝k ! M , for each direct
summand of K0.M / indexed by a configuration of labeled points.

There is a quotient map � W M ! coinv M . We claim that the composition � ı ev is
well-defined on the quotient H0.K�.M //; ie that �.ev.@y//D 0 for all y 2K1.M /.
There are two cases, depending on whether the blob of y contains the point �. If it
doesn’t, then suppose y has label m at �, labels ci at other labeled points outside
the blob, and the field inside the blob is a sum, with the j –th term having labeled
points dj ;i . Then X

j

dj ;1˝ � � �˝ dj ;kj
2 ker

�M
k

C˝k
! C

�
;

and so ev.@y/D 0, because

C˝`1 ˝ ker
�M

k

C˝k
! C

�
˝C˝`2 � ker

�M
k

C˝k
! C

�
:
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Similarly, if � is contained in the blob, then the blob label is a sum, with the j –th
term have labelled points dj ;i to the left of �, mj at �, and d 0j ;i to the right of �, and
there are labels ci at the labeled points outside the blob. We know thatX

j

dj ;1˝� � �˝dj ;kj
˝mj˝d 0j ;1˝� � �˝d 0

j ;k0
j

2 ker
�M

k;k0

C˝k
˝M ˝C˝k0

!M

�
;

and so

�.ev.@y//D �
�X

j

mj d 0j ;1 � � � d
0

j ;k0
j

c1 � � � ckdj ;1 � � � dj ;kj

�

D �

�X
j

dj ;1 � � � dj ;kj
mj d 0j ;1 � � � d

0

j ;k0
j

c1 � � � ck

�
D 0;

where this time we use the fact that we’re mapping to coinv M , not just M .

The map � ı evW H0.K�.M //! coinv M is clearly surjective (ev surjects onto M );
we now show that it’s injective. This is equivalent to showing that

ev�1.ker.�//� @K1.M /:

The above inclusion follows from

ker.ev/� @K1.M /;

ker.�/� ev.@K1.M //:

Let xD
P

xi be in the kernel of ev, where each xi is a configuration of labeled points
in S1 . Since the sum is finite, we can find an interval (blob) B in S1 such that for
each i the C –labeled points of xi all lie to the right of the base point �. Let yi be
the restriction of xi to B and y D

P
yi . Let r be the “empty” field on S1 nB . It

follows that y 2 U.B/ and
@.B;y; r/D x:

ker.�/ is generated by elements of the form cm�mc . As shown in Figure 9, cm�mc

lies in ev.@K1.M //.

Proof of Lemma 4.1.7 We show that K�.C ˝C / is quasi-isomorphic to the 0–step
complex C . We’ll do this in steps, establishing quasi-isomorphisms and homotopy
equivalences

K�.C ˝C /
Š
��!
q:i:

K0�
'
��!
htpy

K00�
Š
��!
q:i:

C:
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Let K0��K�.C˝C / be the subcomplex where the label of the point � is 1˝12C˝C .
We will show that the inclusion i W K0�!K�.C ˝C / is a quasi-isomorphism.

Fix a small � > 0. Let N� be the ball of radius � around �2S1 . Let K�
��K�.C˝C /

be the subcomplex generated by blob diagrams b such that N� is either disjoint from
or contained in each blob of b , and the only labeled point inside N� is �. For a field y

on N� , let s�.y/ be the equivalent picture with � labeled by 1˝ 1 and the only other
labeled points at distance ˙�=2 from �. (See Figure 8.) Note that y� s�.y/ 2U.N�/.
Let ��W K�

�!K�
� be the chain map given by replacing the restriction y to N� of each

field appearing in an element of K�
� with s�.y/. Note that ��.x/ 2K0� .

y D s�.y/D

Figure 8: Defining s�

Define a degree 1 map j�W K
�
�!K�

� as follows. Let x 2K�
� be a blob diagram. If �

is not contained in any twig blob, j�.x/ is obtained by adding N� to x as a new twig
blob, with label y � s�.y/, where y is the restriction of x to N� . If � is contained
in a twig blob B with label u D

P
zi , j�.x/ is obtained as follows. Let yi be the

restriction of zi to N� . Let xi be equal to x outside of B , equal to zi on B nN� , and
have an additional blob N� with label yi � s�.yi/. Define j�.x/D

P
xi . Note that if

x 2K0�\K�
� then j�.x/ 2K0� also.

The key property of j� is
@j�C j�@D 1� ��:

(Again, to get the correct signs, N� must be added as the first blob.) If j� were
defined on all of K�.C ˝ C /, this would show that �� is a homotopy inverse to
the inclusion K0� ! K�.C ˝ C /. One strategy would be to try to stitch together
various j� for progressively smaller � and show that K0� is homotopy equivalent to
K�.C˝C /. Instead, we’ll be less ambitious and just show that K0� is quasi-isomorphic
to K�.C ˝C /.

If x is a cycle in K�.C ˝C /, then for sufficiently small � we have x 2K�
� . (This is

true for any chain in K�.C˝C /, since chains are sums of finitely many blob diagrams.)
Then x is homologous to ��.x/, which is in K0� , so the inclusion map K0��K�.C˝C /

is surjective on homology. If y 2K�.C ˝C / and @yD x 2K�.C ˝C /, then y 2K�
�

for some � and
@y D @.��.y/C j�.x//:

Since ��.y/C j�.x/ 2K0� , it follows that the inclusion map is injective on homology.
This completes the proof that K0� is quasi-isomorphic to K�.C ˝C /.
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Let K00� � K0� be the subcomplex of K0� where � is not contained in any blob. We
will show that the inclusion i W K00�!K0� is a homotopy equivalence.

First, a lemma: Let G00� and G0� be defined similarly to K00� and K0� , except with
S1 replaced by some neighborhood N of � 2 S1 . (G00� and G0� depend on N , but
that is not reflected in the notation.) Then G00� and G0� are both contractible and the
inclusion G00� � G0� is a homotopy equivalence. For G0� the proof is the same as in
Proposition 3.2.1, except that the splitting G0

0
!H0.G

0
�/ concentrates the point labels

at two points to the right and left of �. For G00� we note that any cycle is supported
away from �. Thus any cycle lies in the image of the normal blob complex of a disjoint
union of two intervals, which is contractible by Proposition 3.2.1 and Corollary 3.2.2.
Finally, it is easy to see that the inclusion G00�!G0� induces an isomorphism on H0 .

Next we construct a degree 1 map (homotopy) hW K0�!K0� such that for all x 2K0�
we have

x� @h.x/� h.@x/ 2K00�:

Since K0
0
D K00

0
, we can take h0 D 0. Let x 2 K0

1
, with single blob B � S1 . If

� … B , then x 2K00
1

and we define h1.x/D 0. If � 2 B , then we work in the image
of G0� and G00� (with B playing the role of N above). Choose x00 2 G00

1
such that

@x00 D @x . Since G0� is contractible, there exists y 2 G0
2

such that @y D x � x00 .
Define h1.x/D y . The general case is similar, except that we have to take lower order
homotopies into account. Let x 2K0

k
. If � is not contained in any of the blobs of x ,

then define hk.x/ D 0. Otherwise, let B be the outermost blob of x containing �.
We can decompose x D x0 �p , where x0 is supported on B and p is supported away
from B . So x0 2G0

l
for some l �k . Choose x00 2G00

l
such that @x00D @.x0�hl�1@x

0/.
Choose y 2 G0

lC1
such that @y D x0 � x00 � hl�1@x

0 . Define hk.x/ D y � p . This
completes the proof that i W K00�!K0� is a homotopy equivalence.

Finally, we show that K00� is contractible with H0 Š C . This is similar to the proof
of Proposition 3.2.1, but a bit more complicated since there is no single blob which
contains the support of all blob diagrams in K00� . Let x be a cycle of degree greater
than zero in K00� . The union of the supports of the diagrams in x does not contain �, so
there exists a ball B � S1 containing the union of the supports and not containing �.
Adding B as an outermost blob to each summand of x gives a chain y with @y D x .
Thus Hi.K

00
�/Š 0 for i > 0 and K00� is contractible.

To see that H0.K
00
�/ŠC , consider the map pW K00

0
!C which sends a 0–blob diagram

to the product of its labeled points. p is clearly surjective. It’s also easy to see that
p.@K00

1
/D 0. Finally, if p.y/D 0 then there exists a blob B � S1 which contains all

of the labeled points (other than �) of all of the summands of y . This allows us to
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construct x 2K00
1

such that @x D y . (The label of B is the restriction of y to B .) It
follows that H0.K

00
�/Š C .

4.3 An explicit chain map in low degrees

For purposes of illustration, we describe an explicit chain map Hoch�.M /!K�.M /

between the Hochschild complex and the blob complex (with bimodule point) for
degree � 2. This map can be completed to a homotopy equivalence, though we will
not prove that here. There are of course many such maps; what we describe here is one
of the simpler possibilities.

Recall that in low degrees Hoch�.M / is

� � �
@
!M ˝C ˝C

@
!M ˝C

@
!M

with
@.m˝ a/Dma� am;

@.m˝ a˝ b/Dma˝ b�m˝ abC bm˝ a:

In degree 0, we send m 2M to the 0–blob diagram:

The base point in S1 is labeled by m and there are no other labeled points. In degree
1, we send m˝ a to the sum of two 1–blob diagrams as shown in Figure 9.

u1 D � u2 D �

Figure 9: The image of m˝ a in the blob complex

In degree 2, we send m˝ a˝ b to the sum of 24 (D 6 � 4) 2–blob diagrams as shown
in Figures 10 and 11. In Figure 11 the 1- and 2–blob diagrams are indicated only by
their support. We leave it to the reader to determine the labels of the 1–blob diagrams.
Each 2–cell in the figure is labeled by a ball V in S1 which contains the support of
all 1–blob diagrams in its boundary. Such a 2–cell corresponds to a sum of the 2–blob
diagrams obtained by adding V as an outer (nontwig) blob to each of the 1–blob
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Figure 10: The 0–chains in the image of m˝ a˝ b

Figure 11: The 1– and 2–chains in the image of m˝ a˝ b . Only the
supports of the blobs are shown, but see Figure 12 for an example of a 2–cell
label.

diagrams in the boundary of the 2–cell. Figure 12 shows this explicitly for the 2–cell
labeled A in Figure 11. Note that the (blob complex) boundary of this sum of 2–blob
diagrams is precisely the sum of the 1–blob diagrams corresponding to the boundary
of the 2–cell. (Compare with the proof of 3.2.1.)
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AD C C C

v1 D � v2 D �

v3 D � v4 D �

Figure 12: One of the 2–cells from Figure 11

5 Action of C�.Homeo.X//

In this section we extend the action of homeomorphisms on B�.X / to an action of
families of homeomorphisms. That is, for each pair of homeomorphic manifolds X

and Y we define a chain map

eX Y W C�.Homeo.X;Y //˝B�.X /! B�.Y /;

where C�.Homeo.X;Y // is the singular chains on the space of homeomorphisms from
X to Y . (If X and Y have nonempty boundary, these families of homeomorphisms
are required to restrict to a fixed homeomorphism on the boundaries.) These actions
(for various X and Y ) are compatible with gluing. See Section 5.2 for a more precise
statement.

The most convenient way to prove that maps eX Y with the desired properties exist is
to introduce a homotopy equivalent alternate version of the blob complex, BT �.X /,
which is more amenable to this sort of action. Recall from Remark 3.1.7 that blob
diagrams have the structure of a cone-product set. Blob diagrams can also be equipped
with a natural topology, which converts this cone-product set into a cone-product space.
Taking singular chains of this space we get BT �.X /. The details are in Section 5.1.
We also prove a useful result (Lemma 5.1.1) which says that we can assume that blobs
are small with respect to any fixed open cover.

5.1 Alternative definitions of the blob complex

In this subsection we define a subcomplex (small blobs) and supercomplex (families of
blobs) of the blob complex, and show that they are both homotopy equivalent to B�.X /.
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If b is a blob diagram in B�.X /, recall from Section 3.2 that the support of b , denoted
supp.b/ or jbj, is the union of the blobs of b . More generally, we say that a chain
a 2 Bk.X / is supported on S if aD a0 � r , where a0 2 Bk.S/ and r 2 B0.X nS/.

Similarly, if f W P �X ! X is a family of homeomorphisms and Y � X , we say
that f is supported on Y if f .p;x/D f .p0;x/ for all x 2X nY and all p;p0 2 P .
We will sometimes abuse language and talk about “the” support of f , again denoted
supp.f / or jf j, to mean some particular choice of Y such that f is supported on Y .

If f W M [ .Y � I/!M is a collaring homeomorphism (cf the end of Section 2.1),
we say that f is supported on S �M if f .x/D x for all x 2M nS .

Fix U , an open cover of X . Define the “small blob complex” B U
� .X / to be the

subcomplex of B�.X / generated by blob diagrams such that every blob is contained
in some open set of U , and moreover each field labeling a region cut out by the blobs
is splittable into fields on smaller regions, each of which is contained in some open set
of U .

Lemma 5.1.1 (Small blobs) The inclusion i W B U
� .X / ,! B�.X / is a homotopy

equivalence.

Proof Since both complexes are free, it suffices to show that the inclusion induces an
isomorphism of homotopy groups. To show this it in turn suffices to show that for any
finitely generated pair .C�;D�/, with D� a subcomplex of C� such that

.C�;D�/� .B�.X /;B U
� .X //

we can find a homotopy hW C�! B�.X / such that h.D�/� B U
� .X / and

h@.x/C @h.x/Cx 2 B U
� .X /

for all x 2 C� .

By the splittings axiom for fields, any field is splittable into small pieces. It follows
that B U

0
.X /D B0.X /. Accordingly, we define h0 D 0.

Next we define h1 . Let b 2 C1 be a 1–blob diagram. Let B be the blob of b . We will
construct a 1–chain s.b/ 2 B U

1
.X / such that @.s.b//D @b and the support of s.b/ is

contained in B . (If B is not embedded in X , then we implicitly work in some stage
of a decomposition of X where B is embedded. See Definition 3.1.4 and preceding
discussion.) It then follows from Corollary 3.2.2 that we can choose h1.b/ 2 B2.X /

such that @.h1.b//D s.b/� b .
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Roughly speaking, s.b/ consists of a series of 1–blob diagrams implementing a series
of small collar maps, plus a shrunken version of b . The composition of all the collar
maps shrinks B to a ball which is small with respect to U .

Let V1 be an auxiliary open cover of X , subordinate to U and fine enough that a
condition stated later in this proof is satisfied. Let b D .B;u; r/, with uD

P
ai the

label of B , and ai 2 B0.B/. Choose a sequence of collar maps xfj W B [ collar! B

satisfying conditions specified at the end of this paragraph. Let fj W B ! B be the
restriction of xfj to B ; fj maps B homeomorphically to a slightly smaller submanifold
of B . Let gj D f1ıf2ı� � �ıfj . Let g be the last of the gj ’s. Choose the sequence xfj

so that g.B/ is contained in an open set of V1 and gj�1.jfj j/ is also contained in an
open set of V1 .

There are 1–blob diagrams cij 2 B1.B/ such that cij is compatible with V1 (more
specifically, jcij j D gj�1.jfj j/) and @cij D gj�1.ai/�gj .ai/. Define

s.b/D
X
i;j

cij Cg.b/

and choose h1.b/ 2 B2.X / such that

@.h1.b//D s.b/� b:

Next we define h2 . Let b 2 C2 be a 2–blob diagram. Let B D jbj, either a ball or a
union of two balls. By possibly working in a decomposition of X , we may assume that
the ball(s) of B are disjointly embedded. We will construct a 2–chain s.b/ 2 B U

2
.X /

such that
@.s.b//D @.h1.@b/C b/D s.@b/;

and the support of s.b/ is contained in B . It then follows from Corollary 3.2.2 that we
can choose h2.b/ 2 B2.X / such that @.h2.b//D s.b/� b� h1.@b/.

Similarly to the construction of h1 above, s.b/ consists of a series of 2–blob dia-
grams implementing a series of small collar maps, plus a shrunken version of b . The
composition of all the collar maps shrinks B to a sufficiently small disjoint union of
balls.

Let V2 be an auxiliary open cover of X , subordinate to U and fine enough that a
condition stated later in the proof is satisfied. As before, choose a sequence of collar
maps fj such that each has support contained in an open set of V1 and the composition
of the corresponding collar homeomorphisms yields an embedding gW B! B such
that g.B/ is contained in an open set of V1 . Let gj W B! B be the embedding at the
j –th stage.
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Fix j . We will construct a 2–chain dj such that @dj D gj�1.s.@b//�gj .s.@b//. Let
s.@b/D

P
ek , and let fpmg be the 0–blob diagrams appearing in the boundaries of

the ek . As in the construction of h1 , we can choose 1–blob diagrams qm such that
@qm D gj�1.pm/�gj .pm/ and jqmj is contained in an open set of V1 . If x is a sum
of pm ’s, we denote the corresponding sum of qm ’s by q.x/.

Now consider, for each k , gj�1.ek/� q.@ek/. This is a 1–chain whose boundary is
gj .@ek/. The support of ek is gj�1.V / for some V 2 V1 , and the support of q.@ek/

is contained in a union V 0 of finitely many open sets of V1 , all of which contain the
support of fj . We now reveal the mysterious condition (mentioned above) which V1

satisfies: the union of gj�1.V / and V 0 , for all of the finitely many instances arising in
the construction of h2 , lies inside a disjoint union of balls U such that each individual
ball lies in an open set of V2 . (In this case there are either one or two balls in the disjoint
union.) For any fixed open cover V2 this condition can be satisfied by choosing V1 to be
a sufficiently fine cover. It follows from Corollary 3.2.2 that we can choose xk 2B2.X /

with @xk D gj�1.ek/� gj .ek/� q.@ek/ and with supp.xk/D U . We can now take
dj

..D
P

xk . It is clear that @dj D
P
.gj�1.ek/�gj .ek//D gj�1.s.@b//�gj .s.@b//,

as desired.

We now define
s.b/D

X
dj Cg.b/;

where g is the composition of all the fj ’s. It is easy to verify that s.b/ 2 B U
2

,
supp.s.b//D supp.b/, and @.s.b//D s.@b/. If follows that we can choose h2.b/ 2

B2.X / such that @.h2.b//D s.b/� b� h1.@b/. This completes the definition of h2 .

The general case hl is similar. When constructing the analogue of xk above, we
will need to find a disjoint union of balls U which contains finitely many open sets
from Vl�1 such that each ball is contained in some open set of Vl . For sufficiently
fine Vl�1 this will be possible. Since C� is finite, the process terminates after finitely
many, say r , steps. We take Vr D U .

Next we define the cone-product space version of the blob complex, BT �.X /. First
we must specify a topology on the set of k –blob diagrams, BDk . We give BDk the
finest topology such that

� for any b 2 BDk the action map Homeo.X /! BDk , f 7! f .b/ is continuous;

� the gluing maps BDk.M /! BDk.Mgl/ are continuous;

� for balls B , the map U.B/! BD1.B/, u 7! .B;u;∅/, is continuous, where
U.B/� B0.B/ inherits its topology from B0.B/ and the topology on B0.B/

comes from the generating set BD0.B/.
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We can summarize the above by saying that in the typical continuous family P !

BDk.X /, p 7! .Bi.p/;ui.p/; r.p//, Bi.p/ and r.p/ are induced by a map P !

Homeo.X /, with the twig blob labels ui.p/ varying independently. (“Varying inde-
pendently” means that after pulling back via the family of homeomorphisms to the
original twig blob, one sees a continuous family of labels.) We note that while we’ve
decided not to allow the blobs Bi.p/ to vary independently of the field r.p/, if we
did allow this it would not affect the truth of the claims we make below. In particular,
such a definition of BT �.X / would result in a homotopy equivalent complex.

Next we define BT �.X / to be the total complex of the double complex (denoted BT �� )
whose .i; j / entry is Cj .BDi/, the singular j –chains on the space of i –blob diagrams.
The vertical boundary of the double complex, denoted @t , is the singular boundary,
and the horizontal boundary, denoted @b , is the blob boundary. Following the usual
sign convention, we have @D @bC .�1/i@t .

We will regard B�.X / as the subcomplex BT �0.X /� BT ��.X /. The main result of
this subsection is:

Lemma 5.1.2 The inclusion B�.X /� BT �.X / is a homotopy equivalence.

Before giving the proof we need a few preliminary results.

Lemma 5.1.3 BT �.Bn/ is contractible (acyclic in positive degrees).

Proof We will construct a contracting homotopy hW BT �.Bn/! BT �C1.B
n/.

Assume a splitting sW H0.BT �.Bn//!BT 0.B
n/ of the quotient map qW BT 0.B

n/!

H0.BT �.Bn//. Let �D s ı q .

For x 2 BT ij with i � 1 define

h.x/D e.x/;

where
eW BT ij ! BT iC1;j

adds an outermost blob, equal to all of Bn , to the j –parameter family of blob diagrams.
Note that for fixed i , e is a chain map, ie @te D e@t .

A generator y 2 BT 0j is a map yW P ! BD0 , where P is some j –dimensional
polyhedron. We define r.y/ 2 BT 0j to be the constant function � ı yW P ! BD0 .
Let c.r.y// 2 BT 0;jC1 be the constant map from the cone of P to BD0 taking the
same value (namely r.y.p//, for any p 2 P ). Let e.y � r.y// 2 BT 1j denote the
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j –parameter family of 1–blob diagrams whose value at p 2 P is the blob Bn with
label y.p/� r.y.p//. Now define, for y 2 BT 0j ,

h.y/D e.y � r.y//� c.r.y//:

We must now verify that h does the job it was intended to do. For x 2 BT ij with
i � 2 we have

@h.x/C h.@x/D @.e.x//C e.@x/

D @b.e.x//C .�1/iC1@t .e.x//C e.@bx/C .�1/ie.@tx/

D @b.e.x//C e.@bx/ (since @t .e.x//D e.@tx/)

D x:

For x 2 BT 1j we have

@h.x/C h.@x/D @b.e.x//C @t .e.x//C e.@bx� r.@bx//� c.r.@bx//� e.@tx/

D @b.e.x//C e.@bx/ (since r.@bx/D 0)

D x:

For x 2 BT 0j with j � 1 we have

@h.x/C h.@x/D @b.e.x� r.x///� @t .e.x� r.x///C @t .c.r.x///

C e.@tx� r.@tx//� c.r.@tx//

D x� r.x/C @t .c.r.x///� c.r.@tx//

D x� r.x/C r.x/

D x:

Here we have used the fact that @b.c.r.x///D 0 since c.r.x// is a 0–blob diagram,
as well as that @t .e.r.x///D e.r.@tx// and @t .c.r.x///� c.r.@tx//D r.x/.

For x 2 BT 00 we have

@h.x/C h.@x/D @b.e.x� r.x///C @t .c.r.x///

D x� r.x/C r.x/� r.x/

D x� r.x/:

Lemma 5.1.4 For manifolds X and Y , we have BT �.X tY /'BT �.X /˝BT �.Y /.

Proof This follows from the Eilenberg–Zilber theorem and the fact that

BDk.X tY /Š
a

iCjDk

BDi.X /�BDj .Y /:
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For S �X , we say that a 2 BT k.X / is supported on S if there exist a0 2 BT k.S/

and r 2 BT 0.X nS/ such that aD a0 � r .

Let U be an open cover of X . Let BT U
� .X /� BT �.X / be the subcomplex generated

by a 2 BT �.X / such that there is a decomposition X D
S

i Di such that each Di is
a ball contained in some open set of U and a is splittable along this decomposition. In
other words, a can be obtained by gluing together pieces, each of which is small with
respect to U .

Lemma 5.1.5 For any open cover U of X , the inclusion BT U
� .X / � BT �.X / is a

homotopy equivalence.

Proof This follows from a combination of Lemma B.0.5 and the techniques of the
proof of Lemma 5.1.1.

It suffices to show that we can deform a finite subcomplex C� of BT �.X / into
BT U
� .X / (relative to any designated subcomplex of C� already in BT U

� .X /). The
first step is to replace families of general blob diagrams with families of blob diagrams
that are small with respect to U . (If f W P ! BDk is the family then for all p 2 P

we have that f .p/ is a diagram in which the blobs are small.) This is done as in
the proof of Lemma 5.1.1; the technique of the proof works in families. Each such
family is homotopic to a sum of families which can be a “lifted” to Homeo.X /. That
is, f W P ! BDk has the form f .p/ D g.p/.b/ for some gW P ! Homeo.X / and
b 2 BDk . (We are ignoring a complication related to twig blob labels, which might
vary independently of g , but this complication does not affect the conclusion we draw
here.) We now apply Lemma B.0.5 to get families which are supported on balls Di

contained in open sets of U .

Proof of Lemma 5.1.2 Armed with the above lemmas, we can now proceed similarly
to the proof of Lemma 5.1.1.

It suffices to show that for any finitely generated pair of subcomplexes .C�;D�/ �
.BT �.X /;B�.X // we can find a homotopy hW C�! BT �C1.X / such that h.D�/�

B�C1.X / and xC h@.x/C @h.x/ 2 B�.X / for all x 2 C� .

By Lemma 5.1.5, we may assume that C� � BT U
� .X / for some cover U of our

choosing. We choose U fine enough so that each generator of C� is supported on a
disjoint union of balls. (This is possible since the original C� was finite and therefore
had bounded dimension.)

Since B0.X /D BT 0.X /, we can take h0 D 0.
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Let b 2C1 be a generator. Since b is supported in a disjoint union of balls, we can find
s.b/ 2 B1 with @.s.b// D @b (by Corollary 3.2.2), and also h1.b/ 2 BT 2.X / such
that @.h1.b//D s.b/� b (by Lemma 5.1.3 and Lemma 5.1.4).

Now let b be a generator of C2 . If U is fine enough, there is a disjoint union of balls V

on which bCh1.@b/ is supported. Since @.bCh1.@b//D s.@b/2B1.X /, we can find
s.b/ 2 B2.X / with @.s.b//D @.bC h1.@b// (by Corollary 3.2.2). By Lemma 5.1.3
and Lemma 5.1.4, we can now find h2.b/ 2 BT 3.X /, also supported on V , such that
@.h2.b//D s.b/� b� h1.@b/

The general case, hk , is similar.

Note that it is possible to make the various choices above so that the homotopies we
construct are fixed on sB� � BT � . It follows that we may assume that the homotopy
inverse to the inclusion constructed above is the identity on B� . Note that the complex
of all homotopy inverses with this property is contractible, so the homotopy inverse is
well-defined up to a contractible set of choices.

5.2 Action of C�.Homeo.X//

Let C�.Homeo.X ! Y // denote the singular chain complex of the space of homeo-
morphisms between the n–manifolds X and Y (any given singular chain extends
a fixed homeomorphism @X ! @Y ). We also will use the abbreviated notation
C�.Homeo.X // ..D C�.Homeo.X ! X //. (For convenience, we will permit the
singular cells generating C�.Homeo.X ! Y // to be more general than simplices —
they can be based on any cone-product polyhedron (see Remark 3.1.7).)

Theorem 5.2.1 For n–manifolds X and Y there is a chain map

eX Y W C�.Homeo.X ! Y //˝B�.X /! B�.Y /;

well-defined up to coherent homotopy, such that

(1) on C0.Homeo.X!Y //˝B�.X /, it agrees with the obvious action of
Homeo.X;Y / on B�.X / described in Property 1.3.1;

(2) for any compatible splittings X ! Xgl and Y ! Ygl , the following diagram
commutes up to homotopy:

C�.Homeo.X ! Y //˝B�.X /
eXY

//

gl˝ gl
��

B�.Y /
gl
��

C�.Homeo.Xgl;Ygl//˝B�.Xgl/
eXglYgl

// B�.Ygl/
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Proof In light of Lemma 5.1.2, it suffices to prove the theorem with B� replaced
by BT � . In fact, for BT � we get a sharper result: we can omit the “up to homotopy”
qualifiers.

Let f 2 Ck.Homeo.X ! Y //, f W Pk ! Homeo.X ! Y / and a 2 BT ij .X /,
aW Qj ! BDi.X /. Define eX Y .f ˝ a/ 2 BT i;jCk.Y / by

eX Y .f ˝ a/W P �Q! BDi.Y /

.p; q/ 7! f .p/.a.q//:

It is clear that this agrees with the previously defined C0.Homeo.X ! Y // action
on BT � , and it is also easy to see that the diagram in item 2 of the statement of the
theorem commutes on the nose.

Theorem 5.2.2 The C�.Homeo.X ! Y // actions defined above are associative. That
is, the following diagram commutes up to coherent homotopy:

C�.Homeo.Y !Z//˝B�.Y /
eY Z

&&

C�.Homeo.X ! Y //˝C�.Homeo.Y !Z//˝B�.X /

eXY˝1

88

�˝1
&&

B�.Z/

C�.Homeo.X !Z//˝B�.X /

eXZ

88

Here �W C�.Homeo.X ! Y //˝ C�.Homeo.Y ! Z//! C�.Homeo.X ! Z// is
the map induced by composition of homeomorphisms.

Proof The corresponding diagram for BT � commutes on the nose.

Remark 5.2.3 Like Homeo.X /, collar maps also have a natural topology (see discus-
sion following Axiom 6.1.15), and by adjusting the topology on blob diagrams we can
arrange that families of collar maps act naturally on BT �.X /.

6 n–categories and their modules

6.1 Definition of n–categories

Before proceeding, we need more appropriate definitions of n–categories, A1 n–
categories, as well as modules for these, and tensor products of these modules. (As is
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the case throughout this paper, by “n–category” we mean some notion of a “weak”
n–category with “strong duality”.)

Compared to other definitions in the literature, the definitions presented below tie the
categories more closely to the topology and avoid combinatorial questions about, for
example, finding a minimal sufficient collection of generalized associativity axioms;
we prefer maximal sets of axioms to minimal sets. It is easy to show that examples of
topological origin (eg categories whose morphisms are maps into spaces or decorated
balls, or bordism categories) satisfy our axioms. To show that examples of a more
purely algebraic origin satisfy our axioms, one would typically need the combinatorial
results that we have avoided here.

See Section 1.7 for a discussion of n–category terminology.

The axioms for an n–category are spread throughout this section. Collecting these
together, an n–category is a gadget satisfying Axioms 6.1.1, 6.1.3, 6.1.5, 6.1.6, 6.1.8,
6.1.10 and 6.1.11. For an enriched n–category we add Axiom 6.1.14. For an A1
n–category, we replace Axiom 6.1.10 with Axiom 6.1.15.

Strictly speaking, before we can state the axioms for k –morphisms we need all the
axioms for .k�1/–morphisms. Readers who prefer things to be presented in a strictly
logical order should read this subsection nC1 times, first setting k D 0, then k D 1,
and so on until they reach k D n.

There are many existing definitions of n–categories, with various intended uses. In any
such definition, there are sets of k –morphisms for each 0� k � n. Generally, these
sets are indexed by instances of a certain typical shape. Some n–category definitions
model k –morphisms on the standard bihedron (interval, bigon, and so on). Other
definitions have a separate set of 1–morphisms for each interval Œ0; l ��R, a separate
set of 2–morphisms for each rectangle Œ0; l1�� Œ0; l2��R2 , and so on. (This allows
for strict associativity by personal communication with Tillmann [21] and Brown [4].)
Still other definitions (see, for example, Leinster [12]) model the k –morphisms on
more complicated combinatorial polyhedra.

For our definition, we will allow our k –morphisms to have any shape, so long as it
is homeomorphic to the standard k –ball. Thus we associate a set of k –morphisms
Ck.X / to any k –manifold X homeomorphic to the standard k –ball.

Below, we will use “a k –ball” to mean any k –manifold which is homeomorphic to the
standard k –ball. We do not assume that such k –balls are equipped with a preferred
homeomorphism to the standard k –ball. The same applies to “a k –sphere” below.

Given a homeomorphism f W X ! Y between k –balls (not necessarily fixed on the
boundary), we want a corresponding bijection of sets f W Ck.X /! Ck.Y /. (This will
imply “strong duality”, among other things.) Putting these together, we have:
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Axiom 6.1.1 (Morphisms) For each 0 � k � n, we have a functor Ck from the
category of k –balls and homeomorphisms to the category of sets and bijections.

(Note: We often omit the subscript k .)

We are being deliberately vague about what flavor of k –balls we are considering. They
could be unoriented or oriented or Spin or Pin˙ . They could be PL or smooth. (If
smooth, “homeomorphism” should be read “diffeomorphism”, and we would need
to be fussier about corners and boundaries.) For each flavor of manifold there is a
corresponding flavor of n–category. For simplicity, we will concentrate on the case of
PL unoriented manifolds.

(An interesting open question is whether the techniques of this paper can be adapted to
topological manifolds and plain, merely continuous homeomorphisms. The main obsta-
cles are proving a version of Lemma B.0.4 and adapting the transversality arguments
used in Lemma 6.3.4.)

An ambitious reader may want to keep in mind two other classes of balls. The first is
balls equipped with a map to some other space Y (cf Stolz and Teichner [19]). This
will be used below (see the end of Section 7.1) to describe the blob complex of a
fiber bundle with base space Y . The second is balls equipped with sections of the
tangent bundle, or the frame bundle (ie framed balls), or more generally some partial
flag bundle associated to the tangent bundle. These can be used to define categories
with less than the “strong” duality we assume here, though we will not develop that
idea in this paper.

Next we consider domains and ranges of morphisms (or, as we prefer to say, boundaries
of morphisms). The 0–sphere is unusual among spheres in that it is disconnected.
Correspondingly, for 1–morphisms it makes sense to distinguish between domain and
range. (Actually, this is only true in the oriented case, with 1–morphisms parameterized
by oriented 1–balls.) For k > 1 and in the presence of strong duality the division into
domain and range makes less sense. For example, in a pivotal tensor category, there are
natural isomorphisms Hom .A;B˝C /

Š
! Hom .B�˝A;C /, etc (sometimes called

“Frobenius reciprocity”), which canonically identify all the morphism spaces which
have the same boundary. We prefer not to make the distinction in the first place.

Instead, we will combine the domain and range into a single entity which we call the
boundary of a morphism. Morphisms are modeled on balls, so their boundaries are
modeled on spheres. In other words, we need to extend the functors Ck�1 from balls
to spheres, for 1 � k � n. At first it might seem that we need another axiom (more
specifically, additional data) for this, but in fact once we have all the axioms in this
subsection for 0 through k � 1 we can use a colimit construction, as described in
Section 6.3 below, to extend Ck�1 to spheres (and any other manifolds):
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Lemma 6.1.2 For each 1 � k � n, we have a functor C
�!

k�1 from the category of
.k�1/–spheres and homeomorphisms to the category of sets and bijections.

We postpone the proof of this result until after we’ve actually given all the axioms. Note
that defining this functor for fixed k only requires the data described in Axiom 6.1.1 at
level k , along with the data described in the other axioms for smaller values of k .

Of course, Lemma 6.1.2, as stated, is satisfied by the trivial functor. What we really
mean is that there exists a functor which interacts with the other data of C as specified
in the axioms below.

Axiom 6.1.3 (Boundaries) For each k –ball X , we have a map of sets @W Ck.X /!

C
�!

k�1.@X /. These maps, for various X , comprise a natural transformation of functors.

Note that the first “@” above is part of the data for the category, while the second is
the ordinary boundary of manifolds. Given c 2 C

�!
.@.X //, we will write C.X I c/ for

@�1.c/, those morphisms with specified boundary c .

In order to simplify the exposition we have concentrated on the case of unoriented PL
manifolds and avoided the question of what exactly we mean by the boundary of a
manifold with extra structure, such as an oriented manifold. In general, all manifolds of
dimension less than n should be equipped with the germ of a thickening to dimension n,
and this germ should carry whatever structure we have on n–manifolds. In addition,
lower dimensional manifolds should be equipped with a framing of their normal bundle
in the thickening; the framing keeps track of which side (iterated) bounded manifolds
lie on. For example, the boundary of an oriented n–ball should be an .n�1/–sphere
equipped with an orientation of its once stabilized tangent bundle and a choice of
direction in this bundle indicating which side the n–ball lies on.

We have just argued that the boundary of a morphism has no preferred splitting into
domain and range, but the converse meets with our approval. That is, given compatible
domain and range, we should be able to combine them into the full boundary of a
morphism. The following lemma will follow from the colimit construction used to
define C

�!
k�1 on spheres.

Lemma 6.1.4 (Boundary from domain and range) Let S DB1[E B2 , where S is a
.k�1/–sphere .1� k � n/, Bi is a .k�1/–ball, and EDB1\B2 is a .k�2/–sphere
(Figure 13). Let C.B1/ � C

�!
.E/ C.B2/ denote the fibered product of the two maps

@W C.Bi/! C
�!
.E/. Then we have an injective map

glE W C.B1/� C
�!
.E/ C.B2/ ,! C

�!
.S/
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which is natural with respect to the actions of homeomorphisms. (When k D 1 we
stipulate that C

�!
.E/ is a point, so that the above fibered product becomes a normal

product.)

E

E

B1 B2

Figure 13: Combining two balls to get a full boundary

Note that we insist on injectivity above. The lemma follows from Definition 6.3.2 and
Lemma 6.3.4.

We do not insist on surjectivity of the gluing map, since this is not satisfied by all of
the examples we are trying to axiomatize. If our k –morphisms C.X / are labeled cell
complexes embedded in X (cf Example 6.2.5 below), then a k –morphism is in the
image of the gluing map precisely when the cell complex is in general position with
respect to E . On the other hand, in categories based on maps to a target space (cf
Example 6.2.1 below) the gluing map is always surjective.

If S is a 0–sphere (the case k D 1 above), then S can be identified with the disjoint
union of two 0–balls B1 and B2 and the colimit construction C

�!
.S/ can be identified

with the (ordinary, not fibered) product C.B1/� C.B2/.

Let C
�!
.S/tE denote the image of glE . We will refer to elements of C

�!
.S/tE as

“splittable along E” or “transverse to E”. When the gluing map is surjective every
such element is splittable.

If X is a k –ball and E � @X splits @X into two .k�1/–balls B1 and B2 as above,
then we define C.X /tE D @

�1. C
�!
.@X /tE/.

We will call the projection C
�!
.S/tE! C.Bi/ given by the composition

C
�!
.S/tE

gl�1

���! C.B1/� C.B2/
pri
��! C.Bi/

a restriction map and write resBi
.a/ (or simply res.a/ when there is no ambiguity),

for a 2 C
�!
.S/tE . More generally, we also include under the rubric “restriction map”

the boundary maps of Axiom 6.1.3 above, another class of maps introduced after
Axiom 6.1.6 below, as well as any composition of restriction maps. In particular, we
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have restriction maps C.X /tE! C.Bi/ defined as the composition of the boundary
with the first restriction map described above:

C.X /tE

@
�! C
�!
.@X /tE

res
�! C.Bi/:

These restriction maps can be thought of as domain and range maps, relative to the
choice of splitting @X D B1[E B2 .

Next we consider composition of morphisms. For n–categories which lack strong
duality, one usually considers k different types of composition of k –morphisms, each
associated to a different “direction”. (For example, vertical and horizontal composition
of 2–morphisms.) In the presence of strong duality, these k distinct compositions are
subsumed into one general type of composition which can be in any direction.

Axiom 6.1.5 (Composition) Let B DB1[Y B2 , where B , B1 and B2 are k –balls
(1 � k � n) and Y D B1 \B2 is a .k�1/–ball (Figure 14). Let E D @Y , which is
a .k�2/–sphere. Note that each of B , B1 and B2 has its boundary split into two
.k�1/–balls by E . We have restriction (domain or range) maps C.Bi/tE ! C.Y /.
Let C.B1/tE �C.Y / C.B2/tE denote the fibered product of these two maps. We have
a map

glY W C.B1/tE �C.Y / C.B2/tE! C.B/tE

which is natural with respect to the actions of homeomorphisms, and also compatible
with restrictions to the intersection of the boundaries of B and Bi . If k < n we require
that glY is injective.

E

E

B1 B2

Y

Figure 14: From two balls to one ball

Axiom 6.1.6 (Strict associativity) The composition (gluing) maps above are strictly
associative. Given any splitting of a ball B into smaller ballsG

Bi! B;
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any sequence of gluings (in the sense of Definition 3.1.3, where all the intermediate
steps are also disjoint unions of balls) yields the same result.

Figure 15: An example of strict associativity

We’ll use the notation a�b for the glued together field glY .a; b/. In the other direction,
we will call the projection from C.B/tE to C.Bi/tE a restriction map (one of many
types of map so called) and write resBi

.a/ for a 2 C.B/tE .

We will write C.B/tY for the image of glY in C.B/. We will call elements of
C.B/tY morphisms which are “splittable along Y ” or “transverse to Y ”. We have
C.B/tY � C.B/tE � C.B/.
More generally, let ˛ be a splitting of X into smaller balls. Let C.X /˛ � C.X /
denote the image of the iterated gluing maps from the smaller balls to X . We say
that elements of C.X /˛ are morphisms which are “splittable along ˛”. In situations
where the splitting is notationally anonymous, we will write C.X /t for the morphisms
which are splittable along (also known as transverse to) the unnamed splitting. If ˇ
is a ball decomposition of @X , we define C.X /ˇ ..D @�1. C

�!
.@X /ˇ/; this can also be

denoted C.X /t if the context contains an anonymous decomposition of @X and no
competing splitting of X .

The above two composition axioms are equivalent to the following one, which we state
in slightly vague form.

Multicomposition Given any splitting B1 t � � � tBm ! B of a k –ball into small
k –balls, there is a map from an appropriate subset (like a fibered product) of
C.B1/t�� � ��C.Bm/t to C.B/t , and these various m–fold composition maps satisfy
an operad-type strict associativity condition (Figure 16).

The next axiom is related to identity morphisms, though that might not be immediately
obvious.
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Figure 16: Operad composition and associativity

Axiom 6.1.7 (Product (identity) morphisms, preliminary version) For each k –ball X

and m–ball D , with kCm� n, there is a map C.X /! C.X �D/, usually denoted
a 7! a�D for a 2 C.X /. These maps must satisfy the following conditions.

(1) If f W X !X 0 and zf W X �D!X 0 �D0 are homeomorphisms such that the
diagram

X �D
zf
//

�

��

X 0 �D0

�

��

X
f

// X 0

commutes, then we have

zf .a�D/D f .a/�D0:

(2) Product morphisms are compatible with gluing (composition) in both factors:

.a0 �D/ � .a00 �D/D .a0 � a00/�D;

.a�D0/ � .a�D00/D a� .D0 �D00/:

(3) Product morphisms are associative:

.a�D/�D0 D a� .D �D0/:

(Here we are implicitly using functoriality and the obvious homeomorphism
.X �D/�D0!X � .D �D0/.)

(4) Product morphisms are compatible with restriction:

resX�E.a�D/D a�E

for E � @D and a 2 C.X /.
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We will need to strengthen the above preliminary version of the axiom to allow for
products which are “pinched” in various ways along their boundary. (See Figure 17.)
The need for a strengthened version will become apparent in Appendix C where we

Figure 17: Examples of pinched products

construct a traditional 2–category from a disk-like 2–category. For example, “half-
pinched” products of 1–balls are used to construct weak identities for 1–morphisms in
2–categories (see Section C.2). We also need fully pinched products to define collar
maps below (see Figure 19).

Define a pinched product to be a map

� W E!X

such that E is a .kCm/–ball, X is a k –ball (m� 1), and � is locally modeled on a
standard iterated degeneracy map

d W �kCm
!�k :

(We thank Kevin Costello for suggesting this approach.)

Note that for each interior point x 2X , ��1.x/ is an m–ball, and for each boundary
point x 2 @X , ��1.x/ is a ball of dimension l � m, with l depending on x . It is
easy to see that a composition of pinched products is again a pinched product. A sub
pinched product is a sub–m–ball E0 �E such that the restriction � W E0! �.E0/ is
again a pinched product. A union of pinched products is a decomposition E D

S
i Ei

such that each Ei �E is a sub pinched product. (See Figure 18.)

Note that @X has a (possibly trivial) subdivision according to the dimension of ��1.x/,
x 2 @X . Let C.X /t denote the morphisms which are splittable along this subdivision.

The product axiom will give a map ��W C.X /t ! C.E/ for each pinched product
� W E!X . Morphisms in the image of �� will be called product morphisms. Before
stating the axiom, we illustrate it in our two motivating examples of n–categories. In the
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Figure 18: Six examples of unions of pinched products

case where C.X /D ff W X ! T g, we define ��.f /D f ı� . In the case where C.X /
is the set of all labeled embedded cell complexes K in X , define ��.K/D ��1.K/,
with each codimension i cell ��1.c/ labeled by the same (traditional) i –morphism as
the corresponding codimension i cell c .

Axiom 6.1.8 (Product (identity) morphisms) For each pinched product � W E!X ,
with X a k –ball and E a .kCm/–ball (m� 1), there is a map ��W C.X /t! C.E/.
These maps must satisfy the following conditions.

(1) If � W E!X and � 0W E0!X 0 are pinched products, and if f W X !X 0 and
zf W E!E0 are maps such that the diagram

E
zf
//

�

��

E0

� 0

��

X
f
// X 0

commutes, then we have

� 0� ıf D zf ı��:

(2) Product morphisms are compatible with gluing (composition). Let � W E!X ,
�1W E1 ! X1 , and �2W E2 ! X2 be pinched products with E D E1 [E2 .
(See Figure 18.) Note that X1 and X2 can be identified with subsets of X , but
X1\X2 might not be codimension 1, and indeed we might have X1DX2DX .
We assume that there is a decomposition of X into balls which is compatible
with X1 and X2 . Let a 2 C.X /t , and let ai denote the restriction of a to
Xi �X . (We assume that a is splittable with respect to the above decomposition
of X into balls.) Then

��.a/D ��1 .a1/ ��
�
2 .a2/:
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(3) Product morphisms are associative. If � W E!X and �W D!E are pinched
products then

�� ı�� D .� ı �/�:

(4) Product morphisms are compatible with restriction. If we have a commutative
diagram

D
� � //

�

��

E

�

��

Y
� � // X

such that � and � are pinched products, then

resD ı�
�
D �� ı resY :

The next axiom says, roughly, that we have strict associativity in dimension n, even
when we reparametrize our n–balls.

Axiom 6.1.9 ((Preliminary) Isotopy invariance in dimension n) Let X be an n–ball,
b 2 C.X /, and f W X !X be a homeomorphism which acts trivially on the restriction
@b of b to @X . (Keep in mind the important special case where f restricted to @X is
the identity.) Suppose furthermore that f is isotopic to the identity through homeo-
morphisms which act trivially on @b . Then f .b/D b . In particular, homeomorphisms
which are isotopic to the identity rel boundary act trivially on all of C.X /.

This axiom needs to be strengthened to force product morphisms to act as the identity.
Let X be an n–ball and Y � @X be an .n�1/–ball. Let J be a 1–ball (interval). Let
sY;J W X [Y .Y �J /!X be a collaring homeomorphism (see the end of Section 2.1).
Here we use Y �J with boundary entirely pinched. We define a map

 Y;J W C.X /! C.X /
a 7! sY;J .a � ..ajY /�J //:

(See Figure 19.) We call a map of this form a collar map. It can be thought of as the
action of the inverse of a map which projects a collar neighborhood of Y onto Y , or as
the limit of homeomorphisms X !X which expand a very thin collar of Y to a larger
collar. We call the equivalence relation generated by collar maps and homeomorphisms
isotopic (rel boundary) to the identity extended isotopy.
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a

a�J

C.X / glue
// C.X [ collar/ homeo // C.X /

Figure 19: Extended homeomorphism

The revised axiom is:

Axiom 6.1.10 (Extended isotopy invariance in dimension n) Let X be an n–ball,
b 2 C.X /, and f W X !X be a homeomorphism which acts trivially on the restriction
@b of b to @X . Suppose furthermore that f is isotopic to the identity through home-
omorphisms which act trivially on @b . Then f .b/D b . In addition, collar maps act
trivially on C.X /.

We need one additional axiom. It says, roughly, that given a k –ball X , k < n, and
c 2 C.X /, there exist sufficiently many splittings of c . We use this axiom in the proofs
of 7.1.2 and 6.3.4. The analogous axiom for systems of fields is used in the proof of
5.1.1. All of the examples of (disk-like) n–categories we consider in this paper satisfy
the axiom, but nevertheless we feel that it is too strong. In the future we would like to
see this provisional version of the axiom replaced by something less restrictive.

We give two alternate versions of the axiom, one better suited for smooth examples,
and one better suited to PL examples.

Axiom 6.1.11 (Splittings) Let c 2 Ck.X /, with 0 � k < n. Let s D fXig be a
splitting of X (so X D

S
i Xi ). Let Homeo@.X / denote homeomorphisms of X which

restrict to the identity on @X .

� (Alternative 1) Consider the set of homeomorphisms gW X !X such that c

splits along g.s/. Then this subset of Homeo.X / is open and dense. Further-
more, if s restricts to a splitting @s of @X , and if @c splits along @s , then the
intersection of the set of such homeomorphisms g with Homeo@.X / is open
and dense in Homeo@.X /.

� (Alternative 2) Then there exists an embedded cell complex Sc � X , called
the string locus of c , such that if the splitting s is transverse to Sc then c splits
along s .
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We note some consequences of Axiom 6.1.11.

First, some preliminary definitions. If P is a poset let P � I denote the product poset,
where I D f0; 1g with ordering 0� 1. Let Cone.P / denote P adjoined an additional
object v (the vertex of the cone) with p � v for all objects p of P . Finally, let
V–Cone.P / denote P �I [Cone.P /, where we identify P �f0g with the base of the
cone. We call P � f1g the base of V–Cone.P /. (See Figure 20.)

(a)

(b)

(c) (d)

Figure 20: (a) P , (b) P � I , (c) Cone.P / , (d) V–Cone.P /

Lemma 6.1.12 Let c 2 Ck.X /, with 0�k <n, and let P be a finite poset of splittings
of c . Then we can embed V–Cone.P / into the splittings of c , with P corresponding
to the base of V–Cone.P /. Furthermore, if q is any decomposition of X , then we can
take the vertex of V–Cone.P / to be q up to a small perturbation.

Proof After a small perturbation, we may assume that q is simultaneously transverse
to all the splittings in P , and (by Axiom 6.1.11) that c splits along q . We can now
choose, for each splitting p in P , a common refinement p0 of p and q . This constitutes
the middle part (P � f0g above) of V–Cone.P /.
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Corollary 6.1.13 For any c 2 Ck.X /, the geometric realization of the poset of split-
tings of c is contractible.

Proof In the geometric realization, V-Cones become actual cones, allowing us to
contract any cycle.

This completes the definition of an n–category. Next we define enriched n–categories.

Most of the examples of n–categories we are interested in are enriched in the following
sense. The various sets of n–morphisms C.X I c/, for all n–balls X and all c 2 C

�!
.@X /,

have the structure of an object in some appropriate auxiliary category (eg vector spaces,
or modules over some ring, or chain complexes), and all the structure maps of the
n–category are compatible with the auxiliary category structure. Note that this auxiliary
structure is only in dimension n; if dim.Y / < n then C.Y I c/ is just a plain set.

First we must specify requirements for the auxiliary category. It should have a distribu-
tive monoidal structure in the sense of Stolz and Teichner [18]. This means that there
is a monoidal structure ˝ and also coproduct ˚, and these two structures interact in
the appropriate way. Examples include

� vector spaces (or R–modules or chain complexes) with tensor product and direct
sum;

� topological spaces with product and disjoint union.

For convenience, we will also assume that the objects of our auxiliary category are sets
with extra structure. (Otherwise, stating the axioms for identity morphisms becomes
more cumbersome.)

Before stating the revised axioms for an n–category enriched in a distributive monoidal
category, we need a preliminary definition. Once we have the above n–category
axioms for .n�1/–morphisms, we can define the category BBC of n–balls with
boundary conditions. Its objects are pairs .X; c/, where X is an n–ball and c 2

C
�!
.@X / is the “boundary condition”. The morphisms from .X; c/ to .X 0; c0/, denoted

Homeo.X I c!X 0I c0/, are homeomorphisms f W X !X 0 such that f j@X .c/D c0 .

Axiom 6.1.14 (Enriched n–categories) Let S be a distributive symmetric monoidal
category. An n–category enriched in S satisfies the above n–category axioms for
k D 0; : : : ; n� 1, and modifies the axioms for k D n as follows:

� Morphisms: We have a functor Cn from BBC (n–balls with boundary conditions)
to S .
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� Composition: Let B D B1[Y B2 as in Axiom 6.1.5. Let Yi D @Bi nY . Note
that @B D Y1[Y2 . Let ci 2 C.Yi/ with @c1D @c2D d 2 C

�!
.E/. Then we have

a map

glY W
M

c

C.B1I c1 � c/˝ C.B2I c2 � c/! C.BI c1 � c2/;

where the sum is over c 2 C.Y / such that @c D d . This map is natural with
respect to the action of homeomorphisms and with respect to restrictions.

When the enriching category S is chain complexes or topological spaces, or more
generally an appropriate sort of 1–category, we can modify the extended isotopy
axiom 6.1.10 to require that families of homeomorphisms act and obtain what we shall
call an A1 n–category.

Recall the category BBC of balls with boundary conditions. Note that the set of
morphisms Homeo.X I c!X 0I c0/ from .X; c/ to .X 0; c0/ is a topological space. Let
S be an appropriate 1–category (eg chain complexes) and let J be an 1–functor
from topological spaces to S (eg the singular chain functor C� ).

Axiom 6.1.15 (A1 replacement for Axiom 6.1.10. Families of homeomorphisms act
in dimension n) For each pair of n–balls X and X 0 and each pair c 2 C

�!
.@X / and

c0 2 C
�!
.@X 0/ we have an S–morphism

J .Homeo.X I c!X 0I c0//˝ C.X I c/! C.X 0I c0/:

Similarly, we have an S–morphism

J .Coll.X; c//˝ C.X I c/! C.X I c/;

where Coll.X; c/ denotes the space of collar maps. (See below for further discussion.)
These action maps are required to be associative up to coherent homotopy, and also
compatible with composition (gluing) in the sense that a diagram like the one in
Theorem 5.2.1 commutes.

We now describe the topology on Coll.X I c/. We retain notation from the above defini-
tion of collar map (after Axiom 6.1.9). Each collaring homeomorphism X[.Y�J /!X

determines a map from points p of @X to (possibly length zero) embedded intervals
in X terminating at p . If p 2 Y this interval is the image of fpg �J . If p … Y then
p is assigned the length zero interval fpg. Such collections of intervals have a natural
topology, and Coll.X I c/ inherits its topology from this. Note in particular that parts
of the collar are allowed to shrink continuously to zero length. (This is the real content;
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if nothing shrinks to zero length then the action of families of collar maps follows from
the action of families of homeomorphisms and compatibility with gluing.)

The k D n case of Axiom 6.1.1 posits a strictly associative action of sets

Homeo.X I c!X 0I c0/� C.X I c/! C.X 0I c0/:
At first it might seem that this would force the above action of J .Homeo.X I c!X 0I c0//

to be strictly associative as well (assuming the two actions are compatible). In fact,
compatibility implies less than this. For simplicity, assume that J is C� , the singular
chains functor. (This is the example most relevant to this paper.) Then compatibil-
ity implies that the action of C�.Homeo.X I c ! X 0I c0// agrees with the action of
C0.Homeo.X I c!X 0I c0// coming from Axiom 6.1.1, so we only require associativity
in degree zero. And indeed, this is true for our main example of an A1 n–category
based on the blob construction (see Example 6.2.8 below). Stating this sort of compati-
bility for general S and J requires further assumptions, such as the forgetful functor
from S to sets having a left adjoint, and S having an internal Hom.

An alternative (due to Peter Teichner) is to say that Axiom 6.1.15 supersedes the
k D n case of Axiom 6.1.1; in dimension n we just have a functor BBC ! S of
A1 1–categories. (This assumes some prior notion of A1 1–category.) We are not
currently aware of any examples which require this sort of greater generality, so we
think it best to refrain from settling on a preferred version of the axiom until we have a
greater variety of examples to guide the choice.

Note that if we think of an ordinary 1–category as an A1 1–category where k –
morphisms are identities for k > 1, then Axiom 6.1.15 implies Axiom 6.1.10.

Another variant of the above axiom would be to drop the “up to homotopy” and require
a strictly associative action. In fact, the alternative construction BT �.X / of the blob
complex described in Section 5.1 gives n–categories as in Example 6.2.8 which satisfy
this stronger axiom. For future reference we make the following definition.

Definition 6.1.16 A strict A1 n–category is one in which the actions of Axiom 6.1.15
are strictly associative.

We define a j times monoidal n–category to be an .nCj /–category C where C.X / is
a trivial 1–element set if X is a k –ball with k < j . See Example 6.2.6.

The alert reader will have already noticed that our definition of an (ordinary) n–
category is extremely similar to our definition of a system of fields. There are two
differences. First, for the n–category definition we restrict our attention to balls (and
their boundaries), while for fields we consider all manifolds. Second, in the category
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definition we directly impose isotopy invariance in dimension n, while in the fields
definition we instead remember a subspace of local relations which contain differences
of isotopic fields. (Recall that the compensation for this complication is that we can
demand that the gluing map for fields is injective.)

Lemma 6.1.17 A system of fields and local relations .F ;U / determines an n–category
CF ;U simply by restricting our attention to balls and, at level n, quotienting out by the
local relations:

CF ;U .Bk/D

(
F.B/ when k < n,

F.B/=U.B/ when k D n.

This n–category can be thought of as the local part of the fields. Conversely, given a
disk-like n–category we can construct a system of fields via a colimit construction; see
Section 6.3 below.

In the n–category axioms above we have intermingled data and properties for expository
reasons. Here’s a summary of the definition which segregates the data from the
properties. We also remind the reader of the inductive nature of the definition: All
the data for .k�1/–morphisms must be in place before we can describe the data for
k –morphisms.

An n–category consists of the following data:

� functors Ck from k –balls to sets, 0� k � n (Axiom 6.1.1);

� boundary natural transformations Ck ! C
�!

k�1 ı @ (Axiom 6.1.3);

� “composition” or “gluing” maps

glY W C.B1/tE �C.Y / C.B2/tE! C.B1[Y B2/tE

(Axiom 6.1.5);

� “product” or “identity” maps ��W C.X / ! C.E/ for each pinched product
� W E!X (Axiom 6.1.8);

� if enriching in an auxiliary category, additional structure on Cn.X I c/ (Axiom
6.1.14);

� in the A1 case, actions of the topological spaces of homeomorphisms preserving
boundary conditions and collar maps (Axiom 6.1.15).

The above data must satisfy the following conditions.

� The gluing maps are compatible with actions of homeomorphisms and boundary
restrictions (Axiom 6.1.5).
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� For k < n the gluing maps are injective (Axiom 6.1.5).

� The gluing maps are strictly associative (Axiom 6.1.6).

� The product maps are associative and also compatible with homeomorphism
actions, gluing and restriction (Axiom 6.1.8).

� If enriching in an auxiliary category, all of the data should be compatible with
the auxiliary category structure on Cn.X I c/ (Axiom 6.1.14).

� The possible splittings of a morphism satisfy various conditions (Axiom 6.1.11).

� For ordinary categories, invariance of n–morphisms under extended isotopies
and collar maps (Axiom 6.1.10).

6.2 Examples of n–categories

We now describe several classes of examples of n–categories satisfying our axioms. We
typically specify only the morphisms; the rest of the data for the category (restriction
maps, gluing, product morphisms, action of homeomorphisms) is usually obvious.

Example 6.2.1 (Maps to a space) Let T be a topological space. We define ��n.T /,
the fundamental n–category of T , as follows. For X a k –ball with k < n, define
��n.T /.X / to be the set of all continuous maps from X to T . For X an n–ball define
��n.T /.X / to be continuous maps from X to T modulo homotopies fixed on @X .
(Note that homotopy invariance implies isotopy invariance.) For a 2 C.X / define the
product morphism a�D 2 C.X �D/ to be a ı�X , where �X W X �D! X is the
projection.

Example 6.2.2 (Maps to a space, with a fiber) We can modify the example above,
by fixing a closed m–manifold F , and defining ��F

�n .T /.X /DMaps.X �F ! T /,
otherwise leaving the definition in Example 6.2.1 unchanged. Taking F to be a point
recovers the previous case.

Example 6.2.3 (Linearized, twisted, maps to a space) We can linearize Exam-
ples 6.2.1 and 6.2.2 as follows. Let ˛ be an .nCmC1/–cocycle on T with values in
a ring R (have in mind the trivial cocycle). For X of dimension less than n define
�
˛;�F
�n .T /.X / as before, ignoring ˛ . For X an n–ball and c 2Maps.@X �F ! T /

define �˛;�F
�n .T /.X I c/ to be the R–module of finite linear combinations of continuous

maps from X �F to T , modulo the relation that if a is homotopic to b (rel boundary)
via a homotopy hW X�F�I!T , then aD˛.h/b . (In order for this to be well-defined
we must choose ˛ to be zero on degenerate simplices. Alternatively, we could equip
the balls with fundamental classes.)
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Example 6.2.4 (n–categories from TQFTs) Let F be a TQFT in the sense of
Section 2: an n–dimensional system of fields (also denoted F ) and local relations. Let
W be an .n�j /–manifold. Define the j –category F.W / as follows. If X is a k –ball
with k < j , let F.W /.X / ..D F.W �X /. If X is a j –ball and c 2 F.W /

����!
.@X /, let

F.W /.X I c/ ..DAF .W �X I c/.

This last example generalizes Lemma 6.1.17 above which produced an n–category
from an n–dimensional system of fields and local relations. Taking W to be the point
recovers that statement.

The next example is only intended to be illustrative, as we don’t specify which definition
of a “traditional n–category with strong duality” we intend.

Example 6.2.5 (Traditional n–categories) Given a “traditional n–category with
strong duality” C define C.X /, for X a k –ball with k < n, to be the set of all
C –labeled embedded cell complexes of X (cf Section 2). For X an n–ball and
c 2 C
�!
.@X /, define C.X I c/ to be finite linear combinations of C –labeled embedded

cell complexes of X modulo the kernel of the evaluation map. Define a product
morphism a�D , for D an m–ball, to be the product of the cell complex of a with D ,
with each cell labelled according to the corresponding cell for a. (These two cells
have the same codimension.) More generally, start with an nCm–category C and a
closed m–manifold F . Define C.X /, for dim.X / < n, to be the set of all C –labeled
embedded cell complexes of X �F . Define C.X I c/, for X an n–ball, to be the dual
Hilbert space A.X �F I c/. (See Section 2.4.)

Example 6.2.6 (The bordism n–category of d –manifolds, ordinary version) For a
k –ball X , k < n, define Bordn;d .X / to be the set of all .d�nCk/–dimensional PL
submanifolds W of X �R1 such that @W DW \@X �R1 . For an n–ball X define
Bordn;d .X / to be homeomorphism classes (rel boundary) of such d –dimensional
submanifolds; we identify W and W 0 if @W D @W 0 and there is a homeomorphism
W !W 0 which restricts to the identity on the boundary. For nD1 we have the familiar
bordism 1–category of d –manifolds. The case n D d captures the n–categorical
nature of bordisms. The case n> 2d captures the full symmetric monoidal n–category
structure.

Remark Working with the smooth bordism category would require careful attention
to either collars, corners or halos.

Example 6.2.7 (Chains (or space) of maps to a space) We can modify Example 6.2.1
above to define the fundamental A1 n–category �1�n.T / of a topological space T .
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For a k –ball X , with k < n, the set �1�n.T /.X / is just Maps.X ! T /. Define
�1�n.T /.X I c/ for an n–ball X and c 2 �1�n.T /.@X / to be the chain complex

C�.Mapsc.X ! T //;

where Mapsc denotes continuous maps restricting to c on the boundary, and C�
denotes singular chains. Alternatively, if we take the n–morphisms to be simply
Mapsc.X ! T /, we get an A1 n–category enriched over spaces.

See also Theorem 7.3.1 below, recovering C�.Maps.M ! T // up to homotopy as the
blob complex of M with coefficients in �1�n.T /.

Instead of using the TQFT invariant A as in Example 6.2.4 above, we can turn an
n–dimensional system of fields and local relations into an A1 n–category using the
blob complex. With a codimension k fiber, we obtain an A1 k –category:

Example 6.2.8 (Blob complexes of balls (with a fiber)) Fix an n�k –dimensional
manifold F and an n–dimensional system of fields E . We will define an A1
k –category C . When X is an m–ball, with m < k , define C.X / D E.X � F /.
When X is a k –ball, define C.X I c/ D BE

�.X � F I c/ where BE
� denotes the blob

complex based on E .

This example will be used in Theorem 7.1.1 below, which allows us to compute the blob
complex of a product. Notice that with F a point, the above example is a construction
turning an ordinary n–category C into an A1 n–category. We think of this as providing
a “free resolution” of the ordinary n–category. In fact, there is also a trivial, but mostly
uninteresting, way to do this: we can think of each vector space associated to an n–ball
as a chain complex concentrated in degree 0, and let C�.Homeo.B// act trivially.

Beware that the “free resolution” of the ordinary n–category ��n.T / is not the A1
n–category �1�n.T /. It’s easy to see that with n D 0, the corresponding system of
fields is just linear combinations of connected components of T , and the local relations
are trivial. There’s no way for the blob complex to magically recover all the data of
�1
�0
.T /Š C�T .

Example 6.2.9 (The bordism n–category of d –manifolds, A1 version) As in
Example 6.2.6, for X a k –ball, k < n, we define Bordn;d

1 .X / to be the set of all
.d�nCk/–dimensional submanifolds W of X �R1 such that @W DW \@X �R1 .
For an n–ball X with boundary condition c define Bordn;d

1 .X I c/ to be the space of
all d –dimensional submanifolds W of X �R1 such that W coincides with c at
@X �R1 . (The topology on this space is induced by ambient isotopy rel boundary.
This is homotopy equivalent to a disjoint union of copies BHomeo.W 0/, where W 0

runs though representatives of homeomorphism types of such manifolds.)
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Let EBn be the operad of smooth embeddings of k (little) copies of the standard
n–ball Bn into another (big) copy of Bn . (We require that the interiors of the little
balls be disjoint, but their boundaries are allowed to meet. Note in particular that the
space for k D 1 contains a copy of Diff.Bn/, namely the embeddings of a “little” ball
with image all of the big ball Bn . (But note also that this inclusion is not necessarily
a homotopy equivalence.)) The operad EBn is homotopy equivalent to the standard
framed little n–ball operad: by shrinking the little balls (precomposing them with
dilations), we see that both operads are homotopic to the space of k framed points
in Bn . It is easy to see that n–fold loop spaces �n.T / have an action of EBn .

Example 6.2.10 (En algebras) Let A be an EBn –algebra. Note that this implies a
Diff.Bn/ action on A, since EBn contains a copy of Diff.Bn/. We will define a strict
A1 n–category CA . (We enrich in topological spaces, though this could easily be
adapted to, say, chain complexes.) If X is a ball of dimension k < n, define CA.X / to
be a point. In other words, the k –morphisms are trivial for k < n. If X is an n–ball,
we define CA.X / via a colimit construction. (Plain colimit, not homotopy colimit.)
Let J be the category whose objects are embeddings of a disjoint union of copies of
the standard ball Bn into X , and whose morphisms are given by engulfing some of the
embedded balls into a single larger embedded ball. To each object of J we associate
A�m (where m is the number of balls), and to each morphism of J we associate a
morphism coming from the EBn action on A. Alternatively and more simply, we could
define CA.X / to be Diff.Bn!X /�A modulo the diagonal action of Diff.Bn/. The
remaining data for the A1 n–category — composition and Diff.X !X 0/ action —
also comes from the EBn action on A.

Conversely, one can show that a disk-like strict A1 n–category C , where the k –
morphisms C.X / are trivial (single point) for k < n, gives rise to an EBn –algebra.
Let AD C.Bn/, where Bn is the standard n–ball. We must define maps

EBk
n �A� � � � �A!A;

where EBk
n is the k –th space of the EBn operad. Let .b; a1; : : : ; ak/ be a point of

EBk
n�A�� � ��A!A. The i –th embedding of b together with ai determine an element

of C.Bi/, where Bi denotes the i –th little ball. Using composition of n–morphisms
in C , and padding the spaces between the little balls with the (essentially unique)
identity n–morphism of C , we can construct a well-defined element of C.Bn/DA.

If we apply the homotopy colimit construction of the next subsection to this example,
we get an instance of Lurie’s topological chiral homology construction or Andrade’s
closely related construction from [1].
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6.3 From balls to manifolds

In this section we show how to extend an n–category C as described above (of either
the ordinary or A1 variety) to an invariant of manifolds, which we denote by C

�!
. This

extension is a certain colimit, and the arrow in the notation is intended as a reminder
of this.

In the case of ordinary n–categories, this construction factors into a construction of a
system of fields and local relations, followed by the usual TQFT definition of a vector
space invariant of manifolds given as Definition 2.4.1. For an A1 n–category, C

�!
is de-

fined using a homotopy colimit instead. Recall that we can take an ordinary n–category
C and pass to the “free resolution”, an A1 n–category B�.C/, by computing the
blob complex of balls (recall Example 6.2.8 above). We will show in Corollary 7.1.3
below that the homotopy colimit invariant for a manifold M associated to this A1
n–category is actually the same as the original blob complex for M with coefficients
in C .

Recall that we’ve already anticipated this construction Section 6.1, inductively defin-
ing C
�!

on k –spheres in terms of C on k –balls, so that we can state the boundary axiom
for C on kC 1–balls.

We will first define the decomposition poset D.W / for any k –manifold W , for
1� k � n. An n–category C provides a functor from this poset to the category of sets,
and we will define C

�!
.W / as a suitable colimit (or homotopy colimit in the A1 case)

of this functor. We’ll later give a more explicit description of this colimit. In the case
that the n–category C is enriched (eg associates vector spaces or chain complexes to
n–balls with boundary data), then the resulting colimit is also enriched, that is, the
set associated to W splits into subsets according to boundary data, and each of these
subsets has the appropriate structure (eg a vector space or chain complex).

Recall (Definition 3.1.3) that a ball decomposition of W is a sequence of gluings
M0 ! M1 ! � � � ! Mm D W such that M0 is a disjoint union of balls

F
a Xa .

Abusing notation, we let Xa denote both the ball (component of M0 ) and its image
in W (which is not necessarily a ball — parts of @Xa may have been glued together).
Define a permissible decomposition of W to be a mapa

a

Xa!W;

which can be completed to a ball decomposition
F

a XaDM0!� � �!MmDW . We
further require that

F
a.Xa\ @W /! @W can be completed to a (not necessarily ball)

decomposition of @W . (So, for example, in Example 3.1.2 if we take W DB[C [D

then B tC tD!W is not allowed since D\ @W is not a submanifold.) Roughly,
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a permissible decomposition is like a ball decomposition where we don’t care in which
order the balls are glued up to yield W , so long as there is some (nonpathological)
way to glue them.

(Every smooth or PL manifold has a ball decomposition, but certain topological mani-
folds (eg nonsmoothable topological 4–manifolds) do not have ball decompositions.
For such manifolds we have only the empty colimit.)

We want the category (poset) of decompositions of W to be small, so when we say
decomposition we really mean isomorphism class of decomposition. Isomorphisms
are defined in the obvious way: a collection of homeomorphisms Mi !M 0

i which
commute with the gluing maps Mi!MiC1 and M 0

i !M 0
iC1

.

Given permissible decompositions x D fXag and y D fYbg of W , we say that x

is a refinement of y , or write x � y , if there is a ball decomposition
F

a Xa D

M0 ! � � � !Mm D W with
F

b Yb DMi for some i , and with M0;M1; : : : ;Mi

each being a disjoint union of balls.

Definition 6.3.1 The poset D.W / has objects the permissible decompositions of W ,
and a unique morphism from x to y if and only if x is a refinement of y . See
Figure 21.

Figure 21: A small part of D.W /

An n–category C determines a functor  CIW from D.W / to the category of sets
(possibly with additional structure if k D n). Let x D fXag be a permissible de-
composition of W (ie object of D.W /). We will define  CIW .x/ to be a certain
subset of

Q
a C.Xa/. Roughly speaking,  CIW .x/ is the subset where the restriction
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maps from C.Xa/ and C.Xb/ agree whenever some part of @Xa is glued to some part
of @Xb . (Keep in mind that perhaps aD b .) Since we allow decompositions in which
the intersection of Xa and Xb might be messy (see Example 3.1.2), we must define
 CIW .x/ in a more roundabout way.

Inductively, we may assume that we have already defined the colimit C
�!
.M / for .k�1/–

manifolds M . (To start the induction, we define C
�!
.M /, where M D

F
a Pa is a

0–manifold and each Pa is a 0–ball, to be
Q

a C.Pa/.) We also assume, inductively,
that we have gluing and restriction maps for colimits of .k�1/–manifolds. Gluing and
restriction maps for colimits of k –manifolds will be defined later in this subsection.

Let
F

a XaDM0! � � �!MmDW be a ball decomposition compatible with x . Let
@Mi DNi [Yi [Y 0i , where Yi and Y 0i are glued together to produce MiC1 . We will
define  CIW .x/ to be the subset of

Q
a C.Xa/ which satisfies a series of conditions

related to the gluings Mi�1!Mi , 1� i �m. By Axiom 6.1.3, we have a mapY
a

C.Xa/! C
�!
.@M0/:

The first condition is that the image of  CIW .x/ in C
�!
.@M0/ is splittable along @Y0

and @Y 0
0

, and that the restrictions to C
�!
.Y0/ and C

�!
.Y 0

0
/ agree (with respect to the

identification of Y0 and Y 0
0

provided by the gluing map).

On the subset of
Q

a C.Xa/ which satisfies the first condition above, we have a restric-
tion map to C

�!
.N0/ which we can compose with the gluing map C

�!
.N0/! C

�!
.@M1/.

The second condition is that the image of  CIW .x/ in C
�!
.@M1/ is splittable along

@Y1 and @Y 0
1

, and that the restrictions to C
�!
.Y1/ and C

�!
.Y 0

1
/ agree (with respect to

the identification of Y1 and Y 0
1

provided by the gluing map). The i –th condition is
defined similarly. Note that these conditions depend only on the boundaries of elements
of
Q

a C.Xa/.

We define  CIW .x/ to be the subset of
Q

a C.Xa/ which satisfies the above conditions
for all i and also all ball decompositions compatible with x . (If x is a nice, nonpatho-
logical cell decomposition, then it is easy to see that gluing compatibility for one ball
decomposition implies gluing compatibility for all other ball decompositions. Rather
than try to prove a similar result for arbitrary permissible decompositions, we instead
require compatibility with all ways of gluing up the decomposition.)

If x is a refinement of y , the map  CIW .x/!  CIW .y/ is given by the composition
maps of C . This completes the definition of the functor  CIW .
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If k D n in the above definition and we are enriching in some auxiliary category, we
need to say a bit more. We can rewrite the colimit as

 CIW .x/
..D
a
ˇ

Y
a

C.XaIˇ/;

where ˇ runs through boundary conditions on
F

a Xa which are compatible with
gluing as specified above and C.XaIˇ/ means the subset of C.Xa/ whose restriction
to @Xa agrees with ˇ . If we are enriching over S and k D n, then C.XaIˇ/ is an
object in S and the coproduct and product in the above expression should be replaced
by the appropriate operations in S (eg direct sum and tensor product if S is Vect).

Finally, we construct C
�!
.W / as the appropriate colimit of  CIW :

Definition 6.3.2 (System of fields functor) If C is an n–category enriched in sets
or vector spaces, C

�!
.W / is the usual colimit of the functor  CIW . That is, for each

decomposition x there is a map  CIW .x/! C
�!
.W /, these maps are compatible with

the refinement maps above, and C
�!
.W / is universal with respect to these properties.

Definition 6.3.3 (System of fields functor, A1 case) When C is an A1 n–category,
C
�!
.W / for W a k –manifold with k < n is defined as above, as the colimit of  CIW .

When W is an n–manifold, the chain complex C
�!
.W / is the homotopy colimit of the

functor  CIW .

We must now define restriction maps @W C
�!
.W /! C

�!
.@W / and gluing maps.

Let y 2 C
�!
.W /. Choose a representative of y in the colimit: a permissible decomposi-

tion
F

a Xa!W and elements ya 2 C.Xa/. By assumption,
F

a.Xa\ @W /! @W

can be completed to a decomposition of @W . Let r.ya/ 2 C
�!
.Xa \ @W / be the

restriction. Choose a representative of r.ya/ in the colimit C
�!
.Xa\@W /: a permissible

decomposition tbQab!Xa\@W and elements zab 2C.Qab/. Then tabQab!@W

is a permissible decomposition of @W and fzabg represents an element of C
�!
.@W /.

Define @y to be this element. It is not hard to see that it is independent of the various
choices involved.

Note that since we have already (inductively) defined gluing maps for colimits of
.k�1/–manifolds, we can also define restriction maps from C

�!
.W /t to C

�!
.Y / where

Y is a codimension 0 submanifold of @W .

Next we define gluing maps for colimits of k –manifolds. Let W DW1[Y W2 . Let
yi 2 C
�!
.Wi/ and assume that the restrictions of y1 and y2 to C

�!
.Y / agree. We want

to define y1 �y2 2 C
�!
.W /. Choose a permissible decomposition

F
a Xia!Wi and
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elements yia 2 C.Xia/ representing yi . It might not be the case that
F

ia Xia!W

is a permissible decomposition of W , since intersections of the pieces with @W might
not be well-behaved. However, using the fact that @yi splits along @Y and applying
Axiom 6.1.11, we can choose the decomposition

F
a Xia so that its restriction to

@Wi is a refinement of the splitting along @Y , and this implies that the combined
decomposition

F
ia Xia is permissible. We can now define the gluing y1 �y2 in the

obvious way, and a further application of Axiom 6.1.11 shows that this is independent
of the choices of representatives of yi .

We now give more concrete descriptions of the above colimits.

In the nonenriched case (eg k < n), where each C.XaIˇ/ is just a set, the colimit is

C
�!
.W; c/D

�a
x

a
ˇ

Y
a

C.XaIˇ/

�.
�;

where x runs through decompositions of W , and � is the obvious equivalence relation
induced by refinement and gluing. If C is enriched over, for example, vector spaces
and W is an n–manifold, we can take

C
�!
.W; c/D

�M
x

M
ˇ

O
a

C.XaIˇ/

�.
K;

where K is the vector space spanned by elements a�g.a/, with a 2  CIW ;c.x/ for
some decomposition x , and gW  CIW ;c.x/!  CIW ;c.y/ is the value of  CIW ;c on
some antirefinement x � y .

In the A1 case, enriched over chain complexes, the concrete description of the homo-
topy colimit is more involved. We will describe two different (but homotopy equivalent)
versions of the homotopy colimit of  CIW . The first is the usual one, which works for
any indexing category. The second construction, which we call the local homotopy
colimit, is more closely related to the blob complex construction of Section 3.1 and
takes advantage of local (gluing) properties of the indexing category D.W /.

Define an m–sequence in W to be a sequence x0 � x1 � � � � � xm of permissible
decompositions of W . Such sequences (for all m) form a simplicial set in D.W /.
Define C

�!
.W / as a vector space via

C
�!
.W /D

M
.xi /

 CIW .x0/Œm�;

where the sum is over all m and all m–sequences .xi/, and each summand is degree
shifted by m. Elements of a summand indexed by an m–sequence will be call m–
simplices. We endow C

�!
.W / with a differential which is the sum of the differential of
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the  CIW .x0/ summands plus another term using the differential of the simplicial set
of m–sequences. More specifically, if .a; xx/ denotes an element in the xx summand of
C
�!
.W / (with xx D .x0; : : : ;xk/), define

@.a; xx/D .@a; xx/C .�1/deg a.g.a/; d0.xx//C .�1/deg a
kX

jD1

.�1/j .a; dj .xx//;

where dj .xx/D .x0; : : : ;xj�1;xjC1; : : : ;xk/ and gW  C.x0/!  C.x1/ is the usual
gluing map coming from the antirefinement x0 � x1 .

We can think of this construction as starting with a disjoint copy of a complex for
each permissible decomposition (the 0–simplices). Then we glue these together with
mapping cylinders coming from gluing maps (the 1–simplices). Then we kill the extra
homology we just introduced with mapping cylinders between the mapping cylinders
(the 2–simplices), and so on.

Next we describe the local homotopy colimit. This is similar to the usual homotopy
colimit, but using a cone-product set (Remark 3.1.7) in place of a simplicial set. The
cone-product m–polyhedra for the set are pairs .x;E/, where x is a decomposition
of W and E is an m–blob diagram such that each blob is a union of balls of x . (Recall
that this means that the interiors of each pair of blobs (ie balls) of E are either disjoint
or nested.) To each .x;E/ we associate the chain complex  CIW .x/, shifted in degree
by m. The boundary has a term for omitting each blob of E . If we omit an innermost
blob then we replace x by the formal difference x� gl.x/, where gl.x/ is obtained
from x by gluing together the balls of x contained in the blob we are omitting. The
gluing maps of C give us a maps from  CIW .x/ to  CIW .gl.x//.

One can show that the usual hocolimit and the local hocolimit are homotopy equivalent
using an Eilenberg–Zilber type subdivision argument.

C
�!
.W / is functorial with respect to homeomorphisms of k –manifolds. Restricting to

k –spheres, we have now proved Lemma 6.1.2.

Lemma 6.3.4 Let W be a manifold of dimension j <n. Then for each decomposition
x of W the natural map  CIW .x/! C

�!
.W / is injective.

Proof C
�!
.W / is a colimit of a diagram of sets, and each of the arrows in the diagram

is injective. Concretely, the colimit is the disjoint union of the sets (one for each
decomposition of W ), modulo the relation which identifies the domain of each of the
injective maps with its image.

To save ink and electrons we will simplify notation and write  .x/ for  CIW .x/.
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Suppose a; ya 2  .x/ have the same image in C
�!
.W / but a¤ ya. Then there exist

� decompositions x D x0;x1; : : : ;xk�1;xk D x and v1; : : : ; vk of W ;

� antirefinements vi! xi and vi! xi�1 ;

� elements ai 2 .xi/ and bi 2 .vi/, with a0D a and ak D ya, such that bi and
biC1 both map to (glue up to) ai .

In other words, we have a zigzag of equivalences starting at a and ending at ya. The
idea of the proof is to produce a similar zigzag where everything antirefines to the same
disjoint union of balls, and then invoke Axiom 6.1.6 which ensures associativity.

Let z be a decomposition of W which is in general position with respect to all of the
xi ’s and vi ’s. There exist decompositions x0i and v0i (for all i ) such that

� x0i antirefines to xi and z ;

� v0i antirefines to x0i , x0
i�1

and vi ;

� bi is the image of some b0i 2  .v
0
i/;

� ai is the image of some a0i 2  .x
0
i/, which in turn is the image of b0i and b0

iC1
.

(This is possible by Axiom 6.1.11.) Now consider the diagrams:

 .x0
i�1
/

$$

 .v0i/

::

$$

 .z/

 .x0i/

::

The associativity axiom applied to this diagram implies that a0
i�1

and a0i map to the
same element c 2  .z/. Therefore a0

0
and a0

k
both map to c . But a0

0
and a0

k
are both

elements of  .x0
0
/ (because x0

k
D x0

0
). So by the injectivity clause of the composition

axiom, we must have that a0
0
D a0

k
. But this implies that aD a0 D ak D ya, contrary

to our assumption that a¤ ya.

6.4 Modules

Next we define ordinary and A1 n–category modules. The definition will be very
similar to that of n–categories, but with k –balls replaced by marked k –balls, defined
below.
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Our motivating example comes from an .m�nC1/–dimensional manifold W with
boundary in the context of an .mC/1–dimensional TQFT. Such a W gives rise to
a module for the n–category associated to @W (see Example 6.2.4). This will be
explained in more detail as we present the axioms.

Throughout, we fix an n–category C . For all but one axiom, it doesn’t matter whether
C is an ordinary n–category or an A1 n–category. We state the final axiom, regarding
actions of homeomorphisms, differently in the two cases.

Define a marked k –ball to be a pair .B;N / homeomorphic to the pair

.standard k –ball; northern hemisphere in boundary of standard k –ball/:

We call B the ball and N the marking. A homeomorphism between marked k –balls
is a homeomorphism of balls which restricts to a homeomorphism of markings.

Module Axiom 6.4.1 (Module morphisms) For each 1 � k � n, we have a func-
tor Mk from the category of marked k –balls and homeomorphisms to the category of
sets and bijections.

(As with n–categories, we will usually omit the subscript k .)

For example, let D be the TQFT which assigns to a k –manifold N the set of maps from
N to T (for k�m), modulo homotopy (and possibly linearized) if kDm (see Example
6.2.2). Let W be an .m�nC1/–dimensional manifold with boundary. Let C be the
n–category with C.X / ..DD.X � @W /. Let M.B;N / ..DD..B � @W /[ .N �W //.
(The union is along N � @W .) See Figure 22.

Figure 22: From manifold with boundary collar to marked ball

Define the boundary of a marked k –ball .B;N / to be the pair .@B nN; @N /. Call
such a thing a marked .k�1/–hemisphere. (A marked .k�1/–hemisphere is, of course,
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just a .k�1/–ball with its entire boundary marked. We call it a hemisphere instead
of a ball because it plays a role analogous to the .k�1/–spheres in the n–category
definition.)

Lemma 6.4.2 For each 1 � k � n, we have a functor M
�!

k�1 from the category of
marked k –hemispheres and homeomorphisms to the category of sets and bijections.

The proof is exactly analogous to that of Lemma 6.1.2, and we omit the details. We
use the same type of colimit construction.

In our example, M
�!
.H /DD.H � @W [ @H �W /.

Module Axiom 6.4.3 (Module boundaries) For each marked k –ball M we have a
map of sets @WM.M /!M

�!
.@M /. These maps, for various M , comprise a natural

transformation of functors.

Given c 2M
�!
.@M /, let M.M I c/ ..D @�1.c/.

If the n–category C is enriched over some other category (eg vector spaces), then for
each marked n–ball M D .B;N / and c 2 C.@B nN /, the set M.M I c/ should be an
object in that category.

Lemma 6.4.4 (Boundary from domain and range) Let H D M1 [E M2 , where
H is a marked .k�1/–hemisphere (1 � k � n), Mi is a marked .k�1/–ball, and
E DM1\M2 is a marked .k�2/–hemisphere. Let M.M1/�M.E/M.M2/ denote
the fibered product of the two maps @WM.Mi/!M

�!
.E/. Then we have an injective

map
glE WM.M1/�M

�!
.E/M.M2/ ,!M

�!
.H /

which is natural with respect to the actions of homeomorphisms.

This is in exact analogy with Lemma 6.1.4, and illustrated in Figure 23.

Let M
�!
.H /tE denote the image of glE . We will refer to elements of M

�!
.H /tE as

“splittable along E” or “transverse to E”.

It follows from the definition of the colimit M
�!
.H / that given any (unmarked) .k�1/–

ball Y in the interior of H there is a restriction map from a subset M
�!
.H /t @Y

of
M
�!
.H / to C.Y /. Combining this with the boundary map M.B;N /!M

�!
.@.B;N //,

we also have a restriction map from a subset M.B;N /t @Y
of M.B;N / to C.Y /

whenever Y is in the interior of @B nN . This fact will be used below.
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M1

E

M2

H

Figure 23: The marked hemispheres and marked balls from Lemma 6.4.4

Figure 24: Module composition (top), n–category action (bottom)

In our example, the various restriction and gluing maps above come from restricting
and gluing maps into T .

We require two sorts of composition (gluing) for modules, corresponding to two ways
of splitting a marked k –ball into two (marked or plain) k –balls. (See Figure 24.)

First, we can compose two module morphisms to get another module morphism.

Module Axiom 6.4.5 (Module composition) Let M DM1[Y M2 , where M , M1

and M2 are marked k –balls (with 2� k � n) and Y DM1\M2 is a marked .k�1/–
ball. Let E D @Y , which is a marked .k�2/–hemisphere. Note that each of M , M1

and M2 has its boundary split into two marked .k�1/–balls by E . We have restriction
(domain or range) maps M.Mi/tE !M.Y /. Let M.M1/tE �M.Y /M.M2/tE

denote the fibered product of these two maps. Then (axiom) we have a map

glY WM.M1/tE �M.Y /M.M2/tE!M.M /tE
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which is natural with respect to the actions of homeomorphisms, and also compatible
with restrictions to the intersection of the boundaries of M and Mi . If k < n we
require that glY is injective.

Second, we can compose an n–category morphism with a module morphism to get
another module morphism. We’ll call this the action map to distinguish it from the
other kind of composition.

Module Axiom 6.4.6 (n–Category action) Let M DX [Y M 0 , where M and M 0

are marked k –balls (1�k�n), X is a plain k –ball, and Y DX\M 0 is a .k�1/–ball.
Let ED @Y , which is a .k�2/–sphere. We have restriction maps M.M 0/tE! C.Y /
and C.X /tE! C.Y /. Let C.X /tE �C.Y /M.M 0/tE denote the fibered product of
these two maps. Then (axiom) we have a map

glY W C.X /tE �C.Y /M.M 0/tE!M.M /tE

which is natural with respect to the actions of homeomorphisms, and also compatible
with restrictions to the intersection of the boundaries of X and M 0 . If k < n we
require that glY is injective.

Module Axiom 6.4.7 (Strict associativity) The composition and action maps above
are strictly associative. Given any decomposition of a large marked ball into smaller
marked and unmarked balls any sequence of pairwise gluings yields (via composition
and action maps) the same result.

Note that the above associativity axiom applies to mixtures of module composition,
action maps and n–category composition. See Figure 25.

The above three axioms are equivalent to the following axiom, which we state in slightly
vague form.

Module multicomposition Given any splitting

X1 t � � � tXp tM1 t � � � tMq!M

of a marked k –ball M into small (marked and plain) k –balls Mi and Xj , there is a
map from an appropriate subset (like a fibered product) of

C.X1/� � � � � C.Xp/�M.M1/� � � � �M.Mq/

to M.M /, and these various multifold composition maps satisfy an operad-type strict
associativity condition.

The above operad-like structure is analogous to the swiss cheese operad of Voronov [22].
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module
composition action

action module
composition

action action

actionn–category
composition

Figure 25: Two examples of mixed associativity

We can define marked pinched products � W E!M of marked balls similarly to the
plain ball case. A marked pinched product � W E!M is a pinched product (that is,
locally modeled on degeneracy maps) which restricts to a map between the markings
which is also a pinched product, and in a neighborhood of the markings is the product
of the map between the markings with an interval. (See Figure 26.)

Figure 26: Two examples of marked pinched products

Note that a marked pinched product can be decomposed into either two marked pinched
products or a plain pinched product and a marked pinched product. (See Figure 27.)

Module Axiom 6.4.8 (Product (identity) morphisms) For each pinched product
� W E!M , with M a marked k –ball and E a marked .kCm/–ball (m� 1), there
is a map ��WM.M /!M.E/. These maps must satisfy the following conditions.

Geometry & Topology, Volume 16 (2012)



1560 Scott Morrison and Kevin Walker

Figure 27: Two examples of decompositions of marked pinched products

(1) If � W E!M and � 0W E0!M 0 are marked pinched products, and if f W M !
M 0 and zf W E!E0 are maps such that the diagram

E
zf
//

�

��

E0

� 0

��

M
f
// M 0

commutes, then we have

� 0� ıf D zf ı��:

(2) Product morphisms are compatible with module composition and module action.
Let � W E!M , �1W E1!M1 , and �2W E2!M2 be pinched products with
EDE1[E2 . Let a2M.M /, and let ai denote the restriction of a to Mi �M .
Then

��.a/D ��1 .a1/ ��
�
2 .a2/:

Similarly, if �W D! X is a pinched product of plain balls and E DD [E1 ,
then

��.a/D ��.a0/ ���1 .a1/;

where a0 is the restriction of a to D .

(3) Product morphisms are associative. If � W E!M and �W D!E are marked
pinched products then

�� ı�� D .� ı �/�:

(4) Product morphisms are compatible with restriction. If we have a commutative
diagram

D
� � //

�

��

E

�

��

Y
� � // M
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such that � and � are pinched products, then

resD ı�
�
D �� ı resY :

(Y could be either a marked or plain ball.)

As in the n–category definition, once we have product morphisms we can define collar
maps M.M /!M.M /. Note that there are two cases: the collar could intersect the
marking of the marked ball M , in which case we use a product on a morphism of M;
or the collar could be disjoint from the marking, in which case we use a product on a
morphism of C .

In our example, elements a of M.M / are maps to T , and ��.a/ is the pullback of a

along the map associated to � .

The remaining module axioms are very similar to their counterparts in Section 6.1.

Module Axiom 6.4.9 (Extended isotopy invariance in dimension n) Let M be a
marked n–ball, b 2M.M /, and f W M ! M be a homeomorphism which acts
trivially on the restriction @b of b to @M . Suppose furthermore that f is isotopic to
the identity through homeomorphisms which act trivially on @b . Then f .b/D b . In
addition, collar maps act trivially on M.M /.

We emphasize that the @M above (and below) means boundary in the marked k –ball
sense. In other words, if M D .B;N / then we require only that isotopies are fixed
on @B nN .

Module Axiom 6.4.10 (Splittings) Let c 2Mk.M /, with 1� k < n. Let s D fXig

be a splitting of M (so M D
S

i Xi , and each Xi is either a marked ball or a plain
ball). Let Homeo@.M / denote homeomorphisms of M which restrict to the identity
on @M .

� (Alternative 1) Consider the set of homeomorphisms gW M !M such that c

splits along g.s/. Then this subset of Homeo.M / is open and dense. Further-
more, if s restricts to a splitting @s of @M , and if @c splits along @s , then the
intersection of the set of such homeomorphisms g with Homeo@.M / is open
and dense in Homeo@.M /.

� (Alternative 2) Then there exists an embedded cell complex Sc �M , called
the string locus of c , such that if the splitting s is transverse to Sc then c splits
along s .
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We define the category MBC of marked n–balls with boundary conditions as fol-
lows. Its objects are pairs .M; c/, where M is a marked n–ball and c 2M

�!
.@M /

is the “boundary condition”. The morphisms from .M; c/ to .M 0; c0/, denoted
Homeo.M I c!M 0I c0/, are homeomorphisms f W M !M 0 such that f j@M .c/D c0 .

Let S be a distributive symmetric monoidal category, and assume that C is enriched
in S . A C–module enriched in S is defined analogously to Axiom 6.1.14. The top-
dimensional part of the module Mn is required to be a functor from MBC to S .
The top-dimensional gluing maps (module composition and n–category action) are
S–maps whose domain is a direct sub of tensor products, as in Axiom 6.1.14.

If C is an A1 n–category (see Axiom 6.1.15), we replace module axiom 6.4.9 with
the following axiom. Retain notation from Axiom 6.1.15.

Module Axiom 6.4.11 (Families of homeomorphisms act in dimension n.) For each
pair of marked n–balls M and M 0 and each pair c 2M

�!
.@M / and c0 2M

�!
.@M 0/ we

have an S–morphism

J .Homeo.M I c!M 0
I c0//˝M.M I c/!M.M 0

I c0/:

Similarly, we have an S–morphism

J .Coll.M; c//˝M.M I c/!M.M I c/;

where Coll.M; c/ denotes the space of collar maps. These action maps are required to
be associative up to coherent homotopy, and also compatible with composition (gluing)
in the sense that a diagram like the one in Theorem 5.2.1 commutes.

Note that the above axioms imply that an n–category module has the structure of an
.n�1/–category. More specifically, let J be a marked 1–ball, and define E.X / ..D

M.X � J /, where X is a k –ball and in the product X � J we pinch above the
nonmarked boundary component of J . (More specifically, we collapse X �P to a
single point, where P is the nonmarked boundary component of J .) Then E has the
structure of an .n�1/–category.

All marked k –balls are homeomorphic, unless k D 1 and our manifolds are oriented
or Spin (but not unoriented or Pin˙ ). In this case (k D 1 and oriented or Spin), there
are two types of marked 1–balls, call them left-marked and right-marked, and hence
there are two types of modules, call them right modules and left modules. In all other
cases (k > 1 or unoriented or Pin˙ ), there is no left/right module distinction.

We now give some examples of modules over ordinary and A1 n–categories.
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Example 6.4.12 (Examples from TQFTs) Continuing Example 6.2.4, with F a
TQFT, W an .n�j /–manifold, and F.W / the j –category associated to W . Let
Y be an .n�jC1/–manifold with @Y D W . Define a F.W / module F.Y / as
follows. If M D .B;N / is a marked k –ball with k < j , then let F.Y /.M / ..D

F..B �W /[ .N � Y //. If M D .B;N / is a marked j –ball and c 2 F.Y /
���!

.@M /,
then let F.Y /.M / ..DAF ..B �W /[ .N �Y /I c/.

Example 6.4.13 (Examples from the blob complex) In the previous example, we
can instead define F.Y /.M / ..D B�..B �W /[ .N �Y /; cIF/ (when dim.M /D n)
and get a module for the A1 n–category associated to F as in Example 6.2.8.

Example 6.4.14 Suppose S is a topological space, with a subspace T . We can
define a module ��n.S;T / so that on each marked k –ball .B;N / for k < n the set
��n.S;T /.B;N / consists of all continuous maps of pairs .B;N /! .S;T / and on
each marked n–ball .B;N / it consists of all such maps modulo homotopies fixed
on @B nN . This is a module over the fundamental n–category ��n.S/ of S , from
Example 6.2.1.

Modifications corresponding to Examples 6.2.2 and 6.2.3 are also possible, and there
is an A1 version analogous to Example 6.2.7 given by taking singular chains.

6.5 Modules as boundary labels (colimits for decorated manifolds)

Fix an ordinary n–category or A1 n–category C . Let W be a k –manifold (k�n), let
fYig be a collection of disjoint codimension 0 submanifolds of @W , and let N D .Ni/

be an assignment of a C module Ni to each Yi .

We will define a set C.W;N / using a colimit construction very similar to the one
appearing in Section 6.3 above. (If k D n and our n–categories are enriched, then
C.W;N / will have additional structure; see below.)

Define a permissible decomposition of W to be a map�G
a

Xa

�
t

�G
i;b

Mib

�
!W;

where each Xa is a plain k –ball disjoint, in W , from [Yi , and each Mib is a marked
k –ball intersecting Yi (once mapped into W ), with Mib\Yi being the marking, which
extends to a ball decomposition in the sense of Definition 3.1.3. (See Figure 28.) Given
permissible decompositions x and y , we say that x is a refinement of y , or write x�y ,
if each ball of y is a union of balls of x . This defines a partial ordering D.W /, which
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Figure 28: A permissible decomposition of a manifold whose boundary
components are labeled by C modules fNig . Marked balls are shown shaded,
plain balls are unshaded.

we will think of as a category. (The objects of D.D/ are permissible decompositions
of W , and there is a unique morphism from x to y if and only if x is a refinement
of y .)

The collection of modules N determines a functor  N from D.W / to the category of
sets (possibly with additional structure if k D n). For a decomposition x D .Xa;Mib/

in D.W /, define  N .x/ to be the subset

 N .x/�

�Y
a

C.Xa/

�
�

�Y
ib

Ni.Mib/

�
such that the restrictions to the various pieces of shared boundaries amongst the Xa

and Mib all agree. If x is a refinement of y , define a map  N .x/!  N .y/ via the
gluing (composition or action) maps from C and the Ni .

We now define the set C.W;N / to be the colimit of the functor  N . (As in Section 6.3,
if kDn we take a colimit in whatever category we are enriching over, and if additionally
we are in the A1 case, then we use a homotopy colimit.)

If D is an m–ball, 0�m� n�k , then we can similarly define C.D�W;N /, where
in this case Ni labels the submanifold D �Yi � @.D �W /. It is not hard to see that
the assignment D 7! C.D �W;N / has the structure of an n�k –category.

We will use a simple special case of the above construction to define tensor products
of modules. Let M1 and M2 be modules for an n–category C . (If k D 1 and our
manifolds are oriented, then one should be a left module and the other a right module.)
Choose a 1–ball J , and label the two boundary points of J by M1 and M2 . Define
the tensor product M1˝M2 to be the .n�1/–category associated as above to J with
its boundary labeled by M1 and M2 . This of course depends (functorially) on the
choice of 1–ball J .
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We will define a more general self tensor product (categorified coend) below.

6.6 Morphisms of modules

Modules are collections of functors together with some additional data, so we define
morphisms of modules to be collections of natural transformations which are compatible
with this additional data.

More specifically, let X and Y be C modules, ie collections of functors fXkg and fYkg,
for 1� k � n, from marked k –balls to sets as in Module Axiom 6.4.1. A morphism
gW X ! Y is a collection of natural transformations gk W Xk ! Yk satisfying:

� Each gk commutes with @.

� Each gk commutes with gluing (module composition and C action).

� Each gk commutes with taking products.

� In the top dimension k D n, gn preserves whatever additional structure we are
enriching over (eg vector spaces). In the A1 case (eg enriching over chain
complexes) gn should live in an appropriate derived hom space, as described
below.

We will be mainly interested in the case n D 1 and enriched over chain complexes,
since this is the case that’s relevant to the generalized Deligne conjecture of Section 8.
So we treat this case in more detail.

First we explain the remark about derived hom above. Let L be a marked 1–ball and
let X
�!
.L/ denote the local homotopy colimit construction associated to L by X and C .

(See Section 6.3 and Section 6.5.) Define Y
�!
.L/ similarly. For K an unmarked 1–ball

let C
�!
.K/ denote the local homotopy colimit construction associated to K by C . Then

we have an injective gluing map

glW X
�!
.L/˝ C

�!
.K/! X

�!
.L[K/

which is also a chain map. (For simplicity we are suppressing mention of boundary con-
ditions on the unmarked boundary components of the 1–balls.) Define homC.X ! Y/
to be a collection of (graded linear) natural transformations gW X

�!
.L/! Y

�!
.L/ such

that the following diagram commutes for all L and K :

X
�!
.L/˝ C

�!
.K/

gl
//

g˝1

��

X
�!
.L[K/

g

��

Y
�!
.L/˝ C

�!
.K/

gl
// Y
�!
.L[K/
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The usual differential on graded linear maps between chain complexes induces a
differential on homC.X ! Y/, giving it the structure of a chain complex.

Let Z be another C module. We define a chain map

aW homC.X ! Y/˝ .X ˝C Z/! Y˝C Z

as follows. Recall that the tensor product X ˝C Z depends on a choice of interval J ,
labeled by X on one boundary component and Z on the other. Because we are using
the local homotopy colimit, any generator D˝x˝xc˝ z of X ˝C Z can be written
(perhaps nonuniquely) as a gluing .D0˝x˝xc0/�.D00˝xc00˝z/, for some decomposition
J DL0[L00 and with D0˝x˝xc0 a generator of X

�!
.L0/ and D00˝xc00˝z a generator

of Z
�!
.L00/. (Such a splitting exists because the blob diagram D can be split into left

and right halves, since no blob can include both the leftmost and rightmost intervals in
the underlying decomposition. This step would fail if we were using the usual hocolimit
instead of the local hocolimit.) We now define

aW g˝ .D˝x˝xc˝ z/ 7! g.D0˝x˝xc0/ � .D00˝xc00˝ z/:

This does not depend on the choice of splitting D DD0 �D00 because g commutes
with gluing.

6.7 The .nC1/–category of sphere modules

In this subsection we define .nC1/–categories S of “sphere modules”. The objects
are n–categories, the k –morphisms are .k�1/–sphere modules for 1 � k � n, and
the .nC1/–morphisms are intertwiners. With future applications in mind, we treat
simultaneously the big .nC1/–category of all n–categories and all sphere modules
and also subcategories thereof. When n D 1 this is closely related to the familiar
2–category consisting of algebras, bimodules and intertwiners, or a subcategory of
that. (More generally, we can replace algebras with linear 1–categories.) The “bi” in
“bimodule” corresponds to the fact that a 0–sphere consists of two points. The sphere
module .nC1/–category is a natural generalization of the algebra-bimodule-intertwiner
2–category to higher dimensions.

Another possible name for this .nC1/–category is the .nC1/–category of defects. The
n–categories are thought of as representing field theories, and the 0–sphere modules
are codimension 1 defects between adjacent theories. In general, m–sphere modules
are codimension mC1 defects; the link of such a defect is an m–sphere decorated with
defects of smaller codimension.

For simplicity, we will assume that n–categories are enriched over C–vector spaces.
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The 1– through n–dimensional parts of S are various sorts of modules, and we describe
these first. The .nC1/–dimensional part of S consists of intertwiners of 1–category
modules associated to decorated n–balls. We will see below that in order for these
.nC1/–morphisms to satisfy all of the axioms of an .nC1/–category (in particular,
duality requirements), we will have to assume that our n–categories and modules have
nondegenerate inner products. (In other words, we need to assume some extra duality
on the n–categories and modules.)

Our first task is to define an n–category m–sphere module, for 0 � m � n � 1.
These will be defined in terms of certain classes of marked balls, very similarly to the
definition of n–category modules above. (This, in turn, is very similar to our definition
of n–category.) Because of this similarity, we only sketch the definitions below.

We start with 0–sphere modules, which also could reasonably be called (categorified)
bimodules. (For nD 1 they are precisely bimodules in the usual, uncategorified sense.)
We prefer the more awkward term “0–sphere module” to emphasize the analogy with
the higher sphere modules defined below.

Define a 0–marked k –ball, 1 � k � n, to be a pair .X;M / homeomorphic to the
standard .Bk ;Bk�1/. See Figure 29. Another way to say this is that .X;M / is
homeomorphic to Bk�1 � .Œ�1; 1�; f0g/.

Figure 29: 0–marked 1–ball and 0–marked 2–ball

The 0–marked balls can be cut into smaller balls in various ways. We only consider
those decompositions in which the smaller balls are either 0–marked (ie intersect the
0–marking of the large ball in a disc) or plain (don’t intersect the 0–marking of the
large ball). We can also take the boundary of a 0–marked ball, which is a 0–marked
sphere.

Fix n–categories A and B . These will label the two halves of a 0–marked k –ball.

An n–category 0–sphere module M over the n–categories A and B is a collection of
functors Mk from the category of 0–marked k –balls, 1� k � n, (with the two halves
labeled by A and B ) to the category of sets. If k D n these sets should be enriched to
the extent A and B are. Given a decomposition of a 0–marked k –ball X into smaller
balls Xi , we have morphism sets Ak.Xi/ (if Xi lies on the A–labeled side) or Bk.Xi/
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(if Xi lies on the B–labeled side) or Mk.Xi/ (if Xi intersects the marking and is
therefore a smaller 0–marked ball). Corresponding to this decomposition we have a
composition (or “gluing”) map from the product (fibered over the boundary data) of
these various sets into Mk.X /.

Part of the structure of an n–category 0–sphere module M is captured by saying it is a
collection Dab of .n�1/–categories, indexed by pairs .a; b/ of objects (0–morphisms)
of A and B . Let J be some standard 0–marked 1–ball (ie an interval with a marked
point in its interior). Given a j –ball X , 0� j � n� 1, we define

D.X / ..DM.X �J /:

The product is pinched over the boundary of J . The set D breaks into “blocks”
according to the restrictions to the pinched points of X � J (see Figure 30). These
restrictions are 0–morphisms .a; b/ of A and B .

X

J
a b

X �J

Figure 30: The pinched product X �J

More generally, consider an interval with interior marked points, and with the comple-
ments of these points labeled by n–categories Ai (0� i � l ) and the marked points
labeled by Ai –AiC1 0–sphere modules Mi . (See Figure 31.) To this data we can
apply the coend construction as in Section 6.5 above to obtain an A0 –Al 0–sphere
module and, forgetfully, an .n�1/–category. This amounts to a definition of taking
tensor products of 0–sphere modules over n–categories.

We could also similarly mark and label a circle, obtaining an .n�1/–category associated
to the marked and labeled circle. (See Figure 31.) If the circle is divided into two
intervals, we can think of this .n�1/–category as the 2–sided tensor product of the
two 0–sphere modules associated to the two intervals.

Next we define n–category 1–sphere modules. These are just representations of
(modules for) .n�1/–categories associated to marked and labeled circles (1–spheres)
which we just introduced.

Equivalently, we can define 1–sphere modules in terms of 1–marked k –balls, 2�k�n.
Fix a marked (and labeled) circle S . Let C.S/ denote the cone of S , a marked
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A0 A1 A2 A3 A4

M0 M1 M2 M3

A0

A1

A2

M0M1

M2

Figure 31: Marked and labeled 1–manifolds

2–ball (Figure 32). A 1–marked k –ball is anything homeomorphic to Bj �C.S/,
0�j �n�2, where Bj is the standard j –ball. A 1–marked k –ball can be decomposed
in various ways into smaller balls, which are either (a) smaller 1–marked k –balls, (b)
0–marked k –balls, or (c) plain k –balls. (See Figure 33.) We now proceed as in the
above module definitions.

A0

M0

A1

M1

A2

M2

Figure 32: Cone on a marked circle, the prototypical 1–marked ball

A n–category 1–sphere module is, among other things, an .n�2/–category D with

D.X / ..DM.X �C.S//:

The product is pinched over the boundary of C.S/. D breaks into “blocks” according
to the restriction to the image of @C.S/D S in X �C.S/.

More generally, consider a 2–manifold Y (eg 2–ball or 2–sphere) marked by an
embedded 1–complex K . The components of Y nK are labeled by n–categories, the

Geometry & Topology, Volume 16 (2012)



1570 Scott Morrison and Kevin Walker

0–marked ball

1–marked ball

plain ball

Figure 33: Subdividing a 1–marked ball into plain, 0–marked and 1–marked balls

edges of K are labeled by 0–sphere modules, and the 0–cells of K are labeled by
1–sphere modules. We can now apply the coend construction and obtain an .n�2/–
category. If Y has boundary then this .n�2/–category is a module for the .n�1/–
category associated to the (marked, labeled) boundary of Y . In particular, if @Y is a
1–sphere then we get a 1–sphere module as defined above.

It should now be clear how to define n–category m–sphere modules for 0�m� n�1.
For example, there is an .n�2/–category associated to a marked, labeled 2–sphere,
and a 2–sphere module is a representation of such an .n�2/–category.

We can now define the n–or-less-dimensional part of our .nC1/–category S . Choose
some collection of n–categories, then choose some collections of 0–sphere modules
between these n–categories, then choose some collection of 1–sphere modules for the
various possible marked 1–spheres labeled by the n–categories and 0–sphere modules,
and so on. Let Li denote the collection of i�1–sphere modules we have chosen. (For
convenience, we declare a .�1/–sphere module to be an n–category.) There is a wide
range of possibilities. The set L0 could contain infinitely many n–categories or just
one. For each pair of n–categories in L0 , L1 could contain no 0–sphere modules at
all or it could contain several. The only requirement is that each k –sphere module be
a module for a k –sphere n�k –category constructed out of labels taken from Lj for
j < k .

We remind the reader again that S depends on the choice of Li above as well as the
choice of families of inner products described below.

We now define S.X /, for X a ball of dimension at most n, to be the set of all
cell-complexes K embedded in X , with the codimension–j parts of .X;K/ labeled
by elements of Lj . As described above, we can think of each decorated k –ball as
defining a .k�1/–sphere module for the n�kC1–category associated to its decorated
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boundary. Thus the k –morphisms of S (for k � n) can be thought of as n–category
.k�1/–sphere modules (generalizations of bimodules). On the other hand, we can
equally well think of the k –morphisms as decorations on k –balls, and from this point
of view it is clear that they satisfy all of the axioms of an .nC1/–category. (All of the
axioms for the less-than–.nC1/–dimensional part of an .nC1/–category, that is.)

Next we define the .nC1/–morphisms of S . The construction of the 0– through
n–morphisms was easy and tautological, but the .nC1/–morphisms will require some
effort and combinatorial topology, as well as additional duality assumptions on the lower
morphisms. These are required because we define the spaces of .nC1/–morphisms by
making arbitrary choices of incoming and outgoing boundaries for each .nC1/–ball.
The additional duality assumptions are needed to prove independence of our definition
from these choices.

Let X be an .nC1/–ball, and let c be a decoration of its boundary by a cell complex
labeled by 0– through n–morphisms, as above. Choose an .n�1/–sphere E � @X ,
transverse to c , which divides @X into “incoming” and “outgoing” boundary @�X

and @CX . Let Ec denote E decorated by the restriction of c to E . Recall from above
the associated 1–category S.Ec/. We can also have S.Ec/ modules S.@�Xc/ and
S.@CXc/. Define

S.X I cIE/ ..D homS.Ec/.S.@�Xc/;S.@CXc//:

We will show that if the sphere modules are equipped with a “compatible family
of nondegenerate inner products”, then there is a coherent family of isomorphisms
S.X I cIE/ Š S.X I cIE0/ for all pairs of choices E and E0 . This will allow us to
define S.X I c/ independently of the choice of E .

First we must define “inner product”, “nondegenerate” and “compatible”. Let Y be a
decorated n–ball, and xY its mirror image. (We assume we are working in the unoriented
category.) Let Y [ xY denote the decorated n–sphere obtained by gluing Y and xY
along their common boundary. An inner product on S.Y / is a dual vector

zY W S.Y [ xY /!C:

We will also use the notation

ha; bi ..D zY .a � b/ 2C:

An inner product induces a linear map

'W S.Y /! S.Y /�

a 7! ha; � i

Geometry & Topology, Volume 16 (2012)



1572 Scott Morrison and Kevin Walker

which satisfies, for all morphisms e of S.@Y /,

'.ae/.b/D hae; bi D zY .a � e � b/D ha; ebi D '.a/.eb/:

In other words, ' is a map of S.@Y / modules. An inner product is nondegenerate if
' is an isomorphism. This implies that S.Y I c/ is finite dimensional for all boundary
conditions c . (One can think of these inner products as giving some duality in dimension
nC1; heretofore we have only assumed duality in dimensions 0 through n.)

Next we define compatibility. Let Y D Y1[Y2 with D D Y1\Y2 . Let X1 and X2

be the two components of Y � I cut along D � I , in both cases using the pinched
product. (Here we are overloading notation and letting D denote both a decorated and
an undecorated manifold.) We have @Xi D Yi [

xYi [ .D � I/ (see Figure 34). Given

Figure 34: Y � I sliced open

ai 2 S.Yi/, bi 2 S. xYi/ and v 2 S.D � I/ which agree on their boundaries, we can
evaluate

zYi
.ai � bi � v/ 2C:

(This requires a choice of homeomorphism Yi [
xYi [ .D� I/Š Yi [

xYi , but the value
of zYi

is independent of this choice.) We can think of zYi
as giving a function

 i W S.Yi/˝S. xYi/! S.D � I/�
'�1

�! S.D � I/:

We can now finally define a family of inner products to be compatible if for all
decompositions Y D Y1[Y2 as above and all ai 2 S.Yi/, bi 2 S. xYi/ we have

zY .a1 � a2 � b1 � b2/D zD�I . 1.a1˝ b1/ � 2.a2˝ b2//:

In other words, the inner product on Y is determined by the inner products on Y1 , Y2

and D � I .

Now we show how to unambiguously identify S.X I cIE/ and S.X I cIE0/ for any
two choices of E and E0 . Consider first the case where @X is decomposed as
three n–balls A, B and C , with E D @.A[B/ and E0 D @A. We must provide
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an isomorphism between S.X I cIE/ D hom.S.C /;S.A [B// and S.X I cIE0/ D
hom.S.C [ xB/;S.A//. Let D D B \A. Then as above we can construct a map

 W S.B/˝S. xB/! S.D � I/:

Given f 2 hom.S.C /;S.A[B// we define f 0 2 hom.S.C [ xB/;S.A// to be the
composition

S.C [ xB/ f˝1
�! S.A[B [ xB/

1˝ 
�! S.A[ .D � I//

Š
�! S.A/:

(See Figure 35.) Let D0 D B \C . Using the inner products there is an adjoint map

xB

D � I

B

A

C

D

" f

"  

Figure 35: Moving B from top to bottom

 |
W S.D0 � I/! S. xB/˝S.B/:

Given f 0 2 hom.S.C [ xB/;S.A// we define f 2 hom.S.C /;S.A[B// to be the
composition

S.C / Š�! S.C [ .D0 � I//
1˝ |

�! S.C [ xB [B/
f 0˝1
�! S.A[B/:

(See Figure 36.) It is not hard too show that the above two maps are mutually inverse.

Lemma 6.7.1 Any two choices of E and E0 are related by a series of modifications
as above.

Proof (sketch) E and E0 are isotopic, and any isotopy is homotopic to a composition
of small isotopies which are either (a) supported away from E , or (b) modify E in the
simple manner described above.

It follows from the lemma that we can construct an isomorphism between S.X I cIE/
and S.X I cIE0/ for any pair E , E0 . This construction involves a choice of simple
“moves” (as above) to transform E to E0 . We must now show that the isomorphism
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B

D0 � I

xB

C

A

D0

f 0 "

 | "

Figure 36: Moving B from bottom to top

does not depend on this choice. We will show below that it suffices to check two
“movie moves”.

The first movie move is to push E across an n–ball B as above, then push it back.
The result is equivalent to doing nothing. As we remarked above, the isomorphisms
corresponding to these two pushes are mutually inverse, so we have invariance under
this movie move.

The second movie move replaces two successive pushes in the same direction, across
B1 and B2 , say, with a single push across B1[B2 . (See Figure 37.) Invariance under

B1

B2
A

C

E

B1

B2
A

C

E

B1

B2
A

C

E

push
B1

push B
2

push B1[B2

Figure 37: A movie move

this movie move follows from the compatibility of the inner product for B1[B2 with
the inner products for B1 and B2 .
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If n� 2, these two movie moves suffice:

Lemma 6.7.2 Assume n � 2 and fix E and E0 as above. Then any two sequences
of elementary moves connecting E to E0 are related by a sequence of the two movie
moves defined above.

Proof (sketch) Consider a two parameter family of diffeomorphisms (one parameter
family of isotopies) of @X . Up to homotopy, such a family is homotopic to a family
which can be decomposed into small families which are either (a) supported away
from E , (b) have boundaries corresponding to the two movie moves above. Finally,
observe that the space of E ’s is simply connected. (This fails for nD 1.)

For nD 1 we have to check an additional “global” relation corresponding to rotating the
0–sphere E around the 1–sphere @X . But if nD 1, then we are in the case of ordinary
algebroids and bimodules, and this is just the well-known “Frobenius reciprocity” result
for bimodules [3].

We have now defined S.X I c/ for any .nC1/–ball X with boundary decoration c .
We must also define, for any homeomorphism X ! X 0 , an action f W S.X I c/!
S.X 0; f .c//. Choosing an equator E � @X we have

S.X I c/Š S.X I cIE/ ..D homS.Ec/.S.@�Xc/;S.@CXc//:

We define f W S.X I c/! S.X 0; f .c// to be the tautological map

f W S.X I cIE/! S.X 0If .c/If .E//:

It is easy to show that this is independent of the choice of E . Note also that this map
depends only on the restriction of f to @X . In particular, if F W X !X is the identity
on @X then f acts trivially, as required by Axiom 6.1.10.

We define product .nC1/–morphisms to be identity maps of modules.

To define (binary) composition of .nC1/–morphisms, choose the obvious common
equator then compose the module maps. The proof that this composition rule is
associative is similar to the proof of Lemma 6.7.1.

We end this subsection with some remarks about Morita equivalence of disk-like n–
categories. Recall that two 1–categories C and D are Morita equivalent if and only if
they are equivalent objects in the 2–category of (linear) 1–categories, bimodules, and
intertwiners. Similarly, we define two disk-like n–categories to be Morita equivalent if
they are equivalent objects in the .nC1/–category of sphere modules.
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Because of the strong duality enjoyed by disk-like n–categories, the data for such
an equivalence lives only in dimensions 1 and nC 1 (the middle dimensions come
along for free). The .nC1/–dimensional part of the data must be invertible and satisfy
identities corresponding to Morse cancellations in n–manifolds. We will treat this in
detail for the nD 2 case; the case for general n is very similar.

Let C and D be (unoriented) disk-like 2–categories. Let S denote the 3–category of 2–
category sphere modules. The 1–dimensional part of the data for a Morita equivalence
between C and D is a 0–sphere module MD CMD (categorified bimodule) connecting
C and D . Because of the full unoriented symmetry, this can also be thought of as a
0–sphere module DMC connecting D and C .

We would like M to be an equivalence, so we need 2–morphisms in S between
CMD˝D DMC and the identity 0–sphere module CCC , and similarly with the roles
of C and D reversed. These 2–morphisms come for free, in the sense of not requiring
additional data, since we can take them to be the labeled cell complexes (cups and
caps) in B2 shown in Figure 38.

We want the 2–morphisms from the previous paragraph to be equivalences, so we
need 3–morphisms between various compositions of these 2–morphisms and various
identity 2–morphisms. Recall that the 3–morphisms of S are intertwiners between
representations of 1–categories associated to decorated circles. Figure 39 shows the
intertwiners we need. Each decorated 2–ball in that figure determines a representation
of the 1–category associated to the decorated circle on the boundary. This is the
3–dimensional part of the data for the Morita equivalence. (Note that, by symmetry,
the c and d arrows of Figure 39 are the same (up to rotation), as the h and g arrows.)

In order for these 3–morphisms to be equivalences, they must be invertible (ie aD b�1 ,
cD d�1 , eD f �1 ) and in addition they must satisfy identities corresponding to Morse
cancellations on 2–manifolds. These are illustrated in Figure 40. Each line shows a
composition of two intertwiners which we require to be equal to the identity intertwiner.
The modules corresponding to the leftmost and rightmost disks in the figure can be
identified via the obvious isotopy.

For general n, we start with an n–category 0–sphere module M which is the data for
the 1–dimensional part of the Morita equivalence. For 2� k � n, the k –dimensional
parts of the Morita equivalence are various decorated k –balls with submanifolds labeled
by C , D and M; no additional data is needed for these parts. The .nC1/–dimensional
part of the equivalence is given by certain intertwiners, and these intertwiners must be
invertible and satisfy identities corresponding to Morse cancellations in n–manifolds.

If C and D are Morita equivalent n–categories, then it is easy to show that for any
.n�j /–manifold Y the j –categories C.Y / and D.Y / are Morita equivalent. When
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C D C
M M

C

C.M˝D M/C CCC

w

x

D C D
M M

D

D.M˝C M/D DDD

y

z

Figure 38: Cups and caps for free

j D 0 this means that the TQFT Hilbert spaces C.Y / and D.Y / are isomorphic (if we
are enriching over vector spaces).

7 The blob complex for A1 n–categories

Given an A1 n–category C and an n–manifold M , we make the following anticli-
mactically tautological definition of the blob complex.

Definition 7.0.3 The blob complex B�.M I C/ of an n–manifold M with coefficients
in an A1 n–category C is the homotopy colimit C

�!
.M / of Section 6.3.

We will show below in Corollary 7.1.3 that when C is obtained from a system of
fields E as the blob complex of an n–ball (see Example 6.2.8), C

�!
.M / is homotopy

equivalent to our original definition of the blob complex B�.M I E/.
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a

b

w
x 1

c

d

x
w 1

e

f

y
z 1

g

h

z
y 1

Figure 39: Intertwiners for a Morita equivalence

7.1 A product formula

Given an n–dimensional system of fields E and a .n�k/–manifold F , recall from
Example 6.2.8 that there is an A1 k –category CF defined by CF .X /D E.X �F / if
dim.X / < k and CF .X /D B�.X �F I E/ if dim.X /D k .

Theorem 7.1.1 Let Y be a k –manifold which admits a ball decomposition (eg any
triangulable manifold). Then there is a homotopy equivalence between “old-fashioned”
(blob diagrams) and “new-fangled” (hocolimit) blob complexes

B�.Y �F /' CF
�!
.Y /:

Proof We will use the concrete description of the homotopy colimit from Section 6.3.

First we define a map
 W CF
�!
.Y /! B�.Y �F I E/:
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a d

cb

e c

df

Figure 40: Identities for intertwiners

On 0–simplices of the hocolimit we just glue together the various blob diagrams on
Xi �F (where Xi is a component of a permissible decomposition of Y ) to get a blob
diagram on Y �F . For simplices of dimension 1 and higher we define the map to be
zero. It is easy to check that this is a chain map.

In the other direction, we will define (in the next few paragraphs) a subcomplex
G� � B�.Y �F I E/ and a map

�W G�! CF
�!
.Y /:

Given a decomposition K of Y into k –balls Xi , let K �F denote the corresponding
decomposition of Y �F into the pieces Xi �F .

Let G� � B�.Y �F I E/ be the subcomplex generated by blob diagrams a such that
there exists a decomposition K of Y such that a splits along K �F . It follows from
Lemma 5.1.1 that B�.Y �F I E/ is homotopic to a subcomplex of G� . (If the blobs
of a are small with respect to a sufficiently fine cover then their projections to Y are
contained in some disjoint union of balls.) Note that the image of  is equal to G� .

We will define
�W G�! CF

�!
.Y /

using the method of acyclic models. Let a be a generator of G� . Let D.a/ denote the
subcomplex of CF

�!
.Y / generated by all .b; xK/ where b is a generator appearing in an

iterated boundary of a (this includes a itself) and b splits along K0 �F . (Recall that
xKD .K0; : : : ;Kl/ denotes a chain of decompositions; see Section 6.3.) By .b; xK/ we
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really mean .b]; xK/, where b] is b split according to K0�F . To simplify notation we
will just write plain b instead of b] . Roughly speaking, D.a/ consists of 0–simplices
which glue up to give a (or one of its iterated boundaries), 1–simplices which connect
all the 0–simplices, 2–simplices which kill the homology created by the 1–simplices,
and so on. More formally:

Lemma 7.1.2 D.a/ is acyclic in positive degrees.

Proof Let P .a/ denote the finite cone-product polyhedron composed of a and its
iterated boundaries. (See Remark 3.1.7.) We can think of D.a/ as a cell complex
equipped with an obvious map pW D.a/! P .a/ which forgets the second factor. For
each cell b of P .a/, let I.b/D p�1.b/. It suffices to show that each I.b/ is acyclic
and more generally that each intersection I.b/\ I.b0/ is acyclic.

If I.b/\I.b0/ is nonempty then as a cell complex it is isomorphic to .b\b0/�E.b; b0/,
where E.b; b0/ consists of those simplices xKD .K0; : : : ;Kl/ such that both b and b0

split along K0�F . (Here we are thinking of b and b0 as both blob diagrams and also
faces of P .a/.) So it suffices to show that E.b; b0/ is acyclic.

Let K and K0 be two decompositions of Y (ie 0–simplices) in E.b; b0/. We want
to find 1–simplices which connect K and K0 . We might hope that K and K0 have a
common refinement, but this is not necessarily the case. (Consider the x–axis and the
graph of yD e�1=x2

sin.1=x/ in R2 .) However, we can find another decomposition L

such that L shares common refinements with both K and K0 . (For instance, in the
example above, L can be the graph of y D x2� 1.) This follows from Axiom 6.1.11,
which in turn follows from the splitting axiom for the system of fields E . Let KL

and K0L denote these two refinements. Then 1–simplices associated to the four
antirefinements KL! K , KL! L, K0L! L and K0L! K0 give the desired
chain connecting .a;K/ and .a;K0/ (see Figure 41). (In the language of Lemma 6.1.12,
this is V–Cone.K tK0/.)

K L K0

KL K0L

Figure 41: Connecting K and K0 via L

Consider next a 1–cycle in E.b; b0/, such as one arising from a different choice of
decomposition L0 in place of L above. By Lemma 6.1.12 we can fill in this 1–cycle
with 2–simplices. Choose a decomposition M which has common refinements with

Geometry & Topology, Volume 16 (2012)



Blob homology 1581

each of K , KL, L, K0L, K0 , K0L0 , L0 and KL0 . (We also require that KLM

antirefines to KM , etc) Then we have 2–simplices, as shown in Figure 42, which do
the trick. (Each small triangle in Figure 42 can be filled with a 2–simplex.)

M K0

K0L

L

KL

K

KL0

L0

K0L0

K0M

LM

KM

L0M

KLM

KL0M

K0LM

K0L0M

Figure 42: Filling in K -KL-L-K0L-K0 -K0L0 -L0 -KL0 -K

Continuing in this way we see that D.a/ is acyclic. By Lemma 6.1.12 we can fill in
any cycle with a V-Cone.

We are now in a position to apply the method of acyclic models to get a map �W G�!
CF
�!
.Y /. We may assume that �.a/ has the form .a;K/C r , where .a;K/ is a 0–

simplex and r is a sum of simplices of dimension 1 or higher.

We now show that � ı and  ı� are homotopic to the identity.

First,  ı� is the identity on the nose:

 .�.a//D  ..a;K//C .r/D aC 0:

Roughly speaking, .a;K/ is just a chopped up into little pieces, and  glues those
pieces back together, yielding a. We have  .r/D0 since  is zero on .�1/–simplices.

Second, � ı  is the identity up to homotopy by another argument based on the
method of acyclic models. To each generator .b; xK/ of CF

�!
.Y / we associate the acyclic
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subcomplex D.b/ defined above. Both the identity map and � ı are compatible
with this collection of acyclic subcomplexes, so by the usual method of acyclic models
argument these two maps are homotopic.

This concludes the proof of Theorem 7.1.1.

If Y has dimension k �m, then we have an m–category CY �F whose value at a
j –ball X is either E.X � Y �F / (if j < m) or B�.X � Y �F / (if j D m). (See
Example 6.2.8.) Similarly we have an m–category whose value at X is CF

�!
.X �Y /.

These two categories are equivalent, but since we do not define functors between
disk-like n–categories in this paper we are unable to say precisely what “equivalent”
means in this context. We hope to include this stronger result in a future paper.

Taking F in Theorem 7.1.1 to be a point, we obtain the following corollary.

Corollary 7.1.3 Let E be a system of fields (with local relations) and let CE be the
A1 n–category obtained from E by taking the blob complex of balls. Then for all
n–manifolds Y the old-fashioned and new-fangled blob complexes are homotopy
equivalent:

BE
�.Y /' CE

�!
.Y /:

Theorem 7.1.1 extends to the case of general fiber bundles

F !E! Y;

and indeed even to the case of general maps

M ! Y:

We outline two approaches to these generalizations. The first is somewhat tautological,
while the second is more amenable to calculation.

We can generalize the definition of a k –category by replacing the categories of j –balls
(j � k ) with categories of j –balls D equipped with a map pW D ! Y (cf [19]).
Call this a k –category over Y . A fiber bundle F ! E ! Y gives an example of
a k –category over Y : assign to pW D ! Y the blob complex B�.p�.E//, when
dim.D/D k , or the fields E.p�.E//, when dim.D/ < k . (Here p�.E/ denotes the
pullback bundle over D .) Let FE denote this k –category over Y . We can adapt the
homotopy colimit construction (based on decompositions of Y into balls) to get a chain
complex FE

�!
.Y /.

Theorem 7.1.4 Let F ! E ! Y be a fiber bundle and let FE be the k –category
over Y defined above. Then

B�.E/' FE
�!

.Y /:
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Proof The proof is nearly identical to the proof of Theorem 7.1.1, so we will only
give a sketch which emphasizes the few minor changes that need to be made.

As before, we define a map

 W FE
�!

.Y /! B�.E/:

The 0–simplices of the homotopy colimit FE
�!

.Y / are glued up to give an element
of B�.E/. Simplices of positive degree are sent to zero.

Let G� � B�.E/ be the image of  . By Lemma 5.1.1, B�.Y �F I E/ is homotopic to
a subcomplex of G� . We will define a homotopy inverse of  on G� , using acyclic
models. To each generator a of G� we assign an acyclic subcomplex D.a/� FE

�!
.Y /

which consists of 0–simplices which map via  to a, plus higher simplices (as
described in the proof of Theorem 7.1.1) which insure that D.a/ is acyclic.

We can generalize this result still further by noting that it is not really necessary for
the definition of FE that E ! Y be a fiber bundle. Let M ! Y be a map, with
dim.M /D n and dim.Y /D k . Call a map Dj ! Y “good” with respect to M if the
fibered product D z�M is a manifold of dimension n� kC j with a collar structure
along the boundary of D . (If D! Y is an embedding then D z�M is just the part
of M lying above D .) We can define a k –category FM based on maps of balls
into Y which are good with respect to M . We can again adapt the homotopy colimit
construction to get a chain complex FM

��!
.Y /. The proof of Theorem 7.1.1 again goes

through essentially unchanged to show that

B�.M /' FM
��!

.Y /:

In the second approach we use a decorated colimit (as in Section 6.7) and various
sphere modules based on F !E! Y or M ! Y , instead of an undecorated colimit
with fancier k –categories over Y . Information about the specific map to Y has been
taken out of the categories and put into sphere modules and decorations.

Let F !E! Y be a fiber bundle as above. Choose a decomposition Y D[Xi such
that the restriction of E to Xi is homeomorphic to a product F �Xi , and choose
trivializations of these products as well.

Let F be the k –category associated to F . To each codimension–1 face Xi \Xj we
have a bimodule (S0 –module) for F . More generally, to each codimension–m face
we have an Sm�1 –module for a .k�mC1/–category associated to the (decorated) link
of that face. We can decorate the strata of the decomposition of Y with these sphere
modules and form a colimit as in Section 6.7. This colimit computes B�.E/.
There is a similar construction for general maps M ! Y .
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7.2 A gluing theorem

Next we prove a gluing theorem. Throughout this section fix a particular n–dimensional
system of fields E and local relations. Each blob complex below is with respect to
this E . Let X be a closed k –manifold with a splitting X DX 0

1
[Y X 0

2
. We will need

an explicit collar on Y , so rewrite this as X DX1[ .Y �J /[X2 . Given this data we
have:

� An A1 n�k –category B.X /, which assigns to an m–ball D fields on D �X

(for mC k < n) or the blob complex B�.D �X I c/ (for mC k D n). (See
Example 6.2.8.)

� An A1 n�kC1–category B.Y /, defined similarly.

� Two B.Y / modules B.X1/ and B.X2/, which assign to a marked m–ball
.D;H / either fields on .D�Y /[ .H �Xi/ (if mCk < n) or the blob complex
B�..D �Y /[ .H �Xi// (if mC k D n). (See Example 6.4.13.)

� The tensor product B.X1/˝B.Y /;J B.X2/, which is an A1 n�k –category.
(See Section 6.5.)

It is the case that the n�k –categories B.X / and B.X1/˝B.Y /;J B.X2/ are equivalent
for all k , but since we do not develop a definition of functor between n–categories
in this paper, we cannot state this precisely. (It will appear in a future paper.) So we
content ourselves with:

Theorem 7.2.1 Suppose X is an n–manifold, and X DX1[ .Y �J /[X2 (ie take
k D n in the above discussion). Then B.X / is homotopy equivalent to the A1 tensor
product B.X1/˝B.Y /;J B.X2/.

Proof The proof is similar to that of Theorem 7.1.1. We give a short sketch with
emphasis on the differences from the proof of Theorem 7.1.1.

Let T denote the chain complex B.X1/˝B.Y /;J B.X2/. Recall that this is a homotopy
colimit based on decompositions of the interval J .

We define a map  W T ! B�.X /. On 0–simplices it is given by gluing the pieces
together to get a blob diagram on X . On simplices of dimension 1 and greater  is
zero.

The image of  is the subcomplex G��B.X / generated by blob diagrams which split
over some decomposition of J . It follows from Lemma 5.1.1 that B�.X / is homotopic
to a subcomplex of G� .
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Next we define a map �W G�! T using the method of acyclic models. As in the proof
of Theorem 7.1.1, we assign to a generator a of G� an acyclic subcomplex which
is (roughly)  �1.a/. The proof of acyclicity is easier in this case since any pair of
decompositions of J have a common refinement.

The proof that these two maps are homotopy inverse to each other is the same as in
Theorem 7.1.1.

7.3 Reconstructing mapping spaces

The next theorem shows how to reconstruct a mapping space from local data. Let T be
a topological space, let M be an n–manifold, and recall the A1 n–category �1�n.T /

of Example 6.2.7. Think of �1�n.T / as encoding everything you would ever want
to know about spaces of maps of k –balls into T (k � n). To simplify notation, let
T D �1�n.T /.

Theorem 7.3.1 The blob complex for M with coefficients in the fundamental A1
n–category for T is quasi-isomorphic to singular chains on maps from M to T :

BT .M /' C�.Maps.M ! T //:

Remark Lurie has shown in [13, Theorem 3.8.6] that the topological chiral homology
of an n–manifold M with coefficients in a certain En algebra constructed from T

recovers the same space of singular chains on maps from M to T , with the additional
hypothesis that T is .n�1/–connected. This extra hypothesis is not surprising, in view
of the idea described in Example 6.2.10 that an En algebra is roughly equivalent data
to an A1 n–category which is trivial at levels 0 through n� 1. Ricardo Andrade also
told us about a similar result.

Specializing still further, Theorem 7.3.1 is related to the classical result that for
connected spaces T we have HH�.C�.�T // Š H�.LT /, that is, the Hochschild
homology of based loops in T is isomorphic to the homology of the free loop space
of T (see Goodwillie [10] and Burghlea and Fiedorowicz [5]). Theorem 7.3.1 says
that for any space T (connected or not) we have B�.S1IC�.�

1
�1
.T /// ' C�.LT /.

Here C�.�
1
�1
.T // denotes the singular chain version of the fundamental infinity-

groupoid of T , whose objects are points in T and morphism chain complexes are
C�.paths.t1 ! t2// for t1; t2 2 T . If T is connected then the A1 1–category
C�.�

1
�1
.T // is Morita equivalent to the A1 algebra C�.�T /; the bimodule for

the equivalence is the singular chains of the space of paths which start at the base point
of T . Theorem 4.1.1 holds for A1 1–categories (though we do not prove that in this
paper), which then implies that

Hoch�.C�.�T //' Hoch�.C�.�1�1.T ///' B�.S1
IC�.�

1
�1.T ///' C�.LT /:
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Proof of Theorem 7.3.1 The proof is again similar to that of Theorem 7.1.1.

We begin by constructing a chain map  W BT .M /! C�.Maps.M ! T //.

Recall that the 0–simplices of the homotopy colimit BT .M / are a direct sum of chain
complexes with the summands indexed by decompositions of M which have their
.n�1/–skeletons labeled by .n�1/–morphisms of T . Since T D �1�n.T /, this means
that the summands are indexed by pairs .K; '/, where K is a decomposition of M

and ' is a continuous map from the .n�1/–skeleton of K to T . The summand indexed
by .K; '/ is O

b

D�.b; '/;

where b runs through the n–cells of K and D�.b; '/ denotes chains of maps from b

to T compatible with ' . We can take the product of these chains of maps to get chains
of maps from all of M to K . This defines  on 0–simplices.

We define  to be zero on .� 1/–simplices. It is not hard to see that this defines a
chain map from BT .M / to C�.Maps.M ! T //.

The image of  is the subcomplex G� � C�.Maps.M ! T // generated by families
of maps whose support is contained in a disjoint union of balls. It follows from
Lemma B.0.5 that C�.Maps.M ! T // is homotopic to a subcomplex of G� .

We will define a map �W G� ! BT .M / via acyclic models. Let a be a generator
of G� . Define D.a/ to be the subcomplex of BT .M / generated by all pairs .b; xK/,
where b is a generator appearing in an iterated boundary of a and xK is an index of
the homotopy colimit BT .M /. (See the proof of Theorem 7.1.1 for more details.)
The same proof as of Lemma 7.1.2 shows that D.a/ is acyclic. By the usual acyclic
models nonsense, there is a (unique up to homotopy) map �W G�! BT .M / such that
�.a/ 2D.a/. Furthermore, we may choose � such that for all a,

�.a/D .a;K/C r;

where .a;K/ is a 0–simplex and r is a sum of simplices of dimension 1 and greater.

It is now easy to see that  ı � is the identity on the nose. Another acyclic models
argument shows that �ı is homotopic to the identity. (See the proof of Theorem 7.1.1
for more details.)

8 Higher-dimensional Deligne conjecture

In this section we prove a higher dimensional version of the Deligne conjecture about
the action of the little disks operad on Hochschild cochains. The first several paragraphs
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lead up to a precise statement of the result (Theorem 8.0.2 below). Then we give the
proof.

The usual Deligne conjecture (proved variously by Kontsevich and Soibelman [11]
Voronov and Gerstenhaber [24], Tamarkin [20], Getzler and Jones [9] and Voronov [23])
gives a map

C�.LDk/˝

k copies‚ …„ ƒ
Hoch�.C;C /˝ � � �˝Hoch�.C;C /! Hoch�.C;C /:

Here LDk is the k –th space of the little disks operad and Hoch�.C;C / denotes
Hochschild cochains.

We now reinterpret C�.LDk/ and Hoch�.C;C / in such a way as to make the general-
ization to higher dimensions clear.

The little disks operad is homotopy equivalent to configurations of little bigons inside
a big bigon, as shown in Figure 43. We can think of such a configuration as encoding a
sequence of surgeries, starting at the bottommost interval of Figure 43 and ending at the
topmost interval. The surgeries correspond to the k bigon-shaped “holes”. We remove

Figure 43: Little bigons, thought of as encoding surgeries

the bottom interval of each little bigon and replace it with the top interval. To convert
this topological operation to an algebraic one, we need, for each hole, an element of
hom.BC

� .Ibottom/;BC
� .Itops//, which is homotopy equivalent to Hoch�.C;C /. So for

each fixed configuration we have a map

hom.BC
� .I/;BC

� .I//˝ � � �˝ hom.BC
� .I/;BC

� .I//! hom.BC
� .I/;BC

� .I//:

If we deform the configuration, corresponding to a 1–chain in C�.LDk/, we get a
homotopy between the maps associated to the endpoints of the 1–chain. Similarly,
higher-dimensional chains in C�.LDk/ give rise to higher homotopies.
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We emphasize that in hom.BC
� .I/;BC

� .I// we are thinking of BC
� .I/ as a module for

the A1 1–category associated to @I , and hom means the morphisms of such modules
as defined in Section 6.6.

It should now be clear how to generalize this to higher dimensions. In the sequence-
of-surgeries description above, we never used the fact that the manifolds involved
were 1–dimensional. So we will define, below, the operad of n–dimensional surgery
cylinders, analogous to mapping cylinders of homeomorphisms (Figure 44). (Note that n

Figure 44: An n–dimensional surgery cylinder
is the dimension of the manifolds we are doing surgery on; the surgery cylinders are
.nC1/–dimensional.)

An n–dimensional surgery cylinder (n–SC for short) consists of
� “lower” n–manifolds M0; : : : ;Mk and “upper” n–manifolds N0; : : : ;Nk , with
@Mi D @Ni D Ei for all i . We call M0 and N0 the outer boundary and the
remaining Mi ’s and Ni ’s the inner boundaries;

� additional manifolds R1; : : : ;Rk , with @Ri DE0[ @Mi DE0[ @Ni ;
� homeomorphisms

f0W M0!R1[M1;

fi W Ri [Ni!RiC1[MiC1 for 1� i � k � 1;

fk W Rk [Nk !N0:

Each fi should be the identity restricted to E0 .

We can think of the above data as encoding the union of the mapping cylinders
C.f0/; : : : ;C.fk/, with C.fi/ glued to C.fiC1/ along RiC1 (see Figure 45). We
regard two such surgery cylinders as the same if there is a homeomorphism between
them which is the identity on the boundary and which preserves the 1–dimensional
fibers coming from the mapping cylinders. More specifically, we impose the following
two equivalence relations:
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Figure 45: An n–dimensional surgery cylinder constructed from mapping cylinders

� If gW Ri ! R0i is a homeomorphism which restricts to the identity on @Ri D

@R0i DE0[ @Mi , we can replace

.: : : ;Ri�1;Ri ;RiC1; : : :/! .: : : ;Ri�1;R
0
i ;RiC1; : : :/;

.: : : ; fi�1; fi ; : : :/! .: : : ;g ıfi�1; fi ıg�1; : : :/;

leaving the Mi and Ni fixed. (Keep in mind the case R0iDRi .) (See Figure 46.)

Ri

fi

fi−1

!

g◦fi−1

Ri

Figure 46: Conjugating by a homeomorphism

� If Mi DM 0
i tM 00

i and Ni DN 0i tN 00i (and there is a compatible disjoint union
of @M D @N ), we can replace

.: : : ;Mi�1;Mi ;MiC1; : : :/! .: : : ;Mi�1;M
0
i ;M

00
i ;MiC1; : : :/;

.: : : ;Ni�1;Ni ;NiC1; : : :/! .: : : ;Ni�1;N
0
i ;N

00
i ;NiC1; : : :/;

.: : : ;Ri�1;Ri ;RiC1; : : :/! .: : : ;Ri�1;Ri [M 00
i ;Ri [N 0i ;RiC1; : : :/;

.: : : ; fi�1; fi ; : : :/! .: : : ; fi�1; id; fi ; : : :/:

(See Figure 47.)

Note that the second equivalence increases the number of holes (or arity) by 1. We can
make a similar identification with the roles of M 0

i and M 00
i reversed. In terms of the
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Ni Ni

Mi Mi

 

(Ni Ni

Mi Mi )

!

Ni Ni

Mi Mi

Figure 47: Changing the order of a surgery

“sequence of surgeries” picture, this says that if two successive surgeries do not overlap,
we can perform them in reverse order or simultaneously.

There is a colored operad structure on n–dimensional surgery cylinders, given by
gluing the outer boundary of one cylinder into one of the inner boundaries of another
cylinder. We leave it to the reader to work out a more precise statement in terms of
Mi ’s, fi ’s etc.

For fixed SM D .M0; : : : ;Mk/ and xN D .N0; : : : ;Nk/, we let SCn
SM xN

denote the
topological space of all n–dimensional surgery cylinders as above. (Note that in
different parts of SCn

SM xN
the Mi ’s and Ni ’s are ordered differently.) The topology

comes from the spaces

Homeo.M0!R1[M1/�Homeo.R1[N1!R2[M2/�� � ��Homeo.Rk[Nk!N0/

and the above equivalence relations. We will denote the typical element of SCn
SM xN

by
xf D .f0; : : : ; fk/.

The n–SC operad contains the little .nC1/–balls operad. Roughly speaking, given
a configuration of k little .nC1/–balls in the standard .nC1/–ball, we fiber the
complement of the balls by vertical intervals and let Mi (Ni ) be the southern (northern)
hemisphere of the i –th ball. More precisely, let x1; : : : ;xnC1 be the coordinates
of RnC1 . Let z be a point of the k –th space of the little .nC1/–balls operad, with
little balls D1; : : : ;Dk inside the standard .nC1/–ball. We assume the Di ’s are
ordered according to the xnC1 coordinate of their centers. Let � W RnC1!Rn be the
projection corresponding to xnC1 . Let B�Rn be the standard n–ball. Let Mi and Ni

be B for all i . Identify �.Di/ with B (also known as Mi or Ni ) via translations and
dilations (no rotations). Let Ri D B n �.Di/. Let fi D id for all i . We have now
defined a map from the little .nC1/–balls operad to the n–SC operad, with contractible
fibers. (The fibers correspond to moving the Di ’s in the xnC1 direction while keeping
them disjoint.)
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Another familiar subspace of the n–SC operad is Homeo.M0! N0/, which corre-
sponds to case k D 0 (no holes). In this case the surgery cylinder is just a single
mapping cylinder.

Let xf 2 SCn
SM xN

. As usual, fix a system of field F and let B� denote the blob complex
construction based on F . Let hom.B�.Mi/;B�.Ni// denote the morphisms from
B�.Mi/ to B�.Ni/, as modules of the A1 1–category B�.Ei/ (see Section 6.6). We
will define a map

p. xf /W hom.B�.M1/;B�.N1//˝ � � �˝ hom.B�.Mk/;B�.Nk//

! hom.B�.M0/;B�.N0//:

Given ˛i 2 hom.B�.Mi/;B�.Ni//, we define p. xf /.˛1˝ � � �˝˛k/ to be the compo-
sition

B�.M0/
f0
! B�.R1[M1/

1˝˛1
����! B�.R1[N1/

f1
! B�.R2[M2/

1˝˛2
����! � � �

1˝˛k
����! B�.Rk [Nk/

fk
! B�.N0/:

(Recall that the maps 1˝ ˛i were defined in Section 6.6.) It is easy to check that
the above definition is compatible with the equivalence relations and also the operad
structure. We can reinterpret the above as a chain map

pW C0.SCn
SM xN

/˝ hom.B�.M1/;B�.N1//˝ � � �˝ hom.B�.Mk/;B�.Nk//

! hom.B�.M0/;B�.N0//:

The main result of this section is that this chain map extends to the full singular chain
complex C�.SCn

SM xN
/.

Theorem 8.0.2 There is a collection of chain maps

C�.SCn
SM xN

/˝ hom.B�.M1/;B�.N1//˝ � � �˝ hom.B�.Mk/;B�.Nk//

! hom.B�.M0/;B�.N0//

which satisfy the operad compatibility conditions, up to coherent homotopy. On
C0.SCn

SM xN
/ this agrees with the chain map p defined above. When k D 0, this

coincides with the C�.Homeo.M0!N0// action of Section 5.

The “up to coherent homotopy” in the statement is due to the fact that the isomorphisms
of 5.1.2 and 7.2.1 are only defined up to a contractible set of homotopies.

If, in analogy to Hochschild cochains, we define elements of hom.B�.M /;B�.N // to
be “blob cochains”, we can summarize the above proposition by saying that the n–SC
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operad acts on blob cochains. As noted above, the n–SC operad contains the little
.nC1/–balls operad, so this constitutes a higher dimensional version of the Deligne
conjecture for Hochschild cochains and the little 2–disks operad.

Proof As described above, SCn
SM xN

is equal to the disjoint union of products of
homeomorphism spaces, modulo some relations. By Theorem 5.2.1 and the Eilenberg–
Zilber theorem, we have for each such product P a chain map

C�.P /˝ hom.B�.M1/;B�.N1//˝ � � �˝ hom.B�.Mk/;B�.Nk//

! hom.B�.M0/;B�.N0//:

It suffices to show that the above maps are compatible with the relations whereby
SCn
SM xN

is constructed from the various P ’s. This in turn follows easily from the
fact that the actions of C�.Homeo. � ! � // are local (compatible with gluing) and
associative (up to coherent homotopy).

We note that even when nD 1, the above theorem goes beyond an action of the little
disks operad. Mi could be a disjoint union of intervals, and Ni could connect the
end points of the intervals in a different pattern from Mi . The genus of the surface
associated to the surgery cylinder could be greater than zero.

Appendix A The method of acyclic models

In this section we recall the method of acyclic models for the reader’s convenience.
The material presented here is closely modeled on Spanier [17, Chapter 4]. We use this
method throughout the paper (cf Theorem 7.1.1, Theorem 7.2.1 and Theorem 7.3.1),
as it provides a very convenient way to show the existence of a chain map with desired
properties, even when many noncanonical choices are required in order to construct
one, and further to show the up-to-homotopy uniqueness of such maps.

Let F� and G� be chain complexes. Assume Fk has a basis fxkj g (that is, F� is free
and we have specified a basis). (In our applications, fxkj g will typically be singular k –
simplices or k –blob diagrams.) For each basis element xkj assume we have specified
a “target” D

kj
� �G� .

We say that a chain map f W F�! G� is compatible with the above data (basis and
targets) if f .xkj / 2D

kj
� for all k and j . Let Compat.D��/ denote the subcomplex of

maps from F� to G� such that the image of each higher homotopy applied to xkj lies
in D

kj
� .
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Theorem A.0.3 (Acyclic models) Suppose
� D

k�1;l
� �D

kj
� whenever xk�1;l occurs in @xkj with nonzero coefficient;

� D
0j
0

is nonempty for all j ;
� D

kj
� is .k�1/–acyclic (ie Hk�1.D

kj
� /D 0) for all k; j .

Then Compat.D��/ is nonempty. If, in addition,
� D

kj
� is m–acyclic for k �m� kC i and for all k; j ,

then Compat.D��/ is i –connected.

Proof (sketch) This is a standard result; see, for example, [17, Chapter 4].

We will build a chain map f 2 Compat.D��/ inductively. Choose f .x0j / 2D
0j
0

for
all j (possible since D

0j
0

is nonempty). Choose f .x1j / 2D
1j
1

such that @f .x1j /D

f .@x1j / (possible since D0l
� � D

1j
� for each x0l in @x1j and D

1j
� is 0–acyclic).

Continue in this way, choosing f .xkj / 2D
kj

k
such that @f .xkj /D f .@xkj / We have

now constructed f 2 Compat.D��/, proving the first claim of the theorem.

Now suppose that D
kj
� is k –acyclic for all k and j . Let f and f 0 be two chain

maps (0–chains) in Compat.D��/. Using a technique similar to above we can construct
a homotopy (1–chain) in Compat.D��/ between f and f 0 . Thus Compat.D��/ is
0–connected. Similarly, if D

kj
� is .kCi/–acyclic then we can show that Compat.D��/

is i –connected.

Appendix B Adapting families of maps to open covers

In this appendix we prove some results about adapting families of maps to open covers.
These results are used in Lemma 5.1.5 and Theorem 7.3.1.

Let X and T be topological spaces, with X compact. Let U D fU˛g be an open cover
of X which affords a partition of unity fr˛g. (That is, r˛W X ! Œ0; 1�; r˛.x/D 0 if
x … U˛ ; for fixed x , r˛.x/¤ 0 for only finitely many ˛ ; and

P
˛ r˛ D 1.) Since X

is compact, we will further assume that r˛ D 0 (globally) for all but finitely many ˛ .

Consider C�.Maps.X ! T //, the singular chains on the space of continuous maps
from X to T . Ck.Maps.X ! T // is generated by continuous maps

f W P �X ! T;

where P is some convex linear polyhedron in Rk . Recall that f is supported on
S �X if f .p;x/ does not depend on p when x … S , and that f is adapted to U if
f is supported on the union of at most k of the U˛ ’s. A chain c 2C�.Maps.X !T //

is adapted to U if it is a linear combination of generators which are adapted.
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Lemma B.0.4 Let f W P �X ! T , as above. Then there exists

F W I �P �X ! T

such that the following conditions hold.

(1) F.0; � ; � /D f .

(2) We can decompose P D
S

i Di so that the restrictions F.1; � ; � /W Di �X ! T

are all adapted to U .

(3) If f has support S �X , then F W .I �P /�X ! T (a kC1–parameter family
of maps) also has support S . Furthermore, if Q is a convex linear subpolyhedron
of @P and f restricted to Q has support S 0 � X , then F W .I �Q/�X ! T

also has support S 0 .

(4) Suppose both X and T are smooth manifolds, metric spaces, or PL manifolds,
and let X denote the subspace of Maps.X ! T / consisting of immersions or
of diffeomorphisms (in the smooth case), bi-Lipschitz homeomorphisms (in the
metric case), or PL homeomorphisms (in the PL case). If f is smooth, Lipschitz
or PL, as appropriate, and f .p; � /W X ! T is in X for all p 2P then F.t;p; � /

is also in X for all t 2 I and p 2 P .

Proof Our homotopy will have the form

F W I �P �X !X

.t;p;x/ 7! f .u.t;p;x/;x/

for some function
uW I �P �X ! P:

First we describe u, then we argue that it makes the conclusions of the lemma true.

For each cover index ˛ choose a cell decomposition K˛ of P such that the various K˛

are in general position with respect to each other. If we are in one of the cases of
item (4) of the lemma, also choose K˛ sufficiently fine as described below.

Let L be a common refinement of all the K˛ ’s. Let zL denote the handle decom-
position of P corresponding to L. Each i –handle C of zL has an i –dimensional
tangential coordinate and, more importantly for our purposes, a k�i –dimensional
normal coordinate. We will typically use the same notation for i –cells of L and the
corresponding i –handles of zL.

For each (top-dimensional) k –cell C of each K˛ , choose a point p.C / 2 C � P . If
C meets a subpolyhedron Q of @P , we require that p.C / 2Q. (It follows that if C
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meets both Q and Q0 , then p.C / 2Q\Q0 . Ensuring this is possible corresponds to
some mild constraints on the choice of the K˛ .)

Let D be a k –handle of zL. For each ˛ let C.D; ˛/ be the k –cell of K˛ which
contains D and let p.D; ˛/D p.C.D; ˛//.

For p 2D we define

u.t;p;x/D .1� t/pC t
X
˛

r˛.x/p.D; ˛/:

(Recall that P is a convex linear polyhedron, so the weighted average of points of P

makes sense.)

Thus far we have defined u.t;p;x/ when p lies in a k –handle of zL. We will now
extend u inductively to handles of index less than k .

Let E be a .k�1/–handle. E is homeomorphic to Bk�1 � Œ0; 1�, and meets the k –
handles at Bk�1�f0g and Bk�1�f1g. Let �W E! Œ0; 1�, �.x; s/D s be the normal
coordinate of E . Let D0 and D1 be the two k –handles of zL adjacent to E . There
is at most one index ˇ such that C.D0; ˇ/ ¤ C.D1; ˇ/. (If there is no such index,
choose ˇ arbitrarily.) For p 2E , define

u.t;p;x/D .1� t/p

C t

�X
˛¤ˇ

r˛.x/p.D0; ˛/C rˇ.x/.�.p/p.D0; ˇ/C .1� �.p//p.D1; ˇ//

�
:

Now for the general case. Let E be a k�j –handle. Let D0; : : : ;Da be the k –handles
adjacent to E . There is a subset of cover indices N , of cardinality j , such that if
˛…N then p.Du; ˛/Dp.Dv; ˛/ for all 0�u; v�a. For fixed ˇ2N let fqˇig be the
set of values of p.Du; ˇ/ for 0� u� a. Recall the product structure EDBk�j �Bj .
Inductively, we have defined functions �ˇi W @B

j ! Œ0; 1� such that
P

i �ˇi D 1 for all
ˇ 2N . Choose extensions of �ˇi to all of Bj . Via the projection E!Bj , regard �ˇi

as a function on E . Now define, for p 2E ,

(B-1) u.t;p;x/D .1� t/p

C t

� X
˛…N

r˛.x/p.D0; ˛/C
X
ˇ2N

rˇ.x/

�X
i

�ˇi.p/ � qˇi

��
:

This completes the definition of uW I �P �X ! P . The formulas above are consis-
tent: for p at the boundary between a .k�j /–handle and a .k�.jC1//–handle the
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corresponding expressions in Equation (B-1) agree, since one of the normal coordi-
nates becomes 0 or 1. Note that if Q � @P is a convex linear subpolyhedron, then
u.I �Q�X /�Q.

Next we verify that u affords F the properties claimed in the statement of the lemma.

Since u.0;p;x/D p for all p 2P and x 2X , F.0;p;x/D f .p;x/ for all p and x .
Therefore F is a homotopy from f to something.

Next we show that for each handle D of J , F.1; � ; � /W D �X !X is a singular cell
adapted to U . Let k � j be the index of D . Referring to Equation (B-1), we see that
F.1;p;x/ depends on p only if rˇ.x/¤ 0 for some ˇ 2N , ie only if x 2

S
ˇ2N Uˇ .

Since the cardinality of N is j which is less than or equal to k , this shows that
F.1; � ; � /W D �X !X is adapted to U .

Next we show that F does not increase supports. If f .p;x/ D f .p0;x/ for all
p;p0 2 P , then

F.t;p;x/D f .u.t;p;x/;x/D f .u.t 0;p0;x/;x/D F.t 0;p0;x/

for all .t;p/; .t 0;p0/ 2 I �P . Similarly, if f .q;x/D f .q0;x/ for all q; q0 2Q� @P ,
then

F.t; q;x/D f .u.t; q;x/;x/D f .u.t 0; q0;x/;x/D F.t 0; q0;x/

for all .t; q/ and .t 0; q0/ in I �Q. (Recall we arranged above that u.I �Q�X /�Q.)

Now for claim (4) of the lemma. Assume that X and T are smooth manifolds and
that f is a smooth family of diffeomorphisms. We must show that we can choose the
K˛ ’s and u so that F.t;p; � / is a diffeomorphism for all t and p . It suffices to show
that the derivative @F

@x
.t;p;x/ is nonsingular for all .t;p;x/. We have

@F

@x
D
@f

@x
C
@f

@p

@u

@x
:

Since f is a family of diffeomorphisms and X and P are compact, f=x is nonsingular
and bounded away from zero. Also, since f is smooth f=p is bounded. Thus if we
can insure that u=x is sufficiently small, we are done. It follows from Equation (B-1)
above that u=x depends on r˛=x (which is bounded) and the differences amongst
the various p.D0; ˛/’s and qˇi ’s. These differences are small if the cell decomposi-
tions K˛ are sufficiently fine. This completes the proof that F is a homotopy through
diffeomorphisms.

If we replace “diffeomorphism” with “immersion” in the above paragraph, the argument
goes through essentially unchanged.
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Next we consider the case where f is a family of bi-Lipschitz homeomorphisms.
Recall that we assume that f is Lipschitz in the P direction as well. The argument
in this case is similar to the one above for diffeomorphisms, with bounded partial
derivatives replaced by Lipschitz constants. Since X and P are compact, there is
a universal bi-Lipschitz constant that works for f .p; � / for all p . By choosing the
cell decompositions K˛ sufficiently fine, we can insure that u has a small Lipschitz
constant in the X direction. This allows us to show that F.t;p; � / has a bi-Lipschitz
constant close to the universal bi-Lipschitz constant for f .

Since PL homeomorphisms are bi-Lipschitz, we have established this last remaining
case of claim (4) of the lemma as well.

Lemma B.0.5 Let X� be any of C�.Maps.X ! T // or singular chains on the sub-
space of Maps.X ! T / consisting of immersions, diffeomorphisms, bi-Lipschitz
homeomorphisms, or PL homeomorphisms. Let G� � X� denote the chains adapted to
an open cover U of X . Then G� is a strong deformation retract of X� .

Proof It suffices to show that given a generator f W P �X ! T of Xk with @f 2
Gk�1 there exists h 2 XkC1 with @h D f C g and g 2 Gk . This is exactly what
Lemma B.0.4 gives us. More specifically, let @P D

P
Qi , with each Qi 2Gk�1 . Let

F W I �P �X ! T be the homotopy constructed in Lemma B.0.4. Then @F is equal
to f plus F.1; � ; � / plus the restrictions of F to I �Qi . Part (2) of Lemma B.0.4
says that F.1; � ; � / 2Gk , while part (3) of Lemma B.0.4 says that the restrictions to
I �Qi are in Gk .

Topological (merely continuous) homeomorphisms are conspicuously absent from
the list of classes of maps for which the above lemma hold. The k D 1 case of
Lemma B.0.4 for plain, continuous homeomorphisms is more or less equivalent to [7,
Corollary 1.3]. We suspect that the proof found in [7] of that corollary can be adapted
to many-parameter families of homeomorphisms, but so far the details have alluded us.

Appendix C Comparing n–category definitions

In Section 2.2 we showed how to construct a disk-like n–category from a traditional
n–category; the morphisms of the disk-like n–category are string diagrams labeled by
the traditional n–category. In this appendix we sketch how to go the other direction,
for n D 1 and 2. The basic recipe, given a disk-like n–category C , is to define the
k –morphisms of the corresponding traditional n–category to be C.Bk/, where Bk

is the standard k –ball. One must then show that the axioms of Section 6.1 imply
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the traditional n–category axioms. One should also show that composing the two
arrows (between traditional and disk-like n–categories) yields the appropriate sort of
equivalence on each side. Since we haven’t given a definition for functors between
disk-like n–categories, we do not pursue this here.

We emphasize that we are just sketching some of the main ideas in this appendix — it
falls well short of proving the definitions are equivalent.

C.1 1–Categories over Set or Vect

Given a disk-like 1–category X we construct a 1–category in the conventional
sense, c.X /. This construction is quite straightforward, but we include the details for
the sake of completeness, because it illustrates the role of structures (eg orientations,
spin structures, etc) on the underlying manifolds, and to shed some light on the nD 2

case, which we describe in Section C.2.

Let Bk denote the standard k –ball. Let the objects of c.X / be c.X /0 D X .B0/ and
the morphisms of c.X / be c.X /1 D X .B1/. The boundary and restriction maps of X
give domain and range maps from c.X /1 to c.X /0 .

Choose a homeomorphism B1[pt B1! B1 . Define composition in c.X / to be the
induced map c.X /1 � c.X /1! c.X /1 (defined only when range and domain agree).
By isotopy invariance in X , any other choice of homeomorphism gives the same
composition rule. Also by isotopy invariance, composition is strictly associative.

Given a 2 c.X /0 , define 1a
..D a�B1 . By extended isotopy invariance in X , this has

the expected properties of an identity morphism.

We have now defined the basic ingredients for the 1–category c.X /. As we explain
below, c.X / might have additional structure corresponding to the unoriented, oriented,
Spin, PinC or Pin� structure on the 1–balls used to define X .

For 1–categories based on unoriented balls, there is a map |W c.X /1! c.X /1 coming
from X applied to an orientation-reversing homeomorphism (unique up to isotopy) from
B1 to itself. (Of course our B1 is unoriented, ie not equipped with an orientation. We
mean the homeomorphism which would reverse the orientation if there were one; B1 is
not oriented, but it is orientable.) Topological properties of this homeomorphism imply
that a|| D a (| is order 2), | reverses domain and range, and .ab/| D b|a| (| is an
antiautomorphism). Recall that in this context 0–balls should be thought of as equipped
with a germ of a 1–dimensional neighborhood. There is a unique such 0–ball, up to
homeomorphism, but it has a nonidentity automorphism corresponding to reversing
the orientation of the germ. Consequently, the objects of c.X / are equipped with an
involution, also denoted |. If aW x! y is a morphism of c.X / then a|W y|! x| .
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For 1–categories based on oriented balls, there are no nontrivial homeomorphisms of
0– or 1–balls, and thus no additional structure on c.X /.
For 1–categories based on Spin balls, the nontrivial spin homeomorphism from B1

to itself which covers the identity gives an order 2 automorphism of c.X /1 . There is
a similar involution on the objects c.X /0 . In the case where there is only one object
and we are enriching over complex vector spaces, this is just a superalgebra. The even
elements are the C1 eigenspace of the involution on c.X /1 , and the odd elements are
the �1 eigenspace of the involution.

For 1–categories based on Pin� balls, we have an order 4 antiautomorphism of c.X /1 .
For 1–categories based on PinC balls, we have an order 2 antiautomorphism and also
an order 2 automorphism of c.X /1 , and these two maps commute with each other. In
both cases there is a similar map on objects.

Similar arguments show that modules for disk-like 1–categories are essentially the
same thing as traditional modules for traditional 1–categories.

C.2 Pivotal 2–categories

Let C be a disk-like 2–category. We will construct from C a traditional pivotal 2–
category D . (The “pivotal” corresponds to our assumption of strong duality for C .)

We will try to describe the construction in such a way that the generalization to n> 2

is clear, though this will make the nD 2 case a little more complicated than necessary.

Before proceeding, we must decide whether the 2–morphisms of our pivotal 2–category
are shaped like rectangles or bigons. Each approach has advantages and disadvantages.
For better or worse, we choose bigons here.

Define the k –morphisms Dk of D to be C.Bk/tE , where Bk denotes the standard
k –ball, which we also think of as the standard bihedron (also known as globe). (For
k D 1 this is an interval, and for k D 2 it is a bigon.) Since we are thinking of Bk as
a bihedron, we have a standard decomposition of the @Bk into two copies of Bk�1

which intersect along the “equator” E Š Sk�2 . Recall that the subscript in C.Bk/tE

means that we consider the subset of C.Bk/ whose boundary is splittable along E .
This allows us to define the domain and range of morphisms of D using boundary and
restriction maps of C .

Choosing a homeomorphism B1[B1!B1 defines a composition map on D1 . This
is not associative, but we will see later that it is weakly associative.

Choosing a homeomorphism B2 [B2! B2 defines a “vertical” composition map
on D2 (Figure 48). Isotopy invariance implies that this is associative. We will define a
“horizontal” composition later.
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B2

B2

B2
Š

Figure 48: Vertical composition of 2–morphisms

Given a2D1 , define 1aDa�I 2D2 (pinched boundary). Extended isotopy invariance
for C shows that this morphism is an identity for vertical composition.

Given x 2 C 0 , define 1x D x �B1 2 C 1 . We will show that this 1–morphism is a
weak identity. This would be easier if our 2–morphisms were shaped like rectangles
rather than bigons.

In showing that identity 1–morphisms have the desired properties, we will rely heavily
on the extended isotopy invariance of 2–morphisms in C . Extended isotopy invariance
implies that adding a product collar to a 2–morphism of C has no effect, and by cutting
and regluing we can insert (or delete) product regions in the interior of 2–morphisms
as well. Figure 49 shows some examples.

f a D f

a� I

gf D gf

a� I

gf a D gf

a� I

g
f D

g

f

a� I

Figure 49: Examples of inserting or deleting product regions

Let aW y! x be a 1–morphism. Define 2–morphisms a! a �1x and a �1x! a as
shown in Figure 50. As suggested by the figure, these are two different reparameteriza-
tions of a half-pinched version of a� I (ie two different homeomorphisms from the
half-pinched I � I to the standard bigon). We must show that the two compositions
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y

a x

a x

x � I

y

a x

a

x

x � I

y

a x

a

x

x � I

Figure 50: Producing weak identities from half pinched products

of these two maps give the identity 2–morphisms on a and a � 1x , as defined above.
Figure 51 shows one case. In the first step we have inserted a copy of .x � I/� I .

a

a

x � I

x � I

a

a

x � I

x � I

a

a

x � I

x � I

D

Figure 51: Composition of weak identities, 1

Figure 52 shows the other case.

D

Figure 52: Composition of weak identities, 2

We notice that a certain subset of the disk is a product region and remove it.

Given 2–morphisms f and g , we define the horizontal composition f �h g to be any
of the four equal 2–morphisms in Figure 53. Figure 54 illustrates part of the proof that
these four 2–morphisms are equal. Similar arguments show that horizontal composition
is associative.

Given 1–morphisms a, b and c of D , we define the associator from .a � b/ � c to
a � .b � c/ as in Figure 55. This is just a reparameterization of the pinched product
.a � b � c/� I of C .
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b

a

f �h

d

c

g D

f

g
.b � c/� I

D f g

.a � c/� I

D

f

g
.a � d/� I

D

f g

.b � d/� I

Figure 53: Horizontal composition of 2–morphisms

Let x;y; z be objects of D and let aW x!y and bW y! z be 1–morphisms of D . We
have already defined above structure maps uW a�1y! a and vW 1y �b! b , as well as
an associator ˛W .a�1y/�b! a� .1y �b/, as shown in Figure 56. (See also Figure 50
and Figure 55.) We now show that D satisfies the triangle axiom, which states that
u � 1b is equal to the vertical composition of ˛ and 1a � v . (Both are 2–morphisms
from .a � 1y/ � b to a � b .)

The horizontal compositions u �h 1b and 1a �h v are shown in Figure 57 (see also
Figure 53). The vertical composition of ˛ and 1a�hv is shown in Figure 58. Figure 59
shows that we can add a collar to u�h 1b so that the result differs from Figure 58 by an
isotopy rel boundary. Note that here we have used in an essential way the associativity
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f

g

.a � d/� I

f

g

f g

.b � d/� I

add .b � d/� I remove .a � d/� I

D

Figure 54: Part of the proof that the four different horizontal compositions of
2–morphisms are equal

c
b

a

a
b

ca� I

b � I

c � I

Figure 55: An associator

of product morphisms (Axiom 6.1.8.3) as well as compatibility of product morphisms
with fiber-preserving maps (Axiom 6.1.8.1).

C.3 A1 1–categories

In this section, we make contact between the usual definition of an A1 category and
our definition of a disk-like A1 1–category, from Section 6.1.

Given a disk-like A1 1–category C , we define an “mk –style” A1 1–category A

as follows. The objects of A are C.pt/. The morphisms of A, from x to y , are
C.I Ix;y/ (C applied to the standard interval with boundary labeled by x and y ).
For simplicity we will now assume there is only one object and suppress it from the
notation. Henceforth A will also denote its unique morphism space.
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uD

a

y � Ia

v D

b

by � I

˛ D

b
y � I

a

a
y � I

ba� I

y � I � I

b � I

Figure 56: Ingredients for the triangle axiom

u�h .b � I/D

a b

b
y � I

a

.a� I/�h v D

a b

b
y � I

a

Figure 57: Horizontal compositions in the triangle axiom

Figure 58: Vertical composition in the triangle axiom

collar
���!

Figure 59: Adding a collar in the proof of the triangle axiom
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A choice of homeomorphism I [ I ! I induces a chain map m2W A˝A!A. We
now have two different homeomorphisms I [I [I! I , but they are isotopic. Choose
a specific 1–parameter family of homeomorphisms connecting them; this induces a
degree 1 chain homotopy m3W A˝A˝A!A. Proceeding in this way we define the
rest of the mi ’s. It is straightforward to verify that they satisfy the necessary identities.

In the other direction, we start with an alternative conventional definition of an A1
algebra: an algebra A for the A1 operad. (For simplicity, we are assuming our A1
1–category has only one object.) We are free to choose any operad with contractible
spaces, so we choose the operad whose k –th space is the space of decompositions of
the standard interval I into k parameterized copies of I . Note in particular that when
k D 1 this implies a C�.Homeo.I// action on A. (Compare with Example 6.2.10 and
the discussion which precedes it.) Given a nonstandard interval J , we define C.J /
to be .Homeo.I ! J / �A/=Homeo.I ! I/, where ˇ 2 Homeo.I ! I/ acts via
.f; a/ 7! .f ıˇ�1; ˇ�.a//. Note that C.J /ŠA (noncanonically) for all intervals J .
We define a Homeo.J / action on C.J / via g�.f; a/D .gıf; a/. The C�.Homeo.J //
action is defined similarly.

Let J1 and J2 be intervals, and let J1[J2 denote their union along a single boundary
point. We must define a map C.J1/˝C.J2/! C.J1[J2/. Choose a homeomorphism
gW I ! J1[J2 . Let .fi ; ai/ 2 C.Ji/. We have a parameterized decomposition of I

into two intervals given by g�1 ıfi , i D 1; 2. Corresponding to this decomposition the
operad action gives a map �W A˝A!A. Define the gluing map to send .f1; a1/˝

.f2; a2/ to .g; �.a1˝ a2//. Operad associativity for A implies that this gluing map
is independent of the choice of g and the choice of representative .fi ; ai/.

It is straightforward to verify the remaining axioms for a disk-like A1 1–category.

This paper is available online at arXiv:1009.5025, at http://tqft.net/blobs,
and at http://canyon23.net/math/.
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